WO2017124322A1 - High speed train mode detection based on information from a short-range network - Google Patents

High speed train mode detection based on information from a short-range network Download PDF

Info

Publication number
WO2017124322A1
WO2017124322A1 PCT/CN2016/071446 CN2016071446W WO2017124322A1 WO 2017124322 A1 WO2017124322 A1 WO 2017124322A1 CN 2016071446 W CN2016071446 W CN 2016071446W WO 2017124322 A1 WO2017124322 A1 WO 2017124322A1
Authority
WO
WIPO (PCT)
Prior art keywords
high speed
short
range wireless
wireless network
speed vehicle
Prior art date
Application number
PCT/CN2016/071446
Other languages
French (fr)
Inventor
Jie Mao
Congchong Ru
Xuepan GUAN
Original Assignee
Qualcomm Incorporated
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Qualcomm Incorporated filed Critical Qualcomm Incorporated
Priority to PCT/CN2016/071446 priority Critical patent/WO2017124322A1/en
Publication of WO2017124322A1 publication Critical patent/WO2017124322A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/02Services making use of location information
    • H04W4/025Services making use of location information using location based information parameters
    • H04W4/027Services making use of location information using location based information parameters using movement velocity, acceleration information
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/02Services making use of location information
    • H04W4/029Location-based management or tracking services
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/30Services specially adapted for particular environments, situations or purposes
    • H04W4/40Services specially adapted for particular environments, situations or purposes for vehicles, e.g. vehicle-to-pedestrians [V2P]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/80Services using short range communication, e.g. near-field communication [NFC], radio-frequency identification [RFID] or low energy communication
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/20Services signaling; Auxiliary data signalling, i.e. transmitting data via a non-traffic channel

