WO2017123025A1 - Regulator for respiratory tract immune function disorders, using bacterial-derived extracellular vesicles - Google Patents

Regulator for respiratory tract immune function disorders, using bacterial-derived extracellular vesicles Download PDF

Info

Publication number
WO2017123025A1
WO2017123025A1 PCT/KR2017/000428 KR2017000428W WO2017123025A1 WO 2017123025 A1 WO2017123025 A1 WO 2017123025A1 KR 2017000428 W KR2017000428 W KR 2017000428W WO 2017123025 A1 WO2017123025 A1 WO 2017123025A1
Authority
WO
WIPO (PCT)
Prior art keywords
extracellular vesicles
bacteria
derived
derived extracellular
bacterial
Prior art date
Application number
PCT/KR2017/000428
Other languages
French (fr)
Korean (ko)
Inventor
김윤근
박해심
박한기
최영우
Original Assignee
주식회사 엠디헬스케어
아주대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020170004428A external-priority patent/KR101911893B1/en
Application filed by 주식회사 엠디헬스케어, 아주대학교 산학협력단 filed Critical 주식회사 엠디헬스케어
Publication of WO2017123025A1 publication Critical patent/WO2017123025A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/195Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from bacteria
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/70Vectors or expression systems specially adapted for E. coli
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/74Vectors or expression systems specially adapted for prokaryotic hosts other than E. coli, e.g. Lactobacillus, Micromonospora
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/30Against vector-borne diseases, e.g. mosquito-borne, fly-borne, tick-borne or waterborne diseases whose impact is exacerbated by climate change

Definitions

  • the present invention relates to an agent for regulating airway immune dysfunction by bacterial-derived extracellular vesicles, and in particular, comprising a bacterial-derived extracellular vesicle loaded with bacterial-derived antigen protein as an active ingredient, a composition for preventing or treating respiratory diseases, and It relates to a manufacturing method thereof.
  • An allergy can be defined as a phenomenon in which an acquired immune response occurs in the body when exposed to an antigen present in the surrounding environment, and the pattern of the immune response changes when repeated exposure to the antigen by the memory of the antigen. Allergens caused by exposure to harmful antigens have a beneficial effect on our bodies and induce immune responses through vaccines. On the other hand, when the antigen enters our body, if the immune response to the antigen is excessively induced and the hypersensitivity reaction occurs, the inflammatory reaction occurs in our body to cause irritable inflammatory disease.
  • Chronic rhinitis and sinusitis are conditions in which chronic inflammation occurs in the nasal and sinuses due to repeated exposure to the causative antigen in the air or in the nasal cavity, resulting in symptoms such as sneezing, runny nose and stuffy nose.
  • Asthma is a disease characterized by chronic inflammation of the respiratory tract caused by hypersensitivity of the airway to the antigen, which causes symptoms such as wheezing and dyspnea due to structural changes and functional changes caused by inflammation.
  • COPD chronic obstructive pulmonary disease
  • COPD chronic obstructive pulmonary disease
  • indoor air includes Bacillus sp., Staphylococcus aureus , Staphylococcus epidermidis , and Pseudomonas Pseudomonas. stutzeri), Streptomyces three tests (Streptomycetes), Corey and four are many types of bacteria, such as (Corynebacteriaceae) inhabit the bacteria Seah [J Appl Microbiol. 1999 Apr; 86 (4): 622-34, BMC Microbiol. 2007 Apr 5; 7:27.
  • Bacterial-derived extracellular vesicles are spherical phospholipid bilayers with diameters of 20-100 nm, and for gram-negative bacteria-derived extracellular vesicles, biochemical and proteomic studies of outer membrane proteins and lipopolysaccharides. LPS), outer membrane lipids, DNA, RNA, and cytoplasmic proteins. It has recently been reported that Gram-positive bacteria also secrete extracellular vesicles, and that proteins contained in extracellular vesicles cause disease.
  • active immunotherapy which induces immune cell activity present in the body by directly administering an antigen-causing substance to the body, and manual control of an immune response by administering substances produced in vitro, such as monoclonal antibodies It can be divided into passive immunotherapy. Active immunotherapy is considered to be more efficient in terms of cost and frequency of administration than passive immunotherapy as a method for preventing disease. Active immunotherapy is intended to induce protective immunity by employing a strategy to induce an acquired immune response with the ability to induce specific long-term protective memory that is characteristic of acquired immunity. Key to regulating immune dysfunction is the key to antigen-specific regulation of immunological adverse events against antigens such as humoral (or antibody mediated) and cellular (T-cell mediated) immunity.
  • LPS Lipopolysaccharide
  • TLR4 receptors present in large amounts in vascular endothelial cells.
  • Protoplasts are living cell substances of plants or bacteria, and the extracellular and cell walls of these cells are removed mechanically and enzymatically, and the endotoxin content in the bacterial outer membrane is removed, thus toxic to the extracellular vesicles itself. You can solve the problem.
  • drugs such as polymyxin B can be treated to remove the activity of endotoxins present in extracellular vesicles.
  • the present invention is to provide a pharmaceutical composition
  • a pharmaceutical composition comprising a bacterium expressing an antigenic protein in a bacterial-derived extracellular vesicle, and an extracellular vesicle derived therefrom, and a method for preparing the same.
  • the present invention is to provide a method for controlling the airway immune function adverse reaction by bacterial derived extracellular vesicles using the composition.
  • the present invention provides a pharmaceutical composition for preventing or treating respiratory diseases containing bacteria-derived extracellular vesicles as an active ingredient.
  • the bacterium is a bacterium that overexpresses an antigenic protein gene in a bacterial-derived extracellular vesicle, and the respiratory disease is a respiratory disease caused by bacterial-derived vesicles.
  • the bacteria that produce the extracellular vesicles are characterized in that the Escherichia coli (E. coli) or in Salmonella bacteria (Salmonella spp.).
  • the bacteria-derived respiratory disease caused by extracellular vesicles is characterized in that selected from the group consisting of asthma, chronic obstructive pulmonary disease (COPD), lung cancer, rhinitis, and sinusitis.
  • COPD chronic obstructive pulmonary disease
  • the antigen-derived extracellular vesicle-derived antigen protein is Gram-negative bacteria-derived extracellular vesicle outer membrane protein (Outer membrane protein, OMP) or Gram-positive bacteria-derived extracellular vesicle surface protein.
  • the Gram-negative bacteria-derived extracellular vesicle outer membrane protein may be outer membrane protein A (OMPA), and the Gram-positive bacteria-derived extracellular vesicle surface protein may be coagulase (CoA).
  • the present invention comprises the steps of (a) overexpressing the antigenic protein gene in bacteria-derived extracellular vesicles to bacteria; (b) culturing the overexpressed bacteria; (c) isolating extracellular vesicles from the bacterial culture; And (d) provides a method for producing a bacterial-derived extracellular vesicles for the prevention or treatment of respiratory diseases by bacterial-derived extracellular vesicles, comprising the step of removing the outer membrane endotoxin activity of the extracellular vesicles.
  • the method for separating the extracellular vesicles in the step (c) is to separate the naturally secreted extracellular vesicles by a filter method, and / or ultracentrifugation method, or artificial cells After the outer vesicles are made, they are separated by filtration, and / or ultracentrifugation.
  • the method for removing endotoxin activity in step (d) removes toxins (LPS, peptidoglycan, etc.) in the extracellular vesicles with lysozyme, or the endotoxin (LPS) polymyxin B and methods of inhibiting activity with drugs such as (polymyxin B).
  • toxins LPS, peptidoglycan, etc.
  • LPS endotoxin
  • the present invention provides an immunomodulator for preventing or treating respiratory diseases caused by bacterial-derived extracellular vesicles, comprising the bacterial-derived extracellular vesicles prepared by the above method as an active ingredient.
  • Respiratory diseases caused by bacterial extracellular vesicles include, but are not limited to, asthma, chronic obstructive pulmonary disease, lung cancer, rhinitis, and sinusitis.
  • the immunomodulatory agent is characterized in that the bacteria-derived extracellular vesicle antigen protein is overexpressed in the lumen of the bacteria-derived extracellular vesicles.
  • the extracellular vesicles may have an average diameter of 10-400nm, preferably 10-200nm.
  • the present invention provides a method for preventing or treating respiratory diseases caused by bacteria-derived extracellular vesicles using bacteria-derived extracellular vesicles.
  • the present invention provides a use for the prevention or treatment of respiratory diseases caused by bacteria-derived extracellular vesicles of bacteria-derived extracellular vesicles.
  • the present invention by using a composition containing a bacterial-derived extracellular vesicles loaded with bacteria-derived extracellular vesicle antigen protein as an active ingredient, by controlling the airway immune function adverse reactions caused by bacteria-derived extracellular vesicles, ultimately bacteria-derived cells It is expected to effectively prevent or treat respiratory diseases caused by external vesicles.
  • FIG. 1 is a diagram illustrating a method of making an immunomodulator by cloning a bacterial-derived extracellular vesicle antigen protein, loading it into bacteria, treating it with lysozyme to form a protoplast, and then preparing a vesicle by extrusion method. .
  • Figure 3 shows the expression of co-stimulatory molecules (MHC class II molecules) by treating extracellular vesicles loaded with bacterial derived extracellular vesicle antigen protein (OMPA) to bone marrow-derived dendritic cells. Is the result of measuring.
  • MHC class II molecules co-stimulatory molecules
  • OMPA bacterial derived extracellular vesicle antigen protein
  • cytokine IL 4 is a cytokine IL that induces Th1 and Th17 immune responses by treating extracellular vesicles loaded with bacteria-derived extracellular vesicle antigen protein (OMPA) on bone marrow-derived dendritic cells. This is the result of measuring the secretion amount of -12 and IL-6.
  • OMPA bacteria-derived extracellular vesicle antigen protein
  • FIG. 5 is a diagram illustrating a variety of bacteria present in the dust by separating dust from a bed mattress in an apartment and a hospital in Korea, performing a bacterial metagenome (dielectric) analysis in the dust.
  • FIG. 6 is a diagram representing the distribution of the major bacteria present in the dust in the apartments and hospitals in Korea as a heat map.
  • Figure 7 is a diagram representing the distribution of the major bacteria and bacteria-derived extracellular vesicles (EV) present in the apartment in Korea as a heat map.
  • EV extracellular vesicles
  • IM intramuscular injection
  • IN nasal administration
  • BAL Bronchoalveolar Lavage
  • T cells are isolated from mouse lung tissue and stimulated with anti-CD3 / CD28 After the test, gamma-interferon, IL-17 and IL-4 were measured.
  • OMP Gram-negative bacteria-derived vesicle outer membrane protein
  • T cells after administration of the extracellular vesicles loaded with Gram-positive bacteria-derived extracellular vesicle surface protein (Coagulase, CoA) by the method of Figure 8, T cells are isolated from mouse lung tissue and stimulated with anti-CD3 / CD28 After the test, gamma-interferon, IL-17 and IL-4 were measured.
  • Gram-positive bacteria-derived extracellular vesicle surface protein Coagulase, CoA
  • IM intramuscular injection
  • IN Nasal administration
  • OMP extracellular vesicle outer membrane protein
  • Fig. 15 shows the anti-inflammatory effect of gram-negative bacteria-derived extracellular vesicle outer membrane vesicle protein (OMP) loaded extracellular vesicles in a mouse disease model caused by Staphylococcus aureus-derived extracellular vesicles. The results were evaluated by the number of inflammatory cells in bronchoalveolar lavage fluid.
  • OMP outer membrane vesicle protein
  • Figure 16 shows the effect of inhibiting the inflammatory airway disease inhibited by E. coli-derived extracellular vesicles, which are pathogenic Gram-negative bacteria, after administration of extracellular vesicles loaded with Gram-negative bacteria-derived extracellular vesicle outer membrane protein (OMP). Protocol to evaluate.
  • E. coli-derived extracellular vesicles which are pathogenic Gram-negative bacteria
  • IM intramuscular injection
  • IN nasal administration
  • p-BNS extracellular vesicles loaded with outer membrane protein (OMP)
  • EV Extracellular Vesicles
  • FIG. 17 is an extracellular vesicle loaded with Gram-negative bacteria-derived extracellular vesicle outer membrane protein (OMP) in the method of FIG. 16 in an inflammatory airway disease mouse disease model caused by Escherichia coli-derived extracellular vesicles, which are pathogenic Gram-negative bacteria. After vesicle administration, the anti-inflammatory effect was evaluated by the number of inflammatory cells in bronchoalveolar lavage fluid.
  • OMP extracellular vesicle loaded with Gram-negative bacteria-derived extracellular vesicle outer membrane protein
  • Mac macrophages
  • Neu neutrophils
  • Eos eosinophils
  • Lymph Lymphocytes
  • FIG. 18 is an extracellular vesicle loaded with Gram-negative bacteria-derived extracellular vesicle outer membrane protein (OMP) in the method of FIG. 16 in an inflammatory airway disease mouse disease model caused by Escherichia coli-derived extracellular vesicle which is a pathogenic Gram-negative bacterium.
  • OMP outer membrane protein
  • NC negative control
  • OA p-BNS only group
  • Ec E. coli vesicles alone administration group
  • OE p-BNS group when E. coli vesicles were administered
  • FIG. 19 shows inflammatory airway disease mouse disease model caused by Escherichia coli-derived extracellular vesicles, which are pathogenic Gram-negative bacteria. After administration of vesicles, the secretion of gamma-interferon, IL-17, IL-4, and IL-10 was measured in lung and splenic T cells to evaluate anti-inflammatory effects.
  • NC negative control
  • OA p-BNS only group
  • Ec E. coli vesicles alone administration group
  • OE p-BNS group when E. coli vesicles were administered
  • bacteria-derived extracellular vesicle surface antigens present in large quantities in indoor dust were targeted.
  • bacteria-derived extracellular vesicles As antigen carriers, there are attempts to use bacterially derived extracellular vesicles as an adjuvant based on the fact that extracellular vesicles derived from bacteria can induce various immune responses in the host.
  • bacteria-derived extracellular vesicles contain exotoxins such as LPS, and there is a problem that the toxicity problems caused by LPS contained in bacteria-derived vesicles have to be solved.
  • the protoplasts made by removing the cell wall including the outer membrane and the peptidoglycan of the vesicles (protoplast) After the preparation, artificial extracellular vesicles were prepared and used.
  • OMPA Outer membrane protein A
  • CoA Staphylococcus aureus
  • 'respiratory disease' is not particularly limited as long as it occurs in the respiratory system such as rhinitis, sinusitis, asthma, COPD, lung cancer, but is preferably selected from the group consisting of asthma, COPD, and lung cancer.
  • bacteria-derived extracellular vesicles that cause respiratory disease is not particularly limited as long as the bacteria-derived extracellular vesicles present in the dust, but in the intestinal bacteria, Pseudomonas genus, Acinetobacter genus, or staphylococcus bacteria It is preferably selected from the extracellular vesicles from which they are derived.
  • treatment or prevention of respiratory diseases is meant to include reducing, alleviating and improving symptoms of respiratory diseases, and also includes lowering the likelihood of developing respiratory diseases.
  • bacteria that can overexpress genes, but E. coli or Salmonella spp. Are preferred.
  • the step of separating the extracellular vesicles can be used naturally secreted extracellular vesicles, there is no particular limitation on the method for separating the extracellular vesicles, can be obtained by concentrating with a filter, and then ultracentrifugation, etc. It may include the process of.
  • the extracellular vesicles can be artificially produced, and there is no particular limitation on the method for producing the same, but may be obtained by extruding with a filter, and may further include a process such as centrifugation and ultracentrifugation.
  • the method for separating extracellular vesicles in the present invention is not particularly limited as long as it includes bacterial derived extracellular vesicles, for example, in culture, centrifugation, ultra-fast centrifugation, filtration by filter, gel filtration chromatography, pre-flow electrophoresis
  • Extracellular vesicles can be separated using methods such as polymer addition, capillary electrophoresis, and the like, and combinations thereof. In addition, it may further include a process for washing to remove impurities, concentration of the obtained extracellular vesicles and the like.
  • the extracellular vesicles are naturally secreted or include extracellularly secreted extracellular vesicles.
  • the bacteria-derived extracellular vesicle surface antigen protein is expressed in the lumen of the extracellular vesicles prepared by the above method, wherein the expressed protein is enteric bacteria, Pseudomonas genus, Acinetobacter genus, or staphylococcus. Extracellular vesicle surface antigens derived from aureus bacteria are preferred.
  • the extracellular vesicles loaded with the specific antigen prepared by the method may have an average diameter of 10-400 nm, but preferably 10-200 nm.
  • an immunomodulator for treating or preventing the respiratory disease may be prepared as a pharmaceutical composition. It is possible to administer the bacteria-derived extracellular vesicles of the present invention for use in treatment and prophylaxis, but it is preferred that such vesicles be included as active ingredients of the pharmaceutical composition.
  • the pharmaceutical composition may contain the isolated extracellular vesicles as an active ingredient, and may include a pharmaceutically acceptable carrier.
  • pharmaceutically acceptable carriers are conventionally used in the preparation, and include, but are not limited to, saline solution, sterile water, Ringer's solution, buffered saline, cyclodextrin, dextrose solution, maltodextrin solution, glycerol, ethanol, liposomes, and the like. If necessary, other conventional additives such as antioxidants and buffers may be further included.
  • diluents, dispersants, surfactants, binders, lubricants and the like may be additionally added to formulate into injectable formulations, pills, capsules, granules or tablets such as aqueous solutions, suspensions, emulsions and the like.
  • Suitable pharmaceutically acceptable carriers and formulations may be preferably formulated according to each component using the methods disclosed in Remington's Pharmaceutical Science, Mack Publishing Company, Easton PA.
  • the pharmaceutical composition of the present invention is not particularly limited in formulation, but may be formulated as an injection, inhalant, or external skin preparation.
  • the method of administering the pharmaceutical composition of the present invention is not particularly limited, but may be parenterally or orally administered, such as intramuscular injection, subcutaneous, inhalation, nasal, sublingual, and skin application.
  • Dosage varies depending on the patient's weight, age, sex, health condition, diet, time of administration, method of administration, rate of excretion and severity of disease.
  • Daily dosage refers to the amount of therapeutic substance of the invention sufficient for treatment for a disease state alleviated by administration to a subject in need thereof.
  • Effective amounts of therapeutic agents depend on the particular compound, disease state and severity thereof, and on the individual in need thereof, and can be routinely determined by one skilled in the art.
  • the dosage of the composition according to the present invention to the human body may vary depending on the age, weight, sex, dosage form, health condition and degree of disease of the patient.
  • OMPA and CoA genes were synthesized by cDNA by RT-PCR for the cloning of OMPA, an extracellular vesicle envelope protein derived from E. coli, and CoA, a surface antigen of Staphylococcus aureus.
  • PCR products were inserted into a T-blunt PCR cloning kit (Solgent), and each plasmid was digested with EcoRI (OmpA, ABC transporter) and BglII (FepA). The sections were separated by electrophoresis and inserted into the pET-30a plasmid, transformed into E. coli DH5a by thermal shock, and finally the gene was cloned.
  • the candidate gene clones obtained in the above examples were incubated in Luria Bertani broth (Merch) at 37 ° C., 200 rpm for 12 hours, followed by Exprep plasmid mini prep. Each plasmid was isolated using Kit (GeneAll) and transfected into E. coli BL21 (Real Biotech).
  • the bacterial pellet was resuspended in Tris buffer and treated with 1 mg / ml lysozyme (Sigma) at 37 ° C., 100 rpm, 2 hours to obtain protoplasts, followed by 10 ⁇ m, 5 ⁇ m, and 1 Extruded with LiposoFast extruder (Avestin) in order through the membrane of the pore size. Finally, ultracentrifugation with 10% and 50% opti-prep density gradient medium (OptiPrep) yielded extracellular vesicles loaded with OMPA, CoA antigens.
  • OptiPrep Opti-prep density gradient medium
  • the extracellular vesicles loaded with the OMPA antigen obtained in Example 1 were diluted (50 ⁇ g / ml) with PBS and loaded 10 ⁇ l onto 300-mesh copper grids (EMS). Uranyl acetate (2%) was dropped on the grid for negative staining and observed with a JEM1011 electron microscope (JEOL). As a result, it was confirmed that the extracellular vesicles were spherical and surrounded by a lipid bilayer (see FIG. 2).
  • the extracellular vesicles were diluted with PBS (500 ng / ml), and diameters were determined by dynamic light scattering using Zetasizer Nano ZS (Malvern Instruments). Size distribution was measured and the results were analyzed using Dynamic V6 software. As a result, it was found that the diameter of the extracellular vesicles was about 130 nm (see FIG. 2).
  • BMDC bone marrow-derived dendritic cells
  • BMDC BMDC (5 ⁇ 10 5 cells / well) was treated with DMEM containing 10% FBS and antibiotics (100 unit / ml penicillin and 100 ⁇ g / ml streptomycin) in a 24-well tissue culture plate (TPP) for 24 hours at 37 ° C. Incubated). After removing the medium, extracellular vesicles loaded with OMPA antigen were changed to serum-free DMEM medium added at concentrations of 0.1 and 1 ug / ml. After 15 hours, the expression level of MHC class II molecules in BMDC and ELISA assay were performed on the culture medium to measure the expression level of T-12 cell cytokines IL-12 and IL-6.
  • antigen-presenting cells treated with extracellular vesicles loaded with OMPA antigen significantly increased secretion of IL-6, which is important for differentiation into Th-12 and Th17 cells, which are important for differentiation into Th1 cells (see FIG. 4). .
  • the vacuum cleaner was used to collect dusts from bed mattresses in apartments in Seoul and bed mattresses in the hospitals of major hospitals and intensive care units.
  • the dust present in the filter of the vacuum cleaner was transferred to a clean glass bottle and the mass was measured. 5 g of dust were dissolved in a beaker containing 200 ml PBS for 4 hours at 4 ° C. Afterwards, the large amount of foreign matter is first filtered through a gauze, and the filtered solution is divided into high speed centrifuge tubes, followed by high speed centrifugation for 15 minutes at 10,000 ⁇ g at 4 ° C. ) Was performed twice in succession to collect the bacterial part.
  • Metagenome sequencing extracts genes from the bacterial and extracellular vesicles separated by the above method, amplifies using 16S rDNA primers, and performs sequencing (Roche GS FLX sequencer), and the result is shown in Standard Flowgram Format (SFF). Output the file and convert the SFF file into a sequence file (.fasta) and nucleotide quality score file using GS FLX software (v2.9), check the credit rating of the lead, and use the window (20 bps) average base call accuracy. The portion with less than 99% (Phred score ⁇ 20) was removed. After removing the low quality part, only the lead length of 300 bps or more was used (Sickle version 1.33).
  • SFF Standard Flowgram Format
  • clustering is performed according to sequence similarity using UCLUST and USEARCH for analysis of Operational Taxonomy Unit (OUT), gunus 94%, family 90%, order 85%, class 80%, phylum Cluster based on 75% sequence similarity, classify at the phylum, class, order, family, and gunus levels of each OUT, and use BLASTN and GreenGenes' 16S RNA sequence database (108,453 sequences) to achieve greater than 97% sequence similarity. Bacteria with were analyzed (QIIME).
  • extracellular vesicles derived from bacteria in apartment dust Extracellular vesicles derived from Pseudomonas, Acinetobacter, Enterobacteriaceae, and Staphylococcus bacteria, regardless of season, were mainly derived from bacteria of Pseudomonas. Extracellular vesicles were the most common (see FIG. 7).
  • extracellular vesicles loaded with OMPA antigen were loaded. Immunization was induced by administration to mice. In addition, after inducing an immune response, blood was collected from mice treated with the control group (PBS) and extracellular vesicles loaded with OMPA antigen to measure OMPA-specific IgG antibodies.Bronchoalveolar lavage fluid was collected to determine the concentration of OMPA-specific sIgA antibodies. Was measured (see FIG. 8).
  • mouse serum induced an immune response by intramuscular injection with extracellular vesicles loaded with OMPA antigen was generated in OMPA antigen-specific IgG antibody with or without nasal administration of extracellular vesicles loaded with OMPA antigen. This has been increased.
  • OMPA antigen-specific sIgA production in bronchoalveolar lavage fluid was increased only after intramuscular injection of extracellular vesicles loaded with OMPA antigen (see Fig. 9).
  • the extracted lung tissue was digested by passing through a 100 ⁇ m cell strainer (BD Biosciences) with 5 ml syringe washing buffer (2.5% FBS, DMEM containing 0.01M HEPES).
  • the isolated cells were treated with ammonium chloride solution at 4 ° C. for 10 minutes to allow erythrocyte cells to lyse.
  • the obtained cells were washed with washing buffer and filtered with 40 ⁇ m cell strainer (BD), followed by 10% FBS, 50 ⁇ M 2-ME, 0.01 M HEPES and antibiotics (100 unit / ml penicillin, 100 ⁇ g / ml streptomycin).
  • the amount of IFN- ⁇ a major cytokine produced by Th1 cells
  • OMPA antigen-loaded extracellular vesicle-administered group compared to the control group, and OMPA antigen-loaded extracellular Dose-dependent nasal vesicles decreased dose-dependently.
  • IL-17 a major cytokine produced by Th17
  • the extracellular vesicles loaded with OMPA antigen increased at low concentrations but not at high concentrations.
  • IL-4 secreted from Th2 cells did not change regardless of intramuscular injection or nasal administration (see FIG. 10).
  • extracellular vesicles loaded with CoA antigens were used. Immunization was induced by administration to mice. In addition, after inducing an immune response, blood was collected from a control group (PBS) and mice treated with extracellular vesicles loaded with CoA antigens to measure CoA antigen-specific IgG antibodies, and bronchioalveolar lavage fluid was collected to collect CoA antigen-specific sIgA antibodies. The concentration of was measured by the method of Example 5.
  • mice sera that induced an immune response by intramuscular injection with extracellular vesicles loaded with CoA antigens generated CoA antigen-specific IgG antibodies regardless of the presence or absence of extracoagulants loaded with CoA antigens. This has been increased.
  • CoA antigen-specific sIgA production in bronchoalveolar lavage fluid increased dose-dependently only after intranasal injection of extracellular vesicles loaded with CoA antigen (see FIG. 11).
  • T cell response was evaluated by the method of Example 6 by measuring the amount of.
  • the amount of IFN- ⁇ a major cytokine produced by Th1 cells, was increased in the extracellular vesicle-administered group loaded with CoA antigen compared to the control group, and the extracellular loaded with CoA antigen Increase in vesicle nasal administration.
  • the extracellular vesicles loaded with CoA antigens increased at low concentrations but not at high concentrations.
  • IL-4 secreted from Th2 cells increased upon nasal administration (see FIG. 12).
  • Example 9 Gram-negative bacteria E. coli derived Extracellular By parcel Airway inflammatory response On generation OMPA Antigen Loaded Anti-inflammatory effect of vesicles
  • a representative Gram-negative bacterium is an airway inflammation model, as shown in FIG. 13, to evaluate the efficacy of extracellular vesicles loaded with OMPA antigen in an airway inflammation mouse model induced by administration of extracellular vesicles derived from E. coli into the airways.
  • E. coli-derived extracellular vesicles were administered to the nasal cavity twice a week for a total of three weeks to prepare a respiratory disease model (see FIG. 13).
  • the extracellular vesicles loaded with the OMPA antigen were loaded three times before the respiratory disease model was made, as shown in FIG. 13 at the concentration set in the method of Example 5. After injection and nasal administration, extracellular vesicles loaded with OMPA antigens were administered only intranasally (see FIG. 13) during the construction of the disease model.
  • Example 10 Gram-positive bacteria Derived from Staphylococcus aureus Extracellular By parcel Airway inflammatory response On generation CoA Anti-inflammatory effect of antigen loaded vesicles
  • a representative Gram-positive bacterium is airway inflammation, as shown in FIG. 13, to evaluate the efficacy of extracellular vesicles loaded with CoA antigen in an airway inflammation mouse model induced by airway administration of extracellular vesicles derived from Staphylococcus aureus.
  • Staphylococcus aureus-derived extracellular vesicles were administered to the nasal cavity twice a week for a total of three weeks to prepare a respiratory disease model (see FIG. 13).
  • the intracellular vesicles loaded with CoA antigen three times before the respiratory disease model was created, as shown in FIG. 13 at the concentration set in the method of Example 7
  • extracellular vesicles loaded with CoA antigens were administered only intranasally (see FIG. 13) during the preparation of the disease model.
  • mice that did not receive extracellular vesicles loaded with CoA antigens the number of inflammatory cells in bronchoalveolar lavage fluid was significantly increased by airway administration of vesicles derived from Staphylococcus aureus.
  • the number of inflammatory cells in bronchoalveolar lavage fluid was significantly reduced compared to the positive control.
  • the number of inflammatory cells in bronchoalveolar lavage fluid was significantly reduced in mice continuously administered before and after preparation (see FIG. 15).
  • Example 11 Gram-negative bacteria E. coli derived Extracellular Induced by parcel Airway Inflammation Anti-inflammatory Effect of Vesicles Loaded with OMPA Antigen on Mouse Model
  • E. coli-derived extracellular vesicles were administered to the nasal cavity twice a week for a total of 3 weeks to prepare a respiratory disease model (see FIG. 16).
  • intramuscular injection of OMPA antigen loaded once a week at the concentration set in the method of Example 5 was made on the first week of respiratory disease model. At the 2nd and 3rd week, intramuscular injection was performed simultaneously with the intramuscular injection, and from the 4th week, only nasal administration was performed daily (see FIG. 16).
  • T cells were isolated from lung tissue and spleen, stimulated with anti-CD3 and anti-CD28, and the T cell immune response was assessed by cytokine secretion.
  • the administration of extracellular vesicles loaded with OMPA antigen significantly reduced the amount of IL-4 secreted by T cells in spleen tissues.
  • Modulators decreased cytokine secretion of gamma-interferon, IL-17, IL-4, IL-10 and the like in T cells in lung tissue (see FIG. 19).
  • composition according to the present invention is expected to be able to effectively prevent or treat respiratory diseases caused by bacterial-derived extracellular vesicles, by regulating the adverse effects of airway immune function caused by bacterial-derived extracellular vesicles.

