WO2017125037A1 - Communication resource allocation for telecommunications networks - Google Patents

Communication resource allocation for telecommunications networks Download PDF

Info

Publication number
WO2017125037A1
WO2017125037A1 PCT/CN2017/071660 CN2017071660W WO2017125037A1 WO 2017125037 A1 WO2017125037 A1 WO 2017125037A1 CN 2017071660 W CN2017071660 W CN 2017071660W WO 2017125037 A1 WO2017125037 A1 WO 2017125037A1
Authority
WO
WIPO (PCT)
Prior art keywords
communication resources
communication
ues
resource
cca
Prior art date
Application number
PCT/CN2017/071660
Other languages
French (fr)
Inventor
Guang Liu
Original Assignee
Jrd Communication Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jrd Communication Inc. filed Critical Jrd Communication Inc.
Priority to CN201780004506.1A priority Critical patent/CN108370569B/en
Publication of WO2017125037A1 publication Critical patent/WO2017125037A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/21Control channels or signalling for resource management in the uplink direction of a wireless link, i.e. towards the network
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W16/00Network planning, e.g. coverage or traffic planning tools; Network deployment, e.g. resource partitioning or cells structures
    • H04W16/14Spectrum sharing arrangements between different networks
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/52Allocation or scheduling criteria for wireless resources based on load
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/54Allocation or scheduling criteria for wireless resources based on quality criteria
    • H04W72/542Allocation or scheduling criteria for wireless resources based on quality criteria using measured or perceived quality
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access, e.g. scheduled or random access
    • H04W74/08Non-scheduled or contention based access, e.g. random access, ALOHA, CSMA [Carrier Sense Multiple Access]
    • H04W74/0808Non-scheduled or contention based access, e.g. random access, ALOHA, CSMA [Carrier Sense Multiple Access] using carrier sensing, e.g. as in CSMA

