WO2017126069A1 - 電力需要値算出システム、電力需要値算出方法および電力需要値算出プログラム - Google Patents

電力需要値算出システム、電力需要値算出方法および電力需要値算出プログラム Download PDF

Info

Publication number
WO2017126069A1
WO2017126069A1 PCT/JP2016/051639 JP2016051639W WO2017126069A1 WO 2017126069 A1 WO2017126069 A1 WO 2017126069A1 JP 2016051639 W JP2016051639 W JP 2016051639W WO 2017126069 A1 WO2017126069 A1 WO 2017126069A1
Authority
WO
WIPO (PCT)
Prior art keywords
value
power
temperature
power demand
maximum
Prior art date
Application number
PCT/JP2016/051639
Other languages
English (en)
French (fr)
Inventor
北嶋 雅之
鉄二 石川
Original Assignee
富士通株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士通株式会社 filed Critical 富士通株式会社
Priority to JP2017562224A priority Critical patent/JP6566049B2/ja
Priority to PCT/JP2016/051639 priority patent/WO2017126069A1/ja
Priority to EP16886311.6A priority patent/EP3407450A4/en
Publication of WO2017126069A1 publication Critical patent/WO2017126069A1/ja
Priority to US16/037,295 priority patent/US10989743B2/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R21/00Arrangements for measuring electric power or power factor
    • G01R21/133Arrangements for measuring electric power or power factor by using digital technique
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/003Load forecast, e.g. methods or systems for forecasting future load demand
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q30/00Commerce
    • G06Q30/02Marketing; Price estimation or determination; Fundraising
    • G06Q30/0201Market modelling; Market analysis; Collecting market data
    • G06Q30/0202Market predictions or forecasting for commercial activities
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q50/00Information and communication technology [ICT] specially adapted for implementation of business processes of specific business sectors, e.g. utilities or tourism
    • G06Q50/06Energy or water supply
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2203/00Indexing scheme relating to details of circuit arrangements for AC mains or AC distribution networks
    • H02J2203/20Simulating, e g planning, reliability check, modelling or computer assisted design [CAD]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/70Smart grids as climate change mitigation technology in the energy generation sector
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S10/00Systems supporting electrical power generation, transmission or distribution
    • Y04S10/50Systems or methods supporting the power network operation or management, involving a certain degree of interaction with the load-side end user applications
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S40/00Systems for electrical power generation, transmission, distribution or end-user application management characterised by the use of communication or information technologies, or communication or information technology specific aspects supporting them
    • Y04S40/20Information technology specific aspects, e.g. CAD, simulation, modelling, system security
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S50/00Market activities related to the operation of systems integrating technologies related to power network operation or related to communication or information technologies
    • Y04S50/14Marketing, i.e. market research and analysis, surveying, promotions, advertising, buyer profiling, customer management or rewards