Abstract

The present invention relates to an immune regulator for preventing or treating respiratory diseases by using bacteria-derived extracellular vesicles and, specifically, provides: a pharmaceutical composition for immune regulation, which contains bacteria-derived vesicles, as active ingredients, containing surface antigen proteins contained in extracellular vesicles derived from pathogenic bacteria causing respiratory diseases; a preparation method therefor; and the like.

Description

세균유래 세포밖 소포에 의한 기도 면역기능이상 조절제Regulators of Airway Immune Dysfunction by Bacteria-Derived Extracellular Vesicles
본 발명은 세균유래 세포밖 소포에 의한 기도 면역기능이상 조절제에 관한 것으로, 구체적으로 세균유래 항원 단백질이 로딩된 세균 유래 세포밖 소포를 유효성분을 함유하는, 호흡기질환의 예방 또는 치료용 조성물, 및 이의 제조방법 등에 관한 것이다.The present invention relates to an agent for regulating airway immune dysfunction by bacterial-derived extracellular vesicles, and in particular, comprising a bacterial-derived extracellular vesicle loaded with bacterial-derived antigen protein as an active ingredient, a composition for preventing or treating respiratory diseases, and It relates to a manufacturing method thereof.
알레르기는 주변 환경에 존재하는 항원에 노출시 우리 몸에 후천적인 면역반응이 발생하고, 항원에 대한 기억으로 항원에 반복노출 시에 면역반응의 양상이 바뀌는 현상으로 정의할 수 있다. 해로운 항원에 노출 시에 발생하는 알레르기현상은 우리 몸에 이로운 효과를 나타내고, 백신을 통한 면역반응을 유도하는 것이 대표적이다. 반면, 항원이 우리 몸에 들어올 때, 항원에 대한 면역반응이 과도하게 유도되어 과민반응이 발생하면, 우리 몸에 염증반응이 발생하여 과민성 염증질환을 일으키게 된다. 만성비염 및 부비동염은 공기 중 혹은 비강 내 원인 항원에 반복적으로 노출되었을 때 비강 및 부비동에 만성염증이 발생하여 재채기, 콧물, 코막힘 등의 증상이 발생하는 질환이다. 천식은 항원에 대한 기도의 과민반응에 의해 유발되는 기도의 만성염증을 특징으로 하는 질환으로서 염증에 의한 구조적인 변화와 이에 따른 기능적인 변화로 천명, 호흡곤란 등의 증상이 발생하는 질환이다. 또한, 만성폐쇄성폐질환 (COPD)은 천식과 달리 비가역적인 기도폐색을 특징으로 하는 질환으로서, 기도의 만성염증 형태이며, 만성폐쇄성기관지염, 만성폐쇄성세기관지염, 폐기종 등의 질환을 포함한다. 최근 역학연구에서 흡연과 상관없이 COPD 환자에서 폐암의 발생이 증가된다는 보고를 통해, COPD는 폐암 발생의 중요한 위험인자로 인식되고 있다.An allergy can be defined as a phenomenon in which an acquired immune response occurs in the body when exposed to an antigen present in the surrounding environment, and the pattern of the immune response changes when repeated exposure to the antigen by the memory of the antigen. Allergens caused by exposure to harmful antigens have a beneficial effect on our bodies and induce immune responses through vaccines. On the other hand, when the antigen enters our body, if the immune response to the antigen is excessively induced and the hypersensitivity reaction occurs, the inflammatory reaction occurs in our body to cause irritable inflammatory disease. Chronic rhinitis and sinusitis are conditions in which chronic inflammation occurs in the nasal and sinuses due to repeated exposure to the causative antigen in the air or in the nasal cavity, resulting in symptoms such as sneezing, runny nose and stuffy nose. Asthma is a disease characterized by chronic inflammation of the respiratory tract caused by hypersensitivity of the airway to the antigen, which causes symptoms such as wheezing and dyspnea due to structural changes and functional changes caused by inflammation. In addition, chronic obstructive pulmonary disease (COPD) is a disease characterized by irreversible airway obstruction unlike asthma, is a chronic inflammation form of the airway, and includes diseases such as chronic obstructive bronchitis, chronic obstructive bronchiolitis, emphysema. In recent epidemiologic studies, the incidence of increased lung cancer in COPD patients, regardless of smoking, has been recognized as a significant risk factor for lung cancer.
한편, 실내공기에는 바실러스(Bacillus sp.), 스타필로코커스 아우레우스(Staphylococcus aureus), 스타필로코커스 에피더미디스(Staphylococcus epidermidis), 슈도모나스 스투체리(Pseudomonas stutzeri), 스트렙토마이세테스(Streptomycetes), 코리네박테리아세아에(Corynebacteriaceae) 등 여러 종류의 세균이 서식한다 [J Appl Microbiol. 1999 Apr;86(4):622-34, BMC Microbiol. 2007 Apr 5;7:27]. 상기 실내공기에서 서식하는 세균에서 유래한 내독소 (lipopolysaccharide, LPS)나 펩티도글리칸 (peptidoglycan) 등에 의해 면역세포 및 폐 표피 세포에서 염증성 사이토카인의 생성이 유도됨이 알려져 있다 [Toxicology. 2005 Nov 5;215(1-2):25-36., Indoor Air. 1999 Dec;9(4):219-25].Meanwhile, indoor air includes Bacillus sp., Staphylococcus aureus , Staphylococcus epidermidis , and Pseudomonas Pseudomonas. stutzeri), Streptomyces three tests (Streptomycetes), Corey and four are many types of bacteria, such as (Corynebacteriaceae) inhabit the bacteria Seah [J Appl Microbiol. 1999 Apr; 86 (4): 622-34, BMC Microbiol. 2007 Apr 5; 7:27. It is known that the production of inflammatory cytokines is induced in immune cells and lung epidermal cells by endotoxin (lipopolysaccharide, LPS) or peptidoglycan derived from bacteria inhabiting the indoor air [Toxicology. 2005 Nov 5; 215 (1-2): 25-36., Indoor Air. 1999 Dec; 9 (4): 219-25.
세균유래 세포밖 소포(extracellular vesicles; EVs)는 구형의 인지질 이중막으로 20-100 nm의 직경을 가지며, 그람음성세균유래 세포밖 소포인 경우, 생화학 및 프로테옴 연구를 통해 외막 단백질, 지질다당류(lipopolysaccharide; LPS), 외막 지질, DNA, RNA, 및 세포질 내 단백질 등을 포함하고 있음이 보고되었다. 그람양성세균도 세포밖 소포를 분비함이 최근 보고되었고, 세포밖 소포에 포함된 단백질이 질병을 일으킴이 보고되었다.Bacterial-derived extracellular vesicles (EVs) are spherical phospholipid bilayers with diameters of 20-100 nm, and for gram-negative bacteria-derived extracellular vesicles, biochemical and proteomic studies of outer membrane proteins and lipopolysaccharides. LPS), outer membrane lipids, DNA, RNA, and cytoplasmic proteins. It has recently been reported that Gram-positive bacteria also secrete extracellular vesicles, and that proteins contained in extracellular vesicles cause disease.
실내 먼지에는 세균유래 세포밖 소포가 다량 존재하고, 먼지 내 세포밖 소포를 마우스에 투여하였을 때 면역기능이상을 동반한 호중구성 기도염증이 발생함이 보고되었다. 또한, 그람양성세균인 황색포도상구균유래 세포밖 소포에 의해 마우스에서 면역기능이상을 동반한 호중구성 염증이 발생함이 최근 알려지게 되었고, 대표적인 그람음성세균인 대장균에서 유래하는 세포밖 소포에 의해 호중구성 기도염증뿐만 아니라 COPD에서 비가역적인 기도폐색의 주요한 원인인 폐기종이 발생함도 보고되었다.It has been reported that a large amount of extracellular vesicles derived from bacteria exist in indoor dust, and neutrophil airway inflammation with immune dysfunction occurs when the extracellular vesicles in the dust are administered to mice. In addition, neutrophil-inflammation with immune dysfunction occurs in mice due to Gram-positive Staphylococcus aureus-derived extracellular vesicles, and is neutrophils caused by extracellular vesicles derived from Escherichia coli, a gram-negative bacterium. In addition to constitutive airway inflammation, emphysema, a major cause of irreversible airway obstruction, has been reported in COPD.
면역요법에는 질병을 일으키는 항원 물질을 체내로 직접 투여하여 체내에 존재하는 면역세포 활성을 유도하는 능동면역요법 (active immunotherapy)과 단클론 항체와 같이 체외에서 생산한 물질을 투여하여 면역반응을 조절하는 수동면역요법 (passive immunotherapy)로 나눌 수 있다. 질병을 예방하기 위한 방법으로 수동면역요법에 비하여 능동면역요법이 비용이나 투여횟수 측면에서 좀더 효율적인 방법으로 인식되고 있다. 능동면역요법은, 후천면역의 특징인 특이적인 장기 방어 기억을 유도하는 능력을 가진 후천면역반응을 유도하는 전략을 사용함으로써, 방어면역이 유도되도록 하는 것이다. 면역기능 이상반응을 조절하기 위한 열쇠는 체액성(또는 항체 매개) 및 세포성(T-세포 매개) 면역과 같은 항원에 대한 면역학적 이상반응을 항원 특이적으로 조절하는 것이 핵심이다. In immunotherapy, active immunotherapy, which induces immune cell activity present in the body by directly administering an antigen-causing substance to the body, and manual control of an immune response by administering substances produced in vitro, such as monoclonal antibodies It can be divided into passive immunotherapy. Active immunotherapy is considered to be more efficient in terms of cost and frequency of administration than passive immunotherapy as a method for preventing disease. Active immunotherapy is intended to induce protective immunity by employing a strategy to induce an acquired immune response with the ability to induce specific long-term protective memory that is characteristic of acquired immunity. Key to regulating immune dysfunction is the key to antigen-specific regulation of immunological adverse events against antigens such as humoral (or antibody mediated) and cellular (T-cell mediated) immunity.
항원 전달체로서 세균유래 세포밖 소포는 자체의 우수한 면역유도 효과에도 불구하고, 패혈증과 같은 심각한 독성을 유도하는 문제가 있다. 이는 그람음성세균의 세포외막에 내독소로 알려진 lipopolysaccharide (LPS)가 존재하고, 이는 혈관내피세포에 다량으로 존재하는 TLR4 수용체를 통해 전신적인 혈관염증을 유도하여 패혈증을 유도함이 최근 밝혀졌다. 그람음성세균 유래 세포밖 소포에 의한 독성문제를 해결하기 위한 방법으로 세포밖 소포에 존재하는 LPS를 제거하거나, 혹은 LPS 활성을 억제하는 화합물을 처리하여 항원 전달체로 사용할 수 있다. 원형질체(protoplast)는 식물 또는 세균의 살아있는 세포 물질이며, 이들 세포의 세포외막과 세포벽을 기계적/효소적인 방법으로 제거한 형태로서, 세균의 외막에 존재하는 내독소 함량이 제거되어 세포밖 소포 자체의 독성문제를 해결할 수 있다. 또한, 폴리믹신(polymyxin) B와 같은 약물을 처리하여 세포밖 소포 내에 존재하는 내독소의 활성을 제거할 수 있다. Bacterial-derived extracellular vesicles as antigen carriers, despite their excellent immuno-inducing effects, have the problem of inducing serious toxicity, such as sepsis. Lipopolysaccharide (LPS), known as endotoxin, exists in the extracellular membrane of Gram-negative bacteria, and it has recently been found to induce sepsis by inducing systemic vascular inflammation through TLR4 receptors present in large amounts in vascular endothelial cells. As a method for solving the toxicity problem caused by Gram-negative bacteria-derived extracellular vesicles, LPS present in extracellular vesicles can be removed or a compound that inhibits LPS activity can be used as an antigen transporter. Protoplasts are living cell substances of plants or bacteria, and the extracellular and cell walls of these cells are removed mechanically and enzymatically, and the endotoxin content in the bacterial outer membrane is removed, thus toxic to the extracellular vesicles itself. You can solve the problem. In addition, drugs such as polymyxin B can be treated to remove the activity of endotoxins present in extracellular vesicles.
그러나 현재까지 세균에서 유래하는 세포밖 소포에 의한 기도 면역기능이상을 조절하기 위한 항원 특이적 면역요법은 보고된 바 없다.However, no antigen-specific immunotherapy has been reported to modulate airway immune dysfunction caused by bacterial extracellular vesicles.
이에, 본 발명은 세균유래 세포밖 소포 내 항원 단백질을 발현하는 세균, 및 이로부터 유래하는 세포밖 소포를 포함하는 약학적 조성물, 및 이의 제조방법 등을 제공하고자 한다.Accordingly, the present invention is to provide a pharmaceutical composition comprising a bacterium expressing an antigenic protein in a bacterial-derived extracellular vesicle, and an extracellular vesicle derived therefrom, and a method for preparing the same.
또한, 본 발명은 상기 조성물을 이용하여 세균유래 세포밖 소포에 의한 기도 면역기능 이상반응을 조절하는 방법을 제공하고자 한다.In addition, the present invention is to provide a method for controlling the airway immune function adverse reaction by bacterial derived extracellular vesicles using the composition.
본 발명이 이루고자 하는 기술적 과제는 이상에서 언급한 과제에 제한되지 않으며, 언급되지 않은 또 다른 과제들은 아래의 기재로부터 당업자에게 명확하게 이해될 수 있을 것이다.The technical problem to be achieved by the present invention is not limited to the above-mentioned problem, and other problems not mentioned will be clearly understood by those skilled in the art from the following description.
본 발명은 세균유래 세포밖 소포를 유효성분으로 함유하는 호흡기질환 예방 또는 치료용 약학적 조성물을 제공한다. 상기 세균은 세균유래 세포밖 소포 내 항원 단백질 유전자를 과발현 시킨 세균이고, 상기 호흡기 질환은 세균유래 소포에 의한 호흡기 질환인 것을 특징으로 한다.The present invention provides a pharmaceutical composition for preventing or treating respiratory diseases containing bacteria-derived extracellular vesicles as an active ingredient. The bacterium is a bacterium that overexpresses an antigenic protein gene in a bacterial-derived extracellular vesicle, and the respiratory disease is a respiratory disease caused by bacterial-derived vesicles.
본 발명의 일 구현예에 있어서, 상기 세포밖 소포를 생성하는 세균은 대장균(E. coli) 혹은 살모넬라속 세균 (Salmonella spp.)인 것을 특징으로 한다.In one embodiment, the bacteria that produce the extracellular vesicles are characterized in that the Escherichia coli (E. coli) or in Salmonella bacteria (Salmonella spp.).
본 발명의 다른 구현예에 있어서, 상기 세균유래 세포밖 소포에 의한 호흡기질환은 천식, 만성 폐쇄성 폐질환 (COPD), 폐암, 비염, 및 부비동염으로 이루어진 군으로부터 선택되는 것을 특징으로 한다.In another embodiment of the present invention, the bacteria-derived respiratory disease caused by extracellular vesicles is characterized in that selected from the group consisting of asthma, chronic obstructive pulmonary disease (COPD), lung cancer, rhinitis, and sinusitis.
본 발명의 또 다른 구현예에 있어서, 세균유래 세포밖 소포 내 항원 단백질은 그람음성세균유래 세포밖 소포 외막단백질 (Outer membrane protein, OMP) 또는 그람양성세균유래 세포밖 소포 표면단백질인 것을 특징으로 한다. 상기 그람음성세균유래 세포밖 소포 외막단백질은 외막단백질 A (Outer membrane protein A, OMPA) 일 수 있으며, 그람양성세균유래 세포밖 소포 표면단백질은 코아귤레이즈 (Coagulase, CoA)일 수 있다. In another embodiment of the present invention, the antigen-derived extracellular vesicle-derived antigen protein is Gram-negative bacteria-derived extracellular vesicle outer membrane protein (Outer membrane protein, OMP) or Gram-positive bacteria-derived extracellular vesicle surface protein. . The Gram-negative bacteria-derived extracellular vesicle outer membrane protein may be outer membrane protein A (OMPA), and the Gram-positive bacteria-derived extracellular vesicle surface protein may be coagulase (CoA).
또한, 본 발명은 (a) 세균유래 세포밖 소포 내 항원 단백질 유전자를 세균에 과발현시키는 단계; (b) 상기 과발현된 세균을 배양하는 단계; (c) 상기 세균 배양액에서 세포밖 소포를 분리하는 단계; 및 (d) 상기 세포밖 소포의 외막 내독소 활성을 제거하는 단계를 포함하는, 세균유래 세포밖 소포에 의한 호흡기질환 예방 또는 치료용 세균유래 세포밖 소포의 제조방법을 제공한다.In addition, the present invention comprises the steps of (a) overexpressing the antigenic protein gene in bacteria-derived extracellular vesicles to bacteria; (b) culturing the overexpressed bacteria; (c) isolating extracellular vesicles from the bacterial culture; And (d) provides a method for producing a bacterial-derived extracellular vesicles for the prevention or treatment of respiratory diseases by bacterial-derived extracellular vesicles, comprising the step of removing the outer membrane endotoxin activity of the extracellular vesicles.
본 발명의 일 구현예에 있어서, 상기 (c) 단계에서 세포밖 소포를 분리하는 방법은 자연적으로 분비된 세포밖 소포를 필터법, 및/혹은 초원심분리법으로 분리하거나, 혹은 인공적인 방법으로 세포밖 소포를 만든 후, 필터법, 및/혹은 초원심분리법 등으로 분리하는 것을 포함한다.In one embodiment of the present invention, the method for separating the extracellular vesicles in the step (c) is to separate the naturally secreted extracellular vesicles by a filter method, and / or ultracentrifugation method, or artificial cells After the outer vesicles are made, they are separated by filtration, and / or ultracentrifugation.
본 발명의 다른 구현예에 있어서, 상기 (d) 단계에서 내독소 활성을 제거하는 방법은 세포밖 소포 내 독소 (LPS, peptidoglycan 등)를 라이소자임 등으로 제거하거나, 내독소 (LPS)를 폴리믹신 B (polymyxin B)와 같은 약물로 활성을 억제하는 방법을 포함한다. In another embodiment of the present invention, the method for removing endotoxin activity in step (d) removes toxins (LPS, peptidoglycan, etc.) in the extracellular vesicles with lysozyme, or the endotoxin (LPS) polymyxin B and methods of inhibiting activity with drugs such as (polymyxin B).