Definitions

  • Embodiments or examples of the present invention generally relate to scheduling communication resources for uplink transmissions using unlicensed radio spectrum in a telecommunications network.
  • scheduling and allocating the communication resources to a plurality of user equipment (UEs) served by a base station, where the UEs use the allocated communication resources for transmitting uplink data to the base station.
  • UEs user equipment
  • Current telecommunications networks operate using licensed radio spectrum in which multiple accesses to the communications resources of the licensed radio spectrum is strictly controlled.
  • Each user of the network is essentially provided a “slice” of the spectrum using a variety of multiple access techniques such as, by way of example only but not limited to, frequency division multiplexing, time division multiplexing, code division multiplexing, and space division multiplexing or a combination of one or more of these techniques.
  • multiple access techniques such as, by way of example only but not limited to, frequency division multiplexing, time division multiplexing, code division multiplexing, and space division multiplexing or a combination of one or more of these techniques.
  • unlicensed radio spectrum may be used by telecommunication network operators in order to increase or supplement the capacity of their telecommunications networks.
  • a telecommunication network based on the Long Term Evolution (LTE) /LTE advanced standards have an enhanced downlink that uses a mechanism called Licensed-Assisted-Access (LAA) to operate on unlicensed spectrum such as the 5GHz Wi-Fi radio spectrum, which may increase the downlink capacity of current networks operating in the licensed radio spectrum.
  • LAA Licensed-Assisted-Access
  • LAA may be used with a listen-before-talk (LBT) mechanism that is used by base stations before accessing the 5GHz unlicensed spectrum for downlink transmissions.
  • LBT listen-before-talk
  • This mechanism uses a clear channel assessment (CCA) check on channels of the unlicensed spectrum to determine the presence or absence of other signals prior to using the channel.
  • CCA clear channel assessment
  • the base stations can start the downlink transmissions on the carriers which are clear and the user equipment or terminals need to monitor the downlink carriers indicated by the based station with signalling.
  • Methods, apparatus and user equipment are provided for scheduling communication resources to multiple user equipment (UEs) for use in uplink data transmission to a base station of a telecommunications network using unlicensed radio spectrum.
  • the base station serves the multiple UEs and determines and schedules one or more sets of communication resources from unlicensed radio spectrum for each of the UEs.
  • the base station receives, from each of the UEs, a request for a number of communication resources required by said each UE for transmitting uplink data.
  • the base station determines one or more sets of communication resources for each of the UEs and allocates, for each UE, a set of communication resources from the determined set of communication resources, where the set of communication resources includes a minimum number of communication resources required for transmitting the uplink data based on the load of each of the communication resources, service type and/or capabilities of the UE.
  • the set of communication resources use unlicensed spectrum and may comprise communication resources of a shared type which may be shared with at least another of the UEs served by the base station.
  • a method for scheduling communication resources for a plurality of user equipment, UEs, transmitting uplink data to a base station in a telecommunication network using unlicensed radio spectrum including: receiving, from each of the UEs, a request for a number of communication resources required by said each UE for transmitting uplink data; determining one or more sets of communication resources for use by the UEs; allocating to each UE a set of communication resources from the determined set of communication resources, wherein the set of communication resources comprises a minimum number of communication resources required for transmitting the uplink data based on the load of each of the communication resources; sending a resource allocation message to each of the plurality of UEs, the resource allocation message including data representative of the set of communication resources allocated to said each of the UEs.
  • each communication resource in the set of determined communication resources is associated with an estimated load, L, which is normalised to a value in the range [0, 1]
  • the minimum number of communication resources assigned to the UE includes selecting a set of communication resources from the determined set of communication resources that has the minimum number of communication resources in which the summation of the difference between 1 and the estimated load, L, of each of the selected communication resources is greater than the number of requested communication resources by the UE.
  • the minimum number of communication resources further includes one or more additional communication resources required for the telecommunications network to meet a latency requirement associated with a communication service type used by the UE for transmitting the uplink data. Additionally or alternatively, the minimum number of communication resources is upper bounded by the maximum number of communication resources that the UE is capable of supporting.
  • the method may include measuring the load of one or more communication resources, receiving, from one or more of the UEs, measurement reports comprising data representative of communication resource load measurements associated with at least one of the communication resources, estimating the load for each communication resource based the measured load of one or more communication resources and measurement reports, and determining available communication resources for assigning to each of the UEs based on the estimated communication resource loads.
  • each UE may receive a set of communication resources of a shared type and which may be shared with at least one other UE served by the base station for uplink data transmission.
  • Each of the UEs on receiving their scheduled set of communication resources of a shared type, assigns any available communication resources that are determined to be unused by the at least one other UE for transmitting the uplink data.
  • the set of communication resources assigned to each UE may include one or more communication resources of a shared type and which are shared between at least one other UE served by the base station for uplink data transmission, wherein each communication resource of the shared type is available for use by each UE when said UE detects said communication resource is unused or available.
  • the set of communication resources may include a first set of communication resources of an unshared type and which are not shared with other UEs served by the base station.
  • the set of communication resources assigned to each UE may include a first set of communication resources of an unshared type and which are not shared with other UEs served by the base station, and a second set of communication resources of the shared type, where the UE may assign any available communication resources from the first set of communication resources for transmitting uplink data, and assign any available communication resources from their second set for use in transmitting the uplink data when the communication resources from their first set of communication resources are unavailable, not enough or insufficient to meet the uplink transmission requirements of the UE.
  • the data representative of the communication resources of the shared type for transmitting uplink data further comprises a priority indication for indicating when that UE can determine whether the associated communications resource (s) is unused, wherein the priority indication for each of the UEs associated with the same communication resource of the shared type is different.
  • each UE transmits an initial signal over one or more communication resources of the shared type when that UE detects based on the priority indication for that UE the one or more communication resources of the shared type are available for an uplink transmission and the method may further include receiving, from a UE and prior to the UE transmitting uplink data, an initial signal over one or more of the communication resources of the shared type that have been assigned to the UE for the uplink data transmission; identifying the UE from the transmitted initial signal based on the initial signal; and receiving uplink data transmitted from the identified UE.
  • each communication resource of the shared type includes a plurality of communication assessment gaps and a plurality of uplink data transmission blocks, where each communication assessment gap is adjacent one or more of the data transmission blocks, each communication assessment gap comprising two or more clear channel assessment, CCA, time slots, and each CCA time slot is associated with a CCA timing advance value.
  • the method may further include allocating, to each UE, a priority indication for each communication resource of the shared type allocated to said UE, wherein the priority indication comprises data representative of a CCA timing advance value indicating which CCA time slot of the communication assessment gap the UE may use to perform a CCA check in advance of an adjacent uplink data transmission block for transmitting uplink data on the associated communication resource.
  • the method may include storing, for each communication resource of the shared type allocated to each UE, a mapping of the identity of the UE with the allocated CCA time slot associated with each communication resource of the shared type.
  • the priority indication further comprises data representative of the number of CCA time slots associated with the communication assessment gap
  • the method may include: receiving, on a communication resource of a shared type, one or more initial signals transmitted from a UE in one or more CCA time slots of a communication assessment gap prior to an uplink data transmission block; identifying the UE by: counting the number of transmissions of the initial signal; determining which CCA time slot is associated with the UE based on the initial signal count based and the number of CCA time slots associated with the communication assessment gap; and identifying the UE based on the mapping between the determined CCA time slot and the identity of the UE; receiving the uplink data transmitted from the identified UE in the uplink data transmission block adjacent the communication assessment gap in which the one or more initial signals were transmitted.
  • the method may further include receiving a transmit buffer status of each UE being served by the base station, the transmit buffer status for each UE indicating one or more transmit data buffer sizes associated with the set of communication resources allocated to said each UE; comparing the transmit data buffer size of a first UE and a second UE sharing the same communication resource of a shared type, wherein the priority indication assigned to the first UE priority allows the first UE to access the communication resource before the second UE; swapping the priority indications of the first UE and the second UE for the same communication resource when the comparison indicates the transmit data buffer size of the second UE is greater than the transmit data buffer size of the first UE by a predefined transmit buffer threshold; and transmitting data representative of the swapped priority indications associated with the same communication resource of the shared type to each of the first and second UEs.
  • the method may further include detecting two or more UEs attempting to access the same communication resources of the shared type; identifying the detected two or more UEs; reallocating the communication resources in the second set of communication resources of the shared type for each of the detected two or more UEs, where the communication resources for the second set of communication resources for each of the detected two or more UEs are different; and transmitting a resource allocation message to each of the detected two or more UEs, the resource allocation message including data representative of the second set of communication resources reallocated to said each of the detected two or more UEs.
  • the method may further include receiving channel assessment check measurement reports from two or more UEs allocated the same one or more communication resources of a shared type; determining whether the two or more UEs have correlated channel assessment check measurements for the one or more same communication resources of the shared type; reallocating the set of communication resources for each of the two or more UEs to minimise the two or more UEs having correlated channel assessment check measurements with other UEs using the same one or more communication resources of the shared type; and transmitting a resource allocation message to each of the two or more UEs, the resource allocation message including data representative of the set of communication resources reallocated to said each of the two or more UEs.
  • two or more UEs may be allocated the same communication resource of a shared type, and the method further including determining a CCA correlation value for each pair of UEs of the two or more UEs, wherein the CCA correlation value represents the proximity of a pair of UEs; comparing each CCA correlation value correlation with a predetermined channel correlation threshold; reallocating another communication resource of the shared type to at least one UE from a pair of UEs if the comparison for that pair of UEs reaches the predetermined channel correlation threshold, wherein the another communication resource of the shared type replaces the same communication resource of the shared type for the at least one UE; and transmitting a resource allocation message to the at least one UE including data representative of the another communication resource of the shared type.
  • the method may further include: determining a CCA correlation value for one or more pairs of UEs, each pair of UEs comprising the first UE and another UE using the communication resource of the shared type; comparing each CCA correlation value with a predetermined channel correlation threshold; and allocating the communication resource of the shared type to the first UE when all of the channel correlations for each pair of UEs satisfies a predetermined low channel correlation threshold.
  • determining a channel correlation for one or more pairs of UEs may further include at least one of: estimating the CCA correlation for a pair of UEs based on detected historical behaviour of the UEs; estimating the CCA correlation for a pair of UEs based on priority indications assigned to each UE; estimating the CCA correlation for a pair of UEs based on analysing measurement reports received from each UE associated with neighbour cells; estimating the CCA correlation for a pair of UEs based on analysing uplink transmissions of each UE; estimating the CCA correlation for a pair of UEs based on received measurement reports from the UEs; and estimating the CCA correlation for a pair of UEs based on receiving estimated channel correlation values from each UE of a pair of UEs.
  • the method for scheduling communication resources for a plurality of user equipment, UEs, transmitting uplink data to a base station in a telecommunication network using unlicensed radio spectrum may be performed by a base station or a base station apparatus and/or other network apparatus or entity in the telecommunications network.
  • a method for transmitting uplink data from a UE to a base station in a telecommunication network using unlicensed radio spectrum may include: transmitting, to a base station, a request for a number of communication resources required by the UE for transmitting uplink data; receiving, from the base station, data representative of a set of communication resources assigned to the UE for transmitting the uplink data, wherein the set of communication resources comprises a minimum number of communication resources required for transmitting the uplink data based on the load of each of the communication resources; determining whether one or more of the set of communication resources are available for transmitting the uplink data; assigning any available communication resources from the set of communication resources for transmitting the uplink data; and transmitting the uplink data based on the assigned communication resources from the set communication resources.
  • the minimum number of communication resources assigned to the UE may include one or more of: a selected set of communication resources that has the minimum number of communication resources in which the summation of the difference between 1 and an estimated load, L, of each of the selected communication resources is greater than the number of requested communication resources by the UE, the estimated load is normalised to a value in the range [0, 1] ; and one or more additional communication resources required for the telecommunications network to meet a latency requirement associated with a communication service type used by the UE for transmitting the uplink data; where the minimum number of communication resources assigned to the UE is upper bounded by the maximum number of communication resources that the UE is capable of supporting.
  • the method may include measuring an estimate of the load of one or more communication resources of the telecommunications network and transmitting, to the base station, measurement reports comprising data representative of the communication resource load measurements, where the measurement reports are used by the base station for determining available communication resources for assigning to the UEs served by the base station.
  • the set of communication resources assigned to the UE may include one or more communication resources of a shared type and which are shared between at least one other UE served by the base station for uplink data transmission, where the method may further include: determining whether one or more of the set of communication resources are unavailable further comprises detecting one or more communication resources of the shared type are being used by said at least one other UE; and assigning any available communication resources from the set of communication resources assigned to the UE further comprising assigning one or more of the communication resources for the uplink transmission from the set of communication resources that are determined to be unused.
  • the set of communication resources assigned to the UE for transmitting uplink data further including: a first set of communication resources of an unshared type and which are not shared with other UEs served by the base station; and a second set of communication resources of the shared type; where the method may further include: assigning any available communication resources from the first set of communication resources for transmitting the uplink data; assigning any available communication resources from the second set of communication resources when there are not any, is not enough, or an insufficient number of available communication resources from the first set of communication resources for transmitting the uplink data; and transmitting the uplink data based on any assigned communication resources from the first set of communication resources and any assigned communication resources from the second set of communication resources.
  • determining whether one or more communication resources of the set of communication resources are available for transmitting the uplink data further comprises performing a clear channel assessment check on each of the communication resources of the set of communication resources assigned to the UE.
  • the data representative of the set of communication resources of a shared type for transmitting uplink data further includes a priority indication associated the set of communication resources of the shared type for performing clear channel assessment checks
  • the method further includes: determining, based on the priority indication, when the UE may perform a clear channel assessment check for each communication resource in the set of communication resources of the shared type for determining whether said each communication resource is available to the UE for transmission of the uplink data; and transmitting, after the clear channel assessment check on an available communication resource and prior to transmission of any uplink data, one or more initial signals over the available communication resource of the shared type.
  • each communication resource of the shared type includes a plurality of communication assessment gaps and a plurality of uplink data transmission blocks, where each communication assessment gap is adjacent one or more of the data transmission blocks, each communication assessment gap including two or more clear channel assessment, CCA, time slots, and each CCA time slot is associated with a CCA timing advance value.
  • the priority indication associated with each communication resource of the shared type allocated to the UE may include data representative of a CCA timing advance value indicating which CCA time slot of the communication assessment gap the UE may use to perform a CCA check in advance of an adjacent uplink data transmission block for transmitting uplink data on the associated communication resource.
  • the method may further include, for each communication resource of the shared type: determining the CCA time slot for performing a CCA check based on the associated CCA timing advance value; performing the CCA check in the determined CCA time slot of a channel assessment gap; and transmitting, prior to transmitting uplink data on a data transmission block, one or more initial signal (s) in the remaining CCA time slots of the channel assessment gap before a data transmission block when the CCA check indicates the communication resource of the share type is available.
  • transmitting the one or more initial signals further includes transmitting the initial signal repeatedly a predetermined number of times for use by the base station in identifying the UE after the clear channel assessment check on an available communication resource and prior to transmission of any uplink data. Additionally or alternatively, transmitting the one or more initial signals may further include transmitting the initial signal as a continuous signal for use by the base station in identifying the UE after the clear channel assessment check on an available communication resource and prior to transmission of any uplink data.
  • the method may further include: transmitting a transmit buffer status of the UE to the base station, wherein the transmit buffer status of the UE comprises data representative of one or more transmit data buffer sizes associated with the set of communication resources allocated to the UE; and receiving, from the base station, data representative of an updated priority indication for use with a communication resource of the shared type from the set of communication resources allocated to the UE.
  • the method may include: detecting a transmission from another UE using the same communication resource of the shared type allocated to the UE; estimating the CCA correlation between the UE and the another UE based on the detected transmission; and transmitting the estimated CCA correlation between the UE and the another UE to the base station for use in allocating or reallocating one or more communication resources of the shared type to the plurality of UEs.
  • the method for transmitting uplink data from a UE to a base station in a telecommunication network using unlicensed radio spectrum may be performed by the UE and/or a UE apparatus.
  • a method for scheduling communication resources for a plurality of UEs transmitting uplink data to a base station in a telecommunication network using unlicensed radio spectrum including: determining one or more sets of communication resources for use by the UEs; allocating to each UE a set of communication resources from the determined set of communication resources, wherein the set of communication resources comprises a first set of communication resources comprising communication resources of an unshared type and which are not shared with other UEs served by the base station and a second set of communication resources comprising communication resources of a shared type and which are shared with other UEs served by the base station; and sending a resource allocation message to each of the plurality of UEs, the resource allocation message including data representative of the set of communication resources allocated to said each of the UEs.
  • a method for transmitting uplink data from a UE to a base station in a telecommunication network using unlicensed radio spectrum including: receiving, from the base station, data representative of a first set of communication resources and a second set of communication resources for transmitting uplink data, wherein the first set of communication resources comprise communication resources of an unshared type and which are not shared with other UEs served by the base station and the second set of communication resources comprise communication resources of a shared type and which are shared with other UEs served by the base station; assigning any available communication resources from the first set of communication resources for transmitting the uplink data; assigning any available communication resources from the second set of communication resources when the communication resources from the first set of communication resources are insufficient to meet the uplink transmission requirements of the UE; and transmitting the uplink data based on any assigned communication resources from the first of communication resources and any assigned communication resources from the second set of communication resources.
  • a communication resource may include a set of one or more carrier frequencies, each carrier frequency comprising a set of one or more resource blocks, each resource block comprising a set of one or more resource elements, each resource element representing a subcarrier frequency offset from the carrier frequency and a time slot for transmitting an uplink orthogonal frequency division multiplexing data symbol.
  • a UE apparatus including a processor, a storage unit and a communications interface, where the processor unit, storage unit, and communications interface are configured to perform the method as described or as described herein.
  • a base station apparatus including a processor, a storage unit and a communications interface, wherein the processor unit, storage unit, communications interface are configured to perform the method as described or as described herein.
  • a telecommunications network including a plurality of UEs configured as described with reference to the UE apparatus or as described herein, a plurality of base stations configured as described with reference to base station apparatus or as described herein, each base station configured for communicating with one or more of the plurality of UEs.
  • the methods described herein may be performed by software in machine readable form on a tangible storage medium or computer readable medium e.g. in the form of a computer program comprising computer program code means adapted to perform all the steps of any of the methods described herein when the program is run on a computer and where the computer program may be embodied on a computer readable medium.
  • tangible (or non-transitory) storage media include disks, thumb drives, memory cards etc. and do not include propagated signals.
  • the software can be suitable for execution on a parallel processor or a serial processor such that the method steps may be carried out in any suitable order, or simultaneously.
  • a computer readable medium comprising a computer program, program code or instructions stored thereon, which when executed on a processor, causes the processor to perform a method for scheduling communication resources for a plurality of user equipment using unlicensed radio spectrum and/or as described herein.
  • a computer readable medium comprising a computer program, program code or instructions stored thereon, which when executed on a processor, causes the processor to perform a method for transmitting uplink data from a UE to a base station using unlicensed radio spectrum and/or as described herein.
  • firmware and software can be valuable, separately tradable commodities. It is intended to encompass software, which runs on or controls “dumb” or standard hardware, to carry out the desired functions. It is also intended to encompass software which “describes” or defines the configuration of hardware, such as HDL (hardware description language) software, as is used for designing silicon chips, or for configuring universal programmable chips, to carry out desired functions.
  • HDL hardware description language
  • Figure 1 is a schematic diagram of a telecommunications network
  • Figure 2 is a schematic diagram of an example communication resource structure for the uplink and/or downlink of the telecommunications network of figure 1;
  • Figure 3 is a schematic diagram of an example process for scheduling and using communication resources
  • Figure 4a is a flow diagram of an example process for scheduling communication resources according to the invention.
  • Figure 4b is a flow diagram of another example process for scheduling communication resources according to the invention.
  • Figure 4c is a flow diagram of an example process for using scheduled communication resources according to the invention.
  • Figure 4d is a flow diagram of a further example process for scheduling communication resources according to the invention.
  • Figure 4e is a flow diagram of a further example process for using scheduled communication resources according to the invention.
  • Figure 5 is a schematic diagram illustrating an example of scheduled communication resources according to the invention.
  • Figure 6 is a schematic diagram illustrating another example of scheduled communication resources according to the invention.
  • Figure 7 is a flow diagram illustrating another example process of using scheduled communication resources according to the invention.
  • Figure 8a is a schematic diagram illustrating a communication resource frame structure for enhancing the scheduling and use of communication resources according to the invention
  • Figure 8b is a schematic diagram illustrating another example process for enhancing the scheduling and use of communication resources according to the invention.
  • Figure 8c is a schematic diagram illustrating a further example process for enhancing the scheduling and use of communication resources according to the invention.
  • Figure 9a is a schematic diagram illustrating another example process of scheduling and using communication resources according to the invention.
  • Figure 9b is a graph illustrating performance results for comparing the conventional process of scheduling and using communication resources with the example process of scheduling and using communication resources according to the invention.
  • Figure 9c is another graph illustrating performance results for comparing the conventional process of scheduling and using communication resources with the example process of scheduling and using communication resources according to the invention.
  • Figure 9d is a further graph illustrating performance results for comparing the conventional process of scheduling and using communication resources with the example process of scheduling and using communication resources according to the invention.
  • Figure 9e is yet a further graph illustrating performance results for comparing the conventional process of scheduling and using communication resources with the example process of scheduling and using communication resources according to the invention.
  • Figure 10 is a schematic diagram of a base station device for implementing one or more aspects or functions of the invention.
  • Figure 11 is a schematic diagram of a UE device for implementing one or more aspects or functions of the invention.
  • Embodiments of the present invention are described below by way of example only. These examples represent the best ways of putting the invention into practice that are currently known to the Applicant although they are not the only ways in which this could be achieved.
  • the description sets forth the functions of the example and the sequence of steps for constructing and operating the example. However, the same or equivalent functions and sequences may be accomplished by different examples.
  • a UE may comprise or represent any portable computing device for communications.
  • Examples of UEs that may be used in certain embodiments of the described apparatus, methods and systems may be wired or wireless devices such as mobile devices, mobile phones, terminals, smart phones, portable computing devices such as laptops, handheld devices, tablets, tablet computers, netbooks, phablets, personal digital assistants, music players, and other computing devices capable of wired or wireless communications.
  • Figure 1 is a schematic diagram of a telecommunications network 100 comprising telecommunications infrastructure 102 (e.g. telecoms. infrastructure 102) , a plurality of communication network nodes 104a-104m with cells 106a-106m for serving a plurality of UEs 108a-108l.
  • the plurality of communication network nodes 104a-104m are connected by links to the telecommunications infrastructure 102.
  • the links may be wired or wireless (for example, radio communications links, optical fibre, etc. ) .
  • the telecommunications infrastructure 102 may include one or more core network (s) that may be in communication with one or more radio access network (s) including the plurality of network nodes 104a-104m.
  • the network nodes 104a-104m are illustrated as base stations, which, by way of example only but not limited to, in a Long Term Evolution (LTE) Advanced telecommunications network may be eNodeBs (eNBs) .
  • the plurality of network nodes 104a-104m (e.g. base stations) each have a footprint indicated schematically in figure 1 as corresponding hexagonal cells 106a-106m for serving one or more of the UEs 108a-108l.
  • UEs 108a-108l are able to receive services from the telecommunications network 100 such as voice, video, audio and other services.
  • Telecommunications network 100 may comprise or represent any one or more communication network (s) used for communications between UEs 108a-108l and other devices, content sources or servers that are connected to the telecommunications network 100.
  • the telecommunication infrastructure 102 may also comprise or represent any one or more communication network (s) , one or more network nodes, entities, elements, application servers, servers, base stations or other network devices that are linked, coupled or connected to form telecommunications network 100.
  • the coupling or links between network nodes may be wired or wireless (for example, radio communications links, optical fibre, etc. ) .
  • the telecommunication network 100 and telecommunication infrastructure 102 may include any suitable combination of core network (s) and radio access network (s) including network nodes or entities, base stations, access points, etc. that enable communications between the UEs 108a-108l, network nodes 104a-104m of the telecommunication network 100 and telecommunication infrastructure 102, content sources and/or other devices connecting to the network 100.
  • Examples of telecommunication network 100 may be at least one communication network or combination thereof including, but not limited to, one or more wired and/or wireless telecommunication network (s) , one or more core network (s) , one or more radio access network (s) , one or more computer networks, one or more data communication network (s) , the Internet, the telephone network, wireless network (s) such as the WiMAX, WLAN (s) based on, by way of example only, the IEEE 802.11 standards and/or Wi-Fi networks, or Internet Protocol (IP) networks, packet-switched networks or enhanced packet switched networks, IP Multimedia Subsystem (IMS) networks, or communications networks based on wireless, cellular or satellite technologies such as mobile networks, Global System for Mobile Communications (GSM) , GPRS networks, Wideband Code Division Multiple Access (W-CDMA) , CDMA2000 or Long Term Evolution (LTE) /LTE Advanced networks or any 2nd, 3 rd , 4 th or
  • the telecommunications network may be, by way of example only but is not limited to, an LTE/LTE advanced communication network that uses orthogonal frequency division multiplexing (OFDM) technologies for the downlink and uplink channels.
  • the downlink may include one or more communication channel (s) for transmitting data from one or more base stations 104a-104m to one or more UEs 108a-108l.
  • a downlink channel is a communication channel for transmitting data, for example, from a base station 104a to a UE 108a.
  • the multiple access method used in the downlink may be orthogonal frequency division multiple access (OFDMA) .
  • the uplink may include one or more communication channel (s) for transmitting data from one or more UE (s) 108a-108l to one or more base station (s) 104a-104m.
  • the LTE/LTE advanced uplink may use single-carrier frequency division multiple access (SC-FDMA) mode, which is similar to OFDMA.
  • SC-FDMA single-carrier frequency division multiple access
  • an uplink channel is a communication channel for transmitting data, for example, from a UE 108a to a base station 108a.
  • OFDM multi-carrier transmission is used to carry data in the form of OFDM symbols over the uplink and downlink channels.
  • an uplink channel or downlink channel between UE 108a and base station 104a may comprise or represent one or more narrowband carriers in which each narrowband carrier may further include a plurality of narrowband sub-carriers. This is known as multi-carrier transmission. Each of the narrowband sub-carriers is used for transmitting data in the form of OFDM symbols.
  • each frame may be 10ms in length
  • each frame may be divided into a plurality of subframes.
  • each frame may include ten subframes of equal length, with each subframe consisting of a number of time slots (e.g. 2 slots) for transmitting data.
  • a subframe may include several additional special fields or OFDM symbols that may include, by way of example only, downlink synchronization symbols (s) , broadcast symbol (s) , and/or uplink reference symbol (s) .
  • OFDMA the smallest resource unit or element in the time domain is an OFDM symbol for the downlink and an SC-FDMA symbol for the uplink.
  • Figure 2 is a schematic diagram illustrating a communication resource grid 200 in the frequency and time domain of a time slot 202 of a radio frame for when the telecommunications network 100 as described with reference to figure 1 may be an LTE/LTE Advanced network.
  • the frequency domain is on the y axis of the communication resource grid 200 and the time domain is the x axis of the communication resource grid 200.
  • the communication resource grid 200 for the time slot 202 may represent one carrier of a plurality of carriers in the frequency domain.
  • the communication resource grid 200 includes a plurality of resource blocks in which each resource block 204 may be associated with a particular carrier frequency of the plurality of carriers.
  • Each carrier for uplink communications may be divided into a number, N RB , of one or more resource blocks in which each resource block 204 has a plurality of subcarriers, e.g. each resource block 204 may have a number, N SC , of one or more subcarriers, in which each subcarrier may be offset from the carrier frequency associated with the resource block 204.
  • Each carrier includes a number of N RB x N SC subcarriers (i.e. a plurality of subcarriers) associated with one or more resource block (s) 204.
  • Each resource block 204 may be represented by a subset of the plurality of subcarriers, e.g.
  • N SC subcarriers in the frequency domain and a plurality of symbols over the time slot 202, e.g. N SYMB symbols, in which each symbol has a symbol period.
  • the resource block 204 defines a grid in the frequency and time domain of N SC x N SYMB resource elements 206.
  • a resource element 206 corresponds to a particular subcarrier of the N SC subcarriers and a particular symbol of the N SYMB symbols over time slot 202.
  • the communications resources that may be assigned to a UE may be based on the communication resource grid 200 and are typically assigned in terms of one or more resource blocks/subcarriers associated with a corresponding carrier.
  • the communication resources may be described in terms of one or more carrier (s) , one or more subcarrier (s) , and/or one or more resource block (s) .
  • the communication resource grid 200 for the downlink and uplink are effectively the same type of structure, with some slight differences.
  • the downlink for LTE/LTE Advanced networks typically uses OFDM multiple access, hence the downlink may use OFDM symbols in the time domain.
  • the uplink for LTE-LTE Advanced networks typically uses SC-FDMA for accessing the uplink, and so SC-FDMA symbols may be used in the time domain. Although this may be the case for current LTE/LTE Advanced networks, it is to be appreciated by the person skilled in the art that any type of OFDM/SC-FDMA type symbols and the like may be used in the uplink.
  • communication resources may be assigned by base stations 104a-104m (e.g. eNBs) to UEs 108a-108l in terms of a list of carriers and/or resource blocks 204.
  • base stations 104a-104m e.g. eNBs
  • LTE networks may assign communication resources in terms of a list of carriers or a number of one or more resource blocks
  • communication resources may be assigned in terms of one or more carriers, one or more resource blocks, one or more subcarriers, and/or, in future, in terms of one or more resource elements or any combination thereof.
  • the base stations 104a-104m may assign resource blocks to UEs 108a-108l by performing uplink carrier allocation.
  • a base station 104a may simply perform uplink carrier allocation by dividing the available resource blocks amongst the UEs 108a-108b being served by that base station 104a.
  • the eNB 104a may allocate exactly the number of carriers and hence resource blocks that may be requested by UE 108a with the pre-condition being that licensed carriers from the licensed spectrum are protected by regulation and all the allocated carriers and hence resource blocks allocated to a UE 108a are clear for use. In such a scenario, the eNB 104a may satisfy the requirements of the UE 108a.
  • LTE network operators may use unlicensed radio spectrum (e.g. 5GHz unlicensed spectrum currently used for Wi-Fi networks) from which to allocate additional communication resources (e.g. carriers and/or resource blocks) .
  • unlicensed radio spectrum e.g. 5GHz unlicensed spectrum currently used for Wi-Fi networks
  • additional communication resources e.g. carriers and/or resource blocks
  • LBT mechanism for accessing unlicensed spectrum there is no guarantee that other devices (e.g. Wi-Fi access points and/or Wi-Fi terminals, etc.
  • the eNB 104a has no way to know how many communication resources (e.g. carriers, subcarriers, and/or resource blocks) will be available from the allocated communication resources to allow UEs 108a-108b to meet the quality of service requirements of the communication services they are using.
  • communication resources e.g. carriers, subcarriers, and/or resource blocks
  • This uncertainty of a UE 108a-108b being able to access the required number of unlicensed spectrum communication resources at any time may lead to data packets being delayed, the communications network not meeting the service requirements of communication services used by UEs 108a-108b, and, in extreme cases, the data buffers for each UE 108a-108b may overflow leading to lost data packets, which further limits the performance of the communication network.
  • the eNB 104a can overcome the uncertainty of a UE 108a-108b being able to access the required number of unlicensed spectrum communication resources at any time by allocating more communication resources (e.g. carriers and/or resource blocks) than are required by the UEs 108a-108b.
  • the number of unlicensed spectrum communication resources (e.g. carriers and/or resource blocks) allocated to a UE 108a or 108b is related to, among other things, the service type, the load levels on the communication resources (e.g. carriers and/or resource blocks) , and capability of the UE 108a or 108b.
  • the service used by the UE 108a when the service used by the UE 108a is latency sensitive then more communication resources than are required or requested by the UE 108a should be allocated to the UE 108a.
  • more communication resources e.g. carriers and/or resource blocks
  • the service type is not latency sensitive or the load levels are not high, less or the minimum number of communication resources (e.g. carriers and/or resource blocks) may be used. In all cases, the number of communication resources allocated to a UE 108a still needs to be within the capability range of the UE 108a.
  • the eNB 104a may use these techniques for the downlink as well as the uplink. In doing so, various mechanisms have been developed for allowing a UE 104a to use licensed spectrum, unlicensed spectrum such as licensed assisted access (LAA) carrier allocation, or both. For uplink carrier allocation, this means that carriers and/or resource blocks from the licensed spectrum as well as unlicensed spectrum may be allocated to a UE 104a.
  • LAA licensed assisted access
  • LAA carrier allocation may be used in conjunction with a listen before talk (LBT) procedure to allow a UE access to the additional carriers and/or resource blocks from the unlicensed spectrum that would otherwise be unavailable.
  • LBT procedure may be a mechanism in which a UE 108 applies a clear channel assessment (CCA) check before using a carrier, resource block and/or channel.
  • CCA check may use energy detection to determine the presence or absence of other signals on a particular carrier, resource block and/or channel to determine if that carrier, resource block and/or channel is occupied or clear to use.
  • the LBT procedure may be used for LAA carriers from the unlicensed spectrum. Normally carriers from the licensed spectrum are specifically reserved for each UE 104 and thus typically do not require the LBT procedure and/or CCA check.
  • FIG. 3 is a schematic diagram illustrating an uplink scheduling procedure 300 for unlicensed spectrum using UL LAA carrier allocation in telecommunication network 100.
  • telecommunications network 100 includes a UE 108a that is being served by serving eNB 104a.
  • the telecommunications network 100 also includes an eNB 104b that is “hidden” from UE 108a so it cannot be detected by UE 108a with energy detection and may cause interference to the UL of UE 108a.
  • the uplink scheduling procedure is as follows:
  • the serving eNB 104a performs interference measurements to determine unlicensed spectrum communication resources that are being used by neighbouring eNBs, (e.g. eNB 104b) , and/or other UEs being served by eNB 104b and which may be hidden from the UE 108a. Any communication resources in the unlicensed spectrum being used by the hidden eNB 104b and its associated UEs may cause interference to UE 108a should the UE 108a be allocated those communication resources. For example, in steps 302 and 304, signals from hidden eNB 104b or from other UEs being served by “hidden” eNB 104b may cause interference to UE 108a using the same communication resources in the unlicensed spectrum. Thus, the serving eNB 104a interference measurements may assist to reduce the hidden eNB 104b interference. This is also known as the hidden node problem.
  • the serving eNB 104a implements a carrier allocation algorithm that excludes the communication resources (e.g. carrier frequencies and/or resource blocks) that are being used by or at hidden eNB 104b and which may have a risk of interference from the hidden eNB 104b (e.g. also known as a hidden node risk) .
  • the serving eNB 104a compiles a list of communication resources such as LAA carriers and/or resource blocks that may be used by UE 108a.
  • the list of communication resources may include unlicensed carriers from the unlicensed spectrum that only the UE 108a may use within the cell served by eNB 104a.
  • the serving eNB 104a signals to the UE 108a via an uplink grant message (e.g. UL GRANT) the list of communication resources (e.g. LAA carriers) that the UE 108a may use.
  • an uplink grant message e.g. UL GRANT
  • the list of communication resources e.g. LAA carriers
  • step 310 after receiving the UL Grant message, the UE 108a implements CCA checks on the scheduled communication resources (e.g. unlicensed carriers and/or resource blocks etc. ) it received in the list of communication resources (e.g. LAA carriers) in the UL Grant message from the eNB 104a.
  • an LAA carrier and/or resource block could be either occupied of clear, but when the carrier is occupied then no transmission is allowed until it is clear to use.
  • a certain threshold e.g. this may be a predetermined or adjustable threshold
  • this carrier and/or resource block is marked as clear and may be used in uplink data transmissions by the UE 108a.
  • the UE 108a can then send uplink data to eNB 104a via unlicensed spectrum on those carriers and/or resource blocks (e.g. communication resources) marked as clear by the CCA check performed in step 310.
  • resource blocks e.g. communication resources
  • the UE 108a can then send uplink data to eNB 104a via unlicensed spectrum on those carriers and/or resource blocks (e.g. communication resources) marked as clear by the CCA check performed in step 310.
  • resource blocks e.g. communication resources
  • the allocated carriers may or may not be used by the UE 108a. This is determined by the UE 108a when it performs the CCA check before the UE 108a performs its uplink data transmission in step 312.
  • the total number of allocated LAA carriers e.g. carriers from the unlicensed spectrum
  • the UE 108a should typically be more than that required by the UE 108a because some of the communication resources (e.g. LAA carriers or resource blocks) may be occupied by other devices, eNBs, and/or UEs.
  • the UE 108a may not have enough communication resources (e.g. carriers) after performing its CCA checks as some of the communication resources (e.g. LAA carriers) may be occupied.
  • the total number of available communication resources e.g. LAA carriers/unlicensed carriers and/or resource blocks
  • the total number of available communication resources e.g. LAA carriers/unlicensed carriers and/or resource blocks
  • not all data packages/packets can be sent and some will remain in the transmission buffer of the UE 108a.
  • These data packages/packets will experience a longer latency and the transmission buffer may even become overflowed leading to a loss of data packets. This results in a degradation of the quality of service for the user of UE 108a.
  • UE 108a may not be able to use all of them due to no data packets in transmission buffer of UE 108a or the number of available communication resources is over the maximum number of carriers that the UE 108a can support. This means that the unused communication resources are wasted while there may be other UEs 108b waiting to be scheduled.
  • the total number of allocated communication resources will be more than that required by a UE 108a, but that some or all of the communication resources may still be unused by the UE 108a at certain points or times during the uplink data transmissions of UE 108a.
  • This may lead to a less efficient usage of communication resources of the telecommunications network 100 than could otherwise be achieved and/or poor quality of service to users of the telecommunications network 100.
  • the number of users of the telecommunications network 100 increases.
  • the inventors have found that it is possible to improve allocation of communication resources from unlicensed spectrum for a telecommunications network such that end user quality of service requirements for services provided to users over the network are met in a more efficient manner for different users and their UEs.
  • the eNB 104a may analyse the load of each of the communication resources available to it and determine an appropriate number of communication resources that may be allocated to each UE 108a-108b served by the eNB 104a.
  • the communication resource allocation for each UE is based on: 1) communication resource load (e.g. carrier load) which may be estimated from both UE measurement reports and eNB measurement reports and statistics; 2) communication service type being used by the UE (e.g., latency sensitive or not, tolerable packet loss, and other performance requirements of the communication service) ; and/or 3) UE capability (e.g., how many communication resources the UE is capable of supporting and/or buffer size of the UE etc. (e.g. how many carriers can be aggregated, how many carriers can be CCA monitored by UE, etc. ) This will enable the minimum necessary number of communication resources to be efficiently allocated to each UE such that each UE will meet its uplink data transmission requirements.
  • communication resource load e.g. carrier load
  • communication service type e.g., latency sensitive or not, tolerable packet loss, and other performance requirements of the communication service
  • UE capability e.g., how many communication resources the UE is capable of supporting and/or buffer size of the UE
  • the eNB 104a may further improve upon the quality of service requirements, spectrum efficiency and quality of service of the UE and telecommunication network by assigning two or more UEs (e.g. terminals) to use or share the same communication resources (e.g. the same resource blocks of the same carriers) .
  • each UE 108a may be assigned one or more overlapping communication resources (e.g. overlapping carriers and/or resource blocks) that are assigned to another UE 108b being served by serving eNB 104a.
  • the allocated communication resources from unlicensed spectrum to a UE 108a can be split into two or more sets of communication resources of different types.
  • an unshared type of communication resource may be dedicated for a specific UE 108a to use and not shared with other UEs served by the same eNB 104a, while a shared type of communication resource may be shared between two or more UEs (e.g. multiple UEs or several UEs) .
  • a first set of communication resources of the unshared type may be allocated for use by the UE 108a, where the UE 108a may assume that it has sole access to this first set of communication resources.
  • the serving eNB 104a may have allocated the first set of communication resources to be of the unshared type and may only be used by UE 108a within the cell being served by eNB 104a and there should be no contention for UEs being served by eNB 104a, the UE 108a should still perform CCA checks when accessing the first set of communication resources of the unshared type before uplink data transmission. This is because other devices, eNBs, and/or other UEs in adjacent cells may still be free to use these communication resources and interfere with the UE 108a.
  • a second set of communication resources of the shared type may be allocated by the eNB 104a for use by the UE 108a in an uplink data transmission and is shared with other UEs being served by eNB 104a for their respective uplink data transmissions.
  • the communication resource (s) of the shared type may be shared with other UEs being served by eNB 104a in so far as each UE 108a may use this communication resource when it is free or available for that UE 108a to use.
  • the UEs 108a-108b do not simultaneously transmit on the same communication resource of the shared type, rather, they check whether the communication resource is being used by any UE, and if not, they are free to reserve and use the communication resource.
  • Each communication resource of the shared type is used by each UE when the other UEs sharing the communication resource are not using or transmitting on the communication resource.
  • each communication resource of the shared type is available for use by each UE 108a when said UE 108a detects said communication resource is unused and/or not being used by at least one of the other UEs.
  • each UE 108a may perform checks on the communication resource of the shared type to determine whether other UEs are using the communication resource.
  • the UE 108a may, by way of example only but is not limited to, perform CCA checks on the communication resource (s) of the shared type to determine whether it is free for uplink data transmission using these communication resources. This is avoids the UE 108a interfering with any other UEs uplink transmission (s) on the same communication resource (s) of the shared type.
  • the eNB 104a may allocate one or more communication resources from the second set of communication resources of the shared type to another UE 108b such that UE 108a and UE 108b share these communication resources.
  • Each UE 108a and 108b may use the corresponding allocated communication resource (s) of the shared type when it is available for an uplink data transmission.
  • Each UE 108a and 108b may use CCA checks to determine which of the communication resource (s) of the shared type are free for an uplink data transmission before sending any uplink transmission data to avoid interference with each other when using these communication resources.
  • the eNB 104a may allocate only communication resources of the unshared or shared types to one or more UEs 108a-108b. For example, the eNB 104a may allocate a set of communication resources of the shared type to UE 108a and another set of communication resources of the unshared type to UE 108b. Some of the communication resources allocated to UE 108a may also be the same as some of the communication resources allocated to UE 108b, such that UE 108a and 108b share those common communication resources.
  • the eNB 104a may allocate the same communication resources of the shared type to both UE 108a and UE 108b such that they share all of the communication resources.
  • UE 108a and 108b may access the communication resources of the shared type using CCA checks to ensure they do not interfere with any uplink transmissions currently in progress by the other UE 108b or 108a, respectively.
  • a priority mechanism may be used by the eNB 104a to prioritise access for each UE sharing one or more communication resources of the shared type. This may be implemented by the eNB 104a to provide a priority indication to each UE (e.g. UE 108a) that defines a start time of when each UE may attempt to access or perform CCA checks for accessing one or more communication resources from the communication resources of the shared type. For example, UE 108a may be provided with a priority indication for a communication resource of a shared type that defines an earlier start time for performing the CCA checks than other UEs.
  • UE 108a has a higher priority for accessing the communication resource of the shared type over the other UEs, which have lower priorities that define later start times for those UEs to perform CCA checks. If the CCA check of UE 108a passes, then, as part of the priority mechanism, the UE 108a may be configured to send an initial signal before its data transmission, where this initial signal serves to block lower priority UEs from accessing the communication resource. That is, the initial signal is transmitted by UE 108a such that the CCA checks of the other UEs for that communication resource fail. The initial signal is transmitted for a set period of time, which may be brief, before UE 108a transmits its data.
  • UE 108a does not need to use a communication resource of the shared type, then the UE 108b with the second highest priority will begin their CCA check of the communication resource earlier than the other lower priority UEs. This process repeats for other lower priority UEs.
  • a first set of communication resources (e.g. carriers or resource blocks/elements) of the unshared type (e.g. Type A carriers) from unlicensed spectrum may be allocated by the eNB 104a to UE 108a and accessed directly by the UE 108a after performing CCA checks as previously described with reference to Figure 3.
  • the communication resources of the unshared type are dedicated communication resources that only UE 108a may use with serving eNB 104a. Communication resources of the unshared type are not shared with other UEs being served by eNB 104a.
  • a second set of communication resources (e.g. carriers or resource blocks/elements) of the unshared type e.g.
  • Type A carriers from unlicensed spectrum may be allocated by the eNB 104a to another UE 108b.
  • the first set and second set of communication resources (e.g. carriers or resource blocks/elements) of the unshared type are different sets of communication resources (e.g. carriers or resource blocks/elements) and are not shared between UE 108a and 108b.
  • a second set of communication resources (e.g. carriers or resource blocks/elements) of a shared type (e.g. Type B carriers) from unlicensed spectrum may be allocated by the eNB 104a to UE 108a and the other UE 108b.
  • Communication resources of the shared type are shared communication resources that may be shared between two or more UEs (e.g. UEs 108a and 108b) being served by the same eNB 104a. Both of the UEs 108a and 108b will use an intra-cell contention scheme (e.g. time advanced CCA checks and/or plus initial signals) when sharing these communication resources of the second type for their respective uplink data transmissions.
  • an intra-cell contention scheme e.g. time advanced CCA checks and/or plus initial signals
  • the eNB 104a sends the first and second sets of communication resources (e.g. carriers and/or resource blocks/elements) to the UE 108a with an identifying information indicating which communication resources (e.g. carriers and/or resource blocks) are of the unshared type and which communication resources (e.g. carriers and/or resource blocks) are of the shared type.
  • the eNB 104a sends a similar communication resource allocation to the other UE 108b.
  • each UE 108a and 108b can start using the communication resources for uplink data transmission.
  • a UE 108a may begin using the first type of communication resources for data transmission, as these communication resources may be assumed to be only allocated to that UE 108a and may be considered to be clear carriers and more likely to be free than the shared type of communication resources.
  • the UE 108a must still perform a CCA check for the unshared type of communication resources to ensure other devices, eNBs, and/or other UEs being served by other eNBs are not using these communication resources.
  • UE 108a may try and access the shared type of communication resources (e.g. the Type B carriers) .
  • the shared type of communication resources e.g. the Type B carriers
  • UE 108a may use CCA checks to determine which of the shared type of communication resources may be clear or occupied.
  • UEs 108a and 108b may use CCA checks to determine which of these communication resources of the shared type are clear to use.
  • UEs 108a and 108b will try to access the shared type of communication resources (e.g. Type B carriers) .
  • a collision may occur and none of the UEs transmission may be received by the eNB 104a.
  • a priority based solution (as briefly described previously) may be applied to provide priority access to one or more of the UEs 108a-108l that may have been allocated access to the same one or more communication resource (s) of the shared type.
  • the set of unlicensed spectrum LAA carriers may include the unshared type of communication resources and shared type of communication resources.
  • the advantage of allowing UEs 108a and 108b to access the same set of communication resources of a shared type (e.g. carriers or resource blocks/elements) (e.g. Type B carriers) is that this scheme results in improved spectrum efficiency as the shared type of communication resources may be used by one UE when the other UE (s) do not need to use the same resources.
  • another advantage is that sharing a set of communication resources results in simplified radio resource management for the eNB 104a because unlicensed spectrum LAA carriers can be shared between multiple UEs 108a and 108b.
  • Another advantage resulting from sharing carriers of the same type between multiple UEs 108a and 108b is that measurement of interference for each of these UEs 108a and 108b may be performed less frequently by the eNB 104a and the eNB 104a has more flexibility to implement the radio resource allocation.
  • Figure 4a is a flow diagram illustrating an example process 400 for a base station 104a using unlicensed radio spectrum in a telecommunications network 100 to schedule a set of communication resources (e.g. resource blocks and/or carriers) to one or more UEs 108a and 108b or a plurality of UEs being served by the base station 104a.
