WO2017122823A1 - Solid photocatalytic material formed from solid material constituted only of titanium dioxide having photocatalytic function, method for manufacturing same, and treatment device - Google Patents

Solid photocatalytic material formed from solid material constituted only of titanium dioxide having photocatalytic function, method for manufacturing same, and treatment device Download PDF

Info

Publication number
WO2017122823A1
WO2017122823A1 PCT/JP2017/001141 JP2017001141W WO2017122823A1 WO 2017122823 A1 WO2017122823 A1 WO 2017122823A1 JP 2017001141 W JP2017001141 W JP 2017001141W WO 2017122823 A1 WO2017122823 A1 WO 2017122823A1
Authority
WO
WIPO (PCT)
Prior art keywords
solid
photocatalyst
titanium dioxide
water
photocatalyst material
Prior art date
Application number
PCT/JP2017/001141
Other languages
French (fr)
Japanese (ja)
Inventor
根岸 信彰
加藤 薫一
Original Assignee
株式会社光触媒研究所
国立研究開発法人産業技術総合研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社光触媒研究所, 国立研究開発法人産業技術総合研究所 filed Critical 株式会社光触媒研究所
Priority to CN201780006574.1A priority Critical patent/CN108698020B/en
Publication of WO2017122823A1 publication Critical patent/WO2017122823A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/06Silicon, titanium, zirconium or hafnium; Oxides or hydroxides thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/08Heat treatment

Definitions

  • the present invention relates to a solid photocatalyst material comprising a solid material composed only of titanium dioxide having a photocatalytic function, a method for producing the same, and a treatment apparatus. More specifically, the present invention relates to water in response to ultraviolet rays.
  • the present invention relates to a solid photocatalyst material consisting of a solid material (no carrier) composed only of titanium dioxide having a photocatalytic function for environmental purification such as air, a manufacturing method thereof, and a water treatment apparatus using the solid photocatalyst material. is there.
  • the solid photocatalyst material of the present invention is a simple facility / system, particularly in developing countries, where drinking water depends on water such as rivers and ponds.
  • the present invention is useful for providing a new technology that enables the preparation and provision of safe drinking water that is purified and does not proliferate.
  • photocatalysts that exhibit catalytic action by irradiation with actinic rays such as ultraviolet light and visible light, for example, decompose and remove air purification materials that remove harmful substances, deodorizing materials that decompose bad odors, and organic compounds dissolved in water. It is widely used as a water purification material.
  • the photocatalyst is also applied as an antibacterial material that utilizes the oxidizing action of the photocatalyst, and an antifouling material that prevents contamination of window glass and outer walls.
  • Patent Document 1 by utilizing the porosity of silica gel, a silica support in which titanium dioxide is supported up to the inner surface of the silica gel enables high efficiency of photocatalysis.
  • a photocatalyst-supported silica gel is described.
  • this type of photocatalyst-supported silica gel is not used in the air layer, but long-term use in water has the problem that the silica support dissolves in water and is lost.
  • Patent Document 2 describes a photocatalytic thin film product in which a photocatalyst is immobilized by forming glass beads as a carrier and titanium dioxide as a thin film on the surface thereof.
  • this type of photocatalyst thin film is not suitable for actual use requiring a flow rate due to flow path pressure loss when used in a fixed bed when used in water, and the photocatalytic thin film itself is not suitable for use in a fluidized bed. Since they rub against each other and peel off, none of them can be put to practical use.
  • Patent Document 3 a photocatalyst product in the form of granules or pellets obtained by compressing and solidifying powdered titanium dioxide is used for treatment of dry cleaning waste liquid.
  • An example is given.
  • this type of photocatalytic product is solidified by solidifying powdered titanium dioxide with pressure, its hardness and anti-destructive strength are limited, and can be used for actual use of the product of the present invention. The quality is greatly different from that of the specific hardness and anti-destructive strength.
  • Patent Document 4 describes a method for producing a composite material in which a composite material in which calcium phosphate crystals are precipitated on the surface of titanium dioxide is used as a bleaching disinfectant.
  • the composite material having this type of carrier is essentially different in structure from the solid photocatalyst material of the present invention comprising a solid material composed only of pure titanium dioxide crystals. It is not suitable for use in applications such as air purification.
  • Patent Document 5 discloses a purification produced by applying or impregnating a photocatalyst to a continuous fine foam formed by subjecting a carrier such as used glass to continuous porous treatment.
  • the materials are listed.
  • the purification material having this type of carrier is significantly different in structure from the solid photocatalyst material of the present invention consisting of solids composed only of pure titanium dioxide, and the content of titanium dioxide crystals Since the product of the present invention is of a minute level that cannot be compared with the product of the present invention, it cannot be a product having excellent water purification / air purification performance as characterized by the solid photocatalyst material of the present invention.
  • Japanese Patent Application Laid-Open No. 11-138017 “Photocatalytic silica gel and method for producing the same” Applicant: Director, Industrial Technology Institute, Shinto Kogyo Co., Ltd. JP 2001-046883 A “Silica gel molded body having photocatalytic function and method for producing the same” Applicant: Shinto Kogyo Co., Ltd. JP 2002-282704 A “Titanium oxide-supported photocatalyst silica gel and method for producing the same” Applicant: Shinto Buyserax Co., Ltd. Japanese Patent No. 2,883,761 "Bacteria-preventing body” Applicant: Director, Industrial Technology Institute, Photocatalyst Research Institute Co., Ltd. Japanese Patent Application Laid-Open No.
  • titanium dioxide is most often sold in powder form.
  • binder binder
  • carrier such as solidification with a binder (binder) or support by a carrier. It is necessary to.
  • the immobilized powder has a problem that the binder (binder) and the carrier become impurities, and the photocatalytic performance of titanium dioxide cannot be fully exhibited.
  • titanium dioxide formed as a thin film by the sol-gel method is used by being suddenly supported on a plate-like or spherical carrier, its functionality as a photocatalyst is relatively high.
  • it since it is a thin film, in a fluidized bed where the thin films rub against each other, there is a problem that the thin film is broken by peeling or colliding and its function is lost.
  • the functionality is exhibited only on the surface of the thin film, there is a problem that the functionality is insufficient in the absolute amount of the photocatalyst as compared with the powder.
  • the present invention provides a new type of solid photocatalyst material composed of a solid material (no carrier) composed only of titanium dioxide having a photocatalytic function, a method for producing the same, and a water treatment apparatus using the solid photocatalyst material. It is the purpose.
  • the present invention is composed of the same crystal from the outer shell to the inner core of the solid, and does not include a rutile type crystal, but only an anatase type crystal (may include a brookite type crystal).
  • a solid photocatalyst material composed of a solid material comprising the following (i) to (vi); (I) pore diameter (pore size) of 2 to 28 nm, (Ii) specific surface area of 70 to 110 m 2 / g, (Iii) True density is 3.90 ⁇ 1.0 g / cm 3 , (Iv) The bulk specific gravity is 1.3 to 1.6, (V) Vickers hardness is 600 to 800 Hv, (Vi) the crystal grain size is 10-25 nm, It aims at providing the solid photocatalyst material which satisfy
  • a solid photocatalyst material comprising a solid material (without a carrier) composed only of titanium dioxide having a photocatalytic function, Containing only titanium dioxide of anatase type crystal (may include brookite type crystal) without rutile type crystal, the following (i) to (vi): (I) pore diameter (pore size) of 2 to 28 nm, (Ii) specific surface area of 70 to 110 m 2 / g, (Iii) True density is 3.90 ⁇ 1.0 g / cm 3 , (Iv) The bulk specific gravity is 1.3 to 1.6, (V) Vickers hardness is 600 to 800 Hv, (Vi) the crystal grain size is 10-25 nm, Solid photocatalyst material characterized by satisfying each numerical value of (2) The solid body comprising only titanium dioxide of the same anatase type crystal (may include brookite type crystal) from the outer shell to the inner core of the solid material
  • Acetaldehyde can be decomposed and removed by 5.0 ⁇ mol / h or more by the JIS R1701-2 test method at normal temperature and pressure when irradiated with an actinic ray against the photocatalyst at an intensity of 0.8 mJ / cm 2 sec.
  • an organic solid nucleating material is added and mixed to prepare a highly viscous slurry, and then the moisture of the highly viscous slurry is Removing in an atmosphere at a temperature of 20 to 60 ° C. to prepare a wet gel, and baking the obtained wet gel at a temperature of 500 to 650 ° C. to prepare a solid having a flaky form;
  • a method for producing a solid photocatalyst material comprising using a floc-forming aggregate selected from activated carbon, cellulose, or polyvinyl alcohol as a nucleation material for organic solids.
  • a water treatment device for carrying out water purification using the solid photocatalyst material according to any one of (1) to (4) and light energy, Connected by connecting a series of glass tubes filled with a fixed amount of photocatalyst solid flakes (flake catalyst), which is a solid photocatalyst material, in series, and connected in parallel to a predetermined number of rows
  • a pipe device means for exciting the photocatalyst filled in the glass tube by irradiating the glass tube with ultraviolet light, a tank for storing the water to be treated, a tank for storing the treated water, and the water to be treated
  • a water treatment device comprising: a pump for passing water at a predetermined water flow rate through a pipe device.
  • the solid photocatalyst material of the present invention does not contain a rutile type crystal, but is composed only of titanium dioxide of anatase type crystal (which may contain a brookite type crystal).
  • the solid photocatalyst material of the present invention generally does not have a “support” component used in the photocatalyst, and the titanium dioxide photocatalyst material is composed of the same crystals from the outer shell to the inner core of the solid material constituting the solid photocatalyst material. It is a solid photocatalyst material made of a solid material that does not include a rutile crystal and is composed only of an anatase crystal (may include a brookite crystal).
  • the solid photocatalyst material of the present invention has a high specific surface area of 70 to 110 m 2 / g, and thus has an excellent adsorption function, and has a Vickers hardness of 600 to 800 Hv, a high hardness, and rubs against each other. Even if it has, it has the characteristic of having high durability which does not break.
  • the photocatalytic activity of the solid photocatalyst material of the present invention will be described.
  • an aldehyde dispersion test (based on the JIS R1701-2 test method) using the solid photocatalyst material of the present invention (flake catalyst; solid flake) is performed in order to examine its aldehyde resolution.
  • the changes in acetaldehyde and CO 2 concentrations when performed are shown in FIG.
  • Qa Ra ⁇ [A0] ⁇ f ⁇ 1.016 ⁇ 60 / (100 ⁇ 22.4)
  • Qa is a numerical value to be obtained ( ⁇ mol / h)
  • Ra is the acetaldehyde removal rate (%)
  • [A0] is the concentration of introduced gas
  • the amount of acetaldehyde removed by the solid photocatalyst material (flake catalyst) of the present invention was 7.55 ⁇ mol / h, which is 44 times higher than the certification standard value of the photocatalyst industry association. Indicates that it has activity.
  • FIG. 2 shows the measurement result of the particle diameter of the titanium dioxide crystal constituting the solid photocatalyst material of the present invention by SEM observation.
  • the measurement result of the specific surface area of the solid photocatalyst material of the present invention by nitrogen adsorption is shown in FIG.
  • the BET specific surface area is measured by Belsorb-max (manufactured by Microtracbell).
  • the external appearance of the solid photocatalyst material (flakes catalyst) of this invention is shown in FIG.
  • the analysis result of the crystal type by the X ray diffraction of the solid photocatalyst material of this invention is shown in FIG. From these figures, it can be clearly understood that the solid photocatalyst material of the present invention is composed of a solid material composed only of anatase type crystals having a purity of 95 to 98%.
  • a brookite type crystal may be included.
  • the photocatalytic activity of the solid photocatalyst material of the present invention when irradiated with actinic rays (ultraviolet rays) with respect to the photocatalyst, for example, at an intensity of 0.8 mJ / cm 2 sec, at room temperature and normal pressure, for example, acetaldehyde, According to the JIS R1701-2 test method, it has a photocatalytic activity capable of decomposing and removing 5.0 ⁇ mol / h or more.
  • a titanium dioxide colloidal dispersion sol is prepared by a method based on a general sol-gel method. In this case, only water is evaporated and fired until it is gelled. Then, the titanium dioxide colloidal dispersion gel is not solidified, but only becomes a titanium dioxide white powder.
  • the present inventor in the process of condensation polymerization of the wet gel from which water has been removed from the titanium dioxide colloidal dispersion sol, forms a tighter bonded state of the titanium dioxide crystals.
  • the existence of a nucleation material serving as a nucleus is indispensable, and it has been found that it is effective to contain a nucleation material having an organic solid content that burns and disappears after firing.
  • the particle size is small so as not to lose the fluidity of the sol even after the nucleation material is added to and mixed with the titanium dioxide colloidal dispersion sol.
  • a substance having a high affinity with water for example, a floc-forming aggregate selected from activated carbon, cellulose and polyvinyl alcohol is effective.
  • a substance that aggregates crystals to form a floc is referred to as a floc-forming aggregate.
  • a high-viscosity slurry is formed from the titanium dioxide colloidal dispersion sol, and in the process of drying this, it becomes a nucleus in the high-viscosity slurry.
  • Titanium dioxide crystals are gathered around to form a network structure between the crystals, so that the crystal-bonded molecules do not become titanium dioxide powder even after firing, and the mixing ratio of the constituent components is adjusted to form a network. It has been found that a structure is formed to cover the organic solids (see FIG. 7). When this is baked, the organic solid content serving as a nucleus burns, and a structure of titanium dioxide, which is an inorganic crystal, can be obtained as a residue (see FIG. 8).
  • titanium dioxide colloidal dispersion is performed based on a general sol-gel method.
  • a titanium isopropoxide solution is dropped and mixed in pure water, then dispersed with an acid such as concentrated nitric acid, and concentrated to prepare a titanium dioxide colloidal dispersion.
  • the resulting titanium dioxide colloidal dispersion is mixed with high-viscosity, for example, by adding and mixing floc-forming aggregates such as activated carbon of organic solids that disappears upon burning, cellulose, and polyvinyl alcohol as nucleation materials.
  • a slurry is prepared.
  • the nucleation material may be any material as long as it can prepare a highly viscous slurry equivalent to the highly viscous slurry from the titanium dioxide colloidal dispersion, and is not limited to the activated carbon, cellulose, or polyvinyl alcohol. Can be used in the same manner as long as they have the same effect.
  • the moisture of the highly viscous slurry is removed in an atmosphere at a temperature of 20 to 60 ° C., for example, at a temperature of 20 to 50 ° C. to prepare a wet gel such as a black wet gel.
  • a wet gel such as this black wet gel is baked at 600 ° C. for 1 hour, for example.
  • a solid material in the form of flakes of various sizes such as milky white is prepared.
  • the obtained flake-shaped solid material is washed with, for example, hot water of 80 to 100 ° C. and dried to prepare a flake catalyst, which is classified to adjust the particle size, thereby completing the photocatalyst.
  • a solid photocatalyst material is prepared as a product.
  • the solid photocatalyst material obtained by the above process is characterized in that its form is a plate-like or amorphous shape, and it consists of a solid material composed only of anatase-type crystal titanium dioxide having a purity of 95 to 98%.
  • a brookite type crystal may be included in addition to the anatase type crystal.
  • the solid photocatalyst material of the present invention is used for environmental purification such as water and air in response to ultraviolet rays, for example. It has a high level of photocatalytic ability. Therefore, it is possible to use the photocatalyst function widely as a solid photocatalyst material for various photocatalyst products that are generally known or not known as photocatalyst products.
  • the solid photocatalyst material of the present invention does not require the use of a carrier for supporting the titanium dioxide photocatalyst inevitably used in known titanium dioxide photocatalysts, its production facility, production process or The production system has an advantage that it is simpler than existing photocatalysts.
  • the solid photocatalyst material of the present invention has excellent durability as a solid material composed only of titanium dioxide of anatase type crystal (may contain brookite type crystal), it is used in water. In particular, it can be used stably even in long-term underwater use, and can be used not only in the air layer, but also in fixed beds and fluidized beds that are required for underwater use. And it has the characteristics that the solid photocatalyst material after using it for the purification process of water is easy to reproduce
  • the solid photocatalyst material of the present invention As a specific application area of the solid photocatalyst material of the present invention having such characteristics, for example, in regions such as developing countries where water used for drinking water depends on the water of rivers and ponds, the water is used. It is useful as a basic technology for constructing a simple water purification system that can be supplied as safe drinking water that is purified by utilizing the antibacterial action of the photocatalyst and prevents germs from breeding. is there.
  • the solid photocatalyst material of the present invention does not require a step of supporting the photocatalyst on a carrier and the material thereof, so that the number of parts and the manufacturing process are reduced. It is advantageous in terms of cost, and in particular, has an exceptional feature that existing photocatalysts do not have, such as superiority in production and use in the original land, such as in developing countries. From this, the present invention is particularly effective for the antibacterial action by a simple photocatalyst for effectively solving the problems of depletion of water resources and lack of safe drinking water accompanying the global warming and the expansion of desert areas. It is useful as a new technology that makes it possible to construct a purification system using the
  • the amount of acetaldehyde removed by the solid photocatalyst material (photocatalyst solid flake; flake catalyst) of the present invention is 7.55 ⁇ mol / h, which is 44 times higher than the certified standard value of the photocatalyst industry association.
  • the solid photocatalyst material (photocatalyst solid flake; flake catalyst) of the present invention uses a titanium dioxide colloidal dispersion prepared based on the sol-gel method, and uses a simple system without installing a special facility. Can be manufactured and used.
  • antibacterial activity using a photocatalyst in a developing system such as a developing country where drinking water depends on water such as rivers and ponds under irradiation of sunlight. It is possible to prepare and provide safe drinking water that is purified by the action and does not propagate various germs.
  • the solid photocatalyst material after being used for water purification treatment can be easily regenerated and reused by a simple operation (such as incineration treatment).
  • the aldehyde removal amount by the flake catalyst was 7.55 ⁇ mol / h, which is 44 times higher than the certification standard value of the photocatalyst industry association.
  • the measurement result of the titanium dioxide crystal particle diameter by SEM observation is shown.
  • the measurement result of the specific surface area of a flake catalyst by nitrogen adsorption is shown.
  • the BET specific surface area was measured by Belsorb-max (manufactured by Microtracbell).
  • the appearance of the flake catalyst is shown.
  • the analysis result of the crystal form of the flake catalyst by X-ray diffraction is shown. From the results of the figure, it can be clearly understood that this product is composed only of anatase type crystals (may contain brookite type crystals).
  • moisture_content dissociated from the titanium dioxide colloidal dispersion sol condenses is shown.
  • the result (by JIS R1704 test method) of the photocatalyst water treatment function test by a solid photocatalyst material is shown.
  • Left side The concentration of metasulfonic acid (MSA) produced by photocatalytic oxidation of dimethyl sulfoxide (DMSO), and the right side: the concentration of DMSO.
  • the test apparatus (plan view) used in the photocatalyst water treatment function test is shown.
  • the test apparatus (front view) used in the photocatalyst water treatment function test is shown.
  • the relationship between the tube inner diameter (tube diameter) of the glass tube (filled tube) filled with the flake catalyst and the reaction rate is shown.
  • the relationship between the tube inner diameter (tube diameter) of the glass tube (filled tube) filled with the flake catalyst and the catalyst weight is shown. It is a schematic diagram of the water treatment equipment of the present invention. The mechanism of the demo device is shown. The photograph (whole) of the water treatment apparatus of this invention is shown. The photograph (part) of the water treatment apparatus of this invention is shown. The photocatalyst water treatment experimental apparatus is shown.
  • a titanium dioxide colloidal dispersion was prepared based on a general sol-gel method.
  • Sakuo Sakuhana Science of Sol-Gel Method
  • This black wet gel was baked at 600 ° C. for 1 hour to obtain 30 g of a solid material having milky white and various flaky shapes. Since the titanium dioxide colloidal dispersion itself is strongly acidic, the obtained flaky solid material was washed with hot water at 80 to 100 ° C. and dried to prepare a solid photocatalyst material (flake catalyst). Subsequently, this was classified and adjusted to a predetermined particle size to obtain a solid photocatalyst material (flake catalyst) as a photocatalyst product as a finished product.
  • the solid photocatalyst material (flake catalyst) thus obtained is a plate or irregular shape having a size of 2 to 5 mm and a thickness of 0.5 to 1.2 mm, a Vickers hardness of 700 Hv, and a pencil scratch hardness of It is a solid solid of 9H, the composition of which is anatase type titanium dioxide with a purity of 95 to 98%, and a solid having a primary crystal grain size of 10 to 20 nm bonded and solidified. This was confirmed by observation by X-ray diffraction and AFM imaging. In this case, it was observed that a brookite type crystal was included in addition to the anatase type crystal.
  • the obtained solid photocatalyst material is a solid substance, its BET specific surface area is 110 m 2 / g, and it is observed by BET that it is almost equivalent to powdered titanium dioxide P25 (manufactured by Evonik, Germany). It was done.
  • a titanium dioxide colloidal dispersion was prepared as follows. That is, 300 g of a titanium tetraisopropoxide 95% solution was dropped and mixed in 1,600 g of pure water at 80 ° C., then dispersed with 13 g of concentrated nitric acid and concentrated to obtain 600 g of the formed colloidal solution.
  • This black wet gel was baked at 600 ° C. for 1 hour to obtain 30 g of a flaky photocatalyst solid material (flake catalyst) that was milky white and varied in size. Since the titanium dioxide colloidal liquid itself is strongly acidic, the obtained flakes are washed with hot water at 80 to 100 ° C. and dried to complete the flake catalyst, and then classified and adjusted to a predetermined particle size. A solid photocatalyst material (flake catalyst) as a photocatalyst product was obtained as a finished product.
  • the solid photocatalyst material (flake catalyst) thus obtained has a plate shape or irregular shape with a size of 2 to 5 mm and a thickness of 0.5 to 1.2 mm, a Vickers hardness of 700 Hv, and a pencil scratch hardness.
  • Is a hard solid of 9H, and its composition is anatase type titanium dioxide with a purity of 95 to 98%, which is solidified by combining crystals with a primary crystal grain size of 10 to 20 nm. It was confirmed by observation by X-ray diffraction and AFM imaging. In this case, it was observed that a brookite type crystal was included in addition to the anatase type crystal.
  • solid photocatalyst material (flake catalyst) is a solid substance, its BET specific surface area is 110 m 2 / g, which is almost the same as powder titanium dioxide P25 (manufactured by Evonik, Germany). It was observed with BET.
  • a titanium dioxide crystal-dispersed sol was prepared as follows. That is, 500 g of a titanium ethoxide 95% solution was dropped and mixed in 1,800 g of pure water at 80 ° C., then dispersed with 18 g of hydrochloric acid and concentrated to obtain 800 g of the formed colloidal solution.
  • This white wet gel was baked at 600 ° C. for 1 hour to obtain 50 g of a solid material having a milky white shape and various flaky shapes. Since the titanium dioxide colloidal liquid itself is strongly acidic, the obtained flakes are washed with hot water at 80 to 100 ° C. and dried to complete a solid photocatalyst material (flake catalyst), and then classified, By adjusting the particle size, a solid photocatalyst material (flake catalyst) as a photocatalyst product was obtained as a finished product.
  • a titanium dioxide crystal-dispersed sol was prepared as follows. That is, 400 g of titanium isopropoxide 95% solution was dropped and mixed in 1,700 g of pure water at 80 ° C., then dispersed with 32 g of 1N sodium hydroxide and concentrated to obtain 700 g of the formed colloidal solution. It was.
  • This white wet gel was baked at 600 ° C. for 1 hour to obtain 40 g of a solid material having a milky white shape and various flaky shapes. Since the titanium dioxide colloidal liquid itself is strongly acidic, the obtained flakes are washed with hot water at 80 to 100 ° C. and dried to complete the flake catalyst, and then classified and adjusted to a predetermined particle size. A solid photocatalyst material (flake catalyst) as a photocatalyst product was obtained as a finished product.
  • Test example (1) Acetaldehyde dispersion test Using a solid photocatalyst material (photocatalyst solid flake; flake catalyst), an acetaldehyde dispersion test (according to JIS R1701-2 test) was conducted to examine changes in acetaldehyde and CO 2 concentration.
  • Figure 1 shows the results.
  • Qa Ra ⁇ [A0] ⁇ f ⁇ 1.016 ⁇ 60 / (100 ⁇ 22.4)
  • Qa is a numerical value to be obtained ( ⁇ mol / h)
  • Ra is acetaldehyde removal.
  • the rate (%) and [A0] indicate the concentration of the introduced gas
  • the amount of acetaldehyde removed by the flake catalyst was 7.55 ⁇ mol / h. This value indicates that the activity is 44 times higher than the certification standard value of the Photocatalyst Industry Association.
  • FIG. 2 shows the result.
  • FIG. 5 shows the appearance of the flake catalyst. From the figure, it is observed that the flake catalyst is a plate-like or irregular-shaped figure having a size of 2 to 5 mm and a thickness of 0.5 to 1.2 mm.
  • Figure 8 shows the results.
  • the left shows the appearance before firing (having the swelling of the organic pigment), and the right shows the appearance after firing (having the pores where the organic pigment burned).
  • DMSO dimethyl sulfoxide
  • FIG. 11 shows the results of detecting and measuring the concentrations of dimethyl sulfoxide (DMSO) and methane sulfoxide (MSA) using a gas chromatograph.
  • MSA methanesulfonic acid
  • FIG. 11 shows the concentration of methanesulfonic acid (MSA) produced by photocatalytic oxidation of dimethyl sulfoxide (DMSO) is shown on the left side, and the concentration of DMSO is shown on the right side.
  • FIGS. 12 and 13 are a plan view and a front view of a test apparatus used in the photocatalytic water treatment function test, respectively.
  • Means in the figure are Lamp: ultraviolet irradiation lamp, Pump: pump, Piece: test piece (flakes catalyst), Test solution: test solution, Turbent Piece: weir , Photocatalyst: flake catalyst.
  • the water treatment apparatus of the present invention performs purification treatment by photocatalytic oxidation of water to be treated, using the photocatalytic solid flakes (flake catalyst) which is the solid photocatalyst material of the present invention.
  • Examples of the usage include photocatalyst sterilization of drinking water and advanced treatment of agricultural underground wastewater.
  • one row of paths in which glass tubes filled with photocatalyst solid flakes (flake catalyst), which is the solid photocatalyst material of the present invention, as a fixed bed are connected in series, are further arranged in parallel with two rows, three rows, and so on.
  • Water to be treated is passed through a connecting pipe device formed by connecting to the water.
  • the glass tube of this connecting tube device is irradiated with sunlight or ultraviolet rays from an ultraviolet lamp to excite the solid photocatalyst material filled as a fixed bed in the glass tube and contained in the water to be treated. It is possible to obtain purified water by oxidizing and decomposing organic matter with a solid photocatalyst material.
  • FIG. 16 shows an outline of the water treatment apparatus.
  • Glass tube and tube inner diameter (mm ⁇ ) As the glass tube, for example, quartz glass or borosilicate glass is preferably used. Regarding the filling amount and reaction rate of the photocatalyst solid flakes (flake catalyst) of the present invention with respect to the glass tube, the reaction rate is improved in proportion to the inner diameter of the glass tube through which water to be treated is passed. When the tube inner diameter (mm ⁇ ) exceeds ⁇ 15, the reaction rate decreases.
  • FIG. 14 shows the relationship between the tube inner diameter (tube diameter) (mm ⁇ ) of the glass tube and the reaction rate. As shown in this figure, the inner diameter of the glass tube to be applied is in the range of ⁇ 8 to 15 (mm ⁇ ), and preferably in the range of 8 to 13.5 (mm ⁇ ).
  • the glass tube has a tube inner diameter ⁇ 8 of 10 g, the glass tube has a tube inner diameter ⁇ 12 of 25 g, and the glass tube has a tube inner diameter ⁇ 13.5 of From the actual value of 50 g and the measured value of the photocatalytic action of the photocatalytic solid flakes, a filling amount of 30 to 170 g / m is desirable.
  • FIG. 15 shows the relationship between the filling amount of the photocatalyst solid flakes on which the actual values are plotted and the tube inner diameter (tube diameter) of the glass tube.
  • dirty water (untreated water) containing blue ink was decomposed with light energy using photocatalyst solid flakes (flake catalyst), and converted into purified and clean water (treated water).
  • a blue ink was formed through a connecting pipe device formed by connecting 10 rows of glass tubes filled with the photocatalytic solid flakes of the present invention as a fixed bed in parallel.
  • Water (treated water) that was purified by decomposition and purified was obtained.
  • FIG. 16 the aspect of the water treatment apparatus used by the present Example is shown.
  • FIGS. 17 to 19 show a water treatment experimental device, a mechanism of a demonstration device, and a photographic drawing of the device for carrying out water purification treatment with photocatalytic solid flakes, respectively.
  • FIG. 20 An embodiment of a photocatalytic water treatment device for carrying out water purification treatment is shown.
  • a connecting pipe device was configured by connecting in parallel a single line of paths in which glass tubes filled with photocatalytic solid flakes as a fixed bed were connected in series. A 20 W black light was placed on this, and two 10 L large transparent round bottles were connected to construct a water treatment apparatus in the present invention.
  • FIG. 20 the schematic diagram of a photocatalyst water treatment experimental apparatus is shown.
  • the present invention relates to a solid photocatalyst material composed of a solid material composed only of titanium dioxide having a photocatalytic function, a manufacturing method thereof, and a water treatment apparatus using the solid photocatalyst material and light energy.
  • a new type of solid photocatalyst comprising 1) a solid (without a carrier) formed only from titanium dioxide having a photocatalytic function, and 2) from the outer shell of the solid
  • a solid photocatalyst material composed of a solid material composed only of titanium dioxide of the same anatase type crystal may include a brookite type crystal
  • a rutile type crystal to the core 3
  • the amount of acetaldehyde removed by the solid photocatalyst material (flake catalyst) of the present invention is 7.55 ⁇ mol / h, which is 44 times the certified standard value of the photocatalyst industry association.
  • the solid photocatalyst material (flake catalyst) of the present invention uses a titanium dioxide colloidal dispersion prepared based on the sol-gel method, and is safe with a simple system without installing a special facility.
  • sunlight can be used.
  • the water can be purified by using the antibacterial action of the photocatalyst under irradiation of water, etc., and safe drinking water can be prepared and provided so that no germs can propagate.
  • Used for water purification treatment The solid photocatalyst material can be easily regenerated and reused by a simple operation (such as incineration).
  • the solid photocatalyst of the present invention can be expected. Using materials and light energy A water treatment device for purifying water can be provided.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Catalysts (AREA)