또한, 본 발명은 상기 방법으로 제조된 세균유래 세포밖 소포를 유효성분으로 포함하는, 세균유래 세포밖 소포에 의한 호흡기질환 예방 또는 치료용 면역조절제를 제공한다.In another aspect, the present invention provides an immunomodulator for preventing or treating respiratory diseases caused by bacterial-derived extracellular vesicles, comprising the bacterial-derived extracellular vesicles prepared by the above method as an active ingredient.
상기 세균유래 세포밖 소포에 의한 호흡기질환은 천식, 만성 폐쇄성 폐질환, 폐암, 비염, 및 부비동염을 포함하며, 이에 제한되는 것은 아니다. Respiratory diseases caused by bacterial extracellular vesicles include, but are not limited to, asthma, chronic obstructive pulmonary disease, lung cancer, rhinitis, and sinusitis.
본 발명의 일 구현예에 있어서, 상기 면역조절제는 세균유래 세포밖 소포의 내강(lumen)에 세균유래 세포밖 소포 항원 단백질이 과발현되어 존재하는 것을 특징으로 한다.In one embodiment of the invention, the immunomodulatory agent is characterized in that the bacteria-derived extracellular vesicle antigen protein is overexpressed in the lumen of the bacteria-derived extracellular vesicles.
본 발명의 또 다른 구현예에 있어서, 상기 세포밖 소포는 평균 직경이 10-400nm 일 수 있으며, 바람직하게는 10-200nm인 것을 특징으로 한다.In another embodiment of the present invention, the extracellular vesicles may have an average diameter of 10-400nm, preferably 10-200nm.
또한, 본 발명은 세균유래 세포밖 소포를 이용하여 세균유래 세포밖 소포에 의한 호흡기질환을 예방 또는 치료하는 방법을 제공한다. In addition, the present invention provides a method for preventing or treating respiratory diseases caused by bacteria-derived extracellular vesicles using bacteria-derived extracellular vesicles.
또한, 본 발명은 세균유래 세포밖 소포의 세균유래 세포밖 소포에 의한 호흡기질환 예방 또는 치료 용도를 제공한다. In addition, the present invention provides a use for the prevention or treatment of respiratory diseases caused by bacteria-derived extracellular vesicles of bacteria-derived extracellular vesicles.
본 발명은 세균유래 세포밖 소포 항원 단백질이 로딩된 세균 유래 세포밖 소포를 유효성분으로 함유하는 조성물을 이용하여, 세균유래 세포밖 소포에 의한 기도 면역기능 이상반응을 조절함으로써, 궁극적으로 세균유래 세포밖 소포에 의한 호흡기질환을 효율적으로 예방 또는 치료할 수 있을 것으로 기대된다.The present invention, by using a composition containing a bacterial-derived extracellular vesicles loaded with bacteria-derived extracellular vesicle antigen protein as an active ingredient, by controlling the airway immune function adverse reactions caused by bacteria-derived extracellular vesicles, ultimately bacteria-derived cells It is expected to effectively prevent or treat respiratory diseases caused by external vesicles.
도 1은, 세균유래 세포밖 소포 항원 단백질을 클로닝하여, 세균에 로딩한 후, 라이소자임으로 처리하여 원형질체를 만든 다음, 압출 (extrusion) 방법으로 소포를 제조하여 면역조절제를 만드는 방법을 도식화한 그림이다. 1 is a diagram illustrating a method of making an immunomodulator by cloning a bacterial-derived extracellular vesicle antigen protein, loading it into bacteria, treating it with lysozyme to form a protoplast, and then preparing a vesicle by extrusion method. .
도 2는, 세균유래 세포밖 소포 항원 단백질 (OMPA)이 로딩된 세포밖 소포를 투과전자현미경 (transmission electron microscope)으로 촬영한 사진 (좌측) 및 동적광산란법 (dynamic light scattering) 방법으로 크기를 측정한 결과 (우측)이다.Figure 2, the size of the extracellular vesicles loaded with bacteria-derived extracellular vesicle antigen protein (OMPA) was taken by transmission electron microscope (left) and dynamic light scattering method (size) One result is (right).
도 3은, 세균유래 세포밖 소포 항원 단백질 (OMPA)이 로딩된 세포밖 소포를 골수세포 유래 항원제시세포 (bone marrow-derived dendritic cell)에 처리하여 co-stimulatory molecule (MHC class II 분자)의 발현을 측정한 결과이다.Figure 3 shows the expression of co-stimulatory molecules (MHC class II molecules) by treating extracellular vesicles loaded with bacterial derived extracellular vesicle antigen protein (OMPA) to bone marrow-derived dendritic cells. Is the result of measuring.
도 4는, 세균유래 세포밖 소포 항원 단백질 (OMPA)이 로딩된 세포밖 소포를 골수세포 유래 항원제시세포 (bone marrow-derived dendritic cell)에 처리하여 Th1 및 Th17 면역반응을 유도하는 사이토카인인 IL-12 및 IL-6의 분비량을 측정한 결과이다.4 is a cytokine IL that induces Th1 and Th17 immune responses by treating extracellular vesicles loaded with bacteria-derived extracellular vesicle antigen protein (OMPA) on bone marrow-derived dendritic cells. This is the result of measuring the secretion amount of -12 and IL-6.
도 5는, 우리나라 아파트와 병원 내 침대매트리스에서 먼지를 분리하여, 먼지 내 세균 메타게놈 (유전체) 분석을 수행하여, 먼지에 존재하는 세균의 다양성을 평가한 도이다.FIG. 5 is a diagram illustrating a variety of bacteria present in the dust by separating dust from a bed mattress in an apartment and a hospital in Korea, performing a bacterial metagenome (dielectric) analysis in the dust.
도 6은, 우리나라 아파트와 병원 내 먼지에 존재하는 주요 세균의 분포를 Heat map으로 표현한 도이다.6 is a diagram representing the distribution of the major bacteria present in the dust in the apartments and hospitals in Korea as a heat map.
도 7은, 우리나라 아파트에 존재하는 주요 세균과 세균유래 세포밖 소포(EV)의 분포를 Heat map으로 표현한 도이다.Figure 7 is a diagram representing the distribution of the major bacteria and bacteria-derived extracellular vesicles (EV) present in the apartment in Korea as a heat map.
도 8은, 세균유래 세포밖 소포 항원 단백질이 로딩된 세포밖 소포의 면역원성을 마우스에서 평가하기 위한 실험프로토콜이다. 8 is an experimental protocol for evaluating the immunogenicity of extracellular vesicles loaded with bacterial derived extracellular vesicle antigen proteins in mice.
IM: 근육주사; IN: 비강투여; BAL: 기관지폐포세척액IM: intramuscular injection; IN: nasal administration; BAL: Bronchoalveolar Lavage
도 9는, 그람음성세균유래 세포밖 소포 외막단백질 (Outer membrane protein, OMP)이 로딩된 세포밖 소포를 도 8의 방법으로 투여한 후, 마우스 혈청 내 항원특이 IgG 항체와 기관지폐포세척액 내 항원특이 IgA 항체 생성능을 측정한 결과이다.Figure 9, after administration of the extracellular vesicles loaded with Gram-negative bacteria extracellular vesicle outer membrane protein (OMP) by the method of Figure 8, antigen-specific IgG antibody in the mouse serum and antigen-specific in bronchoalveolar lavage fluid The result of measuring IgA antibody production | generation ability.
도 10은, 그람음성세균유래 소포 외막단백질 (Outer membrane protein, OMP)이 로딩된 세포밖 소포를 도 8의 방법으로 투여한 후, 마우스 폐조직에서 T 세포를 분리하여 anti-CD3/CD28로 자극을 준 후, 감마-인터페론, IL-17, IL-4를 측정한 결과이다.Figure 10, after administration of the extracellular vesicles loaded with Gram-negative bacteria-derived vesicle outer membrane protein (OMP) by the method of Figure 8, T cells are isolated from mouse lung tissue and stimulated with anti-CD3 / CD28 After the test, gamma-interferon, IL-17 and IL-4 were measured.
도 11은, 그람양성세균유래 세포밖 소포 표면단백질 (Coagulase, CoA)이 로딩된 세포밖 소포를 도 8의 방법으로 투여한 후, 마우스 혈청 내 항원특이 IgG 항체와 기관지폐포세척액 내 항원특이 IgA 항체 생성능을 측정한 결과이다.Figure 11, after administration of the extracellular vesicles loaded with Gram-positive bacteria-derived extracellular vesicle surface protein (Coagulase, CoA) by the method of Figure 8, the antigen-specific IgG antibody in mouse serum and antigen-specific IgA antibody in bronchoalveolar lavage fluid It is the result of measuring the generation ability.
도 12는, 그람양성세균유래 세포밖 소포 표면단백질 (Coagulase, CoA)이 로딩된 세포밖 소포를 도 8의 방법으로 투여한 후, 마우스 폐조직에서 T 세포를 분리하여 anti-CD3/CD28로 자극을 준 후, 감마-인터페론, IL-17, IL-4를 측정한 결과이다.Figure 12, after administration of the extracellular vesicles loaded with Gram-positive bacteria-derived extracellular vesicle surface protein (Coagulase, CoA) by the method of Figure 8, T cells are isolated from mouse lung tissue and stimulated with anti-CD3 / CD28 After the test, gamma-interferon, IL-17 and IL-4 were measured.
도 13은, 그람음성세균유래 세포밖 소포 외막단백질 (Outer membrane protein, OMP)이 로딩된 세포밖 소포를 투여한 후, 병원성 그람음성세균인 대장균유래 세포밖 소포에 의한 염증성 기도질환의 발생을 억제하는 예방효과를 평가하기 위한 프로토콜이다.Figure 13, after administration of extracellular vesicles loaded with Gram-negative bacteria extracellular vesicle outer membrane protein (OMP), inhibits the development of inflammatory airway disease caused by Escherichia coli-derived extracellular vesicles that are pathogenic Gram-negative bacteria This is a protocol for evaluating the preventive effects of
IM: 근육주사; IN: 비강투여IM: intramuscular injection; IN: Nasal administration
도 14는, 병원성 그람음성세균인 대장균유래 세포밖 소포에 의한 염증성 기도질환 마우스 질병모델에서, 그람음성세균유래 세포밖 소포 외막단백질 (Outer membrane protein, OMP)이 로딩된 세포밖 소포의 항염증 예방효과를 기관지폐포세척액 내 염증세포 수로 평가한 결과이다.14 is an anti-inflammatory prevention of extracellular vesicles loaded with Gram-negative bacteria-derived extracellular vesicle outer membrane protein (OMP) in inflammatory airway disease mouse disease model caused by Escherichia coli-derived extracellular vesicles, which are pathogenic Gram-negative bacteria. The effect was evaluated by the number of inflammatory cells in bronchoalveolar lavage fluid.
도 15는, 병원성 그람양성세균은 황색포도상구균유래 세포밖 소포에 의한 염증성 기도질환 마우스 질병모델에서, 그람음성세균유래 세포밖 소포 외막단백질 (OMP)이 로딩된 세포밖 소포의 항염증 예방효과를 기관지폐포세척액 내 염증세포 수로 평가한 결과이다.Fig. 15 shows the anti-inflammatory effect of gram-negative bacteria-derived extracellular vesicle outer membrane vesicle protein (OMP) loaded extracellular vesicles in a mouse disease model caused by Staphylococcus aureus-derived extracellular vesicles. The results were evaluated by the number of inflammatory cells in bronchoalveolar lavage fluid.
도 16은, 그람음성세균유래 세포밖 소포 외막단백질 (Outer membrane protein, OMP)이 로딩된 세포밖 소포를 투여한 후, 병원성 그람음성세균인 대장균유래 세포밖 소포에 의한 염증성 기도질환 억제 치료효과를 평가하기 위한 프로토콜이다.Figure 16 shows the effect of inhibiting the inflammatory airway disease inhibited by E. coli-derived extracellular vesicles, which are pathogenic Gram-negative bacteria, after administration of extracellular vesicles loaded with Gram-negative bacteria-derived extracellular vesicle outer membrane protein (OMP). Protocol to evaluate.
IM: 근육주사; IN: 비강투여; p-BNS: 외막단백질 (Outer membrane protein, OMP)이 로딩된 세포밖 소포; EV: 세포밖 소포IM: intramuscular injection; IN: nasal administration; p-BNS: extracellular vesicles loaded with outer membrane protein (OMP); EV: Extracellular Vesicles
도 17은, 병원성 그람음성세균인 대장균유래 세포밖 소포에 의한 염증성 기도질환 마우스 질병모델에서, 도 16의 방법으로 그람음성세균유래 세포밖 소포 외막단백질 (Outer membrane protein, OMP)이 로딩된 세포밖 소포를 투여한 후, 항염증 치료효과를 기관지폐포세척액 내 염증세포 수로 평가한 결과이다.17 is an extracellular vesicle loaded with Gram-negative bacteria-derived extracellular vesicle outer membrane protein (OMP) in the method of FIG. 16 in an inflammatory airway disease mouse disease model caused by Escherichia coli-derived extracellular vesicles, which are pathogenic Gram-negative bacteria. After vesicle administration, the anti-inflammatory effect was evaluated by the number of inflammatory cells in bronchoalveolar lavage fluid.
Mac: 대식세포; Neu: 호중구; Eos: 호산구; Lymph: 림프구Mac: macrophages; Neu: neutrophils; Eos: eosinophils; Lymph: Lymphocytes
도 18은, 병원성 그람음성세균인 대장균유래 세포밖 소포에 의한 염증성 기도질환 마우스 질병모델에서, 도 16의 방법으로 그람음성세균유래 세포밖 소포 외막단백질 (Outer membrane protein, OMP)이 로딩된 세포밖 소포를 투여한 후, 항염증 치료효과를 평가하기 위하여 기관지폐포세척액 내 사이토카인을 측정한 결과이다.18 is an extracellular vesicle loaded with Gram-negative bacteria-derived extracellular vesicle outer membrane protein (OMP) in the method of FIG. 16 in an inflammatory airway disease mouse disease model caused by Escherichia coli-derived extracellular vesicle which is a pathogenic Gram-negative bacterium. After administration of vesicles, cytokines in bronchoalveolar lavage fluid were measured to evaluate anti-inflammatory effects.
NC: 음성대조군; OA: p-BNS 단독 투여군; Ec: E. coli 소포 단독 투여군; OE: E. coli 소포 투여 시 p-BNS 투여군NC: negative control; OA: p-BNS only group; Ec: E. coli vesicles alone administration group; OE: p-BNS group when E. coli vesicles were administered
도 19는, 병원성 그람음성세균인 대장균유래 세포밖 소포에 의한 염증성 기도질환 마우스 질병모델에서, 도 16의 방법으로 그람음성세균유래 세포밖 소포 외막단백질 (Outer membrane protein, OMP)이 로딩된 세포밖 소포를 투여한 후, 항염증 치료효과를 평가하기 위하여 폐 및 비장 T세포에서 감마-인터페론, IL-17, IL-4, IL-10의 분비를 측정한 결과이다.FIG. 19 shows inflammatory airway disease mouse disease model caused by Escherichia coli-derived extracellular vesicles, which are pathogenic Gram-negative bacteria. After administration of vesicles, the secretion of gamma-interferon, IL-17, IL-4, and IL-10 was measured in lung and splenic T cells to evaluate anti-inflammatory effects.
NC: 음성대조군; OA: p-BNS 단독 투여군; Ec: E. coli 소포 단독 투여군; OE: E. coli 소포 투여 시 p-BNS 투여군NC: negative control; OA: p-BNS only group; Ec: E. coli vesicles alone administration group; OE: p-BNS group when E. coli vesicles were administered
항원특이적 면역조절제를 개발하기 위해서는 항원 선정과 원하는 면역반응을 유도하는 면역보강제 선정이 중요하다. 본 발명에서는, 실내 먼지에 다량으로 존재하는 세균유래 세포밖 소포 표면 항원을 타겟으로 하였다. To develop antigen-specific immunomodulators, it is important to select the antigen and the adjuvant that induces the desired immune response. In the present invention, bacteria-derived extracellular vesicle surface antigens present in large quantities in indoor dust were targeted.
항원 전달체로서, 세균 유래 세포밖 소포는 숙주에 다양한 면역반응을 유도할 수 있다는 사실에 근거하여, 세균유래 세포밖 소포를 면역보강제로 이용하고자 하는 시도가 있다. 그러나 세균 유래 세포밖 소포는 LPS와 같은 외독소를 함유하고 있어, 세균 유래 소포에 함유된 LPS에 의한 독성문제를 해결해야 하는 문제가 있다. 이에, 본 발명에서는, 세균 유래 소포가 가지고 있는 독성문제를 제거하기 위하여, 소포의 외막(outer membrane)과 펩티도글리칸층(peptidoglycan)을 포함하는 세포벽(cell wall)을 제거하여 만들어진 원형질체(protoplast)를 제조한 후, 인공적으로 세포밖 소포를 제조하여 사용하였다. As antigen carriers, there are attempts to use bacterially derived extracellular vesicles as an adjuvant based on the fact that extracellular vesicles derived from bacteria can induce various immune responses in the host. However, bacteria-derived extracellular vesicles contain exotoxins such as LPS, and there is a problem that the toxicity problems caused by LPS contained in bacteria-derived vesicles have to be solved. Thus, in the present invention, in order to eliminate the toxicity problem of bacterial vesicles, the protoplasts made by removing the cell wall including the outer membrane and the peptidoglycan of the vesicles (protoplast) After the preparation, artificial extracellular vesicles were prepared and used.
구체적으로, 본 발명에서는, 대표적인 그람음성세균으로 대장균에서 유래하는 세포밖 소포 외막단백질 A (Outer membrane protein A, OMPA)와 대표적인 그람양성세균인 황색포도상구균유래 세포밖 소포 표면항원 (Coagulase, CoA) 각각을 대장균에 과발현시킨 후 배양하였고, 이후 라이소자임을 처리하여 원형질체를 제조한 후, 압출 (extrusion) 방법으로 세포밖 소포를 제조하였다. 이후, 항원이 로딩된 세포밖 소포의 면역원성을 체외 및 체내 실험을 통해 평가하여, 효능 평가를 위한 투여경로와 투여용량을 결정하였다. 이를 통해 상기 항원이 로딩된 세포밖 소포가 유효한 면역조절제임을 알 수 있었다.Specifically, in the present invention, a representative Gram-negative bacterium, Outer membrane protein A (OMPA) derived from Escherichia coli and Outer membrane protein-derived extracellular vesicles derived from Staphylococcus aureus (Coagulase, CoA) Each was overexpressed in Escherichia coli and cultured, and then treated with lysozyme to prepare protoplasts, and then extracellular vesicles were prepared by extrusion. Subsequently, the immunogenicity of the antigen-loaded extracellular vesicles was evaluated through in vitro and in vitro experiments to determine the route of administration and dose for evaluating efficacy. This suggests that the extracellular vesicles loaded with the antigen are effective immunomodulators.