  • a set of communication resources e.g. resource blocks and/or carriers
  • reference numerals of the same and/or similar components as used in figures 1 and 2 have been reused or are referred to.
  • the process 400 being performed by the base station 104a, may be as follows:
  • Each UE 108a or 108b of the plurality of UEs being served by the base station 104a may transmit, to the base station 104a, a request for a number of communication resources required by the UE 108a or 108b for transmitting uplink data.
  • the base station 104a receives, from each UE 108a or 108b of the plurality of UEs, a request for a number of communication resources required by said each UE 108a and 108b for transmitting uplink data.
  • step 404 determining one or more sets of communication resources for use by the UEs 108a and 108b.
  • the determined one or more sets of communication resources are the overall set of communication resources that are available to be allocated by the base station 104a to the UE 108a and/or 108b.
  • This set of communication resources may be determined from measurement reports and/or interference measurements of the unlicensed radio spectrum in the vicinity of the base station 104a. It is to be appreciated that the one or more sets of communication resources may be associated with one or more resource blocks, where each resource block may be associated with a carrier.
  • step 406 allocating to each UE 108a or 108b a set of communication resources from the determined set of communication resources, where the set of communication resources for each UE 108a or 108b includes a minimum or sufficient number of communication resources required by that UE 108a or 108b for meeting the uplink data transmission requirements for transmitting the uplink data.
  • the minimum or sufficient number of communication resources may be based on the load of each of the communication resources, the communication service type being used by each UE 108a or 108b, and/or capability of the UE 108a or 108b or a combination thereof.
  • the minimum or sufficient number of communication resources for each of the UEs 108a and 108b may be greater than or equal to the number of communication resources requested by each of the UEs 108a or 108b.
  • a resource allocation message is sent to each of the plurality of UEs 108a and 108b in which each resource allocation message includes data representative of the set of communication resources allocated to said each of the UEs 108a or 108b.
  • the resource allocation message may be in the form of a GRANT uplink message.
  • the base station may analyse the communication resources allocated to UEs 108a or 108b served by the base station 104a based on, by way of example only but not limited to, analysing performance of communications resources from the determined set of communication resources or other communication resources based on communication resource load measurements, estimations or other measurements performed by the base station 104a on communication resources, and/or measurement reports and/or other load estimates performed and received from the UEs 108a or 108b, etc.
  • the base station 104a may update the determined set of communication resources, and/or, as a consequence, update the allocation of communication resources to each UE 108a or 108b to, by way of example only, improve the uplink transmission performance of the UEs 108a or 108b.
  • a set of communication resources may be selected, for each UE 108a, from the determined set of communication resources based on an analysis and/or estimation of the load, L, of each of the communication resources in which the set of communication resources is the minimum number of communication resources greater than the requested number of communication resources that are sufficient to meet the transmission requirements of the UE 108a.
  • Each communication resource has an associated load or an estimated load, L, where the estimated load is based on the number of transmissions occurring on the communication resource.
  • the load, L may be normalised to represent a value in the range of [0, 1] , where a value of 0 indicates a fully unloaded communication resource and a value of 1 indicates a fully loaded communication resource.
  • a fully unloaded communication resource is one in which there is no interference from other devices or transmission from other UEs whatsoever below a certain interference threshold.
  • a fully loaded communication resources is one in which there is always a transmission above a certain transmission threshold from a UE or interference from other devices.
  • the base station 104a may determine or estimate the load, L, of each of the determined sets of communication resources from measurement reports of the UEs and also measurements of the communication resources by the base station 104a.
  • the minimum number of communication resources, NCMIN, allocated or assigned to the UE 108a or 108b may include selecting a set of communication resources from the determined set of communication resources that has the minimum number of communication resources in which the summation of the difference between 1 and the estimated load, L, of each of the selected communication resources is greater than the number of requested communication resources by the UE.
  • the number of selected communication resources in the set is minimised.
  • the minimum number of communication resources for a UE 108a is the minimum number of communication resources that are sufficient to meet the uplink transmission requirements of that UE 108a requesting a required number of communication resources, Nreq.
  • Nreq depends on the uplink transmission requirements of each UE and may be different for each of the UEs 108a and 108b being served by an eNB 104a.
  • L load
  • Nreq required communication resources
  • the minimum number of communication resources may also include one or more additional communication resources required for the telecommunications network to meet a latency requirement associated with a communication service type used by the UE 108a or 108b for transmitting the uplink data.
  • the minimum number of communication resources will be upper bounded by the maximum number of communication resources that the UE 108a or 108b is capable of supporting. This will depend, among other things, on the hardware or technology of each UE 108a or 108b.
  • the base station 104a and UEs 108a and 108b served by base station 104a may repeatedly perform measurements of the communication resources (e.g. carriers and/or resource blocks) in which the base station 104a analyses the measurements to determine or estimate the load of each of the communication resources in the set of determined communication resources. Once the load for each of the communication resources in the set of determined communication resources is estimated, the base station 104a is then able to estimate a minimum number of communication resources that may be allocated to each UE based on their requested number of communication resources.
  • the communication resources e.g. carriers and/or resource blocks
  • the base station 104a will need to periodically or repeatedly analyse the loads on the determined set of communication resources because the loads will dynamically change depending on the number of transmissions that UEs 108a and 108b and other UEs served by base station 104a may be making on the communication resources assigned to them, as well as other data transmissions that are measured above a certain interference threshold and made by other UEs from adjacent cells or devices (e.g. Wi-Fi devices or other devices using unlicensed spectrum overlapping with the communication resources) using these communication resources.
  • adjacent cells or devices e.g. Wi-Fi devices or other devices using unlicensed spectrum overlapping with the communication resources
  • the minimum number of communication resources, NCmin, that may be allocated to a UE 108a requesting Nreq communication resources may be based on:
  • the three communication resources with load of 0.1, 0.2 and 0.3 would be the minimum number of communication resources that may be selected from this set of communication resources that are sufficient to meet the above relation and to also meet the requested data transmission requirement of the UE 108a.
  • the number of additional communication resources that may be added to the NCmin selected communication resources depends on the communication service type (e.g. latency requirements) that may be used by each of the UEs 108a and 108b.
  • Each UE 108a of the plurality of UEs may receive, from the base station 104a, the resource allocation message including data representative of a set of communication resources assigned to the UE 108a for use in transmitting the uplink data, where the set of communication resources comprises a minimum number of communication resources required for transmitting the uplink data based on the load of each of the communication resources.
  • the UE 108a determines whether one or more communication resources of the set of communication resources are unavailable or available for transmitting the uplink data.
  • the UE 108a may perform channel assessment checks on each communication resource in the set of communication resources allocated to it. The UE 108a then assigns any available communication resources from the set of communication resources for use in transmitting the uplink data.
  • the UE 108a transmits the uplink data based on the available communication resources assigned to the transmission of uplink data.
  • Figure 4b is another flow diagram illustrating another example process 420 for a base station 104a using unlicensed radio spectrum in a telecommunications network 100 to schedule a set of communication resources (e.g. resource blocks and/or carriers) to one or more UEs 108a and 108b or a plurality of UEs being served by the base station 104a.
  • a set of communication resources e.g. resource blocks and/or carriers
  • reference numerals of the same and/or similar components as used in figures 1 and 2 have been reused or are referred to in the following.
  • the steps of process 400 may be combined with the steps of process 420 for allocating a sufficient number of communication resources to each UE 108a and 108b of the plurality of UEs served by base station 104a.
  • the process 420, being performed by the base station 104a may be as follows:
  • step 422 determine from measurement reports and/or interference measurements one or more sets of communication resources for use by each UE 108a or 108b of the plurality of UEs being served by the base station 104a.
  • the determined set of communication resources is the overall set of communication resources that the base station 104a determines are available for allocating to one or more UEs served by the base station 104a.
  • the base station 104a may allocate, from the determined sets of communication resources, a set of the communication resources of a shared type to each of the plurality of UEs 108a or 108b. Other UEs being served by the base station 104a may be allocated further sets of communication resources of the shared type accordingly.
  • the set of communication resources assigned to each of the plurality of UEs 108a or 108b may have one or more communication resources in common or the same that may be shared with each other and/or other UEs of the plurality of UEs served by the base station 104a.
  • the number of communication resources in the set of communication resources of the shared type that may be selected from the determined sets of communication resources may be determined based on the example method (s) and process (es) 400 and in particular steps 404 and 406, where a sufficient number of communication resources that meets the uplink data transmission requirements of the UE 108a can be determined.
  • the number of communication resources may be based on the load of the selected communication resources, communication service type, and/or UE capability requirements.
  • the base station 104a may send resource allocation messages to each of the plurality of UEs 108a and 108b (and/or other UEs being served by base station 104a) .
  • the resource allocation message for a UE 108a may include data identifying the set of communication resources of the shared type allocated to the UE 108a.
  • the resource allocation message may be in the form of a GRANT uplink message.
  • the base station 104a may proceed to analyse the sets of communication resources allocated to each of the plurality of UEs 108a and 108b being served by the base station. This may include performing further interference measurements on the sets of communication resources, estimating UE interference or correlations with other UEs using the same communication resource, monitoring transmit buffer statuses of the UEs and the like and/or reallocating appropriate sets of communication resources of the shared type to one or more of the UEs 108a or 108b and sending further resource allocation messages to each of the UEs 108a or 108b, accordingly.
  • Figure 4c is a flow diagram illustrating an example process 430 for a UE 108a in a telecommunications network 100 for assigning one or more communication resources from a set of communication resources that have been scheduled to the UE 108a by a base station 104a according to process 420 for uplink data transmission to base station 104a.
  • process 430 being performed by the UE 108a, may be as follows:
  • the UE 108a may receive a set of communication resources of a shared type from the base station 104a. This may include the UE 108a receiving, from the base station 104a serving the UE 108a, a resource allocation message including data representative of the set of communication resources of the shared type.
  • the resource allocation message may be in the form of an uplink GRANT message that is received by UE 108a.
  • the UE 108a may check whether any communication resources from the set of communication resources are available for sending uplink data. For example, the UE 108a may perform a CCA check to determine which of the communication resources associated with the second set of communication resources are clear for transmission or occupied by other UEs or devices using the unlicensed radio spectrum associated with the communication resources.
  • CCA checks are described herein, it is to be appreciated by the skilled person that other types of checks may be applied or used, for example, intra-cell channel checks and the like.
  • the UE 108a may assign any available communication resources from the set of communication resources for sending uplink data to the base station 104a.
  • the available communication resource (s) are those communication resources from the set of communication resources that have been determined to be unoccupied for the uplink data transmission.
  • step 438 the UE 108a uses the assigned communication resource (s) for the uplink data transmission to the base station 104a.
  • Figure 4d is a flow diagram illustrating an example process 440 for a base station 104a in a telecommunications network 100 to schedule a set of communication resources (e.g. resource blocks and/or carriers) to one or more UEs 108a and 108b or a plurality of UEs being served by the base station 104a.
  • a set of communication resources e.g. resource blocks and/or carriers
  • reference numerals of the same and/or similar components as used in figures 1 and 2 have been reused or are referred to in the following.
  • process 440 may be combined with the steps of process (es) 400 and/or 420 or any combination thereof for allocating a sufficient number of communication resources to each UE 108a and 108b of the plurality of UEs served by base station 104a.
  • the process 440 being performed by the base station 104a, may be as follows:
  • step 442 determine from measurement reports and/or interference measurements one or more sets of communication resources for each UE 108a or 108b of the plurality of UEs being served by the base station 104a.
  • the determined set of communication resources is the overall set of communication resources that are available for use by the base station 104a for allocating to one or more of the plurality of UEs. It is to be appreciated that the determined one or more sets of communication resources may be associated with one or more resource blocks, where each resource block may be associated with a carrier.
  • the base station 104a may allocate, from the determined sets of communication resources, a first set of the communication resources of an unshared type to UE 108a and which are not shared with other UEs served by the base station 104a and a second set of communication resources of a shared type to UE 108a and which are shared between at least one other UE served by the base station for uplink data transmission.
  • the first set of communication resources of the unshared type are different to the second set of communication resources of the shared type.
  • Other UEs being served by the base station 104a may be allocated further sets of communication resources of the unshared type and/or shared types accordingly.
  • the sets of communication resources of the shared type may be shared with one or more other UEs served by base station 104a.
  • the sets of communication resources of the unshared type are not shared with one or more other UEs served by the base station 104a. That is, the sets of communication resources of the unshared type are mutually exclusive to the sets of communication resources of the shared type for UEs served by the base station 104a.
  • the number of communication resources in the set of communication resources of the shared type and unshared types that may be selected from the determined sets of communication resources and allocated to the UE 108a may be determined based on the example method (s) and process (es) 400 and in particular steps 404 and 406 and the loads of the available communication resources of the shared type and the available communication resources of the unshared type.
  • the number of communication resources of the shared and unshared types may be based on the load of the selected communication resources, communication service type, and/or UE capability requirements.
  • the total number of communication resources allocated to the UE 108a should be sufficient to meet the uplink data transmission requirements of the UE 108a.
  • the number of communication resources of the unshared type allocated to UE 108a may the number of communication resources requested by the UE 108a, where the number of communication resources of the shared type allocated to the UE 108a may be the difference between the minimum number of communication resources (e.g. NCMIN) determined based load of the selected communication resources, communication service type, and/or UE capability requirements as described with reference to figure 4a and the number of communication resources requested by the UE 108a.
  • NCMIN minimum number of communication resources
  • the base station 104a may send resource allocation messages to each of the UEs 108a and 108b of the plurality of UEs being served by base station 104a.
  • the resource allocation message for a UE 108a may include data identifying or representative of the first set of communication resources of an unshared type allocated to the UE 108a and data identifying or representative of the second set of communication resources of a shared type allocated to the UE 108a.
  • the resource allocation message may be in the form of a GRANT uplink message.
  • the base station 104a may optionally proceed to analyse the communication resource allocation for each of the plurality of UEs being served by the base station to determine whether they have the appropriate set of communication resources for transmitting uplink data. This may include performing further interference measurements, estimating UE interference or correlations with each other or other UEs using the same communication resource, monitoring transmit buffer statuses of the UEs, reallocating appropriate sets of communication resources of the unshared and/or shared types, determining whether to adjust priority or prioritise access for each UE to access the communication resources (e.g. based on transmit buffer status) for each of the UEs 108a and 108b of the plurality of UEs and sending further resource allocation messages accordingly to update those UEs with changed sets of communication resources and/or priorities etc.
  • This may include performing further interference measurements, estimating UE interference or correlations with each other or other UEs using the same communication resource, monitoring transmit buffer statuses of the UEs, reallocating appropriate sets of communication resources of the unshared and/or shared types, determining
  • Figure 4e is a flow diagram illustrating an example process 450 for a UE 108a in a telecommunications network 100 for assigning one or more communication resources (e.g. resource blocks and/or carriers) , which may be scheduled by a base station 104a according to one or more of processes 400, 420, or 440 or any combination thereof for uplink data transmission to base station 104a.
  • communication resources e.g. resource blocks and/or carriers
  • process 450 being performed by the UE 108a, may be as follows:
  • the UE 108a may receive a first set of communication resources of an unshared type and a second set of communication resources of a shared type.
  • the UE 108a may receive a resource allocation message including data representative of the first and second sets of communication resources from base station 104a serving the UE 108a.
  • the resource allocation message may be in the form of an uplink GRANT message that is received by UE 108a.
  • the UE 108a for an uplink data transmission to base station 104a, may assign communication resources (e.g. one or more resource block (s) ) from the first set of communication resources of the unshared type for the uplink data transmission.
  • the UE 108a may check whether any communication resources (e.g. any resource block (s) and/or carriers) associated with the first set of communication resources of the unshared type are available for sending uplink data. This is because any other device or other UE not being served by base station 104a may be using one or more communication resources from the first set and thus interfere with the UE 108a should UE 108a choose to transmit on those communication resources.
  • the UE 108a may perform a CCA check to determine which of the communication resource associated with the first set of communication resources are clear for transmission or occupied.
  • CCA checks are described herein, it is to be appreciated by the skilled person that other types of checks may be applied or used, for example, intra-cell channel checks and the like.
  • the UE 108a may determine that more communication resource (s) than those in the first set of communication resources of the unshared type may be required for the uplink data transmission.
  • the UE 108a may check whether any communication resource (s) associated with the second set of communication resources of the shared type are available for sending uplink data. For example, the UE 108a may perform a CCA check to determine which of the communication resources (e.g. resource block (s) and/or carrier (s) ) associated with the second set of communication resources are clear for transmission or occupied.
  • CCA checks are described herein, it is to be appreciated by the skilled person that other types of checks may be applied or used, for example, intra-cell channel checks and the like.
  • the UE 108a may assign any available communication resource (s) associated with the second set of communication resource (s) for sending uplink data to the base station 104a.
  • the available communication resource (s) associated with the second set of communication resource (s) are those communication resources (e.g. resource blocks and/or carriers) that have been determined by UE 108a to be unoccupied for the uplink data transmission.
  • step 460 the UE 108a uses the assigned communication resources from the first and/or second sets of communication resources for the uplink data transmission to the base station 104a.
  • FIG. 5 is a schematic diagram illustrating an example of scheduling/allocating communication resources 500 for a first and a second UE (e.g. UE1 and UE2) .
  • Each square of the communication resources 500 represents a carrier for a particular time period (e.g. time periods T1, T2, T3, T4, T5, T6, T7, T8, T9, etc...) .
  • the communication resources 500 includes, by way of example only but not limited to, 11 carriers and 13 time periods. It is to be appreciated by the skilled person that any number of carriers and time periods may be used when scheduling the communication resources.
  • each of the carriers may include one or more resource blocks or a plurality of resource blocks. All carriers that are to be scheduled to the UEs (e.g.
  • UE1 and UE2 are split into two types, an unshared type (e.g. Type A) and a shared type (e.g. Type B) .
  • Type A carriers are only for use by one UE and Type B carriers are for two or more UEs to share and access based on intra-cell contention (e.g. each UE may use CCA checks etc. ) .
  • the communication resources are split into Type A and Type B carriers, it is to be appreciated by the skilled person that UEs may share the same physical Type A carrier but have a different set of resource blocks assigned to each UE such that they do not share the same resource blocks.
  • the UE1 which required 4 carriers, is allocated with 4 Type A carriers and 4 Type B carriers and UE2, which required 3 carriers is allocated 3 Type A carriers and 4 Type B carriers.
  • the Type A carriers allocated to UE1 are different to the Type A carriers allocated to UE2, this is because these communication resources are of the unshared type.
  • the Type B carriers allocated to UE1 and UE2 are the same, that is UE1 and UE2 share the same Type B carriers. Each carrier may represent a number of resource blocks, thus if the carrier is a Type B carrier, then the resource blocks for this carrier will be shared between UE1 and UE2.
  • Type B carriers of UE1 are same as the Type B carriers of UE2, it is to be appreciated by the skilled person that one or more of the Type B carriers of UE1 does not have to be the same as one or more Type B carriers of UE2.
  • Each of the UEs (e.g. UE1 and UE2) shall first use its Type A carriers for uplink data transmission. When a UE does not have enough Type A carriers to use, then that UE can access the Type B carriers. For instance, in time period T1 for the set of Type A carriers allocated to UE1, UE1 has 3 available Type A carriers represented by squares with vertical hashing and one Type A carrier represented by a black square that not available to UE1. The unavailable Type A carrier may have failed a CCA check performed by UE1 due to other UEs or devices other than UE2 using this Type A carrier.
  • UE1 may use one Type B carrier from the set of Type B carriers as represented by the square with vertical hashing in the set of Type B carriers for UE1 and UE2.
  • UE2 has 2 available Type A carriers represented by squares with horizontal hashing, and one Type A carrier, represented by a black square, which is for some reason not available to UE2.
  • UE2 may use one Type B carrier from the set of Type B carriers as represented by the square with horizontal hashing in the set of Type B carriers for UE1 and UE2.
  • UE1 has 4 available Type A carriers that it can use and so no additional carriers are required.
  • UE1 does not use any Type B carriers.
  • UE2 can only use 1 Type A carrier and so ends up using an additional two Type B carriers.
  • some of the Type B carriers are not used by UE1 or UE2, for example, in time period T1 two Type B carriers are not used, represented by the white squares, and three are not used in time period T8. So, although there is a high use of Type B carriers during time periods T1-T9, some carriers may not be used in all periods. However, as can be seen, there is a larger utilisation of carriers than would otherwise be the case for legacy LAA carrier scheduling.
  • Type B carriers are being shared by 2 UEs, UE1 and UE2, it should be appreciated by the person skilled in the art that more than two UEs may share the same set of Type B carriers or have one or more Type B carriers in common. There is also no need to limit that the Type B carriers of UE1 must be identical to Type B carriers of UE2 or other UEs. Furthermore, the number of Type A carriers may be greater than or equal to zero, while the number of Type B carriers may be greater than or equal to 1.
  • Figure 6 illustrates another example allocation of communication resources 600 by a base station 104a to one or more UEs.
  • reference numerals of the same and/or similar components as used in figures 1 and 2 may be reused or are referred to in the following.
  • the communications resources are defined in terms of a plurality of carriers and a plurality of one or more resource blocks associated with each of the plurality of carriers.
  • the communication resources 600 are not limited to four UEs but may, by way of example, be allocated to one or more UEs, a plurality of UEs and/or multiple UEs.
  • the communication resources 600 are divided into several carriers that include, by way of example only but is not limited to, a first carrier, a second carrier and a third carrier (e.g. carrier1, carrier2 and carrier3, respectively) .
  • Each carrier includes a plurality of resource blocks, which are represented by, for simplicity and by way of example only but is not limited to, a plurality of squares.
  • one or more resource blocks associated with a particular carrier or subcarrier may be represented by one or more of the plurality of resource elements associated with that carrier or subcarrier.
  • each small square may represent a resource block, this is by way of example only, it is to be appreciated by the skilled person that the number of squares illustrated for each carrier in Figure 6 is by way of example only and for simplicity.
  • each of the small squares may represent one or more of the plurality of resource blocks or that two or more squares may represent one or more of the plurality of resource blocks or any other configuration of resource blocks associated with each carrier.
  • carrier1 is an unshared type of carrier (e.g. a Type A carrier) for both UE1 and UE2, in which each of UE1 and UE2 have a different set of resource blocks from the plurality of resource blocks associated with carrier1.
  • the communication resources of the unshared type for UE1 is represented by a first set of resource blocks associated with carrier1 of an unshared type (e.g. the resource block squares with vertical hash lines) .
  • Carrier1 also has a second set of resource blocks associated with carrier1 of an unshared type allocated to UE2 (e.g. the resource block squares with horizontal hash lines) .
  • UE1 and UE2 are allocated the same carrier (e.g.
  • carrier1 may also be a shared type of carrier for UE3 and UE4.
  • Carrier1 may be set as a shared type of carrier (e.g. a Type B carrier) because these UEs share a third set of resource blocks associated with carrier1 (e.g. the resource block squares with cross diagonal hash lines) , but which are mutually exclusive with the first and second sets of resource blocks associated with carrier1 of the unshared type that are allocated to UE1 and UE2.
  • carrier2 is an unshared type of carrier (e.g. Type A carrier) for both UE1 and UE3 in which each of UE1 and UE3 are allocated a first and second set of resource blocks, respectively, from the plurality of resource blocks associated with carrier2.
  • the first and second sets of resource blocks associated with carrier2 are different and mutually exclusive.
  • Carrier 3 is also an unshared type of carrier (e.g. a Type A carrier) for UE4, which is represented by a first set of resource blocks associated with carrier4 of the unshared type (e.g. the resource blocks squares with diagonal hash lines) .
  • Carrier3 is also a shared type of carrier (e.g.
  • Type B carrier for UE1 and UE2, in which a second set of resource blocks associated with carrier3 are allocated to UE1 and UE2 (e.g. the resource block squares with crossed vertical and horizontal hash lines) for sharing.
  • the first set of resource blocks associated with carrier4 allocated to UE4 are mutually exclusive to the second set of resource blocks allocated to UE1 and UE2.
  • UE1 has been allocated a first set of communication resources of the unshared type represented by the first set of resource blocks associated with carrier1 and the first set of resource blocks associated with carrier2.
  • UE1 has been allocated a second set of communication resources of the shared type represented by the second set of resource blocks associated with carrier3.
  • UE2 has been allocated a first set of communication resources of the unshared type represented by the second set of resource blocks associated with carrier1.
  • UE2 has been allocated a second set of communication resources of the shared type represented by the second set of resource blocks associated with carrier3.
  • UE3 has been allocated a first set of communication resources of the unshared type represented by the first set of resource blocks associated with carrier2.
  • UE3 has been allocated a second set of communication resources of the shared type represented by the third set of resource blocks associated with carrier1.
  • UE4 has been allocated a first set of communication resources of the unshared type represented by the first set of resource blocks associated with carrier3.
  • UE4 has been allocated a second set of communication resources of the shared type represented by the third set of resource blocks associated with carrier1.
  • FIG. 7 is another flow diagram illustrating another example process 700 performed by a UE 108a when sending uplink data in a telecommunications network 100 using a first set of communication resources of an unshared type and a second set of communications resources of a shared type scheduled by a base station 104a according to one or more of processes 400, 420 and/or 440 or any combination thereof for transmitting uplink data to base station 104a.
  • process 700 being performed by the UE 108a, may be as follows:
  • the UE 108a may receive a first set of communication resources and a second set of communication resources. For example, with reference to figure 6, when UE 108a is UE1 the base station 104a allocated a first set of communication resources of the unshared type comprising the first set of resource blocks associated with carrier1 and the first set of resource blocks associated with carrier2 and a second set of communication resources of the shared type comprising the second set of resource blocks associated with carrier3.
  • the base station 104a may send these sets of communication resources in a resource allocation message to UE 108a, the resource allocation message may include data representative of the first and second sets of communication resources from base station 104a serving the UE 108a.
  • step 704 the UE 108a determines whether any uplink data is to be transmitted or sent to base station 104a. If no uplink data is to be transmitted, then the UE 108a waits until it has uplink data for transmission. In the meantime, the UE 108a may receive further resource allocation messages from base station 104a that may change the first and second sets of communication resources of the shared and unshared types, respectively. If there is uplink data for transmission then the process proceeds to step 706.
  • the UE 108a determines whether there are any resource blocks in the first set of communication resources that are available for use in the uplink data transmission to base station 104a. For example, with reference to figure 6 when UE 108a is UE1, then UE 108a performs CCA checks as to whether there are any resource blocks of the first set of resource blocks associated with carrier1 and the first set of resource blocks associated with carrier2 available in the first set of communication resources of the unshared type for transmitting any of the uplink data. If there are resource blocks available for transmitting the uplink data in the first set of communication resources, then the process 700 proceeds to step 708. If the CCA checks indicate that there are not any further resource blocks available from the first set of communication resources for transmitting any of the uplink data, then the process 700 proceeds to step 716.
  • the UE 108a may assign resource block (s) from the first set of communication resources for the uplink data transmission.
  • step 710 the UE 108a determines whether there is any further uplink data for transmission. For example, the UE 108a may have received further uplink data for transmission during the previous steps. If there is any further uplink data for transmission, then the process proceeds to step 706 for determining whether further resource blocks from the first set of communication resources are available for the further uplink data transmission. In step 710, if there is not any further uplink data for transmission, then the process 700 proceeds to step 712.
  • step 712 the UE 108a sends the uplink data using the assigned resource blocks from the first and/or second sets of communication resources.
  • step 714 the UE 108a releases the assigned resource block (s) used to transmit the uplink data to the base station 104a and proceeds to step 704 to determine whether further uplink data has been received by the UE 108a or is required to be transmitted from UE 108a to the base station 104a.
  • the UE 108a has determined that there are no further resource blocks of the first set of communication resources of the unshared type that are available for the uplink data transmission. Instead, when all resource block (s) from the first set of communication resources are unavailable or have already been assigned for the uplink data transmission by the UE 108a, then in step 716 the UE 108a may check whether any resource block (s) associated with the second set of communication resources are available for sending uplink data to base station 104a. For example, with reference to figure 6 when UE 108a is UE1, then UE 108a performs CCA checks as to whether there are any resource blocks of the second set of resource blocks associated with carrier3 available in the second set of communication resources of the shared type for transmitting any of the uplink data.
  • the UE 108a performs CCA checks to determine which of the resource block (s) associated with the second set of communication resources of the shared type are clear or occupied.
  • CCA checks are described herein, it is to be appreciated by the skilled person that other types of checks may be applied or used, for example, intra-cell channel checks and the like. If there are no further resource blocks from the second set of communication resources that may be assigned for the uplink data transmission, then the process 700 proceeds to step 718. If there are further resource blocks from the second set of communication resources that may be assigned for the uplink data transmission, then the process 700 proceeds to step 722.
  • step 718 the UE 108a may perform a further check to determine whether any more uplink data is to be transmitted. If there is further or more uplink data for transmission, i.e. Y, then the process 700 proceeds to step 720. If there is no further uplink data for transmission, then the process 700 proceeds to step 712.
  • step 720 given that there is further uplink data for transmission, but that there are no more resource blocks from the first and second set of communication resources of the shared and unshared types, respectively, then the further uplink data for transmission is buffered for later transmission.
  • the process 700 proceeds to step 712, where the uplink data that can be sent using the assigned resource blocks from the first and/or second set of communication resources.
  • the UE 108a may assign any available resource block (s) associated with the second set of communication resource (s) for sending uplink data to the base station 104a.
  • the available resource block (s) are those resource blocks that have been determined by the CCA checks to be unoccupied for the uplink data transmission.
  • the process 700 proceeds to step 724.
  • step 724 the UE 108a may perform a further check to determine whether any more uplink data is to be transmitted. If there is further or more uplink data for transmission, i.e. Y, then the process 700 proceeds to step 716. If there is no further uplink data for transmission, then the process 700 proceeds to step 712.
  • the UEs may perform a CCA check to determine whether one or more Type B carriers or a set of communication resources of a shared type are unoccupied, collisions may still occur between UEs accessing the same Type B carriers or one or more communication resources from a set of communication resources of the shared type. For example, from figure 5, collisions may occur between UE1 and UE2 on Type B carriers when both try to access the same Type B carrier.
  • collisions may occur between UE3 and UE4 for the set of resource blocks of the shared type associated with carrier1 when both try to access the same resource blocks of the shared type associated with carrier1 at the same time.
  • the base station 108a scheduling processes and methods as described herein may be further enhanced using a priority access scheme based on priority and/or timing advance.
  • FIG 8a is a schematic diagram illustrating an example frame structure 800 in the time domain for use with a communication resource of the shared type and the priority access mechanism/scheme.
  • the frame structure 800 for each communication resource of the shared type may include one or more communication assessment gaps 802a, 802b and 802c that alternate with one or more uplink data transmission blocks 804a and 804b.
  • Each uplink data transmission block 804a may have a start time TDTSTART 805 and transmission interval TDT in which the communication resource may be used for transmission of uplink data.
  • the uplink data transmission block 804a is preceded by a communication assessment gap 802a with a communication gap interval TCAG and followed by another communication assessment gap 802b and subsequent uplink data transmission block 804b and so on.
  • Each communication assessment gap 802a, 802b or 802c may include a plurality of CCA time slots 806a-806n (e.g. two or more CCA time slots) .
  • the number of CCA time slots 806a-806n may be a predetermined number or may be dynamically adjusted by the eNB 104a depending on the load of the communication resource and/or the number of UEs that the eNB 104a determines can be supported by the communication resource. For example, when there are two CCA time slots 806a and 806b, then only two UEs served by eNB 104a may share the communication resource. If there are n CCA time slots 806a-806n, where n>2, then there may be n UEs that may share the communication resource.
  • Each CCA time slot 806a-806n may be associated with a CCA Timing Advance value 808a-808n (e.g. TAV (1) -TAV (n) ) , each of which are measured from the start of the uplink data transmission block 804a to the corresponding CCA time slot 806a-806n of the preceding communication assessment gap 802a.
  • a CCA Timing Advance value 808a-808n e.g. TAV (1) -TAV (n)
  • the eNB 104a assigns a communication resource of the shared type to a UE (e.g. UE 108a or 108b)
  • the eNB 104a may allocate one of the CCA time slots 806a-806n to that UE, each of which are associated with a CCA Timing Advance value 808a-808n.
  • the CCA Timing Advance value 808a-808n may be used as a priority indication in the resource allocation message to the UE depending on which CCA time slot 806a-806n is assigned.
  • the eNB 104a may store the identity of the UE 108a with an allocated CCA time slot 806a and/or the associated CCA Time Advance value 808a.
  • the CCA time slot 806a has a higher priority than CCA time slot 806b (e.g. CCA Time Advance value 808a > CCA Time Advance value 808b) , which has a higher priority than CCA time slot 806 (n-1) (e.g.
  • the eNB 104a allocates one of the CCA time slots 806a-806n to the UE 108a.
  • the eNB 104a may send in the resource allocation message data representative of the allocated communication resource and one or more priority indications including data representative of one or more CCA Time Advance values 808a-808n (e.g. a priority indication) corresponding to one of the allocated CCA time slot 806a-806n for use by UE 108a in determining when to perform its CCA check on the communication resource.
  • the UE 108a may be allocated CCA time slot 806a, which has a corresponding CCA Time Advance value 808a.
  • the CCA Time Advance value 808a indicates when the UE 108a may perform CCA checks on the associated communication resource.
  • the resource or timing information describing the structure 800 of a communication resource may be notified to the UE 108a via a resource information message, resource allocation message, a resource re-allocation message, or any other type of resource message, or message and/or broadcast transmission over a control channel etc. to UEs 108a or 108b associated with the communication resources.
  • the resource or timing information may include characteristics or parameters associated with the structure of the communication resource such as timing information for one or more communication assessment gaps 802a, 802b, 802c and/or timing information for one or more data transmission blocks 804a, 804b, 804c.
  • the timing information for one or more communication assessment gaps 802a may include the total number of CCA time slots of the communication assessment gap 802a, the length of each CCA time slot and/or the communication gap interval TCAG or length of the communication assessment gap 802a.
  • the timing information for one or more uplink data transmission blocks 804a may include the start time TDTSTART 805 and transmission interval TDT for when the communication resource may be used for uplink data transmission, total number of CCA time slots of the communication assessment gap 802a, the length of each CCA time slot and/or the length of the communication assessment gap 802a.
  • This information may be used by the UEs using the same communication resource to enable the UEs to be synchronised such that they perform CCA checks in the correct CCA time slots 806a-806n based on their corresponding allocated CCA time slot 806a-806n, and also perform uplink data transmission at the appropriate time in the uplink data transmission blocks 804a, 804b, 804c of the communication resource.
  • the priority indication (s) sent to each UE may include data representative of one or more CCA Time Advance values 808a-808n
  • the data representative of one or more CCA Time Advance values 808a-808n may include or be represented by an index value that represents each CCA Time Advance value 808a-808n or range of CCA Time Advance value (s) 808a-808n, in which the UE uses the received index value with a predetermined CCA Time Advance look-up-table to determine the corresponding CCA Time Advance value for use when performing CCA check on one or more of the communication resources of the shared type.
  • the data representative of one or more CCA Time Advance values 808a-808n may include or be represented by a CCA time slot number 806a-806n or index, which the UE 108a may use for determining when the allocated CCA time slot 806a will occur.
  • the UE 108a may be allocated CCA time slot 806a and so performs its CCA check in its allocated CCA time slot 806a for that communication resource prior to transmission of the uplink data. If, based on the CCA check, the UE 108a determines the associated communication resource is available for transmitting the uplink data, then prior to the start time TDTSTART 805 of the uplink data transmission block 804a, the UE 104a may transmit an initial signal in the remaining communication gap interval TCAG or the remaining CCA time slots 806b-806n before the uplink data transmission block 804a begins. The initial signal may be repeatedly transmitted in the remaining one or more CCA time slots 806b-806n of the communication assessment gap 802a for the communication resource.
  • any other UE with one of the lower priority CCA time slots 806b-806n allocated for that communication resource will detect, during its CCA checks on that communication resource, the initial signal transmitted by UE 108a and determine that that communication resource is occupied.
  • the initial signal transmitted by UE 108a should be a signal that is robust and can easily be detected by the other UEs being served by the eNB 104a.
  • the UE 108a may transmit one or more initial signals in the remaining communication assessment gap 802a in which the initial signal is a unique and/or continuous signal for use by the eNB 104a in identifying the UE 108a after its CCA check on an available communication resource and prior to transmission of any uplink data in the uplink data transmission block 804a. Additionally or alternatively, the UE 108a may transmit one or more initial signals by transmitting an a initial signal repeatedly a determined or a predetermined number of times for use by the eNB 104a in identifying the UE 104a after the CCA checks performed by the UE and prior to transmission of any uplink data in the uplink data transmission block 804a.
  • the UE 108a when transmitting the initial signal, may indicate the identity of UE 108a to the eNB 104a so the eNB 104a can identify which UE transmits uplink data in the data transmission block 804a. However, there may not be enough bandwidth for the UE 108a to reliably transmit the identity information to the eNB 104a. Instead, the UE 108a may transmit the initial signal repeatedly over any remaining CCA time slots 806b-806n and the eNB 104a may detect and count the number of initial signal transmissions by UE 108a before the uplink data transmission starts. The eNB 104a may then determine the identity of the UE 108a based on the stored CCA time slot 808a allocated to UE 108a and the number of initial signal transmissions counted.
  • the UE 108a may repeatedly transmit the initial signal in the remaining CCA time slots 806b-806n.
  • UE 104a may simply transmit the uplink data, so the initial signal count determined by the eNB 104a will be zero.
  • the eNB 104a can map the initial signal count to the corresponding CCA time slot 806a and hence determine the identity of the UE 104a that is associated or stored with the corresponding CCA time slot 806a.
  • the priority indication for each UE 108a for the same communication resource may further include data representative of the number of initial signals that UE 108a should transmit after performing its CCA checks in the allocated time slot 808a.
  • the number of initial signals is based on the position of the CCA time slot 808a in the communication assessment gap.
  • the eNB 104a may transmit the priority indication along with data representative of the number of initial signals the UE should transmit.
  • a communication resource may be based on the communication resource grid 200 of figure 2, which includes a plurality of resource blocks or one or more resource blocks in which each resource block defines a grid in frequency and time domains of N SC x N SYMB resource elements 206, N SC is the number of one or more subcarrier frequencies and N SYMB is the number of one or more symbols in time over time slot 202, where the time slot 202 is divided into N SYMB symbol periods.
  • One or more of the plurality of resource blocks may be associated with the same time slot 202.
  • each communication assessment gap 802a, 802b, 802c of the frame structure 800 for the communication resource may include a plurality of time slots 202 and associated resource blocks, each time slot 202 may represent a CCA time slot 806a-806n. Additionally or alternatively, each symbol period within a time slot 202 may represent a CCA time slot 806a-806n.
  • the uplink data transmission block 804a or 804b frame may include one or more further time slots 202 or a further plurality of time slots 202 and associated one or more resource blocks.
  • frame structure 800 has been described with respect to the time domain, this is by way of example only, it is to be appreciated by the skilled person that the frame structure 800 may instead be applied to the frequency domain and that one or more communication resource (s) may include, by way of example only but not limited to, suitable frame structures defined in the time domain and/or frequency domain or combinations thereof.
  • FIG. 8b is a schematic diagram illustrating an example priority access scheme 810 as briefly described with reference to figure 8a that may be used to enhance the methods and processes according to the invention as described herein.
  • an eNB 816 signals an uplink grant message 818 (e.g. a resource allocation message) on the downlink 812 to both UE1 and UE2 indicating both UE1 and UE2 may access the same communications resource of the shared type (e.g. a carrier and associated resource blocks of a shared type) (e.g. Type B) .
  • the shared type e.g. a carrier and associated resource blocks of a shared type
  • both UEs may try to access this communication resource of the shared type for transmitting uplink data in the uplink data transmission block 804a (e.g. TXOP) .
  • the eNB 816 in the uplink Grant message 818 indicates that UE1 has a higher priority than UE2 for this particular communication resource of the shared type. This may be indicated to each of UE1 and UE2 in the uplink Grant message 818 (e.g. resource allocation message) by data representative of a CCA time advance value associated with the communication resource of the shared type.
  • the CCA Timing Advance value provided to UE1 and UE2 may be used to determine when they are to perform CCA checks on the communication resource of the shared type.
  • the CCA Timing Advance provided to UE1 corresponds to CCA time slot 806a and the CCA Timing Advance value provided to UE2 corresponds to CCA time slot 806b. That is the CCA Timing Advance value for UE1 is greater than the CCATiming Advance value of UE2.
  • the UE1 starts its CCA check in CCA time slot 806a on the communication resource of the shared type earlier than UE2. Since the CCA Time Advance value provided to UE2 has a lower value, UE2 starts its CCA checks in CCA time slot 806b later than UE1. This means, when UE1 performs its CCA check on the communication resource of the shared type, then it may find that this communication resource of the shared type to be unoccupied.
  • the UE1 may immediately begin its uplink data transmission 804a on the communication resource of the shared type.
  • UE2 When UE2 tries to access this communication resource of the shared type using its CCA check in CCA time slot 806b, UE2 will detect the energy from the data transmission from UE1 and mark 820 this communication resource of the shared type as occupied and move onto another communication resource of the shared type (e.g. another carrier and associated resource blocks of the shared type) for performing CCA checks in the CCA time slot associated with that other communication resource of the shared type.
  • another communication resource of the shared type e.g. another carrier and associated resource blocks of the shared type
  • UE1 may instead transmit, prior to transmitting uplink data in the uplink data transmission block 804a, an initial signal during CCA time slot 806b, which acts to reserve the communication resource of the shared type and hence block access of UE2 to this communication resource because UE2 will detect the energy of the initial signal during its CCA check in CCA time slot 806b and move onto another communication resource of the shared type for performing CCA checks in the CCA time slot associated with that other communication resource.
  • Figure 8c is another schematic diagram illustrating the example priority access scheme 810 as described with reference to figure 8b and briefly described with reference to figure 8a for a number of N UEs.
  • the eNB 816 determines that the communication resource (e.g. a carrier and associated resource blocks) is capable of supporting N UEs (e.g. UE1-UEN) .
  • the eNB 816 signals an uplink grant message 818 (e.g. a resource allocation message) on the downlink 812 to each of UE1-UEN indicating these UEs can access the same communications resource of the shared type (e.g. a carrier and associated resource blocks of a shared type) .
  • the shared type e.g. a carrier and associated resource blocks of a shared type
  • all of the N UEs may try to access this communication resource of the shared type for transmitting uplink data in the uplink data transmission block 804a (e.g. TXOP) .
  • the eNB 816 in the uplink Grant message 818 indicates that UE1 has a higher priority than UE2, which has a higher priority than UE3, and so on, with UEN having the lowest priority for accessing this particular communication resource of the shared type.
  • This may be indicated to each of UE1-UEN in the uplink Grant message 818 (e.g. resource allocation message) by data representative of a CCA time advance values 808a-808n or CCA time slot positions 806a-806n associated with the communication resource of the shared type.
  • This information is used by each of the N UEs to determine when they may attempt to access the communication resource by performing their CCA checks and measurements in the corresponding CCA time slot 806a-806n on the communication resource of the shared type.
  • UE1 When UE1 has data ready for its uplink transmission, UE1 performs CCA check on the communication resource of the shared type in its corresponding CCA time slot 806a. Once UE1 determines the communication resource of the shared type is unoccupied, UE1 then transmits, prior to transmitting uplink data in the uplink data transmission block 804a, an initial signal during the CCA time slots 806b-806n, which acts to reserve the communication resource of the shared type.
  • the transmission of the initial signal may be repeated in each of the remaining CCA time slots 806a-806n to both block access of UE2-UEN to this communication resource and also to allow the eNB 104a to count the initial signals transmitted by UE1 and identify which UE will transmit uplink data in the uplink data transmission block 804a adjacent to the current communication assessment gap.
  • the other UEs e.g. UE2-UEN
  • UE2-UEN are blocked from accessing the communication resource because these UEs will detect the energy of the initial signal transmitted by UE1 during their CCA checks in their respective CCA time slots 806b-806n and determine that this communication resource is occupied. They may then move onto another communication resource of the shared or unshared type for performing CCA checks in the corresponding CCA time slots associated with that other communication resource that have been allocated to them.
  • the next highest priority UE that has data for an uplink transmission over the uplink data transmission block 804a of the communication resource will have the opportunity to reserve the communication resource in a similar manner as that shown for UE1. Should this next UE be the lowest priority UE (e.g.
  • each UE being served by the eNB 104a or 816 may be scheduled to provide measurement reports associated with communication resources to the eNB 104a or 816 UEs for use in estimating loads on communication resources, each UE may also measure and report the CCA correlation between UEs. It has been found that reducing the CCA correlation between pairs of UEs (e.g. UE1 and UE2) using the same communication resource substantially improves the communications performance of each UE when allocated a communication resource of the shared type.
  • the aim for the eNB 104a or 816 is to pair UEs on the same communication resource of the shared type that have uncorrelated CCA checks, uncorrelated CCAs or have as low a CCA correlation as possible given the number of communication resources and number of UEs requesting access.
  • a pair of UEs are said to have correlated CCAs (or are fully correlated) or their CCAs are correlated when the pair of UEs are near each other such that each UE of the pair sees substantially the same interference from other devices, eNBs or UEs using the unlicensed radio spectrum for the same communication resource.
  • a pair of UEs are said to have uncorrelated CCAs (or are fully independent/uncorrelated) or their CCAs are uncorrelated when the pair of UEs are far enough apart such that each UE of the pair sees substantially different interference from other devices, eNBs, or UEs using the unlicensed radio spectrum for the same communication resource.
  • the eNB 104a or 816 may instruct at least one UE from each pair of UEs (e.g. UE1 and UE2) to perform one or more CCA correlation scheme (s) or method (s) .
  • the CCA correlation for a pair of UEs may be estimated by the eNB, by each UE of the pair of UEs, or by another UE that may detect signals from one or each of the pair of UEs based, by way of example only but is not limited to, on one or more of, or a combination of: detected historical behavior of the UEs; priority indications assigned to each UE; by the eNB analysing measurement reports received from each UE associated with neighbor cells; analysing uplink transmissions of each UE; received measurement reports from the UEs; and/or receiving estimated channel correlation values from each UE of a pair of UEs.
  • the following CCA correlation schemes or methods may use apply one or more of these approaches or a combination of these approaches for estimating the CCA correlation value between a pair of UEs.
  • a CCA correlation scheme or method may be based on the eNB 104a instructing the lower priority UE (e.g. UE2 that has CCA time slot 806b) to measure the signal strength of the initial signal transmitted from the higher priority UE of the pair (e.g. UE1 that has CCA time slot 806a) when it reserves the communication resource for an uplink transmission.
  • the lower priority UE may report the measured initial signal strength of the higher priority UE (e.g. UE1) to the eNB 104a or 816.
  • the initial signal strength measured by the lower priority UE can represent the CCA correlation between the pairs of UEs (e.g. UE1 and UE2) .
  • the measured initial signal strength may be mapped by the eNB 104a or 816 to a CCA correlation level to determine whether the pair of UEs is fully correlated, correlated, uncorrelated or fully uncorrelated.
  • the eNB 104a or 816 may measure the initial signal strength transmitted by the higher priority UE (e.g. UE1) and compare this against the measured initial signal strength transmitted by the lower priority UE to determine how close the lower priority UE is to the higher priority UE.
  • the eNB 104a or 816 may measure or check the received signal strengths of each UE in the pair, and if similar then each UE may be a similar distance from the eNB. Given this knowledge/information and the measured initial signal strength reported by the lower priority UE, the eNB may be able to determine whether the pair of UEs (e.g. UE1 and UE2) is likely to be fully correlated, correlated, or uncorrelated.
  • the eNB 104a or 816 may have a set of correlation thresholds indicating whether a pair of UEs are fully correlated, medium correlated, low correlation, or uncorrelated, or fully uncorrelated, which may be compared against the measured initial signal strength reported by the lower priority UE.
  • the thresholds may be adjusted based on an estimated path loss between the higher priority UE and the eNB 104a or 816.
  • Another example CCA correlation measurement scheme or method to determine the correlation between a pair of UEs using the same communication resource may be performed by the lower priority UE (e.g. UE2) .
  • the eNB 104a or 816 may instruct UE2 to perform a CCA check or measurement at a similar time as when UE1 performs its CCA check or measurement. That is, UE2 performs a CCA check or measurement in the CCA time slot of UE1 (e.g. CCA time slot 806a) .
  • UE2 receives the initial signal from UE1 in the CCA time slot associated with UE2 and UE2’s CCA check or measurement performed in the CCA time slot of UE1 passes, then this means both UE1 and UE2 have the same CCA results and may be said to be correlated. If UE2 does not receive the initial signal from UE1 in the CCA time slot associated with UE2 and UE2’s CCA check or measurement performed in the CCA time slot of UE1 fails, then this may also mean both UE1 and UE2 have the same CCA results and may be said to be correlated.
  • UE2 does not receive the initial signal from UE1 in the CCA time slot associated with UE2 and UE2’s CCA check or measurement performed in the CCA time slot of UE1 passes, then this means both UE1 and UE2 have the same CCA results and may be said to be correlated. Failing these conditions may mean that it is likely that UE1 and UE2 are said to be uncorrelated. Counting how many times UE1 and UE2 are said to be correlated and/or the number of times UE1 and UE2 are said to be uncorrelated in a time period over multiple communication assessment gaps (e.g. communication assessment gaps 802a, 802b, 802c etc. ) can assist UE2 to estimate the correlation between UE1 and UE2.