Definitions

  • the present invention relates to a power demand value calculation system, a power demand value calculation method, and a power demand value calculation program.
  • region, a facility, etc. may be performed by the electric power supplier, the electric power company, etc.
  • the power of the prediction target day whose characteristics (maximum temperature, day of the week, weather, humidity, etc.) match the past day
  • the difference between the prediction result and the actual maximum power demand becomes a problem.
  • contract power is determined based on the prediction result of the maximum power demand, and a fee corresponding to the contract power is paid to the provider supplying the power.
  • the prediction result of the maximum power demand exceeds the actual demand, an extra cost is generated by the difference.
  • an object of the present invention is to provide a power demand value calculation system, a power demand value calculation method, and a power demand value calculation program that prevent the future maximum power demand from being excessively estimated.
  • a power demand value calculation system includes a storage device and a calculation device.
  • the storage device stores data of a combination of the temperature and the actual power value.
  • the arithmetic unit selects data having a predetermined temperature or more from the storage device, and the actual power value corresponding to the temperature of each selected data is calculated from the regression equation derived from the combination data and the temperature of the selected data.
  • the maximum power demand value is calculated based on the temperature above the predetermined temperature and the regression equation.
  • FIG. 1 is a diagram illustrating a power demand value calculation system according to the first embodiment.
  • the power demand value calculation system 1 calculates a power consumption value (power demand value) predicted for the future from the past power consumption results corresponding to the temperature.
  • the power demand value predicted by the power demand value calculation system 1 is the maximum power consumption expected in the future predetermined period (for example, the next year).
  • the electric power demand value calculation system 1 includes a storage device 1a and an arithmetic device 1b.
  • the storage device 1a may be a volatile storage device such as a RAM (Random Access Memory) or a non-volatile storage device such as an HDD (Hard Disk Drive) or a flash memory.
  • the computing device 1b may include a CPU (Central Processing Unit), a DSP (Digital Signal Processor), an ASIC (Application Specific Integrated Circuit), an FPGA (Field Programmable Gate Array), and the like.
  • the arithmetic device 1b may be a processor that executes a program.
  • the “processor” may include a set of multiple processors (multiprocessor).
  • the power demand value calculation system 1 may be called a “computer”.
  • the storage device 1a stores the table 2.
  • Table 2 is information including a plurality of combinations of temperature and actual power consumption values.
  • One combination of the temperature and the actual power consumption value in Table 2 can also be referred to as one record (or data).
  • Table 2 shows the correspondence between the maximum daily temperature in the past and the maximum actual power consumption value. That is, one record shows the correspondence between the maximum temperature and the maximum actual power consumption value in a past day.
  • a plurality of records are registered such as a record including the temperature t1 and the actual power consumption value P1, and a record including the temperature t2 and the actual power consumption value P2.
  • the computing device 1b selects a record having a predetermined temperature or higher from the storage device 1a. For example, let the predetermined temperature be ta.
  • the computing device 1b selects a record including a temperature that is equal to or higher than the predetermined temperature ta from among a plurality of records registered in the table 2.
  • the computing device 1b is predetermined when the actual power value corresponding to the temperature included in each selected record is smaller than the calculated power value calculated from the regression equation calculated from a plurality of records and the temperature of each selected record.
  • the maximum power demand value is calculated based on the temperature above the temperature and the regression equation.
  • the arithmetic device 1b calculates a regression equation representing the regression line L1 from a plurality of records registered in the table 2.
  • a graph G1 represents a regression line L1 indicating the relationship between the temperature and the power consumption.
  • the regression equation may be a linear equation or a quadratic or higher equation.
  • the regression line L1 is a straight line, and the regression equation is a linear equation.
  • the arithmetic device 1b can calculate a regression equation based on each record in the table 2 using the least square method (a method other than the least square method may be used).
  • the arithmetic device 1b compares the actual power value corresponding to the temperature included in each record selected from the table 2 with the calculated power value calculated from the regression equation and the temperature of each selected record.
  • the power calculation value is a value of power consumption calculated by substituting the temperature into the obtained regression equation.
  • the computing device 1b sets the temperature to be substituted for the regression equation to obtain the calculated power value as the maximum temperature tc predicted for the next year.
  • the maximum temperature tc may be the maximum temperature among the temperatures included in each selected record.
  • the arithmetic device 1b may predict the maximum temperature tc of the next year from the fluctuation tendency of the maximum temperature of each past year.
  • the computing device 1b may perform regression analysis on each past year and the maximum temperature in each year, and predict the maximum temperature tc in the next year from the derived regression equation.
  • a value obtained by substituting the temperature tc into the regression equation corresponding to the regression line L1 is defined as a power calculation value Py.
  • the computing device 1b compares the power actual value Px1 that is the maximum among the power actual values for the predetermined temperature ta or higher included in the table 2 with the calculated power value Py.
  • the actual power value Px1 is an actual power value corresponding to the temperature tb1 (ta ⁇ tb1 ⁇ tc).
  • the actual power value Px1 is smaller than the calculated power value Py (in the case of the graph G2).
  • the arithmetic device 1b calculates the maximum power demand value based on the temperature equal to or higher than the predetermined temperature ta and the regression equation corresponding to the regression line L1. Specifically, it is conceivable that the arithmetic device 1b sets the calculated power value Py obtained by substituting the maximum temperature tc into the regression equation as the maximum power demand value.
  • the maximum value of the actual power value for the predetermined temperature ta or higher may be the actual power value Px2 ( ⁇ Py) (the actual power value Px2 is equal to or greater than the calculated power value Py) (in the case of the graph G3).
  • the actual power value Px2 is an actual power value corresponding to the temperature tb2 (ta ⁇ tb2 ⁇ tc).
  • the arithmetic device 1b sets the actual power value Px2 as the maximum power demand value.
  • the power demand value calculation system 1 is concerned when the temperature is equal to or higher than the predetermined temperature ta.
  • the maximum power demand value is calculated using a regression equation.
  • the reason for paying attention to the temperature equal to or higher than the predetermined temperature ta is that the power demand value tends to increase as the temperature rises, and this tendency is used to narrow down the temperature range to be determined.
  • the actual power value is smaller than the calculated power value calculated using the regression equation, it is considered that the possibility that the future power demand exceeds the maximum power demand value obtained from the regression equation is relatively low. Therefore, when the actual power value is smaller than the calculated power value calculated using the regression formula, the maximum maximum power demand value can be prevented from being estimated too large by obtaining the maximum power demand value from the regression formula.
  • the power demand value calculation system 1 sets the past actual maximum power demand value as the predicted maximum power demand value. . This is because the possibility of exceeding the maximum power demand value obtained from the regression equation is considered to be relatively high. By predicting the actual value of the maximum power demand in the past as the maximum power demand value for the next term, it is possible to prevent the future maximum power demand value from being underestimated.
  • the computing device 1b may exclude abnormal values from the actual power consumption values recorded in the table 2 when obtaining the actual power values Px1 and Px2. For example, the arithmetic device 1b obtains the standard deviation of the actual power consumption value recorded in the table 2, and excludes the actual power consumption that falls outside the allowable range of the actual power consumption value represented by the standard deviation as an abnormal value. It is possible. By excluding abnormal values in this way, it is possible to improve the prediction accuracy of the maximum power demand value.
  • the period of the prediction target is the next year, but a period of other length such as a half year may be the prediction target.
  • the computing device 1b uses the power consumption actual value in the past synchronization period (for example, April to September) and the maximum power during the future synchronization period by the method illustrated in the first embodiment.
  • the demand value can also be calculated.
  • FIG. 2 is a diagram illustrating an example of hardware of the power prediction server according to the second embodiment.
  • the power prediction server 100 is a server computer that predicts power demand in facilities such as factories and laboratories.
  • the power prediction server 100 includes a processor 101, a RAM 102, an HDD 103, an image signal processing unit 104, an input signal processing unit 105, a medium reader 106, and a communication interface 107. Each unit is connected to the bus of the power prediction server 100.
  • the processor 101 controls information processing of the power prediction server 100.
  • the processor 101 may be a multiprocessor.
  • the processor 101 is, for example, a CPU, DSP, ASIC, or FPGA.
  • the processor 101 may be a combination of two or more elements among CPU, DSP, ASIC, FPGA, and the like.
  • the RAM 102 is a main storage device of the power prediction server 100.
  • the RAM 102 temporarily stores at least part of an OS (Operating System) program and application programs to be executed by the processor 101.
  • the RAM 102 stores various data used for processing by the processor 101.
  • the HDD 103 is an auxiliary storage device of the power prediction server 100.
  • the HDD 103 magnetically writes and reads data to and from the built-in magnetic disk.
  • the HDD 103 stores an OS program, application programs, and various data.
  • the power prediction server 100 may include other types of auxiliary storage devices such as a flash memory and an SSD (Solid State Drive), or may include a plurality of auxiliary storage devices.
  • the image signal processing unit 104 outputs an image to the display 11 connected to the power prediction server 100 in accordance with an instruction from the processor 101.
  • a CRT (CathodeathRay Tube) display As the display 11, a CRT (CathodeathRay Tube) display, a liquid crystal display, or the like can be used.
  • the input signal processing unit 105 acquires an input signal from the input device 12 connected to the power prediction server 100 and outputs it to the processor 101.
  • the input device 12 for example, a pointing device such as a mouse or a touch panel, a keyboard, or the like can be used.
  • the media reader 106 is a device that reads programs and data recorded on the recording medium 13.
  • a magnetic disk such as a flexible disk (FD) or HDD
  • an optical disk such as a CD (Compact Disk) or a DVD (Digital Versatile Disk), or a magneto-optical disk (MO) is used.
  • a non-volatile semiconductor memory such as a flash memory card can be used.
  • the medium reader 106 stores the program and data read from the recording medium 13 in the RAM 102 or the HDD 103 in accordance with an instruction from the processor 101.
  • the communication interface 107 communicates with other devices via the network 10.
  • the communication interface 107 may be a wired communication interface or a wireless communication interface.
  • FIG. 3 is a diagram illustrating an example of functions of the power prediction server.
  • the power prediction server 100 includes a storage unit 110, an analysis unit 120, and a power calculation unit 130.
  • the storage unit 110 is realized as a storage area secured in the RAM 102 or the HDD 103.
  • the analysis unit 120 and the power calculation unit 130 are realized by the processor 101 executing a program stored in the RMA 102.
  • the power record table is information in which the maximum temperature of the day and the maximum value of the power consumption value (referred to as the power record value) are recorded for each past date. That is, the power record table is information in which a plurality of combinations of date, temperature, and power record value are registered. One record of the power record table is one combination of date, temperature, and power record value.
  • the analysis unit 120 analyzes the presence / absence of a correlation between the temperature and the power consumption based on the power record table stored in the storage unit 110. For example, a threshold value of a correlation coefficient (for example, 0.7 or the like) for determining that there is a correlation between temperature and power consumption is recorded in the storage unit 110 in advance.
  • the analysis unit 120 determines whether or not there is a correlation between the temperature stored in the power record table and the power consumption by determining whether the absolute value of the correlation coefficient calculated from the power record table is equal to or greater than the threshold value. . For example, when the absolute value of the correlation coefficient is equal to or greater than a threshold, it is “correlated”. When the absolute value of the correlation coefficient is less than the threshold value, “no correlation”.
  • the correlation coefficient c can be obtained by the following equation (1). Note that xa is an arithmetic average of xi. ya is the arithmetic mean of yi.
  • the power calculation unit 130 calculates the maximum power demand value in the next period (for example, the next year) based on the power record table. Specifically, the power calculation unit 130 identifies an air temperature range in which power consumption is relatively large based on the power performance table, and an expression (regression equation) representing a relationship between the air temperature and power consumption in the identified air temperature range. ) Is calculated. For example, when determining the contract power for one year as the next period, the power calculation unit 130 may calculate a regression equation based on records of temperature and power consumption within the past year. For example, the power calculation unit 130 obtains a regression equation by the least square method using the temperature value and the power consumption value recorded in the power record table. The regression equation may be a linear equation or a quadratic or higher equation.
  • the electric power calculation part 130 calculates the maximum electric power demand value (predicted value) in the next term according to the comparison with the electric power actual value in an electric power actual result table, and the electric power calculated value calculated
  • the power calculation unit 130 outputs the calculated maximum power demand value to the display 11. For example, the user can confirm the maximum power demand value displayed on the display 11 and determine the contract power in the next period.
  • FIG. 4 is a diagram showing an example of a power performance table.
  • the power record table 111 is stored in the storage unit 110.
  • the power record table 111 includes items of date, temperature, and power record value.
  • Date is registered in the date item.
  • the maximum temperature on the corresponding date is registered.
  • the actual power value the actual value of the maximum power consumption on the corresponding date is registered. For example, information indicating that the date is “2015/1/1”, the temperature is “10 ° C.”, and the actual power value is “5000 kW” is registered in the power history table 111. This indicates that the highest temperature on January 1, 2015 was 10 ° C., and the actual power consumption value was 5000 kW.
  • FIG. 5 is a diagram showing an analysis example.
  • FIG. 5A shows a graph in which the temperature and the actual power value are plotted based on the actual power table 111.
  • the horizontal axis is the temperature (unit is ° C.), and the vertical axis is the actual value of power demand (unit is kW) (the same applies to the subsequent graphs).
  • FIG. 5B shows an example in which the temperature range is grouped into a plurality of ranges.
  • the analysis unit 120 divides the range from the lowest temperature to the highest temperature into five, and causes each plotted point to belong to a plurality of groups (however, the number of divisions can be arbitrarily determined).
  • the analysis unit 120 sets a group corresponding to the highest temperature zone among the plurality of groups as a maximum demand group.
  • the power prediction server 100 performs regression analysis on the maximum demand group.
  • the reason why the regression analysis is performed by narrowing down to the maximum demand group is that, in a relatively low temperature zone, the correlation between the temperature and the actual power consumption tends to be relatively small. In other words, by performing regression analysis by narrowing down to the maximum demand group, it is possible to prevent the maximum power demand from being predicted too low due to the actual power value in a relatively low temperature range.
  • FIG. 5C illustrates a regression line L10 obtained using the actual power value belonging to the maximum demand group.
  • the regression line L10 is a straight line. That is, the regression equation corresponding to the regression line L10 is a linear equation. Specifically, the regression equation of the regression line L10 is expressed by equation (2).
  • P is a power value (unit: kW).
  • T is the temperature (unit: ° C.).
  • a is the power demand change rate (unit: kW / ° C.).
  • b is an intercept (unit is kW).
  • the power calculation unit 130 can obtain the values of a and b in Expression (2) by the least square method for the temperature and the actual power value belonging to the maximum demand group.
  • the regression equation may be expressed by a quadratic or higher equation regarding temperature.
  • FIG. 6 is a diagram showing an analysis example (continued).
  • FIG. 6A shows the variation in the actual power value belonging to the maximum demand group.
  • the power calculation unit 130 rejects such a case as an abnormal value.
  • the power calculation unit 130 obtains Z ⁇ that is a constant multiple of the standard deviation ⁇ as an index indicating the variation in the actual power value belonging to the maximum demand group (Z is a positive constant).
  • the power calculation unit 130 sets a value within the range of P (T) ⁇ Z ⁇ or more and P (T) + Z ⁇ or less among the actual power values as a normal value.
  • the power calculation unit 130 sets a value that is smaller than P (T) ⁇ Z ⁇ or larger than P (T) + Z ⁇ among the actual power values as an abnormal value.
  • the power calculation unit 130 increases the prediction accuracy by predicting the future maximum power demand based on the actual power value within the range of the normal value.
  • the equation P (T) + Z ⁇ that determines the upper limit of the normal value can be called a correlation equation for the regression equation P (T).
  • FIG. 6 (B) and 6 (C) show two patterns of determination of the maximum power demand by the power calculation unit 130.