또한, 상기의 면역조절제의 효능을 질병모델에서 평가하기 위하여, 병원성 세균유래 세포밖 소포를 직접 기도로 투여하여 호흡기질환 질병모델을 제작하여 사용하였다.In addition, in order to evaluate the efficacy of the immunomodulator in a disease model, pathogenic bacteria-derived extracellular vesicles were directly administered to the respiratory tract disease model was used.
본 발명에서, '호흡기질환'이란, 비염, 부비동염, 천식, COPD, 폐암 등과 같이 호흡기계에 발생하는 질환이면 특별히 제한은 없으나, 천식, COPD, 및 폐암으로 이루어진 군에서 선택되는 것이 바람직하다.In the present invention, 'respiratory disease' is not particularly limited as long as it occurs in the respiratory system such as rhinitis, sinusitis, asthma, COPD, lung cancer, but is preferably selected from the group consisting of asthma, COPD, and lung cancer.
본 발명에서, '호흡기질환을 일으키는 세균유래 세포밖 소포'란, 먼지 속에 존재하는 세균유래 세포밖 소포이면 특별히 제한은 없으나, 장내 세균과, 슈도모나스속, 아시네토박터속, 또는 포도상구균속 세균에서 유래하는 세포밖 소포에서 선택되는 것이 바람직하다.In the present invention, "bacteria-derived extracellular vesicles that cause respiratory disease" is not particularly limited as long as the bacteria-derived extracellular vesicles present in the dust, but in the intestinal bacteria, Pseudomonas genus, Acinetobacter genus, or staphylococcus bacteria It is preferably selected from the extracellular vesicles from which they are derived.
본 발명에서 '호흡기질환의 치료 또는 예방'이란, 호흡기질환의 경감, 완화 및 증상의 개선을 포함하며, 또한 호흡기질환이 걸릴 가능성을 낮추는 것을 포함하는 의미이다.In the present invention, "treatment or prevention of respiratory diseases" is meant to include reducing, alleviating and improving symptoms of respiratory diseases, and also includes lowering the likelihood of developing respiratory diseases.
본 발명에서, 유전자를 과발현시킬 수 있는 세균에 특별히 제한은 없으나, 대장균(E. coli) 또는 살모넬라균(Salmonealla spp.)인 것이 바람직하다.In the present invention, there is no particular limitation on bacteria that can overexpress genes, but E. coli or Salmonella spp. Are preferred.
본 발명에서, 세포밖 소포를 분리하는 단계에는 자연적으로 분비된 세포밖 소포를 사용할 수 있고, 세포밖 소포를 분리하는 방법에 특별히 제한은 없으나, 필터로 농축하여 얻을 수 있으며, 이후 초원심분리 등의 공정을 포함할 수 있다. In the present invention, the step of separating the extracellular vesicles can be used naturally secreted extracellular vesicles, there is no particular limitation on the method for separating the extracellular vesicles, can be obtained by concentrating with a filter, and then ultracentrifugation, etc. It may include the process of.
본 발명에서, 인공적으로 세포밖 소포를 제조할 수 있고, 제조하는 방법에 특별히 제한은 없으나, 필터로 압출하여 얻을 수 있으며, 원심분리, 초원심분리 등의 공정을 더 포함할 수 있다.In the present invention, the extracellular vesicles can be artificially produced, and there is no particular limitation on the method for producing the same, but may be obtained by extruding with a filter, and may further include a process such as centrifugation and ultracentrifugation.
본 발명에서 세포밖 소포를 분리하는 방법은 세균 유래 세포밖 소포를 포함한다면 특별히 제한되지 않으며, 예컨대 배양액에서, 원심분리, 초고속 원심분리, 필터에 의한 여과, 겔 여과 크로마토그래피, 프리-플로우 전기영동, 모세관 전기영동 등, 폴리머추가 등의 방법 및 이들의 조합을 이용하여 세포밖 소포를 분리할 수 있다. 또한, 불순물의 제거를 위한 세척, 수득된 세포밖 소포의 농축 등의 과정을 추가로 포함할 수 있다. 상기 세포밖 소포는 자연적으로 분비된 것이거나, 혹은 인공적으로 분비된 세포밖 소포를 포함한다.The method for separating extracellular vesicles in the present invention is not particularly limited as long as it includes bacterial derived extracellular vesicles, for example, in culture, centrifugation, ultra-fast centrifugation, filtration by filter, gel filtration chromatography, pre-flow electrophoresis Extracellular vesicles can be separated using methods such as polymer addition, capillary electrophoresis, and the like, and combinations thereof. In addition, it may further include a process for washing to remove impurities, concentration of the obtained extracellular vesicles and the like. The extracellular vesicles are naturally secreted or include extracellularly secreted extracellular vesicles.
본 발명에서, 상기 방법에 의해 제조된 세포밖 소포의 내강(lumen)에 세균유래 세포밖 소포 표면 항원 단백질이 발현되어 있으며, 이때 발현 단백질로는 장내 세균, 슈도모나스속, 아시네토박터속, 또는 포도상구균속 세균에서 유래하는 세포밖 소포 표면 항원이 바람직하다.In the present invention, the bacteria-derived extracellular vesicle surface antigen protein is expressed in the lumen of the extracellular vesicles prepared by the above method, wherein the expressed protein is enteric bacteria, Pseudomonas genus, Acinetobacter genus, or staphylococcus. Extracellular vesicle surface antigens derived from aureus bacteria are preferred.
본 발명에서, 상기 방법에 의해 제조된 특정 항원이 로딩된 세포밖 소포는 평균 직경이 10-400nm 일 수 있으나, 바람직하게는 10-200nm 이다.In the present invention, the extracellular vesicles loaded with the specific antigen prepared by the method may have an average diameter of 10-400 nm, but preferably 10-200 nm.
본 발명에서, 상기 호흡기질환의 치료 또는 예방용 면역조절제는 약학적 조성물로 제조될 수 있다. 치료 및 예방에 사용하기 위해 본 발명의 세균 유래 세포밖 소포 자체를 투여하는 것이 가능하나, 약학적 조성물의 활성 성분으로서 상기 소포가 포함되는 것이 바람직하다.In the present invention, an immunomodulator for treating or preventing the respiratory disease may be prepared as a pharmaceutical composition. It is possible to administer the bacteria-derived extracellular vesicles of the present invention for use in treatment and prophylaxis, but it is preferred that such vesicles be included as active ingredients of the pharmaceutical composition.
상기 약학적 조성물은 상기 분리된 세포밖 소포를 유효성분으로 함유하며, 약학적으로 허용 가능한 담체를 포함할 수 있다. 상기 약학적으로 허용 가능한 담체는 제제 시에 통상적으로 이용되는 것으로서, 식염수, 멸균수, 링거액, 완충 식염수, 사이클로덱스트린, 덱스트로즈 용액, 말토덱스트린 용액, 글리세롤, 에탄올, 리포좀 등을 포함하지만 이에 한정되지 않으며, 필요에 따라 항산화제, 완충액 등 다른 통상의 첨가제를 더 포함할 수 있다. 또한 희석제, 분산제, 계면활성제, 결합제, 윤활제 등을 부가적으로 첨가하여 수용액, 현탁액, 유탁액 등과 같은 주사용 제형, 환약, 캡슐, 과립 또는 정제로 제제화할 수 있다. 적합한 약학적으로 허용되는 담체 및 제제화에 관해서는 레밍턴의 문헌 (Remington's Pharmaceutical Science, Mack Publishing Company, Easton PA)에 개시되어 있는 방법을 이용하여 각 성분에 따라 바람직하게 제제화할 수 있다. 본 발명의 약학적 조성물은 제형에 특별한 제한은 없으나 주사제, 흡입제, 피부 외용제 등으로 제제화할 수 있다. The pharmaceutical composition may contain the isolated extracellular vesicles as an active ingredient, and may include a pharmaceutically acceptable carrier. Such pharmaceutically acceptable carriers are conventionally used in the preparation, and include, but are not limited to, saline solution, sterile water, Ringer's solution, buffered saline, cyclodextrin, dextrose solution, maltodextrin solution, glycerol, ethanol, liposomes, and the like. If necessary, other conventional additives such as antioxidants and buffers may be further included. In addition, diluents, dispersants, surfactants, binders, lubricants and the like may be additionally added to formulate into injectable formulations, pills, capsules, granules or tablets such as aqueous solutions, suspensions, emulsions and the like. Suitable pharmaceutically acceptable carriers and formulations may be preferably formulated according to each component using the methods disclosed in Remington's Pharmaceutical Science, Mack Publishing Company, Easton PA. The pharmaceutical composition of the present invention is not particularly limited in formulation, but may be formulated as an injection, inhalant, or external skin preparation.
본 발명의 약학적 조성물의 투여방법은 특별히 제한되는 것은 아니나, 목적하는 방법에 따라 근육주사, 피하, 흡입, 비강, 설하, 피부도포와 같이 비경구 투여하거나 경구 투여할 수 있다. The method of administering the pharmaceutical composition of the present invention is not particularly limited, but may be parenterally or orally administered, such as intramuscular injection, subcutaneous, inhalation, nasal, sublingual, and skin application.
투여량은 환자의 체중, 연령, 성별, 건강상태, 식이, 투여시간, 투여방법, 배설률 및 질환의 중증도 등에 따라 그 범위가 다양하다. 일일 투여량은 치료를 필요로 하는 개체에 투여됨으로써 경감된 질병 상태에 대한 치료에 충분한 본 발명의 치료용 물질의 양을 의미한다. 치료용 물질의 효과적인 양은 특정 화합물, 질병 상태 및 그의 심각도, 치료를 필요로 하는 개체에 따라 달라지며, 이는 당업자에 의해 통상적으로 결정될 수 있다. 비제한적 예로서, 본 발명에 의한 조성물의 인체에 대한 투여량은 환자의 나이, 몸무게, 성별, 투여 형태, 건강 상태 및 질환 정도에 따라 달라질 수 있다.Dosage varies depending on the patient's weight, age, sex, health condition, diet, time of administration, method of administration, rate of excretion and severity of disease. Daily dosage refers to the amount of therapeutic substance of the invention sufficient for treatment for a disease state alleviated by administration to a subject in need thereof. Effective amounts of therapeutic agents depend on the particular compound, disease state and severity thereof, and on the individual in need thereof, and can be routinely determined by one skilled in the art. As a non-limiting example, the dosage of the composition according to the present invention to the human body may vary depending on the age, weight, sex, dosage form, health condition and degree of disease of the patient.
이하, 본 발명의 이해를 돕기 위하여 바람직한 실시 예를 제시한다. 그러나 하기의 실시 예는 본 발명을 보다 쉽게 이해하기 위하여 제공되는 것일 뿐, 하기 실시 예에 의해 본 발명의 내용이 한정되는 것은 아니다.Hereinafter, preferred embodiments of the present invention are provided to aid in understanding the present invention. However, the following examples are merely provided to more easily understand the present invention, and the contents of the present invention are not limited by the following examples.
[실시예]EXAMPLE
실시예 1: 세균유래 세포밖 소포 표면 항원이 로딩된 소포 제조 (도 1 참조)Example 1 Preparation of Vesicles Loaded with Bacteria-Derived Extracellular Vesicle Surface Antigen (see FIG. 1)
대장균유래 세포밖 소포 외막단백질인 OMPA와 황색포도상구균 표면항원인 CoA 클로닝을 위해 OMPA 및 CoA 유전자를 RT-PCR 방법으로 cDNA로 합성하였다. PCR 산물은 T-blunt PCR 벡터(T-blunt PCR cloning kit, Solgent)에 삽입한 후, 각각의 플라스미드를 EcoRI(OmpA, ABC transporter) 및 BglII(FepA)로 절단하였다. 절편을 전기영동으로 분리한 후 pET-30a 플라스미드에 삽입하고, 대장균 DH5a에 열충격법으로 형질전환(transformation)하여, 최종적으로 상기 유전자를 클로닝하였다.OMPA and CoA genes were synthesized by cDNA by RT-PCR for the cloning of OMPA, an extracellular vesicle envelope protein derived from E. coli, and CoA, a surface antigen of Staphylococcus aureus. PCR products were inserted into a T-blunt PCR cloning kit (Solgent), and each plasmid was digested with EcoRI (OmpA, ABC transporter) and BglII (FepA). The sections were separated by electrophoresis and inserted into the pET-30a plasmid, transformed into E. coli DH5a by thermal shock, and finally the gene was cloned.
상기 실시 예에서 얻어진 후보 유전자 클론을 37℃, 200 rpm, 12시간 동안 Luria Bertani broth (Merch)에서 배양한 후, Exprep plasmid mini prep. Kit (GeneAll)를 이용하여 각각의 플라스미드를 분리하여 대장균 BL21(Real Biotech)에 트랜스펙션시켰다. The candidate gene clones obtained in the above examples were incubated in Luria Bertani broth (Merch) at 37 ° C., 200 rpm for 12 hours, followed by Exprep plasmid mini prep. Each plasmid was isolated using Kit (GeneAll) and transfected into E. coli BL21 (Real Biotech).
BL21를 OD값이 0.3이 될 때까지 200 rpm, 37℃, 100 ml LB broth(1 mM IPTG)에서 3시간 배양한 후, 3,000 × g, 4℃에서 10분 동안 원심분리하여 얻어진 박테리아 펠렛을 Tris buffer(0.01M Tris HCl, 0.5M sucrose)로 세척하였고, 4℃, 3,000 × g에서 10분 동안 원심분리한 다음 Tris buffer로 재현탁하였다. 재현탁한 박테리아를 37℃, 100 rpm에서 30분 동안 0.01 M EDTA로 처리하고, 4℃, 3,000 × g에서 10분 동안 펠릿화한 후, Tris buffer로 세척하여 펠릿화하였다. The bacterial pellet obtained by incubating BL21 for 3 hours at 200 rpm, 37 ° C. and 100 ml LB broth (1 mM IPTG) until the OD value was 0.3, and then centrifuged at 3,000 × g and 4 ° C. for 10 minutes was used for Tris. washed with buffer (0.01M Tris HCl, 0.5M sucrose), centrifuged at 4 ° C., 3,000 × g for 10 minutes, and then resuspended with Tris buffer. Resuspended bacteria were treated with 0.01 M EDTA at 37 ° C., 100 rpm for 30 minutes, pelleted at 4 ° C., 3,000 × g for 10 minutes, and then washed with Tris buffer to pellet.
다음으로, 박테리아 펠릿을 Tris buffer로 재현탁하고, 원형질체를 얻기 위하여 37℃, 100 rpm, 2시간 동안 1 mg/ml 라이소자임(lysozyme)(Sigma)을 처리한 후, 10 μm, 5 μm, 및 1 μm 기공 크기의 막을 통해 순서대로 LiposoFast extruder (Avestin)로 압출하였다. 최종적으로, 10% 및 50% opti-prep 밀도구배 배지(OptiPrep)로 초원심분리하여 OMPA, CoA 항원이 로딩된 세포밖 소포를 얻었다.Next, the bacterial pellet was resuspended in Tris buffer and treated with 1 mg / ml lysozyme (Sigma) at 37 ° C., 100 rpm, 2 hours to obtain protoplasts, followed by 10 μm, 5 μm, and 1 Extruded with LiposoFast extruder (Avestin) in order through the membrane of the pore size. Finally, ultracentrifugation with 10% and 50% opti-prep density gradient medium (OptiPrep) yielded extracellular vesicles loaded with OMPA, CoA antigens.
실시예 2: OMPA 항원이 로딩된 세포밖 소포의 물리적 특성 분석Example 2: Physical Characterization of Extracellular Vesicles Loaded with OMPA Antigen
실시예 1에서 얻은 OMPA 항원이 로딩된 세포밖 소포를 PBS로 희석(50μg/ml)시키고, 300-mesh copper grids(EMS)에 10 μl 로딩하였다. 음성염색(negative stain)을 위하여 우라닐아세테이트(2%)를 그리드에 떨어뜨리고, JEM1011 전자 현미경(JEOL)으로 관찰하였다. 그 결과, 상기 세포밖 소포는 구형으로서 지질이중층으로 둘러싸여 있음을 확인하였다 (도 2 참조). The extracellular vesicles loaded with the OMPA antigen obtained in Example 1 were diluted (50 μg / ml) with PBS and loaded 10 μl onto 300-mesh copper grids (EMS). Uranyl acetate (2%) was dropped on the grid for negative staining and observed with a JEM1011 electron microscope (JEOL). As a result, it was confirmed that the extracellular vesicles were spherical and surrounded by a lipid bilayer (see FIG. 2).
실시예 1에서 얻은 OMPA 항원이 로딩된 세포밖 소포의 크기를 측정하기 위하여, 세포밖 소포를 PBS로 희석(500 ng/ml)시키고, Zetasizer Nano ZS (Malvern Instruments)을 이용하여 동적 광산란법으로 지름 크기 분포를 측정하고, Dynamic V6 software를 이용하여 결과를 분석하였다. 그 결과, 세포밖 소포의 직경이 130nm 내외임을 알 수 있었다 (도 2 참조).In order to measure the size of the extracellular vesicles loaded with the OMPA antigen obtained in Example 1, the extracellular vesicles were diluted with PBS (500 ng / ml), and diameters were determined by dynamic light scattering using Zetasizer Nano ZS (Malvern Instruments). Size distribution was measured and the results were analyzed using Dynamic V6 software. As a result, it was found that the diameter of the extracellular vesicles was about 130 nm (see FIG. 2).
실시예 3: OMPA 항원이 로딩된 세포밖 소포에 의한 선천면역반응Example 3: Innate Immune Response by Extracellular Vesicles Loaded with OMPA Antigen
OMPA 항원이 로딩된 세포밖 소포를 면역조절제로서 이용하기 위해서는 면역반응을 유도할 수 있어야 하기 때문에, OMPA 항원이 로딩된 세포밖 소포에 의한 선천성 면역반응 유도 수준을 평가하기 위해 골수세포에서 유래하는 수지상세포 (bone marrow-derived dendritic cell, BMDC)를 사용하여 in vitro (시험관내) 실험 을 수행하였다. Since the extracellular vesicles loaded with OMPA antigen must be capable of inducing an immune response in order to be used as an immunomodulator, dendritic cells derived from bone marrow cells to assess the level of innate immune response induced by extracellular vesicles loaded with OMPA antigen In vitro experiments were performed using bone marrow-derived dendritic cells (BMDC).
