WO2017124678A1 - 基于固体传播的声波室内定位方法 - Google Patents

基于固体传播的声波室内定位方法 Download PDF

Info

Publication number
WO2017124678A1
WO2017124678A1 PCT/CN2016/084193 CN2016084193W WO2017124678A1 WO 2017124678 A1 WO2017124678 A1 WO 2017124678A1 CN 2016084193 W CN2016084193 W CN 2016084193W WO 2017124678 A1 WO2017124678 A1 WO 2017124678A1
Authority
WO
WIPO (PCT)
Prior art keywords
positioning
sound wave
solid
propagation
target
Prior art date
Application number
PCT/CN2016/084193
Other languages
English (en)
French (fr)
Inventor
伍楷舜
陈文强
王璐
Original Assignee
深圳大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳大学 filed Critical 深圳大学
Publication of WO2017124678A1 publication Critical patent/WO2017124678A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S5/00Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations
    • G01S5/18Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations using ultrasonic, sonic, or infrasonic waves
    • G01S5/28Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations using ultrasonic, sonic, or infrasonic waves by co-ordinating position lines of different shape, e.g. hyperbolic, circular, elliptical or radial

Definitions

  • the invention relates to the field of indoor positioning technology, in particular to a sound wave indoor positioning method based on solid propagation.
  • Figure 1 Positioning accuracy is high when there is no wall; low positioning accuracy when there is a wall.
  • Figure 2 At point a, the obstacles are the least and the positioning accuracy is the highest; at point b, there are fewer obstacles and the positioning accuracy is medium; at point c, there are many obstacles and the positioning accuracy is very low.
  • the present invention provides a method for positioning an acoustic wave indoor based on solid propagating, which solves the problem of complicated positioning and low positioning accuracy in the prior art.
  • the present invention is achieved by the following technical solutions: designing and manufacturing a sound wave indoor positioning method based on solid propagation, comprising the following steps:
  • the target to be positioned is a sound wave or an ultrasonic source, and the sound wave propagates through the solid signal;
  • the receiving probe receives the signal, and then obtains the precise position of the target according to the positioning algorithm.
  • the sound wave or ultrasonic source is the vibration generated by the positioning target without equipment, or the ultrasonic wave generated by the positioning target carrying equipment.
  • the target is a moving object or has a sound wave generated Still life.
  • the receiving probe is an acoustic wave or ultrasonic receiving probe.
  • the positioning algorithm is a TDOA and TOA three-point positioning algorithm, or another algorithm that uses the arrival time or the angle of arrival to perform positioning.
  • the solid is a wall of a ground or a three-dimensional space.
  • the invention has the beneficial effects: a new indoor positioning technology is proposed, the sound wave is a pressure vibration propagated in an elastic medium, and the sound wave can not only propagate in the solid, but also spread faster than in the air;
  • the invention greatly improves the positioning accuracy and reduces the positioning cost; can solve the non-line-of-sight problem of indoor positioning, and reduce the influence of obstacles such as indoor tables and chairs, and the influence of air temperature and humidity pressure.
  • 1 is a schematic view showing the influence of a wall on positioning accuracy
  • 2 is a schematic view showing the influence of indoor obstacles on the positioning accuracy
  • FIG. 3 is a structural block diagram of indoor positioning of sound waves based on solid propagation in the present invention.
  • Figure 4 is a schematic view of an embodiment of the present invention.
  • Figure 5 is a schematic illustration of yet another embodiment of the present invention.
  • a sound wave indoor positioning method based on solid propagation includes the following steps:
  • the target to be positioned is a sound wave or an ultrasonic source, and the sound wave propagates through the solid signal;
  • the receiving probe receives the signal, and then obtains the precise position of the target according to the positioning algorithm.
  • the sonic or ultrasonic source is the vibration generated by the positioning target without equipment, or the ultrasonic wave generated by the positioning target carrying equipment.
  • the target is a living object or a still life with a sound wave generator; as described, the target is mainly a person, and may also be various animals, robots, articles, etc., but the still life must have an ultrasonic generator;