  • the power calculation unit 130 compares the actual power value within the normal range with the calculated power value obtained using Equation (2).
  • the power calculation unit 130 can calculate the power calculation value by predicting the maximum temperature in the next period from the history of the maximum temperature in the past and substituting the predicted maximum temperature into Equation (2).
  • the power calculation unit 130 sets the maximum value among the actual power values within the normal range as the predicted value of the maximum power demand in the next term (FIG. 6 (B )in the case of).
  • the power calculation unit 130 substitutes the value obtained by substituting the maximum temperature in the next period into the formula (2) as the predicted value of the maximum power demand in the next period. (In the case of FIG. 6C).
  • FIG. 7 is a flowchart illustrating an example of analysis processing. In the following, the process illustrated in FIG. 7 will be described in order of step number.
  • the power prediction server 100 starts the following procedure when the user receives an execution input of power demand prediction for the next term.
  • the analysis unit 120 creates a power demand temperature correlation chart (graph of FIG. 5A) based on the power record table 111.
  • the analysis unit 120 may cause the display 11 to display the power demand temperature correlation chart and the subsequent figures (FIGS. 5B, 5C, and 6) as the process proceeds. .
  • the analysis unit 120 groups the records of the power record table 111 for each temperature range. As described above, the analysis unit 120 performs grouping by dividing the temperature range between the maximum temperature and the minimum temperature by X (X is an integer of 2 or more). Thereby, the some record of the electric power performance table 111 is classified into a some group. For example, a value such as 3, 5, 10 can be used as X.
  • the analysis unit 120 calculates a correlation coefficient c between the power demand (power actual value) of the largest important group and the temperature among the plurality of groups. Specifically, the analysis unit 120 can calculate the correlation coefficient c using Equation (1).
  • the analysis unit 120 determines whether or not the correlation coefficient c is Y or more. If the correlation coefficient c is greater than or equal to Y, the process proceeds to step S5. If the correlation coefficient c is smaller than Y, the process ends. For example, as Y, values such as 0.5, 0.7, and 0.8 can be used.
  • the power calculation unit 130 performs power demand prediction. Details of the processing will be described later.
  • the power calculation unit 130 outputs the prediction result. Specifically, the power calculation unit 130 causes the display 11 to display a prediction result of the maximum power demand value for the next term. The user can confirm the prediction result of the maximum power demand value displayed on the display 11 and determine the contract power for the next term.
  • X and Y are variable variables.
  • the variable X determines the number of divisions (corresponding to the number of groups) when grouping the temperature zones. If the number of divisions is too small, data having a relatively small relationship with the maximum power demand is included in the regression analysis target, and the prediction accuracy is lowered. On the other hand, if the number of divisions is too large, the number of records subject to regression analysis decreases, and prediction accuracy decreases.
  • variable Y is a threshold for the correlation coefficient (referred to as correlation coefficient threshold). If the correlation coefficient threshold is too small, a record with relatively weak correlation is included in the regression analysis target, and the prediction accuracy decreases. On the other hand, if the correlation coefficient threshold value is too large, the frequency of performing the prediction response of the maximum power demand decreases. Values corresponding to the operation can be set in the variables X and Y.
  • FIG. 8 is a flowchart illustrating an example of power demand prediction. In the following, the process illustrated in FIG. 8 will be described in order of step number. The procedure in FIG. 8 corresponds to step S5 in FIG.
  • the power calculation unit 130 calculates a regression formula (formula (2)) of the maximum demand group by regression analysis based on the power record table 111.
  • the power calculation unit 130 calculates an evaluation value (Z ⁇ ) of the variation of the actual power value in each record of the actual power table 111.
  • the power calculation unit 130 may obtain the regression equation and the evaluation value Z ⁇ for the records belonging to the maximum demand group among the plurality of records included in the power record table 111.
  • Z a value such as 3.0, 4.0, or 6.0 can be used.
  • the power calculation unit 130 determines a temperature range to be determined in subsequent processing. Specifically, the power calculation unit 130 predicts the maximum temperature in the next period from the change in the past temperature, and sets it as the upper limit value Tu of the temperature range. As will be described in detail later, the power calculation unit 130 may use regression analysis to predict the maximum temperature for the next period. Then, the power calculation unit 130 determines the lower limit value Td of the temperature range based on the predicted maximum temperature. For example, a value obtained by subtracting a predetermined temperature from the upper limit value Tu may be set as the lower limit value Td.
  • the temperature range to be determined is Td (° C.) or more and Tu (° C.) or less.
  • Td ° C.
  • Tu ° C.
  • other methods may be employed for determining the upper limit value and the lower limit value of the temperature range.
  • the power calculation unit 130 sorts the records in the temperature range obtained in step S12 in descending order of the actual power value.
  • the power calculation unit 130 extracts the maximum actual power value from the unextracted actual power values with respect to the sorting result in step S13. That is, the power calculation unit 130 extracts the actual power values one by one from the sorted result of the actual power values in step S13, and executes the subsequent procedures.
  • the actual power value extracted in step S ⁇ b> 14 is referred to as “target power actual value” in the description of the subsequent steps.
  • the power calculator 130 determines whether or not the actual power value of interest is equal to or greater than the maximum value (that is, the calculated power value) of the calculated value (regression formula calculated value) by the regression formula. If the actual power value of interest is equal to or greater than the maximum regression calculation value, the process proceeds to step S16. If the actual power value of interest is smaller than the maximum regression calculation value, the process proceeds to step S18.
  • the power calculation unit 130 determines whether or not the actual power value of interest is within the range of the regression equation calculated value P (Tx) ⁇ Z ⁇ at the temperature Tx corresponding to the actual power value. When the actual power value of interest is within the range of the regression equation calculated value ⁇ Z ⁇ , the power calculation unit 130 determines that the actual power value is a normal value, and proceeds to step S17. When the focused power actual value is not within the range of the regression equation calculated value ⁇ Z ⁇ , the power calculation unit 130 determines that the actual power value is an abnormal value, and proceeds to step S14 (changes the focused power actual value). And repeat the process).
  • the power calculation unit 130 determines the actual power value of interest as the maximum power demand value for the next term. Then, the process ends.
  • the power calculation unit 130 determines the maximum power value derived from the regression equation as the maximum power demand value for the next term. Specifically, the power calculation unit 130 determines the power value P (Tu) for the maximum temperature Tu predicted in step S12 as the maximum power demand value for the next term. Then, the process ends.
  • Z is a variable variable.
  • the variable Z is used to determine whether the actual power value is a normal value or an abnormal value by the determination in step S16.
  • a value corresponding to the operation can be set in the variable Z.
  • step S12 the maximum temperature for the next term is predicted by regression analysis.
  • FIG. 9 is a diagram illustrating a prediction example of the maximum temperature in the next period.
  • FIG. 9 shows the relationship between each year and the maximum temperature, with the year (year) as the horizontal axis and the highest temperature (° C.) of each year as the vertical axis.
  • the power calculation unit 130 obtains a regression equation corresponding to the regression line L11 by regression analysis with respect to the record of the highest temperature for each year (the regression equation may be a primary equation or a secondary or higher equation).
  • the electric power calculation part 130 can estimate the maximum temperature Tu of the next period (for example, AD 2016) as 35.8 degreeC, for example with the calculated
  • the power calculation unit 130 may predict the maximum temperature of the current period (for example, the year 2015) as the maximum temperature Tu of the next period.
  • step S12 in FIG. 8 the power calculation unit 130 obtains the lower limit value Td of the temperature range by subtracting a fixed value (7 ° C. in the above example) from the upper limit value Tu of the temperature range.
  • the power calculation unit 130 may determine the lower limit value Td of the temperature range based on the predicted maximum temperature, the regression equation obtained in step S11, and the evaluation value Z ⁇ . Specifically, it is as follows.
  • FIG. 10 is a diagram illustrating an example of determining the temperature range to be determined.
  • the power calculation unit 130 can also dynamically determine the temperature range ⁇ T. Then, depending on the value of Z, the determination target temperature range is taken relatively narrow and the maximum power demand is predicted at a temperature closer to the maximum temperature Tu, or the judgment target temperature range is taken relatively wide. It is possible to adjust whether to predict the maximum power demand regardless of the maximum temperature Tu.
  • the analysis unit 120 obtains a matching rate (for example, R 2 value or p value) of the correlation coefficient c, and determines whether or not to predict power demand by the power performance table 111. May be. Specifically, it is as follows.
  • FIG. 11 is a flowchart showing another example of the analysis process.
  • the process illustrated in FIG. 11 will be described in order of step number.
  • the procedure of FIG. 11 is different from the procedure of FIG. 7 in that steps S3a and S3b are executed after step S3, and then step S4 is executed according to the determination of step S3b. Therefore, in the following, steps S3a and S3b will be mainly described, and description of other steps will be omitted.
  • Step S ⁇ b> 3 a The analysis unit 120 calculates a matching rate in the correlation coefficient c.
  • R 2 value or p value can be used.
  • the R 2 value is an index indicating whether or not the regression line obtained from the power record table 111 is plausible.
  • the R 2 value is a real number between 0 and 1.
  • the p value represents the probability that the correlation coefficient c obtained in step S3 is calculated when numerical values having no correlation are combined. The smaller the p value, the higher the reliability of the correlation coefficient c, and the larger the p value, the lower the reliability of the correlation coefficient c.
  • Step S3b The analysis unit 120 determines whether or not the matching rate obtained in step S3a is within a predetermined value range. If the relevance ratio is within the predetermined value range, the process proceeds to step S4. If the precision is not within the predetermined value range, the process is terminated. For example, when the R 2 value is used as the relevance rate, the relevance rate (R 2 value) is within a predetermined value range if the R 2 value calculated in step S3a is equal to or greater than a predetermined value (for example, 0.8). is there. If the R 2 value is smaller than the predetermined value, the precision (R 2 value) is not within the predetermined value range.
  • a predetermined value for example, 0.8
  • the precision (p value) is used as the precision, if the p value calculated in step S3a is equal to or less than a predetermined value (for example, 0.05), the precision (p value) is within the predetermined value range. If the p value is larger than the predetermined value, the precision (p value) is not within the predetermined range.
  • a predetermined value for example, 0.05
  • the analysis unit 120 narrows down to a case where it is determined that the correlation between the temperature and the actual power value is relatively strong by using the matching rate in addition to the determination based on the correlation coefficient c (step S4). , Power demand can be predicted. In this way, the power prediction server 100 can further improve the accuracy of prediction of the maximum power demand.
  • the method of predicting the maximum power demand in the next term is mainly exemplified by paying attention to the relationship between the temperature and the power consumption.
  • parameters related to electricity demand include humidity, factory product output, data center order volume, number of operating servers, number of workers, number of employees, and number of equipment operations in addition to temperature. Conceivable.
  • the power prediction server 100 predicts the maximum power demand for the next term using these other parameters. Specifically, it is as follows.
  • FIG. 12 is a diagram showing another example of analysis. 12 and 13 exemplify the relationship of power demand (kW) to the number of operating servers (units).
  • the horizontal axis of the graphs shown in FIGS. 12 and 13 is the number of operating servers, and the vertical axis is the actual value of power demand (power actual value).
  • the power prediction server 100 records the number of past server operations and the actual power value in the storage unit 110.
  • FIG. 12A is a diagram in which the actual power value is plotted against the actual number of servers in operation.
  • FIG. 12B is a diagram illustrating determination of the grouping range of the number of operating servers.
  • the power prediction server 100 divides the number of operating servers into a plurality of ranges. In the relationship between the number of operating servers belonging to each range and the actual power value, for example, the ranges determined to be significant when p value ⁇ 5% are grouped by the significant difference test of the correlation coefficient by p value (p value) Other restrictions such as 1% or less for determining that there is a significant difference).
  • the power prediction server 100 groups the range from 300 to 450 server operating units.
  • the power prediction server 100 calculates a regression equation representing the relationship between the number of operating servers and the actual power value for the grouped range.
  • FIG. 12C illustrates a regression line L20 corresponding to the regression equation.
  • the regression equation is expressed by a quadratic equation.
  • the regression equation of the regression line L20 is expressed by equation (3).
  • Q is a power value (unit: kW).
  • N is the number of operating servers (unit is a unit).
  • a1 is the first power demand change rate (unit: kW / unit).
  • a2 is the second power demand change rate (unit: kW / unit).
  • b is an intercept (unit is kW).
  • the power calculation unit 130 can obtain the values of a1, a2, and b in Expression (3) by the least square method for the temperature and the actual power value belonging to the maximum demand group.
  • the power prediction server 100 can predict the maximum power demand for the next term in the same manner as the method illustrated in FIG. 6 based on the formula (3).
  • FIG. 13 is a diagram showing another example (continuation) of the analysis.
  • FIG. 13A shows the variation of the actual power value belonging to the grouped range. For example, among the actual power values belonging to the corresponding group, there is a case where the power consumption suddenly decreases or increases regardless of the number of operating servers.
  • 13 (B) and 13 (C) show two patterns of determination of the maximum power demand by the power calculation unit 130.
  • the power calculation unit 130 compares the actual power value within the normal range with the calculated power value obtained using the actual power value.
  • the power calculation unit 130 can obtain the calculated power value by substituting the maximum operating number of the current period as the maximum operating number of the next period and substituting the maximum operating number into Equation (3).
  • the power calculation unit 130 may predict the maximum number of operating servers in the next period by regression analysis.
  • the power calculation unit 130 sets the maximum value among the actual power values within the normal range as the predicted value of the maximum power demand in the next period (FIG. 13). (B)).
  • the power calculation unit 130 substitutes the value obtained by substituting the maximum number of servers operating in the next period into the formula (3) to calculate the maximum power demand in the next period.
  • the predicted value is used (in the case of FIG. 13C).
  • the power prediction server 100 calculates the maximum power demand in the next term based on the number of operating servers and the actual power demand for the number of operating servers. It can also be predicted.
  • the chief electrical engineer may determine the contract power by forecasting the power demand in the contract target year from the past power demand record, the planned production amount, the facility introduction plan, or the like.
  • the maximum power demand has a relatively large correlation with the electricity rate, and there is a risk that the difference between the predicted value of the maximum power demand and the actual power consumption will be large. If there is a large discrepancy between the forecast and the actual cost, the costs incurred due to the difference in power demand will be discarded.
  • the chief electrical engineer at each site tries to reduce the divergence between the contracted power and the maximum power demand. In some cases, the past contract power is maintained as it is.
  • manual determination of contract power is largely based on judgment by the person in charge of the decision, and logical processing based on past data is not performed. It has become.
  • the maximum power demand value is calculated by the regression equation.
  • the possibility that the future power demand exceeds the maximum power demand value obtained from the regression equation is considered to be relatively low. Therefore, when the actual power value is smaller than the calculated power value calculated using the regression equation, the maximum future power demand value can be prevented from being overestimated by obtaining the maximum power demand value from the regression equation.
  • the power prediction server 100 determines the actual maximum power demand in the past as the predicted maximum power demand. Value. This is because the possibility of exceeding the maximum power demand value obtained from the regression equation is considered to be relatively high. By predicting the actual value of the maximum power demand in the past as the maximum power demand value for the next term, it is possible to prevent the future maximum power demand value from being underestimated. In this way, the power prediction server 100 can assist the user in determining appropriate contract power for future power demand.
  • the information processing of the first embodiment can be realized by causing the arithmetic device 1b to execute a program.
  • the information processing according to the second embodiment can be realized by causing the processor 101 to execute a program.
  • the program can be recorded on a computer-readable recording medium 13.
  • the program can be distributed by distributing the recording medium 13 on which the program is recorded.
  • the program may be stored in another computer and distributed via a network.
  • the computer stores (installs) a program recorded in the recording medium 13 or a program received from another computer in a storage device such as the RAM 102 or the HDD 103, and reads and executes the program from the storage device. Good.