우선, BMDC (5 × 105cells/well)를 10% FBS와 항생제(100 unit/ml 페니실린 및 100 μg/ml 스트렙토마이신)를 함유한 DMEM으로 37℃에서 24시간 동안 24 well 조직배양플레이트(TPP)에서 배양하였다. 배지 제거 후, OMPA 항원이 로딩된 세포밖 소포를 0.1 및 1 ug/ml의 농도로 첨가한 무혈청 DMEM 배지로 갈아주었다. 15시간 후 BMDC에서 MHC class II 분자의 발현정도와 상기 배양 배지로 ELISA assay를 수행하여 T 세포 분화 사이토카인인 IL-12 및 IL-6의 발현수준을 측정하였다. First, BMDC (5 × 10 5 cells / well) was treated with DMEM containing 10% FBS and antibiotics (100 unit / ml penicillin and 100 μg / ml streptomycin) in a 24-well tissue culture plate (TPP) for 24 hours at 37 ° C. Incubated). After removing the medium, extracellular vesicles loaded with OMPA antigen were changed to serum-free DMEM medium added at concentrations of 0.1 and 1 ug / ml. After 15 hours, the expression level of MHC class II molecules in BMDC and ELISA assay were performed on the culture medium to measure the expression level of T-12 cell cytokines IL-12 and IL-6.
그 결과, OMPA 항원이 로딩된 세포밖 소포에 의해 항원제시세포에서의 MHC class II 분자의 발현이 크게 증가하였다 (도 3 참조). 또한, OMPA 항원이 로딩된 세포밖 소포가 처리된 항원제시세포는 Th1 세포로의 분화에 중요한 IL-12 및 Th17 세포로의 분화에 중요한 IL-6의 분비를 유의하게 증가시켰다 (도 4 참조). As a result, the expression of MHC class II molecules in antigen presenting cells was greatly increased by extracellular vesicles loaded with OMPA antigen (see FIG. 3). In addition, antigen-presenting cells treated with extracellular vesicles loaded with OMPA antigen significantly increased secretion of IL-6, which is important for differentiation into Th-12 and Th17 cells, which are important for differentiation into Th1 cells (see FIG. 4). .
실시예 4: 아파트 및 병원 먼지 내 세균 및 세균유래 세포밖 소포 메타게놈 분석Example 4 Bacterial and Bacterial-Derived Extracellular Vesicle Metagenome Analysis in Apartment and Hospital Dusts
진공청소기를 사용해 서울에 있는 아파트 내 침대매트리스와 대형병원 내과 및 중환자실 병동 침대매트리스에 존재하는 먼지를 계절별로 수거하였다. 진공청소기의 필터 내 존재하는 먼지를 깨끗한 유리병에 옮겨 담고 질량을 측정하였다. 먼지 5 g을 200 ml PBS가 들어있는 비커에 4℃, 12시간 동안 녹여내었다. 이 후 일차적으로 거즈를 이용하여 큰 이물질들을 걸러내고, 걸러져 나온 용액을 고속원심분리 튜브 (high speed centrifuge tube)에 나눠 담은 후, 4℃, 10,000 × g에서 15분 동안 고속원심분리 (high speed centrifugation)를 연속으로 2번 수행하여 세균이 있는 부분을 수거하였다. 세포밖 소포를 분리하기 위하여 180 ml 가량의 상층액을 구멍 크기가 0.45 μm인 멤브레인 필터 (membrane filter)를 1회 통과 시킨 후, 70 ml 용량의 초원심분리 튜브 (ultracentrifuge tube)에 나눠 담고 4℃, 100,000 × g에서 4시간 동안 초원심분리 (ultracetrifugation)를 하였다. 상층액은 버리고 튜브 아래에 존재하는 침전물을 PBS로 녹여 먼지 내 세포밖 소포를 추출하였다. 세균과 세포밖 소포 100㎕를 heatblock 100℃에서 15분 동안 끓여서 내부의 DNA를 지질 밖으로 나오게 하고 그 후 얼음에 5분 동안 식혔다. 그리고 남은 부유물을 제거하기 위하여 10,000 × g, 4℃에서 30분간 원심분리하고 상등액만을 모았다. 그리고 Nanodrop을 이용하여 DNA 양을 정량하였다. 그리고 세균 유래 DNA가 존재하는지 확인하기 위하여 16s rRNA primer [27F(5') : AGA GTT TGA TCM TGG CTC AG, 1492R(3') : GGT TAC CTT GTT ACG ACT T]로 PCR을 수행하여 추출한 유전자에 세균유래 유전자가 있음을 확인하였다. The vacuum cleaner was used to collect dusts from bed mattresses in apartments in Seoul and bed mattresses in the hospitals of major hospitals and intensive care units. The dust present in the filter of the vacuum cleaner was transferred to a clean glass bottle and the mass was measured. 5 g of dust were dissolved in a beaker containing 200 ml PBS for 4 hours at 4 ° C. Afterwards, the large amount of foreign matter is first filtered through a gauze, and the filtered solution is divided into high speed centrifuge tubes, followed by high speed centrifugation for 15 minutes at 10,000 × g at 4 ° C. ) Was performed twice in succession to collect the bacterial part. In order to separate the extracellular vesicles, about 180 ml of the supernatant was passed through a membrane filter having a pore size of 0.45 μm, and then divided into a 70 ml ultracentrifuge tube and 4 ° C. , Ultracentrifugation (ultracetrifugation) at 100,000 × g for 4 hours. The supernatant was discarded and the extracellular vesicles in the dust were extracted by dissolving the precipitate under the tube with PBS. 100 μl of bacteria and extracellular vesicles were boiled at 100 ° C. for 15 minutes to allow the DNA inside to come out of the lipid and then cooled on ice for 5 minutes. And to remove the remaining suspended solids centrifuged for 30 minutes at 10,000 × g, 4 ℃ and collected only the supernatant. The amount of DNA was quantified using Nanodrop. In order to confirm the presence of bacteria-derived DNA, PCR was performed using 16s rRNA primer [27F (5 '): AGA GTT TGA TCM TGG CTC AG, 1492R (3'): GGT TAC CTT GTT ACG ACT T]. It was confirmed that there is a bacteria-derived gene.
메타게놈 시퀀싱은 상기의 방법으로 분리한 세균 및 세포밖 소포에서 유전자를 추출한 후, 16S rDNA 프라이머를 사용하여 증폭을 한 다음 시퀀싱을 수행하고 (Roche GS FLX sequencer), 결과를 Standard Flowgram Format (SFF) 파일로 출력하고 GS FLX software (v2.9)를 이용하여 SFF 파일을 sequence 파일 (.fasta)과 nucleotide quality score파일로 변환한 다음 리드의 신용도 평가를 확인하고, window (20 bps) 평균base call accuracy 가 99% 미만 (Phred score <20)인 부분을 제거하였다. 질이 낮은 부분을 제거한 후, 리드의 길이가 300 bps 이상인 것만 이용하였다 (Sickle version 1.33). 결과 분석을 위해서 Operational Taxonomy Unit (OUT) 분석을 위해서는 UCLUST와 USEARCH를 이용하여 시퀀스 유사도에 따라 클러스터링을 수행하고, gunus 는 94%, family는 90%, order는 85%, class는 80%, phylum은 75% 시퀀스 유사도를 기준으로 클러스터링을 하고 각 OUT의 phylum, class, order, family, gunus 레벨의 분류를 수행하고, BLASTN와 GreenGenes의 16S RNA 시퀀스 데이터베이스 (108,453 시퀀스)를 이용하여 97% 이상의 시퀀스 유사도를 갖는 세균을 분석하였다 (QIIME).Metagenome sequencing extracts genes from the bacterial and extracellular vesicles separated by the above method, amplifies using 16S rDNA primers, and performs sequencing (Roche GS FLX sequencer), and the result is shown in Standard Flowgram Format (SFF). Output the file and convert the SFF file into a sequence file (.fasta) and nucleotide quality score file using GS FLX software (v2.9), check the credit rating of the lead, and use the window (20 bps) average base call accuracy. The portion with less than 99% (Phred score <20) was removed. After removing the low quality part, only the lead length of 300 bps or more was used (Sickle version 1.33). For results analysis, clustering is performed according to sequence similarity using UCLUST and USEARCH for analysis of Operational Taxonomy Unit (OUT), gunus 94%, family 90%, order 85%, class 80%, phylum Cluster based on 75% sequence similarity, classify at the phylum, class, order, family, and gunus levels of each OUT, and use BLASTN and GreenGenes' 16S RNA sequence database (108,453 sequences) to achieve greater than 97% sequence similarity. Bacteria with were analyzed (QIIME).
그 결과, 아파트에 존재하는 먼지인 경우, 여름에 수거한 먼지에 비하여 겨울에 수거한 먼지에 존재하는 세균인 경우 다양성이 감소하였다 (도 5 참조). 또한, 아파트와 병원에서 겨울에 수거한 먼지인 경우, 아파트 먼지에 비하여 병원 내 먼지에 존재하는 세균인 경우 다양성이 감소하였다 (도 5 참조).As a result, in the case of the dust present in the apartment, the variety of the bacteria present in the dust collected in the winter compared to the dust collected in the summer, the variety was reduced (see Fig. 5). In addition, in the case of dust collected in the winter in the apartments and hospitals, the variety of bacteria in the dust in the hospital compared to the apartment dust was reduced (see Fig. 5).
아파트와 병원에 존재하는 세균의 분포를 살펴보면, 아파트인 경우 Pseudomonas속, Acinetobacter속, 장내세균과, 포도상구균속 세균이 먼지 내에 존재하는 주요 세균이었고, 아파트인 경우에는 Pseudomonas속 세균이, 병원인 경우에는 Acinetobacter속 세균이 계절에 상관없이 가장 높은 비율로 존재하였다 (도 6 참조).The distribution of bacteria in apartments and hospitals showed that Pseudomonas, Acinetobacter, Enterobacteriaceae, and Staphylococcus bacteria were the major bacteria in the dust in apartments, and Pseudomonas in the apartments, and hospitals. Acinetobacter genus bacteria were present at the highest rate regardless of season (see FIG. 6).
아파트 먼지에 존재하는 세균유래 세포밖 소포의 분포를 살펴보면, 계절에 상관없이 Pseudomonas속, Acinetobacter속, 장내세균과, 포도상구균속 세균에서 유래하는 세포밖 소포가 주를 이루었고, 특히 Pseudomonas속 세균에서 유래하는 세포밖 소포가 제일 흔하였다 (도 7 참조).Regarding the distribution of extracellular vesicles derived from bacteria in apartment dust, extracellular vesicles derived from Pseudomonas, Acinetobacter, Enterobacteriaceae, and Staphylococcus bacteria, regardless of season, were mainly derived from bacteria of Pseudomonas. Extracellular vesicles were the most common (see FIG. 7).
실시예 5: 마우스에서 OMPA 항원이 로딩된 세포밖 소포에 의한 항체 면역반응Example 5: Antibody Immune Responses by Extracellular Vesicles Loaded with OMPA Antigen in Mice
생체내(in vivo)에서 OMPA 항원이 로딩된 세포밖 소포에 의한 항체 면역반응 유도능을 확인하고, OMPA 항원이 로딩된 세포밖 소포의 유효량을 결정하기 위하여, OMPA 항원이 로딩된 세포밖 소포를 마우스에 투여하여 면역을 유도하였다. 또한, 면역반응을 유도한 후 대조군(PBS) 및 OMPA 항원이 로딩된 세포밖 소포를 투여한 마우스에서 혈액을 채취하여 OMPA 특이 IgG 항체를 측정하였고, 기관지폐포세척액을 채취하여 OMPA 특이 sIgA 항체의 농도를 측정하였다 (도 8 참조).In order to confirm the induction of antibody immune response by extracellular vesicles loaded with OMPA antigen in vivo and to determine the effective amount of extracellular vesicles loaded with OMPA antigen, extracellular vesicles loaded with OMPA antigen were loaded. Immunization was induced by administration to mice. In addition, after inducing an immune response, blood was collected from mice treated with the control group (PBS) and extracellular vesicles loaded with OMPA antigen to measure OMPA-specific IgG antibodies.Bronchoalveolar lavage fluid was collected to determine the concentration of OMPA-specific sIgA antibodies. Was measured (see FIG. 8).
구체적으로, 100 ng의 OMPA가 포함된 100 μl의 PBS를 4℃에서 96-well black plate (Greiner Bio-one)에 24시간 동안 코팅하였다. OMPA로 코팅된 플레이트를 PBS로 세척하고 PBS로 희석한 1% BSA용액을 1시간 동안 처리하여 블로킹 과정을 수행하고 PBS로 다시 세척하였다. Specifically, 100 μl of PBS containing 100 ng of OMPA was coated on a 96-well black plate (Greiner Bio-one) at 4 ° C. for 24 hours. The plate coated with OMPA was washed with PBS and treated with 1% BSA solution diluted with PBS for 1 hour to perform a blocking process and washed again with PBS.
대조군(PBS)과 OMPA 항원이 로딩된 세포밖 소포를 투여한 마우스로부터 혈액과 혈청과 세포층을 분리한 후 혈청을 분리하였고, 기관지폐포세척액에서 세포층과 상층액을 분리하여, 혈청과 기관지폐포세책액 상층액을 1% BSA 용액으로 희석하였으며, OMPA 항원으로 코팅된 플레이트에서 2시간 동안 반응시켰다. 배양 후 플레이트를 세척하고 horseradish peroxidase-conjugated goat anti-mouse IgG 및 IgA (Santa Cruz Biotechnology) 200 ng/ml를 첨가하여 2시간 동안 반응시켰다. 다시 플레이트를 세척한 후 ECL substrate(Thermo Scientific)를 첨가하고 Victor Wallac 1420 apparatus (PerkinElmer)를 이용하여 IgG 및 sIgA 항체 역가를 분석하였다. Blood, serum and cell layers were separated from mice treated with control (PBS) and extracellular vesicles loaded with OMPA antigen, and serum was separated. Cell layers and supernatants were separated from bronchoalveolar lavage fluid. Supernatants were diluted with 1% BSA solution and reacted for 2 hours on plates coated with OMPA antigen. After incubation, the plate was washed and reacted for 2 hours by adding horseradish peroxidase-conjugated goat anti-mouse IgG and 200 ng / ml of IgA (Santa Cruz Biotechnology). After washing the plate again, ECL substrate (Thermo Scientific) was added and the IgG and sIgA antibody titers were analyzed using Victor Wallac 1420 apparatus (PerkinElmer).
그 결과, 도 9에 나타낸 바와 같이, OMPA 항원이 로딩된 세포밖 소포로 근육주사로 면역반응을 유도한 마우스 혈청에는 OMPA 항원이 로딩된 세포밖 소포 비강투여 유무에 상관없이 OMPA 항원 특이 IgG 항체 생성이 증가되었다. 반면, 기관지폐포세척액 내 OMPA 항원 특이 sIgA 생성은 OMPA 항원이 로딩된 세포밖 소포를 근육주사한 후, 비강으로 투여한 경우에만 증가하였다(도 9 참조).As a result, as shown in FIG. 9, mouse serum induced an immune response by intramuscular injection with extracellular vesicles loaded with OMPA antigen was generated in OMPA antigen-specific IgG antibody with or without nasal administration of extracellular vesicles loaded with OMPA antigen. This has been increased. On the other hand, OMPA antigen-specific sIgA production in bronchoalveolar lavage fluid was increased only after intramuscular injection of extracellular vesicles loaded with OMPA antigen (see Fig. 9).
실시예 6: 마우스에서 OMPA 항원이 로딩된 세포밖 소포에 의한 T 세포 면역반응Example 6: T Cell Immune Responses by Extracellular Vesicles Loaded with OMPA Antigen in Mice
생체내(in vivo)에서 OMPA 항원이 로딩된 세포밖 소포를 투여하여 면역반응을 유도한 후, 대조군(PBS) 및 OMPA 항원이 로딩된 세포밖 소포를 투여한 마우스에서 T 세포에서 생성되는 사이토카인의 양을 측정하여 T 세포 반응을 평가하였다 (도 8 참조).Induced immune responses by administering extracellular vesicles loaded with OMPA antigen in vivo , and cytokines produced in T cells in mice treated with control (PBS) and extracellular vesicles loaded with OMPA antigen The T cell response was assessed by measuring the amount of (see FIG. 8).
즉, 적출한 폐조직을 5ml 시린지 washing buffer (2.5% FBS, 0.01M HEPES 함유 DMEM)로 100 μm cell strainer (BD Biosciences)에 통과시켜 분해시켰다. 분리된 세포에 암모늄 클로라이드 용액을 4℃에서 10분간 처리하여 적혈구 세포가 용해되도록 하였다. 얻어진 세포를 washing buffer로 세척하고 40 μm cell strainer(BD)로 필터링한 후 10% FBS, 50 μM 2-ME, 0.01 M HEPES 및 항생제(100 unit/ml 페니실린, 100 μg/ml 스트렙토마이신)가 포함된 RPMI 1640 배지를 이용해 24-well 플레이트에서 12시간 동안 배양하였다. 이때 24-well 플레이트는 T 세포를 재자극시키기 위하여 1 μg/ml의 항-CD3(eBioscience)과 1 μg/ml의 항-CD28(eBioscience) 항체로 코팅된 것을 이용하였다. That is, the extracted lung tissue was digested by passing through a 100 μm cell strainer (BD Biosciences) with 5 ml syringe washing buffer (2.5% FBS, DMEM containing 0.01M HEPES). The isolated cells were treated with ammonium chloride solution at 4 ° C. for 10 minutes to allow erythrocyte cells to lyse. The obtained cells were washed with washing buffer and filtered with 40 μm cell strainer (BD), followed by 10% FBS, 50 μM 2-ME, 0.01 M HEPES and antibiotics (100 unit / ml penicillin, 100 μg / ml streptomycin). Cultured for 12 hours in 24-well plates using RPMI 1640 medium. At this time, the 24-well plate was coated with 1 μg / ml of anti-CD3 (eBioscience) and 1 μg / ml of anti-CD28 (eBioscience) antibody to re-stimulate T cells.
그 결과, 도 10에 나타낸 바와 같이, Th1 세포에 의해 생성되는 주요 사이토카인인 IFN-γ의 양은, OMPA 항원이 로딩된 세포밖 소포 투여군은 대조군과 비교하여 증가되었고, OMPA 항원이 로딩된 세포밖 소포 비강투여 시 용량의존적으로 감소하였다. Th17에서 생성되는 주요 사이토카인인 IL-17의 경우, OMPA 항원이 로딩된 세포밖 소포 투여군은 비강투여 시 저농도에선 증가하였으나, 고농도에선 오히려 감소하였다. 그러나 Th2 세포에서 분비되는 IL-4인 경우에는 근육주사 혹은 비강투여에 상관없이 변화가 없었다 (도 10 참조).As a result, as shown in FIG. 10, the amount of IFN-γ, a major cytokine produced by Th1 cells, was increased in the OMPA antigen-loaded extracellular vesicle-administered group compared to the control group, and OMPA antigen-loaded extracellular Dose-dependent nasal vesicles decreased dose-dependently. In the case of IL-17, a major cytokine produced by Th17, the extracellular vesicles loaded with OMPA antigen increased at low concentrations but not at high concentrations. However, IL-4 secreted from Th2 cells did not change regardless of intramuscular injection or nasal administration (see FIG. 10).