  • the sound wave source may be a vibration generated by a target (such as a person, an animal, etc.) without an equipment on the ground, or may be carried by a target (such as a person, an animal, etc.) (for example, ultrasonic waves are generated by laser excitation). .
  • the receiving probe is an acoustic wave or ultrasonic receiving probe.
  • the positioning algorithm is a TDOA and TOA three-point positioning algorithm, or another algorithm that uses the arrival time or the angle of arrival to perform positioning.
  • the solid is a wall of a ground or a three-dimensional space.
  • a passive indoor positioning technique that transmits sound waves through a solid (eg, a floor) (the person does not carry a device)
  • the implementation includes the following steps:
  • each sound wave receiving probe performs time synchronization
  • the vibration source generates a mechanical wave (sound wave), and the sound wave is mechanically vibrated by a solid (such as a floor), and propagates in all directions;
  • the sound wave receiving probe receives the sound wave
  • an active indoor positioning technique (human body carrying device) that propagates sound waves through a solid (eg, a floor)
  • the implementation includes the following steps:
  • each sound wave receiving probe performs time synchronization
  • the laser hits the solid (here, the floor) to generate ultrasonic waves, and through the solid (here, the floor), the ultrasonic waves are transmitted in all directions;
  • the ultrasonic receiving probe receives the sound wave
  • the indoor positioning system of the present invention comprises three parts: an acoustic wave transmitting unit, a sound wave receiving unit, and a data processing unit.
  • the acoustic wave transmitting unit generates an acoustic wave signal, which is transmitted by the sound receiving unit after being propagated through a solid (for example, the ground), and the signal is amplified and shaped and transmitted to the data processing unit at the data.
  • the required time value and the solution localization algorithm are obtained in the unit to determine the precise position of the target object.
  • an indoor positioning method without a device is introduced.
  • Three or more acoustic wave receiving probes are placed around the ground, and a person walks to drive the floor vibration.
  • the sound waves generated by the vibration propagate along all sides of the floor.
  • the acoustic wave receiving probe receives the signal. Record the synchronization time of each sound wave receiving the signal received by the probe.
  • the specific location of the person can be obtained. This step is repeated continuously to obtain the walking trajectory of the person.
  • TDOA Because in a fixed material (density) medium, the speed of sound wave propagation is constant. After the time at which the two acoustic wave receivers (x1, y1) (x2, y2) receive the signal is obtained, the difference is made to obtain the time difference t1-t2. The time difference is multiplied by the sound wave propagation speed to obtain the distance difference c(t1-t2). According to the formula, (x, y) can be used to draw an arc. Add a third sonic receiver (x3, y3) and draw another arc. The focus of the two arcs is the coordinate position of the target.
  • the indoor positioning method of the human belt device is introduced.
  • Three or more ultrasonic receiving probes are placed around the ground.
  • the human sole wears a laser emitter, and the laser excites the floor vibration.
  • the ultrasonic waves generated by the vibration are along the floor. propagation.
  • the ultrasonic receiving probe receives the signal. Record the synchronization time of each ultrasonic receiving probe received signal.
  • the specific position of the person can be obtained, and the step is repeated continuously to obtain the walking trajectory of the person.
  • DOA According to the time Tp of the ultrasonic transmitter (x, y) and the receiving time T1 of the ultrasonic receiving probe (x1, y1), an absolute time difference Tp-T1 can be obtained, multiplied by the propagation speed c of the ultrasonic wave on the ground, and the distance can be obtained. D1. Find (x, y) to draw a circle. Then the two ultrasonic receiving probes can draw two intersecting circles to get two points. Add an ultrasonic probe to get the coordinate position of the target.
  • the speed of sound wave propagation on the floor can be obtained according to the material of the known floor. After the sound wave receiving probe is arranged, the propagation speed can be obtained according to the known distance and propagation time.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Measurement Of Velocity Or Position Using Acoustic Or Ultrasonic Waves (AREA)