Landscapes

  • Business, Economics & Management (AREA)
  • Engineering & Computer Science (AREA)
  • Strategic Management (AREA)
  • Economics (AREA)
  • Accounting & Taxation (AREA)
  • Development Economics (AREA)
  • Finance (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Entrepreneurship & Innovation (AREA)
  • Health & Medical Sciences (AREA)
  • Marketing (AREA)
  • Theoretical Computer Science (AREA)
  • General Business, Economics & Management (AREA)
  • Power Engineering (AREA)
  • Data Mining & Analysis (AREA)
  • Game Theory and Decision Science (AREA)
  • Public Health (AREA)
  • Water Supply & Treatment (AREA)
  • General Health & Medical Sciences (AREA)
  • Human Resources & Organizations (AREA)
  • Primary Health Care (AREA)
  • Tourism & Hospitality (AREA)
  • Supply And Distribution Of Alternating Current (AREA)
  • Management, Administration, Business Operations System, And Electronic Commerce (AREA)

Abstract

将来の最大電力需要が過剰に大きく見積もられることを防ぐこと。 記憶装置(1a)は、気温と電力実績値との組合せのデータを記憶する。演算装置(1b)は、記憶装置(1a)から所定気温以上のデータを選択し、選択した各データの気温に対応する電力実績値が、組合せのデータから導出される回帰式と選択したデータの気温とから算出された電力算出値よりも小さいとき、所定気温以上の気温と回帰式とに基づいて最大電力需要値を算出する。