  • communication assessment gaps 802a, 802b, 802c etc. can assist UE2 to estimate the correlation between UE1 and UE2.
  • UE2 may report an estimated correlation between the pair of UEs to the eNB 104a or 816, which the eNB uses to determine whether the pair of UEs (e.g. UE1 and UE2) should each be repaired with other UEs that have the least or a lower correlation together on the same communication resource. This may be performed for pairs of UEs on the same communication resource, and each UE being served by the eNB 104a or 816 may report an estimated correlation between the pair of UEs to the eNB 104a or 816, which the eNB uses to reallocate communication resources to the UEs to pair those UEs with least correlation together on the same communication resource.
  • the pair of UEs e.g. UE1 and UE2
  • each UE may detect an unpaired UE’s initial signal (s) that could be in the idle period for the UE.
  • Each UE may report an estimated correlation between the pair of UEs to the eNB 104a or 816, which the eNB uses to pair those UEs with least correlation together on the same communication resource.
  • the eNB 104a or 816 can also estimate the correlation between UEs served by the eNB 104a or 816 using various CCA correlation scheme (s) or method (s) .
  • the eNB 104a or 816 may check, for each pair of UEs on the same communication resource, one or more of the following correlation properties: 1) the received signal strengths of each UE, if similar then each UE may be a similar distance from the eNB; 2) the CCA Time Advance signals, for which the difference may factor into or represent the correlation value between the pair of UEs; 3) the measurement reports of neighbor cells from each UE of the pair of UEs, and if the measurement results of neighbor cells are similar, then they are likely to be correlated otherwise they are less correlated, etc.
  • the eNB 104a or 816 may analyses these correlation properties to determine whether the UEs are likely to be fully correlated, low correlated, uncorrelated or fully uncorrelated. This correlation information between pairs of UEs may be used by the eNB when pairing UEs on the same communication resource and/or carriers. Ensuring pairs of UEs on the same communication resource have low CCA correlations, are uncorrelated or fully uncorrelated enhances the latency performance and/or throughput performance of the system.
  • Another example CCA correlation scheme or method performed by the eNB 104a or 816 may be based on the eNB 104a or 816 estimating the correlation between pairs of UEs by counting the number of uplink transmission events. For example, for each pair of UEs on the same communication resource, when the eNB 104a or 816 detects or knows that both UEs (e.g. UE1 and UE2) have data packets for uplink transmissions in their buffers, but that no data has been received from any of these UEs, then the eNB 104a or 816 may reasonably assume that both UEs have failed their CCA checks. This may be called a correlation event. Additionally or alternatively, if a data packet from the lower priority UE (e.g. UE2) is received which means the higher priority UE (e.g. UE1) fails its CCA check while the lower priority UE passes its CCA check then this may be called a non-correlation or uncorrelation event.
  • the eNB 104a or 816 may count the number of correlation events and non-correlation events occurring for this pair of UEs on the same communication resource over a period of time (e.g. over multiple communication assessment gaps 802a, 802b and 802c and uplink data transmission blocks 804a and 804b etc. ) When the number of correlation events are more than the number of non-correlation events, then the eNB 104a or 816 may decide that these two UEs (e.g. UE1 and UE2) are likely to be more correlated. Alternatively, when the number of non-correlation events are more than the number of uncorrelation events, then the eNB 104a or 816 may decide that these two UEs (e.g.
  • the eNB 104a or 816 may use this information to ensure pairs of UEs on the same communication resource are less correlated or have low CCA correlations, are uncorrelated or fully uncorrelated.
  • each of the above CCA correlation schemes or methods may be used to estimate correlation between a pair of UEs, it is to be appreciated by the skilled person that one or more of the above example CCA correlation schemes, or any combination thereof, (e.g. all of the information together) may be used by the eNB 104a or 816 when pairing UEs on the same communication resource and/or carriers.
  • the eNB 104a or 816 may make an assessment as to whether to break each pair of UEs based the CCA correlation estimate.
  • the eNB 104a or 816 will break apart this pair of UEs and re-pair these UEs with other UEs that are likely to result in a new pair of UEs having lower CCA correlation or may even result in a fully independent /uncorrelated pair of UEs.
  • the eNB 104a or 816 then sends, if applicable, at least one of the UEs in the pair of UEs a new resource allocation message indicating the new communication resources that the at least one UE will use.
  • the at least one UE will be paired with another UE that will likely have a lower CCA correlation or even be fully independent or uncorrelated.
  • an eNB when it pairs two UEs together, it may store or record this relationship along with their estimated CCA correlation values, which are assumed to be of a low correlation, or uncorrelated.
  • the eNB checks all combinations of pairs of UEs on the same communication resource of the shared type to ensure all pairs of UEs on the same communication resource have low CCA correlation, are fully independent or uncorrelated.
  • the eNB performs a CCA correlation comparison for each pair of UEs, if any pair of UEs has a high CCA correlation, or a CCA correlation above a predetermined CCA correlation threshold or that reaches the predetermined CCA correlation threshold, which indicates the UEs are correlated or have a high correlation, then the eNB re-pairs this pair of UEs. That is, at least one of the UEs in the pair of UEs is reallocated or is allocated a different communication resource of the shared type. The other UE may remain with the current communication resource of the shared type if it also satisfies the comparison of CCA correlation values with the other UEs using the communication resource of the shared type.
  • the eNB may serve several UEs, e.g. UE1, UE2, and UE3, each of which may share the same communication resource of the shared type. It is assumed that these UEs satisfy the CCA correlation comparison checks and all pairs of UEs are considered to have a low correlation or are independent or uncorrelated. Should another UE, e.g. UE4, be allocated this communication resource of the share type then the eNB will check all a pairs of UEs to determine whether the CCA correlation comparison checks are satisfied.
  • UE1, UE2, and UE3 may share the same communication resource of the shared type. It is assumed that these UEs satisfy the CCA correlation comparison checks and all pairs of UEs are considered to have a low correlation or are independent or uncorrelated. Should another UE, e.g. UE4, be allocated this communication resource of the share type then the eNB will check all a pairs of UEs to determine whether the CCA correlation comparison checks are satisfied.
  • the eNB will check the CCA correlation values for the following pairs (UE1, UE2) , (UE1, UE3) , (UE1, UE4) , (UE2, UE3) , (UE2, UE4) , (UE3, UE4) . Should the pairs of UEs associated with UE4 satisfy the CCA correlation check, then UE4 may be allowed to use the communication resource. If the pairs of UEs associated with UE4 do not satisfy the CCA correlation check, then UE4 may be assigned another communication resource, in which the eNB performs a corresponding CCA correlation comparison.
  • UE1-UE2 in figure 8b and UE1-UEn in figure 8c are given different priorities (e.g. different CCA Timing Advance values 808a-808n) for checking and accessing the communication resource.
  • priorities e.g. different CCA Timing Advance values 808a-808n
  • this UE can perform its CCA check first in CCA time slot 806a, which means the communication resource may be fully used by this UE almost indefinitely.
  • the transmit buffer levels or buffer sizes of the other UEs may vary quickly and it is time consuming to reallocate the communication resources (e.g.
  • UL carriers to ensure all UEs may meet their uplink transmission requirements and not overflow their transmit buffers. This may be overcome by the eNB 104a or 816 performing a priority swapping scheme or method to quickly swap the priorities of paired UEs (e.g. UE1 and UE2 in figure 8b and UE1 and UE2, or UE2 and UE3, etc. in figure 8c) sharing the same communication resource using a downlink indicator.
  • paired UEs e.g. UE1 and UE2 in figure 8b and UE1 and UE2, or UE2 and UE3, etc. in figure 8c
  • each UE may be required to transmit to the eNB 104a (or base station) a transmit buffer status to inform the eNB 104a and allow the eNB 104a to ensure each UE may have access to the communication resources it requires for transmitting uplink data.
  • Each UE served by the eNB 104a may transmit buffer status messages including data representative of a transmit buffer status of the UE.
  • the transmit buffer status of the UE may include data representative of one or more transmit data buffer sizes associated with the set of communication resources allocated by the eNB 104a to the UE.
  • the eNB 104a may receive a transmit buffer status of each UE being served by the eNB 104a.
  • the transmit buffer status for each UE may indicate one or more transmit data buffer sizes (or buffer levels) associated with the set of communication resources allocated to said each UE.
  • the eNB 104a may compare the transmit data buffer size of the first UE with that of the second UE sharing the same communication resource of the shared type.
  • the priority indication assigned to the first UE allows the first UE to access the communication resource before the second UE (i.e. the first UE has a higher priority over the second UE for transmitting data on the same communication resource of the shared type) .
  • the eNB 104a may decide to swap the priority indications of the first UE and the second UE for the same communication resource when the comparison indicates the transmit data buffer size of the second UE is greater than the transmit data buffer size of the first UE by a predefined transmit buffer threshold.
  • the eNB 104a may then transmit data representative of the swapped priority indications associated with the same communication resource of the shared type to each of the first and second UEs.
  • the eNB 104a may transmit to the second UE a resource update message including data representative of the previous priority indication of the first UE and/or an identification of the communication resource (s) that this priority indication relates to for the second UE.
  • the eNB 104a may also transmit to the first UE another resource update message including data representative of the previous priority indication of the second UE and an identification of the communication resource (s) that this priority indication relates to for the first UE.
  • both first and second UEs may update their priority indications for the same communication resource and hence have swapped their priority indications.
  • the second UE may then have priority to access the same communication resource of the shared type to transmit its uplink data.
  • Each UE may then receive, from the eNB (e.g. base station) , data representative of an updated priority indication (e.g. a resource update message) for use with a particular communication resource of the shared type from the set of communication resources of the shared type allocated to the UE.
  • the second UE may update the priority indication of the associated communication resource (s) of the shared type with the updated priority indication (e.g. the previous priority indication of the first UE) such that the second UE now has a higher priority than the first UE and may access the communication resource of the shared type before the first UE.
  • This enables the second UE to transmit its uplink data and reduce its transmit buffer size.
  • the first UE receives the previous lower priority indication of the second UE and so has to wait until the second UE does not need to use the communication resource of the shared type.
  • a predefined transmit buffer threshold may be set, by way of example only but is not limited to, the operator or user of the base station, it is to be appreciated by the skilled person that the predefined transmit buffer threshold may be set in any other way suitable to allow the base station to determine when the second UE should be allowed to use the communication resource before the first user and perform an uplink transmission before its transmit buffer overflows or becomes “critical” .
  • the eNB 104a or 816 may indicate or provide priority swap information in a downlink message to these UEs for these UEs to swap their priorities on the communication resource (e.g. carrier and associated resource blocks) in which they are paired. That is, the UEs swap may their priority indications, which may be CCA Timing Advance values, such that the lower priority UE is scheduled to perform its CCA checks or measurements in the higher priority UE’s CCA time slot 108a, and vice versa. This means the lower priority UE (now the higher priority UE) has a better chance to lower or even empty its transmission buffer.
  • the priority swapping scheme or method may be performed by the eNB 104a or 816 or each of the UEs served by the eNB 104a or 816 and may include the following steps of:
  • step A1 each UE of the paired UEs repeatedly report their transmission buffer status (or transmit buffer status) to the eNB 104a or 816 that serves those UEs. The method proceeds to step A2.
  • step A2 on receiving the transmission buffer status from each UE, the eNB 104a or 816 evaluates whether the priorities of the UEs (e.g. CCA timing values of the UEs) need to be swapped on the communication resources shared by the UEs based on transmission buffer levels of the paired UEs. If the eNB 104a or 816 determines that the priorities should be swapped (e.g. the lower priority UE is about to overflow its transmission buffer, and/or the higher priority UE’s buffer level is lower than the lower priority UE’s buffer level, of the lower priority UE requests to be a higher priority UE) , then the method proceeds to step A3, otherwise it proceeds to step A1.
  • the priorities e.g. CCA timing values of the UEs
  • the eNB 104a or 816 transmits via the downlink to each of the UEs a downlink message (e.g. resource update message) indicating the requirement to swap the priority with the other UE.
  • the downlink message to each UE may include a priority swap indication enabling the UEs to swap priorities.
  • the downlink message to each UE may include priority swap information including data representative of the CCA Timing Advance value of the other UE that the UE should swap with.
  • each UE may have received CCA time slot information including, by way of example only but not limited to, the timing of the CCA time slots, a list or index of the CCA time slots, a list of valid CCA Timing Advance values etc. for the communication assessment gap of the communication resource.
  • the priority swap information in the downlink message to each UE may include data representative of the CCA time slot information required for the UE to swap their CCA time slot with the other UE. The method may proceed to step A1.
  • the downlink message may include priority swap information such as CCA Timing Advance values allowing each UE to change their CCA Timing Advance value to those of the other UE before the next communication assessment gap and thus they swap their CCA time slots with each other.
  • the downlink message may include a priority swap indication in which cause the UEs to swap to the other UEs CCA time slot, this assumes that the UEs know which other UE they are paired with and the corresponding CCA time slot.
  • the UEs with more data packets in their transmission buffer or request more bandwidth requirement should be allocated more communication resources (e.g. carriers and associated resource blocks) with a higher priority than UEs with a low transmission buffer level (e.g. transmit data buffer size) or a low bandwidth requirement, which should be allocated communication resources (e.g. carriers and associated resource blocks) with lower priority.
  • communication resources e.g. carriers and associated resource blocks
  • FIG. 9a is a schematic diagram illustrating another example method (s) or process (es) 900 for use in scheduling and using uplink communication resources in a telecommunications network 100 using unlicensed radio spectrum.
  • the telecommunications network 100 includes a plurality of base stations 104a-104m (e.g. eNBs) which serve a plurality of UEs 108a-108l and each perform a scheduling process or method according to the invention to schedule uplink communications resources to the plurality of UEs 108a-108l served by that base station 104a-104m.
  • each of the UEs 108a-108l perform another process or method according to the invention for assigning the corresponding scheduled uplink communication resources for transmitting uplink data.
  • the telecommunications network 100 may be an LTE/LTE Advanced network in which a base station 104a is an eNB 104a serving a first UE 108a (e.g. UE1) and a second UE 108b (e.g. UE2) of the plurality of UEs 108a-108l.
  • a first and second UE 108a described in this example, it is to be appreciated by the skilled person that this is by way of example only and for simplicity and that the method (s) and process (es) described herein are not limited to using only two UEs, but can be applied to a plurality of UEs served by eNB 104a.
  • the serving eNB 104a may schedule uplink communication resources to the first and second UEs 108a and 108b, which use the scheduled uplink communication resources for transmitting uplink data.
  • the method (s) and process (es) 900 for scheduling and using the uplink communication resources are generally repeated or iterated over a loop 902 during the communication session for each UE 108a and 108b.
  • the first UE 108a e.g. UE1
  • the second UE 108b e.g. UE2
  • the serving eNB 104a each perform unlicensed radio spectrum measurements 904a, 904b, and 904c, respectively, for identifying communication resources and/or signals 906a, 906b and 906c, respectively, that may be considered interfering with the UEs 108a and 108b.
  • the signals 906a, 906b and 906c may include radio signals such as communication resources (e.g.
  • the unlicensed radio spectrum measurements 904a, 904b and 904c performed by the first UE 108a, second UE 108b and serving eNB 104a, respectively, may include frequency measurements and/or frequency scans, respectively, to identify communication resources in the unlicensed radio spectrum that may have any interfering signals or whether communication resources (e.g. carriers, resource blocks and/or resource elements) in the unlicensed radio spectrum are occupied or unoccupied.
  • the UEs 108a and 108b may be required to perform the measurements 904a and 904b, by way of example only but is not limited to, periodical measurements, periodical frequency measurements and/or frequency scans; scheduled measurements, scheduled frequency measurements and/or frequency scans that may be specified by the serving eNB 104a; and/or measurements/frequency measurements and/or scans that may be requested by the eNB 104a.
  • the UEs 108a and 108b send measurement reports 908a and 908b to the serving eNB 104a.
  • the serving eNB On receiving the measurement reports 908a and 908b as well as completing its own unlicensed radio spectrum measurements 904c (e.g. frequency measurements and/or scans) , the serving eNB performs radio resource allocation 910 to compile one or more lists of communication resources such as carriers and associated resource block (s) that may be used by the first and second UEs 108a and 108b for transmitting uplink data.
  • Each of the UEs 108a and 108b may also have requested for a particular number of carriers and/or resource blocks that each of the UEs 108a and 108b may require for transmitting their corresponding uplink data. This will also be taken into account as described with reference to figures 1-8c during the radio resource allocation 910 by the serving eNB 104a.
  • the serving eNB 104a performs radio resource allocation based on all the measurement results/reports and/or requests made by the first and second UEs 108a and 108b. This may include selecting a set of communication resources (e.g. a set of one or more carriers and associated resource blocks) based on the measurement reports and unlicensed radio spectrum measurements 904a-904c that may be allocated as an unshared type (e.g. Type A) and as a shared type (e.g. Type B) .
  • a set of communication resources includes one or more communication resources. As described with reference to figure 2, each carrier for uplink communications may be allocated an associated plurality of resource blocks, where the plurality of resource blocks is a number, N RB , of associated resource blocks exclusively assigned to that carrier.
  • a communication resource may include a carrier and an associated one or more sets of resource blocks, where the one or more sets of resource blocks may be less than or equal to the plurality of resource blocks exclusively assigned to that carrier.
  • a set of communication resources may then be a set of carriers in which each carrier is associated with one or more sets of associated resource blocks.
  • a set of carriers and associated resource blocks of the unshared type may be defined as a set of carriers in which each carrier is associated with one or more sets of resource blocks that may be assumed by the UE to be exclusively reserved for that UE served by the eNB 104a.
  • a set of carriers and associated resource blocks of the shared type (e.g. a set of communication resources of the shared type) may be defined as a set of carriers in which each carrier is associated with one or more sets of resource blocks that may be assumed by the UE to be shared amongst or with one or more of the plurality of UEs served by the eNB 104a.
  • the plurality of resource blocks for a carrier e.g.
  • carrier1 may be divided into one or more sets of resource blocks that are mutually exclusive.
  • Carrier1 has a first set of resource blocks that are unshared and assigned to UE1, a second set of resource blocks that are unshared and assigned to UE2, and a third set of resource blocks that are shared by UE3 and UE4.
  • the serving eNB 104a may select a set of carriers and associated resource blocks with the least interference for allocation as a first set of carriers and associated resource blocks of an unshared type (e.g. Type A) , while those sets of carriers and associated resource blocks with relatively more interference may be allocated as a second set of carriers and associated resource blocks of a shared type (e.g. Type B) .
  • Carriers and associated resource blocks of the shared type may be shared amongst UEs 108a and 108b.
  • a time period or timing advance value may be optionally indicated to each UE 108a and 108b that is allocated carriers and associated resource blocks of the shared type.
  • the list of carriers and associated resource blocks that are allocated to each UE 108a and 108b are, by way of example only but is not limited to, illustrated in the following table.
  • Table 1 Carrier frequency lists allocated to UE1 and UE2
  • the serving eNB 104a allocates a set of carriers and associated resource blocks to the first UE 108a (e.g. UE1) , which includes an assigned carrier frequency list comprising a first set of carriers (e.g. carriers based on a set of frequencies F_1) and associated resource blocks (e.g. RB allocation 1) of a shared type (e.g. Type: A) and a second set of carriers (e.g. carriers based on a set of frequencies F_2) and associated resource blocks (e.g. RB allocation 2) of a shared type (e.g. Type: B) .
  • the second set of carriers and associated resource blocks of the shared type e.g.
  • F_2) may also include priority indications such as data representative of one or more CCA Time Advance values (e.g. CCA Time Advance: (x) or an index or value (x) representing a CCA Time Advance value, where a UE uses the index or value (x) with a predetermined look-up-table to determine the corresponding CCA Time Advance value) , which indicate when the first UE 108a may perform CCA checks prior to uplink data transmission for determining whether one or more carriers and associated resource blocks of the second set are clear for uplink data transmission or occupied. There may be a CCA Time Advance value for each carrier and/or each of the associated resource block (s) of the second set.
  • CCA Time Advance values e.g. CCA Time Advance: (x) or an index or value (x) representing a CCA Time Advance value, where a UE uses the index or value (x) with a predetermined look-up-table to determine the corresponding CCA Time Advance value
  • There may be a CCA Time Advance value for each carrier and/or
  • the serving eNB 104a allocates a set of carriers and associated resource blocks to the second UE 108b (e.g. UE2) , which includes an assigned carrier frequency list comprising a third set of carriers (e.g. carriers based on a set of frequencies F_3) and associated resource blocks (e.g. RB allocation) of a unshared type (e.g. Type: A) and a fourth set of carriers (e.g. carriers based on a set of frequencies F_2) and associated resource blocks of a shared type (e.g. Type: B) .
  • the fourth set of carriers and associated resource blocks of the shared type e.g.
  • Type: B) may also include one or more priority indications such as one or more CCA Time Advance value (s) (e.g. CCA Time Advance (y) , which indicate when the second UE 108b may perform CCA checks prior to uplink data transmission for determining whether one or more carriers and associated resource blocks of the fourth set are clear for uplink data transmission or occupied.
  • CCA Time Advance value e.g. CCA Time Advance (y)
  • y CCA Time Advance
  • the fourth set of carriers and associated resource blocks of the shared type allocated to the second UE 108b may be the same as the second set of carriers and associated resource blocks of the shared type allocated to the first UE 108a. That is, the first UE 108a shares a set of carriers and resource blocks with the second UE 108b.
  • the fourth set of carriers and associated resource blocks of the shared type and the second set of carriers and associated resource blocks of the shared type may instead include one or more common carriers and/or one or more common associated resource blocks, i.e. the fourth set of carriers and associated resource blocks may have a subset of carriers and associated resource blocks in common with the second set of carriers and associated resource blocks.
  • the fourth set of carriers and associated resource blocks of the shared type and the second set of carriers and associated resource blocks of the shared type are the same (e.g. carriers based on a set of frequencies F_2 with and associated resource blocks defined by the RB allocation) .
  • the eNB 104a may also inform the first and second UEs 108a and 108b (e.g. via, by way of example only but not limited to, the resource allocation message or by a control channel or other type of message) of timing information representative of a transmission start time and transmission interval for when uplink data may be transmitted using the second set and fourth sets of carriers and associated resource blocks.
  • the CCA Time Advance values determine when, prior to an uplink data transmission interval, the first and/or second UEs 108a and 108b may perform CCA checks for determining whether the carriers and associated resource blocks are clear for an uplink data transmission or occupied.
  • the eNB 104a can prioritize access to each communication resource of the shared type using the CCA Time Advance values.
  • a UE 108a or 108b finds one or more carrier (s) and/or one or more associated resource block (s) of the shared type to be clear, that UE 108a or 108b may reserve these carrier (s) and/or resource block (s) by transmitting, prior to transmission of the uplink data in the transmission interval, an initial signal over these carrier (s) and/or resource block (s) .
  • the priority indication (s) sent to each UE may include data representative of one or more CCA Time Advance values
  • the data representative of one or more CCA Time Advance values may include an index or value (x) representing a CCA Time Advance value or range of CCA Time Advance value (s) , where a UE uses the index or value (x) with a predetermined look-up-table for determining the corresponding CCA Time Advance value for use with one or more of the communication resources of the shared type.
  • the priority indication sent to each UE 108a or 108b may also include data representative of the number of initial signals or appropriate timing information to allow each UE 108a or 108b to determine the required number of initial signals that should be transmitting after their CCA checks have been performed in the corresponding CCA time slots but prior to transmitting their uplink data.
  • the eNB 104a may also send appropriate timing information to allow each UE 108a or 108b to determine the required number of initial signals that should be transmitted after their CCA checks have been performed in the corresponding CCA time slots but prior to transmitting their uplink data.
  • Table 1 may also include, by way of example but is not limited to, further timing information or initial signal information in relation to the CCA Time Advance values such as further data representative of the number of time slots in each communication assessment gap associated with each communication resource as described with reference to figure 8 prior to the data transmission block for transmitting uplink data, which may assist the first UE 108a in determining which time slot corresponds with each CCA Time Advance value, or, depending on the priority scheme may assist the first UE 108a in determining the number of initial signals the first UE 108a should transmit in each time slot after its CCA time slot to allow the eNB 104a to identify the first UE 108a and its corresponding uplink data transmission in the subsequent data transmission block.
  • further timing information or initial signal information in relation to the CCA Time Advance values such as further data representative of the number of time slots in each communication assessment gap associated with each communication resource as described with reference to figure 8 prior to the data transmission block for transmitting uplink data, which may assist the first UE 108a in determining which time slot corresponds with each
  • Table 1 may also include, by way of example but is not limited to, further data representative of the number of time slots in the communication assessment gap associated with each communication resource prior to the data transmission block, which may assist the second UE 108b in determining which time slot corresponds with the CCA Time Advance value, or, depending on the priority scheme, is may assist the second UE 108b in determining the number of initial signals the second UE 108b should transmit in each time slot after its CCA time slot to allow the eNB 104a to identify the second UE 108b.
  • the eNB 104a may also inform the first and second UEs 108a and 108b (e.g.
  • the resource allocation message or by a control channel via, by way of example only but not limited to, the resource allocation message or by a control channel) of the number of time slots in the communication assessment gap of the communication resource and/or the number of initial signals to transmit corresponding to each communication resource of the shared type allocated to the UE.
  • the eNB 104a may include this data, or any other data representative of the necessary parameters and/or characteristics of the communication resource, or data representative of the necessary parameters and/or characteristics of the communication resource that allows the UE 108a or 108b to correctly use the communication resource of the shared or unshared types for transmission of uplink data, in a resource allocation message or any other suitable message for sending or transmitting to each UE 108a or 108b or in any other manner suitable to allow the eNB 104a to notify the allocation of communication resources of the shared and unshared types to each UE 108a and 108b and allow the UEs 1-8a and 108b to use the allocated communication resources.
  • the communication resources are split into shared and unshared communication resources, it is to be appreciated by the skilled person that for communication resources of the unshared type, UEs may share the same physical carrier but have a different set of resource blocks assigned to each UE such that they do not share the same resource blocks. In addition, for communication resources of the shared type, UEs may share the same physical carrier and have the same set of resource blocks assigned to each UE using the communication resource of the shared type. Communications resources of the unshared type and shared type may share the same physical carrier, as described with reference to figure 6, but have different resource blocks assigned to each UE. If the initial signal is configured to be transmitted only on the physical carrier of a communication resource, then this may block access to UEs using other communication resources on the same physical carrier.
  • each UE may be configured to decode the initial signal and decide whether is associated with the scheduled cell/serving eNB 104a and whether it is associated with their allocated resource blocks.
  • the serving eNB 104a may allocate the first UE 108a (e.g. UE1) to have a higher priority for accessing the second set than the second UE 108b (e.g. UE2) when accessing the fourth set by setting the CCA Time Advance values of the second set to be larger than the CCA Time Advance values of the fourth set.
  • the first UE 108a e.g. UE1
  • the second UE 108b e.g. UE2
  • the serving eNB 104a may allocate the first UE 108a (e.g. UE1) to have a higher priority for accessing the second set than the second UE 108b (e.g. UE2) when accessing the fourth set by setting the CCA Time Advance values of the second set to be larger than the CCA Time Advance values of the fourth set.
  • the first UE 108a has a higher priority to access the communication resources of the second set and may perform, prior to the data transmission interval, a CCA check on the carriers and associated resource blocks of the second set before the second UE 108b performs its CCA checks on the same carriers and associated resource blocks of the fourth set.
  • the second UE 108b has a higher priority than the first UE 108a and may perform, prior to the data transmission interval, a CCA check on the carriers and associated resource blocks of the fourth set before the first UE 108a performs their check.
  • the first UE 108a e.g. UE1
  • the second UE 108b e.g. UE2
  • the CCA Time Advance (x) of F_2 for the first UE 108a is bigger than CCA Time Advance (y) of F_2 for the second UE 108b.
  • the serving eNB 104a sends each UE 108a and 108b their corresponding radio resource allocations in an uplink grant message 912a and 912b (e.g. a resource allocation message) .
  • the uplink grant message may include data representative of the set of carriers and associated resource blocks of the unshared type, the set of carriers and associated resource blocks of the shared type and/or the time advance or time periods indicating to the UEs when to access the set of carriers of the shared type during CCA checks prior to transmission of uplink data.
  • each UE 108a and 108b receives their respective radio resource allocations in the uplink grant message 912a and 912b.
  • the UE 108a On receiving the radio resource allocations, the UE 108a stores in 914a the set of carriers and associated resource blocks of the unshared type (e.g. F1 (Type A) ) and the set of carriers and associated resource blocks of the shared type (e.g. F2 (Type B) ) for use in assigning one or more carriers and associated resource blocks for any uplink data transmissions between UE 108a and serving eNB 104a.
  • the UE 108b stores in 914b the set of carriers and associated resource blocks of the unshared type (e.g. F3 (Type A) ) and the set of carriers and associated resource blocks of the shared type (e.g. F2 (Type B) ) for use in assigning one or more carriers and associated resource blocks for any uplink data transmissions between UE 108b and serving eNB 104a.
  • the first UE 108a may first select and assign one or more carriers and associated resource blocks (e.g. communications resources) from the set of carriers and associated resource blocks of the unshared type (e.g. F_1 (Type A) ) for use in transmitting the uplink data from the first UE 108a to base station 104a.
  • the first UE 108a may perform CCA checks 905a to determine whether any carriers and associated resource blocks in the first set of carriers and associated resource blocks of the unshared type (e.g. F_1 (Type A) ) are available for the uplink data transmission.
  • the first UE 108a is the only UE served by the eNB 104a that may use the set of carriers and associated resource blocks of the unshared type in the first set, there may be other UEs served by other eNBs 104b-104l and/or devices that may be using that part of the unlicensed radio spectrum, so the CCA checks are made prior to transmission to determine the available communications resources of the unshared type.
  • the first UE 108a determines that more carriers and associated resource blocks than are in the first set of carriers and associated resource blocks of the unshared type (e.g. F_1 (Type A) ) are required for the uplink data transmission (e.g. all remaining resource block (s) from the second set of carriers of the unshared type are unavailable or all available resource block (s) from the set of carriers of the unshared type have already been assigned for the uplink transmission) , then the first UE 108a performs CCA checks 905a as to whether any carriers and associated resource blocks in the second set of carriers and associated resource blocks of the shared type (e.g. F_2 (Type B) ) are available for the uplink data transmission.
  • F_1 Type A
  • the first UE 108a performs the CCA check (s) 905a on the second set of carriers and associated resource blocks of the shared type at a CCA start time or CCA time slot associated with a CCA Time Advance value (s) (e.g. CCA Time Advance (x) ) prior to the uplink data transmission.
  • the first UE 108a performs CCA checks 905a to determine which carrier signals and associated resource blocks 906a of the second set of carriers and associated resource blocks of the shared type (e.g. F_2 (Type B) ) are unoccupied/clear and available for use in the uplink data transmission by the first UE 108a.
  • CCA checks are described herein, it is to be appreciated by the skilled person that other types of checks may be applied or used, for example, intra-cell channel checks and the like.
  • UE 108a finds one or more carrier (s) and/or one or more associated resource block (s) of the shared type to be unoccupied/clear, then UE 108a reserves these carrier (s) and/or resource block (s) by transmitting, prior to transmission of the uplink data in the transmission interval, an initial signal 921 over these carrier (s) and/or resource block (s) .
  • the first UE 108a has “reserved” or block other users from transmitting uplink data on these carrier (s) and/or resource block (s) .
  • the first UE 108a will assign any available carriers and/or associated resource blocks from the first set of carriers and associated resource blocks of the unshared type and also any available carriers and/or associated resource blocks determined from the CCA checks 905a of the second set of carriers and associated resource blocks of the shared type for use in the uplink data transmission.
  • the UE 108a uses any available carrier (s) and associated resource block (s) of the unshared type (e.g. F_1(Type A) ) and any available carrier (s) and associated resource block (s) of the shared type (e.g. F_2 (Type B) ) for an uplink data transmission 916a to eNB 104a.
  • the second UE 108b may first select and assign carriers and associated resource block (s) from the third set of carriers and associated resource block (s) of the unshared type (e.g. F_3 (Type A) ) for use in transmitting the uplink data from second UE 108b to eNB 104a. If the second UE 108b determines that more carriers and associated resource block (s) than are in the third set of carriers and associated resource block (s) of the unshared type (e.g.
  • the second UE 108b performs CCA checks 905b as to check whether any carrier (s) and/or resource block (s) in the set of carriers and/or resource block (s) of the shared type (e.g. F_2 (Type B)) are available for the uplink data transmission.
  • CCA checks 905b as to check whether any carrier (s) and/or resource block (s) in the set of carriers and/or resource block (s) of the shared type (e.g. F_2 (Type B)) are available for the uplink data transmission.
  • the second UE 108a performs the CCA check (s) 905a on the second set of carriers and associated resource blocks of the shared type (e.g. F_4 (Type B) ) at a CCA start time or CCA time slot associated with a CCA Time Advance value (s) allocated to the second UE 108b (e.g. CCA Time Advance (y) ) prior to the uplink data transmission.
  • the second UE 108b performs CCA check (s) 905b to determine which carrier signals and/or associated resource block (s) 906b of the set of carriers and associated resource block (s) of the shared type (e.g. F_2 (Type B) ) are unoccupied/clear and available for use in the uplink data transmission.
  • CCA checks are described herein, it is to be appreciated by the skilled person that other types of checks may be applied or used, for example, intra-cell channel checks and the like.
  • UE 108b may reserve these carrier (s) and/or resource block (s) by transmitting, prior to transmission of the uplink data in the transmission interval, an initial signal (not shown) over these carrier (s) and/or resource block (s) .
  • the second UE 108a has “reserved” or blocked other users from transmitting uplink data on these carrier (s) and/or resource block (s) .
  • the second UE 108b will assign any available carriers and associated resource block (s) from the set of carriers and associated resource block (s) of the shared type and also any available carriers and associated resource block (s) determined from the CCA checks 905b of the set of carriers and associated resource block (s) of the shared type for use in the uplink data transmission.
  • the second UE 108b has found that there are no available carriers and/or associated resource block (s) of the shared type (e.g. F_2 (Type B) ) as UE 108a may be transmitting an initial signal 921 over these communication resources prior to its transmission of uplink data.
  • UE 108b may use only the available carriers and/or associated resource block (s) of the unshared type (e.g. F_3 (Type A)) for the uplink data transmission 916a to eNB 104a. This may also be because the first UE 108a was already performing its uplink data transmission using any remaining carriers of the set of carriers of the share type (e.g. F_2 (Type B) ) .
  • F_3 Type A
  • F_2 Type B
  • the serving eNB 104a may set the first UE 108a (e.g. UE1) to have a higher priority to use the second set of carriers and resource blocks of the shared type (e.g. communication resources F_2 (Type B) ) than the same carriers and/or resource blocks of the fourth set of carriers and resource blocks of the shared type (e.g. F_4 (Type B) ) allocated to the second UE 108b (e.g. UE2) by setting a CCA Time Advance values (e.g. CCA Time Advance values (x) ) for the second set of carriers and resource blocks of the shared type (e.g.
  • a CCA Time Advance values e.g. CCA Time Advance values (x)
  • the first UE 108a may transmit an initial signal on the available carriers and/or resource blocks of the shared type before the second UE 108b.
  • the initial signal of transmitted by the first UE 108a should start no later than the starting point of the CCA checks 905b performed by the second UE 108b.
  • the initial signal of the first UE 108a may also stop at the starting point of its own uplink data transmission.
  • the CCA Time Advance (y) of F_2 for the second UE 108b is such that the second UE 108b is delayed from making an uplink data transmission using the set of carriers of the second type.
  • the uplink data transmission by the first UE 108a may be an initial signal 921 or even one or more portions of uplink data for transmission 918a.
  • the second UE 108b may have a greater chance of detecting during its CCA checks 906b that one or more carriers and/or resource blocks of the fourth set of carriers and associated resource blocks of the shared type (e.g. F_4 (Type B) ) are occupied and so select one or more other carriers and/or resource blocks of the fourth set that are not occupied.
  • first UE 108a having selected and assigned one or more carriers and/or associated resource block (s) from the second set of carriers and associated resource block (s) of the shared type (e.g. F_2 (Type B) ) , was not yet transmitting initial signal 921 or uplink data on these assigned one or more carriers and associated resource block (s) of the shared type, then the second UE 108b may determine from its CCA checks 905b that these carriers of the shared type are available for transmission. Thus, even though both first and second UEs 108a and 108b have performed CCA checks 905a and 905b on the set of carriers and/or associated resource block (s) of the shared type (e.g.
  • the first UE 108a may start a transmission 918a of at least a portion of the uplink data using the selected carriers and/or associated resource block (s) of the shared type (e.g. F_2: UL DATA) , which may collide with a transmission 918b of uplink data from the second UE 108b which also determined the same selected carriers and/or associated resource block (s) of the shared type to be unoccupied.
  • the transmissions 918a and 918b from the first and second UEs 108a and 108b may collide and be unintelligible at serving eNB 104a.
  • each uplink data transmission that each UE 108a and 108b may make are meant to take place at the same time enabling the CCA checks 905a and 905b to start at the same time, and thus each UE 108a and 108b may block an unoccupied communication resource with an initial signal prior to its uplink data transmission.
  • each UE 108a and 108b should, in ideal situations, both start at the same time ensuring the CCA checks also start at the correct time prior to the uplink data transmission based on each UE’s 108a and 108b CCA Time Advance value (s) , timing errors can creep into the system where each UE 108a and 108b may not be synchronised and discrepancies in the timing of the CCA checks 905a and 905b and/or uplink data transmission may occur depending on the distance each UE is to the eNB 104a.
  • s CCA Time Advance value
  • the initial signal of the first UE 108a transmitted over an unoccupied communication resource must start before the starting point of UE 108b’s CCA check 905a for that same communication resource.
  • the second UE 108b may start its CCA checks 905a on an unoccupied communication resource before the initial signal from the first UE 108a transmitted on that unoccupied communication resource is received by the second UE 108b.
  • the second UE 108b may then determine this communication resource to also be unoccupied.
  • collision 922 may occur when either the first UE 108a or the second UE 108b cannot detect from their CCA checks 905a or 9065 any energy from an initial signal or data transmission from the second UE 108b or the first UE 108a, respectively.
  • Another enhancement may be made to further reduce such collisions 922 between first UE 108a and second UE 108b sharing the same set of carriers and associated resource blocks of the shared type.
  • the serving eNB 104a may have the capability to detect the collision 922 and identify the first or second UE 108a or 108b, by way of example but not limited to, detecting the initial signal 921 from either the first UE 108a or second UE 108b, in this case the first UE 108a transmits initial signal 921, which could be UE specific or of a particular pattern the eNB 104a associates with each UE; detecting other UE specific signals from either UE 108a and 108b, e.g., reference symbols; and/or to blind detection of the UE uplink data transmission by verifying the CRC, respectively.
  • the serving eNB 104a may perform a collision avoidance scheme 924 that reallocates the carriers and associated resource blocks of the shared type over which the collision 922 occurred with other carriers and associated resource blocks of the shared type to the second or fourth set of carriers and associated resource blocks of the shared type either UE 108a or UE 108b.
  • a collision avoidance scheme 924 that reallocates the carriers and associated resource blocks of the shared type over which the collision 922 occurred with other carriers and associated resource blocks of the shared type to the second or fourth set of carriers and associated resource blocks of the shared type either UE 108a or UE 108b.
  • This breaks the existing pairs of UEs 108a and 108b and thus re-pairs the UEs 108a and 108b with some other UEs
  • an eNB 104a allocating a set of carriers, resource blocks and/or resource elements of an unshared type (e.g. Type A) and allocating a set of carriers, resource blocks and/or resource elements of a shared type (e.g. Type B)
  • an unshared type e.g. Type A
  • a shared type e.g. Type B
  • these one or more UEs 108a-108l will assign and use the sets of carriers of the shared type based on intra-cell contention. For example, these UEs 108a-108l may use CCA checks on the carriers of the shared type to determine those carriers that are unoccupied and thus clear for transmission of uplink data and those that are occupied and not suitable for transmission of uplink data. From this, these UEs 108a-108l may use one or more carriers of the shared type that are not determined to be occupied for the uplink transmission.
  • the eNB 104a does not allocate any set of carriers of the unshared type (e.g. Type A carriers) or any carriers of a unshared type to one or more UEs, then there is no need to indicate to those one or more UEs in the uplink Grant message (s) or resource allocation message (s) what the carrier type will be for the list of carriers allocated to the UE.
  • the absence of a carrier type may signal to the UE that the list of carriers are carriers of a shared type, i.e. that these carriers are being shared by one or more other UEs, and that the UE should assign and use the carriers allocated to it for uplink data transmission using intra-cell contention techniques or CCA checks as described herein.
  • example method (s) or process (es) 900 have been described above for use in scheduling and using uplink communication resources in a telecommunications network 100 using unlicensed radio spectrum, it is to be appreciated by the person skilled in the art that the example method (s) or process (es) 900 may further include one or more steps or a combination of steps of the process (es) and method (s) as described with reference to figures 1-8c for implementing further modifications of the example method (s) or process (es) 900.
  • Figures 9b to 9e are graphs illustrating performance results from simulations that compare the conventional or legacy process of scheduling and using communication resources with the example process (es) of scheduling and using communication resources according to the invention as described herein with reference to figures 1-9a.
  • the simulation of the telecommunication system includes 1 eNB serving 3 UEs in which 6 communication resources (e.g. 6 LAA carriers and associated resource blocks) are available for allocation.
  • each UE is allocated 2 dedicates or unshared communication resources (e.g. 2 Type A (dedicated) carriers and associated resource blocks) .
  • each UE is allocated 1 dedicated or unshared communication resource (e.g. 1 Type A carrier and associated resource blocks) , 1 shared communication resource (e.g. 1 Type B carrier and associated resource blocks) in which the UE is a high priority user and is paired with another UE (e.g. the UE has the highest CCA Timing Advance compared with the other UE sharing this communication resource) , 1 shared communication resource (e.g. 1 Type B carrier and associated resource blocks) in which the UE is the lowest priority user and is paired with another UE (e.g. the UE has the lowest CCA Timing Advance compared with the other UE sharing this communication resource) .
  • Figure 9b illustrates a graph of the simulation results for the latency distribution for the legacy system and the system based on invention as described herein.
  • the performance results for different loads of 0.4, 0.45 and 0.49 are illustrated.
  • the performance results for the legacy system for a load of 0.4 is shown by the solid line without any marks, while the performance for the system based on the invention for load of 0.4 is shown by the solid line with star marks (*) for a worst case scenario in which the UEs are fully correlated (FC) .
  • the performance results for the legacy system for a load of 0.45 is shown by the dashed line without any marks, while the performance for the system based on the invention for the load of 0.45 is shown by the dashed line with plus marks (+) for a worst case scenario in which the UEs are fully correlated (FC) .
  • the performance results for the legacy system for a load of 0.50 is shown by the dash-dot line without any marks, while the performance for the system based on the invention for the load of 0.50 is shown by the dash-dot line with cross or times marks (x) for a worst case scenario in which the UEs are fully correlated (FC) .
  • the system based on the invention outperforms the legacy system.
  • Figure 9c illustrates a graph of the simulation results for the latency distribution for the system based on invention as described herein.
  • the performance results for the system based on the invention for different loads of 0.4, 0.50, 0.60 and 0.61 are illustrated for the best scenario in which the UEs are fully independent (FI) .
  • the performance results for the system based on the invention for the load of 0.40 is shown by the solid line with star marks.
  • the performance results for the system based on the invention for the load of 0.50 is shown by the dashed line with plus (+) marks.
  • the performance results for the system based on the invention for the load of 0.60 is shown by the dash-dot line with cross or times marks (x) .
  • the latency gains can be summarised as follows:
  • Figures 9d and 9e are further graphs illustrating performance results for latency distribution regarding throughput for loads of 0.4 and 0.49, respectively.
  • the throughput gain is calculated when the system based on the invention (best case scenario) has similar latency distribution as the legacy system.
  • the performance of the legacy system is illustrated by the solid lines while the dashed and dashed dot lines illustrate the throughput performance of the system for based on the invention with the best case scenario (FI) for different throughput gains greater than that of the legacy system.
  • Figure 10 illustrates various components of an exemplary computing-based device 1000 which may be implemented to include the functionality of the scheduling and allocation of communication resources as described, by way of example only, with respect to an eNB 104a of a telecommunications network 100 as described with reference to figures 1-9e.
  • the computing-based device 1000 comprises one or more processors 1002 which may be microprocessors, controllers or any other suitable type of processors for processing computer executable instructions to control the operation of the device in order to perform measurements, receive measurement reports, schedule and/or allocate communication resources as described in the process (es) and method (s) as described herein.
  • processors 1002 may be microprocessors, controllers or any other suitable type of processors for processing computer executable instructions to control the operation of the device in order to perform measurements, receive measurement reports, schedule and/or allocate communication resources as described in the process (es) and method (s) as described herein.
  • the processors 1002 may include one or more fixed function blocks (also referred to as accelerators) which implement the methods and/or processes as described herein in hardware (rather than software or firmware) .
  • fixed function blocks also referred to as accelerators
  • Platform software and/or computer executable instructions comprising an operating system 1004a or any other suitable platform software may be provided at the computing-based device to enable application software to be executed on the device.
  • software and/or computer executable instructions may include the functionality of perform measurements, receive measurement reports, schedule and/or allocate communication resources and/or the functionality of the base stations or eNBs according to the invention as described with reference to figures 1-9e.
  • computing device 1000 may be used to implement base station 104a or eNB 104a and may include software and/or computer executable instructions that may include functionality of perform measurements, receive measurement reports, schedule and/or allocate communication resources and/or the functionality of the base stations or eNBs according to the invention as described with reference to figures 1-9e.
  • Computer-readable media may include, for example, computer storage media such as memory 1004 and communications media.
  • Computer storage media, such as memory 1004 includes volatile and non-volatile, removable and non-removable media implemented in any method or technology for storage of information such as computer readable instructions, data structures, program modules or other data.
  • Computer storage media may include, but is not limited to, RAM, ROM, EPROM, EEPROM, flash memory or other memory technology, CD-ROM, digital versatile disks (DVD) or other optical storage, magnetic cassettes, magnetic tape, magnetic disk storage or other magnetic storage devices, or any other non-transmission medium that can be used to store information for access by a computing device.
  • communication media may embody computer readable instructions, data structures, program modules, or other data in a modulated data signal, such as a carrier wave, or other transport mechanism.
  • computer storage media does not include communication media.
  • the computer storage media (memory 1004) is shown within the computing-based device 1000 it will be appreciated that the storage may be distributed or located remotely and accessed via a network or other communication link (e.g. using communication interface 1006) .
  • the computing-based device 1000 may also optionally or if desired comprises an input/output controller 1010 arranged to output display information to a display device 1012 which may be separate from or integral to the computing-based device 1000.
  • the display information may provide a graphical user interface.
  • the input/output controller 1010 is also arranged to receive and process input from one or more devices, such as a user input device 1014 (e.g. a mouse or a keyboard) . This user input may be used to set scheduling for measurement reports, or for allocating communication resources, or to set which communications resources are of a first type and/or of a second type etc.
  • the display device 1012 may also act as the user input device 1014 if it is a touch sensitive display device.
  • the input/output controller 1010 may also output data to devices other than the display device, e.g. other computing devices via communication interface 1006, any other communication interface, or a locally connected printing device/computing devices etc.
  • Figure 11 illustrates various components of an exemplary computing-based device 1100 which may be implemented to include the functionality of the assignment and use of scheduled communication resources as described, by way of example only but not limited to, with respect to UE 104a or UE 104b of a telecommunications network 100 as described with reference to figures 1-10.
  • the computing-based device 1100 comprises one or more processors 1102 which may be microprocessors, controllers or any other suitable type of processors for processing computer executable instructions to control the operation of the device in order to perform measurements, receive measurement reports, schedule and/or allocate communication resources as described in the process (es) and method (s) as described herein.
  • the processors 1102 may include one or more fixed function blocks (also referred to as accelerators) which implement the methods and/or processes as described herein in hardware (rather than software or firmware) .
  • Platform software and/or computer executable instructions comprising an operating system 1104a or any other suitable platform software may be provided at the computing-based device to enable application software to be executed on the device.
  • software and/or computer executable instructions may include the functionality of performing measurements, sending measurement reports, assigning and using scheduled communication resources and/or the functionality of the UEs according to the invention as described with reference to figures 1-9e.
  • computing device 1100 may be used to implement a UE 108a or 108b as described herein and may include software and/or computer executable instructions that may include functionality of performing measurements, transmitting measurement reports, assigning and using scheduled communication resources and/or the functionality of the UEs according to the invention as described with reference to figures 1-9e.
  • Computer-readable media may include, for example, computer storage media such as memory 1104 and communications media.
  • Computer storage media may include, but is not limited to, RAM, ROM, EPROM, EEPROM, flash memory or other memory technology, CD-ROM, digital versatile disks (DVD) or other optical storage, magnetic cassettes, magnetic tape, magnetic disk storage or other magnetic storage devices, or any other non-transmission medium that can be used to store information for access by a computing device.
  • communication media may embody computer readable instructions, data structures, program modules, or other data in a modulated data signal, such as a carrier wave, or other transport mechanism.
  • computer storage media does not include communication media.
  • the computer storage media (memory 1104) is shown within the computing-based device 1100 it will be appreciated that the storage may be distributed or located remotely and accessed via a network or other communication link (e.g. using communication interface 1106) .
  • the computing-based device 1100 may also optionally or if desired comprises an input/output controller 1110 arranged to output display information to a display device 1112 which may be separate from or integral to the computing-based device 1100.
  • the display information may provide a graphical user interface.
  • the input/output controller 1110 is also arranged to receive and process input from one or more devices, such as a user input device 1114 (e.g. keypad, touch screen or other input) . This user input may be used to operate the computing device.
  • the display device 1112 may also act as the user input device 1114 if it is a touch sensitive display device.
  • the input/output controller 1110 may also output data to devices other than the display device, e.g. other computing devices via communication interface 1106, any other communication interface, or a locally connected printing device/computing devices etc.
  • ′computer′ is used herein to refer to any device with processing capability such that it can execute instructions. Those skilled in the art will realise that such processing capabilities are incorporated into many different devices and therefore the term ′computer′includes PCs, servers, base stations, eNBs, network nodes and other network elements, mobile telephones, UEs, personal digital assistants, other portable wireless communications devices and many other devices.
  • a remote computer may store an example of the process described as software.
  • a local or terminal computer may access the remote computer and download a part or all of the software to run the program.
  • the local computer may download pieces of the software as needed, or execute some software instructions at the local terminal and some at the remote computer (or computer network) .
  • a dedicated circuit such as a DSP, programmable logic array, or the like.
  • ′an′item refers to one or more of those items.
  • ′comprising′ is used herein to mean including the method blocks, features or elements identified, but that such blocks, features or elements do not comprise an exclusive list and a method or apparatus may contain additional blocks, features or elements.