Abstract

The purpose of the present invention is to provide a solid photocatalytic material formed from a solid material (not having a carrier) constituted only of titanium dioxide having a photocatalytic function, a method for manufacturing the same, and a water treatment device. Provided are a solid photocatalytic material, a method for manufacturing the same, and a device, said solid photocatalytic material being formed from a solid material that is constituted only of titanium dioxide that does not include rutile type crystals and comprises anatase type crystals (may include Brookite type crystals), and satisfying each numerical value for i) - vi) in the following: i) pore distribution of 5 - 15 nm, ii) specific surface area of 70 - 110 m2/g, iii) true density of 3.90 ± 1.0 g/cm3, iv) bulk specific gravity of 1.3 - 1.6, v) Vickers harness of 600 - 800 Hv, and vi) crystal grain size of 10 - 25 nm. With the present invention, it is possible to provide a new type of solid photocatalytic material constituted only of titanium dioxide that comprises anatase type crystals that are identical from the outer shell to the inner core of the solid material without the necessity for adding a carrier.

Description

光触媒機能を有する二酸化チタンのみにより構成された固形物からなる固形光触媒材、その製造方法及び処理装置SOLID PHOTOCATALYST MATERIAL COMPRISING SOLID ONLY WITH TITANIUM DIOXIDE HAVING PHOTOCATALYTIC FUNCTION, PROCESS FOR PRODUCING THE SAME
 本発明は、光触媒機能を有する二酸化チタンのみにより構成された固形物からなる固形光触媒材と、その製造方法及び処理装置に関するものであり、更に詳しくは、本発明は、紫外線に応答して、水・空気などの環境浄化に供するための光触媒機能を有する二酸化チタンのみにより構成された固形物(担体を有しない)からなる固形光触媒材、その製造方法及び該固形光触媒材による水処理装置に関するものである。本発明の固形光触媒材は、特に、発展途上国などの、飲料水を河川や池などの水に依存する地域において、簡便な施設・システムで、それらの水を光触媒による抗菌作用を利用して浄化処理して、雑菌が繁殖しない、安全な飲料水を調製し、提供することを可能とする新技術を提供するものとして有用である。 The present invention relates to a solid photocatalyst material comprising a solid material composed only of titanium dioxide having a photocatalytic function, a method for producing the same, and a treatment apparatus. More specifically, the present invention relates to water in response to ultraviolet rays. The present invention relates to a solid photocatalyst material consisting of a solid material (no carrier) composed only of titanium dioxide having a photocatalytic function for environmental purification such as air, a manufacturing method thereof, and a water treatment apparatus using the solid photocatalyst material. is there. The solid photocatalyst material of the present invention is a simple facility / system, particularly in developing countries, where drinking water depends on water such as rivers and ponds. The present invention is useful for providing a new technology that enables the preparation and provision of safe drinking water that is purified and does not proliferate.
 従来、紫外光・可視光などの活性光線照射により触媒作用を示す光触媒は、例えば、有害物質を除去する大気浄化材料や、悪臭を分解する脱臭材料や、水中に溶け込んだ有機化合物を分解・除去する浄水材料などとして広く利用されている。また、当該光触媒は、光触媒の酸化作用を利用した抗菌材料や、窓ガラスや外壁などの汚れを防ぐ防汚材料などとしても応用されている。 Conventionally, photocatalysts that exhibit catalytic action by irradiation with actinic rays such as ultraviolet light and visible light, for example, decompose and remove air purification materials that remove harmful substances, deodorizing materials that decompose bad odors, and organic compounds dissolved in water. It is widely used as a water purification material. The photocatalyst is also applied as an antibacterial material that utilizes the oxidizing action of the photocatalyst, and an antifouling material that prevents contamination of window glass and outer walls.
 従来、先行技術として、例えば、特許文献1には、シリカゲルの多孔性を利用して、該シリカゲルの内奧まで二酸化チタンを担持させたシリカ担体とすることで光触媒作用の高効率化を可能にする光触媒担持シリカゲルが記載されている。しかし、この種の光触媒担持シリカゲルは、気層での利用はともかく、長期の水中での利用は、シリカ担体が水に溶解して無くなってしまうという問題があるため、水中使用については、実験室では利用することは可能であるが、耐久性上、実利用は困難である。 Conventionally, as a prior art, for example, in Patent Document 1, by utilizing the porosity of silica gel, a silica support in which titanium dioxide is supported up to the inner surface of the silica gel enables high efficiency of photocatalysis. A photocatalyst-supported silica gel is described. However, this type of photocatalyst-supported silica gel is not used in the air layer, but long-term use in water has the problem that the silica support dissolves in water and is lost. However, it is possible to use it, but it is difficult to actually use it for durability.
 また、他の先行技術として、例えば、特許文献2には、ガラスビーズを担体に、その表面に二酸化チタンを薄膜として成膜することで光触媒を固定化した光触媒薄膜製品が記載されている。しかし、この種の光触媒薄膜は、水中使用の場合、固定床での利用では、流路圧損のため、流量を要する実利用には不向きであり、また、流動床での利用では、光触媒薄膜自体が互いに擦れあって剥離してしまうため、いずれも実利用には供し得ない。 As another prior art, for example, Patent Document 2 describes a photocatalytic thin film product in which a photocatalyst is immobilized by forming glass beads as a carrier and titanium dioxide as a thin film on the surface thereof. However, this type of photocatalyst thin film is not suitable for actual use requiring a flow rate due to flow path pressure loss when used in a fixed bed when used in water, and the photocatalytic thin film itself is not suitable for use in a fluidized bed. Since they rub against each other and peel off, none of them can be put to practical use.
 また、他の先行技術として、例えば、特許文献3には、粉状の二酸化チタンを圧縮固形化して、顆粒状、或いはペレット化した形態の光触媒製品が、ドライクリーニング排液の処理に利用される例が記載されている。しかし、この種の光触媒製品は、粉状の二酸化チタンを圧力で固めて固形化したものであることから、その硬度や、抗破壊強度に限度があり、本発明製品の有する実利用に供し得るような特定の硬度や、抗破壊強度のものとはその品質が大きく異なっている。 As another prior art, for example, in Patent Document 3, a photocatalyst product in the form of granules or pellets obtained by compressing and solidifying powdered titanium dioxide is used for treatment of dry cleaning waste liquid. An example is given. However, since this type of photocatalytic product is solidified by solidifying powdered titanium dioxide with pressure, its hardness and anti-destructive strength are limited, and can be used for actual use of the product of the present invention. The quality is greatly different from that of the specific hardness and anti-destructive strength.
 また、他の先行技術として、例えば、特許文献4には、二酸化チタンの表面にリン酸カルシウム結晶を析出させた複合材料を、漂白殺菌材として用いるための当該複合材料の製造方法が記載されている。しかし、この種の担体を有する複合材料は、純二酸化チタン結晶のみにより構成される固形物からなる本発明の固形光触媒材とは、その構造が本質的に異なるものであり、特に、水浄化・空気浄化のような用途に供する上で好適なものではない。 As another prior art, for example, Patent Document 4 describes a method for producing a composite material in which a composite material in which calcium phosphate crystals are precipitated on the surface of titanium dioxide is used as a bleaching disinfectant. However, the composite material having this type of carrier is essentially different in structure from the solid photocatalyst material of the present invention comprising a solid material composed only of pure titanium dioxide crystals. It is not suitable for use in applications such as air purification.
 また、他の先行技術として、例えば、特許文献5には、使用済みガラスなどの担体に連続多孔質処理を施して形成される連続微細発泡体に、光触媒を塗布又は含浸して製造される浄化材が記載されている。しかし、この種の担体を有する浄化材は、純二酸化チタンのみにより構成された固形物からなる本発明の固形光触媒材とは、その構造が大きく異なるものであり、しかも、二酸化チタン結晶の含有量は、本発明製品とは比較にならないほど微小なレベルのものであり、本発明の固形光触媒材が特徴としているような優れた水浄化・空気浄化性能を具備した製品とはなり得ない。 As another prior art, for example, Patent Document 5 discloses a purification produced by applying or impregnating a photocatalyst to a continuous fine foam formed by subjecting a carrier such as used glass to continuous porous treatment. The materials are listed. However, the purification material having this type of carrier is significantly different in structure from the solid photocatalyst material of the present invention consisting of solids composed only of pure titanium dioxide, and the content of titanium dioxide crystals Since the product of the present invention is of a minute level that cannot be compared with the product of the present invention, it cannot be a product having excellent water purification / air purification performance as characterized by the solid photocatalyst material of the present invention.
特開平11-138017号公報「光触媒シリカゲルおよびその製造方法」出願人:工業技術院長、新東工業株式会社Japanese Patent Application Laid-Open No. 11-138017 “Photocatalytic silica gel and method for producing the same” Applicant: Director, Industrial Technology Institute, Shinto Kogyo Co., Ltd. 特開2001-046883号公報「光触媒機能を有するシリカゲル成形体およびその製造方法」出願人:新東工業株式会社JP 2001-046883 A “Silica gel molded body having photocatalytic function and method for producing the same” Applicant: Shinto Kogyo Co., Ltd. 特開2002-282704号公報「酸化チタン担持光触媒シリカゲルおよびその製造方法」出願人:新東ブイセラックス株式会社JP 2002-282704 A “Titanium oxide-supported photocatalyst silica gel and method for producing the same” Applicant: Shinto Buyserax Co., Ltd. 特許第2,883,761号「雑菌繁殖防止体」 出願人:工業技術院長、(株)光触媒研究所Japanese Patent No. 2,883,761 "Bacteria-preventing body" Applicant: Director, Industrial Technology Institute, Photocatalyst Research Institute Co., Ltd. 特開2001-347258号公報「産廃処理方法とそれに用いる廃液処理装置およびこれを用いた洗浄装置」出願人:ヤマハ株式会社Japanese Patent Application Laid-Open No. 2001-347258 “Industrial waste treatment method, waste liquid treatment apparatus used therein and cleaning apparatus using the same” Applicant: Yamaha Corporation 特開2003-82393号公報「洗浄材」出願人:独立行政法人産業技術総合研究所JP 2003-82393 A “Cleaning Material” Applicant: National Institute of Advanced Industrial Science and Technology 実用新案登録第3171431号「エコ浄化材」出願人:有限会社ピーエムシーサービスUtility Model Registration No. 3171431 “Eco-Purification Material” Applicant: PMC Service Co., Ltd.
 一般に、二酸化チタンは、殆どの場合、粉体の形態で販売されている。しかし、光触媒を製造するには、粉体のままでは使用できず、バインダ(結合剤)による固型化や、担体に担持して固定化するなど、何らかのバインダ(結合剤)や担体に固定化することが必要である。しかし、固定化された粉体には、バインダ(結合剤)や担体が夾雑物となり、二酸化チタンの光触媒性能を十分に発揮しきれないという問題がある。 Generally, titanium dioxide is most often sold in powder form. However, in order to produce a photocatalyst, it cannot be used as it is in powder form, but is fixed to some binder (binder) or carrier, such as solidification with a binder (binder) or support by a carrier. It is necessary to. However, the immobilized powder has a problem that the binder (binder) and the carrier become impurities, and the photocatalytic performance of titanium dioxide cannot be fully exhibited.
 また、ゾルゲル法などにより薄膜として形成された二酸化チタンは、結晶がいきなり板状・球状などの担体に担持されて用いられるため、比較的に、その光触媒としての機能性は高いといえる。しかし、薄膜であるために、該薄膜が互いに擦れあう流動床などでは、薄膜が剥離したり衝突したりすることにより壊れて、その機能が消失してしまう、という問題があり、また、固定床では、薄膜表面でしか機能性が発揮されないため、粉体に比べて、光触媒の絶対量において、機能性が不足となる、という問題がある。 In addition, since titanium dioxide formed as a thin film by the sol-gel method is used by being suddenly supported on a plate-like or spherical carrier, its functionality as a photocatalyst is relatively high. However, since it is a thin film, in a fluidized bed where the thin films rub against each other, there is a problem that the thin film is broken by peeling or colliding and its function is lost. However, since the functionality is exhibited only on the surface of the thin film, there is a problem that the functionality is insufficient in the absolute amount of the photocatalyst as compared with the powder.
 そこで、当技術分野においては、ゾルゲル法などにより薄膜として形成された二酸化チタンによる強力な光触媒機能と、固定化法により固定化された粉体混合物の多量の二酸化チタンによる量を同時に保有し、かつ薄膜が互いに擦れあっても剥離せず、衝突により壊れても、その機能性を失うことがない、という、これらの両者の手法の特徴を兼ね備えた新しいタイプの光触媒の開発が強く必要とされてきた。このような状況の中で、本発明者が鋭意検討を積み重ねる過程で、以下の特定の技術的手段を採用することにより、当技術分野における上述の課題を有効に解決し得ることを見出し、本発明を完成するに至った。 Therefore, in this technical field, simultaneously possesses a powerful photocatalytic function by titanium dioxide formed as a thin film by a sol-gel method and the like, and a large amount of titanium dioxide in a powder mixture immobilized by an immobilization method, and There is a strong need for the development of new types of photocatalysts that combine the features of both methods, such that thin films do not peel even if they rub against each other, and do not lose their functionality even if they break by collision. It was. In such a situation, the inventors have found that the above-mentioned problems in the technical field can be effectively solved by adopting the following specific technical means in the process of intensive studies. The invention has been completed.
 本発明は、光触媒機能を有する二酸化チタンのみにより構成された固形物(担体を有しない)からなる新しいタイプの固形光触媒材と、その製造方法及び該固形光触媒材による水処理装置を提供することを目的とするものである。 The present invention provides a new type of solid photocatalyst material composed of a solid material (no carrier) composed only of titanium dioxide having a photocatalytic function, a method for producing the same, and a water treatment apparatus using the solid photocatalyst material. It is the purpose.
 また、本発明は、上記固形物の外殻から内芯まで全て同じ結晶から構成され、ルチル型結晶を含まず、アナターゼ型結晶(ブルッカイト型結晶が含まれていてもよい)の二酸化チタンのみにより構成された固形物からなる固形光触媒材であって、以下の(i)~(vi);
(i)細孔径(ポアサイズ)が2~28nm、
(ii)比表面積が70~110m/g、
(iii)真密度が3.90±1.0g/cm
(iv)嵩比重が1.3~1.6、
(v)ビッカース硬度が600~800Hv、
(vi)結晶粒径が10~25nm、
の数値を満たす固形光触媒材と、その製造方法を提供することを目的とするものである。
Further, the present invention is composed of the same crystal from the outer shell to the inner core of the solid, and does not include a rutile type crystal, but only an anatase type crystal (may include a brookite type crystal). A solid photocatalyst material composed of a solid material comprising the following (i) to (vi);
(I) pore diameter (pore size) of 2 to 28 nm,
(Ii) specific surface area of 70 to 110 m 2 / g,
(Iii) True density is 3.90 ± 1.0 g / cm 3 ,
(Iv) The bulk specific gravity is 1.3 to 1.6,
(V) Vickers hardness is 600 to 800 Hv,
(Vi) the crystal grain size is 10-25 nm,
It aims at providing the solid photocatalyst material which satisfy | fills these numerical values, and its manufacturing method.
 上記課題を解決するための本発明は、以下の技術的手段から構成される。
(1)光触媒機能を有する二酸化チタンのみにより構成された固形物(担体を有しない)からなる固形光触媒材であって、
 ルチル型結晶を含まず、アナターゼ型結晶(ブルッカイト型結晶が含まれていてもよい)の二酸化チタンのみにより構成され、以下の(i)~(vi); 
(i)細孔径(ポアサイズ)が2~28nm、
(ii)比表面積が70~110m/g、
(iii)真密度が3.90±1.0g/cm
(iv)嵩比重が1.3~1.6、
(v)ビッカース硬度が600~800Hv、
(vi)結晶粒径が10~25nm、
の各数値を満たすことを特徴とする固形光触媒材。
(2)上記固形物の外殻から内芯まで全て同じアナターゼ型結晶(ブルッカイト型結晶が含まれていてもよい)の二酸化チタンのみにより構成された固形物からなる、前記(1)に記載の固形光触媒材。