Description

電力需要値算出システム、電力需要値算出方法および電力需要値算出プログラム
 本発明は電力需要値算出システム、電力需要値算出方法および電力需要値算出プログラムに関する。
 現在、様々な場所で電力を消費して動作する種々の機器が利用されている。このため、電力を供給する事業者や電力を利用する事業者などにより、地域や施設などにおける電力需要の予測が行われることがある。例えば、過去日の時刻毎の電気使用量から特定した電力需要ピーク値または電力需要ピーク時間に基づいて、過去日と特徴(最高気温、曜日、天気、湿度など)が一致する予測対象日の電力需要ピーク値または電力需要ピーク時間帯を予測する提案がある。
 また、住宅、店舗、複合住宅などにおける外気温に対する消費電力を予測する提案もある。この提案では、総消費電力のうち居住者の行動に応じて変動する行動電力が少ない消費電力値データを選択し、選択された消費電力値データに基づいて外気温と消費電力との関係を抽出する。
 なお、空調設備の設けられた複数の室に存在する人の皮膚温度を検出し、需要電力が契約した最大需要電力を超えそうになったとき、検出された各室に存在する人の皮膚温度に基づいて停止する空調設備を決定する提案もある。
特開2015-139283号公報 国際公開第2015/075794号 特開2008-25951号公報
 最大電力需要の予測を行う際、予測結果と実際の最大電力需要との乖離が問題になる。例えば、最大電力需要の予測結果に基づいて契約電力を決定し、契約電力に応じた料金を、電力を供給する事業者に支払う場合が考えられる。この場合、最大電力需要の予測結果が実際の需要を上回っていると、その差分の分だけ、余計なコストが発生してしまう。
 1つの側面では、本発明は、将来の最大電力需要が過大に見積もられることを防ぐ電力需要値算出システム、電力需要値算出方法および電力需要値算出プログラムを提供することを目的とする。
 1つの態様では、電力需要値算出システムが提供される。この電力需要値算出システムは、記憶装置と演算装置とを有する。記憶装置は、気温と電力実績値との組合せのデータを記憶する。演算装置は、記憶装置から所定気温以上のデータを選択し、選択した各データの気温に対応する電力実績値が、組合せのデータから導出される回帰式と選択したデータの気温とから算出された電力算出値よりも小さいとき、所定気温以上の気温と回帰式とに基づいて最大電力需要値を算出する。
 1つの側面では、将来の最大電力需要が過大に見積もられることを防げる。
 本発明の上記および他の目的、特徴および利点は本発明の例として好ましい実施の形態を表す添付の図面と関連した以下の説明により明らかになるであろう。
第1の実施の形態の電力需要値算出システムを示す図である。 第2の実施の形態の電力予測サーバのハードウェア例を示す図である。 電力予測サーバの機能例を示す図である。 電力実績テーブルの例を示す図である。 分析例を示す図である。 分析例(続き)を示す図である。 分析処理の例を示すフローチャートである。 電力需要予測の例を示すフローチャートである。 来期の最高気温の予測例を示す図である。 判定対象の気温範囲の決定例を示す図である。 分析処理の他の例を示すフローチャートである。 分析の他の例を示す図である。 分析の他の例(続き)を示す図である。
 以下、本実施の形態を図面を参照して説明する。
 [第1の実施の形態]
 図1は、第1の実施の形態の電力需要値算出システムを示す図である。電力需要値算出システム1は、気温に応じた過去の電力消費の実績から、将来に対して予測される消費電力の値(電力需要値)を算出する。電力需要値算出システム1が予測する電力需要値は、将来の所定期間(例えば、次の1年間)のうちに見込まれる最大消費電力である。
 電力需要値算出システム1は、記憶装置1aおよび演算装置1bを有する。記憶装置1aは、RAM(Random Access Memory)などの揮発性記憶装置でもよいし、HDD(Hard Disk Drive)やフラッシュメモリなどの不揮発性記憶装置でもよい。演算装置1bは、CPU(Central Processing Unit)、DSP(Digital Signal Processor)、ASIC(Application Specific Integrated Circuit)、FPGA(Field Programmable Gate Array)などを含み得る。演算装置1bはプログラムを実行するプロセッサであってもよい。ここでいう「プロセッサ」には、複数のプロセッサの集合(マルチプロセッサ)も含まれ得る。また、電力需要値算出システム1は「コンピュータ」と呼ばれるものでもよい。
 記憶装置1aは、テーブル2を記憶する。テーブル2は、気温と消費電力実績値との組合せを複数含む情報である。テーブル2における気温と消費電力実績値との1つの組合せを、1つのレコード(あるいはデータ)と称することもできる。例えば、テーブル2は、過去の日毎の最高気温と最大の消費電力実績値との対応関係を示している。すなわち、1つのレコードは、過去のある1日における最高気温および最大の消費電力実績値の対応関係を示す。テーブル2には、気温t1と消費電力実績値P1とを含むレコード、気温t2と消費電力実績値P2とを含むレコードというように複数のレコードが登録されている。
 演算装置1bは、記憶装置1aから所定気温以上のレコードを選択する。例えば、所定気温をtaとする。演算装置1bは、テーブル2に登録された複数のレコードのうち、所定気温ta以上の気温を含むレコードを選択する。
 演算装置1bは、選択した各レコードに含まれる気温に対応する電力実績値が、複数のレコードから算出される回帰式と選択した各レコードの気温から算出された電力算出値よりも小さいとき、所定気温以上の気温と回帰式とに基づいて最大電力需要値を算出する。
 例えば、演算装置1bは、テーブル2に登録された複数のレコードから回帰線L1を表す回帰式を算出する。グラフG1は、気温と消費電力との関係を示す回帰線L1を表している。回帰式は、1次式でもよいし、2次以上の式でもよい。図1の例では、回帰線L1は直線であり回帰式は1次式である。この場合、回帰式は、電力需要(kW:キロワット)=需要変化率(a)×気温(℃)+bで表せる。例えば、演算装置1bは、最小二乗法を用いてテーブル2の各レコードに基づき回帰式を算出できる(最小二乗法以外の方法を用いてもよい)。
 次に、演算装置1bは、テーブル2から選択した各レコードに含まれる気温に対応する電力実績値と、当該回帰式および選択した各レコードの気温から算出された電力算出値とを比較する。例えば、電力算出値は、求めた回帰式に気温を代入することで算出される消費電力の値である。演算装置1bは、電力算出値を求めるために回帰式に代入する気温を、次年に対して予測される最大気温tcとする。最大気温tcは、選択した各レコードに含まれる気温のうちの最大の気温でもよい。あるいは、演算装置1bは、過去の各年の最大気温の変動傾向から次年の最大気温tcを予測してもよい。例えば、演算装置1bは、過去の各年と各年の最大気温とに対して回帰分析を行い、導出した回帰式から次年の最大気温tcを予測することが考えられる。ここで、回帰線L1に対応する回帰式に気温tcを代入して得られる値を、電力算出値Pyとする。
 そして、演算装置1bは、テーブル2に含まれる所定気温ta以上に対する電力実績値のうち最大である電力実績値Px1と、電力算出値Pyとを比較する。電力実績値Px1は、気温tb1(ta≦tb1≦tc)に対応する電力実績値である。電力実績値Px1は、電力算出値Pyよりも小さい(グラフG2の場合)。この場合、演算装置1bは、所定気温ta以上の気温と、回帰線L1に対応する回帰式とに基づいて最大電力需要値を算出する。具体的には、演算装置1bは、最大気温tcを当該回帰式に代入して得られる電力算出値Pyを、最大電力需要値とすることが考えられる。
 一方、所定気温ta以上に対する電力実績値の最大値が、電力実績値Px2(≧Py)である(電力実績値Px2が電力算出値Py以上である)こともある(グラフG3の場合)。電力実績値Px2は、気温tb2(ta≦tb2≦tc)に対応する電力実績値である。この場合、演算装置1bは、電力実績値Px2を、最大電力需要値とする。
 このように、電力需要値算出システム1は、所定気温ta以上の気温に対し、テーブル2に記録された電力実績値が、回帰式を用いて算出される電力算出値よりも小さいときに、当該回帰式により最大電力需要値を算出する。所定気温ta以上の気温に着目する理由は、気温が高いほど電力需要値も増す傾向にあり、この傾向を利用して判定対象の温度範囲を絞り込むためである。また、電力実績値が回帰式を用いて算出される電力算出値よりも小さいとき、将来の電力需要量が回帰式から求まる最大電力需要値を超過する可能性は、比較的低いと考えられる。したがって、電力実績値が回帰式を用いて算出される電力算出値よりも小さいとき、回帰式から最大電力需要値を求めることで、将来の最大電力需要値が過剰に大きく見積もられることを防げる。
 一方、電力需要値算出システム1は、電力実績値が回帰式を用いて算出される電力算出値以上の場合は、過去における最大の電力需要の実績値を、予測される最大電力需要値とする。この場合は、回帰式から求まる最大電力需要値を超過する可能性が比較的高いと考えられるからである。過去における最大の電力需要の実績値を、来期の最大電力需要値と予測することで、将来の最大電力需要値が過小に見積もられることを防げる。
 なお、演算装置1bは、電力実績値Px1,Px2を得る際に、テーブル2に記録された消費電力実績値から異常値を除外してもよい。例えば、演算装置1bは、テーブル2に記録された消費電力実績値の標準偏差を求め、標準偏差で表される消費電力実績値の許容範囲から外れる消費電力実績を異常値として判定対象外とすることが考えられる。こうして異常値を除外することで、最大電力需要値の予測精度を向上することもできる。
 また、上記の例では、予測対象の期間を次の1年間としたが、半年間など、他の長さの期間を予測対象としてもよい。その場合、演算装置1bは、過去の同期間(例えば、4月~9月など)における消費電力実績値を用いて、第1の実施の形態で例示した方法により、将来の同期間における最大電力需要値を算出することもできる。
 [第2の実施の形態]
 図2は、第2の実施の形態の電力予測サーバのハードウェア例を示す図である。電力予測サーバ100は、工場や研究所などの施設における電力需要を予測するサーバコンピュータである。電力予測サーバ100は、プロセッサ101、RAM102、HDD103、画像信号処理部104、入力信号処理部105、媒体リーダ106および通信インタフェース107を有する。各ユニットは電力予測サーバ100のバスに接続されている。
 プロセッサ101は、電力予測サーバ100の情報処理を制御する。プロセッサ101は、マルチプロセッサであってもよい。プロセッサ101は、例えばCPU、DSP、ASICまたはFPGAなどである。プロセッサ101は、CPU、DSP、ASIC、FPGAなどのうちの2以上の要素の組合せであってもよい。
 RAM102は、電力予測サーバ100の主記憶装置である。RAM102は、プロセッサ101に実行させるOS(Operating System)のプログラムやアプリケーションプログラムの少なくとも一部を一時的に記憶する。また、RAM102は、プロセッサ101による処理に用いる各種データを記憶する。
 HDD103は、電力予測サーバ100の補助記憶装置である。HDD103は、内蔵した磁気ディスクに対して、磁気的にデータの書き込みおよび読み出しを行う。HDD103は、OSのプログラム、アプリケーションプログラム、および各種データを記憶する。電力予測サーバ100は、フラッシュメモリやSSD(Solid State Drive)などの他の種類の補助記憶装置を備えてもよく、複数の補助記憶装置を備えてもよい。
 画像信号処理部104は、プロセッサ101からの命令に従って、電力予測サーバ100に接続されたディスプレイ11に画像を出力する。ディスプレイ11としては、CRT(Cathode Ray Tube)ディスプレイや液晶ディスプレイなどを用いることができる。
 入力信号処理部105は、電力予測サーバ100に接続された入力デバイス12から入力信号を取得し、プロセッサ101に出力する。入力デバイス12としては、例えば、マウスやタッチパネルなどのポインティングデバイス、キーボードなどを用いることができる。
 媒体リーダ106は、記録媒体13に記録されたプログラムやデータを読み取る装置である。記録媒体13として、例えば、フレキシブルディスク(FD:Flexible Disk)やHDDなどの磁気ディスク、CD(Compact Disc)やDVD(Digital Versatile Disc)などの光ディスク、光磁気ディスク(MO:Magneto-Optical disk)を使用できる。また、記録媒体13として、例えば、フラッシュメモリカードなどの不揮発性の半導体メモリを使用することもできる。媒体リーダ106は、例えば、プロセッサ101からの命令に従って、記録媒体13から読み取ったプログラムやデータをRAM102またはHDD103に格納する。