Definitions

  • aspects of the present disclosure relate generally to wireless communication systems, and more particularly, to high speed train mode detection based on information from a short-range network.
  • Wireless communication systems are widely deployed to provide various telecommunication services such as telephony, video, data, messaging, and broadcasts.
  • Typical wireless communication systems may employ multiple-access technologies capable of supporting communication with multiple users by sharing available system resources (e.g., bandwidth, transmit power) .
  • multiple-access technologies include code division multiple access (CDMA) systems, time division multiple access (TDMA) systems, frequency division multiple access (FDMA) systems, orthogonal frequency division multiple access (OFDMA) systems, single-carrier frequency divisional multiple access (SC-FDMA) systems, and time division synchronous code division multiple access (TD-SCDMA) systems.
  • CDMA code division multiple access
  • TDMA time division multiple access
  • FDMA frequency division multiple access
  • OFDMA orthogonal frequency division multiple access
  • SC-FDMA single-carrier frequency divisional multiple access
  • TD-SCDMA time division synchronous code division multiple access
  • LTE long term evolution
  • UMTS universal mobile telecommunications system
  • 3GPP Third Generation Partnership Project
  • DL downlink
  • UL uplink
  • MIMO multiple-input multiple-output
  • a method for wireless communication by a user equipment includes determining the UE is on a high speed vehicle, based on information for a server of a short-range wireless network associated with the high speed vehicle, for a predetermined period of time. The method also includes accessing a dedicated cellular network associated with the high speed vehicle when the UE is determined to be on the high speed vehicle.
  • a user equipment (UE) for wireless communication includes a memory, a transceiver and at least one processor coupled to the memory and transceiver.
  • the processor (s) is configured to determine the UE is on a high speed vehicle, based on information for a server of a short-range wireless network associated with the high speed vehicle, for a predetermined period of time.
  • the processor (s) is also configured to access a dedicated cellular network associated with the high speed vehicle when the UE is determined to be on the high speed vehicle.
  • a non-transitory computer-readable medium includes encoded thereon program code.
  • the computer-readable medium includes program code to determine the UE is on a high speed vehicle, based on information for a server of a short-range wireless network associated with the high speed vehicle, for a predetermined period of time.
  • the computer-readable medium also includes program code to access a dedicated cellular network associated with the high speed vehicle when the UE is determined to be on the high speed vehicle.
  • an apparatus for wireless communication at a user equipment includes means for determining the UE is on a high speed vehicle, based on information for a server of a short-range wireless network associated with the high speed vehicle, for a predetermined period of time.
  • the apparatus may also include means for accessing a dedicated cellular network associated with the high speed vehicle when the UE is determined to be on the high speed vehicle.
  • FIGURE 1 is a diagram illustrating an example of a network architecture according to one aspect of the present disclosure.
  • FIGURE 2 is a diagram illustrating an example of a downlink frame structure in long term evolution (LTE) according to one aspect of the present disclosure.
  • FIGURE 3 is a diagram illustrating an example of an uplink frame structure in long term evolution (LTE) according to one aspect of the present disclosure.
  • FIGURE 4 is a block diagram conceptually illustrating an example of a base station in communication with a user equipment (UE) in a telecommunications system according to one aspect of the present disclosure.
  • UE user equipment
  • FIGURE 5 illustrates network coverage areas including a dedicated network and a public network according to aspects of the present disclosure.
  • FIGURE 6 is a flow diagram illustrating an example decision process for high speed train mode detection according to one aspect of the present disclosure.
  • FIGURE 7 is a flow diagram illustrating a method for high speed train mode detection at a UE according to one aspect of the present disclosure.
  • FIGURE 8 is block diagram illustrating different modules/means/components for high speed-train mode detection in an example apparatus according to one aspect of the present disclosure.
  • FIGURE 1 is a diagram illustrating a network architecture 100 of a long term evolution (LTE) network.
  • the LTE network architecture 100 may be referred to as an evolved packet system (EPS) 100.
  • the EPS 100 may include one or more user equipment (UE) 102, an evolved UMTS terrestrial radio access network (E-UTRAN) 104, an evolved packet core (EPC) 110, a home subscriber server (HSS) 120, and an operator’s IP services 122.
  • the EPS can interconnect with other access networks, but for simplicity those entities/interfaces are not shown.
  • the EPS 100 provides packet-switched services, however, as those skilled in the art will readily appreciate, the various concepts presented throughout this disclosure may be extended to networks providing circuit-switched services.
  • the E-UTRAN 104 includes an evolved NodeB (eNodeB) 106 and other eNodeBs 108.
  • the eNodeB 106 provides user and control plane protocol terminations toward the UE 102.
  • the eNodeB 106 may be connected to the other eNodeBs 108 via a backhaul (e.g., an X2 interface) .
  • the eNodeB 106 may also be referred to as a base station, a base transceiver station, a radio base station, a radio transceiver, a transceiver function, a basic service set (BSS) , an extended service set (ESS) , or some other suitable terminology.
  • BSS basic service set
  • ESS extended service set
  • the eNodeB 106 provides an access point to the EPC 110 for a UE 102.
  • UEs 102 include a cellular phone, a smart phone, a session initiation protocol (SIP) phone, a laptop, a notebook, a netbook, a smartbook, a personal digital assistant (PDA) , a satellite radio, a global positioning system, a multimedia device, a video device, a digital audio player (e.g., MP3 player) , a camera, a game console, or any other similar functioning device.
  • SIP session initiation protocol
  • PDA personal digital assistant
  • the UE 102 may also be referred to by those skilled in the art as a mobile station or apparatus, a subscriber station, a mobile unit, a subscriber unit, a wireless unit, a remote unit, a mobile device, a wireless device, a wireless communications device, a remote device, a mobile subscriber station, an access terminal, a mobile terminal, a wireless terminal, a remote terminal, a handset, a user agent, a mobile client, a client, or some other suitable terminology.
  • the eNodeB 106 is connected to the EPC 110 via, e.g., an S1 interface.
  • the EPC 110 includes a mobility management entity (MME) 112, other MMEs 114, a serving gateway 116, and a packet data network (PDN) gateway 118.
  • MME 112 is the control node that processes the signaling between the UE 102 and the EPC 110.
  • the MME 112 provides bearer and connection management. All user IP packets are transferred through the serving gateway 116, which itself is connected to the PDN gateway 118.
  • the PDN gateway 118 provides UE IP address allocation as well as other functions.
  • the PDN gateway 118 is connected to the operator’s IP services 122.
  • the operator’s IP services 122 may include the Internet, the Intranet, an IP multimedia subsystem (IMS) , and a PS streaming service (PSS) .
  • IMS IP multimedia subsystem
  • PSS PS streaming service
  • FIGURE 2 is a diagram 200 illustrating an example of a downlink frame structure in LTE.
  • a frame (10 ms) may be divided into 10 equally sized subframes. Each subframe may include two consecutive time slots.
  • a resource grid may be used to represent two time slots, each time slot including a resource block.
  • the resource grid is divided into multiple resource elements.
  • a resource block contains 12 consecutive subcarriers in the frequency domain and, for a normal cyclic prefix in each orthogonal frequency-division multiplexing (OFDM) symbol, 7 consecutive OFDM symbols in the time domain, or 84 resource elements.
  • OFDM orthogonal frequency-division multiplexing
  • a resource block contains 6 consecutive OFDM symbols in the time domain and has 72 resource elements.
  • the resource elements include downlink reference signals (DL-RS) .
  • the DL-RS include Cell-specific RS (CRS) (also sometimes called common RS) 202 and UE-specific RS (UE-RS) 204.
  • CRS Cell-specific RS
  • UE-RS UE-specific RS
  • UE-RS 204 are transmitted only on the resource blocks upon which the corresponding physical downlink shared channel (PDSCH) is mapped.
  • PDSCH physical downlink shared channel
  • the number of bits carried by each resource element depends on the modulation scheme. Thus, the more resource blocks that a UE receives and the higher the modulation scheme, the higher the data rate for the UE.
  • FIGURE 3 is a diagram 300 illustrating an example of an uplink frame structure in LTE.
  • the available resource blocks for the uplink may be partitioned into a data section and a control section.
  • the control section may be formed at the two edges of the system bandwidth and may have a configurable size.
  • the resource blocks in the control section may be assigned to UEs for transmission of control information.
  • the data section may include all resource blocks not included in the control section.
  • the uplink frame structure results in the data section including contiguous subcarriers, which may allow a single UE to be assigned all of the contiguous subcarriers in the data section.
  • a UE may be assigned resource blocks 310a, 310b in the control section to transmit control information to an eNodeB.
  • the UE may also be assigned resource blocks 320a, 320b in the data section to transmit data to the eNodeB.
  • the UE may transmit control information in a physical uplink control channel (PUCCH) on the assigned resource blocks in the control section.
  • the UE may transmit only data or both data and control information in a physical uplink shared channel (PUSCH) on the assigned resource blocks in the data section.
  • An uplink transmission may span both slots of a subframe and may hop across frequency.
  • a set of resource blocks may be used to perform initial system access and achieve uplink synchronization in a physical random access channel (PRACH) 330.
  • the PRACH 330 carries a random sequence and cannot carry any uplink data/signaling.
  • Each random access preamble occupies a bandwidth corresponding to six consecutive resource blocks.
  • the starting frequency is specified by the network. For example, the transmission of the random access preamble is restricted to certain time and frequency resources. There is no frequency hopping for the PRACH.
  • the PRACH attempt is carried in a single subframe (1 ms) or in a sequence of few contiguous subframes and a UE can make only a single PRACH attempt per frame (10 ms) .
  • FIGURE 4 is a block diagram of a base station (e.g., eNodeB or nodeB) 410 in communication with a UE 450 in an access network.
  • a base station e.g., eNodeB or nodeB
  • the controller/processor 475 implements the functionality of the L2 layer.
  • the controller/processor 475 provides header compression, ciphering, packet segmentation and reordering, multiplexing between logical and transport channels, and radio resource allocations to the UE 450 based on various priority metrics.
  • the controller/processor 475 is also responsible for HARQ operations, retransmission of lost packets, and signaling to the UE 450.
  • the TX processor 416 implements various signal processing functions for the L1 layer (e.g., physical layer) .
  • the signal processing functions includes coding and interleaving to facilitate forward error correction (FEC) at the UE 450 and mapping to signal constellations based on various modulation schemes (e.g., binary phase-shift keying (BPSK) , quadrature phase-shift keying (QPSK) , M-phase-shift keying (M-PSK) , M-quadrature amplitude modulation (M-QAM) ) .
  • FEC forward error correction
  • BPSK binary phase-shift keying
  • QPSK quadrature phase-shift keying
  • M-PSK M-phase-shift keying
  • M-QAM M-quadrature amplitude modulation
  • Each stream is then mapped to an OFDM subcarrier, multiplexed with a reference signal (e.g., pilot) in the time and/or frequency domain, and then combined together using an Inverse Fast Fourier Transform (IFFT) to produce a physical channel carrying a time domain OFDM symbol stream.
  • the OFDM stream is spatially precoded to produce multiple spatial streams.
  • Channel estimates from a channel estimator 474 may be used to determine the coding and modulation scheme, as well as for spatial processing.
  • the channel estimate may be derived from a reference signal and/or channel condition feedback transmitted by the UE 450.
  • Each spatial stream is then provided to a different antenna 420 via a separate transmitter (TX) 418.
  • Each transmitter (TX) 418 modulates a radio frequency (RF) carrier with a respective spatial stream for transmission.
  • RF radio frequency
  • each receiver (RX) 454 receives a signal through its respective antenna 452.
  • Each receiver (RX) 454 recovers information modulated onto an RF carrier and provides the information to the receiver (RX) processor 456.
  • the RX processor 456 implements various signal processing functions of the L1 layer. Although a single RX processor is shown in FIGURE 4, the actual implementation is not so limited.
  • the RX processor 456 performs spatial processing on the information to recover any spatial streams destined for the UE 450. If multiple spatial streams are destined for the UE 450, they may be combined by the RX processor 456 into a single OFDM symbol stream.
  • the RX processor 456 then converts the OFDM symbol stream from the time-domain to the frequency domain using a Fast Fourier Transform (FFT) .
  • the frequency domain signal comprises a separate OFDM symbol stream for each subcarrier of the OFDM signal.
  • the symbols on each subcarrier, and the reference signal is recovered and demodulated by determining the most likely signal constellation points transmitted by the base station 410. These soft decisions may be based on channel estimates computed by the channel estimator 458.
  • the soft decisions are then decoded and deinterleaved to recover the data and control signals that were originally transmitted by the base station 410 on the physical channel.