(3)光触媒に対する活性光線を、0.8mJ/cmsecの強度で照射した場合に、常温・常圧で、アセトルデヒドが、JISR1701-2試験法により、5.0μmol/h以上分解除去できる光触媒活性を有する、前記(1)又は(2)に記載の固形光触媒材。
(4)窒素吸着によるBET比表面積が、110m/gの比表面積を保有する、前記(1)から(3)のいずれかに記載の固形光触媒材。
(5)ゾルゲル法に基づいて調製した二酸化チタンコロイダルゲル分散液に、有機固形分の核形成材を添加、混合して、高粘性のスラリーを調製し、次いで、この高粘性スラリーの水分を、温度20~60℃の雰囲気下で除去して、湿潤ゲルを調製し、得られた湿潤ゲルを、温度500~650℃で焼成することにより、形態がフレーク状の固形物を調製すること、上記有機固形分の核形成材として、活性炭、セルロース、又はポリビニルアルコールから選択されるフロック形成凝集材を用いること、を特徴とする固形光触媒材の製造方法。
(6)湿潤ゲルを、焼成することにより、板状ないし不定形のフレーク状の固形物を調製する、前記(5)に記載の固形光触媒材の製造方法。
(7)フレーク状の固形物を、温水で洗浄、乾燥し、次いで、これを分級して粒度を整えて、板状ないし不定形のフレーク光触媒を調製する、前記(6)に記載の固形光触媒材の製造方法。
(8)前記(1)から(4)のいずれかに記載の固形光触媒材と光エネルギーを用いて水の浄化処理を実施するための水処理装置であって、
 固形光触媒材である光触媒ソリッドフレーク(フレーク触媒)を固定床として所定の充填量で充填したガラス管を直列に接続した1列の経路を、更に所定数の列に、並列に接続してなる連結管装置と、このガラス管に紫外線照射を施してガラス管内に充填された光触媒を励起させる手段と、被処理水を貯蔵するタンクと、処理済水を貯蔵するタンクと、被処理水を前記連結管装置を経由して所定の通水速度で通水するポンプとを有することを特徴とする水処理装置。
(9)ガラス管の管内径(mmφ)が、φ8~15である、前記(8)に記載の装置。
(10)通水速度が、50ml/min~5L/minである、前記(8)に記載の装置。
(11)ガラス管に対する光触媒ソリッドフレークの固定床としての充填量が、充填長300mmのとき、管内径φ8~φ13.5(mmφ)で、10g~50gの範囲である、前記(8)に記載の装置。
The present invention for solving the above-described problems comprises the following technical means.
(1) A solid photocatalyst material comprising a solid material (without a carrier) composed only of titanium dioxide having a photocatalytic function,
Containing only titanium dioxide of anatase type crystal (may include brookite type crystal) without rutile type crystal, the following (i) to (vi):
(I) pore diameter (pore size) of 2 to 28 nm,
(Ii) specific surface area of 70 to 110 m 2 / g,
(Iii) True density is 3.90 ± 1.0 g / cm 3 ,
(Iv) The bulk specific gravity is 1.3 to 1.6,
(V) Vickers hardness is 600 to 800 Hv,
(Vi) the crystal grain size is 10-25 nm,
Solid photocatalyst material characterized by satisfying each numerical value of
(2) The solid body comprising only titanium dioxide of the same anatase type crystal (may include brookite type crystal) from the outer shell to the inner core of the solid material as described in (1) above Solid photocatalyst material.
(3) Acetaldehyde can be decomposed and removed by 5.0 μmol / h or more by the JIS R1701-2 test method at normal temperature and pressure when irradiated with an actinic ray against the photocatalyst at an intensity of 0.8 mJ / cm 2 sec. The solid photocatalyst material according to (1) or (2), which has photocatalytic activity.
(4) The solid photocatalyst material according to any one of (1) to (3), wherein the BET specific surface area by nitrogen adsorption has a specific surface area of 110 m 2 / g.
(5) To a titanium dioxide colloidal gel dispersion prepared based on the sol-gel method, an organic solid nucleating material is added and mixed to prepare a highly viscous slurry, and then the moisture of the highly viscous slurry is Removing in an atmosphere at a temperature of 20 to 60 ° C. to prepare a wet gel, and baking the obtained wet gel at a temperature of 500 to 650 ° C. to prepare a solid having a flaky form; A method for producing a solid photocatalyst material, comprising using a floc-forming aggregate selected from activated carbon, cellulose, or polyvinyl alcohol as a nucleation material for organic solids.
(6) The method for producing a solid photocatalyst material according to the above (5), wherein the wet gel is baked to prepare a plate-like or amorphous flaky solid.
(7) The solid photocatalyst according to (6) above, wherein the flaky solid is washed with warm water, dried, and then classified to prepare a flaky photocatalyst having a plate shape or an amorphous shape. A method of manufacturing the material.
(8) A water treatment device for carrying out water purification using the solid photocatalyst material according to any one of (1) to (4) and light energy,
Connected by connecting a series of glass tubes filled with a fixed amount of photocatalyst solid flakes (flake catalyst), which is a solid photocatalyst material, in series, and connected in parallel to a predetermined number of rows A pipe device, means for exciting the photocatalyst filled in the glass tube by irradiating the glass tube with ultraviolet light, a tank for storing the water to be treated, a tank for storing the treated water, and the water to be treated A water treatment device comprising: a pump for passing water at a predetermined water flow rate through a pipe device.
(9) The apparatus according to (8), wherein the inner diameter (mmφ) of the glass tube is φ8-15.
(10) The apparatus according to (8), wherein the water flow rate is 50 ml / min to 5 L / min.
(11) The filling amount of the photocatalyst solid flakes as a fixed bed with respect to the glass tube is 10 g to 50 g in the tube inner diameter φ8 to φ13.5 (mmφ) when the filling length is 300 mm. Equipment.
 次に、本発明について更に詳細に説明する。
 ここで、本発明の固形光触媒材について説明すると、本発明の固形光触媒材は、ルチル型結晶を含まず、アナターゼ型結晶(ブルッカイト型結晶が含まれていてもよい)の二酸化チタンのみにより構成される固形物からなる固形光触媒材であって、細孔径(ポアサイズ)が2~28nm、比表面積が70~110m/g、真密度が3.90±1.0g/cm、嵩比重が1.3~1.6、ビッカース硬度が600~800Hv、結晶粒径が10~25nm、の各数値を満たす固形光触媒材に係るものである。
Next, the present invention will be described in more detail.
Here, the solid photocatalyst material of the present invention will be described. The solid photocatalyst material of the present invention does not contain a rutile type crystal, but is composed only of titanium dioxide of anatase type crystal (which may contain a brookite type crystal). A solid photocatalyst material having a pore size of 2 to 28 nm, a specific surface area of 70 to 110 m 2 / g, a true density of 3.90 ± 1.0 g / cm 3 , and a bulk specific gravity of 1 .3 to 1.6, a Vickers hardness of 600 to 800 Hv, and a crystal grain size of 10 to 25 nm.
 本発明の固形光触媒材は、一般に、光触媒で用いられる「担体」成分を有せず、該固形光触媒材を構成する固形物の外殻から内芯まで全て同じ結晶から構成される二酸化チタン光触媒材であり、ルチル型結晶を含まず、アナターゼ型結晶(ブルッカイト型結晶が含まれていてもよい)のみにより構成される固形物からなる固形光触媒材である。本発明の固形光触媒材は、比表面が70~110m/gという高い比表面積を有することで吸着機能に優れており、また、ビッカース硬度が600~800Hvで、高硬度であり、相互に擦れあっても壊れない高耐久性を有するという特徴を有する。 The solid photocatalyst material of the present invention generally does not have a “support” component used in the photocatalyst, and the titanium dioxide photocatalyst material is composed of the same crystals from the outer shell to the inner core of the solid material constituting the solid photocatalyst material. It is a solid photocatalyst material made of a solid material that does not include a rutile crystal and is composed only of an anatase crystal (may include a brookite crystal). The solid photocatalyst material of the present invention has a high specific surface area of 70 to 110 m 2 / g, and thus has an excellent adsorption function, and has a Vickers hardness of 600 to 800 Hv, a high hardness, and rubs against each other. Even if it has, it has the characteristic of having high durability which does not break.
 本発明の固形光触媒材の光触媒活性について説明すると、例えば、そのアルデヒド分解能を調べるために、本発明の固形光触媒材(フレーク触媒;ソリッドフレーク)によるアルデヒド分散テスト(JIS R1701-2試験法による)を行った場合の、アセトアルデヒドとCO濃度の変化を図1に示す。図に示した計算式の、Qa=Ra×[A0]×f×1.016×60/(100×22.4)において、
 式中、Qaは、求めるべき数値(μmol/h)、
 Raは、アセトアルデヒド除去率(%)、
 [A0]は、導入ガス濃度、
 fは、ガス流量(=1L/min)、をそれぞれ示す。
The photocatalytic activity of the solid photocatalyst material of the present invention will be described. For example, an aldehyde dispersion test (based on the JIS R1701-2 test method) using the solid photocatalyst material of the present invention (flake catalyst; solid flake) is performed in order to examine its aldehyde resolution. The changes in acetaldehyde and CO 2 concentrations when performed are shown in FIG. In the calculation formula shown in the figure, Qa = Ra × [A0] × f × 1.016 × 60 / (100 × 22.4)
In the formula, Qa is a numerical value to be obtained (μmol / h),
Ra is the acetaldehyde removal rate (%),
[A0] is the concentration of introduced gas,
f indicates a gas flow rate (= 1 L / min), respectively.
 上記計算式による計算の結果、本発明の固形光触媒材(フレーク触媒)によるアセトアルデヒド除去量は、7.55μmol/hであったが、この数値は、光触媒工業会の認証基準値の44倍の高い活性を持っていることを示す。 As a result of the calculation by the above formula, the amount of acetaldehyde removed by the solid photocatalyst material (flake catalyst) of the present invention was 7.55 μmol / h, which is 44 times higher than the certification standard value of the photocatalyst industry association. Indicates that it has activity.
 次に、SEM観察による、本発明の固形光触媒材を構成する二酸化チタン結晶の粒子径の測定結果を図2に示す。図は、画像の鮮明度が不足している部分があるとしても、この図より、結晶粒径は、0.5μm×1/20=25nmと読み取れる。また、AFM原子間力顕微鏡による、本発明の固形光触媒材を構成する二酸化チタン結晶の粒子径の測定結果を図3に示す。この図より、結晶粒径は、200nm×1/20=10nmと読み取れる。 Next, FIG. 2 shows the measurement result of the particle diameter of the titanium dioxide crystal constituting the solid photocatalyst material of the present invention by SEM observation. The figure shows that the crystal grain size can be read as 0.5 μm × 1/20 = 25 nm, even if there is a portion where the sharpness of the image is insufficient. Moreover, the measurement result of the particle diameter of the titanium dioxide crystal which comprises the solid photocatalyst material of this invention by an AFM atomic force microscope is shown in FIG. From this figure, the crystal grain size can be read as 200 nm × 1/20 = 10 nm.
 次に、窒素吸着による、本発明の固形光触媒材の比表面積の測定結果を図4に示す。図において、BET比表面積は、Belsorp-max(Microtracbell社製)により測定したものである。また、本発明の固形光触媒材(フレーク触媒)の外観を図5示す。また、本発明の固形光触媒材のX線回折による結晶型の分析結果を図6に示す。これらの図より、本発明の固形光触媒材が純度が95~98%のアナターゼ型結晶のみにより構成された固形物からなることが明確に理解できる。ここでは、アナターゼ型結晶の他に、ブルッカイト型結晶が含まれていてもよい。 Next, the measurement result of the specific surface area of the solid photocatalyst material of the present invention by nitrogen adsorption is shown in FIG. In the figure, the BET specific surface area is measured by Belsorb-max (manufactured by Microtracbell). Moreover, the external appearance of the solid photocatalyst material (flakes catalyst) of this invention is shown in FIG. Moreover, the analysis result of the crystal type by the X ray diffraction of the solid photocatalyst material of this invention is shown in FIG. From these figures, it can be clearly understood that the solid photocatalyst material of the present invention is composed of a solid material composed only of anatase type crystals having a purity of 95 to 98%. Here, in addition to the anatase type crystal, a brookite type crystal may be included.
 本発明の固形光触媒材の光触媒活性については、光触媒に対する活性光線(紫外線)を、例えば、強度0.8mJ/cm secの強度で照射した場合に、常温・常圧で、例えば、アセトアルデヒドが、JIS R1701-2試験法により、5.0μmol/h以上分解除去できるという光触媒活性を有している。 As for the photocatalytic activity of the solid photocatalyst material of the present invention, when irradiated with actinic rays (ultraviolet rays) with respect to the photocatalyst, for example, at an intensity of 0.8 mJ / cm 2 sec, at room temperature and normal pressure, for example, acetaldehyde, According to the JIS R1701-2 test method, it has a photocatalytic activity capable of decomposing and removing 5.0 μmol / h or more.
 次に、本発明の固形光触媒材の製造方法の基本的な原理について説明する。まず、本発明の固形光触媒材の製造方法では、一般的なゾルゲル法に基づく手法により、二酸化チタンコロイダル分散ゾルを調製するが、この場合、これをゲル化するまで水分を蒸発させて焼成するだけでは、二酸化チタンコロイダル分散ゲルは固型化せず、二酸化チタン白色粉体となるだけである。 Next, the basic principle of the method for producing the solid photocatalyst material of the present invention will be described. First, in the method for producing a solid photocatalyst material of the present invention, a titanium dioxide colloidal dispersion sol is prepared by a method based on a general sol-gel method. In this case, only water is evaporated and fired until it is gelled. Then, the titanium dioxide colloidal dispersion gel is not solidified, but only becomes a titanium dioxide white powder.
 本発明者は、鋭意研究を進める過程で、この二酸化チタンコロイダル分散ゾルから水分を離脱させた湿潤ゲルが縮重合していく過程で、二酸化チタン結晶がより緊密な結合状態を形成するには、核となる核形成材の存在が不可欠であり、ここに、焼成後には燃焼して消滅する有機固形分の核形成材を含有させることが有効であるとの知見を見出した。すなわち、この有機固形分の核形成材の要件としては、当該核形成材を、二酸化チタンコロイダル分散ゾルに、添加、混合した後もゾルの流動性を失わないように、その粒状径が小さく、水との親和性が高い物質、例えば、活性炭、セルロース、ポリビニルアルコールから選択されるフロック形成凝集材が有効であるとの知見を得た。本発明では、結晶を凝集してフロックを形成する物質をフロック形成凝集材と称することとする。 In the process of advancing research, the present inventor, in the process of condensation polymerization of the wet gel from which water has been removed from the titanium dioxide colloidal dispersion sol, forms a tighter bonded state of the titanium dioxide crystals. The existence of a nucleation material serving as a nucleus is indispensable, and it has been found that it is effective to contain a nucleation material having an organic solid content that burns and disappears after firing. That is, as a requirement for the nucleation material of this organic solid content, the particle size is small so as not to lose the fluidity of the sol even after the nucleation material is added to and mixed with the titanium dioxide colloidal dispersion sol, The present inventors have found that a substance having a high affinity with water, for example, a floc-forming aggregate selected from activated carbon, cellulose and polyvinyl alcohol is effective. In the present invention, a substance that aggregates crystals to form a floc is referred to as a floc-forming aggregate.
 これらの有機固形分の核形成材を選択することで、二酸化チタンコロイダル分散ゾルによる高粘性のスラリーを形成し、これを乾燥していく過程で、該高粘性のスラリー中の核となってその周囲に二酸化チタン結晶が纏わりついて結晶同士が網目構造を形成していくことで、焼成後も結晶結合分子が二酸化チタン粉末とならず、構成成分の混合比を調整することで、膜状に網目構造を形成して有機固形分を覆う形態が得られることが判明した(図7参照)。これを焼成すると、核となる有機固形分が燃焼して、残存物として無機結晶体である二酸化チタンの構造体を得ることができる(図8参照)。 By selecting these organic solid content nucleating materials, a high-viscosity slurry is formed from the titanium dioxide colloidal dispersion sol, and in the process of drying this, it becomes a nucleus in the high-viscosity slurry. Titanium dioxide crystals are gathered around to form a network structure between the crystals, so that the crystal-bonded molecules do not become titanium dioxide powder even after firing, and the mixing ratio of the constituent components is adjusted to form a network. It has been found that a structure is formed to cover the organic solids (see FIG. 7). When this is baked, the organic solid content serving as a nucleus burns, and a structure of titanium dioxide, which is an inorganic crystal, can be obtained as a residue (see FIG. 8).