 通信インタフェース107は、ネットワーク10を介して他の装置と通信を行う。通信インタフェース107は、有線通信インタフェースでもよいし、無線通信インタフェースでもよい。
 図3は、電力予測サーバの機能例を示す図である。電力予測サーバ100は、記憶部110、分析部120および電力算出部130を有する。記憶部110は、RAM102またはHDD103に確保された記憶領域として実現される。分析部120および電力算出部130は、RMA102に記憶されたプログラムをプロセッサ101が実行することで実現される。
 記憶部110は、電力実績テーブルを記憶する。電力実績テーブルは、過去の日付毎に、その日の最高気温と消費電力の実績値の最大値(電力実績値と称する)とを記録した情報である。すなわち、電力実績テーブルは、日付と気温と電力実績値との組合せが複数登録された情報である。電力実績テーブルの1つのレコードは、日付と気温と電力実績値との1つの組合せである。
 分析部120は、記憶部110に記憶された電力実績テーブルに基づいて、気温と消費電力との相関の有無を分析する。例えば、記憶部110には、気温と消費電力との相関があると判断するための相関係数の閾値(例えば、0.7など)が予め記録されている。分析部120は、電力実績テーブルから算出した相関係数の絶対値が、当該閾値以上か否かを判定することで、電力実績テーブルに記憶された気温と消費電力との相関の有無を判定する。例えば、相関係数の絶対値が閾値以上の場合は「相関あり」である。相関係数の絶対値が閾値未満の場合は「相関なし」である。相関係数cは下記の式(1)により求めることができる。なお、xaはxiの相加平均である。yaはyiの相加平均である。
Figure JPOXMLDOC01-appb-M000001
 電力算出部130は、分析部120により相関ありと判定されると、電力実績テーブルに基づいて、来期(例えば、次の1年間)における最大電力需要値を算出する。具体的には、電力算出部130は、電力実績テーブルを基に、消費電力が比較的大きくなる気温範囲を特定し、特定した気温範囲において、気温と消費電力との関係を表す式(回帰式)を算出する。例えば、来期分として1年間の契約電力を決定する場合、電力算出部130は、過去の1年以内の気温と消費電力とのレコードに基づいて、回帰式を算出してもよい。電力算出部130は、例えば、電力実績テーブルに記録された気温の値と消費電力の値とを用いた最小二乗法によって回帰式を求める。回帰式は、1次式でもよいし、2次以上の式でもよい。
 そして、電力算出部130は、電力実績テーブルにおける電力実績値と、回帰式から求まる電力算出値との比較に応じて来期における最大電力需要値(予測値)を算出する。電力算出部130は、算出した最大電力需要値をディスプレイ11に出力する。例えば、ユーザは、ディスプレイ11に表示された最大電力需要値を確認して、来期における契約電力を決定できる。
 図4は、電力実績テーブルの例を示す図である。電力実績テーブル111は、記憶部110に格納される。電力実績テーブル111は、日付、気温および電力実績値の項目を含む。
 日付の項目には、日付が登録される。気温の項目には、該当の日付における最高気温が登録される。電力実績値の項目には、該当の日付における最大の消費電力の実績値が登録される。例えば、電力実績テーブル111には、日付が“2015/1/1”、気温が“10℃”、電力実績値が“5000kW”という情報が登録される。これは、2015年1月1日の最高気温が10℃であり、最大の消費電力の実績値が5000kWであったことを示す。
 図5は、分析例を示す図である。図5(A)は、電力実績テーブル111に基づいて、気温と電力実績値とをプロットしたグラフを示している。横軸は気温(単位は℃)であり、縦軸は電力需要の実績値(単位はkW)である(以降のグラフも同様)。
 図5(B)は、気温範囲を複数の範囲にグループ化する例を示している。例えば、分析部120は、最低気温から最高気温までの範囲を5分割し、プロットした各点を複数のグループに所属させる(ただし、分割数は任意に決定できる)。分析部120は、複数のグループのうち、最高の気温帯に対応するグループを、最大需要グループとする。電力予測サーバ100は、最大需要グループに対して回帰分析を行う。最大需要グループに絞り込んで回帰分析を行う理由は、比較的低い気温帯では、気温と消費電力の実績との相関が比較的小さい傾向にあるからである。すなわち、最大需要グループに絞り込んで回帰分析を行うことで、比較的低い気温帯の電力実績値によって最大電力需要が過小に予測されることを抑えられる。
 図5(C)は、最大需要グループに属する電力実績値を用いて得られた回帰線L10を例示している。回帰線L10は直線である。すなわち、回帰線L10に対応する回帰式は一次式となる。具体的には、回帰線L10の回帰式は、式(2)により表される。
Figure JPOXMLDOC01-appb-M000002
 ここで、Pは電力値(単位はkW)である。Tは気温(単位は℃)である。aは電力需要変化率(単位はkW/℃)である。bは切片(単位はkW)である。例えば、電力算出部130は、最大需要グループに属する気温および電力実績値に対する最小二乗法により、式(2)のaおよびbの値を求めることができる。なお、本例では、気温に関する一次式で回帰式を表す場合を示すが、気温に関する二次以上の式で回帰式を表してもよい。
 図6は、分析例(続き)を示す図である。図6(A)は、最大需要グループに属する電力実績値のばらつきを表している。例えば、最大需要グループに属する電力需要の中には、気温とは無関係に突発的に消費電力が小さくなった、あるいは、大きくなったケースも存在する。電力算出部130は、このようなケースを異常値として棄却する。具体的には、電力算出部130は、最大需要グループに属する電力実績値のばらつきを示す指標として、標準偏差σの定数倍であるZσを求める(Zは正の定数)。そして、電力算出部130は、電力実績値のうち、P(T)-Zσ以上、P(T)+Zσ以下の範囲内の値を正常値とする。一方、電力算出部130は、電力実績値のうち、P(T)-Zσより小さいか、または、P(T)+Zσよりも大きい値を異常値とする。Zの値は任意に決定できる。一例として、Z=3とする。このように、電力算出部130は、正常値の範囲内の電力実績値によって将来の最大電力需要を予測することで、予測の精度を高める。ここで、正常値の上限を決める式P(T)+Zσを、回帰式P(T)に対する相関式と呼ぶことができる。
 図6(B)および図6(C)は、電力算出部130による最大電力需要の決定の2つのパターンを示している。具体的には、電力算出部130は、正常範囲内の電力実績値と、式(2)を用いて求まる電力算出値とを比較する。例えば、電力算出部130は、過去の最高気温の履歴から、来期における最高気温を予測し、予測した最高気温を式(2)に代入することで、電力算出値を求めることができる。
 電力算出部130は、正常範囲内の電力実績値が電力算出値以上の場合、正常範囲内の電力実績値のうちの最大値を、来期における最大電力需要の予測値とする(図6(B)の場合)。
 電力算出部130は、正常範囲内の電力実績値が電力算出値よりも小さい場合、式(2)に、来期における最高気温を代入して求めた値を、来期における最大電力需要の予測値とする(図6(C)の場合)。
 次に、電力予測サーバ100による処理手順を説明する。
 図7は、分析処理の例を示すフローチャートである。以下、図7に示す処理をステップ番号に沿って説明する。例えば、電力予測サーバ100は、ユーザにより、来期の電力需要予測の実行入力を受け付けた際に、以下の手順を開始する。
 (S1)分析部120は、電力実績テーブル111に基づいて、電力需要気温相関チャート(図5(A)のグラフ)を作成する。分析部120は、電力需要気温相関チャートおよび以降の図(図5(B)、図5(C)および図6の各図など)を、処理の進行に応じてディスプレイ11に表示させてもよい。
 (S2)分析部120は、電力実績テーブル111の各レコードを気温範囲毎にグループ化する。前述のように、分析部120は、最高気温と最低気温との間の気温範囲をX分割する(Xは2以上の整数)ことで、グループ化を行う。これにより、電力実績テーブル111の複数のレコードが複数のグループに分類される。例えば、Xとしては、3,5,10などの値を用いることができる。
 (S3)分析部120は、複数のグループのうち、最大重要グループの電力需要(電力実績値)と気温との相関係数cを算出する。具体的には、分析部120は、式(1)を用いて相関係数cを算出できる。
 (S4)分析部120は、相関係数cがY以上であるか否かを判定する。相関係数cがY以上である場合、処理をステップS5に進める。相関係数cがYよりも小さい場合、処理を終了する。例えば、Yとしては、0.5,0.7,0.8などの値を用いることができる。
 (S5)電力算出部130は、電力需要予測を行う。処理の詳細は後述される。
 (S6)電力算出部130は、予測結果を出力する。具体的には、電力算出部130は、来期の最大電力需要値の予測結果を、ディスプレイ11に表示させる。ユーザは、ディスプレイ11に表示された最大電力需要値の予測結果を確認して、来期の契約電力を決定できる。
 ここで、上記のX,Yは可変変数である。変数Xは、気温帯をグループ化する際の分割数(グループ数に相当)を決定する。分割数が少な過ぎると最大電力需要との関係性が比較的小さいデータが回帰分析の対象に含まれることになり、予測精度が低下する。一方、分割数が多すぎると回帰分析の対象レコードが少なくなり、予測精度が低下する。
 また、変数Yは、相関係数に対する閾値(相関係数閾値と称する)である。相関係数閾値が小さ過ぎると、比較的相関の弱いレコードが回帰分析の対象に含まれることになり、予測精度が低下する。一方、相関係数閾値が大き過ぎると、最大電力需要の予測回答を行う頻度が減少する。変数X,Yには、運用に応じた値を設定できる。
 続いて、ステップS5の手順を具体的に説明する。
 図8は、電力需要予測の例を示すフローチャートである。以下、図8に示す処理をステップ番号に沿って説明する。図8の手順は、図7のステップS5に相当する。
 (S11)電力算出部130は、電力実績テーブル111に基づく回帰分析により、最大需要グループの回帰式(式(2))を算出する。また、電力算出部130は、電力実績テーブル111の各レコードにおける電力実績値のばらつきの評価値(Zσ)を算出する。ここで、電力算出部130は、電力実績テーブル111に含まれる複数のレコードのうち、最大需要グループに属するレコードについて、回帰式および評価値Zσを求めればよい。なお、Zとしては、3.0,4.0,6.0などの値を用いることができる。
 (S12)電力算出部130は、以降の処理において判定対象とする温度範囲を決定する。具体的には、電力算出部130は、来期における最高気温を、過去の気温の変化から予測し、当該温度範囲の上限値Tuとする。電力算出部130は、後に詳述するように、来期の最高気温の予測に回帰分析を用いてもよい。そして、電力算出部130は、予測した最高気温に基づいて、当該温度範囲の下限値Tdを決定する。例えば、上限値Tuから予め定められた温度を引いた値を下限値Tdとすることが考えられる。より具体的には、電力算出部130は、下限値Td=Tu-7(℃)とする(上限値Tuから引く値は運用に応じて任意に決定できる)。この場合、判定対象の温度範囲は、Td(℃)以上Tu(℃)以下となる。ただし、後述するように当該温度範囲の上限値や下限値の決定方法には他の方法を採用してもよい。
 (S13)電力算出部130は、ステップS12で求めた温度範囲におけるレコードを、電力実績値の大きい順にソートする。
 (S14)電力算出部130は、ステップS13のソート結果に対し、未抽出の電力実績値のうち、最大の電力実績値を抽出する。すなわち、電力算出部130は、ステップS13における電力実績値のソート結果から、電力実績値を大きい順に1つずつ抽出して、以降の手順を実行する。ステップS14で抽出された電力実績値を、以降のステップの説明では「着目する電力実績値」と称する。
 (S15)電力算出部130は、着目する電力実績値が回帰式による計算値(回帰式計算値)の最大値(すなわち、電力算出値)以上であるか否かを判定する。着目する電力実績値が、回帰式計算値の最大値以上の場合、処理をステップS16に進める。着目する電力実績値が、回帰式計算値の最大値よりも小さい場合、処理をステップS18に進める。
 (S16)電力算出部130は、着目する電力実績値が、当該電力実績値に対応する気温Txにおける回帰式計算値P(Tx)±Zσの範囲内であるか否かを判定する。着目する電力実績値が回帰式計算値±Zσの範囲内の場合、電力算出部130は、当該電力実績値を正常値と判断して、処理をステップS17に進める。着目する電力実績値が回帰式計算値±Zσの範囲内でない場合、電力算出部130は、当該電力実績値を異常値と判断して、処理をステップS14に進める(着目する電力実績値を変えて処理を繰り返す)。
 (S17)電力算出部130は、着目する電力実績値を、来期の最大電力需要値と決定する。そして、処理を終了する。