  • the data and control signals are then provided to the controller/processor 459.
  • the example UE 450 is illustrated in FIGURE 4 as including multiple receive chains.
  • Multiple receive chains can include multiple antennas, multiple receivers, and/or multiple processors or a single processor.
  • a primary receive chain and a secondary receive chain may include a first antenna and a second antenna each coupled to a respective receiver.
  • the respective receivers may be coupled to a single RX processor which outputs data to a channel estimator and/or controller/processor, or the respective receivers may be coupled to respective receive processors which each output data to a single or multiple channel estimator (s) and/or controller (s) /processor (s) .
  • Each chain of the multiple receive chains may be configured to communicate with and/or perform detection and measurement of a cell, and may be configured to implement other functionality described herein.
  • the controller/processor 459 implements the L2 layer.
  • the controller/processor can be associated with a memory 460 that stores program codes and data.
  • the memory 460 may be referred to as a computer-readable medium.
  • the controller/processor 459 provides demultiplexing between transport and logical channels, packet reassembly, deciphering, header decompression, control signal processing to recover upper layer packets from the core network.
  • the upper layer packets are then provided to a data sink 462, which represents all the protocol layers above the L2 layer.
  • Various control signals may also be provided to the data sink 462 for L3 processing.
  • the controller/processor 459 is also responsible for error detection using an acknowledgement (ACK) and/or negative acknowledgement (NACK) protocol to support HARQ operations.
  • ACK acknowledgement
  • NACK negative acknowledgement
  • a data source 467 is used to provide upper layer packets to the controller/processor 459.
  • the data source 467 represents all protocol layers above the L2 layer.
  • the controller/processor 459 implements the L2 layer for the user plane and the control plane by providing header compression, ciphering, packet segmentation and reordering, and multiplexing between logical and transport channels based on radio resource allocations by the base station 410.
  • the controller/processor 459 is also responsible for HARQ operations, retransmission of lost packets, and signaling to the base station 410.
  • Channel estimates derived by a channel estimator 458 from a reference signal or feedback transmitted by the base station 410 may be used by the TX processor 468 to select the appropriate coding and modulation schemes, and to facilitate spatial processing.
  • the spatial streams generated by the TX processor 468 are provided to different antenna 452 via separate transmitters (TX) 454. Each transmitter (TX) 454 modulates an RF carrier with a respective spatial stream for transmission.
  • the uplink transmission is processed at the base station 410 in a manner similar to that described in connection with the receiver function at the UE 450.
  • Each receiver (RX) 418 receives a signal through its respective antenna 420.
  • Each receiver (RX) 418 recovers information modulated onto an RF carrier and provides the information to a RX processor 470.
  • the RX processor 470 may implement the L1 layer.
  • the controller/processor 475 implements the L2 layer.
  • the controller/processor 475 and 459 can be associated with memories 476 and 460, respectively that store program codes and data.
  • the controller/processors 475 and 459 may provide various functions including timing, peripheral interfaces, voltage regulation, power management, and other control functions.
  • the memories 476 and 460 may be referred to as a computer-readable media.
  • the memory 460 of the UE 450 may store a high speed train mode detection module 491 which, when executed by the controller/processor 459, configures the UE 450 to determine whether the UE 450 is aboard a high speed train in order to prevent the UE 450 from connecting to a wrong network.
  • the controller/processor 475 provides demultiplexing between transport and logical channels, packet reassembly, deciphering, header decompression, control signal processing to recover upper layer packets from the UE 450.
  • Upper layer packets from the controller/processor 475 may be provided to the core network.
  • the controller/processor 475 is also responsible for error detection using an ACK and/or NACK protocol to support HARQ operations.
  • FIGURE 5 illustrates a network coverage area example 500 including a dedicated network and a public network, according to aspects of the present disclosure.
  • the coverage area for a high speed train route includes both cellular networks and a short-range network.
  • the cellular network is an LTE network, including public and dedicated LTE cells.
  • the non-dedicated public LTE cells include cells 520 and 522 and the dedicated LTE cells include cells 502, 504, 506, and 508.
  • Different LTE frequencies are used for non-dedicated public LTE cells and dedicated LTE cells.
  • non-dedicated LTE frequencies F1 and F2 may be used for the public LTE cells 520 and 522 and dedicated LTE frequencies F3, F4 and F5 may be used for the dedicated LTE cells 502-508.
  • the coverage area example 500 also includes a short-range network 503 having a coverage area centered around a high speed train 530.
  • a user equipment 531 located on a high speed train 530 is within the coverage area of the short-range network 503.
  • the UE When a UE 531 is traveling at a high rate of speed (e.g., traveling on a high speed train 530) , the UE may have difficulty maintaining a connection to the cellular network.
  • QoS quality of service
  • some service providers have invested in a dedicated (e.g., LTE) network for UEs on the high speed trains.
  • the dedicated network e.g., dedicated LTE network
  • the dedicated network may utilize one or more dedicated LTE frequencies, such as frequencies F3 -F5. This is in contrast to a public network that operates with non-dedicated frequencies.
  • the dedicated network is described for use with UEs on high speed trains, although other high speed vehicles are also contemplated.
  • the dedicated cells 502, 504, 506 and 508 are configured in an elongated shape around the train track 501, intended for coverage of a passing train 530.
  • the short-range network 503 is configured in a shape to cover UEs inside one or more cars of the train 530.
  • the public network cells 520 and 522 are configured in a shape intended to cover UEs in an area extending in all directions.
  • the UE 531 may move from one network cell, such as the dedicated cell 504, to a public network cell, such as the non-dedicated public cell 520 when the UE 531 moves off of the train.
  • the UE 531 may move from the non-dedicated network cell 520 to the dedicated network cell 504 when the UE 531 is located on a high speed moving train.
  • the handover or cell reselection may be performed when the UE 531 moves from a coverage area of a dedicated cell to the coverage area of a non-dedicated cell, or vice versa.
  • the UE 531 may inadvertently connect to or disconnect from the dedicated cellular network unless the UE 531 is able to determine whether it is aboard a high speed train (e.g., detecting a high speed train mode) .
  • the UE does not handover or reselect from a public cell to a dedicated cell.
  • the UE cannot reselect or handover to a public network.
  • the handover/reselection can occur.
  • the UE aboard the high speed train may reselect/handover from the dedicated network to a public network.
  • the goal is for the UE to reselect/handover back to the dedicated network when the train leaves the station. If the UE remains connected to the public network when the train leaves the station, the UE will be unable to return to the dedicated network. As a result, any in-progress calls may drop because the public wireless network coverage will become unavailable as the train resumes its high speed.
  • a UE located on a high speed train may be unable to reselect back to the dedicated network after reselecting or handing over to a public network at a train station, especially if the UE is unable to determine whether it is located on a high speed train.
  • the UE When a UE moves off of the high speed train at a railway station, the UE should be able to determine it has left the high speed train. In particular, after leaving the high speed train, the UE should remain connected to the public network after reselecting from the dedicated network to a non-dedicated public network. Otherwise, the call will drop from the dedicated network when the moves away from the railway station.
  • the UE may drop a call for reasons such as a radio link failure or out of service. After the call drop, the UE will re-camp on a cell. If the UE can locate cells from both a dedicated network and a public network, the UE should know if it is on a high speed train to camp on the correct network.
  • the UE should be able to determine whether or not it is on a high speed train.
  • a UE is able to determine it is on the high speed train, it can prevent connecting to the wrong network by prioritizing the dedicated network for cell reselection and measurement reporting that triggers a handover.
  • the UE can detect whether it is onboard a high speed train with a GPS signal or Doppler estimation due to the speed of the train.
  • a fast speed train when the train is not moving at a fast speed (e.g., when the high speed train moves at a low speed and is approaching or leaving a railway station, or stopping at the railway station) .
  • Aspects of the present disclosure are directed to determining whether a UE is located on a high speed moving train, including a slow-moving or stopped high speed train.
  • aspects of the present disclosure utilize information from a short-range network, such as a WiFi, located on a fast train to detect a high speed train mode.
  • a short-range network such as a WiFi
  • a specific service set identifier may be utilized to determine whether the UE is located on a high speed train.
  • the UE detects the WiFi access point (AP) with the specific SSID, the UE can determine whether it is on a high speed train regardless of whether the train is moving at high speed or stopped in a railway station.
  • the UE may be able to determine, from the short-range network, important information for the dedicated cellular network.
  • Such information may include cellular frequencies or channels (e.g., time division system /wideband code division multiple access /global system for mobile communications /long term evolution (TDS/WCDMA/GSM/LTE) frequency bands and E-UTRAN absolute frequency channel numbers (E-ARFCN) ) .
  • TDS/WCDMA/GSM/LTE long term evolution
  • E-ARFCN E-UTRAN absolute frequency channel numbers
  • the UE can remember a mapping between a desired frequency of the high speed network and the high speed train AP SSID. This information can help the UE to decide which network, the dedicated network or a public network, to camp on and which frequency band or (E) ARFCN to use.
  • the UE detects the SSID for a predetermined period of time before determining it is aboard the high speed train.
  • Setting minimum detect time periods may prevent a false alarm (e.g., that the UE is aboard a high speed train when in fact it is not) .
  • the UE may still receive a WiFi signal including the SSID of the onboard WiFi access point. Because the UE detects the SSID for a certain period of time, the chance for a false alarm is relatively low.
  • the penetration loss of the high speed train is around 10 ⁇ 20dB. This makes it difficult for the UE located outside the train to detect a strong signal with the AP’s SSID transmitted from inside of the train.
  • the UE vendors may statically or dynamically provision high speed train WiFi AP SSIDs into a UE memory. The UE can then determine it is located on a high speed train when an SSID match is found.
  • the UE builds and maintains a high speed train SSID list by adding each newly found SSID into the list when the UE first detects the SSID in a high speed train with information from GPS or Doppler estimation.
  • the UE detects an SSID naming convention specifically defined for high speed train WiFi AP SSIDs.
  • a prefix “HST” in an SSID name such as HST-WiFiAP1 can be used to indicate it is a high speed train WiFi AP SSID.
  • the UE retrieves information (e.g., WiFi AP SSID) directly from a server of the high speed train.
  • the UE performs an authentication procedure with the WiFi AP server either initially or periodically.
  • the server may send a message to the UE notifying the UE that it is aboard a high speed train.
  • the message may also include other information such as the (E) ARFCN used for this HST network, the maximum speed of the train, etc.
  • Short-range networks other than WiFi can also be utilized.
  • Other short-range networks may include Bluetooth, and near-field communication (NFC) networks, for example.
  • NFC near-field communication
  • FIGURE 6 shows a flow diagram 600 illustrating, as an example, a decision process for high speed train mode detection at a UE according to one aspect of the present disclosure.
  • the flow diagram 600 is for illustration purposes only and other alternative aspects of the decision process for the high speed train mode detection are possible.
  • the UE scans frequencies within its ranges as an initial step for determining a high speed train mode or whether the UE is aboard the high speed train.
  • the frequencies scanned may be of a short-range network or a cellular network such as a dedicated LTE network.
  • the UE may acquire short-range network information such as a network SSID, frequencies of the short-range network and authentication related parameters. Acquiring information may include waiting for a predefined period of time after initial acquisition to confirm the acquired information is not due to an error. Because an SSID is the name of a wireless local area network (WLAN) , all wireless devices on a WLAN employ the same SSID in order to communicate with each other and with the server.
  • WLAN wireless local area network
  • the UE detects the SSID for a second time after waiting for a predetermined period of time and initial acquisition of the short-range network information to ascertain the initial acquired information is not due to an error.
  • re-acquisition of the short-range network information may take place more than once when there are inconsistencies between currently acquired short-range network information and previously acquired short-range network information. This will help prevent a false alarm that the UE is aboard a high speed train when in fact it is not. For instance, when the UE is out of a car of the high speed train, on the platform of a railway station or very close to the railway, the UE may still receive a WiFi signal including the SSID of the onboard WiFi AP.