 次に、本発明の固形光触媒材の製造プロセスの実施の態様について具体的に説明すると、本発明の固形光触媒材の製造方法においては、まず、一般的なゾルゲル法に基づいて、二酸化チタンコロイダル分散液を調製する。この場合、例えば、チタンイソプロポキシド溶液を、純水中に滴下、混合した後、濃硝酸などの酸で分散し、濃縮して、二酸化チタンコロイダル分散液を調製する。 Next, the embodiment of the production process of the solid photocatalyst material of the present invention will be described in detail. In the production method of the solid photocatalyst material of the present invention, first, titanium dioxide colloidal dispersion is performed based on a general sol-gel method. Prepare the solution. In this case, for example, a titanium isopropoxide solution is dropped and mixed in pure water, then dispersed with an acid such as concentrated nitric acid, and concentrated to prepare a titanium dioxide colloidal dispersion.
 次いで、得られた二酸化チタンコロイダル分散液に、核形成材として、例えば、燃焼して消滅する有機固形分の活性炭や、セルロース、ポリビニルアルコールなどのフロック形成凝集材を添加、混合して、高粘性のスラリーを調製する。この場合、核形成材としては、上記二酸化チタンコロイダル分散液から上記高粘性スラリーと同等の高粘性のスラリーを調製できるものであればよく、上記の活性炭や、セルロース、ポリビニルアルコールに限らず、それらと同効の成分であれば、同様に使用することができる。次いで、この高粘性スラリーの水分を、温度20~60℃、例えば、温度20~50℃の雰囲気下で除去して、例えば、黒色湿潤ゲルなどの湿潤ゲルを調製する。 Next, the resulting titanium dioxide colloidal dispersion is mixed with high-viscosity, for example, by adding and mixing floc-forming aggregates such as activated carbon of organic solids that disappears upon burning, cellulose, and polyvinyl alcohol as nucleation materials. A slurry is prepared. In this case, the nucleation material may be any material as long as it can prepare a highly viscous slurry equivalent to the highly viscous slurry from the titanium dioxide colloidal dispersion, and is not limited to the activated carbon, cellulose, or polyvinyl alcohol. Can be used in the same manner as long as they have the same effect. Next, the moisture of the highly viscous slurry is removed in an atmosphere at a temperature of 20 to 60 ° C., for example, at a temperature of 20 to 50 ° C. to prepare a wet gel such as a black wet gel.
 次に、この黒色湿潤ゲルなどの湿潤ゲルを、例えば、600℃で1時間焼成する。それによって、乳白色などで、大きさがさまざまなフレーク状の形態の固形材を調製する。次いで、得られたフレーク状の形態の固形材を、例えば、80~100℃の温水で洗浄、乾燥して、フレーク触媒を調製し、これを分級して、粒度を整えることにより、完成した光触媒製品としての固形光触媒材を調製する。上記工程により得られる固形光触媒材は、その形態が、板状ないし不定形であり、純度が95~98%のアナターゼ型結晶の二酸化チタンのみから構成される固形物からなるという特徴を有する。この場合、結晶として、アナターゼ型結晶の他に、ブルッカイト型結晶が含まれていてもよい。 Next, a wet gel such as this black wet gel is baked at 600 ° C. for 1 hour, for example. Thereby, a solid material in the form of flakes of various sizes such as milky white is prepared. Next, the obtained flake-shaped solid material is washed with, for example, hot water of 80 to 100 ° C. and dried to prepare a flake catalyst, which is classified to adjust the particle size, thereby completing the photocatalyst. A solid photocatalyst material is prepared as a product. The solid photocatalyst material obtained by the above process is characterized in that its form is a plate-like or amorphous shape, and it consists of a solid material composed only of anatase-type crystal titanium dioxide having a purity of 95 to 98%. In this case, a brookite type crystal may be included in addition to the anatase type crystal.
 次に、本発明の固形光触媒材の有用性について説明する。本発明の上述の固形光触媒材(フレーク触媒;ソリッドフレーク)の特性データから明らかなように、本発明の固形光触媒材は、例えば、紫外線に応答して、水・空気などの環境浄化に供するための高レベルの光触媒能を有する。このことから、当該光触媒機能を利用して、一般に光触媒製品として公知又は非公知の各種の光触媒製品用の固形光触媒材として広く使用することが可能である。 Next, the usefulness of the solid photocatalyst material of the present invention will be described. As is clear from the characteristic data of the above-described solid photocatalyst material (flake catalyst; solid flake) of the present invention, the solid photocatalyst material of the present invention is used for environmental purification such as water and air in response to ultraviolet rays, for example. It has a high level of photocatalytic ability. Therefore, it is possible to use the photocatalyst function widely as a solid photocatalyst material for various photocatalyst products that are generally known or not known as photocatalyst products.
 また、本発明の固形光触媒材は、公知の二酸化チタン系光触媒に不可避的に使用される当該二酸化チタン系光触媒を担持するための担体を使用する必要がないことから、その製造施設や製造プロセスないし製造システムが、既存の光触媒と比較して、簡便であるという利点を有する。しかも、本発明の固形光触媒材は、アナターゼ型結晶(ブルッカイト型結晶が含まれていてもよい)の二酸化チタンのみから構成される固形物として、優れた耐久性を有することから、水中での利用、特に、長期の水中での利用でも、安定的に使用することが可能であり、気層での利用はもとより、特に、水中使用で必要とされる固定床や流動床での利用が可能であり、かつ、水の浄化処理に使用した後の固形光触媒材を再生し、再利用することが容易であるという特徴を有する。 Moreover, since the solid photocatalyst material of the present invention does not require the use of a carrier for supporting the titanium dioxide photocatalyst inevitably used in known titanium dioxide photocatalysts, its production facility, production process or The production system has an advantage that it is simpler than existing photocatalysts. Moreover, since the solid photocatalyst material of the present invention has excellent durability as a solid material composed only of titanium dioxide of anatase type crystal (may contain brookite type crystal), it is used in water. In particular, it can be used stably even in long-term underwater use, and can be used not only in the air layer, but also in fixed beds and fluidized beds that are required for underwater use. And it has the characteristics that the solid photocatalyst material after using it for the purification process of water is easy to reproduce | regenerate and reuse.
 このような特徴を持つ、本発明の固形光触媒材の具体的な応用領域として、例えば、発展途上国などの、飲料水に用いる水を河川や池の水に依存する地域において、それらの水を光触媒による抗菌作用を利用して浄化処理して、雑菌が繁殖しない、安全な飲料水用の水として供給することを可能とする、簡便な水の浄化システムを構築するための基本技術として有用である。 As a specific application area of the solid photocatalyst material of the present invention having such characteristics, for example, in regions such as developing countries where water used for drinking water depends on the water of rivers and ponds, the water is used. It is useful as a basic technology for constructing a simple water purification system that can be supplied as safe drinking water that is purified by utilizing the antibacterial action of the photocatalyst and prevents germs from breeding. is there.
 このような簡便な水の浄化システムを構築する上で、本発明の固形光触媒材は、光触媒を担体に担持させる工程や、その材料が不要であることから、部品点数や製造工程の点、かつ、コスト的な点で有利であり、とりわけ、発展途上国などの、原地での生産と、原地での利用に優位性を有するという、既存の光触媒にはない格別の特徴を有する。このことから、本発明は、特に、地球の温暖化や砂漠地帯の拡大に伴う、水資源の枯渇や、安全な飲料用水の欠乏の問題を有効に解決するための、簡便な光触媒による抗菌作用を利用した浄化システムを構築することを可能とする新技術として有用である。 In constructing such a simple water purification system, the solid photocatalyst material of the present invention does not require a step of supporting the photocatalyst on a carrier and the material thereof, so that the number of parts and the manufacturing process are reduced. It is advantageous in terms of cost, and in particular, has an exceptional feature that existing photocatalysts do not have, such as superiority in production and use in the original land, such as in developing countries. From this, the present invention is particularly effective for the antibacterial action by a simple photocatalyst for effectively solving the problems of depletion of water resources and lack of safe drinking water accompanying the global warming and the expansion of desert areas. It is useful as a new technology that makes it possible to construct a purification system using the
 本発明により、以下のような効果が奏される。
(1)光触媒機能を有する二酸化チタンのみにより構成された固形物(担体を有しない)からなる新しいタイプの固形光触媒材を提供することができる。
(2)上記固形物の外殻から内芯までルチル型結晶を含まず、全て同じアナターゼ型結晶(ブルッカイト型結晶が含まれていてもよい)による二酸化チタンのみにより構成される固形物からなる固形光触媒材を提供することができる。
(3)本発明の固形光触媒材(光触媒ソリッドフレーク;フレーク触媒)によるアセトアルデヒド除去量は、7.55μmol/hであり、光触媒工業会の認定基準値の44倍の高い活性を有する。
(4)本発明の固形光触媒材(光触媒ソリッドフレーク;フレーク触媒)は、ゾルゲル法に基づいて調製した二酸化チタンコロイダル分散液を利用して、格別な施設を設置することなく、簡便なシステムを用いて、製造し、利用することができる。
(5)本発明によれば、簡便なシステムで、発展途上国などの、飲料水を河川や池などの水に依存する地域において、太陽光の照射下などで、それらの水を光触媒による抗菌作用により浄化処理して、雑菌が繁殖しない、安全な飲料水を調製し、提供することができる。
(6)水の浄化処理に使用した後の固形光触媒材を、(焼却処理などの)簡便な操作で、容易に再生し、再利用することが可能である。
(7)本発明の固形光触媒材と光エネルギーを利用して水の浄化処理を行う水処理装置を提供することができる。
The following effects are exhibited by the present invention.
(1) It is possible to provide a new type of solid photocatalyst material composed of a solid material (no carrier) composed only of titanium dioxide having a photocatalytic function.
(2) A solid consisting of a solid material composed only of titanium dioxide by the same anatase type crystal (may include a brookite type crystal) without including a rutile type crystal from the outer shell to the inner core of the solid. A photocatalytic material can be provided.
(3) The amount of acetaldehyde removed by the solid photocatalyst material (photocatalyst solid flake; flake catalyst) of the present invention is 7.55 μmol / h, which is 44 times higher than the certified standard value of the photocatalyst industry association.
(4) The solid photocatalyst material (photocatalyst solid flake; flake catalyst) of the present invention uses a titanium dioxide colloidal dispersion prepared based on the sol-gel method, and uses a simple system without installing a special facility. Can be manufactured and used.
(5) According to the present invention, antibacterial activity using a photocatalyst in a developing system such as a developing country where drinking water depends on water such as rivers and ponds under irradiation of sunlight. It is possible to prepare and provide safe drinking water that is purified by the action and does not propagate various germs.
(6) The solid photocatalyst material after being used for water purification treatment can be easily regenerated and reused by a simple operation (such as incineration treatment).
(7) It is possible to provide a water treatment device that performs water purification using the solid photocatalyst material of the present invention and light energy.
本発明の固形光触媒材(光触媒ソリッドフレーク;フレーク触媒)によるアセトアルデヒド分解テスト(JIS R1701-2試験法による)を実施した結果、得られたアセトアルデヒドとCO濃度の変化を示す。 図に示した計算式の、Qa=Ra×[A0]×f×1.016×60/(100×22.4)において、式中、Qaは、求めるべき数値(μmol/h)、Raは、アセトアルデヒド除去率(%)、[A0]は、導入ガス濃度、fは、ガス流量(=1L/min)、をそれぞれ示す。 上記計算式による計算の結果、フレーク触媒(固形光触媒材)によるアルデヒド除去量は、7.55μmol/hであったが、これは、光触媒工業会の認証基準値の44倍の高い活性を持っていることを示す。As a result of conducting an acetaldehyde decomposition test (according to JIS R1701-2 test method) using the solid photocatalyst material (photocatalyst solid flake; flake catalyst) of the present invention, changes in the acetaldehyde and CO 2 concentration obtained are shown. In the calculation formula shown in the figure, Qa = Ra × [A0] × f × 1.016 × 60 / (100 × 22.4), where Qa is a numerical value (μmol / h) to be obtained, and Ra is , Acetaldehyde removal rate (%), [A0] indicates the introduced gas concentration, and f indicates the gas flow rate (= 1 L / min). As a result of the calculation by the above calculation formula, the aldehyde removal amount by the flake catalyst (solid photocatalyst material) was 7.55 μmol / h, which is 44 times higher than the certification standard value of the photocatalyst industry association. Indicates that SEM観察による、二酸化チタン結晶粒子径の測定結果を示す。 図は、画像鮮明度が不足している部分があるとしても、結晶粒径:0.5μm×1/20=25nmと読み取れる。The measurement result of the titanium dioxide crystal particle diameter by SEM observation is shown. The figure can be read as crystal grain size: 0.5 μm × 1/20 = 25 nm even if there is a portion where the image definition is insufficient. AFM原子間力顕微鏡による、二酸化チタン結晶粒子径の測定結果を示す。 図より、結晶粒径:200nm×1/20=10nmと読み取れる。The measurement result of the titanium dioxide crystal particle diameter by an AFM atomic force microscope is shown. From the figure, it can be read that the crystal grain size is 200 nm × 1/20 = 10 nm. 窒素吸着による、フレーク触媒の比表面積の測定結果を示す。 BET比表面積は、Belsorp-max(Microtracbell社製)により測定した。The measurement result of the specific surface area of a flake catalyst by nitrogen adsorption is shown. The BET specific surface area was measured by Belsorb-max (manufactured by Microtracbell). フレーク触媒の外観を示す。The appearance of the flake catalyst is shown. X線回折によるフレーク触媒の結晶型の分析結果を示す。 図の結果より、本製品がアナターゼ型結晶(ブルッカイト型結晶が含まれていてもよい)のみにより構成されていることが明確に理解できる。The analysis result of the crystal form of the flake catalyst by X-ray diffraction is shown. From the results of the figure, it can be clearly understood that this product is composed only of anatase type crystals (may contain brookite type crystals). 二酸化チタンコロイダル分散ゾルから水分を離脱させた湿潤ゲルが縮重合していく過程で形成される二酸化チタン結晶の緊密な結合状態を模式的に示した図を示す。The figure which showed typically the tight binding state of the titanium dioxide crystal | crystallization formed in the process in which the wet gel which made water | moisture_content dissociated from the titanium dioxide colloidal dispersion sol condenses is shown. 左図;焼成前の湿潤ゲルの外観(有機固形分の膨らみが観察される)と、右図;焼成後の二酸化チタンの構造体の外観(有機固形分が燃えた孔が観察される)を示す。Left figure: appearance of wet gel before firing (swelling of organic solids is observed) and right figure: appearance of titanium dioxide structure after firing (holes with burned organic solids are observed) Show. 二酸化チタン結晶の細孔径(ポアサイズ)の分布を示す。 Belsorp-max(Microtracbell社製)により測定した。図に示すように、細孔径(ポアサイズ)は、10nm近傍を最多とし、2nmから28nmに至る分布を示すことが分かった。The distribution of the pore diameter of the titanium dioxide crystal is shown. Measured by Belsorb-max (manufactured by Microtracbell). As shown in the figure, it was found that the pore diameter (pore size) has a distribution from 2 nm to 28 nm with the maximum being around 10 nm. 固形光触媒材の処理機能についての実験例(閉鎖循環式光触媒反応装置と実験結果)を示す。図に示すフレーク触媒の処理機能についての循環実験より、フレーク触媒は、繰り返し使用に耐えることが証明された。An experimental example (closed circulation photocatalytic reaction device and experimental results) on the processing function of the solid photocatalyst material will be shown. From the circulation experiment on the processing function of the flake catalyst shown in the figure, the flake catalyst proved to withstand repeated use. 固形光触媒材による光触媒水処理機能試験の結果(JIS R1704試験法による)を示す。左側;ジメチルスルホキシド(DMSO)が光触媒酸化されて生じたメタスルホン酸(MSA)の濃度と、右側;DMSOの濃度を示す。The result (by JIS R1704 test method) of the photocatalyst water treatment function test by a solid photocatalyst material is shown. Left side: The concentration of metasulfonic acid (MSA) produced by photocatalytic oxidation of dimethyl sulfoxide (DMSO), and the right side: the concentration of DMSO. 光触媒水処理機能試験で使用した試験装置(平面図)を示す。The test apparatus (plan view) used in the photocatalyst water treatment function test is shown. 光触媒水処理機能試験で使用した試験装置(正面図)を示す。The test apparatus (front view) used in the photocatalyst water treatment function test is shown. フレーク触媒を充填するガラス管(充填管)の管内径(管径)と反応速度の関係を示す。The relationship between the tube inner diameter (tube diameter) of the glass tube (filled tube) filled with the flake catalyst and the reaction rate is shown. フレーク触媒を充填するガラス管(充填管)の管内径(管径)と触媒重量の関係を示す。The relationship between the tube inner diameter (tube diameter) of the glass tube (filled tube) filled with the flake catalyst and the catalyst weight is shown. 本発明の水処理装置の概要図である。It is a schematic diagram of the water treatment equipment of the present invention. デモ装置のしくみを示す。The mechanism of the demo device is shown. 本発明の水処理装置の写真(全体)を示す。The photograph (whole) of the water treatment apparatus of this invention is shown. 本発明の水処理装置の写真(部分)を示す。The photograph (part) of the water treatment apparatus of this invention is shown. 光触媒水処理実験装置を示す。The photocatalyst water treatment experimental apparatus is shown.