Abstract

Methods, apparatus and user equipment are provided for scheduling communication resources to multiple user equipment (UEs) for use in uplink data transmission to a base station of a telecommunications network using unlicensed radio spectrum. The base station serves the multiple UEs and determines and schedules one or more sets of communication resources from unlicensed radio spectrum for each of the UEs. The base station receives, from each of the UEs, a request for a number of communication resources required by said each UE for transmitting uplink data. The base station determines one or more sets of communication resources for each of the UEs and allocates, for each UE, a set of communication resources from the determined set of communication resources, where the set of communication resources includes a minimum number of communication resources required for transmitting the uplink data based on the load of each of the communication resources, service type and/or capabilities of the UE. The set of communication resources use unlicensed spectrum and may comprise communication resources of a shared type which may be shared with at least another of the UEs served by the base station.

Description

COMMUNICATION RESOURCE ALLOCATION FOR TELECOMMUNICATIONS NETWORKS Technical Field
Embodiments or examples of the present invention generally relate to scheduling communication resources for uplink transmissions using unlicensed radio spectrum in a telecommunications network. In particular, scheduling and allocating the communication resources to a plurality of user equipment (UEs) served by a base station, where the UEs use the allocated communication resources for transmitting uplink data to the base station.
Background
Current telecommunications networks operate using licensed radio spectrum in which multiple accesses to the communications resources of the licensed radio spectrum is strictly controlled. Each user of the network is essentially provided a “slice” of the spectrum using a variety of multiple access techniques such as, by way of example only but not limited to, frequency division multiplexing, time division multiplexing, code division multiplexing, and space division multiplexing or a combination of one or more of these techniques. Even with a combination of these techniques, with the popularity of mobile telecommunications, the capacity of current and future telecommunications networks is still very limited, especially when using licensed radio spectrum.
The use of unlicensed radio spectrum may be used by telecommunication network operators in order to increase or supplement the capacity of their telecommunications networks. For example, a telecommunication network based on the Long Term Evolution (LTE) /LTE advanced standards have an enhanced downlink that uses a mechanism called Licensed-Assisted-Access (LAA) to operate on unlicensed spectrum such as the 5GHz Wi-Fi radio spectrum, which may increase the downlink capacity of current networks operating in the licensed radio spectrum. This enables the operation of a telecommunication network based on LTE in the 5GHz unlicensed spectrum for low power secondary cells based on regional regulatory power limits using carrier aggregation.
LAA may be used with a listen-before-talk (LBT) mechanism that is used by base stations before accessing the 5GHz unlicensed spectrum for downlink transmissions. This mechanism uses a clear channel assessment (CCA) check on channels of the unlicensed spectrum to determine the presence or absence of other signals prior to using the channel. The base stations can start the downlink transmissions on the carriers which are clear and the user equipment or terminals need to monitor the downlink carriers indicated by the based station with signalling.
Even with telecommunications networks using unlicensed spectrum for downlink transmissions to alleviate downlink capacity constraints, there is still a bottleneck in terms of uplink capacity in telecommunications networks especially with the advent of new services such as, by way of example: cloud services that synchronise images, music, multimedia and/or video data across multiple user devices; multimedia calls, personal video conferencing, or video messaging services such as Skype (RTM) or FaceTime (RTM) ; social media and/or photo messaging services such as Facebook (RTM) , Instagram (RTM) or Twitter (RTM) ; or any other service that requires the user equipment to upload data to the network. Therefore, there is a desire to improve the uplink capacity of telecommunications networks.
Summary
This Summary is provided to introduce a selection of concepts in a simplified form that are further described below in the Detailed Description. This Summary is not intended to identify key features or essential features of the claimed subject matter, nor is it intended to be used as an aid in determining the scope of the claimed subject matter.
Methods, apparatus and user equipment are provided for scheduling communication resources to multiple user equipment (UEs) for use in uplink data transmission to a base station of a telecommunications network using unlicensed radio spectrum. The base station serves the multiple UEs and determines and schedules one or more sets of communication resources from unlicensed radio spectrum for each of the UEs. The base station receives, from each of the UEs, a request for a number of communication resources required by said each UE for transmitting uplink data. The base station determines one or more sets of communication resources for each of the UEs and allocates, for each UE, a set of communication resources from the determined set of communication resources, where the set of communication resources includes a minimum number of communication resources required for transmitting the uplink data based on the load of each of the communication resources, service type and/or capabilities of the UE. The set of communication resources use unlicensed spectrum and may comprise communication resources of a shared type which may be shared with at least another of the UEs served by the base station. 
According to a first aspect of the invention there is provided a method for scheduling communication resources for a plurality of user equipment, UEs, transmitting uplink data to a base station in a telecommunication network using unlicensed radio spectrum, the method including: receiving, from each of the UEs, a request for a number of communication resources required by said each UE for transmitting uplink data; determining one or more sets of communication resources for use by the UEs; allocating to each UE a set of communication resources from the determined set of communication resources, wherein the set of communication resources comprises a minimum number of communication resources required for transmitting the uplink  data based on the load of each of the communication resources; sending a resource allocation message to each of the plurality of UEs, the resource allocation message including data representative of the set of communication resources allocated to said each of the UEs.
As an option, each communication resource in the set of determined communication resources is associated with an estimated load, L, which is normalised to a value in the range [0, 1] , and the minimum number of communication resources assigned to the UE includes selecting a set of communication resources from the determined set of communication resources that has the minimum number of communication resources in which the summation of the difference between 1 and the estimated load, L, of each of the selected communication resources is greater than the number of requested communication resources by the UE.
Optionally, the minimum number of communication resources further includes one or more additional communication resources required for the telecommunications network to meet a latency requirement associated with a communication service type used by the UE for transmitting the uplink data. Additionally or alternatively, the minimum number of communication resources is upper bounded by the maximum number of communication resources that the UE is capable of supporting.
As an option, the method may include measuring the load of one or more communication resources, receiving, from one or more of the UEs, measurement reports comprising data representative of communication resource load measurements associated with at least one of the communication resources, estimating the load for each communication resource based the measured load of one or more communication resources and measurement reports, and determining available communication resources for assigning to each of the UEs based on the estimated communication resource loads.
As an option, each UE may receive a set of communication resources of a shared type and which may be shared with at least one other UE served by the base station for uplink data transmission. Each of the UEs, on receiving their scheduled set of communication resources of a shared type, assigns any available communication resources that are determined to be unused by the at least one other UE for transmitting the uplink data. Additionally or alternatively, the set of communication resources assigned to each UE may include one or more communication resources of a shared type and which are shared between at least one other UE served by the base station for uplink data transmission, wherein each communication resource of the shared type is available for use by each UE when said UE detects said communication resource is unused or available. As an option, the set of communication resources may include a first set of communication resources of an unshared type and which are not shared with other UEs served by the base station.
As another option, the set of communication resources assigned to each UE may include a first set of communication resources of an unshared type and which are not shared with other UEs served by the base station, and a second set of communication resources of the shared type, where the UE may assign any available communication resources from the first set of communication resources for transmitting uplink data, and assign any available communication resources from their second set for use in transmitting the uplink data when the communication resources from their first set of communication resources are unavailable, not enough or insufficient to meet the uplink transmission requirements of the UE.
Optionally, for each UE, the data representative of the communication resources of the shared type for transmitting uplink data further comprises a priority indication for indicating when that UE can determine whether the associated communications resource (s) is unused, wherein the priority indication for each of the UEs associated with the same communication resource of the shared type is different.
As an option, each UE transmits an initial signal over one or more communication resources of the shared type when that UE detects based on the priority indication for that UE the one or more communication resources of the shared type are available for an uplink transmission and the method may further include receiving, from a UE and prior to the UE transmitting uplink data, an initial signal over one or more of the communication resources of the shared type that have been assigned to the UE for the uplink data transmission; identifying the UE from the transmitted initial signal based on the initial signal; and receiving uplink data transmitted from the identified UE.
As another option, each communication resource of the shared type includes a plurality of communication assessment gaps and a plurality of uplink data transmission blocks, where each communication assessment gap is adjacent one or more of the data transmission blocks, each communication assessment gap comprising two or more clear channel assessment, CCA, time slots, and each CCA time slot is associated with a CCA timing advance value.
As another option, the method may further include allocating, to each UE, a priority indication for each communication resource of the shared type allocated to said UE, wherein the priority indication comprises data representative of a CCA timing advance value indicating which CCA time slot of the communication assessment gap the UE may use to perform a CCA check in advance of an adjacent uplink data transmission block for transmitting uplink data on the associated communication resource. Additionally, the method may include storing, for each communication resource of the shared type allocated to each UE, a mapping of the identity of the UE with the allocated CCA time slot associated with each communication resource of the shared type.
As an option, the priority indication further comprises data representative of the number of CCA time slots associated with the communication assessment gap, and the method may include: receiving, on a communication resource of a shared type, one or more initial signals transmitted from a UE in one or more CCA time slots of a communication assessment gap prior to an uplink data transmission block; identifying the UE by: counting the number of transmissions of the initial signal; determining which CCA time slot is associated with the UE based on the initial signal count based and the number of CCA time slots associated with the communication assessment gap; and identifying the UE based on the mapping between the determined CCA time slot and the identity of the UE; receiving the uplink data transmitted from the identified UE in the uplink data transmission block adjacent the communication assessment gap in which the one or more initial signals were transmitted.
Optionally, the method may further include receiving a transmit buffer status of each UE being served by the base station, the transmit buffer status for each UE indicating one or more transmit data buffer sizes associated with the set of communication resources allocated to said each UE; comparing the transmit data buffer size of a first UE and a second UE sharing the same communication resource of a shared type, wherein the priority indication assigned to the first UE priority allows the first UE to access the communication resource before the second UE; swapping the priority indications of the first UE and the second UE for the same communication resource when the comparison indicates the transmit data buffer size of the second UE is greater than the transmit data buffer size of the first UE by a predefined transmit buffer threshold; and transmitting data representative of the swapped priority indications associated with the same communication resource of the shared type to each of the first and second UEs.
As another option, the method may further include detecting two or more UEs attempting to access the same communication resources of the shared type; identifying the detected two or more UEs; reallocating the communication resources in the second set of communication resources of the shared type for each of the detected two or more UEs, where the communication resources for the second set of communication resources for each of the detected two or more UEs are different; and transmitting a resource allocation message to each of the detected two or more UEs, the resource allocation message including data representative of the second set of communication resources reallocated to said each of the detected two or more UEs.
Optionally, the method may further include receiving channel assessment check measurement reports from two or more UEs allocated the same one or more communication resources of a shared type; determining whether the two or more UEs have correlated channel assessment check measurements for the one or more same communication resources of the shared type; reallocating the set of communication resources for each of the two or more UEs to minimise the two or more UEs having correlated channel assessment check measurements with  other UEs using the same one or more communication resources of the shared type; and transmitting a resource allocation message to each of the two or more UEs, the resource allocation message including data representative of the set of communication resources reallocated to said each of the two or more UEs.
As an option, two or more UEs may be allocated the same communication resource of a shared type, and the method further including determining a CCA correlation value for each pair of UEs of the two or more UEs, wherein the CCA correlation value represents the proximity of a pair of UEs; comparing each CCA correlation value correlation with a predetermined channel correlation threshold; reallocating another communication resource of the shared type to at least one UE from a pair of UEs if the comparison for that pair of UEs reaches the predetermined channel correlation threshold, wherein the another communication resource of the shared type replaces the same communication resource of the shared type for the at least one UE; and transmitting a resource allocation message to the at least one UE including data representative of the another communication resource of the shared type.
Optionally, prior to allocating a first UE to a communication resource of a shared type being used by one or more other UE (s) , the method may further include: determining a CCA correlation value for one or more pairs of UEs, each pair of UEs comprising the first UE and another UE using the communication resource of the shared type; comparing each CCA correlation value with a predetermined channel correlation threshold; and allocating the communication resource of the shared type to the first UE when all of the channel correlations for each pair of UEs satisfies a predetermined low channel correlation threshold.
As an option, determining a channel correlation for one or more pairs of UEs may further include at least one of: estimating the CCA correlation for a pair of UEs based on detected historical behaviour of the UEs; estimating the CCA correlation for a pair of UEs based on priority indications assigned to each UE; estimating the CCA correlation for a pair of UEs based on analysing measurement reports received from each UE associated with neighbour cells; estimating the CCA correlation for a pair of UEs based on analysing uplink transmissions of each UE; estimating the CCA correlation for a pair of UEs based on received measurement reports from the UEs; and estimating the CCA correlation for a pair of UEs based on receiving estimated channel correlation values from each UE of a pair of UEs.
As an option, the method for scheduling communication resources for a plurality of user equipment, UEs, transmitting uplink data to a base station in a telecommunication network using unlicensed radio spectrum may be performed by a base station or a base station apparatus and/or other network apparatus or entity in the telecommunications network.
According to a second aspect of the invention there is provided a method for transmitting uplink data from a UE to a base station in a telecommunication network using unlicensed radio spectrum. The method may include: transmitting, to a base station, a request for a number of communication resources required by the UE for transmitting uplink data; receiving, from the base station, data representative of a set of communication resources assigned to the UE for transmitting the uplink data, wherein the set of communication resources comprises a minimum number of communication resources required for transmitting the uplink data based on the load of each of the communication resources; determining whether one or more of the set of communication resources are available for transmitting the uplink data; assigning any available communication resources from the set of communication resources for transmitting the uplink data; and transmitting the uplink data based on the assigned communication resources from the set communication resources.
As an option, the minimum number of communication resources assigned to the UE may include one or more of: a selected set of communication resources that has the minimum number of communication resources in which the summation of the difference between 1 and an estimated load, L, of each of the selected communication resources is greater than the number of requested communication resources by the UE, the estimated load is normalised to a value in the range [0, 1] ; and one or more additional communication resources required for the telecommunications network to meet a latency requirement associated with a communication service type used by the UE for transmitting the uplink data; where the minimum number of communication resources assigned to the UE is upper bounded by the maximum number of communication resources that the UE is capable of supporting.
As another option, the method may include measuring an estimate of the load of one or more communication resources of the telecommunications network and transmitting, to the base station, measurement reports comprising data representative of the communication resource load measurements, where the measurement reports are used by the base station for determining available communication resources for assigning to the UEs served by the base station.
Optionally, the set of communication resources assigned to the UE may include one or more communication resources of a shared type and which are shared between at least one other UE served by the base station for uplink data transmission, where the method may further include: determining whether one or more of the set of communication resources are unavailable further comprises detecting one or more communication resources of the shared type are being used by said at least one other UE; and assigning any available communication resources from the set of communication resources assigned to the UE further comprising assigning one or more of the communication resources for the uplink transmission from the set of communication resources that are determined to be unused.
As an option, the set of communication resources assigned to the UE for transmitting uplink data further including: a first set of communication resources of an unshared type and which are not shared with other UEs served by the base station; and a second set of communication resources of the shared type; where the method may further include: assigning any available communication resources from the first set of communication resources for transmitting the uplink data; assigning any available communication resources from the second set of communication resources when there are not any, is not enough, or an insufficient number of available communication resources from the first set of communication resources for transmitting the uplink data; and transmitting the uplink data based on any assigned communication resources from the first set of communication resources and any assigned communication resources from the second set of communication resources.
Optionally, determining whether one or more communication resources of the set of communication resources are available for transmitting the uplink data further comprises performing a clear channel assessment check on each of the communication resources of the set of communication resources assigned to the UE.
As an option, the data representative of the set of communication resources of a shared type for transmitting uplink data further includes a priority indication associated the set of communication resources of the shared type for performing clear channel assessment checks, where the method further includes: determining, based on the priority indication, when the UE may perform a clear channel assessment check for each communication resource in the set of communication resources of the shared type for determining whether said each communication resource is available to the UE for transmission of the uplink data; and transmitting, after the clear channel assessment check on an available communication resource and prior to transmission of any uplink data, one or more initial signals over the available communication resource of the shared type.
Optionally, each communication resource of the shared type includes a plurality of communication assessment gaps and a plurality of uplink data transmission blocks, where each communication assessment gap is adjacent one or more of the data transmission blocks, each communication assessment gap including two or more clear channel assessment, CCA, time slots, and each CCA time slot is associated with a CCA timing advance value. The priority indication associated with each communication resource of the shared type allocated to the UE may include data representative of a CCA timing advance value indicating which CCA time slot of the communication assessment gap the UE may use to perform a CCA check in advance of an adjacent uplink data transmission block for transmitting uplink data on the associated communication resource. The method may further include, for each communication resource of the shared type: determining the CCA time slot for performing a CCA check based on the  associated CCA timing advance value; performing the CCA check in the determined CCA time slot of a channel assessment gap; and transmitting, prior to transmitting uplink data on a data transmission block, one or more initial signal (s) in the remaining CCA time slots of the channel assessment gap before a data transmission block when the CCA check indicates the communication resource of the share type is available.
As another option, transmitting the one or more initial signals further includes transmitting the initial signal repeatedly a predetermined number of times for use by the base station in identifying the UE after the clear channel assessment check on an available communication resource and prior to transmission of any uplink data. Additionally or alternatively, transmitting the one or more initial signals may further include transmitting the initial signal as a continuous signal for use by the base station in identifying the UE after the clear channel assessment check on an available communication resource and prior to transmission of any uplink data.
As an option, the method may further include: transmitting a transmit buffer status of the UE to the base station, wherein the transmit buffer status of the UE comprises data representative of one or more transmit data buffer sizes associated with the set of communication resources allocated to the UE; and receiving, from the base station, data representative of an updated priority indication for use with a communication resource of the shared type from the set of communication resources allocated to the UE.
Optionally, the method may include: detecting a transmission from another UE using the same communication resource of the shared type allocated to the UE; estimating the CCA correlation between the UE and the another UE based on the detected transmission; and transmitting the estimated CCA correlation between the UE and the another UE to the base station for use in allocating or reallocating one or more communication resources of the shared type to the plurality of UEs.
As an option, the method for transmitting uplink data from a UE to a base station in a telecommunication network using unlicensed radio spectrum may be performed by the UE and/or a UE apparatus.
According to another aspect of the invention there is provides a method for scheduling communication resources for a plurality of UEs transmitting uplink data to a base station in a telecommunication network using unlicensed radio spectrum, the method including: determining one or more sets of communication resources for use by the UEs; allocating to each UE a set of communication resources from the determined set of communication resources, wherein the set of communication resources comprises a first set of communication resources comprising communication resources of an unshared type and which are not shared with other UEs served by the base station and a second set of communication resources comprising communication  resources of a shared type and which are shared with other UEs served by the base station; and sending a resource allocation message to each of the plurality of UEs, the resource allocation message including data representative of the set of communication resources allocated to said each of the UEs.
According to a further aspect of the invention there is provided a method for transmitting uplink data from a UE to a base station in a telecommunication network using unlicensed radio spectrum, the method including: receiving, from the base station, data representative of a first set of communication resources and a second set of communication resources for transmitting uplink data, wherein the first set of communication resources comprise communication resources of an unshared type and which are not shared with other UEs served by the base station and the second set of communication resources comprise communication resources of a shared type and which are shared with other UEs served by the base station; assigning any available communication resources from the first set of communication resources for transmitting the uplink data; assigning any available communication resources from the second set of communication resources when the communication resources from the first set of communication resources are insufficient to meet the uplink transmission requirements of the UE; and transmitting the uplink data based on any assigned communication resources from the first of communication resources and any assigned communication resources from the second set of communication resources.
Optionally, a communication resource may include a set of one or more carrier frequencies, each carrier frequency comprising a set of one or more resource blocks, each resource block comprising a set of one or more resource elements, each resource element representing a subcarrier frequency offset from the carrier frequency and a time slot for transmitting an uplink orthogonal frequency division multiplexing data symbol.
According to further aspects of the invention there is provided a UE apparatus including a processor, a storage unit and a communications interface, where the processor unit, storage unit, and communications interface are configured to perform the method as described or as described herein. According to yet further aspects of the invention there is provided a base station apparatus including a processor, a storage unit and a communications interface, wherein the processor unit, storage unit, communications interface are configured to perform the method as described or as described herein. According to still further aspects of the invention there is provided a telecommunications network including a plurality of UEs configured as described with reference to the UE apparatus or as described herein, a plurality of base stations configured as described with reference to base station apparatus or as described herein, each base station configured for communicating with one or more of the plurality of UEs.
The methods described herein may be performed by software in machine readable form on a tangible storage medium or computer readable medium e.g. in the form of a computer program comprising computer program code means adapted to perform all the steps of any of the methods described herein when the program is run on a computer and where the computer program may be embodied on a computer readable medium. Examples of tangible (or non-transitory) storage media include disks, thumb drives, memory cards etc. and do not include propagated signals. The software can be suitable for execution on a parallel processor or a serial processor such that the method steps may be carried out in any suitable order, or simultaneously. For example, another other aspect of the invention there is provided a computer readable medium comprising a computer program, program code or instructions stored thereon, which when executed on a processor, causes the processor to perform a method for scheduling communication resources for a plurality of user equipment using unlicensed radio spectrum and/or as described herein. In a further aspect of the invention there is provided a computer readable medium comprising a computer program, program code or instructions stored thereon, which when executed on a processor, causes the processor to perform a method for transmitting uplink data from a UE to a base station using unlicensed radio spectrum and/or as described herein.
This acknowledges that firmware and software can be valuable, separately tradable commodities. It is intended to encompass software, which runs on or controls “dumb” or standard hardware, to carry out the desired functions. It is also intended to encompass software which “describes” or defines the configuration of hardware, such as HDL (hardware description language) software, as is used for designing silicon chips, or for configuring universal programmable chips, to carry out desired functions.
The preferred features may be combined as appropriate, as would be apparent to a skilled person, and may be combined with any of the aspects of the invention.
Brief Description of the Drawings
Embodiments of the invention will be described with reference to, by way of example only but not limited to, the following drawings, in which:
Figure 1 is a schematic diagram of a telecommunications network;
Figure 2 is a schematic diagram of an example communication resource structure for the uplink and/or downlink of the telecommunications network of figure 1;
Figure 3 is a schematic diagram of an example process for scheduling and using communication resources;
Figure 4a is a flow diagram of an example process for scheduling communication resources according to the invention;
Figure 4b is a flow diagram of another example process for scheduling communication resources according to the invention;
Figure 4c is a flow diagram of an example process for using scheduled communication resources according to the invention;
Figure 4d is a flow diagram of a further example process for scheduling communication resources according to the invention;
Figure 4e is a flow diagram of a further example process for using scheduled communication resources according to the invention;
Figure 5 is a schematic diagram illustrating an example of scheduled communication resources according to the invention;
Figure 6 is a schematic diagram illustrating another example of scheduled communication resources according to the invention;
Figure 7 is a flow diagram illustrating another example process of using scheduled communication resources according to the invention;
Figure 8a is a schematic diagram illustrating a communication resource frame structure for enhancing the scheduling and use of communication resources according to the invention;
Figure 8b is a schematic diagram illustrating another example process for enhancing the scheduling and use of communication resources according to the invention;
Figure 8c is a schematic diagram illustrating a further example process for enhancing the scheduling and use of communication resources according to the invention;
Figure 9a is a schematic diagram illustrating another example process of scheduling and using communication resources according to the invention;
Figure 9b is a graph illustrating performance results for comparing the conventional process of scheduling and using communication resources with the example process of scheduling and using communication resources according to the invention;
Figure 9c is another graph illustrating performance results for comparing the conventional process of scheduling and using communication resources with the example process of scheduling and using communication resources according to the invention;
Figure 9d is a further graph illustrating performance results for comparing the conventional process of scheduling and using communication resources with the example process of scheduling and using communication resources according to the invention;
Figure 9e is yet a further graph illustrating performance results for comparing the conventional process of scheduling and using communication resources with the example process of scheduling and using communication resources according to the invention;
Figure 10 is a schematic diagram of a base station device for implementing one or more aspects or functions of the invention; and
Figure 11 is a schematic diagram of a UE device for implementing one or more aspects or functions of the invention.
Common reference numerals are used throughout the figures to indicate similar features.
Detailed Description
Embodiments of the present invention are described below by way of example only. These examples represent the best ways of putting the invention into practice that are currently known to the Applicant although they are not the only ways in which this could be achieved. The description sets forth the functions of the example and the sequence of steps for constructing and operating the example. However, the same or equivalent functions and sequences may be accomplished by different examples.
The inventors have found that it is possible to improve allocation and scheduling of communication resources associated with unlicensed radio spectrum for a telecommunications network such that end user quality of service requirements for services provided to users over the network are met in a more efficient manner for different users and their user equipment devices (UEs) . A UE may comprise or represent any portable computing device for communications. Examples of UEs that may be used in certain embodiments of the described apparatus, methods and systems may be wired or wireless devices such as mobile devices, mobile phones, terminals, smart phones, portable computing devices such as laptops, handheld devices, tablets, tablet computers, netbooks, phablets, personal digital assistants, music players, and other computing devices capable of wired or wireless communications.
Figure 1 is a schematic diagram of a telecommunications network 100 comprising telecommunications infrastructure 102 (e.g. telecoms. infrastructure 102) , a plurality of communication network nodes 104a-104m with cells 106a-106m for serving a plurality of UEs 108a-108l. The plurality of communication network nodes 104a-104m are connected by links to the telecommunications infrastructure 102. The links may be wired or wireless (for example, radio communications links, optical fibre, etc. ) . The telecommunications infrastructure 102 may include one or more core network (s) that may be in communication with one or more radio access network (s) including the plurality of network nodes 104a-104m.
In this example, the network nodes 104a-104m are illustrated as base stations, which, by way of example only but not limited to, in a Long Term Evolution (LTE) Advanced telecommunications network may be eNodeBs (eNBs) . The plurality of network nodes 104a-104m (e.g. base stations) each have a footprint indicated schematically in figure 1 as corresponding hexagonal cells 106a-106m for serving one or more of the UEs 108a-108l. UEs 108a-108l are able to receive services from the telecommunications network 100 such as voice, video, audio and other services.
Telecommunications network 100 may comprise or represent any one or more communication network (s) used for communications between UEs 108a-108l and other devices, content sources or servers that are connected to the telecommunications network 100. The telecommunication infrastructure 102 may also comprise or represent any one or more communication network (s) , one or more network nodes, entities, elements, application servers, servers, base stations or other network devices that are linked, coupled or connected to form telecommunications network 100. The coupling or links between network nodes may be wired or wireless (for example, radio communications links, optical fibre, etc. ) . The telecommunication network 100 and telecommunication infrastructure 102 may include any suitable combination of core network (s) and radio access network (s) including network nodes or entities, base stations, access points, etc. that enable communications between the UEs 108a-108l, network nodes 104a-104m of the telecommunication network 100 and telecommunication infrastructure 102, content sources and/or other devices connecting to the network 100.
Examples of telecommunication network 100 that may be used in certain embodiments of the described apparatus, methods and systems may be at least one communication network or combination thereof including, but not limited to, one or more wired and/or wireless telecommunication network (s) , one or more core network (s) , one or more radio access network (s) , one or more computer networks, one or more data communication network (s) , the Internet, the telephone network, wireless network (s) such as the WiMAX, WLAN (s) based on, by way of example only, the IEEE 802.11 standards and/or Wi-Fi networks, or Internet Protocol (IP) networks, packet-switched networks or enhanced packet switched networks, IP Multimedia  Subsystem (IMS) networks, or communications networks based on wireless, cellular or satellite technologies such as mobile networks, Global System for Mobile Communications (GSM) , GPRS networks, Wideband Code Division Multiple Access (W-CDMA) , CDMA2000 or Long Term Evolution (LTE) /LTE Advanced networks or any 2nd, 3rd, 4th or 5th Generation and beyond type communication networks and the like.
In the example of figure 1, the telecommunications network may be, by way of example only but is not limited to, an LTE/LTE advanced communication network that uses orthogonal frequency division multiplexing (OFDM) technologies for the downlink and uplink channels. The downlink may include one or more communication channel (s) for transmitting data from one or more base stations 104a-104m to one or more UEs 108a-108l. Typically, a downlink channel is a communication channel for transmitting data, for example, from a base station 104a to a UE 108a. In LTE/LTE advanced communication networks, the multiple access method used in the downlink may be orthogonal frequency division multiple access (OFDMA) .
The uplink may include one or more communication channel (s) for transmitting data from one or more UE (s) 108a-108l to one or more base station (s) 104a-104m. The LTE/LTE advanced uplink may use single-carrier frequency division multiple access (SC-FDMA) mode, which is similar to OFDMA. Typically, an uplink channel is a communication channel for transmitting data, for example, from a UE 108a to a base station 108a. In OFDM, multi-carrier transmission is used to carry data in the form of OFDM symbols over the uplink and downlink channels. For example, an uplink channel or downlink channel between UE 108a and base station 104a may comprise or represent one or more narrowband carriers in which each narrowband carrier may further include a plurality of narrowband sub-carriers. This is known as multi-carrier transmission. Each of the narrowband sub-carriers is used for transmitting data in the form of OFDM symbols.
Both the uplink and downlink for LTE/LTE advanced networks are divided into radio frames (e.g. each frame may be 10ms in length) , in which each frame may be divided into a plurality of subframes. For example, each frame may include ten subframes of equal length, with each subframe consisting of a number of time slots (e.g. 2 slots) for transmitting data. In addition to the time slots, a subframe may include several additional special fields or OFDM symbols that may include, by way of example only, downlink synchronization symbols (s) , broadcast symbol (s) , and/or uplink reference symbol (s) . For OFDMA, the smallest resource unit or element in the time domain is an OFDM symbol for the downlink and an SC-FDMA symbol for the uplink.
Figure 2 is a schematic diagram illustrating a communication resource grid 200 in the frequency and time domain of a time slot 202 of a radio frame for when the telecommunications network 100 as described with reference to figure 1 may be an LTE/LTE Advanced network. The frequency domain is on the y axis of the communication resource grid 200 and the time domain is  the x axis of the communication resource grid 200. The communication resource grid 200 for the time slot 202 may represent one carrier of a plurality of carriers in the frequency domain. The communication resource grid 200 includes a plurality of resource blocks in which each resource block 204 may be associated with a particular carrier frequency of the plurality of carriers. Each carrier for uplink communications may be divided into a number, NRB, of one or more resource blocks in which each resource block 204 has a plurality of subcarriers, e.g. each resource block 204 may have a number, NSC, of one or more subcarriers, in which each subcarrier may be offset from the carrier frequency associated with the resource block 204. Each carrier includes a number of NRB x NSC subcarriers (i.e. a plurality of subcarriers) associated with one or more resource block (s) 204. Each resource block 204 may be represented by a subset of the plurality of subcarriers, e.g. NSC subcarriers, in the frequency domain and a plurality of symbols over the time slot 202, e.g. NSYMB symbols, in which each symbol has a symbol period. The resource block 204 defines a grid in the frequency and time domain of NSC x NSYMB resource elements 206. For resource block 204, a resource element 206 corresponds to a particular subcarrier of the NSC subcarriers and a particular symbol of the NSYMB symbols over time slot 202. The communications resources that may be assigned to a UE may be based on the communication resource grid 200 and are typically assigned in terms of one or more resource blocks/subcarriers associated with a corresponding carrier. The communication resources may be described in terms of one or more carrier (s) , one or more subcarrier (s) , and/or one or more resource block (s) .
The communication resource grid 200 for the downlink and uplink are effectively the same type of structure, with some slight differences. For example, the downlink for LTE/LTE Advanced networks typically uses OFDM multiple access, hence the downlink may use OFDM symbols in the time domain. The uplink for LTE-LTE Advanced networks typically uses SC-FDMA for accessing the uplink, and so SC-FDMA symbols may be used in the time domain. Although this may be the case for current LTE/LTE Advanced networks, it is to be appreciated by the person skilled in the art that any type of OFDM/SC-FDMA type symbols and the like may be used in the uplink.
Referring to figures 1 and 2, typically, in LTE networks, communication resources may be assigned by base stations 104a-104m (e.g. eNBs) to UEs 108a-108l in terms of a list of carriers and/or resource blocks 204. For example, in current LTE network (s) , the smallest dimensional unit for assigning resources in the frequency domain is a resource block with bandwidth 180kHz, which corresponds to NSC =12 subcarriers, each at 15kHz offset from the carrier frequency associated with the resource block. However, although LTE networks may assign communication resources in terms of a list of carriers or a number of one or more resource blocks, it is to be appreciated by the person skilled in the art that communication resources may be assigned in terms of one or more carriers, one or more resource blocks, one or more subcarriers, and/or, in future, in terms of one or more resource elements or any combination thereof.
In current or legacy communication systems the base stations 104a-104m may assign resource blocks to UEs 108a-108l by performing uplink carrier allocation. For licensed spectrum, a base station 104a may simply perform uplink carrier allocation by dividing the available resource blocks amongst the UEs 108a-108b being served by that base station 104a. For example, in LTE networks, when the carrier resources are not limited, the eNB 104a may allocate exactly the number of carriers and hence resource blocks that may be requested by UE 108a with the pre-condition being that licensed carriers from the licensed spectrum are protected by regulation and all the allocated carriers and hence resource blocks allocated to a UE 108a are clear for use. In such a scenario, the eNB 104a may satisfy the requirements of the UE 108a.
In order to supplement or even replace primary carrier allocation using licenced radio spectrum, LTE network operators may use unlicensed radio spectrum (e.g. 5GHz unlicensed spectrum currently used for Wi-Fi networks) from which to allocate additional communication resources (e.g. carriers and/or resource blocks) . For unlicensed spectrum, it is possible for any device or UE from a neighbouring cell 106b-106m to access the communication resources of the unlicensed spectrum at any time. Given UEs typically use LBT mechanism for accessing unlicensed spectrum there is no guarantee that other devices (e.g. Wi-Fi access points and/or Wi-Fi terminals, etc. ) or other UEs from neighbouring cells 106b-106m are not using any communication resources that the eNB 104a may allocate to UEs 108a or 108b of the current cell 106a. Due to the unpredictable nature of who may be using the communication resources of unlicensed spectrum, the eNB 104a has no way to know how many communication resources (e.g. carriers, subcarriers, and/or resource blocks) will be available from the allocated communication resources to allow UEs 108a-108b to meet the quality of service requirements of the communication services they are using. This uncertainty of a UE 108a-108b being able to access the required number of unlicensed spectrum communication resources at any time may lead to data packets being delayed, the communications network not meeting the service requirements of communication services used by UEs 108a-108b, and, in extreme cases, the data buffers for each UE 108a-108b may overflow leading to lost data packets, which further limits the performance of the communication network.
The eNB 104a can overcome the uncertainty of a UE 108a-108b being able to access the required number of unlicensed spectrum communication resources at any time by allocating more communication resources (e.g. carriers and/or resource blocks) than are required by the UEs 108a-108b. The number of unlicensed spectrum communication resources (e.g. carriers and/or resource blocks) allocated to a UE 108a or 108b is related to, among other things, the service type, the load levels on the communication resources (e.g. carriers and/or resource blocks) , and capability of the UE 108a or 108b. For example, when the service used by the UE 108a is latency sensitive then more communication resources than are required or requested by the UE 108a should be allocated to the UE 108a. In another example, when the load levels are high on the  communication resources allocated to the UE 108a, then more communication resources (e.g. carriers and/or resource blocks) should be allocated to the UE 108a. When the service type is not latency sensitive or the load levels are not high, less or the minimum number of communication resources (e.g. carriers and/or resource blocks) may be used. In all cases, the number of communication resources allocated to a UE 108a still needs to be within the capability range of the UE 108a.
The eNB 104a may use these techniques for the downlink as well as the uplink. In doing so, various mechanisms have been developed for allowing a UE 104a to use licensed spectrum, unlicensed spectrum such as licensed assisted access (LAA) carrier allocation, or both. For uplink carrier allocation, this means that carriers and/or resource blocks from the licensed spectrum as well as unlicensed spectrum may be allocated to a UE 104a.
For unlicensed spectrum, LAA carrier allocation may be used in conjunction with a listen before talk (LBT) procedure to allow a UE access to the additional carriers and/or resource blocks from the unlicensed spectrum that would otherwise be unavailable. LBT procedure may be a mechanism in which a UE 108 applies a clear channel assessment (CCA) check before using a carrier, resource block and/or channel. Typically, CAA check may use energy detection to determine the presence or absence of other signals on a particular carrier, resource block and/or channel to determine if that carrier, resource block and/or channel is occupied or clear to use. The LBT procedure may be used for LAA carriers from the unlicensed spectrum. Normally carriers from the licensed spectrum are specifically reserved for each UE 104 and thus typically do not require the LBT procedure and/or CCA check.
Figure 3 is a schematic diagram illustrating an uplink scheduling procedure 300 for unlicensed spectrum using UL LAA carrier allocation in telecommunication network 100. For simplicity, reference numerals of the same and/or similar components as used in figures 1 and 2 have been reused or are referred to. In this example, telecommunications network 100 includes a UE 108a that is being served by serving eNB 104a. The telecommunications network 100 also includes an eNB 104b that is “hidden” from UE 108a so it cannot be detected by UE 108a with energy detection and may cause interference to the UL of UE 108a. The uplink scheduling procedure is as follows:
The serving eNB 104a performs interference measurements to determine unlicensed spectrum communication resources that are being used by neighbouring eNBs, (e.g. eNB 104b) , and/or other UEs being served by eNB 104b and which may be hidden from the UE 108a. Any communication resources in the unlicensed spectrum being used by the hidden eNB 104b and its associated UEs may cause interference to UE 108a should the UE 108a be allocated those communication resources. For example, in  steps  302 and 304, signals from hidden eNB 104b or  from other UEs being served by “hidden” eNB 104b may cause interference to UE 108a using the same communication resources in the unlicensed spectrum. Thus, the serving eNB 104a interference measurements may assist to reduce the hidden eNB 104b interference. This is also known as the hidden node problem.
In step 306, the serving eNB 104a implements a carrier allocation algorithm that excludes the communication resources (e.g. carrier frequencies and/or resource blocks) that are being used by or at hidden eNB 104b and which may have a risk of interference from the hidden eNB 104b (e.g. also known as a hidden node risk) . The serving eNB 104a compiles a list of communication resources such as LAA carriers and/or resource blocks that may be used by UE 108a. The list of communication resources may include unlicensed carriers from the unlicensed spectrum that only the UE 108a may use within the cell served by eNB 104a.
In step 308, the serving eNB 104a signals to the UE 108a via an uplink grant message (e.g. UL GRANT) the list of communication resources (e.g. LAA carriers) that the UE 108a may use.
In step 310, after receiving the UL Grant message, the UE 108a implements CCA checks on the scheduled communication resources (e.g. unlicensed carriers and/or resource blocks etc. ) it received in the list of communication resources (e.g. LAA carriers) in the UL Grant message from the eNB 104a. According to the energy detection results, an LAA carrier and/or resource block could be either occupied of clear, but when the carrier is occupied then no transmission is allowed until it is clear to use. For example, when implementing energy detection, if the received energy on a particular carrier or resource block is above a certain threshold (e.g. this may be a predetermined or adjustable threshold) , then the carrier and/or resource block is marked as occupied. However, if the received energy is below the certain threshold, then this carrier and/or resource block is marked as clear and may be used in uplink data transmissions by the UE 108a.
In step 312, the UE 108a can then send uplink data to eNB 104a via unlicensed spectrum on those carriers and/or resource blocks (e.g. communication resources) marked as clear by the CCA check performed in step 310. Normally the UL LAA carriers are different from those used by neighbour eNB (s) 104b so interference at the serving eNB 104a may be optimised.
For LAA carriers, the allocated carriers may or may not be used by the UE 108a. This is determined by the UE 108a when it performs the CCA check before the UE 108a performs its uplink data transmission in step 312. In addition, the total number of allocated LAA carriers (e.g. carriers from the unlicensed spectrum) should typically be more than that required by the UE 108a because some of the communication resources (e.g. LAA carriers or resource blocks) may be occupied by other devices, eNBs, and/or UEs. Thus, when the UE 108a needs to send uplink  data, the UE 108a may not have enough communication resources (e.g. carriers) after performing its CCA checks as some of the communication resources (e.g. LAA carriers) may be occupied.
For example, when the total number of available communication resources (e.g. LAA carriers/unlicensed carriers and/or resource blocks) is less than that required by the UE 108a at a particular time, not all data packages/packets can be sent and some will remain in the transmission buffer of the UE 108a. These data packages/packets will experience a longer latency and the transmission buffer may even become overflowed leading to a loss of data packets. This results in a degradation of the quality of service for the user of UE 108a.
On the other hand, when the total number of available communication resources is more than the required number of communication resources that the UE 108a needs to transmit data packets, then UE 108a may not be able to use all of them due to no data packets in transmission buffer of UE 108a or the number of available communication resources is over the maximum number of carriers that the UE 108a can support. This means that the unused communication resources are wasted while there may be other UEs 108b waiting to be scheduled.
Effectively, for UL LAA carrier allocation, it is required that the total number of allocated communication resources will be more than that required by a UE 108a, but that some or all of the communication resources may still be unused by the UE 108a at certain points or times during the uplink data transmissions of UE 108a. This may lead to a less efficient usage of communication resources of the telecommunications network 100 than could otherwise be achieved and/or poor quality of service to users of the telecommunications network 100. Especially as the number of users of the telecommunications network 100 increases.
The inventors have found that it is possible to improve allocation of communication resources from unlicensed spectrum for a telecommunications network such that end user quality of service requirements for services provided to users over the network are met in a more efficient manner for different users and their UEs. Instead of the eNB 104a scheduling an excessive number of unlicensed spectrum communication resources to each UE 108a to ensure the UE 108a and telecommunication network 100 can meet its quality of service requirements, spectrum efficiency and risking wastage of communication resources, the eNB 104a may analyse the load of each of the communication resources available to it and determine an appropriate number of communication resources that may be allocated to each UE 108a-108b served by the eNB 104a.
The communication resource allocation for each UE is based on: 1) communication resource load (e.g. carrier load) which may be estimated from both UE measurement reports and eNB measurement reports and statistics; 2) communication service type being used by the UE (e.g., latency sensitive or not, tolerable packet loss, and other performance requirements of the communication service) ; and/or 3) UE capability (e.g., how many communication resources the  UE is capable of supporting and/or buffer size of the UE etc. (e.g. how many carriers can be aggregated, how many carriers can be CCA monitored by UE, etc. ) This will enable the minimum necessary number of communication resources to be efficiently allocated to each UE such that each UE will meet its uplink data transmission requirements.
In addition to efficiently allocating the minimum necessary number of communication resources to each UE, the eNB 104a may further improve upon the quality of service requirements, spectrum efficiency and quality of service of the UE and telecommunication network by assigning two or more UEs (e.g. terminals) to use or share the same communication resources (e.g. the same resource blocks of the same carriers) . This means each UE 108a may be assigned one or more overlapping communication resources (e.g. overlapping carriers and/or resource blocks) that are assigned to another UE 108b being served by serving eNB 104a.
The allocated communication resources from unlicensed spectrum to a UE 108a (e.g. terminal) can be split into two or more sets of communication resources of different types. For example, an unshared type of communication resource may be dedicated for a specific UE 108a to use and not shared with other UEs served by the same eNB 104a, while a shared type of communication resource may be shared between two or more UEs (e.g. multiple UEs or several UEs) .
For example, a first set of communication resources of the unshared type may be allocated for use by the UE 108a, where the UE 108a may assume that it has sole access to this first set of communication resources. Although the serving eNB 104a may have allocated the first set of communication resources to be of the unshared type and may only be used by UE 108a within the cell being served by eNB 104a and there should be no contention for UEs being served by eNB 104a, the UE 108a should still perform CCA checks when accessing the first set of communication resources of the unshared type before uplink data transmission. This is because other devices, eNBs, and/or other UEs in adjacent cells may still be free to use these communication resources and interfere with the UE 108a.
A second set of communication resources of the shared type may be allocated by the eNB 104a for use by the UE 108a in an uplink data transmission and is shared with other UEs being served by eNB 104a for their respective uplink data transmissions. The communication resource (s) of the shared type may be shared with other UEs being served by eNB 104a in so far as each UE 108a may use this communication resource when it is free or available for that UE 108a to use. The UEs 108a-108b do not simultaneously transmit on the same communication resource of the shared type, rather, they check whether the communication resource is being used by any UE, and if not, they are free to reserve and use the communication resource. Each  communication resource of the shared type is used by each UE when the other UEs sharing the communication resource are not using or transmitting on the communication resource.
For example, each communication resource of the shared type is available for use by each UE 108a when said UE 108a detects said communication resource is unused and/or not being used by at least one of the other UEs. Given this, each UE 108a may perform checks on the communication resource of the shared type to determine whether other UEs are using the communication resource. For example, the UE 108a may, by way of example only but is not limited to, perform CCA checks on the communication resource (s) of the shared type to determine whether it is free for uplink data transmission using these communication resources. This is avoids the UE 108a interfering with any other UEs uplink transmission (s) on the same communication resource (s) of the shared type.
For example, the eNB 104a may allocate one or more communication resources from the second set of communication resources of the shared type to another UE 108b such that UE 108a and UE 108b share these communication resources. Each UE 108a and 108b may use the corresponding allocated communication resource (s) of the shared type when it is available for an uplink data transmission. Each UE 108a and 108b may use CCA checks to determine which of the communication resource (s) of the shared type are free for an uplink data transmission before sending any uplink transmission data to avoid interference with each other when using these communication resources.
In addition, although the sets of communication resources may be split into two types of communication resources, the eNB 104a may allocate only communication resources of the unshared or shared types to one or more UEs 108a-108b. For example, the eNB 104a may allocate a set of communication resources of the shared type to UE 108a and another set of communication resources of the unshared type to UE 108b. Some of the communication resources allocated to UE 108a may also be the same as some of the communication resources allocated to UE 108b, such that UE 108a and 108b share those common communication resources. Alternatively or additionally, the eNB 104a may allocate the same communication resources of the shared type to both UE 108a and UE 108b such that they share all of the communication resources. As mentioned above, UE 108a and 108b may access the communication resources of the shared type using CCA checks to ensure they do not interfere with any uplink transmissions currently in progress by the other UE 108b or 108a, respectively.
For any communication resources of the shared type allocated to UE 108a and/or UE 108b, a priority mechanism may be used by the eNB 104a to prioritise access for each UE sharing one or more communication resources of the shared type. This may be implemented by the eNB 104a to provide a priority indication to each UE (e.g. UE 108a) that defines a start time of  when each UE may attempt to access or perform CCA checks for accessing one or more communication resources from the communication resources of the shared type. For example, UE 108a may be provided with a priority indication for a communication resource of a shared type that defines an earlier start time for performing the CCA checks than other UEs.
This means that UE 108a has a higher priority for accessing the communication resource of the shared type over the other UEs, which have lower priorities that define later start times for those UEs to perform CCA checks. If the CCA check of UE 108a passes, then, as part of the priority mechanism, the UE 108a may be configured to send an initial signal before its data transmission, where this initial signal serves to block lower priority UEs from accessing the communication resource. That is, the initial signal is transmitted by UE 108a such that the CCA checks of the other UEs for that communication resource fail. The initial signal is transmitted for a set period of time, which may be brief, before UE 108a transmits its data. If UE 108a does not need to use a communication resource of the shared type, then the UE 108b with the second highest priority will begin their CCA check of the communication resource earlier than the other lower priority UEs. This process repeats for other lower priority UEs.
In another example, a first set of communication resources (e.g. carriers or resource blocks/elements) of the unshared type (e.g. Type A carriers) from unlicensed spectrum may be allocated by the eNB 104a to UE 108a and accessed directly by the UE 108a after performing CCA checks as previously described with reference to Figure 3. The communication resources of the unshared type are dedicated communication resources that only UE 108a may use with serving eNB 104a. Communication resources of the unshared type are not shared with other UEs being served by eNB 104a. A second set of communication resources (e.g. carriers or resource blocks/elements) of the unshared type (e.g. Type A carriers) from unlicensed spectrum may be allocated by the eNB 104a to another UE 108b. The first set and second set of communication resources (e.g. carriers or resource blocks/elements) of the unshared type are different sets of communication resources (e.g. carriers or resource blocks/elements) and are not shared between UE 108a and 108b.
A second set of communication resources (e.g. carriers or resource blocks/elements) of a shared type (e.g. Type B carriers) from unlicensed spectrum may be allocated by the eNB 104a to UE 108a and the other UE 108b. Communication resources of the shared type are shared communication resources that may be shared between two or more UEs (e.g. UEs 108a and 108b) being served by the same eNB 104a. Both of the UEs 108a and 108b will use an intra-cell contention scheme (e.g. time advanced CCA checks and/or plus initial signals) when sharing these communication resources of the second type for their respective uplink data transmissions.
Once the first set of communication resources (e.g. carriers and/or resource blocks/elements) of the unshared type and the second set of communication resources (e.g. carriers and/or resource blocks/elements) of the shared type have been allocated by the eNB 104a to UE 108a, the eNB 104a sends the first and second sets of communication resources (e.g. carriers and/or resource blocks/elements) to the UE 108a with an identifying information indicating which communication resources (e.g. carriers and/or resource blocks) are of the unshared type and which communication resources (e.g. carriers and/or resource blocks) are of the shared type. Similarly, the eNB 104a sends a similar communication resource allocation to the other UE 108b.
Once each UE 108a and 108b receives their allocated set of communication resources (e.g. carriers, etc. ) and indications of which communication resources (e.g. carriers etc. ) are of the unshared and shared types, each UE 108a and 108b can start using the communication resources for uplink data transmission. Initially, a UE 108a may begin using the first type of communication resources for data transmission, as these communication resources may be assumed to be only allocated to that UE 108a and may be considered to be clear carriers and more likely to be free than the shared type of communication resources. However, the UE 108a must still perform a CCA check for the unshared type of communication resources to ensure other devices, eNBs, and/or other UEs being served by other eNBs are not using these communication resources.
When there are not enough communication resources of the unshared type (e.g. Type A) for the uplink data transmission requirements of UE 108a, then UE 108a may try and access the shared type of communication resources (e.g. the Type B carriers) . Prior to accessing the shared type of communication resources allocated to it, UE 108a may use CCA checks to determine which of the shared type of communication resources may be clear or occupied. Thus, UEs 108a and 108b may use CCA checks to determine which of these communication resources of the shared type are clear to use. Thus, UEs 108a and 108b will try to access the shared type of communication resources (e.g. Type B carriers) . Should two or more UEs 108a-108l try and access the same communication resource (e.g. the same carrier or resource blocks) at the same time, a collision may occur and none of the UEs transmission may be received by the eNB 104a. Thus, a priority based solution (as briefly described previously) may be applied to provide priority access to one or more of the UEs 108a-108l that may have been allocated access to the same one or more communication resource (s) of the shared type.
It is to be appreciated that the set of unlicensed spectrum LAA carriers may include the unshared type of communication resources and shared type of communication resources. The advantage of allowing UEs 108a and 108b to access the same set of communication resources of a shared type (e.g. carriers or resource blocks/elements) (e.g. Type B carriers) is that this scheme results in improved spectrum efficiency as the shared type of communication resources may be  used by one UE when the other UE (s) do not need to use the same resources. In addition, another advantage is that sharing a set of communication resources results in simplified radio resource management for the eNB 104a because unlicensed spectrum LAA carriers can be shared between multiple UEs 108a and 108b. In addition, another advantage resulting from sharing carriers of the same type between multiple UEs 108a and 108b is that measurement of interference for each of these UEs 108a and 108b may be performed less frequently by the eNB 104a and the eNB 104a has more flexibility to implement the radio resource allocation.
Figure 4a is a flow diagram illustrating an example process 400 for a base station 104a using unlicensed radio spectrum in a telecommunications network 100 to schedule a set of communication resources (e.g. resource blocks and/or carriers) to one or more UEs 108a and 108b or a plurality of UEs being served by the base station 104a. For simplicity, reference numerals of the same and/or similar components as used in figures 1 and 2 have been reused or are referred to. For simplicity, two UEs 108a and 108b are described being served by the base station 104, but it is to be appreciated by the skilled person that the base station 104a may serve a plurality of UEs and the following process 400 may be applied to each of the plurality of UEs served by the base station 104a. The process 400, being performed by the base station 104a, may be as follows:
Each UE 108a or 108b of the plurality of UEs being served by the base station 104a may transmit, to the base station 104a, a request for a number of communication resources required by the UE 108a or 108b for transmitting uplink data. In step 402, the base station 104a receives, from each UE 108a or 108b of the plurality of UEs, a request for a number of communication resources required by said each UE 108a and 108b for transmitting uplink data.
In step 404, determining one or more sets of communication resources for use by the UEs 108a and 108b. The determined one or more sets of communication resources are the overall set of communication resources that are available to be allocated by the base station 104a to the UE 108a and/or 108b. This set of communication resources may be determined from measurement reports and/or interference measurements of the unlicensed radio spectrum in the vicinity of the base station 104a. It is to be appreciated that the one or more sets of communication resources may be associated with one or more resource blocks, where each resource block may be associated with a carrier.
In step 406, allocating to each UE 108a or 108b a set of communication resources from the determined set of communication resources, where the set of communication resources for each UE 108a or 108b includes a minimum or sufficient number of communication resources required by that UE 108a or 108b for meeting the uplink data transmission requirements for transmitting the uplink data. The minimum or sufficient number of communication resources may  be based on the load of each of the communication resources, the communication service type being used by each UE 108a or 108b, and/or capability of the UE 108a or 108b or a combination thereof. The minimum or sufficient number of communication resources for each of the UEs 108a and 108b may be greater than or equal to the number of communication resources requested by each of the UEs 108a or 108b.
In step 408, a resource allocation message is sent to each of the plurality of UEs 108a and 108b in which each resource allocation message includes data representative of the set of communication resources allocated to said each of the UEs 108a or 108b. For LTE networks, the resource allocation message may be in the form of a GRANT uplink message.
Optionally, in step 410, the base station may analyse the communication resources allocated to UEs 108a or 108b served by the base station 104a based on, by way of example only but not limited to, analysing performance of communications resources from the determined set of communication resources or other communication resources based on communication resource load measurements, estimations or other measurements performed by the base station 104a on communication resources, and/or measurement reports and/or other load estimates performed and received from the UEs 108a or 108b, etc. From this analysis, the base station 104a may update the determined set of communication resources, and/or, as a consequence, update the allocation of communication resources to each UE 108a or 108b to, by way of example only, improve the uplink transmission performance of the UEs 108a or 108b.
In step 406, a set of communication resources may be selected, for each UE 108a, from the determined set of communication resources based on an analysis and/or estimation of the load, L, of each of the communication resources in which the set of communication resources is the minimum number of communication resources greater than the requested number of communication resources that are sufficient to meet the transmission requirements of the UE 108a.
Each communication resource has an associated load or an estimated load, L, where the estimated load is based on the number of transmissions occurring on the communication resource. The load, L, may be normalised to represent a value in the range of [0, 1] , where a value of 0 indicates a fully unloaded communication resource and a value of 1 indicates a fully loaded communication resource. A fully unloaded communication resource is one in which there is no interference from other devices or transmission from other UEs whatsoever below a certain interference threshold. A fully loaded communication resources is one in which there is always a transmission above a certain transmission threshold from a UE or interference from other devices. The base station 104a may determine or estimate the load, L, of each of the determined sets of  communication resources from measurement reports of the UEs and also measurements of the communication resources by the base station 104a.
For example, the minimum number of communication resources, NCMIN, allocated or assigned to the UE 108a or 108b may include selecting a set of communication resources from the determined set of communication resources that has the minimum number of communication resources in which the summation of the difference between 1 and the estimated load, L, of each of the selected communication resources is greater than the number of requested communication resources by the UE. The number of selected communication resources in the set is minimised. The minimum number of communication resources for a UE 108a is the minimum number of communication resources that are sufficient to meet the uplink transmission requirements of that UE 108a requesting a required number of communication resources, Nreq. Note, Nreq depends on the uplink transmission requirements of each UE and may be different for each of the UEs 108a and 108b being served by an eNB 104a. Typically, as most communication resources may have some level of occupancy, i.e. have a load, L, in the range (0, 1] , then the minimum number of communication resources allocated to a UE 108a will be greater than the number of required communication resources, Nreq, requested by that UE 108a.
The minimum number of communication resources may also include one or more additional communication resources required for the telecommunications network to meet a latency requirement associated with a communication service type used by the UE 108a or 108b for transmitting the uplink data. In addition, the minimum number of communication resources will be upper bounded by the maximum number of communication resources that the UE 108a or 108b is capable of supporting. This will depend, among other things, on the hardware or technology of each UE 108a or 108b.
The base station 104a and UEs 108a and 108b served by base station 104a may repeatedly perform measurements of the communication resources (e.g. carriers and/or resource blocks) in which the base station 104a analyses the measurements to determine or estimate the load of each of the communication resources in the set of determined communication resources. Once the load for each of the communication resources in the set of determined communication resources is estimated, the base station 104a is then able to estimate a minimum number of communication resources that may be allocated to each UE based on their requested number of communication resources. The base station 104a will need to periodically or repeatedly analyse the loads on the determined set of communication resources because the loads will dynamically change depending on the number of transmissions that UEs 108a and 108b and other UEs served by base station 104a may be making on the communication resources assigned to them, as well as other data transmissions that are measured above a certain interference threshold and made by other UEs from adjacent cells or devices (e.g. Wi-Fi devices or other devices using  unlicensed spectrum overlapping with the communication resources) using these communication resources.
For example, assuming there are a number, N, of communication resources in the determined set of communication in which each communication resource has a load equal to Li∈ [0, 1] for i=1, 2, ..., N, then the minimum number of communication resources, NCmin, that may be allocated to a UE 108a requesting Nreq communication resources may be based on:
Figure PCTCN2017071660-appb-000001
For example, if there are 6 communication resources in the determined set of communication resources each having a load of 0.5, then, for a UE 108a that requests Nreq = 2 communication resources, four communication resources are the minimum number of communication resources that are sufficient to meet the above relation and also meet the requested data transmission requirement of the UE 108a. In another example, if there are 8 communication resources in the determined set of communication resources each having a load of 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, then for a UE 108a that requests Nreq = 2 communication resources, then the three communication resources with load of 0.1, 0.2 and 0.3 would be the minimum number of communication resources that may be selected from this set of communication resources that are sufficient to meet the above relation and to also meet the requested data transmission requirement of the UE 108a. After allocating or assigning UE 108a the three communication resources, the base station 104a may estimate the load of these previously assigned 3 communication resources 0.1, 0.2, 0.3, increases to 1.0 such that the 8 communication resources in the determined set of communication resources has a load of 1.0, 1.0, 1.0, 0.4, 0.5, 0.6, 0.7, 0.8. Should another UE 108b also request Nreq=2 communication resources, then the last five communication resources with load of 0.4, 0.5, 0.6, 0.7 and 0.8 would be the minimum number of remaining communication resources that may be selected for allocating to UE 108b. As all UEs have finite capabilities, the minimum number of communication resources, NCmin, for a UE will be upper bounded by the number of communication resources that UE is capable of handling.
In addition, as mentioned above, the number of additional communication resources that may be added to the NCmin selected communication resources depends on the communication service type (e.g. latency requirements) that may be used by each of the UEs 108a and 108b.
Each UE 108a of the plurality of UEs may receive, from the base station 104a, the resource allocation message including data representative of a set of communication resources assigned to the UE 108a for use in transmitting the uplink data, where the set of communication resources comprises a minimum number of communication resources required for transmitting the uplink data based on the load of each of the communication resources. The UE 108a determines  whether one or more communication resources of the set of communication resources are unavailable or available for transmitting the uplink data. The UE 108a may perform channel assessment checks on each communication resource in the set of communication resources allocated to it. The UE 108a then assigns any available communication resources from the set of communication resources for use in transmitting the uplink data. The UE 108a then transmits the uplink data based on the available communication resources assigned to the transmission of uplink data.
Figure 4b is another flow diagram illustrating another example process 420 for a base station 104a using unlicensed radio spectrum in a telecommunications network 100 to schedule a set of communication resources (e.g. resource blocks and/or carriers) to one or more UEs 108a and 108b or a plurality of UEs being served by the base station 104a. For simplicity, reference numerals of the same and/or similar components as used in figures 1 and 2 have been reused or are referred to in the following. It is to be appreciated by the skilled person that the steps of process 400 may be combined with the steps of process 420 for allocating a sufficient number of communication resources to each UE 108a and 108b of the plurality of UEs served by base station 104a. The process 420, being performed by the base station 104a, may be as follows:
In step 422, determine from measurement reports and/or interference measurements one or more sets of communication resources for use by each UE 108a or 108b of the plurality of UEs being served by the base station 104a. Again, as in step 404, the determined set of communication resources is the overall set of communication resources that the base station 104a determines are available for allocating to one or more UEs served by the base station 104a.
In step 424, the base station 104a may allocate, from the determined sets of communication resources, a set of the communication resources of a shared type to each of the plurality of UEs 108a or 108b. Other UEs being served by the base station 104a may be allocated further sets of communication resources of the shared type accordingly. The set of communication resources assigned to each of the plurality of UEs 108a or 108b may have one or more communication resources in common or the same that may be shared with each other and/or other UEs of the plurality of UEs served by the base station 104a. The number of communication resources in the set of communication resources of the shared type that may be selected from the determined sets of communication resources may be determined based on the example method (s) and process (es) 400 and in  particular steps  404 and 406, where a sufficient number of communication resources that meets the uplink data transmission requirements of the UE 108a can be determined. The number of communication resources may be based on the load of the selected communication resources, communication service type, and/or UE capability requirements.
In step 426, the base station 104a may send resource allocation messages to each of the plurality of UEs 108a and 108b (and/or other UEs being served by base station 104a) . The resource allocation message for a UE 108a may include data identifying the set of communication resources of the shared type allocated to the UE 108a. For LTE networks, the resource allocation message may be in the form of a GRANT uplink message.
As an option, in step 428, the base station 104a may proceed to analyse the sets of communication resources allocated to each of the plurality of UEs 108a and 108b being served by the base station. This may include performing further interference measurements on the sets of communication resources, estimating UE interference or correlations with other UEs using the same communication resource, monitoring transmit buffer statuses of the UEs and the like and/or reallocating appropriate sets of communication resources of the shared type to one or more of the UEs 108a or 108b and sending further resource allocation messages to each of the UEs 108a or 108b, accordingly.
Figure 4c is a flow diagram illustrating an example process 430 for a UE 108a in a telecommunications network 100 for assigning one or more communication resources from a set of communication resources that have been scheduled to the UE 108a by a base station 104a according to process 420 for uplink data transmission to base station 104a. For simplicity, reference numerals of the same and/or similar components as used in figures 1 and 2 have been reused or are referred to in the following. The process 430, being performed by the UE 108a, may be as follows:
In step 432, the UE 108a may receive a set of communication resources of a shared type from the base station 104a. This may include the UE 108a receiving, from the base station 104a serving the UE 108a, a resource allocation message including data representative of the set of communication resources of the shared type. For example, in LTE networks, the resource allocation message may be in the form of an uplink GRANT message that is received by UE 108a.
In step 434, the UE 108a may check whether any communication resources from the set of communication resources are available for sending uplink data. For example, the UE 108a may perform a CCA check to determine which of the communication resources associated with the second set of communication resources are clear for transmission or occupied by other UEs or devices using the unlicensed radio spectrum associated with the communication resources. Although CCA checks are described herein, it is to be appreciated by the skilled person that other types of checks may be applied or used, for example, intra-cell channel checks and the like.
In step 436, the UE 108a may assign any available communication resources from the set of communication resources for sending uplink data to the base station 104a. The available  communication resource (s) are those communication resources from the set of communication resources that have been determined to be unoccupied for the uplink data transmission.
In step 438, the UE 108a uses the assigned communication resource (s) for the uplink data transmission to the base station 104a.
Figure 4d is a flow diagram illustrating an example process 440 for a base station 104a in a telecommunications network 100 to schedule a set of communication resources (e.g. resource blocks and/or carriers) to one or more UEs 108a and 108b or a plurality of UEs being served by the base station 104a. For simplicity, reference numerals of the same and/or similar components as used in figures 1 and 2 have been reused or are referred to in the following. It is to be appreciated by the skilled person that the steps of process 440 may be combined with the steps of process (es) 400 and/or 420 or any combination thereof for allocating a sufficient number of communication resources to each UE 108a and 108b of the plurality of UEs served by base station 104a. The process 440, being performed by the base station 104a, may be as follows:
In step 442, determine from measurement reports and/or interference measurements one or more sets of communication resources for each UE 108a or 108b of the plurality of UEs being served by the base station 104a. As described with respect to  processes  400 and 420, the determined set of communication resources is the overall set of communication resources that are available for use by the base station 104a for allocating to one or more of the plurality of UEs. It is to be appreciated that the determined one or more sets of communication resources may be associated with one or more resource blocks, where each resource block may be associated with a carrier.
In steps 444a and 444b, the base station 104a may allocate, from the determined sets of communication resources, a first set of the communication resources of an unshared type to UE 108a and which are not shared with other UEs served by the base station 104a and a second set of communication resources of a shared type to UE 108a and which are shared between at least one other UE served by the base station for uplink data transmission. The first set of communication resources of the unshared type are different to the second set of communication resources of the shared type. Other UEs being served by the base station 104a may be allocated further sets of communication resources of the unshared type and/or shared types accordingly. The sets of communication resources of the shared type may be shared with one or more other UEs served by base station 104a. The sets of communication resources of the unshared type are not shared with one or more other UEs served by the base station 104a. That is, the sets of communication resources of the unshared type are mutually exclusive to the sets of communication resources of the shared type for UEs served by the base station 104a.
The number of communication resources in the set of communication resources of the shared type and unshared types that may be selected from the determined sets of communication resources and allocated to the UE 108a may be determined based on the example method (s) and process (es) 400 and in  particular steps  404 and 406 and the loads of the available communication resources of the shared type and the available communication resources of the unshared type. The number of communication resources of the shared and unshared types may be based on the load of the selected communication resources, communication service type, and/or UE capability requirements. The total number of communication resources allocated to the UE 108a should be sufficient to meet the uplink data transmission requirements of the UE 108a.
For example, the number of communication resources of the unshared type allocated to UE 108a may the number of communication resources requested by the UE 108a, where the number of communication resources of the shared type allocated to the UE 108a may be the difference between the minimum number of communication resources (e.g. NCMIN) determined based load of the selected communication resources, communication service type, and/or UE capability requirements as described with reference to figure 4a and the number of communication resources requested by the UE 108a. It is to be appreciated by the skilled person that the numbers of communication resources of the shared and unshared types may be split in any other suitable way depending on the loads on the determined set of communication resources.
In step 446, the base station 104a may send resource allocation messages to each of the UEs 108a and 108b of the plurality of UEs being served by base station 104a. The resource allocation message for a UE 108a may include data identifying or representative of the first set of communication resources of an unshared type allocated to the UE 108a and data identifying or representative of the second set of communication resources of a shared type allocated to the UE 108a. For example, in LTE networks the resource allocation message may be in the form of a GRANT uplink message.
In step 448, the base station 104a may optionally proceed to analyse the communication resource allocation for each of the plurality of UEs being served by the base station to determine whether they have the appropriate set of communication resources for transmitting uplink data. This may include performing further interference measurements, estimating UE interference or correlations with each other or other UEs using the same communication resource, monitoring transmit buffer statuses of the UEs, reallocating appropriate sets of communication resources of the unshared and/or shared types, determining whether to adjust priority or prioritise access for each UE to access the communication resources (e.g. based on transmit buffer status) for each of the UEs 108a and 108b of the plurality of UEs and sending further resource allocation messages accordingly to update those UEs with changed sets of communication resources and/or priorities etc.
Figure 4e is a flow diagram illustrating an example process 450 for a UE 108a in a telecommunications network 100 for assigning one or more communication resources (e.g. resource blocks and/or carriers) , which may be scheduled by a base station 104a according to one or more of  processes  400, 420, or 440 or any combination thereof for uplink data transmission to base station 104a. For simplicity, reference numerals of the same and/or similar components as used in figures 1 and 2 have been reused or are referred to in the following. The process 450, being performed by the UE 108a, may be as follows:
In step 422, the UE 108a may receive a first set of communication resources of an unshared type and a second set of communication resources of a shared type. The UE 108a may receive a resource allocation message including data representative of the first and second sets of communication resources from base station 104a serving the UE 108a. For example, in LTE networks the resource allocation message may be in the form of an uplink GRANT message that is received by UE 108a.
In step 454, the UE 108a, for an uplink data transmission to base station 104a, may assign communication resources (e.g. one or more resource block (s) ) from the first set of communication resources of the unshared type for the uplink data transmission. In order to do this for unlicensed radio spectrum, the UE 108a may check whether any communication resources (e.g. any resource block (s) and/or carriers) associated with the first set of communication resources of the unshared type are available for sending uplink data. This is because any other device or other UE not being served by base station 104a may be using one or more communication resources from the first set and thus interfere with the UE 108a should UE 108a choose to transmit on those communication resources. For example, the UE 108a may perform a CCA check to determine which of the communication resource associated with the first set of communication resources are clear for transmission or occupied. Although CCA checks are described herein, it is to be appreciated by the skilled person that other types of checks may be applied or used, for example, intra-cell channel checks and the like.
In step 456, the UE 108a may determine that more communication resource (s) than those in the first set of communication resources of the unshared type may be required for the uplink data transmission. When all remaining communication resource (s) from the first set are unavailable, have already been assigned for the uplink transmission, and/or are not enough or are insufficient by themselves for the uplink transmission by the UE 108a, the UE 108a may check whether any communication resource (s) associated with the second set of communication resources of the shared type are available for sending uplink data. For example, the UE 108a may perform a CCA check to determine which of the communication resources (e.g. resource block (s) and/or carrier (s) ) associated with the second set of communication resources are clear for transmission or occupied. Although CCA checks are described herein, it is to be appreciated  by the skilled person that other types of checks may be applied or used, for example, intra-cell channel checks and the like.
In step 458, the UE 108a may assign any available communication resource (s) associated with the second set of communication resource (s) for sending uplink data to the base station 104a. The available communication resource (s) associated with the second set of communication resource (s) are those communication resources (e.g. resource blocks and/or carriers) that have been determined by UE 108a to be unoccupied for the uplink data transmission.
In step 460, the UE 108a uses the assigned communication resources from the first and/or second sets of communication resources for the uplink data transmission to the base station 104a.
Figure 5 is a schematic diagram illustrating an example of scheduling/allocating communication resources 500 for a first and a second UE (e.g. UE1 and UE2) . Each square of the communication resources 500 represents a carrier for a particular time period (e.g. time periods T1, T2, T3, T4, T5, T6, T7, T8, T9, etc...) . In this example, the communication resources 500 includes, by way of example only but not limited to, 11 carriers and 13 time periods. It is to be appreciated by the skilled person that any number of carriers and time periods may be used when scheduling the communication resources. In addition, each of the carriers may include one or more resource blocks or a plurality of resource blocks. All carriers that are to be scheduled to the UEs (e.g. UE1 and UE2) are split into two types, an unshared type (e.g. Type A) and a shared type (e.g. Type B) . Type A carriers are only for use by one UE and Type B carriers are for two or more UEs to share and access based on intra-cell contention (e.g. each UE may use CCA checks etc. ) . Although the communication resources are split into Type A and Type B carriers, it is to be appreciated by the skilled person that UEs may share the same physical Type A carrier but have a different set of resource blocks assigned to each UE such that they do not share the same resource blocks.
In the example shown in figure 5, for time period T1 the UE1, which required 4 carriers, is allocated with 4 Type A carriers and 4 Type B carriers and UE2, which required 3 carriers is allocated 3 Type A carriers and 4 Type B carriers. The Type A carriers allocated to UE1 are different to the Type A carriers allocated to UE2, this is because these communication resources are of the unshared type. The Type B carriers allocated to UE1 and UE2 are the same, that is UE1 and UE2 share the same Type B carriers. Each carrier may represent a number of resource blocks, thus if the carrier is a Type B carrier, then the resource blocks for this carrier will be shared between UE1 and UE2. Although, in this example, the Type B carriers of UE1 are same as the Type B carriers of UE2, it is to be appreciated by the skilled person that one or more of the Type B carriers of UE1 does not have to be the same as one or more Type B carriers of UE2.
Each of the UEs (e.g. UE1 and UE2) shall first use its Type A carriers for uplink data transmission. When a UE does not have enough Type A carriers to use, then that UE can access the Type B carriers. For instance, in time period T1 for the set of Type A carriers allocated to UE1, UE1 has 3 available Type A carriers represented by squares with vertical hashing and one Type A carrier represented by a black square that not available to UE1. The unavailable Type A carrier may have failed a CCA check performed by UE1 due to other UEs or devices other than UE2 using this Type A carrier. Since UE1 needs 4 carriers, UE1 may use one Type B carrier from the set of Type B carriers as represented by the square with vertical hashing in the set of Type B carriers for UE1 and UE2. Similarly, in time period T1 for the set of Type A carriers allocated to UE2, UE2 has 2 available Type A carriers represented by squares with horizontal hashing, and one Type A carrier, represented by a black square, which is for some reason not available to UE2. Since UE2 needs 3 carriers, then UE2 may use one Type B carrier from the set of Type B carriers as represented by the square with horizontal hashing in the set of Type B carriers for UE1 and UE2.
In time period T4, UE1 has 4 available Type A carriers that it can use and so no additional carriers are required. In time period T4, UE1 does not use any Type B carriers. However, in time period T4, UE2 can only use 1 Type A carrier and so ends up using an additional two Type B carriers. In some instances, some of the Type B carriers are not used by UE1 or UE2, for example, in time period T1 two Type B carriers are not used, represented by the white squares, and three are not used in time period T8. So, although there is a high use of Type B carriers during time periods T1-T9, some carriers may not be used in all periods. However, as can be seen, there is a larger utilisation of carriers than would otherwise be the case for legacy LAA carrier scheduling.
Although figure 5 describes that Type B carriers are being shared by 2 UEs, UE1 and UE2, it should be appreciated by the person skilled in the art that more than two UEs may share the same set of Type B carriers or have one or more Type B carriers in common. There is also no need to limit that the Type B carriers of UE1 must be identical to Type B carriers of UE2 or other UEs. Furthermore, the number of Type A carriers may be greater than or equal to zero, while the number of Type B carriers may be greater than or equal to 1.
Figure 6 illustrates another example allocation of communication resources 600 by a base station 104a to one or more UEs. For simplicity, reference numerals of the same and/or similar components as used in figures 1 and 2 may be reused or are referred to in the following. In this example, and for simplicity, there are four UEs, UE1, UE2, UE3 and UE4. In this example, the communications resources are defined in terms of a plurality of carriers and a plurality of one or more resource blocks associated with each of the plurality of carriers. Although four UEs are shown in figure 6, it is to be appreciated by the skilled person that the communication resources  600 are not limited to four UEs but may, by way of example, be allocated to one or more UEs, a plurality of UEs and/or multiple UEs. For simplicity, the communication resources 600 are divided into several carriers that include, by way of example only but is not limited to, a first carrier, a second carrier and a third carrier (e.g. carrier1, carrier2 and carrier3, respectively) . Each carrier includes a plurality of resource blocks, which are represented by, for simplicity and by way of example only but is not limited to, a plurality of squares. It is to be appreciated that one or more resource blocks associated with a particular carrier or subcarrier may be represented by one or more of the plurality of resource elements associated with that carrier or subcarrier. Although each small square may represent a resource block, this is by way of example only, it is to be appreciated by the skilled person that the number of squares illustrated for each carrier in Figure 6 is by way of example only and for simplicity. For example, for each carrier, each of the small squares may represent one or more of the plurality of resource blocks or that two or more squares may represent one or more of the plurality of resource blocks or any other configuration of resource blocks associated with each carrier.
Referring to figure 6, carrier1 is an unshared type of carrier (e.g. a Type A carrier) for both UE1 and UE2, in which each of UE1 and UE2 have a different set of resource blocks from the plurality of resource blocks associated with carrier1. The communication resources of the unshared type for UE1 is represented by a first set of resource blocks associated with carrier1 of an unshared type (e.g. the resource block squares with vertical hash lines) . Carrier1 also has a second set of resource blocks associated with carrier1 of an unshared type allocated to UE2 (e.g. the resource block squares with horizontal hash lines) . Although UE1 and UE2 are allocated the same carrier (e.g. carrier1) , UE1 and UE2 have mutually exclusive sets of resource blocks of the unshared type (e.g. Type A) . In addition, carrier1 may also be a shared type of carrier for UE3 and UE4. Carrier1 may be set as a shared type of carrier (e.g. a Type B carrier) because these UEs share a third set of resource blocks associated with carrier1 (e.g. the resource block squares with cross diagonal hash lines) , but which are mutually exclusive with the first and second sets of resource blocks associated with carrier1 of the unshared type that are allocated to UE1 and UE2.
Similarly, in this example, carrier2 is an unshared type of carrier (e.g. Type A carrier) for both UE1 and UE3 in which each of UE1 and UE3 are allocated a first and second set of resource blocks, respectively, from the plurality of resource blocks associated with carrier2. The first and second sets of resource blocks associated with carrier2 are different and mutually exclusive. Carrier 3 is also an unshared type of carrier (e.g. a Type A carrier) for UE4, which is represented by a first set of resource blocks associated with carrier4 of the unshared type (e.g. the resource blocks squares with diagonal hash lines) . Carrier3 is also a shared type of carrier (e.g. a Type B carrier) for UE1 and UE2, in which a second set of resource blocks associated with carrier3 are allocated to UE1 and UE2 (e.g. the resource block squares with crossed vertical and horizontal  hash lines) for sharing. The first set of resource blocks associated with carrier4 allocated to UE4 are mutually exclusive to the second set of resource blocks allocated to UE1 and UE2.
Thus, UE1 has been allocated a first set of communication resources of the unshared type represented by the first set of resource blocks associated with carrier1 and the first set of resource blocks associated with carrier2. UE1 has been allocated a second set of communication resources of the shared type represented by the second set of resource blocks associated with carrier3. UE2 has been allocated a first set of communication resources of the unshared type represented by the second set of resource blocks associated with carrier1. UE2 has been allocated a second set of communication resources of the shared type represented by the second set of resource blocks associated with carrier3. UE3 has been allocated a first set of communication resources of the unshared type represented by the first set of resource blocks associated with carrier2. UE3 has been allocated a second set of communication resources of the shared type represented by the third set of resource blocks associated with carrier1. UE4 has been allocated a first set of communication resources of the unshared type represented by the first set of resource blocks associated with carrier3. UE4 has been allocated a second set of communication resources of the shared type represented by the third set of resource blocks associated with carrier1.
Figure 7 is another flow diagram illustrating another example process 700 performed by a UE 108a when sending uplink data in a telecommunications network 100 using a first set of communication resources of an unshared type and a second set of communications resources of a shared type scheduled by a base station 104a according to one or more of  processes  400, 420 and/or 440 or any combination thereof for transmitting uplink data to base station 104a. For simplicity, reference numerals of the same and/or similar components as used in figures 1 and 2 have been reused or are referred to in the following. The process 700, being performed by the UE 108a, may be as follows:
In step 702, the UE 108a may receive a first set of communication resources and a second set of communication resources. For example, with reference to figure 6, when UE 108a is UE1 the base station 104a allocated a first set of communication resources of the unshared type comprising the first set of resource blocks associated with carrier1 and the first set of resource blocks associated with carrier2 and a second set of communication resources of the shared type comprising the second set of resource blocks associated with carrier3. The base station 104a may send these sets of communication resources in a resource allocation message to UE 108a, the resource allocation message may include data representative of the first and second sets of communication resources from base station 104a serving the UE 108a.
In step 704, the UE 108a determines whether any uplink data is to be transmitted or sent to base station 104a. If no uplink data is to be transmitted, then the UE 108a waits until it has uplink data for transmission. In the meantime, the UE 108a may receive further resource allocation messages from base station 104a that may change the first and second sets of communication resources of the shared and unshared types, respectively. If there is uplink data for transmission then the process proceeds to step 706.
In step 706, the UE 108a determines whether there are any resource blocks in the first set of communication resources that are available for use in the uplink data transmission to base station 104a. For example, with reference to figure 6 when UE 108a is UE1, then UE 108a performs CCA checks as to whether there are any resource blocks of the first set of resource blocks associated with carrier1 and the first set of resource blocks associated with carrier2 available in the first set of communication resources of the unshared type for transmitting any of the uplink data. If there are resource blocks available for transmitting the uplink data in the first set of communication resources, then the process 700 proceeds to step 708. If the CCA checks indicate that there are not any further resource blocks available from the first set of communication resources for transmitting any of the uplink data, then the process 700 proceeds to step 716.
In step 708, the UE 108a may assign resource block (s) from the first set of communication resources for the uplink data transmission.
In step 710, the UE 108a determines whether there is any further uplink data for transmission. For example, the UE 108a may have received further uplink data for transmission during the previous steps. If there is any further uplink data for transmission, then the process proceeds to step 706 for determining whether further resource blocks from the first set of communication resources are available for the further uplink data transmission. In step 710, if there is not any further uplink data for transmission, then the process 700 proceeds to step 712.
In step 712, the UE 108a sends the uplink data using the assigned resource blocks from the first and/or second sets of communication resources.
In step 714, the UE 108a releases the assigned resource block (s) used to transmit the uplink data to the base station 104a and proceeds to step 704 to determine whether further uplink data has been received by the UE 108a or is required to be transmitted from UE 108a to the base station 104a.
In step 716, the UE 108a has determined that there are no further resource blocks of the first set of communication resources of the unshared type that are available for the uplink data transmission. Instead, when all resource block (s) from the first set of communication resources  are unavailable or have already been assigned for the uplink data transmission by the UE 108a, then in step 716 the UE 108a may check whether any resource block (s) associated with the second set of communication resources are available for sending uplink data to base station 104a. For example, with reference to figure 6 when UE 108a is UE1, then UE 108a performs CCA checks as to whether there are any resource blocks of the second set of resource blocks associated with carrier3 available in the second set of communication resources of the shared type for transmitting any of the uplink data. The UE 108a performs CCA checks to determine which of the resource block (s) associated with the second set of communication resources of the shared type are clear or occupied. Although CCA checks are described herein, it is to be appreciated by the skilled person that other types of checks may be applied or used, for example, intra-cell channel checks and the like. If there are no further resource blocks from the second set of communication resources that may be assigned for the uplink data transmission, then the process 700 proceeds to step 718. If there are further resource blocks from the second set of communication resources that may be assigned for the uplink data transmission, then the process 700 proceeds to step 722.
In step 718, the UE 108a may perform a further check to determine whether any more uplink data is to be transmitted. If there is further or more uplink data for transmission, i.e. Y, then the process 700 proceeds to step 720. If there is no further uplink data for transmission, then the process 700 proceeds to step 712.
In step 720, given that there is further uplink data for transmission, but that there are no more resource blocks from the first and second set of communication resources of the shared and unshared types, respectively, then the further uplink data for transmission is buffered for later transmission. The process 700 proceeds to step 712, where the uplink data that can be sent using the assigned resource blocks from the first and/or second set of communication resources.
In step 722, given that there are further resource blocks from the second set of communication resources, the UE 108a may assign any available resource block (s) associated with the second set of communication resource (s) for sending uplink data to the base station 104a. The available resource block (s) are those resource blocks that have been determined by the CCA checks to be unoccupied for the uplink data transmission. The process 700 proceeds to step 724.
In step 724, the UE 108a may perform a further check to determine whether any more uplink data is to be transmitted. If there is further or more uplink data for transmission, i.e. Y, then the process 700 proceeds to step 716. If there is no further uplink data for transmission, then the process 700 proceeds to step 712.
From figures 5 and 6, even though the UEs (e.g. for figure 5 UE1 and UE2 or for figure 6 UE1, UE2, UE3 and UE4) may perform a CCA check to determine whether one or more Type B carriers or a set of communication resources of a shared type are unoccupied, collisions may still occur between UEs accessing the same Type B carriers or one or more communication resources from a set of communication resources of the shared type. For example, from figure 5, collisions may occur between UE1 and UE2 on Type B carriers when both try to access the same Type B carrier. In another example, from figure 6, collisions may occur between UE3 and UE4 for the set of resource blocks of the shared type associated with carrier1 when both try to access the same resource blocks of the shared type associated with carrier1 at the same time. The base station 108a scheduling processes and methods as described herein may be further enhanced using a priority access scheme based on priority and/or timing advance.
Figure 8a is a schematic diagram illustrating an example frame structure 800 in the time domain for use with a communication resource of the shared type and the priority access mechanism/scheme. For simplicity, reference numerals of the same and/or similar components as used in figures 1 and 2 have been reused or are referred to in the following. The frame structure 800 for each communication resource of the shared type may include one or more communication assessment gaps 802a, 802b and 802c that alternate with one or more uplink data transmission blocks 804a and 804b. Each uplink data transmission block 804a may have a start time TDTSTART 805 and transmission interval TDT in which the communication resource may be used for transmission of uplink data. As illustrated in figure 8a, the uplink data transmission block 804a is preceded by a communication assessment gap 802a with a communication gap interval TCAG and followed by another communication assessment gap 802b and subsequent uplink data transmission block 804b and so on.
Each communication assessment gap 802a, 802b or 802c may include a plurality of CCA time slots 806a-806n (e.g. two or more CCA time slots) . The number of CCA time slots 806a-806n may be a predetermined number or may be dynamically adjusted by the eNB 104a depending on the load of the communication resource and/or the number of UEs that the eNB 104a determines can be supported by the communication resource. For example, when there are two CCA time slots 806a and 806b, then only two UEs served by eNB 104a may share the communication resource. If there are n CCA time slots 806a-806n, where n>2, then there may be n UEs that may share the communication resource.
Each CCA time slot 806a-806n may be associated with a CCA Timing Advance value 808a-808n (e.g. TAV (1) -TAV (n) ) , each of which are measured from the start of the uplink data transmission block 804a to the corresponding CCA time slot 806a-806n of the preceding communication assessment gap 802a. When the eNB 104a assigns a communication resource of the shared type to a UE (e.g. UE 108a or 108b) , the eNB 104a may allocate one of the CCA  time slots 806a-806n to that UE, each of which are associated with a CCA Timing Advance value 808a-808n. The CCA Timing Advance value 808a-808n may be used as a priority indication in the resource allocation message to the UE depending on which CCA time slot 806a-806n is assigned. The eNB 104a may store the identity of the UE 108a with an allocated CCA time slot 806a and/or the associated CCA Time Advance value 808a. The higher the CCA Time Advance value the higher priority the UE 108a is given in accessing the communication resource. For example, as illustrated in figure 8a, the CCA time slot 806a has a higher priority than CCA time slot 806b (e.g. CCA Time Advance value 808a > CCA Time Advance value 808b) , which has a higher priority than CCA time slot 806 (n-1) (e.g. CCA Time Advance value 808a > CCA Time Advance value 808b > CCA Time Advance value 808 (n-1) ) , which has a higher priority than CCA time slot 806n (e.g. CCA Time Advance value 808 (n-1) > CCA Time Advance value 808n) .
When the UE 108a is allocated a communication resource of the shared type, the eNB 104a allocates one of the CCA time slots 806a-806n to the UE 108a. The eNB 104a may send in the resource allocation message data representative of the allocated communication resource and one or more priority indications including data representative of one or more CCA Time Advance values 808a-808n (e.g. a priority indication) corresponding to one of the allocated CCA time slot 806a-806n for use by UE 108a in determining when to perform its CCA check on the communication resource. In this example, the UE 108a may be allocated CCA time slot 806a, which has a corresponding CCA Time Advance value 808a. The CCA Time Advance value 808a indicates when the UE 108a may perform CCA checks on the associated communication resource.
The resource or timing information describing the structure 800 of a communication resource may be notified to the UE 108a via a resource information message, resource allocation message, a resource re-allocation message, or any other type of resource message, or message and/or broadcast transmission over a control channel etc. to UEs 108a or 108b associated with the communication resources. The resource or timing information may include characteristics or parameters associated with the structure of the communication resource such as timing information for one or more communication assessment gaps 802a, 802b, 802c and/or timing information for one or more data transmission blocks 804a, 804b, 804c. The timing information for one or more communication assessment gaps 802a may include the total number of CCA time slots of the communication assessment gap 802a, the length of each CCA time slot and/or the communication gap interval TCAG or length of the communication assessment gap 802a. The timing information for one or more uplink data transmission blocks 804a may include the start time TDTSTART 805 and transmission interval TDT for when the communication resource may be used for uplink data transmission, total number of CCA time slots of the communication assessment gap 802a, the length of each CCA time slot and/or the length of the communication assessment gap 802a. This information may be used by the UEs using the same communication resource to  enable the UEs to be synchronised such that they perform CCA checks in the correct CCA time slots 806a-806n based on their corresponding allocated CCA time slot 806a-806n, and also perform uplink data transmission at the appropriate time in the uplink data transmission blocks 804a, 804b, 804c of the communication resource.
Although the priority indication (s) sent to each UE may include data representative of one or more CCA Time Advance values 808a-808n, it is to be appreciated by the skilled person that the data representative of one or more CCA Time Advance values 808a-808n may include or be represented by an index value that represents each CCA Time Advance value 808a-808n or range of CCA Time Advance value (s) 808a-808n, in which the UE uses the received index value with a predetermined CCA Time Advance look-up-table to determine the corresponding CCA Time Advance value for use when performing CCA check on one or more of the communication resources of the shared type. Additionally or alternatively, the data representative of one or more CCA Time Advance values 808a-808n may include or be represented by a CCA time slot number 806a-806n or index, which the UE 108a may use for determining when the allocated CCA time slot 806a will occur.
In the present example, the UE 108a may be allocated CCA time slot 806a and so performs its CCA check in its allocated CCA time slot 806a for that communication resource prior to transmission of the uplink data. If, based on the CCA check, the UE 108a determines the associated communication resource is available for transmitting the uplink data, then prior to the start time TDTSTART 805 of the uplink data transmission block 804a, the UE 104a may transmit an initial signal in the remaining communication gap interval TCAG or the remaining CCA time slots 806b-806n before the uplink data transmission block 804a begins. The initial signal may be repeatedly transmitted in the remaining one or more CCA time slots 806b-806n of the communication assessment gap 802a for the communication resource. This means any other UE with one of the lower priority CCA time slots 806b-806n allocated for that communication resource will detect, during its CCA checks on that communication resource, the initial signal transmitted by UE 108a and determine that that communication resource is occupied. The initial signal transmitted by UE 108a should be a signal that is robust and can easily be detected by the other UEs being served by the eNB 104a.
The UE 108a may transmit one or more initial signals in the remaining communication assessment gap 802a in which the initial signal is a unique and/or continuous signal for use by the eNB 104a in identifying the UE 108a after its CCA check on an available communication resource and prior to transmission of any uplink data in the uplink data transmission block 804a. Additionally or alternatively, the UE 108a may transmit one or more initial signals by transmitting an a initial signal repeatedly a determined or a predetermined number of times for use by the eNB  104a in identifying the UE 104a after the CCA checks performed by the UE and prior to transmission of any uplink data in the uplink data transmission block 804a.
The UE 108a, when transmitting the initial signal, may indicate the identity of UE 108a to the eNB 104a so the eNB 104a can identify which UE transmits uplink data in the data transmission block 804a. However, there may not be enough bandwidth for the UE 108a to reliably transmit the identity information to the eNB 104a. Instead, the UE 108a may transmit the initial signal repeatedly over any remaining CCA time slots 806b-806n and the eNB 104a may detect and count the number of initial signal transmissions by UE 108a before the uplink data transmission starts. The eNB 104a may then determine the identity of the UE 108a based on the stored CCA time slot 808a allocated to UE 108a and the number of initial signal transmissions counted.
In this case, as the UE 108a is allocated CCA time slot 806a, then the UE 108a may repeatedly transmit the initial signal in the remaining CCA time slots 806b-806n. The eNB 104a is configured to detect each repeated initial signal transmitted by the UE 104a and count the number of repeated transmissions of the initial signal. As UE 104a is allocated CCA time slot 806a out of a number n>=2 CCA time slots 806a-806n, then the initial signal count will be n-1. Should UE 104a be allocated the i-th CCA time slot of 1<=i<=n CCA time slots 806a-806n, then the initial signal count will be n-i. If UE 104a is allocated the last CCA time slot 806n before the data transmission block 804a, then instead of transmitting an initial signal the UE 104a may simply transmit the uplink data, so the initial signal count determined by the eNB 104a will be zero. The eNB 104a can map the initial signal count to the corresponding CCA time slot 806a and hence determine the identity of the UE 104a that is associated or stored with the corresponding CCA time slot 806a.
In addition, the priority indication for each UE 108a for the same communication resource may further include data representative of the number of initial signals that UE 108a should transmit after performing its CCA checks in the allocated time slot 808a. The number of initial signals is based on the position of the CCA time slot 808a in the communication assessment gap. For example, for a communication assessment gap with n CCA time slots 808a-808n, when the UE 108a is allocated the i-th CCA time slot 808i (not shown) , the number of initial signals that the UE 108a should transmit is (n-i) , where 1<=i<=n and i=1 corresponds to the first CCA time slot 808a that occurs in the communication assessment gap, and i=n corresponds to the last CCA time slot 808n that is adjacent the subsequent uplink data transmission block 804a. For each UE, the eNB 104a may transmit the priority indication along with data representative of the number of initial signals the UE should transmit.
Additionally or alternatively, based on the above described calculation performed by the eNB, the UE 108a may instead determine the required number of initial signals to transmit based on its allocated CCA time slot 806a, the length of a communication resource gap 802a, and/or the total number of CCA time slots 806a-806n. Once the UE 108a knows it is in the i-th CCA time slot out of a total of n CCA time slots, for 1<=i<=n, then it can transmit n-i initial signals in the remaining n-i CCA time slots of the communication assessment gap 802a prior to the uplink data transmission block 804a.
As an example, a communication resource may be based on the communication resource grid 200 of figure 2, which includes a plurality of resource blocks or one or more resource blocks in which each resource block defines a grid in frequency and time domains of NSC x NSYMB resource elements 206, NSC is the number of one or more subcarrier frequencies and NSYMB is the number of one or more symbols in time over time slot 202, where the time slot 202 is divided into NSYMB symbol periods. One or more of the plurality of resource blocks may be associated with the same time slot 202. Given this, each communication assessment gap 802a, 802b, 802c of the frame structure 800 for the communication resource may include a plurality of time slots 202 and associated resource blocks, each time slot 202 may represent a CCA time slot 806a-806n. Additionally or alternatively, each symbol period within a time slot 202 may represent a CCA time slot 806a-806n. In addition, the uplink data transmission block 804a or 804b frame may include one or more further time slots 202 or a further plurality of time slots 202 and associated one or more resource blocks. Although the frame structure 800 has been described with respect to the time domain, this is by way of example only, it is to be appreciated by the skilled person that the frame structure 800 may instead be applied to the frequency domain and that one or more communication resource (s) may include, by way of example only but not limited to, suitable frame structures defined in the time domain and/or frequency domain or combinations thereof.
Figure 8b is a schematic diagram illustrating an example priority access scheme 810 as briefly described with reference to figure 8a that may be used to enhance the methods and processes according to the invention as described herein. In this example, an eNB 816 signals an uplink grant message 818 (e.g. a resource allocation message) on the downlink 812 to both UE1 and UE2 indicating both UE1 and UE2 may access the same communications resource of the shared type (e.g. a carrier and associated resource blocks of a shared type) (e.g. Type B) . Thus, both UEs may try to access this communication resource of the shared type for transmitting uplink data in the uplink data transmission block 804a (e.g. TXOP) .
To avoid a collision, the eNB 816 in the uplink Grant message 818 (e.g. resource allocation message) indicates that UE1 has a higher priority than UE2 for this particular communication resource of the shared type. This may be indicated to each of UE1 and UE2 in the uplink Grant message 818 (e.g. resource allocation message) by data representative of a  CCA time advance value associated with the communication resource of the shared type. The CCA Timing Advance value provided to UE1 and UE2 may be used to determine when they are to perform CCA checks on the communication resource of the shared type.
In this example, the CCA Timing Advance provided to UE1 corresponds to CCA time slot 806a and the CCA Timing Advance value provided to UE2 corresponds to CCA time slot 806b. That is the CCA Timing Advance value for UE1 is greater than the CCATiming Advance value of UE2. This means, prior to the uplink data transmission block, the UE1 starts its CCA check in CCA time slot 806a on the communication resource of the shared type earlier than UE2. Since the CCA Time Advance value provided to UE2 has a lower value, UE2 starts its CCA checks in CCA time slot 806b later than UE1. This means, when UE1 performs its CCA check on the communication resource of the shared type, then it may find that this communication resource of the shared type to be unoccupied.
Once UE1 determines the communication resource of the shared type is unoccupied, the UE1 may immediately begin its uplink data transmission 804a on the communication resource of the shared type. When UE2 tries to access this communication resource of the shared type using its CCA check in CCA time slot 806b, UE2 will detect the energy from the data transmission from UE1 and mark 820 this communication resource of the shared type as occupied and move onto another communication resource of the shared type (e.g. another carrier and associated resource blocks of the shared type) for performing CCA checks in the CCA time slot associated with that other communication resource of the shared type.
Alternatively and preferably, UE1 may instead transmit, prior to transmitting uplink data in the uplink data transmission block 804a, an initial signal during CCA time slot 806b, which acts to reserve the communication resource of the shared type and hence block access of UE2 to this communication resource because UE2 will detect the energy of the initial signal during its CCA check in CCA time slot 806b and move onto another communication resource of the shared type for performing CCA checks in the CCA time slot associated with that other communication resource.
Figure 8c is another schematic diagram illustrating the example priority access scheme 810 as described with reference to figure 8b and briefly described with reference to figure 8a for a number of N UEs. In this example, the eNB 816 determines that the communication resource (e.g. a carrier and associated resource blocks) is capable of supporting N UEs (e.g. UE1-UEN) . Thus the eNB 816 signals an uplink grant message 818 (e.g. a resource allocation message) on the downlink 812 to each of UE1-UEN indicating these UEs can access the same communications resource of the shared type (e.g. a carrier and associated resource blocks of a shared type) .  Thus, all of the N UEs may try to access this communication resource of the shared type for transmitting uplink data in the uplink data transmission block 804a (e.g. TXOP) .
As described with reference to figure 8b, the eNB 816 in the uplink Grant message 818 (e.g. resource allocation message) indicates that UE1 has a higher priority than UE2, which has a higher priority than UE3, and so on, with UEN having the lowest priority for accessing this particular communication resource of the shared type. This may be indicated to each of UE1-UEN in the uplink Grant message 818 (e.g. resource allocation message) by data representative of a CCA time advance values 808a-808n or CCA time slot positions 806a-806n associated with the communication resource of the shared type. This information is used by each of the N UEs to determine when they may attempt to access the communication resource by performing their CCA checks and measurements in the corresponding CCA time slot 806a-806n on the communication resource of the shared type.
When UE1 has data ready for its uplink transmission, UE1 performs CCA check on the communication resource of the shared type in its corresponding CCA time slot 806a. Once UE1 determines the communication resource of the shared type is unoccupied, UE1 then transmits, prior to transmitting uplink data in the uplink data transmission block 804a, an initial signal during the CCA time slots 806b-806n, which acts to reserve the communication resource of the shared type. The transmission of the initial signal may be repeated in each of the remaining CCA time slots 806a-806n to both block access of UE2-UEN to this communication resource and also to allow the eNB 104a to count the initial signals transmitted by UE1 and identify which UE will transmit uplink data in the uplink data transmission block 804a adjacent to the current communication assessment gap. The other UEs (e.g. UE2-UEN) are blocked from accessing the communication resource because these UEs will detect the energy of the initial signal transmitted by UE1 during their CCA checks in their respective CCA time slots 806b-806n and determine that this communication resource is occupied. They may then move onto another communication resource of the shared or unshared type for performing CCA checks in the corresponding CCA time slots associated with that other communication resource that have been allocated to them.
Should UE1 not have any data for uplink transmission on the communications resource, then the other UEs (e.g. UE2-UEN) will have a chance at accessing this communications resource because UE1 will not transmit any initial signal in any of the remaining CCA time slots 806a-806n. Thus, the next highest priority UE that has data for an uplink transmission over the uplink data transmission block 804a of the communication resource will have the opportunity to reserve the communication resource in a similar manner as that shown for UE1. Should this next UE be the lowest priority UE (e.g. UEN) , when this UE performs its CCA check that passes indicating this communication resource is unoccupied, then this UE will not transmit any initial signal to reserve the communication resource but will instead immediately transmit its uplink data  in the uplink data transmission block 804a adjacent this UE’s CCA time slot 806n. As described with respect to figure 8a, the eNB 104a or 816 may identify this data transmission to belong to UEN as the initial signal count will be 0, which will map onto the record indicating the identity of UEN using CCA time slot 806n.
Referring to figures 8a-8b, although each UE being served by the eNB 104a or 816 may be scheduled to provide measurement reports associated with communication resources to the eNB 104a or 816 UEs for use in estimating loads on communication resources, each UE may also measure and report the CCA correlation between UEs. It has been found that reducing the CCA correlation between pairs of UEs (e.g. UE1 and UE2) using the same communication resource substantially improves the communications performance of each UE when allocated a communication resource of the shared type. Thus, to enhance the performance of the system, the aim for the eNB 104a or 816 is to pair UEs on the same communication resource of the shared type that have uncorrelated CCA checks, uncorrelated CCAs or have as low a CCA correlation as possible given the number of communication resources and number of UEs requesting access.
Typically, a pair of UEs are said to have correlated CCAs (or are fully correlated) or their CCAs are correlated when the pair of UEs are near each other such that each UE of the pair sees substantially the same interference from other devices, eNBs or UEs using the unlicensed radio spectrum for the same communication resource. A pair of UEs are said to have uncorrelated CCAs (or are fully independent/uncorrelated) or their CCAs are uncorrelated when the pair of UEs are far enough apart such that each UE of the pair sees substantially different interference from other devices, eNBs, or UEs using the unlicensed radio spectrum for the same communication resource. In order for the eNB 104a or 816 to determine which UEs can be said to have correlated CCAs or have uncorrelated CCAs the eNB 104a or 816 may instruct at least one UE from each pair of UEs (e.g. UE1 and UE2) to perform one or more CCA correlation scheme (s) or method (s) .
The CCA correlation for a pair of UEs may be estimated by the eNB, by each UE of the pair of UEs, or by another UE that may detect signals from one or each of the pair of UEs based, by way of example only but is not limited to, on one or more of, or a combination of: detected historical behavior of the UEs; priority indications assigned to each UE; by the eNB analysing measurement reports received from each UE associated with neighbor cells; analysing uplink transmissions of each UE; received measurement reports from the UEs; and/or receiving estimated channel correlation values from each UE of a pair of UEs. For example, the following CCA correlation schemes or methods may use apply one or more of these approaches or a combination of these approaches for estimating the CCA correlation value between a pair of UEs.
In one example, a CCA correlation scheme or method may be based on the eNB 104a instructing the lower priority UE (e.g. UE2 that has CCA time slot 806b) to measure the signal strength of the initial signal transmitted from the higher priority UE of the pair (e.g. UE1 that has CCA time slot 806a) when it reserves the communication resource for an uplink transmission. The lower priority UE may report the measured initial signal strength of the higher priority UE (e.g. UE1) to the eNB 104a or 816. The initial signal strength measured by the lower priority UE can represent the CCA correlation between the pairs of UEs (e.g. UE1 and UE2) . The measured initial signal strength may be mapped by the eNB 104a or 816 to a CCA correlation level to determine whether the pair of UEs is fully correlated, correlated, uncorrelated or fully uncorrelated.
Additionally, the eNB 104a or 816 may measure the initial signal strength transmitted by the higher priority UE (e.g. UE1) and compare this against the measured initial signal strength transmitted by the lower priority UE to determine how close the lower priority UE is to the higher priority UE. The eNB 104a or 816 may measure or check the received signal strengths of each UE in the pair, and if similar then each UE may be a similar distance from the eNB. Given this knowledge/information and the measured initial signal strength reported by the lower priority UE, the eNB may be able to determine whether the pair of UEs (e.g. UE1 and UE2) is likely to be fully correlated, correlated, or uncorrelated. Alternatively or additionally, in another example, the eNB 104a or 816 may have a set of correlation thresholds indicating whether a pair of UEs are fully correlated, medium correlated, low correlation, or uncorrelated, or fully uncorrelated, which may be compared against the measured initial signal strength reported by the lower priority UE. The thresholds may be adjusted based on an estimated path loss between the higher priority UE and the eNB 104a or 816.
Another example CCA correlation measurement scheme or method to determine the correlation between a pair of UEs using the same communication resource may be performed by the lower priority UE (e.g. UE2) . The eNB 104a or 816 may instruct UE2 to perform a CCA check or measurement at a similar time as when UE1 performs its CCA check or measurement. That is, UE2 performs a CCA check or measurement in the CCA time slot of UE1 (e.g. CCA time slot 806a) . If UE2 receives the initial signal from UE1 in the CCA time slot associated with UE2 and UE2’s CCA check or measurement performed in the CCA time slot of UE1 passes, then this means both UE1 and UE2 have the same CCA results and may be said to be correlated. If UE2 does not receive the initial signal from UE1 in the CCA time slot associated with UE2 and UE2’s CCA check or measurement performed in the CCA time slot of UE1 fails, then this may also mean both UE1 and UE2 have the same CCA results and may be said to be correlated. If UE2 does not receive the initial signal from UE1 in the CCA time slot associated with UE2 and UE2’s CCA  check or measurement performed in the CCA time slot of UE1 passes, then this means both UE1 and UE2 have the same CCA results and may be said to be correlated. Failing these conditions may mean that it is likely that UE1 and UE2 are said to be uncorrelated. Counting how many  times UE1 and UE2 are said to be correlated and/or the number of times UE1 and UE2 are said to be uncorrelated in a time period over multiple communication assessment gaps (e.g. communication assessment gaps 802a, 802b, 802c etc. ) can assist UE2 to estimate the correlation between UE1 and UE2.
UE2 may report an estimated correlation between the pair of UEs to the eNB 104a or 816, which the eNB uses to determine whether the pair of UEs (e.g. UE1 and UE2) should each be repaired with other UEs that have the least or a lower correlation together on the same communication resource. This may be performed for pairs of UEs on the same communication resource, and each UE being served by the eNB 104a or 816 may report an estimated correlation between the pair of UEs to the eNB 104a or 816, which the eNB uses to reallocate communication resources to the UEs to pair those UEs with least correlation together on the same communication resource.
Additionally or alternatively, if no initial signal is received but UE2 also fails its CCA, one reason is both UEs fail their CCA, which means they are correlated, or the other reason is that high priority UE (e.g. UE1) does not need this carrier (nothing to do with correlation) , counting how many times this happens in a time period may also assist UE2 to estimate the correlation between the paired UEs (e.g. UE1 and UE2) . Additionally or alternatively, each UE may detect an unpaired UE’s initial signal (s) that could be in the idle period for the UE. Each UE may report an estimated correlation between the pair of UEs to the eNB 104a or 816, which the eNB uses to pair those UEs with least correlation together on the same communication resource.