  • the UE determines whether the acquired network SSID of the short-range network matches an entry on a saved SSID list for the high speed train.
  • the UE may save a new SSID into the SSID list when it detects a new SSID of a WLAN server and determines the WLAN server is associated with a high speed train.
  • the short-range network ID list may be stored and maintained locally at the UE. If the UE determines the acquired network ID does match one of the entries on the saved short-range network ID list, the UE, at block 632, determines the UE is aboard a high speed train.
  • the UE determines whether the acquired network ID matches one of the entries on a provisioned short-range network ID list.
  • a service provider may statically or dynamically provision into the UE a set of IDs for a set of short-range networks associated with the high speed train. The set of short-range networks are dedicated to the high speed train and are not intended for use outside the high speed train. If the UE determines the acquired network ID does match one of the set of the provisioned short-range network IDs, the UE, at block 632, determines the UE is aboard a high speed train.
  • the UE determines whether the acquired network ID matches a predetermined naming convention specified for the short-range network associated with the high speed train.
  • the naming convention for the short-range networks of the speed-train may have “high speed train” or “HST” as part of a short network ID such as a prefix or a suffix of an SSID. If the UE determines the acquired network ID matches any naming convention specified for the short-range network of the high speed train, the UE, at block 632, determines the UE is aboard a high speed train.
  • the UE determines whether the acquired network ID does not match any of the predefined naming convention of short-range network ID of the high speed train. If the UE determines the acquired network ID does not match any of the predefined naming convention of short-range network ID of the high speed train, the UE, at block 612, further determines whether the scanned frequency matches a known frequency associated with the high speed train.
  • the known frequency may be a short-range network frequency or cellular frequency dedicated to the high speed train. Once a match is found, the UE, at block 632, determines it is aboard a high speed train.
  • the UE determines whether a signaling message from a short-range network server indicates the UE is aboard a high speed train.
  • the short-range network server is dedicated to the high speed train and may go through an authorization process to allow the UE to access the short-range network.
  • the UE may perform an authentication procedure with the short-range network server either initially or periodically.
  • the server may send a signaling message to the UE notifying the UE that it is aboard a high speed train.
  • the server of the short-range wireless network can be a WiFi access point, a Bluetooth master or a near-field communication network server, for example.
  • the signaling message may also include other information such as the (E) ARFCN used for this dedicated cellular network, the maximum speed of the train, etc.
  • the message may be piggybacked on an existing signaling message or may be sent via use of an existing signaling message for a different purpose.
  • the UE may determine it is aboard a high speed train.
  • the UE may determine the UE is not aboard a high speed train. In this mode, the UE may be connected to a non-dedicated, public cellular network. In an example aspect of the present disclosure, the UE, at block 616, may further verify the UE is not aboard the high speed train, by repeating one or more steps from block 606 through block 614 or through some other alternative means. It is noted that although steps 606-614 are shown as occurring serially. The present disclosure also contemplates only performing one of these steps, or some number of the steps that is less than all of the steps.
  • FIGURE 7 is a flow diagram illustrating a method for high speed train mode detection at a UE according to one aspect of the present disclosure.
  • the steps of the method 700 are for illustration purposes only and other alternative steps of the method for the high speed train mode detection are possible.
  • the UE determines whether it is on a high speed vehicle such as a high speed train.
  • the determining may be based on whether an acquired short-range network ID matches one on a saved ID list associated with the high speed train and whether the acquired network ID matches a provisioned short-range network ID.
  • the determining may also be based on whether an acquired frequency matches a known frequency associated with the high speed train and whether the acquired short-range network ID matches a predefined naming convention.
  • the determining may further be based on a signaling message from the short-range network server indicating whether the UE is on a high speed train.
  • the UE accesses a dedicated cellular network associated with the high speed train when the UE determines that the UE is on a high speed train.
  • the UE accesses a public cellular network such as a public LTE network.
  • FIGURE 8 is a block diagram illustrating an example of a hardware implementation for an apparatus 800 employing a processing system 814 with different modules/means/components for high speed train mode detection in an example apparatus according to one aspect of the present disclosure.
  • the processing system 814 may be implemented with a bus architecture, represented generally by the bus 824.
  • the bus 824 may include any number of interconnecting buses and bridges depending on the specific application of the processing system 814 and the overall design constraints.
  • the bus 824 links together various circuits including one or more processors and/or hardware modules, represented by the processor 822 the modules 802, 804, 806 and the non-transitory computer-readable medium 826.
  • the bus 824 may also link various other circuits such as timing sources, peripherals, voltage regulators, and power management circuits, which are well known in the art, and therefore, will not be described any further.
  • the apparatus includes a processing system 814 coupled to a transceiver 830.
  • the transceiver 830 is coupled to one or more antennas 820.
  • the transceiver 830 enables communicating with various other apparatus over a transmission medium.
  • the processing system 814 includes a processor 822 coupled to a non-transitory computer-readable medium 826.
  • the processor 822 is responsible for general processing, including the execution of software stored on the computer-readable medium 826.
  • the software when executed by the processor 822, causes the processing system 814 to perform the various functions described for any particular apparatus.
  • the computer-readable medium 826 may also be used for storing data that is manipulated by the processor 822 when executing software.
  • the processing system 814 includes a measurement module 802 for determining whether the UE is aboard a high speed train.
  • the processing system 814 also includes a network access module 804 for accessing either a dedicated cellular network or a public cellular network, depending on the determination from the measurement module 802.
  • the processing system 814 may also include a scanning module 806 for searching and scanning dedicated or non-dedicated frequencies of a cellular network such as an LTE network and a short-range network such as a WiFi network.
  • the modules 802, 804 and 806 may be software modules running in the processor 822, resident/stored in the computer-readable medium 826, one or more hardware modules coupled to the processor 822, or some combination thereof.
  • the processing system 814 may be a component of the UE 450 of FIGURE 4 and may include the memory 460 and the high speed train mode detection module 491, and/or the controller/processor 459.
  • an apparatus such as a UE 450 is configured for wireless communication including means for determining whether the UE is aboard a high speed train.
  • the determining means may be the antennas 452, the receiver 454, the channel estimator 458, the receive processor 456, the controller/processor 459, the memory 460, measurement module 802, and/or the processing system 814 configured to perform the functions recited by the determining means.
  • the UE 450 is also configured to include means for access a dedicated network.
  • the access means may include the antennas 452, the receiver 454, the channel estimator 458, the receive processor 456, the transmit processor 468, the controller/processor 59, the memory 460, the network access module 804, the frequency scanning module 806, and/or the processing system 814 configured to perform the functions recited by the suspending means.
  • the means and functions correspond to the aforementioned structures.
  • the aforementioned means may be a module or any apparatus configured to perform the functions recited by the access means.
  • the UE 450 is also configured to include means for searching and scanning dedicated and non-dedicated frequencies of cellular networks and short-ranged networks.
  • the searching and scanning means may include the antennas 452, the receiver 454, the controller/processor 459, the receive processor 456, the memory 460, the scanning module 806, and/or the processing system 814 configured to perform the functions recited by the searching means.
  • the means and functions correspond to the aforementioned structures.
  • the aforementioned means may be a module or any apparatus configured to perform the functions recited by the searching means.
  • LTE in frequency-division duplex (FDD) , time-division duplex (TDD) , or both modes
  • FDD frequency-division duplex
  • TDD time-division duplex
  • RATs 2G/3G radio access technologies
  • GSM Global System for Mobile communications
  • TD-SCDMA Time-division duplex
  • CDMA2000 Code Division Multiple Access 2000
  • EV-DO evolution-data optimized
  • LTE-A LTE-advanced
  • W-CDMA high speed downlink packet access
  • HSDPA high speed downlink packet access
  • HSUPA high speed uplink packet access
  • HSPA+ high speed packet access plus
  • TD-CDMA time division multiple access
  • Various aspects may also be extended to systems employing ultra mobile broadband (UMB) , IEEE 802.11 (WiFi) , IEEE 802.16 (WiMAX) , IEEE 802.20, ultra-wideband (UWB) , Bluetooth, and/or other suitable systems.
  • UMB ultra mobile broadband
  • WiFi IEEE 802.11
  • WiMAX IEEE 802.16
  • WiMAX ultra-wideband
  • Bluetooth and/or other suitable systems.
  • the actual telecommunication standard, network architecture, and/or communication standard employed will depend on the specific application and the overall design constraints imposed on the system.
  • processors have been described in connection with various apparatuses and methods. These processors may be implemented using electronic hardware, computer software, or any combination thereof. Whether such processors are implemented as hardware or software will depend upon the particular application and overall design constraints imposed on the system.
  • a processor, any portion of a processor, or any combination of processors presented in this disclosure may be implemented with a microprocessor, microcontroller, digital signal processor (DSP) , a field-programmable gate array (FPGA) , a programmable logic device (PLD) , a state machine, gated logic, discrete hardware circuits, and other suitable processing components configured to perform the various functions described throughout this disclosure.
  • DSP digital signal processor
  • FPGA field-programmable gate array
  • PLD programmable logic device
  • a state machine gated logic, discrete hardware circuits, and other suitable processing components configured to perform the various functions described throughout this disclosure.
  • the functionality of a processor, any portion of a processor, or any combination of processors presented in this disclosure may be implemented with software being
  • Software shall be construed broadly to mean instructions, instruction sets, code, code segments, program code, programs, subprograms, software modules, applications, software applications, software packages, routines, subroutines, objects, executables, threads of execution, procedures, functions, etc., whether referred to as software, firmware, middleware, microcode, hardware description language, or otherwise.
  • the software may reside on a non-transitory computer-readable medium.
  • a computer-readable medium may include, by way of example, memory such as a magnetic storage device (e.g., hard disk, floppy disk, magnetic strip) , an optical disk (e.g., compact disc (CD) , digital versatile disc (DVD) ) , a smart card, a flash memory device (e.g., card, stick, key drive) , random access memory (RAM) , read only memory (ROM) , programmable ROM (PROM) , erasable PROM (EPROM) , electrically erasable PROM (EEPROM) , a register, or a removable disk.
  • memory is shown separate from the processors in the various aspects presented throughout this disclosure, the memory may be internal to the processors (e.g., cache or register) .
  • Computer-readable media may be embodied in a computer-program product.
  • a computer-program product may include a computer-readable medium in packaging materials.
  • signal quality is non-limiting. Signal quality is intended to cover any type of signal metric such as received signal code power (RSCP) , reference signal received power (RSRP) , reference signal received quality (RSRQ) , received signal strength indicator (RSSI) , signal to noise ratio (SNR) , signal to interference plus noise ratio (SINR) , etc.
  • RSCP received signal code power
  • RSRP reference signal received power
  • RSSI received signal strength indicator
  • SNR signal to noise ratio
  • SINR signal to interference plus noise ratio
  • SINR signal to interference plus noise ratio
  • “at least one of: a, b, or c” is intended to cover: a; b; c; a and b; a and c; b and c; and a, b and c.
  • All structural and functional equivalents to the elements of the various aspects described throughout this disclosure that are known or later come to be known to those of ordinary skill in the art are expressly incorporated herein by reference and are intended to be encompassed by the claims.
  • nothing disclosed herein is intended to be dedicated to the public regardless of whether such disclosure is explicitly recited in the claims. No claim element is to be construed under the provisions of 35 U.S.C. ⁇ 112, sixth paragraph, unless the element is expressly recited using the phrase “means for” or, in the case of a method claim, the element is recited using the phrase “step for. ”