 次に、本発明について実施例及び試験例を示して具体的に説明するが、本発明は、以下の実施例及び試験例によって何ら限定されるものではない。 Next, the present invention will be specifically described with reference to examples and test examples. However, the present invention is not limited to the following examples and test examples.
 まず、二酸化チタンのコロイダル分散液を得るために、一般的なゾルゲル法に基づいて、二酸化チタンコロイダル分散液を調製した。当該コロイダル分散液は、例えば、文献[=作花澄夫:ゾルゲル法の科学]に記載されている方法と同様にして、以下の方法により調製した。すなわち、チタンイソプロポキシド95%溶液300gを、80℃の純水1,600g中に滴下、混合した後、濃硝酸13gで分散し、該分散液を濃縮して、形成されたコロイド分散液600gを得た。 First, in order to obtain a colloidal dispersion of titanium dioxide, a titanium dioxide colloidal dispersion was prepared based on a general sol-gel method. The colloidal dispersion was prepared by the following method, for example, in the same manner as described in the literature [= Sakuo Sakuhana: Science of Sol-Gel Method]. That is, 300 g of titanium isopropoxide 95% solution was dropped and mixed in 1,600 g of pure water at 80 ° C., and then dispersed with 13 g of concentrated nitric acid, and the dispersion was concentrated to form 600 g of the formed colloidal dispersion. Got.
 こうして得られた二酸化チタンコロイダル分散液600gに、核形成材として、活性炭(二葉化学製)60gを添加、混合して、高粘性のスラリーを調製し、該高粘性スラリーの水分を、温度20~50℃の雰囲気下で除去して、黒色の湿潤ゲル100gを得た。 60 g of activated carbon (manufactured by Futaba Chemical) as a nucleation material is added to and mixed with 600 g of the titanium dioxide colloidal dispersion obtained in this manner to prepare a highly viscous slurry. Removal under an atmosphere of 50 ° C. yielded 100 g of a black wet gel.
 この黒色湿潤ゲルを、600℃で1時間焼成することで、乳白色で、大きさは様々なフレーク状の形態の固形材30gを得た。二酸化チタンコロイダル分散液そのものが強酸性のため、得られたフレーク状の固形材を、80~100℃の温水で洗浄、乾燥して、固形光触媒材(フレーク触媒)を調製した。次いで、これを分級して所定の粒度に整えることで、光触媒製品としての固形光触媒材(フレーク触媒)を完成品として得た。 This black wet gel was baked at 600 ° C. for 1 hour to obtain 30 g of a solid material having milky white and various flaky shapes. Since the titanium dioxide colloidal dispersion itself is strongly acidic, the obtained flaky solid material was washed with hot water at 80 to 100 ° C. and dried to prepare a solid photocatalyst material (flake catalyst). Subsequently, this was classified and adjusted to a predetermined particle size to obtain a solid photocatalyst material (flake catalyst) as a photocatalyst product as a finished product.
 こうして得られた固形光触媒材(フレーク触媒)の形態は、大きさが2~5mm、厚さが0.5~1.2mmの板状ないし不定形であり、ビッカース硬度が700Hv、鉛筆引っ掻き硬度が9Hの堅い固形物であり、その組成は、純度が95~98%のアナターゼ型結晶の二酸化チタンであり、1次結晶粒径が10~20nmの結晶が結合して、固形化したものであることが、X線回折、及びAFM撮像による観察より確認された。この場合、アナターゼ型結晶の他に、ブルッカイト型結晶が含まれることが観察された。 The solid photocatalyst material (flake catalyst) thus obtained is a plate or irregular shape having a size of 2 to 5 mm and a thickness of 0.5 to 1.2 mm, a Vickers hardness of 700 Hv, and a pencil scratch hardness of It is a solid solid of 9H, the composition of which is anatase type titanium dioxide with a purity of 95 to 98%, and a solid having a primary crystal grain size of 10 to 20 nm bonded and solidified. This was confirmed by observation by X-ray diffraction and AFM imaging. In this case, it was observed that a brookite type crystal was included in addition to the anatase type crystal.
 得られた固形光触媒材は、固形物でありながら、そのBET比表面積は、110m/gであり、粉体二酸化チタンP25(ドイツ、エボニック社製)とほぼ同等であることが、BETで観察された。 Although the obtained solid photocatalyst material is a solid substance, its BET specific surface area is 110 m 2 / g, and it is observed by BET that it is almost equivalent to powdered titanium dioxide P25 (manufactured by Evonik, Germany). It was done.
 実施例1と同様にして、二酸化チタンコロイダル分散液を以下のように調製した。すなわち、チタンテトライソプロポキシド95%溶液300gを、80℃純水1,600g中に滴下、混合した後、濃硝酸13gで分散し、濃縮して、形成されたコロイド液600gを得た。 In the same manner as in Example 1, a titanium dioxide colloidal dispersion was prepared as follows. That is, 300 g of a titanium tetraisopropoxide 95% solution was dropped and mixed in 1,600 g of pure water at 80 ° C., then dispersed with 13 g of concentrated nitric acid and concentrated to obtain 600 g of the formed colloidal solution.
 こうして得られた二酸化チタンコロイダル分散液600gに、核形成材として、活性炭(二葉化学製)60gを添加、混合して、高粘性のスラリーを調製し、該高粘性スラリーの水分を、温度20~50℃雰囲気下で除去して、黒色の湿潤ゲル100gを得た。 60 g of activated carbon (manufactured by Futaba Chemical) as a nucleation material is added to and mixed with 600 g of the titanium dioxide colloidal dispersion obtained in this manner to prepare a highly viscous slurry. Removal under an atmosphere of 50 ° C. gave 100 g of a black wet gel.
 この黒色湿潤ゲルを、600℃で1時間焼成することで、乳白色で、大きさは様々なフレーク状の光触媒固形材(フレーク触媒)30gが得られた。二酸化チタンコロイダル液そのものが強酸性のため、得られたフレークを、80~100℃の温水で洗浄、乾燥して、フレーク触媒を完成した後、これを分級して、所定の粒度に整えることで、光触媒製品としての固形光触媒材(フレーク触媒)を完成品として得た。 This black wet gel was baked at 600 ° C. for 1 hour to obtain 30 g of a flaky photocatalyst solid material (flake catalyst) that was milky white and varied in size. Since the titanium dioxide colloidal liquid itself is strongly acidic, the obtained flakes are washed with hot water at 80 to 100 ° C. and dried to complete the flake catalyst, and then classified and adjusted to a predetermined particle size. A solid photocatalyst material (flake catalyst) as a photocatalyst product was obtained as a finished product.
 こうして得られた固形光触媒材(フレーク触媒)の形態は、大きさが2~5mm、厚さが0.5~1.2mmの板状ないし不定形であって、ビッカース硬度が700Hv、鉛筆引っ掻き硬度が9Hの堅い固形物であり、その組成は、純度が95~98%のアナターゼ型結晶の二酸化チタンであり、1次結晶粒径が10~20nmの結晶が結合して、固形化したものであることが、X線回折、及びAFM撮像による観察より確認された。この場合、アナターゼ型結晶の他に、ブルッカイト型結晶が含まれることが観察された。 The solid photocatalyst material (flake catalyst) thus obtained has a plate shape or irregular shape with a size of 2 to 5 mm and a thickness of 0.5 to 1.2 mm, a Vickers hardness of 700 Hv, and a pencil scratch hardness. Is a hard solid of 9H, and its composition is anatase type titanium dioxide with a purity of 95 to 98%, which is solidified by combining crystals with a primary crystal grain size of 10 to 20 nm. It was confirmed by observation by X-ray diffraction and AFM imaging. In this case, it was observed that a brookite type crystal was included in addition to the anatase type crystal.
 得られた固形光触媒材(フレーク触媒)は、固形物でありながら、そのBET比表面積は、110m/gであり、粉体二酸化チタンP25(ドイツ、エボニック社製)とほぼ同等(同等の吸着機能を有する)であることが、BETで観察された。 Although the obtained solid photocatalyst material (flake catalyst) is a solid substance, its BET specific surface area is 110 m 2 / g, which is almost the same as powder titanium dioxide P25 (manufactured by Evonik, Germany). It was observed with BET.
 実施例1と同様にして、二酸化チタン結晶分散ゾルを以下のように調製した。すなわち、チタンエトキシド95%溶液500gを、80℃の純水1,800g中に滴下、混合した後、塩酸18gで分散し、濃縮して、形成されたコロイド液800gを得た。 In the same manner as in Example 1, a titanium dioxide crystal-dispersed sol was prepared as follows. That is, 500 g of a titanium ethoxide 95% solution was dropped and mixed in 1,800 g of pure water at 80 ° C., then dispersed with 18 g of hydrochloric acid and concentrated to obtain 800 g of the formed colloidal solution.
 こうして得られた二酸化チタンコロイダル分散液800gに、核形成材として、人工セルロース「セオラスTG101」(旭化成ケミカル製)80gを添加、混合して、高粘性のスラリーを調製し、該高粘性スラリーの水分を、温度20~50℃雰囲気下で除去して、白色の湿潤ゲル150gを得た。 To 800 g of the titanium dioxide colloidal dispersion thus obtained, 80 g of artificial cellulose “Theolas TG101” (manufactured by Asahi Kasei Chemical) is added and mixed as a nucleation material to prepare a highly viscous slurry. Was removed at a temperature of 20 to 50 ° C. to obtain 150 g of a white wet gel.
 この白色湿潤ゲルを、600℃で1時間焼成することで、乳白色で、大きさは様々なフレーク状の形態の固形材50gが得られた。二酸化チタンコロイダル液そのものが強酸性のため、得られたフレークを、80~100℃の温水で洗浄、乾燥して、固形光触媒材(フレーク触媒)を完成した後、これを分級して、所定の粒度に整えることで、光触媒製品としての固形光触媒材(フレーク触媒)が完成品として得られた。 This white wet gel was baked at 600 ° C. for 1 hour to obtain 50 g of a solid material having a milky white shape and various flaky shapes. Since the titanium dioxide colloidal liquid itself is strongly acidic, the obtained flakes are washed with hot water at 80 to 100 ° C. and dried to complete a solid photocatalyst material (flake catalyst), and then classified, By adjusting the particle size, a solid photocatalyst material (flake catalyst) as a photocatalyst product was obtained as a finished product.
 実施例1と同様にして、二酸化チタン結晶分散ゾルを以下のように調製した。すなわち、チタンイソプロポキシド95%溶液400gを、80℃の純水1,700g中に滴下、混合した後、1規定水酸化ナトリウム32gで分散し、濃縮して、形成されたコロイド液700gを得た。 In the same manner as in Example 1, a titanium dioxide crystal-dispersed sol was prepared as follows. That is, 400 g of titanium isopropoxide 95% solution was dropped and mixed in 1,700 g of pure water at 80 ° C., then dispersed with 32 g of 1N sodium hydroxide and concentrated to obtain 700 g of the formed colloidal solution. It was.
 こうして得られた二酸化チタンコロイダル分散液700gに、核形成材として、ポリビニルアルコール(和光純薬製)75gを添加、混合して、高粘性のスラリーを調製し、高粘性スラリーの水分を、温度20~50℃雰囲気下で除去し、白色の湿潤ゲル160gを得た。 To 700 g of the titanium dioxide colloidal dispersion thus obtained, 75 g of polyvinyl alcohol (manufactured by Wako Pure Chemical Industries, Ltd.) as a nucleating material is added and mixed to prepare a highly viscous slurry. Removal under an atmosphere of ˜50 ° C. yielded 160 g of a white wet gel.
 この白色湿潤ゲルを、600℃で1時間焼成することで、乳白色で、大きさは様々なフレーク状の形態の固形材40gが得られた。二酸化チタンコロイダル液そのものが強酸性のため、得られたフレークを、80~100℃温水で洗浄、乾燥して、フレーク触媒を完成した後、これを分級して、所定の粒度に整えることで、光触媒製品としての固形光触媒材(フレーク触媒)が完成品として得られた。 This white wet gel was baked at 600 ° C. for 1 hour to obtain 40 g of a solid material having a milky white shape and various flaky shapes. Since the titanium dioxide colloidal liquid itself is strongly acidic, the obtained flakes are washed with hot water at 80 to 100 ° C. and dried to complete the flake catalyst, and then classified and adjusted to a predetermined particle size. A solid photocatalyst material (flake catalyst) as a photocatalyst product was obtained as a finished product.
 次に、試験例に基づいて本発明を具体的に説明する。
[試験例]
(1)アセトアルデヒド分散テスト
 固形光触媒材(光触媒ソリッドフレーク;フレーク触媒)を用いて、アセトアルデヒド分散テスト(JIS R1701-2試験による)を実施して、アセトアルデヒドとCO濃度の変化を調べた。
Next, the present invention will be specifically described based on test examples.
[Test example]
(1) Acetaldehyde dispersion test Using a solid photocatalyst material (photocatalyst solid flake; flake catalyst), an acetaldehyde dispersion test (according to JIS R1701-2 test) was conducted to examine changes in acetaldehyde and CO 2 concentration.
 図1に、その結果を示す。図に示した計算式の、Qa=Ra×[A0]×f×1.016×60/(100×22.4)において、Qaは、求めるべき数値(μmol/h)、Raは、アセトアルデヒド除去率(%)、[A0]は、導入ガス濃度、fは、ガス流量(=1L/min)、をそれぞれ示す。 Figure 1 shows the results. In the calculation formula shown in the figure, Qa = Ra × [A0] × f × 1.016 × 60 / (100 × 22.4), Qa is a numerical value to be obtained (μmol / h), and Ra is acetaldehyde removal. The rate (%) and [A0] indicate the concentration of the introduced gas, and f indicates the gas flow rate (= 1 L / min), respectively.
 上記計算式による計算の結果、フレーク触媒によるアセトアルデヒド除去量は、7.55μmol/hであった。この数値は、光触媒工業会の認証基準値の44倍の高い活性を持っていることを示す。 As a result of calculation by the above formula, the amount of acetaldehyde removed by the flake catalyst was 7.55 μmol / h. This value indicates that the activity is 44 times higher than the certification standard value of the Photocatalyst Industry Association.
(2)SEM観察による二酸化チタン結晶粒径の改定
 フレーク触媒を構成する二酸化チタン結晶の粒子径をSEM観察により調べた。図2に、その結果を示す。図は、画像鮮明度が十分ではない部分があるとしても、図より、結晶粒径は、0.5μm×1/20=25nmと読み取れる。
(2) Revision of titanium dioxide crystal particle diameter by SEM observation The particle diameter of the titanium dioxide crystal constituting the flake catalyst was examined by SEM observation. FIG. 2 shows the result. In the figure, the crystal grain size can be read as 0.5 μm × 1/20 = 25 nm even if there is a portion where the image definition is not sufficient.
(3)AFM原子間力顕微鏡による二酸化チタン結晶粒子径の測定
 フレーク触媒を構成する二酸化チタン結晶の粒子径をAFM原子間力顕微鏡により調べた。図3に、その結果を示す。図より、結晶粒径は、200nm×1/20=10nmと読み取れる。
(3) Measurement of Titanium Dioxide Crystal Particle Diameter with AFM Atomic Force Microscope The particle diameter of the titanium dioxide crystal constituting the flake catalyst was examined with an AFM atomic force microscope. FIG. 3 shows the result. From the figure, the crystal grain size can be read as 200 nm × 1/20 = 10 nm.
(4)窒素吸着によるBET比表面積の測定
 フレーク触媒を構成する二酸化チタン結晶のBET比表面積を窒素吸着法により調べた。その際に、BET比表面積は、Belsorp-max(Microtracbell社製)を用いて測定した。図4に、その結果を示す。BET比表面積は、110m/gと観察される。
(4) Measurement of BET specific surface area by nitrogen adsorption The BET specific surface area of the titanium dioxide crystal constituting the flake catalyst was examined by a nitrogen adsorption method. At that time, the BET specific surface area was measured using Belsorb-max (manufactured by Microtracbell). FIG. 4 shows the result. The BET specific surface area is observed to be 110 m 2 / g.