Abstract

一种基于固体传播的声波室内定位方法,包括如下步骤:S1、在固体四周布置三个或三个以上接收探头;S2、被定位目标是声波或超声波源,声波通过固体传播信号;S3、接收探头接收到信号,再根据定位算法求出目标精确位置。由于声波是一种弹性介质中传播着的压力振动,不仅可以在固体中传播,且传播速度还要比在空气中快,因此该方法提高了定位精度以及降低了定位成本,可以解决室内定位的非视距问题,并减少室内桌椅等障碍物以及空气温度、湿度、压强等的影响。

Description

基于固体传播的声波室内定位方法 技术领域
本发明涉及室内定位技术领域,尤其涉及一种基于固体传播的声波室内定位方法。
背景技术
人类在室内时间远超过室外时间,随着移动互联网的普及,室内定位成为刚需,市场价值已经超过百亿美元。无数科学家投身室内定位的研究领域。目前室内定位技术很多,有红外线技术、蓝牙技术、射频识别技术、WIFI技术、ZigBee技术,超宽带技术和超声波技术等,这些技术普遍利用信号(电磁波或者声波)在空气中的传播进行定位。然而,一旦传播过程中遇到固体,例如桌椅、墙壁等障碍物,信号的能量将会大大衰减,从而使得室内定位技术大打折扣。图一和图二举例说明不同室内环境对室内定位精度产生的影响。图一:无墙壁时定位精度高;有墙壁时定位精度低。图二:在a点,障碍物最少,定位精度最高;在b点,障碍物较少,定位精度中等;在c点,障碍物很多,定位精度很低。
众所周知,电磁波对固定的穿透能力很差,而声波在空气中传播时也受到温度、湿度、压力、气流、油雾等影响。终上所述,目前的所有室内定位技术都受到了信号传播介质(空气)中的墙壁、障碍物等的影响,因此在室内定位时需要铺设大量定位装置来克服障碍物的影响,提高定位精度。
发明内容
为了克服上述技术问题,本发明提供一种基于固体传播的声波室内定位方法,解决现有技术中定位复杂以及定位精度不高的问题。
本发明是通过以下技术方案实现的:设计和制造一种基于固体传播的声波室内定位方法,包括如下步骤:
(S1)在固体四周布置三个或三个以上接收探头;
(S2)被定位目标是声波或超声波源,声波通过固体传播信号;
(S3)接收探头接收到信号,再根据定位算法求出目标精确位置。
作为本发明的进一步改进:所述的声波或超声波源是被定位目标不带装备发生的振动,或被定位目标携带装备产生的超声波。
作为本发明的进一步改进:所述的被定目标为活动物体或带有声波发生 器的静物。
作为本发明的进一步改进:所述接收探头为声波或超声波接收探头。
作为本发明的进一步改进:所述的定位算法为TDOA和TOA三点定位算法,或者是其它利用到达时间或到达角度进行定位的算法。
作为本发明的进一步改进:所述的固体为地面或立体空间的墙壁。
本发明的有益效果:提出了一种新的室内定位技术,声波是一种弹性介质中传播着的压力振动,声波不仅可以在固体中传播,传播速度还要比在空气中传播的快;本发明极大的提高了定位精度以及降低了定位成本;可以解决室内定位的非视距问题,并减少室内桌椅等障碍物的影响,以及空气温度湿度压强等的影响。
附图说明
图1为图1是墙壁对定位精度的影响示意图图;
图2是室内障碍物对定位精度的影响示意图图;
图3是本发明中基于固体传播的声波室内定位的结构框图;
图4是本发明的一实施例示意图;
图5是本发明的又一实施例示意图。
具体实施方式
为了便于本领域技术人员的理解,下面结合附图和实施例对本发明作进一步的描述。
一种基于固体传播的声波室内定位方法,包括如下步骤:
(S1)在固体四周布置三个或三个以上接收探头;
(S2)被定位目标是声波或超声波源,声波通过固体传播信号;
(S3)接收探头接收到信号,再根据定位算法求出目标精确位置。
所述的声波或超声波源是被定位目标不带装备发生的振动,或被定位目标携带装备产生的超声波。
所述的被定目标为活动物体或带有声波发生器的静物;如所述的被定目标主要是人,也可以是各种动物、机器人、物品等,但静物必须带有超声波发生器;所述的声波源可以是被定位目标(例如人、动物等)不带装备踩地面发生的振动,也可以是被定位目标(例如人、动物等)携带装备(例如通过激光激发地面产生超声波)。