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

A user equipment (UE) knows whether it is on a dedicated cellular wireless network for a high speed vehicle. The knowledge enables the UE to return to the dedicated cellular network from a non-dedicated, public wireless network, if the UE will remain in the high speed vehicle. A method determines whether the UE is on the high speed vehicle for a predetermined period of time. The determining is based on information for a server of a short-range wireless network associated with the high speed vehicle. The method also includes accessing a dedicated cellular network associated with the high speed vehicle when the UE is determined to be on the high speed vehicle for the predetermined period of time.

Description

HIGH SPEED TRAIN MODE DETECTION BASED ON INFORMATION FROM A SHORT-RANGE NETWORK BACKGROUND Field
Aspects of the present disclosure relate generally to wireless communication systems, and more particularly, to high speed train mode detection based on information from a short-range network.
Background
Wireless communication systems are widely deployed to provide various telecommunication services such as telephony, video, data, messaging, and broadcasts. Typical wireless communication systems may employ multiple-access technologies capable of supporting communication with multiple users by sharing available system resources (e.g., bandwidth, transmit power) . Examples of such multiple-access technologies include code division multiple access (CDMA) systems, time division multiple access (TDMA) systems, frequency division multiple access (FDMA) systems, orthogonal frequency division multiple access (OFDMA) systems, single-carrier frequency divisional multiple access (SC-FDMA) systems, and time division synchronous code division multiple access (TD-SCDMA) systems.
These multiple access technologies have been adopted in various telecommunication standards to provide a common protocol that enables different wireless devices to communicate on a municipal, national, regional, and even global level. An example of an emerging telecommunication standard is long term evolution (LTE) . LTE is a set of enhancements to the universal mobile telecommunications system (UMTS) mobile standard promulgated by Third Generation Partnership Project  (3GPP) . It is designed to better support mobile broadband Internet access by improving spectral efficiency, lower costs, improve services, make use of new spectrum, and better integrate with other open standards using OFDMA on the downlink (DL) , SC-FDMA on the uplink (UL) , and multiple-input multiple-output (MIMO) antenna technology. However, as the demand for mobile broadband access continues to increase, there exists a need for further improvements in LTE technology. Preferably, these improvements should be applicable to other multi-access technologies and the telecommunication standards that employ these technologies.
This has outlined, rather broadly, the features and technical advantages of the present disclosure in order that the detailed description that follows may be better understood. Additional features and advantages of the disclosure will be described below. It should be appreciated by those skilled in the art that this disclosure may be readily utilized as a basis for modifying or designing other structures for carrying out the same purposes of the present disclosure. It should also be realized by those skilled in the art that such equivalent constructions do not depart from the teachings of the disclosure as set forth in the appended claims. The novel features, which are believed to be characteristic of the disclosure, both as to its organization and method of operation, together with further objects and advantages, will be better understood from the following description when considered in connection with the accompanying figures. It is to be expressly understood, however, that each of the figures is provided for the purpose of illustration and description only and is not intended as a definition of the limits of the present disclosure.
SUMMARY
According to one aspect of the present disclosure, a method for wireless communication by a user equipment (UE) includes determining the UE is on a high  speed vehicle, based on information for a server of a short-range wireless network associated with the high speed vehicle, for a predetermined period of time. The method also includes accessing a dedicated cellular network associated with the high speed vehicle when the UE is determined to be on the high speed vehicle.
According to another aspect of the present disclosure, a user equipment (UE) for wireless communication includes a memory, a transceiver and at least one processor coupled to the memory and transceiver. The processor (s) is configured to determine the UE is on a high speed vehicle, based on information for a server of a short-range wireless network associated with the high speed vehicle, for a predetermined period of time. The processor (s) is also configured to access a dedicated cellular network associated with the high speed vehicle when the UE is determined to be on the high speed vehicle.
According to another aspect of the present disclosure, a non-transitory computer-readable medium includes encoded thereon program code. The computer-readable medium includes program code to determine the UE is on a high speed vehicle, based on information for a server of a short-range wireless network associated with the high speed vehicle, for a predetermined period of time. The computer-readable medium also includes program code to access a dedicated cellular network associated with the high speed vehicle when the UE is determined to be on the high speed vehicle.
According to yet another aspect of the present disclosure, an apparatus for wireless communication at a user equipment (UE) includes means for determining the UE is on a high speed vehicle, based on information for a server of a short-range wireless network associated with the high speed vehicle, for a predetermined period of time. The apparatus may also include means for accessing a dedicated cellular network  associated with the high speed vehicle when the UE is determined to be on the high speed vehicle.
This has outlined, rather broadly, the features and technical advantages of the present disclosure in order that the detailed description that follows may be better understood. Additional features and advantages of the disclosure will be described below. It should be appreciated by those skilled in the art that this disclosure may be readily utilized as a basis for modifying or designing other structures for carrying out the same purposes of the present disclosure. It should also be realized by those skilled in the art that such equivalent constructions do not depart from the teachings of the disclosure as set forth in the appended claims. The novel features, which are believed to be characteristic of the disclosure, both as to its organization and method of operation, together with further objects and advantages, will be better understood from the following description when considered in connection with the accompanying figures. It is to be expressly understood, however, that each of the figures is provided for the purpose of illustration and description only and is not intended as a definition of the limits of the present disclosure.
BRIEF DESCRIPTION OF THE DRAWINGS
The features, nature, and advantages of the present disclosure will become more apparent from the detailed description set forth below when taken in conjunction with the drawings in which like reference characters identify correspondingly throughout.
FIGURE 1 is a diagram illustrating an example of a network architecture according to one aspect of the present disclosure.
FIGURE 2 is a diagram illustrating an example of a downlink frame structure in long term evolution (LTE) according to one aspect of the present disclosure.
FIGURE 3 is a diagram illustrating an example of an uplink frame structure in long term evolution (LTE) according to one aspect of the present disclosure.
FIGURE 4 is a block diagram conceptually illustrating an example of a base station in communication with a user equipment (UE) in a telecommunications system according to one aspect of the present disclosure.
FIGURE 5 illustrates network coverage areas including a dedicated network and a public network according to aspects of the present disclosure.
FIGURE 6 is a flow diagram illustrating an example decision process for high speed train mode detection according to one aspect of the present disclosure.
FIGURE 7 is a flow diagram illustrating a method for high speed train mode detection at a UE according to one aspect of the present disclosure.
FIGURE 8 is block diagram illustrating different modules/means/components for high speed-train mode detection in an example apparatus according to one aspect of the present disclosure.
DETAILED DESCRIPTION
The detailed description set forth below, in connection with the appended drawings, is intended as a description of various configurations and is not intended to represent the only configurations in which the concepts described herein may be practiced. The detailed description includes specific details for the purpose of providing a thorough understanding of the various concepts. However, it will be apparent to those skilled in the art that these concepts may be practiced without these specific details. In some instances, well-known structures and components are shown in block diagram form in order to avoid obscuring such concepts.
FIGURE 1 is a diagram illustrating a network architecture 100 of a long term evolution (LTE) network. The LTE network architecture 100 may be referred to as an evolved packet system (EPS) 100. The EPS 100 may include one or more user equipment (UE) 102, an evolved UMTS terrestrial radio access network (E-UTRAN) 104, an evolved packet core (EPC) 110, a home subscriber server (HSS) 120, and an operator’s IP services 122. The EPS can interconnect with other access networks, but for simplicity those entities/interfaces are not shown. As shown, the EPS 100 provides packet-switched services, however, as those skilled in the art will readily appreciate, the various concepts presented throughout this disclosure may be extended to networks providing circuit-switched services.
The E-UTRAN 104 includes an evolved NodeB (eNodeB) 106 and other eNodeBs 108. The eNodeB 106 provides user and control plane protocol terminations toward the UE 102. The eNodeB 106 may be connected to the other eNodeBs 108 via a backhaul (e.g., an X2 interface) . The eNodeB 106 may also be referred to as a base station, a base transceiver station, a radio base station, a radio transceiver, a transceiver function, a basic service set (BSS) , an extended service set (ESS) , or some other suitable terminology. The eNodeB 106 provides an access point to the EPC 110 for a UE 102. Examples of UEs 102 include a cellular phone, a smart phone, a session initiation protocol (SIP) phone, a laptop, a notebook, a netbook, a smartbook, a personal digital assistant (PDA) , a satellite radio, a global positioning system, a multimedia device, a video device, a digital audio player (e.g., MP3 player) , a camera, a game console, or any other similar functioning device. The UE 102 may also be referred to by those skilled in the art as a mobile station or apparatus, a subscriber station, a mobile unit, a subscriber unit, a wireless unit, a remote unit, a mobile device, a wireless device, a wireless communications device, a remote device, a mobile subscriber station, an access terminal,  a mobile terminal, a wireless terminal, a remote terminal, a handset, a user agent, a mobile client, a client, or some other suitable terminology.
The eNodeB 106 is connected to the EPC 110 via, e.g., an S1 interface. The EPC 110 includes a mobility management entity (MME) 112, other MMEs 114, a serving gateway 116, and a packet data network (PDN) gateway 118. The MME 112 is the control node that processes the signaling between the UE 102 and the EPC 110. Generally, the MME 112 provides bearer and connection management. All user IP packets are transferred through the serving gateway 116, which itself is connected to the PDN gateway 118. The PDN gateway 118 provides UE IP address allocation as well as other functions. The PDN gateway 118 is connected to the operator’s IP services 122. The operator’s IP services 122 may include the Internet, the Intranet, an IP multimedia subsystem (IMS) , and a PS streaming service (PSS) .
FIGURE 2 is a diagram 200 illustrating an example of a downlink frame structure in LTE. A frame (10 ms) may be divided into 10 equally sized subframes. Each subframe may include two consecutive time slots. A resource grid may be used to represent two time slots, each time slot including a resource block. The resource grid is divided into multiple resource elements. In LTE, a resource block contains 12 consecutive subcarriers in the frequency domain and, for a normal cyclic prefix in each orthogonal frequency-division multiplexing (OFDM) symbol, 7 consecutive OFDM symbols in the time domain, or 84 resource elements. For an extended cyclic prefix, a resource block contains 6 consecutive OFDM symbols in the time domain and has 72 resource elements. Some of the resource elements, as indicated as  R  202, 204, include downlink reference signals (DL-RS) . The DL-RS include Cell-specific RS (CRS) (also sometimes called common RS) 202 and UE-specific RS (UE-RS) 204. UE-RS 204 are transmitted only on the resource blocks upon which the corresponding physical downlink shared channel (PDSCH) is mapped. The number of bits carried by each  resource element depends on the modulation scheme. Thus, the more resource blocks that a UE receives and the higher the modulation scheme, the higher the data rate for the UE.
FIGURE 3 is a diagram 300 illustrating an example of an uplink frame structure in LTE. The available resource blocks for the uplink may be partitioned into a data section and a control section. The control section may be formed at the two edges of the system bandwidth and may have a configurable size. The resource blocks in the control section may be assigned to UEs for transmission of control information. The data section may include all resource blocks not included in the control section. The uplink frame structure results in the data section including contiguous subcarriers, which may allow a single UE to be assigned all of the contiguous subcarriers in the data section.
A UE may be assigned  resource blocks  310a, 310b in the control section to transmit control information to an eNodeB. The UE may also be assigned  resource blocks  320a, 320b in the data section to transmit data to the eNodeB. The UE may transmit control information in a physical uplink control channel (PUCCH) on the assigned resource blocks in the control section. The UE may transmit only data or both data and control information in a physical uplink shared channel (PUSCH) on the assigned resource blocks in the data section. An uplink transmission may span both slots of a subframe and may hop across frequency.
A set of resource blocks may be used to perform initial system access and achieve uplink synchronization in a physical random access channel (PRACH) 330. The PRACH 330 carries a random sequence and cannot carry any uplink data/signaling. Each random access preamble occupies a bandwidth corresponding to six consecutive resource blocks. The starting frequency is specified by the network. For example, the transmission of the random access preamble is restricted to certain time and frequency  resources. There is no frequency hopping for the PRACH. The PRACH attempt is carried in a single subframe (1 ms) or in a sequence of few contiguous subframes and a UE can make only a single PRACH attempt per frame (10 ms) .
FIGURE 4 is a block diagram of a base station (e.g., eNodeB or nodeB) 410 in communication with a UE 450 in an access network. In the downlink, upper layer packets from the core network are provided to a controller/processor 475. The controller/processor 475 implements the functionality of the L2 layer. In the downlink, the controller/processor 475 provides header compression, ciphering, packet segmentation and reordering, multiplexing between logical and transport channels, and radio resource allocations to the UE 450 based on various priority metrics. The controller/processor 475 is also responsible for HARQ operations, retransmission of lost packets, and signaling to the UE 450.
The TX processor 416 implements various signal processing functions for the L1 layer (e.g., physical layer) . The signal processing functions includes coding and interleaving to facilitate forward error correction (FEC) at the UE 450 and mapping to signal constellations based on various modulation schemes (e.g., binary phase-shift keying (BPSK) , quadrature phase-shift keying (QPSK) , M-phase-shift keying (M-PSK) , M-quadrature amplitude modulation (M-QAM) ) . The coded and modulated symbols are then split into parallel streams. Each stream is then mapped to an OFDM subcarrier, multiplexed with a reference signal (e.g., pilot) in the time and/or frequency domain, and then combined together using an Inverse Fast Fourier Transform (IFFT) to produce a physical channel carrying a time domain OFDM symbol stream. The OFDM stream is spatially precoded to produce multiple spatial streams. Channel estimates from a channel estimator 474 may be used to determine the coding and modulation scheme, as well as for spatial processing. The channel estimate may be derived from a reference signal and/or channel condition feedback transmitted by the UE 450. Each spatial  stream is then provided to a different antenna 420 via a separate transmitter (TX) 418. Each transmitter (TX) 418 modulates a radio frequency (RF) carrier with a respective spatial stream for transmission.