(5)フレーク触媒の外観
 フレーク触媒の形態を測定した。図5に、フレーク触媒の外観を示す。図より、フレーク触媒は、大きさが2~5mm、厚さが、0.5~1.2mmの板状ないし不定形の外観の図形物であることが観察される。
(5) Appearance of flake catalyst The form of the flake catalyst was measured. FIG. 5 shows the appearance of the flake catalyst. From the figure, it is observed that the flake catalyst is a plate-like or irregular-shaped figure having a size of 2 to 5 mm and a thickness of 0.5 to 1.2 mm.
(6)X線回折による結晶型の分析
 フレーク触媒を形成する二酸化チタン結晶の結晶型をX線回折により分析した。図6に、その結果を示す。図より、フレーク触媒(PSF-01)が、純度95~98%のアナターゼ型結晶(ブルッカイト型結晶が含まれる)の二酸化チタンのみで構成されていることが明確に観察される。
(6) Analysis of crystal form by X-ray diffraction The crystal form of the titanium dioxide crystal forming the flake catalyst was analyzed by X-ray diffraction. FIG. 6 shows the result. From the figure, it is clearly observed that the flake catalyst (PSF-01) is composed only of titanium dioxide of anatase type crystal (including brookite type crystal) having a purity of 95 to 98%.
(7)湿潤ゲルの焼成前と、焼成後の外観
 フレーク触媒を製造する過程で、二酸化チタン結晶がより緊密な結合状態を形成するための核となる有機ピグメントを添加、混合して調製した高粘性スラリーの水分を除去した焼成前の湿潤ゲルの外観と、これを焼成した後の有機ピグメントが燃焼して消滅した後の外観を調べた。
(7) Appearance of the wet gel before and after firing In the process of producing the flake catalyst, an organic pigment serving as a nucleus for forming a tighter bonded state of the titanium dioxide crystals is added and mixed. The appearance of the wet gel before firing from which moisture of the viscous slurry was removed and the appearance after burning and disappearing of the organic pigment after firing this were examined.
 図8に、その結果を示す。図中、左は、焼成前(有機ピグメントの膨らみを有する)の外観を示し、右は、焼成後(有機ピグメントが燃えた孔を有する)の外観を示す。 Figure 8 shows the results. In the figure, the left shows the appearance before firing (having the swelling of the organic pigment), and the right shows the appearance after firing (having the pores where the organic pigment burned).
(8)細孔径(ポアサイズ)の測定
 フレーク触媒を構成する二酸化チタン結晶の細孔径を調べた。その際に、Belsorp-max(Microtracbell社製)を用いて、細孔径(BJHポアサイズ)を測定した。図9に、その結果を示す。図より、細孔径(ポアサイズ)は、10nm近傍を最多とし、2nmから28nmの範囲に分布することが示された。
(8) Measurement of pore diameter (pore size) The pore diameter of the titanium dioxide crystal constituting the flake catalyst was examined. At that time, the pore diameter (BJH pore size) was measured using Belsorb-max (manufactured by Microtracbell). FIG. 9 shows the result. From the figure, it was shown that the pore diameter (pore size) was most frequently around 10 nm and distributed in the range of 2 nm to 28 nm.
(9)フレーク触媒の処理機能についての循環実験
 フレーク触媒を繰り返し使用した場合の光触媒機能の耐性を調べた。その際に、およそ100×100mmの範囲に敷き詰めたフレーク触媒にジメチルスルホキシド(DMSO)水溶液を循環し、出口、入口でのDMSO濃度、及びDMSOが光触媒酸化されて生ずるメタンスルホン酸(MSA)の濃度を、ガスクロマトグラフにより検出、測定した。図10に、本循環実験に用いた閉鎖循環式光触媒反応装置(光触媒リアクター)と、水中における光触媒反応(8時間)のくり返しによる蟻酸(1×10-3mol/L)の反応速度、すなわち、蟻酸を試料として、その濃度を毎時1回イオンクロマトフラフにより測定した結果(14回)を示す。
(9) Circulation experiment on processing function of flake catalyst The tolerance of the photocatalytic function when the flake catalyst was repeatedly used was examined. At that time, a dimethyl sulfoxide (DMSO) aqueous solution is circulated through a flake catalyst spread over a range of approximately 100 × 100 mm, the DMSO concentration at the outlet and the inlet, and the concentration of methanesulfonic acid (MSA) generated by photocatalytic oxidation of DMSO. Was detected and measured by a gas chromatograph. FIG. 10 shows the reaction rate of formic acid (1 × 10 −3 mol / L) by repeating the closed-circulation photocatalytic reaction apparatus (photocatalytic reactor) used in this circulation experiment and the photocatalytic reaction (8 hours) in water, The result (14 times) which measured the density | concentration by the ion chromatography fluff once for every time formic acid as a sample is shown.
 図において、実験条件は、実験液容量:500mL(Sampling bottol  500mL)、蟻酸濃度:1×10-3mol/L、紫外線強度:2.0mW/cm、使用触媒量:24g/50cm触媒管、触媒管規格:パイレックス(登録商標)管(外径12mm、t=1mm)500mm、循環流速:50mL/min、とした。図に示した時間経過による濃度変化から、フレーク触媒(PSF-01)が、水中でジメチルスルホキシド(DMSO)を酸化分解していることが確認される。図より、フレーク触媒は、繰り返し使用に耐えることが証明された。 In the figure, the experimental conditions are as follows: experimental solution volume: 500 mL (Sampling bottom 500 mL), formic acid concentration: 1 × 10 −3 mol / L, UV intensity: 2.0 mW / cm 2 , catalyst amount used: 24 g / 50 cm catalyst tube, Catalyst pipe standard: Pyrex (registered trademark) pipe (outer diameter 12 mm, t = 1 mm) 500 mm, circulation flow rate: 50 mL / min. From the concentration change over time shown in the figure, it is confirmed that the flake catalyst (PSF-01) oxidatively decomposes dimethyl sulfoxide (DMSO) in water. From the figure, it was proved that the flake catalyst can withstand repeated use.
(10)水処理機能試験
 フレーク触媒による水処理機能を光触媒水処理機能試験(JIS R1704試験法)により調べた。図11に、ジメチルスルホキシド(DMSO)及びメタンスルホキシド(MSA)の濃度をガスクロマトグラフにより検出、測定した結果を示す。図中、ジメチルスルホキシド(DMSO)が光触媒酸化されて生じたメタンスルホン酸(MSA)の濃度を左側に示し、DMSOの濃度を右側に示す。
(10) Water treatment function test The water treatment function by the flake catalyst was examined by a photocatalyst water treatment function test (JIS R1704 test method). FIG. 11 shows the results of detecting and measuring the concentrations of dimethyl sulfoxide (DMSO) and methane sulfoxide (MSA) using a gas chromatograph. In the figure, the concentration of methanesulfonic acid (MSA) produced by photocatalytic oxidation of dimethyl sulfoxide (DMSO) is shown on the left side, and the concentration of DMSO is shown on the right side.
 図12、図13に、光触媒水処理機能試験で使用した試験装置の平面図、正面図をそれぞれ示す。図中の手段は、Lamp:紫外線照射ランプ、Pump:ポンプ、Piece:試験片(フレーク触媒)、Test solution:テスト溶液、Turbulent Piece:,Photocatalyst:フレーク触媒、である。 12 and 13 are a plan view and a front view of a test apparatus used in the photocatalytic water treatment function test, respectively. Means in the figure are Lamp: ultraviolet irradiation lamp, Pump: pump, Piece: test piece (flakes catalyst), Test solution: test solution, Turbent Piece: weir , Photocatalyst: flake catalyst.
 次に、本発明の固形光触媒材と光エネルギーを用いて水の浄化処理を行う水処理装置について説明する。
1.装置の概要
 本発明の水処理装置は、本発明の固形光触媒材である光触媒ソリッドフレーク(フレーク触媒)を用いて、被処理対象の水の光触媒酸化による浄化処理を実行するものである。
 その利用法として、例えば、飲料水の光触媒殺菌、農業地下廃水の高度化処理などが例示される。本発明では、本発明の固形光触媒材である光触媒ソリッドフレーク(フレーク触媒)を固定床として充填したガラス管を直列に接続した1列の経路を、更に2列、3列・・・と、並列に接続することで形成される連結管装置に被処理対象の水を通水する。この連結管装置のガラス管に、太陽光、若しくは紫外線ランプによる紫外線照射を施すことでガラス管内に固定床として充填された固形光触媒材を励起し、通水される被処理対象の水に含まれる有機物などを固形光触媒材で酸化分解して、浄化された水にすることが可能である。図16に、水処理装置の概要を示す。
Next, the water treatment apparatus which performs the purification process of water using the solid photocatalyst material of this invention and light energy is demonstrated.
1. Outline of the apparatus The water treatment apparatus of the present invention performs purification treatment by photocatalytic oxidation of water to be treated, using the photocatalytic solid flakes (flake catalyst) which is the solid photocatalyst material of the present invention.
Examples of the usage include photocatalyst sterilization of drinking water and advanced treatment of agricultural underground wastewater. In the present invention, one row of paths in which glass tubes filled with photocatalyst solid flakes (flake catalyst), which is the solid photocatalyst material of the present invention, as a fixed bed are connected in series, are further arranged in parallel with two rows, three rows, and so on. Water to be treated is passed through a connecting pipe device formed by connecting to the water. The glass tube of this connecting tube device is irradiated with sunlight or ultraviolet rays from an ultraviolet lamp to excite the solid photocatalyst material filled as a fixed bed in the glass tube and contained in the water to be treated. It is possible to obtain purified water by oxidizing and decomposing organic matter with a solid photocatalyst material. FIG. 16 shows an outline of the water treatment apparatus.
2.ガラス管と管内径(mmφ)
 ガラス管として、好適には、例えば、石英ガラス、ホウケイ酸ガラスなどが使用される。ガラス管に対する本発明の光触媒ソリッドフレーク(フレーク触媒)の充填量と反応速度については、被処理対象の水を通水するガラス管の管内径に比例して反応速度が向上するが、ガラス管の管内径(mmφ)がφ15を超えると反応速度は低下する。図14に、ガラス管の管内径(管径)(mmφ)と反応速度の関係を示す。この図に示されるように、適用するガラス管の管内径はφ8~15(mmφ)の範囲であり、望ましくは8~13.5(mmφ)の範囲である。
2. Glass tube and tube inner diameter (mmφ)
As the glass tube, for example, quartz glass or borosilicate glass is preferably used. Regarding the filling amount and reaction rate of the photocatalyst solid flakes (flake catalyst) of the present invention with respect to the glass tube, the reaction rate is improved in proportion to the inner diameter of the glass tube through which water to be treated is passed. When the tube inner diameter (mmφ) exceeds φ15, the reaction rate decreases. FIG. 14 shows the relationship between the tube inner diameter (tube diameter) (mmφ) of the glass tube and the reaction rate. As shown in this figure, the inner diameter of the glass tube to be applied is in the range of φ8 to 15 (mmφ), and preferably in the range of 8 to 13.5 (mmφ).
3.通水速度
 光触媒は、反応速度が緩慢であるため、被処理対象の水は、光触媒ソリッドフレーク(フレーク触媒)との接触時間が長いほど反応が進むため、利用可能な通水速度は、~5L/minであった。本発明の水処理装置では、浄化試験を実施した結果、流速の確保を考慮すると、利用可能な通水速度域は50ml/min~5L/minであった。
3. Water flow rate Since the reaction rate of the photocatalyst is slow, the longer the contact time of the water to be treated with the photocatalyst solid flakes (flake catalyst), the more the water flow rate can be used. / Min. In the water treatment apparatus of the present invention, as a result of conducting the purification test, the available water flow rate range was 50 ml / min to 5 L / min in consideration of securing the flow rate.
4.光触媒ソリッドフレーク(フレーク触媒)の充填量
 光触媒ソリッドフレークは、その形態がフレーク形状であることから、細密充填ができないため、必然的に空隙を生ずることになる。このことから、被処理対象の水の通水時の流路抵抗は、細密充填となる球形の場合よりも減少する。その結果、光触媒ソリッドフレークの充填量は、充填長300mmのとき、ガラス管の管内径φ8の場合、10g、ガラス管の管内径φ12の場合、25g、ガラス管の管内径φ13.5の場合、50gという実績値と、光触媒ソリッドフレークの光触媒作用の測定値から、30~170g/mの充填量が望ましい。図15に、実績値をプロットした光触媒ソリッドフレークの充填量とガラス管の管内径(管径)の関係を示す。
4). Filling amount of photocatalyst solid flake (flake catalyst) Since the shape of the photocatalyst solid flake is a flake shape, it cannot be closely packed, and inevitably generates voids. For this reason, the flow path resistance at the time of passing water to be treated is reduced as compared with the case of a spherical shape that is densely packed. As a result, when the filling length of the photocatalyst solid flake is 300 mm, the glass tube has a tube inner diameter φ8 of 10 g, the glass tube has a tube inner diameter φ12 of 25 g, and the glass tube has a tube inner diameter φ13.5 of From the actual value of 50 g and the measured value of the photocatalytic action of the photocatalytic solid flakes, a filling amount of 30 to 170 g / m is desirable. FIG. 15 shows the relationship between the filling amount of the photocatalyst solid flakes on which the actual values are plotted and the tube inner diameter (tube diameter) of the glass tube.
 次に、水を浄化処理するための水処理装置の実施の態様について説明する。 Next, an embodiment of a water treatment device for purifying water will be described.
 本実施例では、青インクを含む汚れた水(未処理水)を、光触媒ソリッドフレーク(フレーク触媒)を用いて光エネルギーで分解し、浄化されてきれいになった水(処理済水)に変換した。本発明の光触媒ソリッドフレークを固定床として充填したガラス管を10列、並列に接続することで形成された連結管装置に、ポンプで水を毎時約1Lの流速で通水した結果、青インクが分解して浄化されてきれいになった水(処理水)が得られた。図16に、本実施例で用いた水処理装置の態様を示す。同様に、細菌や化学物質などで汚染された飲料水を安全なレベルまで清浄化することができることが確認された。図17~19に、光触媒ソリッドフレークによる水浄化処理を実施するための水処理の実験装置、デモ装置のしくみ及び装置の写真図面を各々示す。 In this example, dirty water (untreated water) containing blue ink was decomposed with light energy using photocatalyst solid flakes (flake catalyst), and converted into purified and clean water (treated water). . As a result of passing water at a flow rate of about 1 liter per hour with a pump, a blue ink was formed through a connecting pipe device formed by connecting 10 rows of glass tubes filled with the photocatalytic solid flakes of the present invention as a fixed bed in parallel. Water (treated water) that was purified by decomposition and purified was obtained. In FIG. 16, the aspect of the water treatment apparatus used by the present Example is shown. Similarly, it was confirmed that drinking water contaminated with bacteria and chemicals can be purified to a safe level. FIGS. 17 to 19 show a water treatment experimental device, a mechanism of a demonstration device, and a photographic drawing of the device for carrying out water purification treatment with photocatalytic solid flakes, respectively.
 水浄化処理を実施するための光触媒水処理装置の態様を示す。光触媒ソリッドフレークを固定床として充填したガラス管を直列に接続した1列の経路を、並列に接続することで連結管装置を構成した。これに、20Wブラックライトを配設し、10L容の大型透明丸形瓶を2台連結して、本発明に水処理装置を構築した。図20に、光触媒水処理実験装置の模式図を示す。 An embodiment of a photocatalytic water treatment device for carrying out water purification treatment is shown. A connecting pipe device was configured by connecting in parallel a single line of paths in which glass tubes filled with photocatalytic solid flakes as a fixed bed were connected in series. A 20 W black light was placed on this, and two 10 L large transparent round bottles were connected to construct a water treatment apparatus in the present invention. In FIG. 20, the schematic diagram of a photocatalyst water treatment experimental apparatus is shown.
 以上詳述したとり、本発明は、光触媒機能を有する二酸化チタンのみにより構成された固形物からなる固形光触媒材と、その製造方法及び該固形光触媒材と光エネルギーによる水処理装置に係るものであり、本発明によって、1)光触媒機能を有する二酸化チタンのみより形成された固形物(担体を有さず)からなる新しいタイプの固形光触媒を提供することができる、2)固形物の外殻から内芯までルチル型結晶を含まず、全て同じアナターゼ型結晶(ブルッカイト型結晶が含まれていてもよい)の二酸化チタンのみにより構成される固形物からなる固形光触媒材を提供することができる、3)本発明の固形光触媒材(フレーク触媒)によるアセトアルデヒド除去量は、7.55μmol/hであり、光触媒工業会の認定基準値の44倍の高い活性を有する、4)本発明の固形光触媒材(フレーク触媒)は、ゾルゲル法に基づいて調製した二酸化チタンコロイダル分散液を利用して、格別な施設を設置することなく、簡便なシステムで安全な飲料水を調製し、利用に供することができる、5)本発明によれば、簡便なシステムで、発展途上国などの、飲料水を河川や池などの水に依存する地域において、太陽光の照射下などで、それらの水を光触媒による抗菌作用を利用して浄化処理して、雑菌が繁殖しない、安全な飲料水を調製し、提供することができる、6)水の浄化処理に使用した後の固形光触媒材を、(焼却処理などの)簡便な操作で、容易に再生し、再利用することが可能である、という産業上の利用性が期待できる、7)本発明の固形光触媒材と光エネルギーを用いた水を浄化処理するための水処理装置を提供することができる。
 