所述接收探头为声波或超声波接收探头。
所述的定位算法为TDOA和TOA三点定位算法,或者是其它利用到达时间或到达角度进行定位的算法。
所述的固体为地面或立体空间的墙壁。
在一种实施例中,一种通过固体(例如地板)传播声波的被动室内定位技术(人身上不携带装置),实现方案包括如下步骤:
S1,在固体(例如地板)的四周放置三个或三个以上的声波接收探头,
S2,每个声波接收探头做时间同步;
S3,人走路时引起地板振动;
S4,振动源产生机械波(声波),声波通过固体(例如地板)进行机械震动,向四面八方传播;
S5,声波接收探头接收到声波;
S6,记录接收到每个信号的时间;
S7,计算每个声波接受探头接收到声波的时间差,用TDOA(Time Difference of Arrival)三角定位法对人进行精确定位。
在又一实施例中,一种通过固体(例如地板)传播声波的主动室内定位技术(人身上携带装置),实现方案包括如下步骤:
S1,在固体(这里指地板)的四周放置三个或三个以上的超声波接收探头;
S2,每个声波接收探头做时间同步;
S3,在人身上或鞋底佩带激光发射器;
S4,激光打在固体上(这里指地板)产生超声波,通过固体(这里指地板),向四面八方传播超声波;
S5,超声波接收探头接收到声波;
S6,记录接收到每个信号的时间;
S7,计算每个声波接受探头接收到声波的时间差,用TDOA三角定位法对人进行精确定位。也可以做激光发射器和超声波接受探头的时间同步,用TOA三角定位对人进行精确定位。
如图3,本发明的室内定位系统包括声波发射单元、声波接收单元、数据处理单元三部分。声波发射单元产生声波信号,经过固体(例如地面)传播后由声波接收单元收到,并将信号进行放大与整形,传递给数据处理单元,在数据处 理单元中得到所需时间值和解算定位算法,确定目标物体的精确位置。
如图4,介绍了人不带装置的室内定位方法,在地面四周放置三个或三个以上的声波接收探头,人走路带动地板振动。振动产生的声波沿着地板四面八方传播。声波接收探头接收到信号。记录每个声波接受探头接收到信号的同步时间。根据TDOA三角定位法,可以得到人的具体位置。该步骤连续重复操作,即可得到人的行走轨迹。
,TDOA:因为在固定材质(密度)的介质里,声波的传播速度一定。在得到两个声波接收器(x1,y1)(x2,y2)接收到信号的时间后,做差,得到时间差t1-t2。有时间差乘以声波传播速度,得到距离差c(t1-t2)。根据该公式求出(x,y)可以画出一条弧线。再加入第三个声波接收器(x3,y3),可以再画一条弧线。两条弧线的焦点便是目标的坐标位置。
如图5,介绍了人带装置的室内定位方法,在地面四周放置三个或三个以上的超声波接收探头,人的鞋底穿戴激光发射器,激光激发地板振动,振动产生的超声波沿着地板四面八方传播。超声波接收探头接收到信号。记录每个超声波接受探头接收到信号的同步时间。根据TDOA三角定位法或DOA定位算法,可以得到人的具体位置,该步骤连续重复操作,即可得到人的行走轨迹。
DOA:根据超声波的发射器(x,y)发出时间Tp和超声波接收探头(x1,y1)的接收时间T1可以得到一个绝对时间差Tp-T1,乘以超声波在地面的传播速度c,可以得到距离d1。
Figure PCTCN2016084193-appb-000001
求出(x,y)可以画一个圆。那么两个超声波接收探头可以画两个相交的圆,得到两个点。再加入一个超声波探头即可得到目标的坐标位置。
声波在地板的传播速度,可以根据已知地板的材质求得,也可以在布置声波接收探头后,根据已知距离和传播时间,求得传播速度。
以上内容是结合具体实现方式对本发明做的进一步阐述,不应认定本发明的具体实现只局限于以上说明。对于本技术领域的技术人员而言,在不脱离本发明构思的前提下,还可以做出若干简单推演或替换,均应视为有本发明所提交的权利要求确定的保护范围之内。