At the UE 450, each receiver (RX) 454 receives a signal through its respective antenna 452. Each receiver (RX) 454 recovers information modulated onto an RF carrier and provides the information to the receiver (RX) processor 456. The RX processor 456 implements various signal processing functions of the L1 layer. Although a single RX processor is shown in FIGURE 4, the actual implementation is not so limited. The RX processor 456 performs spatial processing on the information to recover any spatial streams destined for the UE 450. If multiple spatial streams are destined for the UE 450, they may be combined by the RX processor 456 into a single OFDM symbol stream. The RX processor 456 then converts the OFDM symbol stream from the time-domain to the frequency domain using a Fast Fourier Transform (FFT) . The frequency domain signal comprises a separate OFDM symbol stream for each subcarrier of the OFDM signal. The symbols on each subcarrier, and the reference signal, is recovered and demodulated by determining the most likely signal constellation points transmitted by the base station 410. These soft decisions may be based on channel estimates computed by the channel estimator 458. The soft decisions are then decoded and deinterleaved to recover the data and control signals that were originally transmitted by the base station 410 on the physical channel. The data and control signals are then provided to the controller/processor 459.
The example UE 450 is illustrated in FIGURE 4 as including multiple receive chains. Multiple receive chains can include multiple antennas, multiple receivers, and/or multiple processors or a single processor. For example, one embodiment of a primary receive chain and a secondary receive chain may include a first antenna and a second antenna each coupled to a respective receiver. The respective receivers may be  coupled to a single RX processor which outputs data to a channel estimator and/or controller/processor, or the respective receivers may be coupled to respective receive processors which each output data to a single or multiple channel estimator (s) and/or controller (s) /processor (s) . Each chain of the multiple receive chains may be configured to communicate with and/or perform detection and measurement of a cell, and may be configured to implement other functionality described herein.
The controller/processor 459 implements the L2 layer. The controller/processor can be associated with a memory 460 that stores program codes and data. The memory 460 may be referred to as a computer-readable medium. In the uplink, the controller/processor 459 provides demultiplexing between transport and logical channels, packet reassembly, deciphering, header decompression, control signal processing to recover upper layer packets from the core network. The upper layer packets are then provided to a data sink 462, which represents all the protocol layers above the L2 layer. Various control signals may also be provided to the data sink 462 for L3 processing. The controller/processor 459 is also responsible for error detection using an acknowledgement (ACK) and/or negative acknowledgement (NACK) protocol to support HARQ operations.
In the uplink, a data source 467 is used to provide upper layer packets to the controller/processor 459. The data source 467 represents all protocol layers above the L2 layer. Similar to the functionality described in connection with the downlink transmission by the base station 410, the controller/processor 459 implements the L2 layer for the user plane and the control plane by providing header compression, ciphering, packet segmentation and reordering, and multiplexing between logical and transport channels based on radio resource allocations by the base station 410. The controller/processor 459 is also responsible for HARQ operations, retransmission of lost packets, and signaling to the base station 410.
Channel estimates derived by a channel estimator 458 from a reference signal or feedback transmitted by the base station 410 may be used by the TX processor 468 to select the appropriate coding and modulation schemes, and to facilitate spatial processing. The spatial streams generated by the TX processor 468 are provided to different antenna 452 via separate transmitters (TX) 454. Each transmitter (TX) 454 modulates an RF carrier with a respective spatial stream for transmission.
The uplink transmission is processed at the base station 410 in a manner similar to that described in connection with the receiver function at the UE 450. Each receiver (RX) 418 receives a signal through its respective antenna 420. Each receiver (RX) 418 recovers information modulated onto an RF carrier and provides the information to a RX processor 470. The RX processor 470 may implement the L1 layer.
The controller/processor 475 implements the L2 layer. The controller/ processor  475 and 459 can be associated with  memories  476 and 460, respectively that store program codes and data. For example, the controller/ processors  475 and 459 may provide various functions including timing, peripheral interfaces, voltage regulation, power management, and other control functions. The  memories  476 and 460 may be referred to as a computer-readable media. For example, the memory 460 of the UE 450 may store a high speed train mode detection module 491 which, when executed by the controller/processor 459, configures the UE 450 to determine whether the UE 450 is aboard a high speed train in order to prevent the UE 450 from connecting to a wrong network.
In the uplink, the controller/processor 475 provides demultiplexing between transport and logical channels, packet reassembly, deciphering, header decompression, control signal processing to recover upper layer packets from the UE 450. Upper layer packets from the controller/processor 475 may be provided to the core network. The  controller/processor 475 is also responsible for error detection using an ACK and/or NACK protocol to support HARQ operations.
High Speed Train Mode Detection Based on Information from a Short-Range Network
FIGURE 5 illustrates a network coverage area example 500 including a dedicated network and a public network, according to aspects of the present disclosure. In one example, the coverage area for a high speed train route includes both cellular networks and a short-range network. In one example, the cellular network is an LTE network, including public and dedicated LTE cells. In the example 500, the non-dedicated public LTE cells include  cells  520 and 522 and the dedicated LTE cells include  cells  502, 504, 506, and 508. Different LTE frequencies are used for non-dedicated public LTE cells and dedicated LTE cells. For example, non-dedicated LTE frequencies F1 and F2 may be used for the  public LTE cells  520 and 522 and dedicated LTE frequencies F3, F4 and F5 may be used for the dedicated LTE cells 502-508.
The coverage area example 500 also includes a short-range network 503 having a coverage area centered around a high speed train 530. A user equipment 531 located on a high speed train 530 is within the coverage area of the short-range network 503.
When a UE 531 is traveling at a high rate of speed (e.g., traveling on a high speed train 530) , the UE may have difficulty maintaining a connection to the cellular network. To ensure a high quality of service (QoS) for UEs in high speed scenarios, some service providers have invested in a dedicated (e.g., LTE) network for UEs on the high speed trains. The dedicated network (e.g., dedicated LTE network) may utilize one or more dedicated LTE frequencies, such as frequencies F3 -F5. This is in contrast to a public network that operates with non-dedicated frequencies. In one example,  according to aspects of the present disclosure, the dedicated network is described for use with UEs on high speed trains, although other high speed vehicles are also contemplated.
As illustrated in FIGURE 5, the  dedicated cells  502, 504, 506 and 508 are configured in an elongated shape around the train track 501, intended for coverage of a passing train 530. The short-range network 503 is configured in a shape to cover UEs inside one or more cars of the train 530. In contrast, the  public network cells  520 and 522 are configured in a shape intended to cover UEs in an area extending in all directions.
The UE 531 may move from one network cell, such as the dedicated cell 504, to a public network cell, such as the non-dedicated public cell 520 when the UE 531 moves off of the train. Alternatively, the UE 531 may move from the non-dedicated network cell 520 to the dedicated network cell 504 when the UE 531 is located on a high speed moving train.
The handover or cell reselection may be performed when the UE 531 moves from a coverage area of a dedicated cell to the coverage area of a non-dedicated cell, or vice versa. The UE 531 may inadvertently connect to or disconnect from the dedicated cellular network unless the UE 531 is able to determine whether it is aboard a high speed train (e.g., detecting a high speed train mode) .
There is no neighbor cell relationship between the dedicated LTE network for a high speed train and a public wireless network. That is, the UE does not handover or reselect from a public cell to a dedicated cell. Similarly, in the high speed scenario, when the UE is connected to a dedicated network, the UE cannot reselect or handover to a public network. In some scenarios, however, such as the train approaching, leaving or stopping at a railway station the handover/reselection can occur.
When the high speed train stops moving at a high speed (e.g., when it arrives at a train station at a low speed or when it stops at the station) , the UE aboard the high speed train may reselect/handover from the dedicated network to a public network. The goal is for the UE to reselect/handover back to the dedicated network when the train leaves the station. If the UE remains connected to the public network when the train leaves the station, the UE will be unable to return to the dedicated network. As a result, any in-progress calls may drop because the public wireless network coverage will become unavailable as the train resumes its high speed.
A UE located on a high speed train may be unable to reselect back to the dedicated network after reselecting or handing over to a public network at a train station, especially if the UE is unable to determine whether it is located on a high speed train. When a UE moves off of the high speed train at a railway station, the UE should be able to determine it has left the high speed train. In particular, after leaving the high speed train, the UE should remain connected to the public network after reselecting from the dedicated network to a non-dedicated public network. Otherwise, the call will drop from the dedicated network when the moves away from the railway station.
In another scenario, while a UE is on a high speed train, the UE may drop a call for reasons such as a radio link failure or out of service. After the call drop, the UE will re-camp on a cell. If the UE can locate cells from both a dedicated network and a public network, the UE should know if it is on a high speed train to camp on the correct network.
To prevent the UE from staying on the wrong network, the UE should be able to determine whether or not it is on a high speed train. When a UE is able to determine it is on the high speed train, it can prevent connecting to the wrong network by  prioritizing the dedicated network for cell reselection and measurement reporting that triggers a handover.
When the high speed train is running at a high speed, the UE can detect whether it is onboard a high speed train with a GPS signal or Doppler estimation due to the speed of the train. However, there is not an effective way for the UE to determine it is on a fast speed train when the train is not moving at a fast speed (e.g., when the high speed train moves at a low speed and is approaching or leaving a railway station, or stopping at the railway station) . Aspects of the present disclosure are directed to determining whether a UE is located on a high speed moving train, including a slow-moving or stopped high speed train.
Aspects of the present disclosure utilize information from a short-range network, such as a WiFi, located on a fast train to detect a high speed train mode. For example, a specific service set identifier (SSID) may be utilized to determine whether the UE is located on a high speed train. When the UE detects the WiFi access point (AP) with the specific SSID, the UE can determine whether it is on a high speed train regardless of whether the train is moving at high speed or stopped in a railway station.
The UE may be able to determine, from the short-range network, important information for the dedicated cellular network. Such information may include cellular frequencies or channels (e.g., time division system /wideband code division multiple access /global system for mobile communications /long term evolution (TDS/WCDMA/GSM/LTE) frequency bands and E-UTRAN absolute frequency channel numbers (E-ARFCN) ) . The UE can remember a mapping between a desired frequency of the high speed network and the high speed train AP SSID. This information can help the UE to decide which network, the dedicated network or a public network, to camp on and which frequency band or (E) ARFCN to use.
In another aspect, the UE detects the SSID for a predetermined period of time before determining it is aboard the high speed train. Setting minimum detect time periods may prevent a false alarm (e.g., that the UE is aboard a high speed train when in fact it is not) . For example, when the UE moves off the high speed train and onto the platform of a railway station (or very close to the railway) , the UE may still receive a WiFi signal including the SSID of the onboard WiFi access point. Because the UE detects the SSID for a certain period of time, the chance for a false alarm is relatively low. Furthermore, the penetration loss of the high speed train is around 10~20dB. This makes it difficult for the UE located outside the train to detect a strong signal with the AP’s SSID transmitted from inside of the train.
The following are illustrative examples of utilizing the WiFi AP SSID to determine whether a UE is located on a high speed train. The UE vendors may statically or dynamically provision high speed train WiFi AP SSIDs into a UE memory. The UE can then determine it is located on a high speed train when an SSID match is found. In a second example, the UE builds and maintains a high speed train SSID list by adding each newly found SSID into the list when the UE first detects the SSID in a high speed train with information from GPS or Doppler estimation. In another example, the UE detects an SSID naming convention specifically defined for high speed train WiFi AP SSIDs. For example, a prefix “HST” in an SSID name such as HST-WiFiAP1 can be used to indicate it is a high speed train WiFi AP SSID. In another example, the UE retrieves information (e.g., WiFi AP SSID) directly from a server of the high speed train. The UE performs an authentication procedure with the WiFi AP server either initially or periodically. After the authentication, the server may send a message to the UE notifying the UE that it is aboard a high speed train. The message may also include other information such as the (E) ARFCN used for this HST network, the maximum speed of the train, etc.
Signals of short-range networks other than WiFi can also be utilized. Other short-range networks may include Bluetooth, and near-field communication (NFC) networks, for example.
FIGURE 6 shows a flow diagram 600 illustrating, as an example, a decision process for high speed train mode detection at a UE according to one aspect of the present disclosure. The flow diagram 600 is for illustration purposes only and other alternative aspects of the decision process for the high speed train mode detection are possible.
At block 602, the UE scans frequencies within its ranges as an initial step for determining a high speed train mode or whether the UE is aboard the high speed train. The frequencies scanned may be of a short-range network or a cellular network such as a dedicated LTE network.
At block 604, the UE may acquire short-range network information such as a network SSID, frequencies of the short-range network and authentication related parameters. Acquiring information may include waiting for a predefined period of time after initial acquisition to confirm the acquired information is not due to an error. Because an SSID is the name of a wireless local area network (WLAN) , all wireless devices on a WLAN employ the same SSID in order to communicate with each other and with the server.