실시예 7: 마우스에서 CoA 항원이 로딩된 세포밖 소포에 의한 항체 면역반응Example 7: Antibody Immune Responses by Extracellular Vesicles Loaded with CoA Antigen in Mice
생체내(in vivo)에서 CoA 항원이 로딩된 세포밖 소포에 의한 항체 면역반응 유도능을 확인하고, CoA 항원이 로딩된 세포밖 소포의 유효량을 결정하기 위하여, CoA 항원이 로딩된 세포밖 소포를 마우스에 투여하여 면역을 유도하였다. 또한, 면역반응을 유도한 후 대조군(PBS) 및 CoA 항원이 로딩된 세포밖 소포를 투여한 마우스에서 혈액을 채취하여 CoA 항원 특이 IgG 항체를 측정하였고, 기관지폐포세척액을 채취하여 CoA 항원 특이 sIgA 항체의 농도를 실시예 5의 방법으로 측정하였다.In order to confirm the induction of antibody immune response by extracellular vesicles loaded with CoA antigen in vivo and to determine an effective amount of extracellular vesicles loaded with CoA antigen, extracellular vesicles loaded with CoA antigens were used. Immunization was induced by administration to mice. In addition, after inducing an immune response, blood was collected from a control group (PBS) and mice treated with extracellular vesicles loaded with CoA antigens to measure CoA antigen-specific IgG antibodies, and bronchioalveolar lavage fluid was collected to collect CoA antigen-specific sIgA antibodies. The concentration of was measured by the method of Example 5.
그 결과, 도 11에 나타낸 바와 같이, CoA 항원이 로딩된 세포밖 소포로 근육주사로 면역반응을 유도한 마우스 혈청에는 CoA 항원이 로딩된 세포밖 소포 비강투여 유무에 상관없이 CoA 항원 특이 IgG 항체 생성이 증가되었다. 반면, 기관지폐포세척액 내 CoA 항원 특이 sIgA 생성은 CoA 항원이 로딩된 세포밖 소포를 근육주사한 후, 비강으로 투여한 경우에만 용량의존적으로 증가하였다(도 11 참조).As a result, as shown in FIG. 11, mouse sera that induced an immune response by intramuscular injection with extracellular vesicles loaded with CoA antigens generated CoA antigen-specific IgG antibodies regardless of the presence or absence of extracoagulants loaded with CoA antigens. This has been increased. On the other hand, CoA antigen-specific sIgA production in bronchoalveolar lavage fluid increased dose-dependently only after intranasal injection of extracellular vesicles loaded with CoA antigen (see FIG. 11).
실시예 8: 마우스에서 CoA 항원이 로딩된 세포밖 소포에 의한 T 세포 면역반응Example 8: T Cell Immune Responses by Extracellular Vesicles Loaded with CoA Antigen in Mice
생체내(in vivo)에서 CoA 항원이 로딩된 세포밖 소포를 투여하여 면역반응을 유도한 후, 대조군(PBS) 및 CoA 항원이 로딩된 세포밖 소포를 투여한 마우스에서 T 세포에서 생성되는 사이토카인의 양을 측정하여 T 세포 반응을 실시예 6의 방법으로 평가하였다.Induced immune responses by administering extracellular vesicles loaded with CoA antigen in vivo , and cytokines produced in T cells in mice administered control (PBS) and extracellular vesicles loaded with CoA antigen The T cell response was evaluated by the method of Example 6 by measuring the amount of.
그 결과, 도 12에 나타낸 바와 같이, Th1 세포에 의해 생성되는 주요 사이토카인인 IFN-γ의 양은, CoA 항원이 로딩된 세포밖 소포 투여군은 대조군과 비교하여 증가되었고, CoA 항원이 로딩된 세포밖 소포 비강투여 시 증가하였다. Th17에서 생성되는 주요 사이토카인인 IL-17의 경우, CoA 항원이 로딩된 세포밖 소포 투여군은 비강투여 시 저농도에선 증가하였으나, 고농도에선 오히려 감소하였다. 그러나 Th2 세포에서 분비되는 IL-4인 경우에는 비강투여 시 증가하였다 (도 12 참조).As a result, as shown in FIG. 12, the amount of IFN-γ, a major cytokine produced by Th1 cells, was increased in the extracellular vesicle-administered group loaded with CoA antigen compared to the control group, and the extracellular loaded with CoA antigen Increase in vesicle nasal administration. In the case of IL-17, a major cytokine produced in Th17, the extracellular vesicles loaded with CoA antigens increased at low concentrations but not at high concentrations. However, IL-4 secreted from Th2 cells increased upon nasal administration (see FIG. 12).
실시예Example 9: 그람음성세균인  9: Gram-negative bacteria 대장균유래E. coli derived 세포밖Extracellular 소포에 의한  By parcel 기도염증반응의Airway inflammatory response 발생에  On generation OMPAOMPA 항원이  Antigen 로딩된Loaded 소포의 항염증 예방효과 Anti-inflammatory effect of vesicles
대표적인 그람음성세균은 대장균에서 유래하는 세포밖 소포를 기도로 투여하여 유도된 기도염증 마우스모델에서 OMPA 항원이 로딩된 세포밖 소포의 효능을 평가하기 위하여, 도 13에 표현된 것처럼, 기도염증모델을 제작하기 위하여 대장균유래 세포밖 소포를 일주일에 2회씩 총 3주간 비강으로 투여하여 호흡기질환모델을 제작하였다 (도 13 참조).A representative Gram-negative bacterium is an airway inflammation model, as shown in FIG. 13, to evaluate the efficacy of extracellular vesicles loaded with OMPA antigen in an airway inflammation mouse model induced by administration of extracellular vesicles derived from E. coli into the airways. E. coli-derived extracellular vesicles were administered to the nasal cavity twice a week for a total of three weeks to prepare a respiratory disease model (see FIG. 13).
OMPA 항원이 로딩된 세포밖 소포로 면역반응을 유도하기 위해선, 실시예 5의 방법으로 설정된 농도로 도 13에 표현된 것처럼, 호흡기질환모델을 만들기 전에 OMPA 항원이 로딩된 세포밖 소포를 3회 근육주사와 비강투여 하였고, 질환모델을 제작하는 동안에는 비강으로만 OMPA 항원이 로딩된 세포밖 소포를 투여하였다(도 13 참조). In order to induce an immune response to the extracellular vesicles loaded with the OMPA antigen, the extracellular vesicles loaded with the OMPA antigen were loaded three times before the respiratory disease model was made, as shown in FIG. 13 at the concentration set in the method of Example 5. After injection and nasal administration, extracellular vesicles loaded with OMPA antigens were administered only intranasally (see FIG. 13) during the construction of the disease model.
그 결과, 도 14에 표현한 것처럼, OMPA 항원이 로딩된 세포밖 소포를 투여하지 않은 양성 대조군 마우스에선, 기관지폐포세척액 내 염증세포의 수가 대장균유래 세포밖 소포 기도투여에 의하여 현저히 증가되었다. 호흡기질환모델 제작 전에 OMPA 항원이 로딩된 세포밖 소포로 면역반응을 유도한 마우스에선 기관지폐포세척액 내 염증세포의 수가 음성대조군 수준으로 현저히 감소하였고, OMPA 항원이 로딩된 세포밖 소포를 천식모델 제작 전과 제작 후에 지속적으로 투여한 마우스에서도 동일하게 기관지폐포세척액 내 염증세포 수가 현저히 감소하였다 (도 14 참조).As a result, as shown in FIG. 14, in the positive control mice not administered the extracellular vesicles loaded with the OMPA antigen, the number of inflammatory cells in bronchoalveolar lavage fluid was significantly increased by E. coli-derived extracellular vesicles. In mice that induced an immune response with extracellular vesicles loaded with OMPA antigen before the respiratory disease model was developed, the number of inflammatory cells in bronchoalveolar lavage fluid was significantly reduced to the negative control level. In the mice continuously administered after the preparation, the number of inflammatory cells in bronchoalveolar lavage fluid was similarly reduced (see FIG. 14).
따라서, 그람음성세균 외막단백질이 로딩된 세포밖 소포를 비강으로 투여하였을 때, 그람음성세균유래 세포밖 소포에 의한 호흡기질환을 효율적으로 억제함을 알 수 있었다.Therefore, it was found that when intracellular vesicles loaded with Gram-negative bacterial envelope membrane protein were administered nasal, respiratory diseases caused by Gram-negative bacteria-derived extracellular vesicles were effectively suppressed.
실시예Example 10: 그람양성세균인  10: Gram-positive bacteria 황색포도상구균유래Derived from Staphylococcus aureus 세포밖Extracellular 소포에 의한  By parcel 기도염증반응의Airway inflammatory response 발생에  On generation CoACoA 항원이 로딩된 소포의 항염증 예방효과 Anti-inflammatory effect of antigen loaded vesicles
대표적인 그람양성세균은 황색포도상구균에서 유래하는 세포밖 소포를 기도로 투여하여 유도된 기도염증 마우스모델에서 CoA 항원이 로딩된 세포밖 소포의 효능을 평가하기 위하여, 도 13에 표현된 것처럼, 기도염증모델을 제작하기 위하여 황색포도상구균유래 세포밖 소포를 일주일에 2회씩 총 3주간 비강으로 투여하여 호흡기질환모델을 제작하였다 (도 13 참조).A representative Gram-positive bacterium is airway inflammation, as shown in FIG. 13, to evaluate the efficacy of extracellular vesicles loaded with CoA antigen in an airway inflammation mouse model induced by airway administration of extracellular vesicles derived from Staphylococcus aureus. To prepare the model, Staphylococcus aureus-derived extracellular vesicles were administered to the nasal cavity twice a week for a total of three weeks to prepare a respiratory disease model (see FIG. 13).
CoA 항원이 로딩된 세포밖 소포로 면역반응을 유도하기 위해선, 실시예 7의 방법으로 설정된 농도로 도 13에 표현된 것처럼, 호흡기질환 모델을 만들기 전에 CoA 항원이 로딩된 세포밖 소포를 3회 근육주사와 비강투여 하였고, 질환모델을 제작하는 동안에는 비강으로만 CoA 항원이 로딩된 세포밖 소포를 투여하였다(도 13 참조). To induce an immune response to CoA antigen-loaded extracellular vesicles, the intracellular vesicles loaded with CoA antigen three times before the respiratory disease model was created, as shown in FIG. 13 at the concentration set in the method of Example 7 After injection and nasal administration, extracellular vesicles loaded with CoA antigens were administered only intranasally (see FIG. 13) during the preparation of the disease model.
그 결과, 도 15에 표현한 것처럼, CoA 항원이 로딩된 세포밖 소포를 투여하지 않은 양성 대조군 마우스에선, 기관지폐포세척액 내 염증세포의 수가 황색포도상구군유래 소포 기도투여에 의하여 현저히 증가되었다. 호흡기질환모델 제작 전에 CoA 항원이 로딩된 세포밖 소포로 면역반응을 유도한 마우스에선 기관지폐포세척액 내 염증세포의 수가 양성 대조군에 비하여 현저히 감소하였고, CoA 항원이 로딩된 세포밖 소포를 염증성 기도질환모델 제작 전과 제작 후에 지속적으로 투여한 마우스에서도 동일하게 기관지폐포세척액 내 염증세포 수가 현저히 감소하였다 (도 15 참조).As a result, as shown in Fig. 15, in the positive control mice that did not receive extracellular vesicles loaded with CoA antigens, the number of inflammatory cells in bronchoalveolar lavage fluid was significantly increased by airway administration of vesicles derived from Staphylococcus aureus. In mice that induced an immune response with extracellular vesicles loaded with CoA antigen prior to the production of respiratory disease models, the number of inflammatory cells in bronchoalveolar lavage fluid was significantly reduced compared to the positive control. Similarly, the number of inflammatory cells in bronchoalveolar lavage fluid was significantly reduced in mice continuously administered before and after preparation (see FIG. 15).
따라서, 그람양성세균 표면단백질이 로딩된 세포밖 소포를 비강으로 투여하였을 때, 그람양성세균유래 소포에 의한 호흡기질환을 효율적으로 억제함을 알 수 있었다.Therefore, when the extracellular vesicles loaded with Gram-positive bacteria surface protein were administered nasal, it was found that the respiratory disease caused by Gram-positive bacteria-derived vesicles was effectively suppressed.
실시예Example 11: 그람음성세균인  11: Gram-negative bacteria 대장균유래E. coli derived 세포밖Extracellular 소포에 의해 유도된  Induced by parcel 기도염증Airway Inflammation 마우스모델에 대한, OMPA 항원이 로딩된 소포의 항염증 치료효과 Anti-inflammatory Effect of Vesicles Loaded with OMPA Antigen on Mouse Model
대표적인 그람음성세균인 대장균에서 유래하는 세포밖 소포를 기도로 투여하여 유도된 기도염증 마우스모델에서 OMPA 항원이 로딩된 세포밖 소포의 치료효능을 평가하였다. 이를 위하여 기도염증모델을 제작하기 위하여 대장균유래 세포밖 소포를 일주일에 2회씩 총 3주간 비강으로 투여하여 호흡기질환모델을 제작하였다 (도 16 참조).Extracellular vesicles derived from E. coli, a representative Gram-negative bacterium, were administered to the airway to evaluate the therapeutic efficacy of OMPA antigen-loaded extracellular vesicles in an airway inflammation mouse model. To this end, in order to prepare an airway inflammation model, E. coli-derived extracellular vesicles were administered to the nasal cavity twice a week for a total of 3 weeks to prepare a respiratory disease model (see FIG. 16).
또한, OMPA 항원이 로딩된 세포밖 소포로 면역반응을 유도하기 위해선, 실시예 5의 방법으로 설정된 농도로, 호흡기질환모델이 만들어진 1주일째에 OMPA 항원이 로딩된 세포밖 소포를 1회 근육주사하였고, 2주 및 3주째엔 근육주사와 동시에 비강투여하였고, 4주째부터는 매일 비강투여만 하였다 (도 16 참조). In addition, in order to induce an immune response to the extracellular vesicles loaded with OMPA antigen, intramuscular injection of OMPA antigen loaded once a week at the concentration set in the method of Example 5 was made on the first week of respiratory disease model. At the 2nd and 3rd week, intramuscular injection was performed simultaneously with the intramuscular injection, and from the 4th week, only nasal administration was performed daily (see FIG. 16).
그 결과, 도 17에 나타낸 바와 같이, OMPA 항원이 로딩된 세포밖 소포를 투여하지 않은 양성 대조군 마우스에서는, 기관지폐포세척액 내 염증세포의 수가 대장균유래 세포밖 소포 기도투여에 의하여 현저히 증가되었다. 한편, 호흡기질환모델 제작 후에 OMPA 항원이 로딩된 세포밖 소포로 면역반응을 유도한 마우스에서는 기관지폐포세척액 내 호중구 수가 현저히 감소하였다 (도 17 참조). 또한, 기관지폐포세척액 내 사이토카인 분비량에서도 감마인터페론, IL-17, IL-4의 분비가 OMPA 항원이 로딩된 세포밖 소포를 투여하였을 때 효율적으로 억제됨을 확인하였다 (도 18 참조).As a result, as shown in Fig. 17, in the positive control mice not administered extracellular vesicles loaded with OMPA antigen, the number of inflammatory cells in bronchoalveolar lavage fluid was significantly increased by E. coli-derived extracellular vesicle airway administration. Meanwhile, neutrophil counts in bronchoalveolar lavage fluid were significantly reduced in mice induced with immune responses to extracellular vesicles loaded with OMPA antigen after preparation of the respiratory disease model (see FIG. 17). In addition, it was confirmed that the secretion of gamma interferon, IL-17, and IL-4 in the cytokine secretion in bronchoalveolar lavage fluid was effectively suppressed when the OMPA antigen-loaded extracellular vesicles were administered (see FIG. 18).
OMPA 항원이 로딩된 세포밖 소포 투여 후, 폐조직과 비장에서 T 세포를 분리하여, anti-CD3와 anti-CD28로 자극을 준 후, 사이토카인 분비량으로 T세포 면역반응을 평가하였다. 그 결과, OMPA 항원이 로딩된 세포밖 소포를 투여한 경우에 비장조직 내 T 세포에 의한 IL-4 분비량이 현저히 감소하였고, 면역조절제를 투여하지 않은 경우에 비하여 OMPA 항원이 로딩된 세포밖 소포 면역조절제를 투여한 경우에 폐조직 내 T 세포에서의 감마-인터페론, IL-17, IL-4, IL-10 등의 사이토카인 분비가 감소하였다 (도 19 참조). After administration of extracellular vesicles loaded with OMPA antigen, T cells were isolated from lung tissue and spleen, stimulated with anti-CD3 and anti-CD28, and the T cell immune response was assessed by cytokine secretion. As a result, the administration of extracellular vesicles loaded with OMPA antigen significantly reduced the amount of IL-4 secreted by T cells in spleen tissues. Modulators decreased cytokine secretion of gamma-interferon, IL-17, IL-4, IL-10 and the like in T cells in lung tissue (see FIG. 19).
따라서, 그람음성세균 외막단백질이 로딩된 세포밖 소포 면역조절제를 비강으로 투여하였을 때, 그람음성세균유래 세포밖 소포에 의한 기도염증을 효율적으로 치료할 수 있음을 알 수 있었다.Therefore, it was found that when intracellular vesicle immunomodulators loaded with Gram-negative bacterial outer membrane protein were administered nasal, airway inflammation caused by Gram-negative bacterial-derived extracellular vesicles could be effectively treated.
전술한 본 발명의 설명은 예시를 위한 것이며, 본 발명이 속하는 기술분야의 통상의 지식을 가진 자는 본 발명의 기술적 사상이나 필수적인 특징을 변경하지 않고서 다른 구체적인 형태로 쉽게 변형이 가능하다는 것을 이해할 수 있을 것이다. 그러므로 이상에서 기술한 실시예들은 모든 면에서 예시적인 것이며 한정적이 아닌 것으로 이해되어야 한다.The foregoing description of the present invention is intended for illustration, and it will be understood by those skilled in the art that the present invention may be easily modified in other specific forms without changing the technical spirit or essential features of the present invention. will be. Therefore, the embodiments described above are to be understood in all respects as illustrative and not restrictive.
본 발명에 따른 조성물은 세균유래 세포밖 소포에 의한 기도 면역기능 이상반응을 조절함으로써, 궁극적으로 세균유래 세포밖 소포에 의한 호흡기질환을 효율적으로 예방 또는 치료할 수 있을 것으로 기대된다.The composition according to the present invention is expected to be able to effectively prevent or treat respiratory diseases caused by bacterial-derived extracellular vesicles, by regulating the adverse effects of airway immune function caused by bacterial-derived extracellular vesicles.