The eNB 104a or 816 can also estimate the correlation between UEs served by the eNB 104a or 816 using various CCA correlation scheme (s) or method (s) . For example, in one example CCA correlation scheme or method performed by the eNB 104a or 816, the eNB 104a or 816 may check, for each pair of UEs on the same communication resource, one or more of the following correlation properties: 1) the received signal strengths of each UE, if similar then each UE may be a similar distance from the eNB; 2) the CCA Time Advance signals, for which the difference may factor into or represent the correlation value between the pair of UEs; 3) the measurement reports of neighbor cells from each UE of the pair of UEs, and if the measurement results of neighbor cells are similar, then they are likely to be correlated otherwise they are less correlated, etc. The eNB 104a or 816 may analyses these correlation properties to determine whether the UEs are likely to be fully correlated, low correlated, uncorrelated or fully uncorrelated. This correlation information between pairs of UEs may be used by the eNB when pairing UEs on the same communication resource and/or carriers. Ensuring pairs of UEs on the same communication resource have low CCA correlations, are uncorrelated or fully uncorrelated enhances the latency performance and/or throughput performance of the system.
Another example CCA correlation scheme or method performed by the eNB 104a or 816 may be based on the eNB 104a or 816 estimating the correlation between pairs of UEs by counting the number of uplink transmission events. For example, for each pair of UEs on the same communication resource, when the eNB 104a or 816 detects or knows that both UEs (e.g. UE1 and UE2) have data packets for uplink transmissions in their buffers, but that no data has been received from any of these UEs, then the eNB 104a or 816 may reasonably assume that both UEs have failed their CCA checks. This may be called a correlation event. Additionally or alternatively, if a data packet from the lower priority UE (e.g. UE2) is received which means the higher priority UE (e.g. UE1) fails its CCA check while the lower priority UE passes its CCA check then this may be called a non-correlation or uncorrelation event.
The eNB 104a or 816 may count the number of correlation events and non-correlation events occurring for this pair of UEs on the same communication resource over a period of time (e.g. over multiple communication assessment gaps 802a, 802b and 802c and uplink data transmission blocks 804a and 804b etc. ) When the number of correlation events are more than the number of non-correlation events, then the eNB 104a or 816 may decide that these two UEs (e.g. UE1 and UE2) are likely to be more correlated. Alternatively, when the number of non-correlation events are more than the number of uncorrelation events, then the eNB 104a or 816 may decide that these two UEs (e.g. UE1 and UE2) are likely to be less correlated and vice versa. The eNB 104a or 816 may use this information to ensure pairs of UEs on the same communication resource are less correlated or have low CCA correlations, are uncorrelated or fully uncorrelated.
Although each of the above CCA correlation schemes or methods may be used to estimate correlation between a pair of UEs, it is to be appreciated by the skilled person that one or more of the above example CCA correlation schemes, or any combination thereof, (e.g. all of the information together) may be used by the eNB 104a or 816 when pairing UEs on the same communication resource and/or carriers.
For the UEs being served by eNB 104a or 816 and their corresponding communication resources of the shared type that have been allocated to them, once the eNB 104a or 816 has estimated or calculated the CCA correlations between current pair (s) of UEs on the same communications resource (s) , the eNB 104a or 816 may make an assessment as to whether to break each pair of UEs based the CCA correlation estimate. If the CCA correlation estimate for a pair of UEs on the same communication resource indicates they are fully correlated, then the eNB 104a or 816 will break apart this pair of UEs and re-pair these UEs with other UEs that are likely to result in a new pair of UEs having lower CCA correlation or may even result in a fully independent /uncorrelated pair of UEs. The eNB 104a or 816 then sends, if applicable, at least one of the UEs in the pair of UEs a new resource allocation message indicating the new  communication resources that the at least one UE will use. Thus, the at least one UE will be paired with another UE that will likely have a lower CCA correlation or even be fully independent or uncorrelated.
As another example, when an eNB pairs two UEs together, it may store or record this relationship along with their estimated CCA correlation values, which are assumed to be of a low correlation, or uncorrelated. When more than two UEs share the same communication resource of the shared type, then the eNB checks all combinations of pairs of UEs on the same communication resource of the shared type to ensure all pairs of UEs on the same communication resource have low CCA correlation, are fully independent or uncorrelated. The eNB performs a CCA correlation comparison for each pair of UEs, if any pair of UEs has a high CCA correlation, or a CCA correlation above a predetermined CCA correlation threshold or that reaches the predetermined CCA correlation threshold, which indicates the UEs are correlated or have a high correlation, then the eNB re-pairs this pair of UEs. That is, at least one of the UEs in the pair of UEs is reallocated or is allocated a different communication resource of the shared type. The other UE may remain with the current communication resource of the shared type if it also satisfies the comparison of CCA correlation values with the other UEs using the communication resource of the shared type.
For example, the eNB may serve several UEs, e.g. UE1, UE2, and UE3, each of which may share the same communication resource of the shared type. It is assumed that these UEs satisfy the CCA correlation comparison checks and all pairs of UEs are considered to have a low correlation or are independent or uncorrelated. Should another UE, e.g. UE4, be allocated this communication resource of the share type then the eNB will check all a pairs of UEs to determine whether the CCA correlation comparison checks are satisfied. Thus, for UE1, UE2, UE3 and UE4, the eNB will check the CCA correlation values for the following pairs (UE1, UE2) , (UE1, UE3) , (UE1, UE4) , (UE2, UE3) , (UE2, UE4) , (UE3, UE4) . Should the pairs of UEs associated with UE4 satisfy the CCA correlation check, then UE4 may be allowed to use the communication resource. If the pairs of UEs associated with UE4 do not satisfy the CCA correlation check, then UE4 may be assigned another communication resource, in which the eNB performs a corresponding CCA correlation comparison.
Referring to figures 8a-8c, given the structure 800 of the communication resource, for two or more UEs (e.g. UE1-UE2 in figure 8b and UE1-UEn in figure 8c) to share the communication resource these UEs are given different priorities (e.g. different CCA Timing Advance values 808a-808n) for checking and accessing the communication resource. For the highest priority UE (e.g. UE1 or UE 108a) , this UE can perform its CCA check first in CCA time slot 806a, which means the communication resource may be fully used by this UE almost indefinitely. As can be appreciated, the transmit buffer levels or buffer sizes of the other UEs may vary quickly and it is  time consuming to reallocate the communication resources (e.g. UL carriers) to ensure all UEs may meet their uplink transmission requirements and not overflow their transmit buffers. This may be overcome by the eNB 104a or 816 performing a priority swapping scheme or method to quickly swap the priorities of paired UEs (e.g. UE1 and UE2 in figure 8b and UE1 and UE2, or UE2 and UE3, etc. in figure 8c) sharing the same communication resource using a downlink indicator.
For example, each UE may be required to transmit to the eNB 104a (or base station) a transmit buffer status to inform the eNB 104a and allow the eNB 104a to ensure each UE may have access to the communication resources it requires for transmitting uplink data. Each UE served by the eNB 104a may transmit buffer status messages including data representative of a transmit buffer status of the UE. The transmit buffer status of the UE may include data representative of one or more transmit data buffer sizes associated with the set of communication resources allocated by the eNB 104a to the UE.
The eNB 104a may receive a transmit buffer status of each UE being served by the eNB 104a. The transmit buffer status for each UE may indicate one or more transmit data buffer sizes (or buffer levels) associated with the set of communication resources allocated to said each UE. Once the eNB 104a receives a transmit buffer status from two UEs (e.g. a first UE and a second UE) sharing the same communication resource, the eNB 104a may compare the transmit data buffer size of the first UE with that of the second UE sharing the same communication resource of the shared type.
In this example, it may be assumed, by way of example only but is not limited to, that the priority indication assigned to the first UE allows the first UE to access the communication resource before the second UE (i.e. the first UE has a higher priority over the second UE for transmitting data on the same communication resource of the shared type) . The eNB 104a may decide to swap the priority indications of the first UE and the second UE for the same communication resource when the comparison indicates the transmit data buffer size of the second UE is greater than the transmit data buffer size of the first UE by a predefined transmit buffer threshold. The eNB 104a may then transmit data representative of the swapped priority indications associated with the same communication resource of the shared type to each of the first and second UEs.
For example, the eNB 104a may transmit to the second UE a resource update message including data representative of the previous priority indication of the first UE and/or an identification of the communication resource (s) that this priority indication relates to for the second UE. The eNB 104a may also transmit to the first UE another resource update message including data representative of the previous priority indication of the second UE and an identification of the  communication resource (s) that this priority indication relates to for the first UE. Thus, both first and second UEs may update their priority indications for the same communication resource and hence have swapped their priority indications. The second UE may then have priority to access the same communication resource of the shared type to transmit its uplink data.
Each UE may then receive, from the eNB (e.g. base station) , data representative of an updated priority indication (e.g. a resource update message) for use with a particular communication resource of the shared type from the set of communication resources of the shared type allocated to the UE. For example, the second UE may update the priority indication of the associated communication resource (s) of the shared type with the updated priority indication (e.g. the previous priority indication of the first UE) such that the second UE now has a higher priority than the first UE and may access the communication resource of the shared type before the first UE. This enables the second UE to transmit its uplink data and reduce its transmit buffer size. The first UE receives the previous lower priority indication of the second UE and so has to wait until the second UE does not need to use the communication resource of the shared type.
Although a predefined transmit buffer threshold may be set, by way of example only but is not limited to, the operator or user of the base station, it is to be appreciated by the skilled person that the predefined transmit buffer threshold may be set in any other way suitable to allow the base station to determine when the second UE should be allowed to use the communication resource before the first user and perform an uplink transmission before its transmit buffer overflows or becomes “critical” .
In another example, when the higher priority UE’s (e.g. UE1) transmit buffer level or size is low and the lower priority UE’s (e.g. UE2) transmit buffer level or size is high or is greater than the predefined transmit buffer level threshold, then the eNB 104a or 816 may indicate or provide priority swap information in a downlink message to these UEs for these UEs to swap their priorities on the communication resource (e.g. carrier and associated resource blocks) in which they are paired. That is, the UEs swap may their priority indications, which may be CCA Timing Advance values, such that the lower priority UE is scheduled to perform its CCA checks or measurements in the higher priority UE’s CCA time slot 108a, and vice versa. This means the lower priority UE (now the higher priority UE) has a better chance to lower or even empty its transmission buffer.
The priority swapping scheme or method may be performed by the eNB 104a or 816 or each of the UEs served by the eNB 104a or 816 and may include the following steps of:
In step A1, each UE of the paired UEs repeatedly report their transmission buffer status (or transmit buffer status) to the eNB 104a or 816 that serves those UEs. The method proceeds to step A2.
In step A2, on receiving the transmission buffer status from each UE, the eNB 104a or 816 evaluates whether the priorities of the UEs (e.g. CCA timing values of the UEs) need to be swapped on the communication resources shared by the UEs based on transmission buffer levels of the paired UEs. If the eNB 104a or 816 determines that the priorities should be swapped (e.g. the lower priority UE is about to overflow its transmission buffer, and/or the higher priority UE’s buffer level is lower than the lower priority UE’s buffer level, of the lower priority UE requests to be a higher priority UE) , then the method proceeds to step A3, otherwise it proceeds to step A1.
In step A3, the eNB 104a or 816 transmits via the downlink to each of the UEs a downlink message (e.g. resource update message) indicating the requirement to swap the priority with the other UE. The downlink message to each UE may include a priority swap indication enabling the UEs to swap priorities. Additionally or alternatively, the downlink message to each UE may include priority swap information including data representative of the CCA Timing Advance value of the other UE that the UE should swap with. Alternatively or additionally, each UE may have received CCA time slot information including, by way of example only but not limited to, the timing of the CCA time slots, a list or index of the CCA time slots, a list of valid CCA Timing Advance values etc. for the communication assessment gap of the communication resource. The priority swap information in the downlink message to each UE may include data representative of the CCA time slot information required for the UE to swap their CCA time slot with the other UE. The method may proceed to step A1.
In any event, when the UEs receive the downlink message and corresponding priority swap indication and/or priority swap information enabling the UEs to apply the new priority immediately. For example, the downlink message may include priority swap information such as CCA Timing Advance values allowing each UE to change their CCA Timing Advance value to those of the other UE before the next communication assessment gap and thus they swap their CCA time slots with each other. For example, the downlink message may include a priority swap indication in which cause the UEs to swap to the other UEs CCA time slot, this assumes that the UEs know which other UE they are paired with and the corresponding CCA time slot.
In essence, the UEs with more data packets in their transmission buffer or request more bandwidth requirement, should be allocated more communication resources (e.g. carriers and associated resource blocks) with a higher priority than UEs with a low transmission buffer level (e.g. transmit data buffer size) or a low bandwidth requirement, which should be allocated communication resources (e.g. carriers and associated resource blocks) with lower priority.
Figure 9a is a schematic diagram illustrating another example method (s) or process (es) 900 for use in scheduling and using uplink communication resources in a telecommunications network 100 using unlicensed radio spectrum. For simplicity, reference numerals of the same and/or similar components as used in figures 1 and 2 have been reused or are referred to in the following. The telecommunications network 100 includes a plurality of base stations 104a-104m (e.g. eNBs) which serve a plurality of UEs 108a-108l and each perform a scheduling process or method according to the invention to schedule uplink communications resources to the plurality of UEs 108a-108l served by that base station 104a-104m. In turn, each of the UEs 108a-108l perform another process or method according to the invention for assigning the corresponding scheduled uplink communication resources for transmitting uplink data.
In this example, the telecommunications network 100 may be an LTE/LTE Advanced network in which a base station 104a is an eNB 104a serving a first UE 108a (e.g. UE1) and a second UE 108b (e.g. UE2) of the plurality of UEs 108a-108l. Although there is a first and second UE 108a described in this example, it is to be appreciated by the skilled person that this is by way of example only and for simplicity and that the method (s) and process (es) described herein are not limited to using only two UEs, but can be applied to a plurality of UEs served by eNB 104a. The serving eNB 104a may schedule uplink communication resources to the first and second UEs 108a and 108b, which use the scheduled uplink communication resources for transmitting uplink data. The method (s) and process (es) 900 for scheduling and using the uplink communication resources are generally repeated or iterated over a loop 902 during the communication session for each UE 108a and 108b.
Initially, the first UE 108a (e.g. UE1) , the second UE 108b (e.g. UE2) and the serving eNB 104a each perform unlicensed radio spectrum measurements 904a, 904b, and 904c, respectively, for identifying communication resources and/or signals 906a, 906b and 906c, respectively, that may be considered interfering with the UEs 108a and 108b. The signals 906a, 906b and 906c may include radio signals such as communication resources (e.g. carriers, resource blocks and/or resource elements) that may be used by other UEs of the plurality of UEs 108a-108l and/or other eNBs of the plurality of eNBs, and/or other radio signals from other radio spectrum users and/or devices such as Wi-Fi access points and terminals that may interfere with the first and second UEs 108a-108b when transmitting uplink data. The unlicensed radio spectrum measurements 904a, 904b and 904c performed by the first UE 108a, second UE 108b and serving eNB 104a, respectively, may include frequency measurements and/or frequency scans, respectively, to identify communication resources in the unlicensed radio spectrum that may have any interfering signals or whether communication resources (e.g. carriers, resource blocks and/or resource elements) in the unlicensed radio spectrum are occupied or unoccupied.
The UEs 108a and 108b may be required to perform the measurements 904a and 904b, by way of example only but is not limited to, periodical measurements, periodical frequency measurements and/or frequency scans; scheduled measurements, scheduled frequency measurements and/or frequency scans that may be specified by the serving eNB 104a; and/or measurements/frequency measurements and/or scans that may be requested by the eNB 104a. Once the measurements 904a and 904b are completed by the UEs 108a and 108b, the UEs 108a and 108b send measurement reports 908a and 908b to the serving eNB 104a.
On receiving the measurement reports 908a and 908b as well as completing its own unlicensed radio spectrum measurements 904c (e.g. frequency measurements and/or scans) , the serving eNB performs radio resource allocation 910 to compile one or more lists of communication resources such as carriers and associated resource block (s) that may be used by the first and second UEs 108a and 108b for transmitting uplink data. Each of the UEs 108a and 108b may also have requested for a particular number of carriers and/or resource blocks that each of the UEs 108a and 108b may require for transmitting their corresponding uplink data. This will also be taken into account as described with reference to figures 1-8c during the radio resource allocation 910 by the serving eNB 104a.
In essence, the serving eNB 104a performs radio resource allocation based on all the measurement results/reports and/or requests made by the first and second UEs 108a and 108b. This may include selecting a set of communication resources (e.g. a set of one or more carriers and associated resource blocks) based on the measurement reports and unlicensed radio spectrum measurements 904a-904c that may be allocated as an unshared type (e.g. Type A) and as a shared type (e.g. Type B) . A set of communication resources includes one or more communication resources. As described with reference to figure 2, each carrier for uplink communications may be allocated an associated plurality of resource blocks, where the plurality of resource blocks is a number, NRB, of associated resource blocks exclusively assigned to that carrier. In this example, a communication resource may include a carrier and an associated one or more sets of resource blocks, where the one or more sets of resource blocks may be less than or equal to the plurality of resource blocks exclusively assigned to that carrier. A set of communication resources may then be a set of carriers in which each carrier is associated with one or more sets of associated resource blocks.
A set of carriers and associated resource blocks of the unshared type (e.g. a set of communication resources of the unshared type) may be defined as a set of carriers in which each carrier is associated with one or more sets of resource blocks that may be assumed by the UE to be exclusively reserved for that UE served by the eNB 104a. A set of carriers and associated resource blocks of the shared type (e.g. a set of communication resources of the shared type) may be defined as a set of carriers in which each carrier is associated with one or more sets of  resource blocks that may be assumed by the UE to be shared amongst or with one or more of the plurality of UEs served by the eNB 104a. For example, referring to figure 6, the plurality of resource blocks for a carrier (e.g. carrier1) may be divided into one or more sets of resource blocks that are mutually exclusive. Carrier1 has a first set of resource blocks that are unshared and assigned to UE1, a second set of resource blocks that are unshared and assigned to UE2, and a third set of resource blocks that are shared by UE3 and UE4.
The serving eNB 104a may select a set of carriers and associated resource blocks with the least interference for allocation as a first set of carriers and associated resource blocks of an unshared type (e.g. Type A) , while those sets of carriers and associated resource blocks with relatively more interference may be allocated as a second set of carriers and associated resource blocks of a shared type (e.g. Type B) . Carriers and associated resource blocks of the shared type may be shared amongst UEs 108a and 108b. For carriers and associated resource blocks of the shared type (e.g. Type B carriers) , a time period or timing advance value may be optionally indicated to each UE 108a and 108b that is allocated carriers and associated resource blocks of the shared type.
In this example, the list of carriers and associated resource blocks that are allocated to each UE 108a and 108b are, by way of example only but is not limited to, illustrated in the following table.
Figure PCTCN2017071660-appb-000002
Table 1: Carrier frequency lists allocated to UE1 and UE2
As illustrated in the above table, the serving eNB 104a allocates a set of carriers and associated resource blocks to the first UE 108a (e.g. UE1) , which includes an assigned carrier frequency list comprising a first set of carriers (e.g. carriers based on a set of frequencies F_1) and associated resource blocks (e.g. RB allocation 1) of a shared type (e.g. Type: A) and a second set of carriers (e.g. carriers based on a set of frequencies F_2) and associated resource blocks (e.g. RB allocation 2) of a shared type (e.g. Type: B) . The second set of carriers and associated resource blocks of the shared type (e.g. F_2) may also include priority indications such  as data representative of one or more CCA Time Advance values (e.g. CCA Time Advance: (x) or an index or value (x) representing a CCA Time Advance value, where a UE uses the index or value (x) with a predetermined look-up-table to determine the corresponding CCA Time Advance value) , which indicate when the first UE 108a may perform CCA checks prior to uplink data transmission for determining whether one or more carriers and associated resource blocks of the second set are clear for uplink data transmission or occupied. There may be a CCA Time Advance value for each carrier and/or each of the associated resource block (s) of the second set.
As illustrated in the above table, the serving eNB 104a allocates a set of carriers and associated resource blocks to the second UE 108b (e.g. UE2) , which includes an assigned carrier frequency list comprising a third set of carriers (e.g. carriers based on a set of frequencies F_3) and associated resource blocks (e.g. RB allocation) of a unshared type (e.g. Type: A) and a fourth set of carriers (e.g. carriers based on a set of frequencies F_2) and associated resource blocks of a shared type (e.g. Type: B) . The fourth set of carriers and associated resource blocks of the shared type (e.g. Type: B) may also include one or more priority indications such as one or more CCA Time Advance value (s) (e.g. CCA Time Advance (y) , which indicate when the second UE 108b may perform CCA checks prior to uplink data transmission for determining whether one or more carriers and associated resource blocks of the fourth set are clear for uplink data transmission or occupied.
In this case, the fourth set of carriers and associated resource blocks of the shared type allocated to the second UE 108b may be the same as the second set of carriers and associated resource blocks of the shared type allocated to the first UE 108a. That is, the first UE 108a shares a set of carriers and resource blocks with the second UE 108b. the Additionally or alternatively, the fourth set of carriers and associated resource blocks of the shared type and the second set of carriers and associated resource blocks of the shared type may instead include one or more common carriers and/or one or more common associated resource blocks, i.e. the fourth set of carriers and associated resource blocks may have a subset of carriers and associated resource blocks in common with the second set of carriers and associated resource blocks. In this example, the fourth set of carriers and associated resource blocks of the shared type and the second set of carriers and associated resource blocks of the shared type are the same (e.g. carriers based on a set of frequencies F_2 with and associated resource blocks defined by the RB allocation) .
The eNB 104a may also inform the first and second UEs 108a and 108b (e.g. via, by way of example only but not limited to, the resource allocation message or by a control channel or other type of message) of timing information representative of a transmission start time and transmission interval for when uplink data may be transmitted using the second set and fourth sets of carriers and associated resource blocks. Thus, the CCA Time Advance values determine  when, prior to an uplink data transmission interval, the first and/or second UEs 108a and 108b may perform CCA checks for determining whether the carriers and associated resource blocks are clear for an uplink data transmission or occupied. By synchronising the transmission time interval for all UEs that can access the same communication resources of the shared type, the eNB 104a can prioritize access to each communication resource of the shared type using the CCA Time Advance values. When a UE 108a or 108b finds one or more carrier (s) and/or one or more associated resource block (s) of the shared type to be clear, that UE 108a or 108b may reserve these carrier (s) and/or resource block (s) by transmitting, prior to transmission of the uplink data in the transmission interval, an initial signal over these carrier (s) and/or resource block (s) . This effectively indicates to other UEs performing CCA checks at a later time (e.g. due to these UEs have a lower priority or a smaller CCA Time Advance value (s) ) that those carrier (s) and/or resource block (s) are unavailable or are occupied.
Although the priority indication (s) sent to each UE may include data representative of one or more CCA Time Advance values, it is to be appreciated by the skilled person that the data representative of one or more CCA Time Advance values may include an index or value (x) representing a CCA Time Advance value or range of CCA Time Advance value (s) , where a UE uses the index or value (x) with a predetermined look-up-table for determining the corresponding CCA Time Advance value for use with one or more of the communication resources of the shared type. Additionally or alternatively, as described with reference to figures 8a-8c, the priority indication sent to each UE 108a or 108b may also include data representative of the number of initial signals or appropriate timing information to allow each UE 108a or 108b to determine the required number of initial signals that should be transmitting after their CCA checks have been performed in the corresponding CCA time slots but prior to transmitting their uplink data. The eNB 104a may also send appropriate timing information to allow each UE 108a or 108b to determine the required number of initial signals that should be transmitted after their CCA checks have been performed in the corresponding CCA time slots but prior to transmitting their uplink data.
Table 1 may also include, by way of example but is not limited to, further timing information or initial signal information in relation to the CCA Time Advance values such as further data representative of the number of time slots in each communication assessment gap associated with each communication resource as described with reference to figure 8 prior to the data transmission block for transmitting uplink data, which may assist the first UE 108a in determining which time slot corresponds with each CCA Time Advance value, or, depending on the priority scheme may assist the first UE 108a in determining the number of initial signals the first UE 108a should transmit in each time slot after its CCA time slot to allow the eNB 104a to identify the first UE 108a and its corresponding uplink data transmission in the subsequent data transmission block. Similarly, Table 1 may also include, by way of example but is not limited to,  further data representative of the number of time slots in the communication assessment gap associated with each communication resource prior to the data transmission block, which may assist the second UE 108b in determining which time slot corresponds with the CCA Time Advance value, or, depending on the priority scheme, is may assist the second UE 108b in determining the number of initial signals the second UE 108b should transmit in each time slot after its CCA time slot to allow the eNB 104a to identify the second UE 108b. The eNB 104a may also inform the first and second UEs 108a and 108b (e.g. via, by way of example only but not limited to, the resource allocation message or by a control channel) of the number of time slots in the communication assessment gap of the communication resource and/or the number of initial signals to transmit corresponding to each communication resource of the shared type allocated to the UE.
Although the above data representative of example timing information or initial signal information has been described, by way of example but is not limited to, as being notified by the eNB 104a to each UE 108a or 108b, it is to be appreciated that the eNB 104a may include this data, or any other data representative of the necessary parameters and/or characteristics of the communication resource, or data representative of the necessary parameters and/or characteristics of the communication resource that allows the UE 108a or 108b to correctly use the communication resource of the shared or unshared types for transmission of uplink data, in a resource allocation message or any other suitable message for sending or transmitting to each UE 108a or 108b or in any other manner suitable to allow the eNB 104a to notify the allocation of communication resources of the shared and unshared types to each UE 108a and 108b and allow the UEs 1-8a and 108b to use the allocated communication resources.
Although the communication resources are split into shared and unshared communication resources, it is to be appreciated by the skilled person that for communication resources of the unshared type, UEs may share the same physical carrier but have a different set of resource blocks assigned to each UE such that they do not share the same resource blocks. In addition, for communication resources of the shared type, UEs may share the same physical carrier and have the same set of resource blocks assigned to each UE using the communication resource of the shared type. Communications resources of the unshared type and shared type may share the same physical carrier, as described with reference to figure 6, but have different resource blocks assigned to each UE. If the initial signal is configured to be transmitted only on the physical carrier of a communication resource, then this may block access to UEs using other communication resources on the same physical carrier. To prevent this initial signal from blocking other UEs’a ccess on the same carrier but using different resource blocks (i.e. other UEs using different communication resources of the shared or unshared types) , each UE may be configured to decode the initial signal and decide whether is associated with the scheduled cell/serving eNB 104a and whether it is associated with their allocated resource blocks.
For example, the serving eNB 104a may allocate the first UE 108a (e.g. UE1) to have a higher priority for accessing the second set than the second UE 108b (e.g. UE2) when accessing the fourth set by setting the CCA Time Advance values of the second set to be larger than the CCA Time Advance values of the fourth set. Thus, if the CCA Time Advance (x) of F_2 for the first UE 108a is bigger than CCA Time Advance (y) of F_2 for the second UE 108b, then the first UE 108a has a higher priority to access the communication resources of the second set and may perform, prior to the data transmission interval, a CCA check on the carriers and associated resource blocks of the second set before the second UE 108b performs its CCA checks on the same carriers and associated resource blocks of the fourth set. However, if the CCA Time Advance (y) of F_2 for the second UE 108b is bigger than CCA Time Advance (x) of F_2 for the first UE 108a, then the second UE 108b has a higher priority than the first UE 108a and may perform, prior to the data transmission interval, a CCA check on the carriers and associated resource blocks of the fourth set before the first UE 108a performs their check. In this example, it is assumed that the first UE 108a (e.g. UE1) has a higher priority than the second UE 108b (e.g. UE2) such that the CCA Time Advance (x) of F_2 for the first UE 108a is bigger than CCA Time Advance (y) of F_2 for the second UE 108b.
The serving eNB 104a sends each UE 108a and 108b their corresponding radio resource allocations in an uplink grant message 912a and 912b (e.g. a resource allocation message) . For example, the uplink grant message may include data representative of the set of carriers and associated resource blocks of the unshared type, the set of carriers and associated resource blocks of the shared type and/or the time advance or time periods indicating to the UEs when to access the set of carriers of the shared type during CCA checks prior to transmission of uplink data. In any event, each UE 108a and 108b receives their respective radio resource allocations in the uplink grant message 912a and 912b.
On receiving the radio resource allocations, the UE 108a stores in 914a the set of carriers and associated resource blocks of the unshared type (e.g. F1 (Type A) ) and the set of carriers and associated resource blocks of the shared type (e.g. F2 (Type B) ) for use in assigning one or more carriers and associated resource blocks for any uplink data transmissions between UE 108a and serving eNB 104a. Similarly, the UE 108b stores in 914b the set of carriers and associated resource blocks of the unshared type (e.g. F3 (Type A) ) and the set of carriers and associated resource blocks of the shared type (e.g. F2 (Type B) ) for use in assigning one or more carriers and associated resource blocks for any uplink data transmissions between UE 108b and serving eNB 104a.
When the UE 108a has uplink data for transmission, the first UE 108a may first select and assign one or more carriers and associated resource blocks (e.g. communications resources) from the set of carriers and associated resource blocks of the unshared type (e.g. F_1 (Type A) )  for use in transmitting the uplink data from the first UE 108a to base station 104a. The first UE 108a may perform CCA checks 905a to determine whether any carriers and associated resource blocks in the first set of carriers and associated resource blocks of the unshared type (e.g. F_1 (Type A) ) are available for the uplink data transmission. Although the first UE 108a is the only UE served by the eNB 104a that may use the set of carriers and associated resource blocks of the unshared type in the first set, there may be other UEs served by other eNBs 104b-104l and/or devices that may be using that part of the unlicensed radio spectrum, so the CCA checks are made prior to transmission to determine the available communications resources of the unshared type.
If the first UE 108a determines that more carriers and associated resource blocks than are in the first set of carriers and associated resource blocks of the unshared type (e.g. F_1 (Type A) ) are required for the uplink data transmission (e.g. all remaining resource block (s) from the second set of carriers of the unshared type are unavailable or all available resource block (s) from the set of carriers of the unshared type have already been assigned for the uplink transmission) , then the first UE 108a performs CCA checks 905a as to whether any carriers and associated resource blocks in the second set of carriers and associated resource blocks of the shared type (e.g. F_2 (Type B) ) are available for the uplink data transmission.
In this example, the first UE 108a performs the CCA check (s) 905a on the second set of carriers and associated resource blocks of the shared type at a CCA start time or CCA time slot associated with a CCA Time Advance value (s) (e.g. CCA Time Advance (x) ) prior to the uplink data transmission. The first UE 108a performs CCA checks 905a to determine which carrier signals and associated resource blocks 906a of the second set of carriers and associated resource blocks of the shared type (e.g. F_2 (Type B) ) are unoccupied/clear and available for use in the uplink data transmission by the first UE 108a. Although CCA checks are described herein, it is to be appreciated by the skilled person that other types of checks may be applied or used, for example, intra-cell channel checks and the like.
When UE 108a finds one or more carrier (s) and/or one or more associated resource block (s) of the shared type to be unoccupied/clear, then UE 108a reserves these carrier (s) and/or resource block (s) by transmitting, prior to transmission of the uplink data in the transmission interval, an initial signal 921 over these carrier (s) and/or resource block (s) . This effectively indicates to other UEs such as second UE 108b when performing CCA checks based on their CCA Time Advance value (s) (e.g. for UE 108b CCA Time Advance (y) ) that those carrier (s) and/or resource block (s) are unavailable or are occupied. Thus, the first UE 108a has “reserved” or block other users from transmitting uplink data on these carrier (s) and/or resource block (s) .
For the uplink data transmission for the first UE 108a, the first UE 108a will assign any available carriers and/or associated resource blocks from the first set of carriers and associated resource blocks of the unshared type and also any available carriers and/or associated resource blocks determined from the CCA checks 905a of the second set of carriers and associated resource blocks of the shared type for use in the uplink data transmission. In this example, the UE 108a uses any available carrier (s) and associated resource block (s) of the unshared type (e.g. F_1(Type A) ) and any available carrier (s) and associated resource block (s) of the shared type (e.g. F_2 (Type B) ) for an uplink data transmission 916a to eNB 104a.
Similarly, when the second UE 108b has uplink data for transmission, the second UE 108b may first select and assign carriers and associated resource block (s) from the third set of carriers and associated resource block (s) of the unshared type (e.g. F_3 (Type A) ) for use in transmitting the uplink data from second UE 108b to eNB 104a. If the second UE 108b determines that more carriers and associated resource block (s) than are in the third set of carriers and associated resource block (s) of the unshared type (e.g. F_3 (Type A) ) are required, then the second UE 108b performs CCA checks 905b as to check whether any carrier (s) and/or resource block (s) in the set of carriers and/or resource block (s) of the shared type (e.g. F_2 (Type B)) are available for the uplink data transmission.
In this example, the second UE 108a performs the CCA check (s) 905a on the second set of carriers and associated resource blocks of the shared type (e.g. F_4 (Type B) ) at a CCA start time or CCA time slot associated with a CCA Time Advance value (s) allocated to the second UE 108b (e.g. CCA Time Advance (y) ) prior to the uplink data transmission. The second UE 108b performs CCA check (s) 905b to determine which carrier signals and/or associated resource block (s) 906b of the set of carriers and associated resource block (s) of the shared type (e.g. F_2 (Type B) ) are unoccupied/clear and available for use in the uplink data transmission. Although CCA checks are described herein, it is to be appreciated by the skilled person that other types of checks may be applied or used, for example, intra-cell channel checks and the like.
When UE 108b finds one or more carrier (s) and/or one or more associated resource block (s) of the shared type to be unoccupied/clear, then UE 108b may reserve these carrier (s) and/or resource block (s) by transmitting, prior to transmission of the uplink data in the transmission interval, an initial signal (not shown) over these carrier (s) and/or resource block (s) . This effectively indicates to other UEs such as first UE 108a when performing CCA checks based on their CCA Time Advance value (s) (e.g. for UE 108a CCA Time Advance (x) ) that those carrier (s) and/or resource block (s) are unavailable or are occupied. Thus, the second UE 108a has “reserved” or blocked other users from transmitting uplink data on these carrier (s) and/or resource block (s) .
For the uplink data transmission for second UE 108b, the second UE 108b will assign any available carriers and associated resource block (s) from the set of carriers and associated resource block (s) of the shared type and also any available carriers and associated resource block (s) determined from the CCA checks 905b of the set of carriers and associated resource block (s) of the shared type for use in the uplink data transmission. In this example, the second UE 108b has found that there are no available carriers and/or associated resource block (s) of the shared type (e.g. F_2 (Type B) ) as UE 108a may be transmitting an initial signal 921 over these communication resources prior to its transmission of uplink data. Thus, UE 108b may use only the available carriers and/or associated resource block (s) of the unshared type (e.g. F_3 (Type A)) for the uplink data transmission 916a to eNB 104a. This may also be because the first UE 108a was already performing its uplink data transmission using any remaining carriers of the set of carriers of the share type (e.g. F_2 (Type B) ) .
As described above with respect to table 1, the serving eNB 104a may set the first UE 108a (e.g. UE1) to have a higher priority to use the second set of carriers and resource blocks of the shared type (e.g. communication resources F_2 (Type B) ) than the same carriers and/or resource blocks of the fourth set of carriers and resource blocks of the shared type (e.g. F_4 (Type B) ) allocated to the second UE 108b (e.g. UE2) by setting a CCA Time Advance values (e.g. CCA Time Advance values (x) ) for the second set of carriers and resource blocks of the shared type (e.g. F_2) of the first UE 108a to be such that the first UE 108a initiates and performs its CCA checks 905a before the second UE 108b. After the first UE 108a performs its CCA checks 905a, the first UE 108a may transmit an initial signal on the available carriers and/or resource blocks of the shared type before the second UE 108b. The initial signal of transmitted by the first UE 108a should start no later than the starting point of the CCA checks 905b performed by the second UE 108b. The initial signal of the first UE 108a may also stop at the starting point of its own uplink data transmission.
The CCA Time Advance (y) of F_2 for the second UE 108b is such that the second UE 108b is delayed from making an uplink data transmission using the set of carriers of the second type. Thus, the uplink data transmission by the first UE 108a may be an initial signal 921 or even one or more portions of uplink data for transmission 918a. Thus, in doing so, the second UE 108b may have a greater chance of detecting during its CCA checks 906b that one or more carriers and/or resource blocks of the fourth set of carriers and associated resource blocks of the shared type (e.g. F_4 (Type B) ) are occupied and so select one or more other carriers and/or resource blocks of the fourth set that are not occupied.
However, if first UE 108a, having selected and assigned one or more carriers and/or associated resource block (s) from the second set of carriers and associated resource block (s) of the shared type (e.g. F_2 (Type B) ) , was not yet transmitting initial signal 921 or uplink data on  these assigned one or more carriers and associated resource block (s) of the shared type, then the second UE 108b may determine from its CCA checks 905b that these carriers of the shared type are available for transmission. Thus, even though both first and second UEs 108a and 108b have performed CCA checks 905a and 905b on the set of carriers and/or associated resource block (s) of the shared type (e.g. F_2 (Type B) ) there may still be a risk of a collision using the carriers and associated resource block (s) of the shared type may be possible. For example, the first UE 108a may start a transmission 918a of at least a portion of the uplink data using the selected carriers and/or associated resource block (s) of the shared type (e.g. F_2: UL DATA) , which may collide with a transmission 918b of uplink data from the second UE 108b which also determined the same selected carriers and/or associated resource block (s) of the shared type to be unoccupied. The transmissions 918a and 918b from the first and second UEs 108a and 108b may collide and be unintelligible at serving eNB 104a.
As described above, each uplink data transmission that each UE 108a and 108b may make are meant to take place at the same time enabling the CCA checks 905a and 905b to start at the same time, and thus each UE 108a and 108b may block an unoccupied communication resource with an initial signal prior to its uplink data transmission. Although the uplink data transmission for each UE 108a and 108b should, in ideal situations, both start at the same time ensuring the CCA checks also start at the correct time prior to the uplink data transmission based on each UE’s 108a and 108b CCA Time Advance value (s) , timing errors can creep into the system where each UE 108a and 108b may not be synchronised and discrepancies in the timing of the CCA checks 905a and 905b and/or uplink data transmission may occur depending on the distance each UE is to the eNB 104a. For example, if the CCA Timing Advance value of UE 108a is larger than that of UE 108b, then the initial signal of the first UE 108a transmitted over an unoccupied communication resource must start before the starting point of UE 108b’s CCA check 905a for that same communication resource. Thus, if the first UE 108a is further away from the eNB 108a than the second UE 108b, then there is a chance the second UE 108b may start its CCA checks 905a on an unoccupied communication resource before the initial signal from the first UE 108a transmitted on that unoccupied communication resource is received by the second UE 108b. The second UE 108b may then determine this communication resource to also be unoccupied. When both UEs 108a and 108b perform their uplink data transmission on this communication resource, then collision 922 may occur.
Thus, even transmitting an initial signal over unoccupied communication resources, there is still a risk that collision 922 may occur when either the first UE 108a or the second UE 108b cannot detect from their CCA checks 905a or 9065 any energy from an initial signal or data transmission from the second UE 108b or the first UE 108a, respectively. Another enhancement may be made to further reduce such collisions 922 between first UE 108a and second UE 108b sharing the same set of carriers and associated resource blocks of the shared type. The serving  eNB 104a may have the capability to detect the collision 922 and identify the first or second UE 108a or 108b, by way of example but not limited to, detecting the initial signal 921 from either the first UE 108a or second UE 108b, in this case the first UE 108a transmits initial signal 921, which could be UE specific or of a particular pattern the eNB 104a associates with each UE; detecting other UE specific signals from either UE 108a and 108b, e.g., reference symbols; and/or to blind detection of the UE uplink data transmission by verifying the CRC, respectively.
Thus, when the serving eNB 104a detects a collision 922, the serving eNB 104a may perform a collision avoidance scheme 924 that reallocates the carriers and associated resource blocks of the shared type over which the collision 922 occurred with other carriers and associated resource blocks of the shared type to the second or fourth set of carriers and associated resource blocks of the shared type either UE 108a or UE 108b. This means that at least one or more carriers and associated resource blocks in the set of carriers and associated resource blocks of the shared type reallocated to UE 108a or UE 108b are different to the one or more carriers and resource blocks in which the collision 922 occurred. This then breaks the existing pairs of UEs 108a and 108b and thus re-pairs the UEs 108a and 108b with some other UEs being served by eNB 104a.
Although the above examples have described the present invention in terms of an eNB 104a allocating a set of carriers, resource blocks and/or resource elements of an unshared type (e.g. Type A) and allocating a set of carriers, resource blocks and/or resource elements of a shared type (e.g. Type B) , it is to be appreciated by the person skilled in the art that it is not necessary for the eNB 104a to allocate any set of carriers of the unshared type, but instead that the eNB 104a may only allocate a set of carriers of the shared type (e.g. Type B) to one or more UEs 108a-108l for use in uplink data transmission. In such a situation, these one or more UEs 108a-108l will assign and use the sets of carriers of the shared type based on intra-cell contention. For example, these UEs 108a-108l may use CCA checks on the carriers of the shared type to determine those carriers that are unoccupied and thus clear for transmission of uplink data and those that are occupied and not suitable for transmission of uplink data. From this, these UEs 108a-108l may use one or more carriers of the shared type that are not determined to be occupied for the uplink transmission.
Additionally, when the eNB 104a does not allocate any set of carriers of the unshared type (e.g. Type A carriers) or any carriers of a unshared type to one or more UEs, then there is no need to indicate to those one or more UEs in the uplink Grant message (s) or resource allocation message (s) what the carrier type will be for the list of carriers allocated to the UE. In this case, the absence of a carrier type may signal to the UE that the list of carriers are carriers of a shared type, i.e. that these carriers are being shared by one or more other UEs, and that the UE should  assign and use the carriers allocated to it for uplink data transmission using intra-cell contention techniques or CCA checks as described herein.
Although the example method (s) or process (es) 900 have been described above for use in scheduling and using uplink communication resources in a telecommunications network 100 using unlicensed radio spectrum, it is to be appreciated by the person skilled in the art that the example method (s) or process (es) 900 may further include one or more steps or a combination of steps of the process (es) and method (s) as described with reference to figures 1-8c for implementing further modifications of the example method (s) or process (es) 900.
Figures 9b to 9e are graphs illustrating performance results from simulations that compare the conventional or legacy process of scheduling and using communication resources with the example process (es) of scheduling and using communication resources according to the invention as described herein with reference to figures 1-9a. The simulation of the telecommunication system includes 1 eNB serving 3 UEs in which 6 communication resources (e.g. 6 LAA carriers and associated resource blocks) are available for allocation.
For the legacy system, each UE is allocated 2 dedicates or unshared communication resources (e.g. 2 Type A (dedicated) carriers and associated resource blocks) . For the system according to the invention, each UE is allocated 1 dedicated or unshared communication resource (e.g. 1 Type A carrier and associated resource blocks) , 1 shared communication resource (e.g. 1 Type B carrier and associated resource blocks) in which the UE is a high priority user and is paired with another UE (e.g. the UE has the highest CCA Timing Advance compared with the other UE sharing this communication resource) , 1 shared communication resource (e.g. 1 Type B carrier and associated resource blocks) in which the UE is the lowest priority user and is paired with another UE (e.g. the UE has the lowest CCA Timing Advance compared with the other UE sharing this communication resource) .
Figure 9b illustrates a graph of the simulation results for the latency distribution for the legacy system and the system based on invention as described herein. The performance results for different loads of 0.4, 0.45 and 0.49 are illustrated. The performance results for the legacy system for a load of 0.4 is shown by the solid line without any marks, while the performance for the system based on the invention for load of 0.4 is shown by the solid line with star marks (*) for a worst case scenario in which the UEs are fully correlated (FC) . The performance results for the legacy system for a load of 0.45 is shown by the dashed line without any marks, while the performance for the system based on the invention for the load of 0.45 is shown by the dashed line with plus marks (+) for a worst case scenario in which the UEs are fully correlated (FC) . The performance results for the legacy system for a load of 0.50 is shown by the dash-dot line without any marks, while the performance for the system based on the invention for the load of 0.50 is  shown by the dash-dot line with cross or times marks (x) for a worst case scenario in which the UEs are fully correlated (FC) . As can be seen, for each of these loads 0.4, 0.45 and 0.50, the system based on the invention outperforms the legacy system.
Figure 9c illustrates a graph of the simulation results for the latency distribution for the system based on invention as described herein. The performance results for the system based on the invention for different loads of 0.4, 0.50, 0.60 and 0.61 are illustrated for the best scenario in which the UEs are fully independent (FI) . The performance results for the system based on the invention for the load of 0.40 is shown by the solid line with star marks. The performance results for the system based on the invention for the load of 0.50 is shown by the dashed line with plus (+) marks. The performance results for the system based on the invention for the load of 0.60 is shown by the dash-dot line with cross or times marks (x) . The performance results for the system based on the invention for the load of 0.61 is shown by the dotted line with circle marks (o) . As can be seen, the system based on the invention for the best case scenario in which the UEs are fully independent (FI) outperforms the legacy system.
More results based on the figures 9a and 9b are described in the table below.
Figure PCTCN2017071660-appb-000003
The latency gains can be summarised as follows:
-For the same load (0.49 as above) :
· The percentage of packets experiencing no delay is improved from 7.6%in the legacy system to 14.5%in the system based on the invention for the worst case scenario (e.g. fully correlated UEs) .
· The percentage of packets experiencing no delay is improved from 7.6%in the legacy system to 66.6%in the system based on the invention for the best case scenario (e.g. fully independent/uncorrelated UEs) .
· The percentage of packets experiencing up to 5 TUs delay is improved from 37.8%in the legacy system to 42.5%in the system based on the invention for the worst case scenario (e.g. fully correlated UEs) .
· The percentage of packets experiencing up to 5 TUs delay is improved from 37.8%in the legacy system to 99.5%in the system based on the invention for the best case scenario (e.g. fully independent/uncorrelated UEs) .
· The percentage of packet experiencing up to 10 TUs delay is improved from 58.8%to 62.2%for the worst case scenario (FC) and 100.0%for the best case scenario (FI)
It was found that the system based on the invention can work with a load level which is not acceptable for the legacy system. For instance, the system based on the invention was found to work with a load = 0.6 for which the legacy system failed to work at all in the simulation.
Figures 9d and 9e are further graphs illustrating performance results for latency distribution regarding throughput for loads of 0.4 and 0.49, respectively. The throughput gain is calculated when the system based on the invention (best case scenario) has similar latency distribution as the legacy system. The performance of the legacy system is illustrated by the solid lines while the dashed and dashed dot lines illustrate the throughput performance of the system for based on the invention with the best case scenario (FI) for different throughput gains greater than that of the legacy system. The best overall throughput gain is about 20%better than the legacy system for both load = 0.4 (Figure 9d) and load = 0.49 (Figure 9e) .
As figures 9b-9e illustrate, the system based on the invention in the best case scenario has a marked gain in latency compared with the legacy system, but even the system based on the invention in the worst case scenario has a good/moderate gain compared with the legacy system. As can be seen with these results, it is important for the base station to pair the UEs that have less or lower correlations. Note that the gain in latency can be traded with the throughput gain for applications without short latency requirement and as a result, the spectrum efficiency can be improved.
Figure 10 illustrates various components of an exemplary computing-based device 1000 which may be implemented to include the functionality of the scheduling and allocation of communication resources as described, by way of example only, with respect to an eNB 104a of a telecommunications network 100 as described with reference to figures 1-9e.
The computing-based device 1000 comprises one or more processors 1002 which may be microprocessors, controllers or any other suitable type of processors for processing computer executable instructions to control the operation of the device in order to perform measurements, receive measurement reports, schedule and/or allocate communication resources as described in the process (es) and method (s) as described herein.
In some examples, for example where a system on a chip architecture is used, the processors 1002 may include one or more fixed function blocks (also referred to as accelerators) which implement the methods and/or processes as described herein in hardware (rather than software or firmware) .
Platform software and/or computer executable instructions comprising an operating system 1004a or any other suitable platform software may be provided at the computing-based device to enable application software to be executed on the device. Depending on the functionality and capabilities of the computing device 1000 and application of the computing device, software and/or computer executable instructions may include the functionality of perform measurements, receive measurement reports, schedule and/or allocate communication resources and/or the functionality of the base stations or eNBs according to the invention as described with reference to figures 1-9e.
For example, computing device 1000 may be used to implement base station 104a or eNB 104a and may include software and/or computer executable instructions that may include functionality of perform measurements, receive measurement reports, schedule and/or allocate communication resources and/or the functionality of the base stations or eNBs according to the invention as described with reference to figures 1-9e.
The software and/or computer executable instructions may be provided using any computer-readable media that is accessible by computing based device 1000. Computer-readable media may include, for example, computer storage media such as memory 1004 and communications media. Computer storage media, such as memory 1004, includes volatile and non-volatile, removable and non-removable media implemented in any method or technology for storage of information such as computer readable instructions, data structures, program modules or other data.
Computer storage media may include, but is not limited to, RAM, ROM, EPROM, EEPROM, flash memory or other memory technology, CD-ROM, digital versatile disks (DVD) or other optical storage, magnetic cassettes, magnetic tape, magnetic disk storage or other magnetic storage devices, or any other non-transmission medium that can be used to store information for access by a computing device. In contrast, communication media may embody computer readable instructions, data structures, program modules, or other data in a modulated data signal, such as a carrier wave, or other transport mechanism. As defined herein, computer storage media does not include communication media. Although the computer storage media (memory 1004) is shown within the computing-based device 1000 it will be appreciated that the storage may be distributed or located remotely and accessed via a network or other communication link (e.g. using communication interface 1006) .
The computing-based device 1000 may also optionally or if desired comprises an input/output controller 1010 arranged to output display information to a display device 1012 which may be separate from or integral to the computing-based device 1000. The display information may provide a graphical user interface. The input/output controller 1010 is also arranged to receive and process input from one or more devices, such as a user input device 1014 (e.g. a mouse or a keyboard) . This user input may be used to set scheduling for measurement reports, or for allocating communication resources, or to set which communications resources are of a first type and/or of a second type etc. In an embodiment the display device 1012 may also act as the user input device 1014 if it is a touch sensitive display device. The input/output controller 1010 may also output data to devices other than the display device, e.g. other computing devices via communication interface 1006, any other communication interface, or a locally connected printing device/computing devices etc.
Figure 11 illustrates various components of an exemplary computing-based device 1100 which may be implemented to include the functionality of the assignment and use of scheduled communication resources as described, by way of example only but not limited to, with respect to UE 104a or UE 104b of a telecommunications network 100 as described with reference to figures 1-10.
The computing-based device 1100 comprises one or more processors 1102 which may be microprocessors, controllers or any other suitable type of processors for processing computer executable instructions to control the operation of the device in order to perform measurements, receive measurement reports, schedule and/or allocate communication resources as described in the process (es) and method (s) as described herein. In some examples, for example where a system on a chip architecture is used, the processors 1102 may include one or more fixed function blocks (also referred to as accelerators) which implement the methods and/or processes as described herein in hardware (rather than software or firmware) .
Platform software and/or computer executable instructions comprising an operating system 1104a or any other suitable platform software may be provided at the computing-based device to enable application software to be executed on the device. Depending on the functionality and capabilities of the computing device 1100 and application of the computing device, software and/or computer executable instructions may include the functionality of performing measurements, sending measurement reports, assigning and using scheduled communication resources and/or the functionality of the UEs according to the invention as described with reference to figures 1-9e. For example, computing device 1100 may be used to implement a UE 108a or 108b as described herein and may include software and/or computer executable instructions that may include functionality of performing measurements, transmitting  measurement reports, assigning and using scheduled communication resources and/or the functionality of the UEs according to the invention as described with reference to figures 1-9e.
The software and/or computer executable instructions may be provided using any computer-readable media that is accessible by computing based device 1100. Computer-readable media may include, for example, computer storage media such as memory 1104 and communications media. Computer storage media, such as memory 1104, includes volatile and non-volatile, removable and non-removable media implemented in any method or technology for storage of information such as computer readable instructions, data structures, program modules or other data.
Computer storage media may include, but is not limited to, RAM, ROM, EPROM, EEPROM, flash memory or other memory technology, CD-ROM, digital versatile disks (DVD) or other optical storage, magnetic cassettes, magnetic tape, magnetic disk storage or other magnetic storage devices, or any other non-transmission medium that can be used to store information for access by a computing device. In contrast, communication media may embody computer readable instructions, data structures, program modules, or other data in a modulated data signal, such as a carrier wave, or other transport mechanism. As defined herein, computer storage media does not include communication media. Although the computer storage media (memory 1104) is shown within the computing-based device 1100 it will be appreciated that the storage may be distributed or located remotely and accessed via a network or other communication link (e.g. using communication interface 1106) .
The computing-based device 1100 may also optionally or if desired comprises an input/output controller 1110 arranged to output display information to a display device 1112 which may be separate from or integral to the computing-based device 1100. The display information may provide a graphical user interface. The input/output controller 1110 is also arranged to receive and process input from one or more devices, such as a user input device 1114 (e.g. keypad, touch screen or other input) . This user input may be used to operate the computing device. In an embodiment the display device 1112 may also act as the user input device 1114 if it is a touch sensitive display device. The input/output controller 1110 may also output data to devices other than the display device, e.g. other computing devices via communication interface 1106, any other communication interface, or a locally connected printing device/computing devices etc.
The term ′computer′is used herein to refer to any device with processing capability such that it can execute instructions. Those skilled in the art will realise that such processing capabilities are incorporated into many different devices and therefore the term ′computer′includes PCs, servers, base stations, eNBs, network nodes and other network elements, mobile  telephones, UEs, personal digital assistants, other portable wireless communications devices and many other devices.
Those skilled in the art will realise that storage devices utilised to store program instructions can be distributed across a network. For example, a remote computer may store an example of the process described as software. A local or terminal computer may access the remote computer and download a part or all of the software to run the program. Alternatively, the local computer may download pieces of the software as needed, or execute some software instructions at the local terminal and some at the remote computer (or computer network) . Those skilled in the art will also realise that by utilising conventional techniques known to those skilled in the art that all, or a portion of the software instructions may be carried out by a dedicated circuit, such as a DSP, programmable logic array, or the like.
Any range or device value given herein may be extended or altered without losing the effect sought, as will be apparent to the skilled person.
It will be understood that the benefits and advantages described above may relate to one example or embodiment or may relate to several examples or embodiments. The examples or embodiments are not limited to those that solve any or all of the stated problems or those that have any or all of the stated benefits and advantages.
Any reference to ′an′item refers to one or more of those items. The term ′comprising′is used herein to mean including the method blocks, features or elements identified, but that such blocks, features or elements do not comprise an exclusive list and a method or apparatus may contain additional blocks, features or elements.
The steps of the methods described herein may be carried out in any suitable order, or simultaneously where appropriate. Additionally, individual blocks may be deleted from any of the methods without departing from the spirit and scope of the subject matter described herein. Aspects of any of the examples described above may be combined with aspects of any of the other examples described to form further examples without losing the effect sought.
It will be understood that the above description of a preferred embodiment is given by way of example only and that various modifications may be made by those skilled in the art. Although various embodiments have been described above with a certain degree of particularity, or with reference to one or more individual embodiments, those skilled in the art could make numerous alterations to the disclosed embodiments without departing from the spirit or scope of this invention.