 (S18)電力算出部130は、回帰式から導かれる最大電力値を、来期の最大電力需要値と決定する。具体的には、電力算出部130は、ステップS12で予測した最高気温Tuに対する電力値P(Tu)を、来期の最大電力需要値と決定する。そして、処理を終了する。
 ここで、上記Zは可変変数である。変数Zは、ステップS16の判定により電力実績値が正常値であるか異常値であるかを判断するために用いられる。Zが小さいほど、正常と判断する許容範囲が小さくなり、回帰式から求められた値を最大電力需要値として予測する可能性が高まる。Zが大きいほど、正常と判断する許容範囲が大きくなり、回帰式から求められた値ではなく、電力実績値から最大電力需要を予測する可能性が高まる。変数Zには、運用に応じた値を設定できる。
 また、ステップS12では、来期の最高気温を回帰分析により予測するものとした。例えば、次のような方法が考えられる。
 図9は、来期の最高気温の予測例を示す図である。図9は、西暦(年)を横軸とし、各年の最高気温(℃)を縦軸として、各年と最高気温との関係を示している。電力算出部130は、各年に対する最高気温の実績に対する回帰分析によって、回帰線L11に対応する回帰式を求める(回帰式は一次式でもよいし、二次以上の式でもよい)。すると、電力算出部130は、求めた回帰式により来期(例えば、西暦2016年)の最高気温Tuを、例えば、35.8℃と予測できる。一方、前述のように、電力算出部130は、今期(例えば、西暦2015年)の最高気温を、来期の最高気温Tuと予測してもよい。
 なお、図8のステップS12では、電力算出部130は、温度範囲の上限値Tuから固定値(上記の例では7℃)を引いて、温度範囲の下限値Tdを求めるものとした。一方、電力算出部130は、予測した最高気温とステップS11で求めた回帰式および評価値Zσに基づいて、当該温度範囲の下限値Tdを決定してもよい。具体的には、次の通りである。
 図10は、判定対象の気温範囲の決定例を示す図である。電力算出部130は、図9で例示した方法によって求めた気温範囲ΔTの最高気温Tuに対し、算出した回帰式(式(2))に評価値Zσを加算した相関式に基づいて、気温範囲ΔTの下限値Tdを決定する。具体的には、電力算出部130は、下限値Td=Tu-Zσ/aとする(図9の例ではZ=3である)。すなわち、電力算出部130は、最高気温Tuを回帰式に代入して算出される電力値を相関式に代入することで気温範囲ΔTの下限値Tdを計算する。
 このように、電力算出部130は、気温範囲ΔTを動的に決定することもできる。すると、Zの値によって、判定対象の気温範囲を比較的狭く採って、より最高気温Tuに近い温度で、最大電力需要の予測を行うか、あるいは、判定対象の気温範囲を比較的広く採って、最高気温Tuに拘らずに最大電力需要の予測を行うかを調整できる。
 更に、分析部120は、図7の手順において、相関係数cの適合率(例えば、R2値やp値)を求めて、電力実績テーブル111による電力需要の予測を行うか否かを判定してもよい。具体的には、次の通りである。
 図11は、分析処理の他の例を示すフローチャートである。以下、図11に示す処理をステップ番号に沿って説明する。ここで、図11の手順では、ステップS3の後に、ステップS3a,S3bを実行し、その後にステップS3bの判定に応じてステップS4を実行する点が、図7の手順と異なる。そこで、以下では、ステップS3a,S3bを主に説明し、他のステップの説明を省略する。
 (ステップS3a)分析部120は、相関係数cにおける適合率を算出する。適合率としては、R2値またはp値を用いることができる。ここで、R2値は、電力実績テーブル111から求まる回帰線がもっともらしいか否かを示す指標である。R2値は、0から1の間の実数となる。R2値が1のとき、グラフ上の気温対電力実績値のプロットは全て回帰線上に乗ることになる。逆に、R2値が0のとき、グラフ上の気温対電力実績値のプロットは回帰線とは無関係にばらばらに散らばる状態となる。また、p値は、全く相関のない数値を組合せたときに、ステップS3で求めた相関係数cが算出される確率を表す。p値が小さいほど相関係数cの信頼性は高く、p値が大きいほど相関係数cの信頼性は低い。
 (ステップS3b)分析部120は、ステップS3aで求めた適合率が所定値範囲内であるか否かを判定する。適合率が所定値範囲内である場合、処理をステップS4に進める。適合率が所定値範囲内ではない場合、処理を終了する。例えば、適合率として、R2値を用いる場合、ステップS3aで算出したR2値が所定値(例えば、0.8など)以上であれば、適合率(R2値)は所定値範囲内である。当該R2値が所定値よりも小さければ、適合率(R2値)は所定値範囲内ではない。また、適合率として、p値を用いる場合、ステップS3aで算出したp値が所定値(例えば、0.05)以下であれば、適合率(p値)は所定値範囲内である。当該p値が所定値よりも大きければ、適合率(p値)は所定範囲内ではない。
 このように、分析部120は、相関係数cによる判定(ステップS4)に加えて、適合率も用いることで、気温と電力実績値との相関が比較的強いと判断される場合に絞って、電力需要の予測を行える。こうして、電力予測サーバ100は、最大電力需要の予測の精度をより向上させることもできる。
 ところで、第2の実施の形態の例では、主に、気温と消費電力との関係に着目して来期の最大電力需要を予測する方法を例示した。一方、電力需要に関連性のあるパラメータとしては、気温以外にも、湿度、工場の製品生産量、データセンタの受注量、サーバの稼働台数、勤務人員数、在籍人員数および設備運用台数なども考えられる。電力予測サーバ100は、これら他のパラメータを用いて、来期の最大電力需要を予測することも考えられる。具体的には次の通りである。
 図12は、分析の他の例を示す図である。図12,図13では、サーバ稼働台数(台)に対する電力需要(kW)の関係を例示する。図12,図13で示されるグラフの横軸はサーバ稼働台数であり、縦軸は電力需要の実績値(電力実績値)である。電力予測サーバ100は、過去におけるサーバ稼働台数と電力実績値とを記憶部110に記録している。
 図12(A)は、サーバ稼働台数の実績に対して電力実績値をプロットした図である。図12(B)は、サーバ稼働台数のグループ化範囲の決定を示す図である。まず、電力予測サーバ100は、サーバ稼働台数を複数の範囲に分割する。各範囲に属するサーバ稼働台数と電力実績値の関係において、例えば、p値による相関係数の有意差検定で、p値≦5%で有意であると判断された範囲をグループ化する(p値に対し、1%以下など、有意差ありと判断するための他の制限を課してもよい)。図12(B)の例では、電力予測サーバ100は、サーバ稼働台数300台から450台までの範囲をグループ化している。こうして、サーバ稼働台数と電力実績値とについて比較的相関の強いレコードを抽出することで、電力需要の予測の精度を高める。
 電力予測サーバ100は、グループ化した範囲に対し、サーバ稼働台数と電力実績値との関係を表す回帰式を算出する。図12(C)は、当該回帰式に対応する回帰線L20を例示している。本例では、回帰式は、2次式で表される。具体的には、回帰線L20の回帰式は、式(3)により表される。
Figure JPOXMLDOC01-appb-M000003
 ここで、Qは電力値(単位はkW)である。Nはサーバ稼働台数(単位は台)である。a1は第1の電力需要変化率(単位はkW/台)である。a2は第2の電力需要変化率(単位はkW/台)である。bは切片(単位はkW)である。例えば、電力算出部130は、最大需要グループに属する気温および電力実績値に対する最小二乗法により、式(3)のa1,a2およびbの値を求めることができる。電力予測サーバ100は、式(3)を基に、図6で例示した方法と同様にして、来期の最大電力需要を予測できる。
 図13は、分析の他の例(続き)を示す図である。図13(A)は、グループ化した範囲に属する電力実績値のばらつきを表している。例えば、該当のグループに属する電力実績値の中には、サーバ稼働台数とは無関係に突発的に消費電力が小さくなった、あるいは、大きくなったケースも存在する。電力算出部130は、このようなケースを異常値として棄却する。具体的には、電力算出部130は、該当のグループに属する電力実績値のばらつきを示す指標として、前述の評価値Zσを求める。そして、電力算出部130は、電力実績値のうち、Q(N)-Zσ以上、Q(N)+Zσ以下の範囲内の値を正常値とする。一方、電力算出部130は、電力実績値のうち、Q(N)-Zσより小さいか、または、Q(N)+Zσよりも大きい値を異常値とする。図13(A)では、一例として、Z=3としている。
 図13(B)および図13(C)は、電力算出部130による最大電力需要の決定の2つのパターンを示している。具体的には、電力算出部130は、正常範囲内の電力実績値と、を用いて求まる電力算出値と比較する。例えば、電力算出部130は、今期の最高稼働台数を来期の最高稼働台数とし、当該最高稼働台数を式(3)に代入することで、電力算出値を求めることができる。あるいは、電力算出部130は、各期と、各期におけるサーバの最高稼働台数の変化に相関があれば、回帰分析によって来期のサーバの最高稼働台数を予測してもよい。
 そして、電力算出部130は、正常範囲内の電力実績値が電力算出値以上の場合、正常範囲内の電力実績値のうちの最大値を、来期における最大電力需要の予測値とする(図13(B)の場合)。
 電力算出部130は、正常範囲内の電力実績値が電力算出値よりも小さい場合、式(3)に、来期におけるサーバの最高稼働台数を代入して求めた値を、来期における最大電力需要の予測値とする(図13(C)の場合)。
 このように、電力予測サーバ100は、サーバ稼働台数と電力需要との間に相関がある場合には、サーバ稼働台数とサーバ稼働台数に対する電力需要の実績とを基に、来期における最大電力需要を予測することもできる。
 ここで、工場や研究所などの大量の電気エネルギーを取り扱う事業所では、電気料金費用の削減が図られる。そのために、電気料金契約に際して、例えば電気主任技術者が、過去の電力需要実績や予定生産量・設備導入計画などから契約対象年度の電気需要予測を行って契約電力を決定することがある。しかし、最大電力需要は、電気料金に対して比較的大きな相関があり、最大電力需要の予測値と実際の電力使用量との乖離が大きくなるおそれがある。予測と実際との乖離が大きいと、電力需要の差分により発生した費用は掛け捨てとなる。各事業所の電気主任技術者は、契約電力と最大電力需要との乖離電力を小さくすることを心掛けているが、事業所によっては前年度の契約電力値で契約したり、乖離電力が比較的大きいままに過去の契約電力をそのまま維持したりするケースもある。また、人手による契約電力の決定には、決定担当者の判断によるところも大きく、過去データに基づく論理的な処理が行われずに、需要の予測と実際との乖離による電気料金費用の増加が問題となっている。
 これに対し、電力予測サーバ100によれば、過去の電力需要の実績から回帰式を求め、最大需要グループ内の電力実績値が回帰式を用いて算出される電力算出値よりも小さいときに、当該回帰式により最大電力需要値を算出する。電力実績値が回帰式を用いて算出される電力算出値よりも小さいときは、将来の電力需要量が回帰式から求まる最大電力需要値を超過する可能性は比較的低いと考えられる。したがって、電力実績値が回帰式を用いて算出される電力算出値よりも小さいとき、回帰式から最大電力需要値を求めることで、将来の最大電力需要値が過大に見積もられることを防げる。
 一方、電力予測サーバ100は、最大需要グループ内の電力実績値が回帰式を用いて算出される電力算出値以上のときは、過去における最大の電力需要の実績値を、予測される最大電力需要値とする。この場合、回帰式から求まる最大電力需要値を超過する可能性が比較的高いと考えられるからである。過去における最大の電力需要の実績値を、来期の最大電力需要値と予測することで、将来の最大電力需要値が過小に見積もられることを防げる。こうして、電力予測サーバ100は、将来の電力需要に対する適切な契約電力のユーザによる決定を支援することができる。
 なお、第1の実施の形態の情報処理は、演算装置1bにプログラムを実行させることで実現できる。また、第2の実施の形態の情報処理は、プロセッサ101にプログラムを実行させることで実現できる。プログラムは、コンピュータ読み取り可能な記録媒体13に記録できる。
 例えば、プログラムを記録した記録媒体13を配布することで、プログラムを流通させることができる。また、プログラムを他のコンピュータに格納しておき、ネットワーク経由でプログラムを配布してもよい。コンピュータは、例えば、記録媒体13に記録されたプログラムまたは他のコンピュータから受信したプログラムを、RAM102やHDD103などの記憶装置に格納し(インストールし)、当該記憶装置からプログラムを読み込んで実行してもよい。
 上記については単に本発明の原理を示すものである。更に、多数の変形や変更が当業者にとって可能であり、本発明は上記に示し、説明した正確な構成および応用例に限定されるものではなく、対応する全ての変形例および均等物は、添付の請求項およびその均等物による本発明の範囲とみなされる。
 1 電力需要値算出システム
 1a 記憶装置
 1b 演算装置
 2 テーブル
 G1,G2,G3 グラフ
 L1 回帰線

