WO2017122804A1 - Gasification furnace, and operation method for gasification furnace - Google Patents

Gasification furnace, and operation method for gasification furnace Download PDF

Info

Publication number
WO2017122804A1
WO2017122804A1 PCT/JP2017/001090 JP2017001090W WO2017122804A1 WO 2017122804 A1 WO2017122804 A1 WO 2017122804A1 JP 2017001090 W JP2017001090 W JP 2017001090W WO 2017122804 A1 WO2017122804 A1 WO 2017122804A1
Authority
WO
WIPO (PCT)
Prior art keywords
oxidant
raw material
introduction
gasification furnace
temperature
Prior art date
Application number
PCT/JP2017/001090
Other languages
French (fr)
Japanese (ja)
Inventor
裕昭 脇坂
松本 健
Original Assignee
ヤンマー株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2016006511A external-priority patent/JP6487346B2/en
Priority claimed from JP2016006513A external-priority patent/JP6700045B2/en
Priority claimed from JP2016006514A external-priority patent/JP6700046B2/en
Priority claimed from JP2016006512A external-priority patent/JP6487347B2/en
Priority claimed from JP2016006515A external-priority patent/JP6700047B2/en
Application filed by ヤンマー株式会社 filed Critical ヤンマー株式会社
Priority to CN201780005270.3A priority Critical patent/CN108463540B/en
Publication of WO2017122804A1 publication Critical patent/WO2017122804A1/en
Priority to PH12018501371A priority patent/PH12018501371A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J3/00Production of combustible gases containing carbon monoxide from solid carbonaceous fuels
    • C10J3/02Fixed-bed gasification of lump fuel