Claims (9)

  1. 세균유래 세포밖 소포를 유효성분으로 함유하는 호흡기질환 예방 또는 치료용 약학적 조성물로서, 상기 세균은 세균유래 세포밖 소포 내 항원 단백질 유전자를 과발현시킨 세균이고, 상기 호흡기 질환은 세균유래 세포밖 소포에 의한 호흡기 질환인 것을 특징으로 하는, 약학적 조성물. A pharmaceutical composition for the prevention or treatment of respiratory diseases containing bacteria-derived extracellular vesicles as an active ingredient, wherein the bacteria are bacteria that overexpress the antigenic protein genes in bacteria-derived extracellular vesicles, and the respiratory disease is directed to bacteria-derived extracellular vesicles. It is a respiratory disease caused by, pharmaceutical composition.
  2. 제 1 항에 있어서, The method of claim 1,
    상기 세포밖 소포를 생성하는 세균은 대장균(E.coli) 또는 살모넬라균인 것을 특징으로 하는, 약학적 조성물.The bacterium producing the extracellular vesicles is E. coli or Salmonella, characterized in that the pharmaceutical composition.
  3. 제 1 항에 있어서, The method of claim 1,
    상기 세균유래 세포밖 소포에 의한 호흡기질환은 천식, 만성 폐쇄성 폐질환, 폐암, 비염, 및 부비동염으로 이루어진 군으로부터 선택되는 것을 특징으로 하는, 약학적 조성물. Respiratory disease caused by the bacterial extracellular vesicles is characterized in that selected from the group consisting of asthma, chronic obstructive pulmonary disease, lung cancer, rhinitis, and sinusitis.
  4. 제 1항에 있어서, The method of claim 1,
    상기 세균유래 세포밖 소포 내 항원 단백질은 그람음성세균유래 세포밖 소포 외막단백질 또는 그람양성세균유래 세포밖 소포 표면단백질인 것을 특징으로 하는, 약학적 조성물.The bacterial protein-derived extracellular vesicle antigen protein is characterized in that the Gram-negative bacteria-derived extracellular vesicle outer membrane protein or Gram-positive bacteria-derived extracellular vesicle surface protein.
  5. 제 4항에 있어서, The method of claim 4, wherein
    상기 그람음성세균유래 세포밖 소포 외막단백질은 외막단백질 A(Outer Membrane Protein A)인 것을 특징으로 하는, 약학적 조성물.The Gram-negative bacteria-derived extracellular vesicle outer membrane protein is characterized in that the outer membrane protein A (Outer Membrane Protein A), pharmaceutical composition.
  6. 제 4항에 있어서, The method of claim 4, wherein
    상기 그람양성세균유래 세포밖 소포 표면단백질은 코아귤레이즈(Coagulase)인 것을 특징으로 하는, 약학적 조성물.The Gram-positive bacteria-derived extracellular vesicle surface protein is characterized in that the coagulase (Coagulase), pharmaceutical composition.
  7. (a) 세균유래 세포밖 소포 내 항원 단백질 유전자를 세균에 과발현시키는 단계;(a) overexpressing an antigenic protein gene in a bacteria-derived extracellular vesicle to bacteria;
    (b) 상기 과발현된 세균을 배양하는 단계; (b) culturing the overexpressed bacteria;
    (c) 상기 세균 배양액에서 세포밖 소포를 분리하는 단계; 및 (c) isolating extracellular vesicles from the bacterial culture; And
    (d) 상기 소포의 외막 내독소 활성을 제거하는 단계를 포함하는, 세균유래 세포밖 소포에 의한 호흡기질환 예방 또는 치료용 세균유래 세포밖 소포의 제조방법으로, 상기 세균유래 세포밖 소포 내 항원 단백질은 그람음성세균유래 세포밖 소포 외막단백질 또는 그람양성세균유래 세포밖 소포 표면단백질인 것을 특징으로 하는, 제조방법. (D) a method for producing bacterial-derived extracellular vesicles for the prevention or treatment of respiratory diseases caused by bacterial-derived extracellular vesicles, comprising the step of removing the outer membrane endotoxin activity of the vesicles, the antigenic protein in the bacterial-derived extracellular vesicles Is a Gram-negative bacterium-derived extracellular vesicle outer membrane protein or Gram-positive bacteria-derived extracellular vesicle surface protein.
  8. 제 7 항에 있어서, The method of claim 7, wherein
    상기 세포밖 소포를 생성하는 세균은 대장균(E.coli) 또는 살모넬라균인 것을 특징으로 하는, 제조방법.The bacterium producing the extracellular vesicles is E. coli or Salmonella, characterized in that the production method.
  9. 제 7 항에 있어서, The method of claim 7, wherein
    상기 세균유래 세포밖 소포에 의한 호흡기질환은 천식, 만성 폐쇄성 폐질환, 폐암, 비염, 및 부비동염으로 이루어진 군으로부터 선택되는 것을 특징으로 하는, 제조방법. Respiratory disease caused by the bacterial extracellular vesicles is characterized in that selected from the group consisting of asthma, chronic obstructive pulmonary disease, lung cancer, rhinitis, and sinusitis.
PCT/KR2017/000428 2016-01-15 2017-01-12 Regulator for respiratory tract immune function disorders, using bacterial-derived extracellular vesicles WO2017123025A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR20160005103 2016-01-15
KR10-2016-0005103 2016-01-15
KR1020170004428A KR101911893B1 (en) 2017-01-11 2017-01-11 Immune modulator for the control of airway immune dysfunction to bacteria-derived extracellular vesicles
KR10-2017-0004428 2017-01-11