As described above in detail, the present invention relates to a solid photocatalyst material composed of a solid material composed only of titanium dioxide having a photocatalytic function, a manufacturing method thereof, and a water treatment apparatus using the solid photocatalyst material and light energy. According to the present invention, it is possible to provide a new type of solid photocatalyst comprising 1) a solid (without a carrier) formed only from titanium dioxide having a photocatalytic function, and 2) from the outer shell of the solid It is possible to provide a solid photocatalyst material composed of a solid material composed only of titanium dioxide of the same anatase type crystal (may include a brookite type crystal) without including a rutile type crystal to the core 3) The amount of acetaldehyde removed by the solid photocatalyst material (flake catalyst) of the present invention is 7.55 μmol / h, which is 44 times the certified standard value of the photocatalyst industry association. 4) The solid photocatalyst material (flake catalyst) of the present invention uses a titanium dioxide colloidal dispersion prepared based on the sol-gel method, and is safe with a simple system without installing a special facility. 5) According to the present invention, in a region where water is dependent on water such as rivers and ponds, such as in developing countries, sunlight can be used. The water can be purified by using the antibacterial action of the photocatalyst under irradiation of water, etc., and safe drinking water can be prepared and provided so that no germs can propagate. 6) Used for water purification treatment The solid photocatalyst material can be easily regenerated and reused by a simple operation (such as incineration). 7) The solid photocatalyst of the present invention can be expected. Using materials and light energy A water treatment device for purifying water can be provided.