Definitions

  • the present invention relates to a gasification furnace that oxidizes a raw material such as biomass to generate a product gas and a method for operating the gasification furnace.
  • a gasifier that oxidizes a raw material such as biomass to generate a product gas
  • the raw material is pyrolyzed to generate a product gas (for example, carbon monoxide or hydrogen).
  • a product gas for example, carbon monoxide or hydrogen
  • the raw material is carbonized, char char (carbide) is combusted, and the burned ash is discharged to the outside.
  • the raw material is introduced together with an oxidizing agent such as air, or the furnace is heated from the outside.
  • tar is generated in the process of generating product gas. That is, the generated product gas contains tar.
  • the generated gas is burned by a gas engine, the malfunction of the movable member that touches the generated gas such as a valve due to the generated tar (specifically, the malfunction that the movable member does not move smoothly due to adhesion of tar), etc. Inconvenience may occur.
  • the thermal decomposition temperature is higher than the tar thermal decomposition temperature (specifically, about 800 ° C. or higher, preferably about 1000 ° C.), which is the temperature necessary for thermal decomposition of the oxidizing atmosphere.
  • the tar thermal decomposition temperature specifically, about 800 ° C. or higher, preferably about 1000 ° C.
  • the conventional gasifier has the following configuration. That is, the acid cleaning is performed in the pretreatment to remove potassium that promotes the formation of crystalline silica from the raw material, or the raw material is gasified at a temperature (for example, 700 ° C. to 800 ° C.) at which the crystalline silica is not generated in the previous stage. In the latter stage, after the gas is separated into a solid component, only the gas component is oxidized at a tar pyrolysis temperature (for example, 1000 ° C.) or higher to suppress the generation of tar. A structure in which the tar content in the product gas generated in the post-treatment of the gasification furnace is removed after oxidation at a temperature at which silica is not generated (eg, 700 ° C. to 800 ° C.), or oxidation is performed at a tar pyrolysis temperature (eg, 1000 ° C.) or higher. Then, after suppressing the generation of tar, the crystalline silica is removed by post-treatment.
  • a temperature for
  • a product gas by oxidizing a raw material containing silica and potassium (for example, rice husk), in order to suppress both generation of tar and generation of crystalline silica.
  • Pretreatment or dividing the oxidation into a plurality of stages for example, primary oxidation at 700 ° C. to 800 ° C. followed by secondary oxidation of only the gasified gas at 1000 ° C. or more
  • tar for example, the raw material is 700 ° C. to 800 ° C.
  • Requires a multi-step process such as removing tars generated by oxidation at 0 ° C.) or crystalline silica (for example, crystalline silica produced by oxidizing raw materials at 1000 ° C. or higher) by post-treatment. Further, it is not configured to simultaneously suppress both the generation of tar and the generation of crystalline silica.
  • Patent Document 1 discloses a configuration in which an oxidizing agent (air or oxygen) is blown into an oxide layer above a reducing layer on which char is deposited in a downdraft gasification furnace (see FIG. 1). 1).
  • Patent Document 2 discloses a configuration in which an oxidizing agent is blown above a char deposition layer in a fluidized bed gasification furnace (see FIG. 1 of Patent Document 2).
  • Patent Document 3 discloses a configuration in which an oxidizing agent is blown toward a carbide deposition layer of a biomass raw material in an updraft gasification furnace (see FIG. 1 of Patent Document 3).
  • Patent Documents 1 to 3 discloses a configuration for simultaneously suppressing both the generation of tar and the generation of crystalline silica.
  • the present invention is a gasification furnace that oxidizes a raw material to generate a product gas and a method for operating the gasification furnace.
  • a gasification furnace that oxidizes a raw material to generate a product gas
  • a method for operating the gasification furnace In generating the product gas, both the generation of tar and the generation of crystalline silica are performed. It is an object of the present invention to provide a gasification furnace and a gasification furnace operation method capable of simultaneously achieving suppression.
  • the present inventors have intensively studied in order to solve the above problems, and as a result, have found the following and completed the present invention.
  • the present inventors regarding a raw material containing silica and potassium (for example, rice husk), when the temperature of the raw material itself reaches a crystalline silica formation temperature (for example, 750 ° C.), which is a temperature for forming crystalline silica.
  • a crystalline silica formation temperature for example, 750 ° C.
  • it is predetermined in the same process (at the same time and in the same space) to produce the product gas.
  • tar decomposition proceeds to suppress tar generation, while the temperature of the raw material itself is It is possible to suppress the formation of crystalline silica by not fully rising, in other words, oxidation above the thermal decomposition temperature of tar, which is the temperature necessary for thermal decomposition of tar. It found that the raw material it is possible to suppress generation of tar to acceptable levels in the up from the time of heating reaches the crystalline silica product temperature or temperature of the crystalline silica product temperature near under ⁇ .
  • the present inventors generate tar gas decomposition temperature (at the same time and in the same space) in generating the product gas.
  • Crystalline silica formation temperature attainment time time until the temperature of the raw material itself reaches crystalline silica formation temperature (for example, 750 ° C.) from the time when the raw material is exposed to an oxidizing atmosphere having a temperature of 1000 ° C. or higher.
  • a predetermined temperature for example, 1050 ° C.
  • a predetermined temperature range for example, a temperature range in which 1050 ° C.