Publications (1)

Publication Number Publication Date
WO2017123025A1 true WO2017123025A1 (en) 2017-07-20

Family

ID=59311963

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2017/000428 WO2017123025A1 (en) 2016-01-15 2017-01-12 Regulator for respiratory tract immune function disorders, using bacterial-derived extracellular vesicles

Country Status (1)

Country Link
WO (1) WO2017123025A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4030168A4 (en) * 2019-09-10 2023-06-14 MD Healthcare Inc. Lung disease diagnostic method based on antibodies against microorganism-derived vesicles

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011027990A2 (en) * 2009-09-04 2011-03-10 주식회사이언메딕스 Extracellular vesicles derived from gram-positive bacteria, and use thereof
WO2011043538A2 (en) * 2009-10-08 2011-04-14 주식회사이언메딕스 Composition comprising extracellular membrane vesicles derived from indoor air, and use thereof

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011027990A2 (en) * 2009-09-04 2011-03-10 주식회사이언메딕스 Extracellular vesicles derived from gram-positive bacteria, and use thereof
WO2011043538A2 (en) * 2009-10-08 2011-04-14 주식회사이언메딕스 Composition comprising extracellular membrane vesicles derived from indoor air, and use thereof

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
KLIMENTOVA, J. ET AL.: "Methods of Isolation and Purification of Outer Membrane Vesicles from Gram-negative Bacteria", MICROBIOLOGICAL RESEARCH, vol. 170, 2015, pages 1 - 9, XP029107295 *
PORE, D. ET AL.: "Outer Membrane Protein A (OmpA) of Shigella flexneri 2a, Induces Protective Immune Response in a Mouse Model", PLOS ONE, vol. 6, no. 7, 2011, pages e22663, XP055183239 *
ZHANG, Z. ET AL.: "Coagulase-negative Staphylococcus Culture in Chronic Rhinosinusitis", INTERNATIONAL FORUM OF ALLERGY AND RHINOLOGY, vol. 5, no. 3, 2015, pages 204 - 213, XP055399379 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4030168A4 (en) * 2019-09-10 2023-06-14 MD Healthcare Inc. Lung disease diagnostic method based on antibodies against microorganism-derived vesicles

Similar Documents

Publication Publication Date Title
Kurono et al. Nasal immunization induces Haemophilus influenzae—specific Th1 and Th2 responses with mucosal IgA and systemic IgG antibodies for protective immunity
Ng et al. Intestinal dendritic cells: their role in bacterial recognition, lymphocyte homing, and intestinal inflammation
Gomes-Santos et al. Hsp65-producing Lactococcus lactis prevents inflammatory intestinal disease in mice by IL-10-and TLR2-dependent pathways
Matthijs et al. Systems immunology characterization of novel vaccine formulations for Mycoplasma hyopneumoniae bacterins
EP1461054B1 (en) Gram positive bacteria preparations for the treatment of diseases comprising an immune dysregulation
Dunkley et al. A role for CD4+ T cells from orally immunized rats in enhanced clearance of Pseudomonas aeruginosa from the lung.
Kataoka et al. The nasal dendritic cell-targeting Flt3 ligand as a safe adjuvant elicits effective protection against fatal pneumococcal pneumonia
WO2020059895A1 (en) Adjuvant and vaccine composition comprising sting agonist
WO2018124393A1 (en) Vaccine composition for preventing or treating brucellosis containing non-pathogenic salmonella strain in which o-antigen of lps is deleted expressing major common antigens of brucella
Wu et al. Suppression of allergic inflammation by allergen‐DNA‐modified dendritic cells depends on the induction of Foxp3+ Regulatory T cells
Joo et al. Critical role of TSLP-responsive mucosal dendritic cells in the induction of nasal antigen-specific IgA response
Tian et al. Outer membrane vesicles derived from salmonella enterica serotype typhimurium can deliver Shigella flexneri 2a O-polysaccharide antigen to prevent Shigella flexneri 2a infection in mice
WO2017123025A1 (en) Regulator for respiratory tract immune function disorders, using bacterial-derived extracellular vesicles
Pyclik et al. Viability status-dependent effect of Bifidobacterium longum ssp. longum CCM 7952 on prevention of allergic inflammation in mouse model
CN112755180B (en) Preparation method and application of universal bacterial vaccine
KR101854904B1 (en) Non-typeable haemophilus influenzae vaccines and their uses
KR101911893B1 (en) Immune modulator for the control of airway immune dysfunction to bacteria-derived extracellular vesicles
Remer et al. Split immune response after oral vaccination of mice with recombinant Escherichia coli Nissle 1917 expressing fimbrial adhesin K88
CN106497854B (en) Lactobacillus D8 and its application
WO2017116005A1 (en) Small rna gene for regulating extracellular vesicle generation and host immune response, and use thereof
AL-ATTAR et al. A study of immunotherapeutic efficacy of Trichinella spiralis excretory-secretory proteins in murine trichinellosis
EP3403670B1 (en) Immunomodulator for hypersensitivity reaction to house dust mite-derived allergen
WO2017122915A1 (en) Immunomodulator for hypersensitivity reaction to house dust mite-derived allergen
WO2012093754A1 (en) Composition comprising extracellular vesicles derived from inside a mammalian body and a use therefor
CA2414347A1 (en) Vaccine comprising active agent immunogenic acyl glyceryl phosphatidylinositol manno-oligosaccharide

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17738654

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17738654

Country of ref document: EP

Kind code of ref document: A1