Claims (6)

  1. 一种基于固体传播的声波室内定位方法,其特征在于:包括如下步骤:(S1)在固体四周布置三个或三个以上接收探头;(S2)被定位目标是声波或超声波源,声波通过固体传播信号;(S3)接收探头接收到信号,再根据定位算法求出目标精确位置。
  2. 根据权利要求1所述的基于固体传播的声波室内定位方法,其特征在于:所述的声波或超声波源是被定位目标不带装备发生的振动,或被定位目标携带装备产生的超声波。
  3. 根据权利要求1所述的基于固体传播的声波室内定位方法,其特征在于,所述的被定目标为活动物体或带有声波发生器的静物。
  4. 根据权利要求1所述的基于固体传播的声波室内定位方法,其特征在于:所述接收探头为声波或超声波接收探头。
  5. 根据权利要求1所述的基于固体传播的声波室内定位方法,其特征在于:所述的定位算法为TDOA和TOA三点定位算法,或者是其它利用到达时间或到达角度进行定位的算法。
  6. 根据权利要求1所述的基于固体传播的声波室内定位方法,其特征在于,所述的固体为地面或立体空间的墙壁。
PCT/CN2016/084193 2016-01-20 2016-05-31 基于固体传播的声波室内定位方法 WO2017124678A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610036312.7A CN105527608A (zh) 2016-01-20 2016-01-20 基于固体传播的声波室内定位方法
CN201610036312.7 2016-01-20

Publications (1)

Publication Number Publication Date
WO2017124678A1 true WO2017124678A1 (zh) 2017-07-27

Family

ID=55769945

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/084193 WO2017124678A1 (zh) 2016-01-20 2016-05-31 基于固体传播的声波室内定位方法

Country Status (2)

Country Link
CN (1) CN105527608A (zh)
WO (1) WO2017124678A1 (zh)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105527608A (zh) * 2016-01-20 2016-04-27 深圳大学 基于固体传播的声波室内定位方法
US10620295B2 (en) * 2016-09-14 2020-04-14 Htc Corporation Positioning signal receiver, positioning system and positioning method of the same
CN106959435B (zh) * 2017-03-27 2023-12-08 中特检验集团有限公司 声波导航定位方法和装置
CN107290721B (zh) * 2017-06-01 2019-01-11 深圳大学 一种室内的定位方法及系统
CN110412510A (zh) * 2018-04-26 2019-11-05 苏州触达信息技术有限公司 一种预定二维空间内的定位方法和定位系统
CN112098948A (zh) * 2020-03-18 2020-12-18 苏州触达信息技术有限公司 一种室内定位方法和智能设备