In one example, the UE detects the SSID for a second time after waiting for a predetermined period of time and initial acquisition of the short-range network information to ascertain the initial acquired information is not due to an error. In another example, re-acquisition of the short-range network information may take place more than once when there are inconsistencies between currently acquired short-range network information and previously acquired short-range network information. This  will help prevent a false alarm that the UE is aboard a high speed train when in fact it is not. For instance, when the UE is out of a car of the high speed train, on the platform of a railway station or very close to the railway, the UE may still receive a WiFi signal including the SSID of the onboard WiFi AP.
At block 606, the UE determines whether the acquired network SSID of the short-range network matches an entry on a saved SSID list for the high speed train. The UE may save a new SSID into the SSID list when it detects a new SSID of a WLAN server and determines the WLAN server is associated with a high speed train. The short-range network ID list may be stored and maintained locally at the UE. If the UE determines the acquired network ID does match one of the entries on the saved short-range network ID list, the UE, at block 632, determines the UE is aboard a high speed train.
If the UE determines the acquired network ID does not match any of the saved short-range network ID list, at block 608, the UE further determines whether the acquired network ID matches one of the entries on a provisioned short-range network ID list. A service provider may statically or dynamically provision into the UE a set of IDs for a set of short-range networks associated with the high speed train. The set of short-range networks are dedicated to the high speed train and are not intended for use outside the high speed train. If the UE determines the acquired network ID does match one of the set of the provisioned short-range network IDs, the UE, at block 632, determines the UE is aboard a high speed train.
If the UE determines the acquired network ID does not match any of the provisioned short-range network ID list, the UE, at block 610, further determines whether the acquired network ID matches a predetermined naming convention specified for the short-range network associated with the high speed train. As an example, the  naming convention for the short-range networks of the speed-train may have “high speed train” or “HST” as part of a short network ID such as a prefix or a suffix of an SSID. If the UE determines the acquired network ID matches any naming convention specified for the short-range network of the high speed train, the UE, at block 632, determines the UE is aboard a high speed train.
If the UE determines the acquired network ID does not match any of the predefined naming convention of short-range network ID of the high speed train, the UE, at block 612, further determines whether the scanned frequency matches a known frequency associated with the high speed train. The known frequency may be a short-range network frequency or cellular frequency dedicated to the high speed train. Once a match is found, the UE, at block 632, determines it is aboard a high speed train.
If the UE determines the scanned frequency does not match any of the known dedicated frequencies associated with the high speed train, the UE, at block 614, further determines whether a signaling message from a short-range network server indicates the UE is aboard a high speed train. The short-range network server is dedicated to the high speed train and may go through an authorization process to allow the UE to access the short-range network. The UE may perform an authentication procedure with the short-range network server either initially or periodically. Once the UE is authenticated, the server may send a signaling message to the UE notifying the UE that it is aboard a high speed train. The server of the short-range wireless network can be a WiFi access point, a Bluetooth master or a near-field communication network server, for example.
The signaling message may also include other information such as the (E) ARFCN used for this dedicated cellular network, the maximum speed of the train, etc. The message may be piggybacked on an existing signaling message or may be sent via use of an existing signaling message for a different purpose. When the UE receives  that signaling message, the UE, at block 632, may determine it is aboard a high speed train.
When the signaling message is not received, the UE, at block 616, may determine the UE is not aboard a high speed train. In this mode, the UE may be connected to a non-dedicated, public cellular network. In an example aspect of the present disclosure, the UE, at block 616, may further verify the UE is not aboard the high speed train, by repeating one or more steps from block 606 through block 614 or through some other alternative means. It is noted that although steps 606-614 are shown as occurring serially. The present disclosure also contemplates only performing one of these steps, or some number of the steps that is less than all of the steps.
FIGURE 7 is a flow diagram illustrating a method for high speed train mode detection at a UE according to one aspect of the present disclosure. The steps of the method 700 are for illustration purposes only and other alternative steps of the method for the high speed train mode detection are possible.
At block 702, the UE determines whether it is on a high speed vehicle such as a high speed train. The determining may be based on whether an acquired short-range network ID matches one on a saved ID list associated with the high speed train and whether the acquired network ID matches a provisioned short-range network ID. The determining may also be based on whether an acquired frequency matches a known frequency associated with the high speed train and whether the acquired short-range network ID matches a predefined naming convention. The determining may further be based on a signaling message from the short-range network server indicating whether the UE is on a high speed train.
At block 704, the UE accesses a dedicated cellular network associated with the high speed train when the UE determines that the UE is on a high speed train. Alternatively, when the UE determines that it is not aboard the high speed train, the UE accesses a public cellular network such as a public LTE network.
FIGURE 8 is a block diagram illustrating an example of a hardware implementation for an apparatus 800 employing a processing system 814 with different modules/means/components for high speed train mode detection in an example apparatus according to one aspect of the present disclosure. The processing system 814 may be implemented with a bus architecture, represented generally by the bus 824. The bus 824 may include any number of interconnecting buses and bridges depending on the specific application of the processing system 814 and the overall design constraints. The bus 824 links together various circuits including one or more processors and/or hardware modules, represented by the processor 822 the  modules  802, 804, 806 and the non-transitory computer-readable medium 826. The bus 824 may also link various other circuits such as timing sources, peripherals, voltage regulators, and power management circuits, which are well known in the art, and therefore, will not be described any further.
The apparatus includes a processing system 814 coupled to a transceiver 830. The transceiver 830 is coupled to one or more antennas 820. The transceiver 830 enables communicating with various other apparatus over a transmission medium. The processing system 814 includes a processor 822 coupled to a non-transitory computer-readable medium 826. The processor 822 is responsible for general processing, including the execution of software stored on the computer-readable medium 826. The software, when executed by the processor 822, causes the processing system 814 to perform the various functions described for any particular apparatus. The computer-readable medium 826 may also be used for storing data that is manipulated by the processor 822 when executing software.
The processing system 814 includes a measurement module 802 for determining whether the UE is aboard a high speed train. The processing system 814 also includes a network access module 804 for accessing either a dedicated cellular network or a public cellular network, depending on the determination from the measurement module 802. The processing system 814 may also include a scanning module 806 for searching and scanning dedicated or non-dedicated frequencies of a cellular network such as an LTE network and a short-range network such as a WiFi network. The  modules  802, 804 and 806 may be software modules running in the processor 822, resident/stored in the computer-readable medium 826, one or more hardware modules coupled to the processor 822, or some combination thereof. The processing system 814 may be a component of the UE 450 of FIGURE 4 and may include the memory 460 and the high speed train mode detection module 491, and/or the controller/processor 459.
In one configuration, an apparatus such as a UE 450 is configured for wireless communication including means for determining whether the UE is aboard a high speed train. In one aspect, the determining means may be the antennas 452, the receiver 454, the channel estimator 458, the receive processor 456, the controller/processor 459, the memory 460, measurement module 802, and/or the processing system 814 configured to perform the functions recited by the determining means.
The UE 450 is also configured to include means for access a dedicated network. In one aspect, the access means may include the antennas 452, the receiver 454, the channel estimator 458, the receive processor 456, the transmit processor 468, the controller/processor 59, the memory 460, the network access module 804, the frequency scanning module 806, and/or the processing system 814 configured to perform the functions recited by the suspending means. In one configuration, the means and functions correspond to the aforementioned structures. In another aspect, the  aforementioned means may be a module or any apparatus configured to perform the functions recited by the access means.
The UE 450 is also configured to include means for searching and scanning dedicated and non-dedicated frequencies of cellular networks and short-ranged networks. In one aspect, the searching and scanning means may include the antennas 452, the receiver 454, the controller/processor 459, the receive processor 456, the memory 460, the scanning module 806, and/or the processing system 814 configured to perform the functions recited by the searching means. In one configuration, the means and functions correspond to the aforementioned structures. In another aspect, the aforementioned means may be a module or any apparatus configured to perform the functions recited by the searching means.
Several aspects of a telecommunications system has been presented with reference to LTE (in frequency-division duplex (FDD) , time-division duplex (TDD) , or both modes) , 2G/3G radio access technologies (RATs) such as GSM, TD-SCDMA and CDMA2000, and evolution-data optimized (EV-DO) . As those skilled in the art will readily appreciate, various aspects described throughout this disclosure may be extended to other telecommunication systems, network architectures and communication standards. By way of example, various aspects may be extended to other systems such as or LTE-advanced (LTE-A) , W-CDMA, high speed downlink packet access (HSDPA) , high speed uplink packet access (HSUPA) , high speed packet access plus (HSPA+) and TD-CDMA. Various aspects may also be extended to systems employing ultra mobile broadband (UMB) , IEEE 802.11 (WiFi) , IEEE 802.16 (WiMAX) , IEEE 802.20, ultra-wideband (UWB) , Bluetooth, and/or other suitable systems. The actual telecommunication standard, network architecture, and/or communication standard employed will depend on the specific application and the overall design constraints imposed on the system.
Several processors have been described in connection with various apparatuses and methods. These processors may be implemented using electronic hardware, computer software, or any combination thereof. Whether such processors are implemented as hardware or software will depend upon the particular application and overall design constraints imposed on the system. By way of example, a processor, any portion of a processor, or any combination of processors presented in this disclosure may be implemented with a microprocessor, microcontroller, digital signal processor (DSP) , a field-programmable gate array (FPGA) , a programmable logic device (PLD) , a state machine, gated logic, discrete hardware circuits, and other suitable processing components configured to perform the various functions described throughout this disclosure. The functionality of a processor, any portion of a processor, or any combination of processors presented in this disclosure may be implemented with software being executed by a microprocessor, microcontroller, DSP, or other suitable platform.
Software shall be construed broadly to mean instructions, instruction sets, code, code segments, program code, programs, subprograms, software modules, applications, software applications, software packages, routines, subroutines, objects, executables, threads of execution, procedures, functions, etc., whether referred to as software, firmware, middleware, microcode, hardware description language, or otherwise. The software may reside on a non-transitory computer-readable medium. A computer-readable medium may include, by way of example, memory such as a magnetic storage device (e.g., hard disk, floppy disk, magnetic strip) , an optical disk (e.g., compact disc (CD) , digital versatile disc (DVD) ) , a smart card, a flash memory device (e.g., card, stick, key drive) , random access memory (RAM) , read only memory (ROM) , programmable ROM (PROM) , erasable PROM (EPROM) , electrically erasable PROM (EEPROM) , a register, or a removable disk. Although memory is shown separate from  the processors in the various aspects presented throughout this disclosure, the memory may be internal to the processors (e.g., cache or register) .
Computer-readable media may be embodied in a computer-program product. By way of example, a computer-program product may include a computer-readable medium in packaging materials. Those skilled in the art will recognize how best to implement the described functionality presented throughout this disclosure depending on the particular application and the overall design constraints imposed on the overall system.
It is to be understood that the specific order or hierarchy of steps in the methods disclosed is an illustration of exemplary processes. Based upon design preferences, it is understood that the specific order or hierarchy of steps in the methods may be rearranged. The accompanying method claims present elements of the various steps in a sample order, and are not meant to be limited to the specific order or hierarchy presented unless specifically recited therein.
It is also to be understood that the term “signal quality” is non-limiting. Signal quality is intended to cover any type of signal metric such as received signal code power (RSCP) , reference signal received power (RSRP) , reference signal received quality (RSRQ) , received signal strength indicator (RSSI) , signal to noise ratio (SNR) , signal to interference plus noise ratio (SINR) , etc.
The previous description is provided to enable any person skilled in the art to practice the various aspects described herein. Various modifications to these aspects will be readily apparent to those skilled in the art, and the generic principles defined herein may be applied to other aspects. Thus, the claims are not intended to be limited to the aspects shown herein, but is to be accorded the full scope consistent with the language of the claims, wherein reference to an element in the singular is not intended  to mean “one and only one” unless specifically so stated, but rather “one or more. ” Unless specifically stated otherwise, the term “some” refers to one or more. A phrase referring to “at least one of” a list of items refers to any combination of those items, including single members. As an example, “at least one of: a, b, or c” is intended to cover: a; b; c; a and b; a and c; b and c; and a, b and c. All structural and functional equivalents to the elements of the various aspects described throughout this disclosure that are known or later come to be known to those of ordinary skill in the art are expressly incorporated herein by reference and are intended to be encompassed by the claims. Moreover, nothing disclosed herein is intended to be dedicated to the public regardless of whether such disclosure is explicitly recited in the claims. No claim element is to be construed under the provisions of 35 U.S.C. §112, sixth paragraph, unless the element is expressly recited using the phrase “means for” or, in the case of a method claim, the element is recited using the phrase “step for. ”
WHAT IS CLAIMED IS:

Claims (29)

  1. A method of wireless communication by a user equipment (UE) , comprising:
    determining the UE is on a high speed vehicle, based at least in part on information for a short-range wireless network server associated with the high speed vehicle, for a predetermined period of time; and
    accessing a dedicated cellular network associated with the high speed vehicle when the UE is determined to be on the high speed vehicle.
  2. The method of claim 1, in which the information for the short-range wireless network server comprises an acquired identifier (ID) of a short-range wireless network.
  3. The method of claim 2, further comprising scanning at least one frequency of the dedicated cellular network and the short-range wireless network.
  4. The method of claim 2, in which the determining comprises determining that the acquired ID of the short-range wireless network matches one on a list of short-range wireless network IDs provisioned by a service provider of the UE.
  5. The method of claim 2, in which the determining comprises determining that the acquired ID of the short-range wireless network matches an entry in a list of server IDs that are associated with the high speed vehicle and stored and maintained at the UE locally.
  6. The method of claim 2, in which the determining comprises determining that the acquired ID matches at least in part a naming convention defined for the short-range wireless network associated with the high speed vehicle.
  7. The method of claim 1, in which the determining comprises receiving a signaling message from the short-range wireless network server indicating the UE is on the high speed vehicle, in which the signaling message is part of an authentication process and further comprises LTE network parameters, including a bandwidth and a dedicated frequency of the dedicated cellular network.
  8. The method of claim 1, in which the short-range wireless network server comprises a WiFi access point, a Bluetooth master or a near-field communication network server and in which the dedicated cellular network is configured in a shape suitable to cover a route of the high speed vehicle.
  9. A user equipment (UE) for wireless communication, comprising:
    a memory;
    a transceiver; and
    at least one processor coupled to the memory and the transceiver and configured:
    to determine the UE is on a high speed vehicle, based at least in part on information for a short-range wireless network server associated with the high speed vehicle, for a predetermined period of time; and
    to access a dedicated cellular network associated with the high speed vehicle when the UE is determined to be on the high speed vehicle.
  10. The UE of claim 9, in which the information for the short-range wireless network server comprises an acquired identifier (ID) of a short-range wireless network.
  11. The UE of claim 10, in which the at least one processor is further configured to scan at least one frequency of the dedicated cellular network and the short-range wireless network.
  12. The UE of claim 10, in which the at least one processor is further configured to determine that the acquired ID of the short-range wireless network matches one on a list of short-range wireless network IDs provisioned by a service provider of the UE.
  13. The UE of claim 10, in which the at least one processor is further configured to determine that the acquired ID of the short-range wireless network matches an entry in a list of server IDs that are associated with the high speed vehicle and stored and maintained at the UE locally.
  14. The UE of claim 10, in which the at least one processor is further configured to determine that the acquired ID matches at least in part a naming convention defined for the short-range wireless network associated with the high speed vehicle.
  15. The UE of claim 9, in which the at least one processor is further configured to receive a signaling message from the short-range wireless network server indicating the UE is on the high speed vehicle, in which the signaling message is part of an authentication process and further comprises LTE network parameters, including a bandwidth and a dedicated frequency of the dedicated cellular network.
  16. The UE of claim 9, in which the short-range wireless network server comprises a WiFi access point, a Bluetooth master or a near-field communication network server and in which the dedicated cellular network is configured in a shape suitable to cover a route of the high speed vehicle.
  17. A non-transitory computer-readable medium having encoded thereon program code at a user equipment (UE) , comprising:
    program code to determine the UE is on a high speed vehicle, based at least in part on information for a short-range wireless network server associated with the high speed vehicle, for a predetermined period of time; and
    program code to access a dedicated cellular network associated with the high speed vehicle when the UE is determined to be on the high speed vehicle.
  18. The computer-readable medium of claim 17, in which the information for the short-range wireless network server comprises an acquired identifier (ID) of the short-range wireless network.
  19. The computer-readable medium of claim 18, further comprising program code to scan at least one frequency of the dedicated cellular network and the short-range wireless network.
  20. The computer-readable medium of claim 18, further comprising program code to determine that the acquired ID of the short-range wireless network matches one on a list of short-range wireless network IDs provisioned by a service provider of the UE.
  21. The computer-readable medium of claim 18, further comprising program code to determine that the acquired ID of the short-range wireless network matches an entry in a list of server IDs that are associated with the high speed vehicle and stored and maintained at the UE locally.
  22. The computer-readable medium of claim 18, further comprising program code to determine that the acquired ID matches at least in part a naming convention defined for the short-range wireless network associated with the high speed vehicle.
  23. The computer-readable medium of claim 17, further comprising program code to receive a signaling message from the short-range wireless network server indicating the UE is on the high speed vehicle, in which the signaling message is part of an authentication process and further comprises LTE network parameters, including a bandwidth and a dedicated frequency of the dedicated cellular network.
  24. An apparatus for wireless communication at a user equipment (UE) , comprising:
    means for determining the UE is on a high speed vehicle, based at least in part on information for a short-range wireless network server associated with the high speed vehicle, for a predetermined period of time; and
    means for accessing a dedicated cellular network associated with the high speed vehicle when the UE is determined to be on the high speed vehicle.
  25. The apparatus of claim 24, in which the information for the short-range wireless network server comprises an acquired identifier (ID) of the short-range wireless network.
  26. The apparatus of claim 25, in which the means for determining is further configured to scan at least one frequency of the dedicated cellular network and the short-range wireless network.
  27. The apparatus of claim 25, in which the means for determining is further configured to determine that the acquired ID of the short-range wireless network matches one on a list of short-range wireless network IDs provisioned by a service provider of the UE.
  28. The apparatus of claim 25, in which the means for determining is further configured to determine that the acquired ID of the short-range wireless network  matches an entry in a list of server IDs that are associated with the high speed vehicle and stored and maintained at the UE locally.
  29. The apparatus of claim 25, in which the means for determining is further configured to determine that the acquired ID matches at least in part a naming convention defined for the short-range wireless network associated with the high speed vehicle.
PCT/CN2016/071446 2016-01-20 2016-01-20 High speed train mode detection based on information from a short-range network WO2017124322A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2016/071446 WO2017124322A1 (en) 2016-01-20 2016-01-20 High speed train mode detection based on information from a short-range network

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2016/071446 WO2017124322A1 (en) 2016-01-20 2016-01-20 High speed train mode detection based on information from a short-range network

Publications (1)

Publication Number Publication Date
WO2017124322A1 true WO2017124322A1 (en) 2017-07-27

Family

ID=59361098

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/071446 WO2017124322A1 (en) 2016-01-20 2016-01-20 High speed train mode detection based on information from a short-range network

Country Status (1)

Country Link
WO (1) WO2017124322A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3512260A1 (en) * 2018-01-12 2019-07-17 MediaTek Inc. Method and apparatus for communication on high speed rail
CN111615176A (en) * 2019-06-28 2020-09-01 维沃移动通信有限公司 Cell determination method, equipment and system
WO2023130248A1 (en) * 2022-01-05 2023-07-13 Qualcomm Incorporated Prioritizing high speed train (hst) cells over non-hst cells

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130052990A1 (en) * 2011-08-29 2013-02-28 Samsung Electronics Co. Ltd. Method for applying location-based control policy of mobile device
CN103024853A (en) * 2012-12-20 2013-04-03 中国科学院软件研究所 Multimode access gateway and access method applicable to TD-LTE (Time Division-Long Term Evolution) broadband communication system of high speed railway
CN103198564A (en) * 2013-03-12 2013-07-10 东莞宇龙通信科技有限公司 Public transport system and public transport billing method
CN104580295A (en) * 2013-10-17 2015-04-29 宁波视竣信息科技有限公司 Intelligent broadband communication method and system used for high-speed train in moving state

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130052990A1 (en) * 2011-08-29 2013-02-28 Samsung Electronics Co. Ltd. Method for applying location-based control policy of mobile device
CN103024853A (en) * 2012-12-20 2013-04-03 中国科学院软件研究所 Multimode access gateway and access method applicable to TD-LTE (Time Division-Long Term Evolution) broadband communication system of high speed railway
CN103198564A (en) * 2013-03-12 2013-07-10 东莞宇龙通信科技有限公司 Public transport system and public transport billing method
CN104580295A (en) * 2013-10-17 2015-04-29 宁波视竣信息科技有限公司 Intelligent broadband communication method and system used for high-speed train in moving state

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3512260A1 (en) * 2018-01-12 2019-07-17 MediaTek Inc. Method and apparatus for communication on high speed rail
CN111615176A (en) * 2019-06-28 2020-09-01 维沃移动通信有限公司 Cell determination method, equipment and system
WO2023130248A1 (en) * 2022-01-05 2023-07-13 Qualcomm Incorporated Prioritizing high speed train (hst) cells over non-hst cells

Similar Documents

Publication Publication Date Title
US9780900B2 (en) Method and apparatus for inferring user equipment interference suppression capability from measurements report
EP3403442B1 (en) Switching to/from voice over long term evolution (volte) for a voice call
US9913186B2 (en) SNR-based blind fast return to LTE after a CSFB or SRVCC call
US10798627B2 (en) User equipment centric mobility (UECM) in radio resource control (RRC) dedicated mode
EP3167654B1 (en) Group handover management in air-to-ground wireless communication
US9232478B2 (en) Frequency scan method for determining the system center frequency for LTE TDD
EP3125603A1 (en) Adaptive radio link failure trigger for improved spectrum sharing
US9237535B2 (en) Channel estimation in wireless networks
US9179402B2 (en) Apparatus and methods for service acquisition when moving in and out of fourth generation (4G) networks with different circuit-switched fallback (CSFB) support
US20150003411A1 (en) Method and apparatus for selecting hd voice (volte) calls over cs voice calls
US9661542B2 (en) Optimized LTE MIB/SIB collection logic after LTE handover
US9237485B2 (en) Deferred measurement control reading of system information block (SIB) messages
US9313012B2 (en) Apparatus and methods for full duplex communication
US20150271718A1 (en) Apparatus and method for performing inter-radio access technology cell measurement
US20180295572A1 (en) Wireless local area network (wlan) selection for long term evolution (lte) - wlan aggregation (lwa)
US20140315548A1 (en) Methods and apparatus for access class barring for voip calls
WO2017124322A1 (en) High speed train mode detection based on information from a short-range network
US20140146784A1 (en) Method and apparatus for decreasing lte re-acquisition delay in s102-less csfb
US20170019934A1 (en) Buffer status reporting during multimedia service call setup
US9408221B2 (en) Methods and apparatus for determining how to perform operations after communication suspend based on information before the suspend
WO2017084074A1 (en) Methods and apparatus to improve user equipment camping on an operator preferred network

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16885595

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16885595

Country of ref document: EP

Kind code of ref document: A1