Claims (37)

  1. A method for scheduling communication resources for a plurality of user equipment, UEs, transmitting uplink data to a base station in a telecommunication network using unlicensed radio spectrum, the method comprising:
    receiving, from each of the UEs, a request for a number of communication resources required by said each UE for transmitting uplink data;
    determining one or more sets of communication resources for use by the UEs;
    allocating to each UE a set of communication resources from the determined set of communication resources, wherein the set of communication resources comprises a minimum number of communication resources required for transmitting the uplink data based on the load of each of the communication resources; and
    sending a resource allocation message to each of the plurality of UEs, the resource allocation message including data representative of the set of communication resources allocated to said each of the UEs.
  2. A method as claimed in claim 1, wherein each communication resource in the set of determined communication resources is associated with an estimated load, L, which is normalised to a value in the range [0, 1] , and the minimum number of communication resources assigned to the UE comprises selecting a set of communication resources from the determined set of communication resources that has the minimum number of communication resources in which the summation of the difference between 1 and the estimated load, L, of each of the selected communication resources is greater than the number of requested communication resources by the UE.
  3. A method as claimed in claims 1 or 2, wherein the minimum number of communication resources further comprises one or more additional communication resources required for the telecommunications network to meet a latency requirement associated with a communication service type used by the UE for transmitting the uplink data.
  4. A method as claimed any one of claims 1 to 3, wherein the minimum number of communication resources is upper bounded by the maximum number of communication resources that the UE is capable of supporting.
  5. A method as claimed in any one of claims 1 to 4, further comprising:
    measuring the load of one or more communication resources;
    receiving, from one or more of the UEs, measurement reports comprising data representative of communication resource load measurements associated with at least one of the communication resources;
    estimating the load for each communication resource based the measured load of one or more communication resources and measurement reports; and
    determining available communication resources for assigning to each of the UEs based on the estimated communication resource loads.
  6. A method as claimed in any one of claims 1 to 5, wherein the set of communication resources assigned to each UE includes one or more communication resources of a shared type and which are shared between at least one other UE served by the base station for uplink data transmission, wherein each communication resource of the shared type is available for use by each UE when said UE detects said communication resource is unused or available.
  7. A method as claimed in claim 6, wherein the set of communication resources assigned to each UE for transmitting uplink data comprises:
    a first set of communication resources of an unshared type and which are not shared with other UEs served by the base station; and
    a second set of communication resources of the shared type.
  8. A method as claimed in any one of claims 6 or 7, wherein, for each UE, the data representative of the communication resources of the shared type for transmitting uplink data further comprises a priority indication for indicating when that UE can determine whether the associated communications resource (s) is unused, wherein the priority indication for each of the UEs associated with the same communication resource of the shared type is different.
  9. A method as claimed in claim 8, wherein each UE transmits an initial signal over one or more communication resources of the shared type when that UE detects based on the priority indication for that UE the one or more communication resources of the shared type are available for an uplink transmission, the method further comprising:
    receiving, from a UE and prior to the UE transmitting uplink data, an initial signal over one or more of the communication resources of the shared type that have been assigned to the UE for the uplink data transmission;
    identifying the UE from the transmitted initial signal based on the initial signal; and
    receiving uplink data transmitted from the identified UE.
  10. A method as claimed in claims 8 or 9, wherein each communication resource of the shared type comprises a plurality of communication assessment gaps and a plurality of uplink data transmission blocks, wherein each communication assessment gap is adjacent one or more of the data transmission blocks, each communication assessment gap comprising two or more clear channel assessment, CCA, time slots, and each CCA time slot is associated with a CCA timing advance value, the method further comprising:
    allocating, to each UE, a priority indication for each communication resource of the  shared type allocated to said UE, wherein the priority indication comprises data representative of a CCA timing advance value indicating which CCA time slot of the communication assessment gap the UE may use to perform a CCA check in advance of an adjacent uplink data transmission block for transmitting uplink data on the associated communication resource; and
    storing, for each communication resource of the shared type allocated to each UE, a mapping of the identity of the UE with the allocated CCA time slot associated with each communication resource of the shared type.
  11. A method as claimed in claim 10, wherein the priority indication further comprises data representative of the number of CCA time slots associated with the communication assessment gap, the method further comprising:
    receiving, on a communication resource of a shared type, one or more initial signals transmitted from a UE in one or more CCA time slots of a communication assessment gap prior to an uplink data transmission block;
    identifying the UE by:
    counting the number of transmissions of the initial signal;
    determining which CCA time slot is associated with the UE based on the initial signal count based and the number of CCA time slots associated with the communication assessment gap; and
    identifying the UE based on the mapping between the determined CCA time slot and the identity of the UE;
    receiving the uplink data transmitted from the identified UE in the uplink data transmission block adjacent the communication assessment gap in which the one or more initial signals were transmitted.
  12. A method as claimed in any one of claims 8 to 11, further comprising:
    receiving a transmit buffer status of each UE being served by the base station, the transmit buffer status for each UE indicating one or more transmit data buffer sizes associated with the set of communication resources allocated to said each UE;
    comparing the transmit data buffer size of a first UE and a second UE sharing the same communication resource of a shared type, wherein the priority indication assigned to the first UE priority allows the first UE to access the communication resource before the second UE;
    swapping the priority indications of the first UE and the second UE for the same communication resource when the comparison indicates the transmit data buffer size of the second UE is greater than the transmit data buffer size of the first UE by a predefined transmit buffer threshold; and
    transmitting data representative of the swapped priority indications associated with the same communication resource of the shared type to each of the first and second UEs.
  13. A method as claimed in any one of claims 1 to 12, further comprising:
    detecting two or more UEs attempting to access the same communication resources of the shared type;
    identifying the detected two or more UEs;
    reallocating the communication resources in the second set of communication resources of the shared type for each of the detected two or more UEs, wherein the communication resources for the second set of communication resources for each of the detected two or more UEs are different; and
    transmitting a resource allocation message to each of the detected two or more UEs, the resource allocation message including data representative of the second set of communication resources reallocated to said each of the detected two or more UEs.
  14. A method as claimed in any one of claims 1 to 13, further comprising:
    receiving channel assessment check measurement reports from two or more UEs allocated the same one or more communication resources of a shared type;
    determining whether the two or more UEs have correlated channel assessment check measurements for the one or more same communication resources of the shared type;
    reallocating the set of communication resources for each of the two or more UEs to minimise the two or more UEs having correlated channel assessment check measurements with other UEs using the same one or more communication resources of the shared type; and
    transmitting a resource allocation message to each of the two or more UEs, the resource allocation message including data representative of the set of communication resources reallocated to said each of the two or more UEs.
  15. A method as claimed in any preceding claim, wherein two or more UEs are allocated the same communication resource of a shared type, the method further comprising:
    determining a CCA correlation value for each pair of UEs of the two or more UEs, wherein the CCA correlation value represents the proximity of a pair of UEs;
    comparing each CCA correlation value correlation with a predetermined channel correlation threshold;
    reallocating another communication resource of the shared type to at least one UE from a pair of UEs if the comparison for that pair of UEs reaches the predetermined channel correlation threshold, wherein the another communication resource of the shared type replaces the same communication resource of the shared type for the at least one UE; and
    transmitting a resource allocation message to the at least one UE including data representative of the another communication resource of the shared type.
  16. A method as claimed in any preceding claim, wherein prior to allocating a first UE to a communication resource of a shared type being used by one or more other UE (s) , the method  further comprising:
    determining a CCA correlation value for one or more pairs of UEs, each pair of UEs comprising the first UE and another UE using the communication resource of the shared type;
    comparing each CCA correlation value with a predetermined channel correlation threshold; and
    allocating the communication resource of the shared type to the first UE when all of the channel correlations for each pair of UEs satisfies a predetermined low channel correlation threshold.
  17. A method as claimed in claims 15 or 16, determining a channel correlation for one or more pairs of UEs further comprising at least one of:
    estimating the CCA correlation for a pair of UEs based on detected historical behavior of the UEs;
    estimating the CCA correlation for a pair of UEs based on priority indications assigned to each UE;
    estimating the CCA correlation for a pair of UEs based on analysing measurement reports received from each UE associated with neighbor cells;
    estimating the CCA correlation for a pair of UEs based on analysing uplink transmissions of each UE;
    estimating the CCA correlation for a pair of UEs based on received measurement reports from the UEs; and
    estimating the CCA correlation for a pair of UEs based on receiving estimated channel correlation values from each UE of a pair of UEs.
  18. A method for transmitting uplink data from a user equipment, UE, to a base station in a telecommunication network using unlicensed radio spectrum, the method comprising:
    transmitting, to a base station, a request for a number of communication resources required by the UE for transmitting uplink data;
    receiving, from the base station, data representative of a set of communication resources assigned to the UE for transmitting the uplink data, wherein the set of communication resources comprises a minimum number of communication resources required for transmitting the uplink data based on the load of each of the communication resources;
    determining whether one or more of the set of communication resources are available for transmitting the uplink data;
    assigning any available communication resources from the set of communication resources for transmitting the uplink data; and
    transmitting the uplink data based on the assigned communication resources from the set communication resources.
  19. A method as claimed in claim 18, wherein the minimum number of communication resources assigned to the UE comprises one of more of:
    a. a selected set of communication resources that has the minimum number of communication resources in which the summation of the difference between 1 and an estimated load, L, of each of the selected communication resources is greater than the number of requested communication resources by the UE, the estimated load is normalised to a value in the range [0, 1] ; and
    b. one or more additional communication resources required for the telecommunications network to meet a latency requirement associated with a communication service type used by the UE for transmitting the uplink data;
    wherein the minimum number of communication resources assigned to the UE is upper bounded by the maximum number of communication resources that the UE is capable of supporting.
  20. A method as claimed in claims 18 or 19, further comprising:
    measuring an estimate of the load of one or more communication resources of the telecommunications network;
    transmitting, to the base station, measurement reports comprising data representative of the communication resource load measurements, wherein the measurement reports are used by the base station for determining available communication resources for assigning to the UEs served by the base station.
  21. A method as claimed in any one of claims 18 to 20, wherein the set of communication resources assigned to the UE includes one or more communication resources of a shared type and which are shared between at least one other UE served by the base station for uplink data transmission, wherein:
    determining whether one or more of the set of communication resources are unavailable further comprises detecting one or more communication resources of the shared type are being used by said at least one other UE; and
    assigning any available communication resources from the set of communication resources assigned to the UE further comprising assigning one or more of the communication resources for the uplink transmission from the set of communication resources that are determined to be unused.
  22. A method as claimed in claim 21, wherein the set of communication resources assigned to the UE for transmitting uplink data further comprising:
    a first set of communication resources of an unshared type and which are not shared with other UEs served by the base station; and
    a second set of communication resources of the shared type; and the method further  comprising:
    assigning any available communication resources from the first set of communication resources for transmitting the uplink data;
    assigning any available communication resources from the second set of communication resources when there is an insufficient number of available communication resources from the first set of communication resources for transmitting the uplink data; and
    transmitting the uplink data based on any assigned communication resources from the first set of communication resources and any assigned communication resources from the second set of communication resources.
  23. A method as claimed in any of claims 21 or 22, wherein determining whether one or more communication resources of the set of communication resources are available for transmitting the uplink data further comprises performing a clear channel assessment check on each of the communication resources of the set of communication resources assigned to the UE.
  24. A method as claimed in claim 23, wherein the data representative of the set of communication resources of a shared type for transmitting uplink data further comprises a priority indication associated the set of communication resources of the shared type for performing clear channel assessment checks;
    the method further comprising:
    determining, based on the priority indication, when the UE may perform a clear channel assessment check for each communication resource in the set of communication resources of the shared type for determining whether said each communication resource is available to the UE for transmission of the uplink data; and
    transmitting, after the clear channel assessment check on an available communication resource and prior to transmission of any uplink data, one or more initial signals over the available communication resource of the shared type.
  25. A method as claimed in claims 24, wherein each communication resource of the shared type comprises a plurality of communication assessment gaps and a plurality of uplink data transmission blocks, wherein each communication assessment gap is adjacent one or more of the data transmission blocks, each communication assessment gap comprising two or more clear channel assessment, CCA, time slots, and each CCA time slot is associated with a CCA timing advance value, and the priority indication associated with each communication resource of the shared type allocated to the UE comprises data representative of a CCA timing advance value indicating which CCA time slot of the communication assessment gap the UE may use to perform a CCA check in advance of an adjacent uplink data transmission block for transmitting uplink data on the associated communication resource, the method further comprising, for each  communication resource of the shared type:
    determining the CCA time slot for performing a CCA check based on the associated CCA timing advance value;
    performing the CCA check in the determined CCA time slot of a channel assessment gap; and
    transmitting, prior to transmitting uplink data on a data transmission block, one or more initial signal (s) in the remaining CCA time slots of the channel assessment gap before a data transmission block when the CCA check indicates the communication resource of the share type is available.
  26. A method as claimed in claims 24 or 25, wherein transmitting the one or more initial signals further comprises transmitting the initial signal repeatedly a predetermined number of times for use by the base station in identifying the UE after the clear channel assessment check on an available communication resource and prior to transmission of any uplink data.
  27. A method as claimed in claims 24 or 25, wherein transmitting the one or more initial signals further comprises transmitting the initial signal as a continuous signal for use by the base station in identifying the UE after the clear channel assessment check on an available communication resource and prior to transmission of any uplink data.
  28. A method as claimed in any one of claims 24 to 27, the method further comprising:
    transmitting a transmit buffer status of the UE to the base station, wherein the transmit buffer status of the UE comprises data representative of one or more transmit data buffer sizes associated with the set of communication resources allocated to the UE; and
    receiving, from the base station, data representative of an updated priority indication for use with a communication resource of the shared type from the set of communication resources allocated to the UE.
  29. A method as claimed in any of claims 18 to 28, further comprising:
    detecting a transmission from another UE using the same communication resource of the shared type allocated to the UE;
    estimating the CCA correlation between the UE and the another UE based on the detected transmission; and
    transmitting the estimated CCA correlation between the UE and the another UE to the base station for use in allocating or reallocating one or more communication resources of the shared type to the plurality of UEs.
  30. A method for scheduling communication resources for a plurality of user equipment, UEs, transmitting uplink data to a base station in a telecommunication network using unlicensed radio spectrum, the method comprising:
    determining one or more sets of communication resources for use by the UEs;
    allocating to each UE a set of communication resources from the determined set of communication resources, wherein the set of communication resources comprises a first set of communication resources comprising communication resources of an unshared type and which are not shared with other UEs served by the base station and a second set of communication resources comprising communication resources of a shared type and which are shared with other UEs served by the base station; and
    sending a resource allocation message to each of the plurality of UEs, the resource allocation message including data representative of the set of communication resources allocated to said each of the UEs.
  31. A method for transmitting uplink data from a user equipment, UE, to a base station in a telecommunication network using unlicensed radio spectrum, the method comprising:
    receiving, from the base station, data representative of a first set of communication resources and a second set of communication resources for transmitting uplink data, wherein the first set of communication resources comprise communication resources of an unshared type and which are not shared with other UEs served by the base station and the second set of communication resources comprise communication resources of a shared type and which are shared with other UEs served by the base station;
    assigning any available communication resources from the first set of communication resources for transmitting the uplink data;
    assigning any available communication resources from the second set of communication resources when the communication resources from the first set of communication resources are insufficient to meet the uplink transmission requirements of the UE; and
    transmitting the uplink data based on any assigned communication resources from the first of communication resources and any assigned communication resources from the second set of communication resources.
  32. A method for a base station or a UE as claimed in any one of the preceding claims, wherein a communication resource comprises a set of one or more carrier frequencies, each carrier frequency comprising a set of one or more resource blocks, each resource block comprising a set of one or more resource elements, each resource element representing a subcarrier frequency offset from the carrier frequency and a time slot for transmitting an uplink orthogonal frequency division multiplexing data symbol.
  33. Computer readable medium comprising program code stored thereon, which when executed on a processor, causes the processor to perform a method according to any of claims 1-17, 30 or 32.
  34. Computer readable medium comprising program code stored thereon, which when executed on a processor, causes the processor to perform a method according to any of claims 18-29, 31 or 32.
  35. A UE apparatus comprising a processor, a storage unit and a communications interface, wherein the processor unit, storage unit, and communications interface are configured to perform the method as claimed in any one of claims 18-29, 31 or 32.
  36. A base station apparatus comprising a processor, a storage unit and a communications interface, wherein the processor unit, storage unit, communications interface are configured to perform the method as claimed in any one of claims 1-17, 30 or 32.
  37. A telecommunications network comprising a plurality of UEs, each UE configured according to claim 35, a plurality of base stations, each base station configured according to claim 36, wherein each base station serves one or more of the plurality of UEs.
PCT/CN2017/071660 2016-01-22 2017-01-19 Communication resource allocation for telecommunications networks WO2017125037A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201780004506.1A CN108370569B (en) 2016-01-22 2017-01-19 Communication resource allocation for telecommunications networks

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
GB1601245.2 2016-01-22
GB1601245.2A GB2546548B (en) 2016-01-22 2016-01-22 Communication resource allocation for telecommunications networks

Publications (1)

Publication Number Publication Date
WO2017125037A1 true WO2017125037A1 (en) 2017-07-27

Family

ID=55534811

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/071660 WO2017125037A1 (en) 2016-01-22 2017-01-19 Communication resource allocation for telecommunications networks

Country Status (3)

Country Link
CN (1) CN108370569B (en)
GB (1) GB2546548B (en)
WO (1) WO2017125037A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110972176A (en) * 2018-09-28 2020-04-07 展讯半导体(南京)有限公司 Resource selection method and device, storage medium and terminal
CN112640549A (en) * 2018-08-28 2021-04-09 诺基亚通信公司 Method, apparatus and computer readable medium for allocating minislots
CN113678541A (en) * 2019-04-18 2021-11-19 高通股份有限公司 Method and apparatus for determining a sensing beam for an LBT procedure
CN114270769A (en) * 2019-08-26 2022-04-01 高通股份有限公司 Capability signaling for physical uplink shared channel repetition
WO2022082587A1 (en) * 2020-10-22 2022-04-28 Apple Inc. Sidelink resource collision handling and resource allocation through user equipment coordination

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3629662A1 (en) * 2018-09-27 2020-04-01 Panasonic Intellectual Property Corporation of America User equipment and base station involved in transmission of uplink control data
CN110972327B (en) * 2018-09-28 2022-03-11 维沃移动通信有限公司 Signal transmission method and communication equipment based on unauthorized frequency band
EP4033834A4 (en) * 2019-11-08 2023-04-05 Huawei Technologies Co., Ltd. Resource selection method and device
CN111342883A (en) * 2020-02-17 2020-06-26 北京邮电大学 Resource allocation method and device
WO2022047668A1 (en) * 2020-09-02 2022-03-10 Qualcomm Incorporated Enhancement of uplink transmission with survival time or delay sensitive data
CN112419699A (en) * 2020-11-04 2021-02-26 国网山西省电力公司营销服务中心 Resource allocation method and system suitable for power system
CN116074262B (en) * 2023-01-07 2023-10-31 廊坊奎达信息技术有限公司 Resource optimization allocation method based on big data platform

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101304594A (en) * 2007-05-11 2008-11-12 大唐移动通信设备有限公司 Management method and scheduling machine for wireless resource
CN102186250A (en) * 2011-04-26 2011-09-14 北京邮电大学 Method and device for allocating member carrier waves
WO2013131730A1 (en) * 2012-03-05 2013-09-12 Osram Gmbh Lighting device with a pump laser row and method for operating said lighting device
CN104540230A (en) * 2015-01-30 2015-04-22 深圳酷派技术有限公司 Uplink scheduling method and uplink scheduling device
CN105072690A (en) * 2015-09-06 2015-11-18 魅族科技(中国)有限公司 Unlicensed spectrum-based data transmission method and device

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8312142B2 (en) * 2005-02-28 2012-11-13 Motorola Mobility Llc Discontinuous transmission/reception in a communications system
US7843873B2 (en) * 2007-09-19 2010-11-30 Motorola Mobility, Inc. Dynamic compensation for resource stealing in communication systems
CN101978753B (en) * 2008-03-20 2013-12-25 爱立信电话股份有限公司 Semi-distributed, quality-of-service-based scheduling protocols, with minimum control plane signaling
US9300431B2 (en) * 2012-06-04 2016-03-29 Alcatel Lucent Apparatus, method and computer readable medium for payload segmentation of wireless packet data transmissions
US9648545B2 (en) * 2013-05-28 2017-05-09 Rivada Networks, Llc Methods and system for dynamic spectrum arbitrage policy driven quality of service
US9497682B2 (en) * 2013-06-07 2016-11-15 Intel Corporation Central processing unit and methods for supporting coordinated multipoint transmission in an LTE network
US10285167B2 (en) * 2013-09-20 2019-05-07 Qualcomm Incorporated Uplink resource allocation and transport block size determination over unlicensed spectrum
US9474089B2 (en) * 2013-10-22 2016-10-18 Acer Incorporated User equipment and base station with configurable carrier
EP3099107B1 (en) * 2014-02-25 2019-04-10 Huawei Technologies Co., Ltd. Method and apparatus for reporting unlicensed spectrum capability
CN105101421B (en) * 2014-05-09 2019-10-11 宇龙计算机通信科技(深圳)有限公司 Resource allocation methods and resource allocation device
US9560651B2 (en) * 2014-05-27 2017-01-31 Telefonaktiebolaget Lm Ericsson (Publ) Radio resource allocation of unlicensed frequency bands

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101304594A (en) * 2007-05-11 2008-11-12 大唐移动通信设备有限公司 Management method and scheduling machine for wireless resource
CN102186250A (en) * 2011-04-26 2011-09-14 北京邮电大学 Method and device for allocating member carrier waves
WO2013131730A1 (en) * 2012-03-05 2013-09-12 Osram Gmbh Lighting device with a pump laser row and method for operating said lighting device
CN104540230A (en) * 2015-01-30 2015-04-22 深圳酷派技术有限公司 Uplink scheduling method and uplink scheduling device
CN105072690A (en) * 2015-09-06 2015-11-18 魅族科技(中国)有限公司 Unlicensed spectrum-based data transmission method and device

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112640549A (en) * 2018-08-28 2021-04-09 诺基亚通信公司 Method, apparatus and computer readable medium for allocating minislots
CN110972176A (en) * 2018-09-28 2020-04-07 展讯半导体(南京)有限公司 Resource selection method and device, storage medium and terminal
CN113678541A (en) * 2019-04-18 2021-11-19 高通股份有限公司 Method and apparatus for determining a sensing beam for an LBT procedure
CN114270769A (en) * 2019-08-26 2022-04-01 高通股份有限公司 Capability signaling for physical uplink shared channel repetition
WO2022082587A1 (en) * 2020-10-22 2022-04-28 Apple Inc. Sidelink resource collision handling and resource allocation through user equipment coordination

Also Published As

Publication number Publication date
GB201601245D0 (en) 2016-03-09
GB2546548B (en) 2021-08-11
CN108370569B (en) 2022-05-06
GB2546548A (en) 2017-07-26
CN108370569A (en) 2018-08-03

Similar Documents

Publication Publication Date Title
WO2017125037A1 (en) Communication resource allocation for telecommunications networks
US10375579B2 (en) Channel detection method and system, device, and terminal having base station functions
JP4988761B2 (en) Dynamic inter-cell channel sharing
US9578517B2 (en) Full spectrum sharing
CN109526056B (en) Resource selection method and device under multi-carrier, computer equipment and storage medium
US9204454B2 (en) Interference coordination in wireless network cloud environment
WO2013131257A1 (en) Methods and apparatuses for facilitating multiple operator coordination for transmissions in an unlicensed band
EP2638761B1 (en) Group message based carrier aggregation control
CN102244932B (en) Resource allocation method, system and device
US20180007625A1 (en) Selective scheduling grant rejection for spectrum sharing in a wireless network
KR102265455B1 (en) Apparatus and method for mitigating for interference in wireless communication system
US10349409B2 (en) Method and system for transmission schedule instruction for allocating resources in an unlicensed spectrum
GB2548922A (en) Resource block allocation for uplink communications
WO2020165487A1 (en) Resource configuration for a bandwidth part for a wireless network
WO2020135444A1 (en) Dci detection method and device
US20170359730A1 (en) Data transmission method and device, and spectrum resource sharing method and device
WO2017020271A1 (en) Method and network node for dynamic resource allocation for control channels
US10645723B2 (en) Signal transmission method, signal transmission control method, user equipment, and base station
KR20170022105A (en) Apparatus and method for controlling channel access in a wireless communication system
WO2012174912A1 (en) Method and device for sending interference coordination request
CN109788572B (en) SR configuration processing method and device, storage medium and terminal
CN109257773B (en) Load balancing method and device
CN112996114B (en) Resource scheduling method, device, equipment and storage medium
US9294957B2 (en) Method and apparatus for resource allocation based on buffer status information of neighboring cell
JP2016139889A (en) Base station, wireless communication system, and communication control method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17741068

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 02/01/2019)

122 Ep: pct application non-entry in european phase

Ref document number: 17741068

Country of ref document: EP

Kind code of ref document: A1