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030066692A1 (en) * 2000-06-29 2003-04-10 Fabrice Devige Accurate interactive acoustic plate
CN1669048A (zh) * 2002-06-12 2005-09-14 国家科学研究中心 定位表面冲击的方法及其实现设备
CN101031869A (zh) * 2004-08-11 2007-09-05 传感器公司 定位表面上的冲击的方法及其设备
CN103364761A (zh) * 2013-07-12 2013-10-23 哈尔滨工业大学 一种室内声源定位系统及采用该系统定位室内声源的方法
CN105527608A (zh) * 2016-01-20 2016-04-27 深圳大学 基于固体传播的声波室内定位方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101592727B (zh) * 2008-05-29 2013-05-01 日电(中国)有限公司 自治超声波室内定位系统、装置和方法
KR101303729B1 (ko) * 2013-03-12 2013-09-04 임동권 음파를 이용한 위치 정보 제공 시스템
CN104062633B (zh) * 2014-07-11 2017-01-04 西安电子科技大学 一种基于超声波的室内定位系统及方法
CN204789982U (zh) * 2015-06-10 2015-11-18 国网山东省电力公司泰安供电公司 用于仓储系统的声学定位系统

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030066692A1 (en) * 2000-06-29 2003-04-10 Fabrice Devige Accurate interactive acoustic plate
CN1669048A (zh) * 2002-06-12 2005-09-14 国家科学研究中心 定位表面冲击的方法及其实现设备
CN101031869A (zh) * 2004-08-11 2007-09-05 传感器公司 定位表面上的冲击的方法及其设备
CN103364761A (zh) * 2013-07-12 2013-10-23 哈尔滨工业大学 一种室内声源定位系统及采用该系统定位室内声源的方法
CN105527608A (zh) * 2016-01-20 2016-04-27 深圳大学 基于固体传播的声波室内定位方法

Also Published As

Publication number Publication date
CN105527608A (zh) 2016-04-27

Similar Documents

Publication Publication Date Title
WO2017124678A1 (zh) 基于固体传播的声波室内定位方法
CN105492923B (zh) 声学位置跟踪系统
Khyam et al. Highly accurate time-of-flight measurement technique based on phase-correlation for ultrasonic ranging
CN108780642A (zh) 触觉系统中的校准和检测技术
Fischer et al. Multimodal indoor localization: Fusion possibilities of ultrasonic and bluetooth low-energy data
US10292015B1 (en) Geometrical scheduling algorithm for acoustic positioning beacons
JP2009139264A (ja) 3次元位置確定システムおよび3次元位置確定方法
Martın et al. Estimating the 3D-position from time delay data of US-waves: experimental analysis and a new processing algorithm
Carter et al. An ultrasonic indoor positioning system for harsh environments
CN101828929A (zh) 利用视在位移的多普勒血流速度矢量测量方法
CN112154345A (zh) 声学定位发射器和接收器系统及方法
US8830791B2 (en) Measurement of 3D coordinates of transmitter
Murakami et al. Five degrees-of-freedom pose-estimation method for smartphones using a single acoustic anchor
Elvira et al. ALO: An ultrasound system for localization and orientation based on angles
Ionescu et al. 3D localization and tracking of objects using miniature microphones
KR20090062594A (ko) 초음파 센서 어레이를 이용한 3차원 위치측정 장치 및 그방법
Carotenuto et al. Touchless 3D gestural interface using coded ultrasounds
Khyam et al. High precision ultrasonic positioning using phase correlation
Wu et al. Passive sonic detection and ranging for locating sound sources
Nonsakhoo et al. Angle of arrival estimation by using stereo ultrasonic technique for local positioning system
KR100884712B1 (ko) 근접점 방법을 이용한 캡슐형 내시경의 위치측정 방법 및시스템
Feferman et al. Indoor positioning with unsynchronized sound sources
Stancovici et al. Relative positioning system using inter-robot ultrasonic localization turret
Khyam et al. High precision ultrasonic positioning using a robust optimization approach
Mirshahi et al. A novel distance measurement approach using shape matching in narrow-band ultrasonic system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16885940

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 12.11.2018)

122 Ep: pct application non-entry in european phase

Ref document number: 16885940

Country of ref document: EP

Kind code of ref document: A1