Claims (10)

  1.  気温と電力実績値との組合せのデータを記憶する記憶装置と、
     前記記憶装置から所定気温以上のデータを選択し、選択した各データの気温に対応する電力実績値が、前記組合せのデータから導出される回帰式と選択したデータの気温とから算出された電力算出値よりも小さいとき、前記所定気温以上の気温と前記回帰式とに基づいて最大電力需要値を算出する演算装置と、
     を有する電力需要値算出システム。
  2.  前記演算装置は、選択した各データの気温に対応する電力実績値が前記回帰式と選択したデータの気温とから算出された電力算出値以上のとき、前記所定気温以上のデータのうちの最大の電力実績値を、前記最大電力需要値と決定する、請求項1記載の電力需要値算出システム。
  3.  前記演算装置は、前記組合せのデータのうちの最高の気温を前記回帰式に代入することで前記最大電力需要値を算出する、請求項1または2記載の電力需要値算出システム。
  4.  前記演算装置は、前記組合せのデータのうちの最高の気温に基づいて、前記所定気温を決定する、請求項1乃至3の何れか1項に記載の電力需要値算出システム。
  5.  前記演算装置は、前記組合せのデータから電力実績値の標準偏差を算出し、前記標準偏差に応じた値を前記回帰式に加算した相関式を求め、選択した各データの気温に対応する電力実績値のうち、前記電力算出値との比較に用いる電力実績値を、前記相関式に基づいて選択する、請求項1乃至4の何れか1項に記載の電力需要値算出システム。
  6.  前記演算装置は、前記組合せのデータから電力実績値の標準偏差を算出し、前記標準偏差に応じた値を前記回帰式に加算した相関式を求め、前記組合せのデータのうちの最高の気温を前記回帰式に代入して算出される電力値を前記相関式に代入することで前記所定気温を計算する、請求項1乃至5の何れか1項に記載の電力需要値算出システム。
  7.  前記演算装置は、前記組合せのデータに基づいて、将来の所定期間における最高気温を予測し、予測した前記最高気温により前記所定気温を決定する、請求項1または2記載の電力需要値算出システム。
  8.  前記演算装置は、予測した前記最高気温を前記回帰式に代入することで前記最大電力需要値を算出する、請求項7記載の電力需要値算出システム。
  9.  コンピュータが、
     気温と電力実績値との組合せのデータから所定気温以上のデータを選択し、
     選択した各データの気温に対応する電力実績値が、前記組合せのデータから導出される回帰式と選択したデータの気温とから算出された電力算出値よりも小さいとき、前記所定気温以上の気温と前記回帰式とに基づいて最大電力需要値を算出する、
     電力需要値算出方法。
  10.  コンピュータに、
     気温と電力実績値との組合せのデータから所定気温以上のデータを選択し、
     選択した各データの気温に対応する電力実績値が、前記組合せのデータから導出される回帰式と選択したデータの気温とから算出された電力算出値よりも小さいとき、前記所定気温以上の気温と前記回帰式とに基づいて最大電力需要値を算出する、
     処理を実行させる電力需要値算出プログラム。
PCT/JP2016/051639 2016-01-21 2016-01-21 電力需要値算出システム、電力需要値算出方法および電力需要値算出プログラム WO2017126069A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2017562224A JP6566049B2 (ja) 2016-01-21 2016-01-21 電力需要値算出システム、電力需要値算出方法および電力需要値算出プログラム
PCT/JP2016/051639 WO2017126069A1 (ja) 2016-01-21 2016-01-21 電力需要値算出システム、電力需要値算出方法および電力需要値算出プログラム
EP16886311.6A EP3407450A4 (en) 2016-01-21 2016-01-21 POWER COST CALCULATION SYSTEM, POWER COST CALCULATION PROCESS AND COST OF COST CALCULATION
US16/037,295 US10989743B2 (en) 2016-01-21 2018-07-17 Power-demand-value calculating system, power-demand-value calculating method, and recording medium recording power-demand-value calculating program

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2016/051639 WO2017126069A1 (ja) 2016-01-21 2016-01-21 電力需要値算出システム、電力需要値算出方法および電力需要値算出プログラム

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/037,295 Continuation US10989743B2 (en) 2016-01-21 2018-07-17 Power-demand-value calculating system, power-demand-value calculating method, and recording medium recording power-demand-value calculating program

Publications (1)

Publication Number Publication Date
WO2017126069A1 true WO2017126069A1 (ja) 2017-07-27

Family

ID=59362215

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/051639 WO2017126069A1 (ja) 2016-01-21 2016-01-21 電力需要値算出システム、電力需要値算出方法および電力需要値算出プログラム

Country Status (4)

Country Link
US (1) US10989743B2 (ja)
EP (1) EP3407450A4 (ja)
JP (1) JP6566049B2 (ja)
WO (1) WO2017126069A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019207094A1 (de) * 2018-04-26 2019-10-31 Sma Solar Technology Ag Verfahren und vorrichtung zum aufeinander abgestimmten betreiben von elektrischen einrichtungen
JP2020120450A (ja) * 2019-01-21 2020-08-06 中国電力株式会社 発電設備の出力予測システム及び発電設備の出力予測方法
JP7425473B2 (ja) 2019-03-25 2024-01-31 国立研究開発法人物質・材料研究機構 閾値算出装置、閾値算出方法および測定装置

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7079955B2 (ja) * 2017-12-29 2022-06-03 ナガノサイエンス株式会社 温度特性評価方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06105465A (ja) * 1992-09-21 1994-04-15 Tokyo Electric Power Co Inc:The 最大需要予測方法及び装置
JP2009225613A (ja) * 2008-03-18 2009-10-01 Tokyo Electric Power Co Inc:The 電力需要予測装置及び電力需要予測方法
JP2015139283A (ja) * 2014-01-22 2015-07-30 国立大学法人名古屋大学 電力需要ピーク予測装置、電力需要ピーク予測方法、及び電力需要ピーク予測プログラム

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3994910B2 (ja) * 2003-05-08 2007-10-24 株式会社日立製作所 電力売買支援システム
JP2008025951A (ja) 2006-07-25 2008-02-07 Jfe Techno Research Corp 空調設備の運転制御方法および装置
JP5288782B2 (ja) * 2007-03-09 2013-09-11 三洋電機株式会社 デマンド制御システム、デマンドコントローラ、デマンドプログラム及びデマンド制御方法
JP5618501B2 (ja) * 2009-07-14 2014-11-05 株式会社東芝 需要予測装置、プログラムおよび記録媒体
CN102663518A (zh) * 2012-03-31 2012-09-12 上海市电力公司 基于温度还原模型的年最大负荷预测方法
JP6175871B2 (ja) * 2013-04-05 2017-08-09 富士通株式会社 計画策定装置、計画策定システム、計画策定方法および計画策定プログラム
JP6193400B2 (ja) 2013-11-20 2017-09-06 株式会社東芝 電力需要予測システム、電力需要予測方法、需要家プロファイリングシステム、及び需要家プロファイリング方法
KR20150123540A (ko) * 2014-04-25 2015-11-04 삼성전자주식회사 전력 소비 최적화를 위한 스마트 시스템의 동작방법 및 장치

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06105465A (ja) * 1992-09-21 1994-04-15 Tokyo Electric Power Co Inc:The 最大需要予測方法及び装置
JP2009225613A (ja) * 2008-03-18 2009-10-01 Tokyo Electric Power Co Inc:The 電力需要予測装置及び電力需要予測方法
JP2015139283A (ja) * 2014-01-22 2015-07-30 国立大学法人名古屋大学 電力需要ピーク予測装置、電力需要ピーク予測方法、及び電力需要ピーク予測プログラム

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3407450A4 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019207094A1 (de) * 2018-04-26 2019-10-31 Sma Solar Technology Ag Verfahren und vorrichtung zum aufeinander abgestimmten betreiben von elektrischen einrichtungen
JP2020120450A (ja) * 2019-01-21 2020-08-06 中国電力株式会社 発電設備の出力予測システム及び発電設備の出力予測方法
JP7206939B2 (ja) 2019-01-21 2023-01-18 中国電力株式会社 発電設備の出力予測システム及び発電設備の出力予測方法
JP7425473B2 (ja) 2019-03-25 2024-01-31 国立研究開発法人物質・材料研究機構 閾値算出装置、閾値算出方法および測定装置

Also Published As

Publication number Publication date
US20180321288A1 (en) 2018-11-08
EP3407450A1 (en) 2018-11-28
JP6566049B2 (ja) 2019-08-28
JPWO2017126069A1 (ja) 2018-09-13
EP3407450A4 (en) 2019-01-16
US10989743B2 (en) 2021-04-27

Similar Documents

Publication Publication Date Title
Yadav et al. A practical reliability allocation method considering modified criticality factors
JP6566049B2 (ja) 電力需要値算出システム、電力需要値算出方法および電力需要値算出プログラム
JP6297466B2 (ja) 卸電力価格予測システムおよび卸電力価格予測方法
JP2016095751A (ja) 異常機器特定プログラム、異常機器特定方法、及び、異常機器特定装置
CN103678866B (zh) 用于计算系统产品可靠度估计的方法和系统
JP6200076B2 (ja) システムから取得される測定値を評価する方法及びシステム
WO2012153400A1 (ja) データ処理システム、データ処理方法、及び、プログラム
Zerigui et al. Statistical approach for transient stability constrained optimal power flow
Wang et al. Multi-phase reliability growth test planning for repairable products sold with a two-dimensional warranty
CN112508260B (zh) 基于对比学习的配电变压器中长期负荷预测方法及装置
JPWO2014125796A1 (ja) システム分析装置、及び、システム分析方法
KR20220061713A (ko) 스마트 미터의 결측치 대체 방법 및 이를 이용하는 스마트 미터 제어 시스템
JP2016140230A (ja) サンプル抽出装置、サンプル抽出方法、及びサンプル抽出プログラム
JP6340987B2 (ja) ディスク枯渇予測プログラム、情報処理装置、およびディスク枯渇予測方法
KR101471797B1 (ko) 리스크 관리 장치
US10901407B2 (en) Semiconductor device search and classification
CN105160446A (zh) 一种获取借款额度的方法及装置
Saroha et al. Software effort estimation using enhanced use case point model
CN105095616A (zh) 数据分析装置、数据分析方法
JP2015114849A (ja) 需要予測装置、需要予測方法及び需要予測用コンピュータプログラム
JP2015207037A (ja) リニューアル計画装置、リニューアル計画方法およびリニューアル計画プログラム
JP6861176B2 (ja) プロジェクト見積り支援方法およびプロジェクト見積り支援装置
JP2017151614A (ja) 計算機及び分析指標の算出方法
JPWO2018061136A1 (ja) 需要予測方法、需要予測システム及びそのプログラム
Viana et al. Bayesian model selection and calibration applied to composite load identification

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16886311

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017562224

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2016886311

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2016886311

Country of ref document: EP

Effective date: 20180821