Claims (11)

  1.  光触媒機能を有する二酸化チタンのみにより構成された固形物(担体を有しない)からなる固形光触媒材であって、
     ルチル型結晶を含まず、アナターゼ型結晶(ブルッカイト型結晶が含まれていてもよい)の二酸化チタンのみにより構成され、以下の(i)~(vi); 
    (i)細孔径(ポアサイズ)が2~28nm、
    (ii)比表面積が70~110m/g、
    (iii)真密度が3.90±1.0g/cm
    (iv)嵩比重が1.3~1.6、
    (v)ビッカース硬度が600~800Hv、
    (vi)結晶粒径が10~25nm、
    の各数値を満たすことを特徴とする固形光触媒材。
    It is a solid photocatalyst material composed of a solid material (without a carrier) composed only of titanium dioxide having a photocatalytic function,
    Containing only titanium dioxide of anatase type crystal (may include brookite type crystal) without rutile type crystal, the following (i) to (vi):
    (I) pore diameter (pore size) of 2 to 28 nm,
    (Ii) specific surface area of 70 to 110 m 2 / g,
    (Iii) True density is 3.90 ± 1.0 g / cm 3 ,
    (Iv) The bulk specific gravity is 1.3 to 1.6,
    (V) Vickers hardness is 600 to 800 Hv,
    (Vi) the crystal grain size is 10-25 nm,
    Solid photocatalyst material characterized by satisfying each numerical value of
  2.  上記固形物の外殻から内芯まで全て同じアナターゼ型結晶(ブルッカイト型結晶が含まれていてもよい)の二酸化チタンのみにより構成された固形物からなる、請求項1に記載の固形光触媒材。 The solid photocatalyst material according to claim 1, wherein the solid photocatalyst material is composed of only solid titanium dioxide of the same anatase type crystal (may contain brookite type crystal) from the outer shell to the inner core of the solid.
  3.  光触媒に対する活性光線を、0.8mJ/cmsecの強度で照射した場合に、常温・常圧で、アセトルデヒドが、JISR1701-2試験法により、5.0μmol/h以上分解除去できる光触媒活性を有する、請求項1又は2に記載の固形光触媒材。 Photocatalytic activity that acetaldehyde can be decomposed and removed by 5.0 μmol / h or more by the JISR1701-2 test method at normal temperature and normal pressure when irradiated with an actinic ray against the photocatalyst at an intensity of 0.8 mJ / cm 2 sec. The solid photocatalyst material according to claim 1 or 2, comprising:
  4.  窒素吸着によるBET比表面積が、110m/gの比表面積を保有する、請求項1から3のいずれかに記載の固形光触媒材。 The solid photocatalyst material in any one of Claim 1 to 3 with which the BET specific surface area by nitrogen adsorption | suction has a specific surface area of 110 m < 2 > / g.
  5.  ゾルゲル法に基づいて調製した二酸化チタンコロイダルゲル分散液に、有機固形分の核形成材を添加、混合して、高粘性のスラリーを調製し、次いで、この高粘性スラリーの水分を、温度20~60℃の雰囲気下で除去して、湿潤ゲルを調製し、得られた湿潤ゲルを、温度500~650℃で焼成することにより、形態がフレーク状の固形物を調製すること、上記有機固形分の核形成材として、活性炭、セルロース、又はポリビニルアルコールから選択されるフロック形成凝集材を用いること、を特徴とする固形光触媒材の製造方法。 A nucleating material containing an organic solid is added to and mixed with a titanium dioxide colloidal gel dispersion prepared based on the sol-gel method to prepare a highly viscous slurry. Removing in an atmosphere of 60 ° C. to prepare a wet gel, and baking the obtained wet gel at a temperature of 500 to 650 ° C. to prepare a solid having a flaky form; A floc-forming aggregate selected from activated carbon, cellulose, or polyvinyl alcohol is used as a nucleating material for the solid photocatalyst material.
  6.  湿潤ゲルを、焼成することにより、板状ないし不定形のフレーク状の固形物を調製する、請求項5に記載の固形光触媒材の製造方法。 6. The method for producing a solid photocatalyst material according to claim 5, wherein the wet gel is baked to prepare a plate-like or amorphous flaky solid.
  7.  フレーク状の固形物を、温水で洗浄、乾燥し、次いで、これを分級して粒度を整えて、板状ないし不定形のフレーク光触媒を調製する、請求項6に記載の固形光触媒材の製造方法。 The method for producing a solid photocatalyst material according to claim 6, wherein the flaky solid is washed with warm water, dried, and then classified to adjust the particle size to prepare a plate-like or amorphous flake photocatalyst. .
  8.  請求項1から4のいずれかに記載の固形光触媒材と光エネルギーを用いて水の浄化処理を実施するための水処理装置であって、
     固形光触媒材である光触媒ソリッドフレーク(フレーク触媒)を固定床として所定の充填量で充填したガラス管を直列に接続した1列の経路を、更に所定数の列に、並列に接続してなる連結管装置と、このガラス管に紫外線照射を施してガラス管内に充填された光触媒を励起させる手段と、被処理水を貯蔵するタンクと、処理済水を貯蔵するタンクと、被処理水を前記連結管装置を経由して所定の通水速度で通水するポンプとを有することを特徴とする水処理装置。
    A water treatment device for carrying out water purification treatment using the solid photocatalyst material according to any one of claims 1 to 4 and light energy,
    Connected by connecting a series of glass tubes filled with a fixed amount of photocatalyst solid flakes (flake catalyst), which is a solid photocatalyst material, in series, and connected in parallel to a predetermined number of rows A pipe device, means for exciting the photocatalyst filled in the glass tube by irradiating the glass tube with ultraviolet light, a tank for storing the water to be treated, a tank for storing the treated water, and the water to be treated A water treatment device comprising: a pump for passing water at a predetermined water flow rate through a pipe device.
  9.  ガラス管の管内径(mmφ)が、φ8~15である、請求項8に記載の装置。 The apparatus according to claim 8, wherein the inner diameter (mmφ) of the glass tube is φ8-15.
  10.  通水速度が、50ml/min~5L/minである、請求項8に記載の装置。 The apparatus according to claim 8, wherein the water flow rate is 50 ml / min to 5 L / min.
  11.  ガラス管に対する光触媒ソリッドフレークの固定床としての充填量が、充填長300mmのとき、管内径φ8~φ13.5(mmφ)で、10g~50gの範囲である、請求項8に記載の装置。
     
    The apparatus according to claim 8, wherein a filling amount of the photocatalyst solid flake to the glass tube as a fixed bed is 10 g to 50 g in a tube inner diameter φ8 to φ13.5 (mmφ) when the filling length is 300 mm.
PCT/JP2017/001141 2016-01-15 2017-01-13 Solid photocatalytic material formed from solid material constituted only of titanium dioxide having photocatalytic function, method for manufacturing same, and treatment device WO2017122823A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201780006574.1A CN108698020B (en) 2016-01-15 2017-01-13 Solid photocatalytic material comprising solid matter composed only of titanium dioxide having photocatalytic function, method for producing same, and processing apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016006577A JP6082895B1 (en) 2016-01-15 2016-01-15 Solid photocatalyst material comprising solid material composed only of titanium dioxide having photocatalytic function, and method for producing the same
JP2016-006577 2016-01-15

Publications (1)

Publication Number Publication Date
WO2017122823A1 true WO2017122823A1 (en) 2017-07-20

Family

ID=58095137

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/001141 WO2017122823A1 (en) 2016-01-15 2017-01-13 Solid photocatalytic material formed from solid material constituted only of titanium dioxide having photocatalytic function, method for manufacturing same, and treatment device

Country Status (3)

Country Link
JP (1) JP6082895B1 (en)
CN (1) CN108698020B (en)
WO (1) WO2017122823A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019188199A1 (en) * 2018-03-28 2019-10-03 富士フイルム株式会社 Substrate provided with photocatalytic particles, breathable sheet, and mask

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10259023A (en) * 1998-01-09 1998-09-29 Natl Inst For Res In Inorg Mater Production of lamellar titanium oxide, titanium oxideporous body consisting of aggregate of lamellar titanium oxide and its production
JP2000279821A (en) * 1999-03-31 2000-10-10 Agency Of Ind Science & Technol Photocatalytic granule for fluidized bed
JP2001031422A (en) * 1999-07-19 2001-02-06 Agency Of Ind Science & Technol Mesoporous titanium oxide form and its production
JP2002205064A (en) * 2001-01-10 2002-07-23 Kaken:Kk Cleaning module for aqueous environment using fluidized bed of titania spherical porous bodies and method of producing the same
JP2003095621A (en) * 2001-09-21 2003-04-03 Keio Gijuku Method for producing foamed metal oxide and foamed metal oxide
JP2004122056A (en) * 2002-10-04 2004-04-22 Toto Ltd Porous titanium oxide and production method of the same
JP2005137988A (en) * 2003-11-05 2005-06-02 Chiyoda Corp Water-polluting organic substance removal method
JP2005254100A (en) * 2004-03-10 2005-09-22 Toto Ltd Photocatalyst used for cleaning water quality
JP2009519889A (en) * 2005-12-19 2009-05-21 ナショナル・センター・フォア・サイエンティフィック・リサーチ・デモクリトス Modified nanostructured titania material and manufacturing method
US20130079219A1 (en) * 2011-09-26 2013-03-28 Hae-Jin Kim Method of Preparing High Crystalline Nanoporous Titanium Dioxide at Room Temperature

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4631267A (en) * 1985-03-18 1986-12-23 Corning Glass Works Method of producing high-strength high surface area catalyst supports
CN1220185A (en) * 1997-12-18 1999-06-23 中国科学院光电技术研究所 Titanium dioxide optical catalyst and its preparing method
JP2002178459A (en) * 2000-12-18 2002-06-26 National Institute Of Advanced Industrial & Technology Photocatalyst bearing printed matter
CN1689696A (en) * 2003-09-29 2005-11-02 华东理工大学 Visible photo-activated photochemical catalyst and lamp arraying type packed bed reaction apparatus
CN104549202A (en) * 2014-11-05 2015-04-29 华文蔚 Preparation method of anatase phase carbon-doped titanium dioxide photocatalyst

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10259023A (en) * 1998-01-09 1998-09-29 Natl Inst For Res In Inorg Mater Production of lamellar titanium oxide, titanium oxideporous body consisting of aggregate of lamellar titanium oxide and its production
JP2000279821A (en) * 1999-03-31 2000-10-10 Agency Of Ind Science & Technol Photocatalytic granule for fluidized bed
JP2001031422A (en) * 1999-07-19 2001-02-06 Agency Of Ind Science & Technol Mesoporous titanium oxide form and its production
JP2002205064A (en) * 2001-01-10 2002-07-23 Kaken:Kk Cleaning module for aqueous environment using fluidized bed of titania spherical porous bodies and method of producing the same
JP2003095621A (en) * 2001-09-21 2003-04-03 Keio Gijuku Method for producing foamed metal oxide and foamed metal oxide
JP2004122056A (en) * 2002-10-04 2004-04-22 Toto Ltd Porous titanium oxide and production method of the same
JP2005137988A (en) * 2003-11-05 2005-06-02 Chiyoda Corp Water-polluting organic substance removal method
JP2005254100A (en) * 2004-03-10 2005-09-22 Toto Ltd Photocatalyst used for cleaning water quality
JP2009519889A (en) * 2005-12-19 2009-05-21 ナショナル・センター・フォア・サイエンティフィック・リサーチ・デモクリトス Modified nanostructured titania material and manufacturing method
US20130079219A1 (en) * 2011-09-26 2013-03-28 Hae-Jin Kim Method of Preparing High Crystalline Nanoporous Titanium Dioxide at Room Temperature

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019188199A1 (en) * 2018-03-28 2019-10-03 富士フイルム株式会社 Substrate provided with photocatalytic particles, breathable sheet, and mask

Also Published As

Publication number Publication date
JP2017124388A (en) 2017-07-20
JP6082895B1 (en) 2017-02-22
CN108698020B (en) 2020-04-03
CN108698020A (en) 2018-10-23

Similar Documents

Publication Publication Date Title
Sacco et al. ZnO supported on zeolite pellets as efficient catalytic system for the removal of caffeine by adsorption and photocatalysis
Shavisi et al. Application of solar light for degradation of ammonia in petrochemical wastewater by a floating TiO2/LECA photocatalyst
Mogyorósi et al. TiO2-based photocatalytic degradation of 2-chlorophenol adsorbed on hydrophobic clay
Shaban et al. Recycling of glass in synthesis of MCM-48 mesoporous silica as catalyst support for Ni 2 O 3 photocatalyst for Congo red dye removal
Al-Jubouri et al. Antibiotics adsorption from contaminated water by composites of ZSM-5 zeolite nanocrystals coated carbon
Tasbihi et al. Photocatalytic degradation of gaseous toluene by using TiO2 nanoparticles immobilized on fiberglass cloth
CN104039450B (en) Light-catalysed metal oxide nano-material, pass through H2the purposes that the manufacture method that-plasma carries out processing, the debirs in water purify
Al-Rasheed et al. Photocatalytic degradation of humic acid in saline waters: Part 2. Effects of various photocatalytic materials
Pimraksa et al. Geopolymer/Zeolite composite materials with adsorptive and photocatalytic properties for dye removal
Ngoh et al. Fabrication and properties of an immobilized P25TiO2-montmorillonite bilayer system for the synergistic photocatalytic–adsorption removal of methylene blue
Wu et al. Adsorption of Pb (II) from aqueous solution by a poly-elemental mesoporous adsorbent
CN108654586A (en) A kind of graphitization mesoporous carbon-TiO2Composite photocatalyst material and the preparation method and application thereof
Abbas et al. Photocatalytic degradation of Cefazolin over spherical nanoparticles of TiO2/ZSM-5 mesoporous nanoheterojunction under simulated solar light
Pei et al. Adsorption of Organic Dyes by TiO2@ Yeast‐Carbon Composite Microspheres and Their In Situ Regeneration Evaluation
Bíbová et al. SiO2/TiO2 composite coating on light substrates for photocatalytic decontamination of water
Naggar et al. A hybrid mesoporous composite of SnO2 and MgO for adsorption and photocatalytic degradation of anionic dye from a real industrial effluent water
Manirajah et al. Evaluation of low cost-activated carbon produced from waste tyres pyrolysis for removal of 2-chlorophenol
Xiao et al. Photocatalytic degradation of ciprofloxacin in freshwater aquaculture wastewater by a CNBN membrane: mechanism, antibacterial activity, and cyclability
Tran et al. Optimization of ciprofloxacin adsorption onto CoFe-MOF aerogel cylinders based on response surface methodology: adsorption kinetics, isotherm models
Yadav et al. Phosphate removal from aqueous solutions by nano‐alumina for the effective remediation of eutrophication
WO2017122823A1 (en) Solid photocatalytic material formed from solid material constituted only of titanium dioxide having photocatalytic function, method for manufacturing same, and treatment device
JP5403584B2 (en) Stain resistant material synthesized by reprecipitation method and having weather resistance and method for producing the same
US20190161367A1 (en) Rotationally symmetric photoanalytic reactor for water purification
JP2010150434A (en) Method for manufacturing weatherproof and foulingproof emulsion coating material and coated film thereof
Moreno et al. Alternative approaches in development of heterogeneous titania-based photocatalyst

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17738575

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17738575

Country of ref document: EP

Kind code of ref document: A1