  • the exposure time of the raw material in an oxidizing atmosphere is within a predetermined time range that is equal to or longer than the allowable tar generation time and equal to or shorter than the allowable crystalline silica generation time, which is a time for suppressing the generation of crystalline silica to an allowable level or lower (for example, 2 minutes), tar generation can be suppressed and generation of crystalline silica can be suppressed.
  • the crystalline silica formation temperature varies depending on the potassium concentration. For example, when there is no potassium, the crystalline silica formation temperature is 1350 ° C., whereas the potassium content increases. The crystalline silica formation temperature gradually decreases (for example, decreases to a temperature of 750 ° C.).
  • the present invention is based on such knowledge, and provides the following gasification furnace and operation method of the gasification furnace.
  • the gasification furnace according to the present invention is a gasification furnace that oxidizes a raw material to generate a product gas, and an oxidation region for oxidizing the raw material is set to a predetermined temperature or a predetermined temperature range. Means for maintaining is provided, and means for passing the raw material through the oxidation zone within a predetermined time range is provided.
  • the gasification furnace operation method according to the present invention is a gasification furnace operation method in which a raw material is oxidized to generate a product gas, and an oxidation region for oxidizing the raw material is previously set. A predetermined temperature or a predetermined temperature range is maintained, and the raw material is allowed to pass through the oxidation zone within a predetermined time range.
  • the predetermined temperature or the predetermined temperature range is a temperature equal to or higher than a tar pyrolysis temperature, which is a temperature necessary for thermal decomposition of tar, or a temperature range having the temperature as a central temperature, and the predetermined time range. Is longer than the allowable tar generation time, which is the time required to suppress the generation of tar below the allowable level, and below the allowable time of crystalline silica generation, which is the time required to suppress the generation of crystalline silica below the allowable level. A certain aspect can be illustrated.
  • the oxidizing atmosphere temperature in the oxidation zone and the crystalline silica production temperature which is the temperature at which the raw material itself produces crystalline silica from the time when the raw material enters the oxidation zone.
  • the time required for the raw material to pass through the oxidation region within the predetermined temperature or the central temperature of the predetermined temperature range and the predetermined time range based on the correlation with the time until the crystalline silica formation temperature is reached An embodiment in which means for determining the oxidation zone passage time is provided can be exemplified.
  • the crystalline silica in which the oxidizing atmosphere temperature in the oxidation zone and the temperature of the raw material itself is a temperature at which crystalline silica is produced from the time when the raw material enters the oxidation zone The raw material passes through the oxidation zone within the predetermined temperature or the central temperature of the predetermined temperature range and the predetermined time range based on the correlation with the crystalline silica generation temperature arrival time, which is the time until the formation temperature is reached.
  • the aspect which determines the oxidation zone passage time which is time can be illustrated.
  • the correlation can be exemplified by a mode corresponding to a correlation function expression represented by the following expression [1].
  • T is the oxidizing atmosphere temperature
  • t is a crystalline silica production allowable time which is a time for suppressing the generation of crystalline silica to an allowable level or less
  • tmin is The tar generation allowable time is a time required to suppress the generation of tar below the allowable level
  • a, b, and c are constants that change depending on the amount of the raw material components (particularly, the concentration of potassium contained).
  • the correlation can be exemplified by a mode corresponding to a correlation table shown in the following [Table 1] based on the raw material having a predetermined concentration of potassium.
  • T is the oxidizing atmosphere temperature
  • t is a crystalline silica production allowable time which is a time for suppressing the generation of crystalline silica to an allowable level or less
  • t (K (Small) represents the permissible time for crystalline silica generation with a raw material that is less than the standard potassium content of the raw material
  • t (large K) is greater than the standard potassium content of the raw material.
  • the crystalline silica production permissible time with a large amount of raw material is represented, and A, B, C, D, E are set values of the crystalline silica production permissible time t with respect to the oxidizing atmosphere temperature T, and the raw material Is a set value that varies depending on the amount of the component (particularly the potassium concentration), and is a set value that is equal to or greater than the allowable tar generation time tmin, which is the time required to suppress the generation of tar below the allowable level.
  • a raw material introduction portion for introducing the raw material is provided above the uppermost portion of the predetermined assumed char layer
  • An oxidant introduction part for introducing an oxidant is provided above the uppermost part of the assumed char layer and below an opening in the raw material introduction part, and the introduction direction of the oxidant is horizontal in the opening in the oxidant introduction part.
  • a product gas outflow part for allowing the product gas to flow out is provided above the opening in the oxidant introduction part, and an endothermic reaction is performed at a position facing the assumed char layer.
  • a raw material introduction portion for introducing the raw material is provided above the uppermost portion of the predetermined assumed char layer
  • An oxidant introduction part for introducing an oxidant is provided above the uppermost part of the assumed char layer and below an opening in the raw material introduction part, and the introduction direction of the oxidant is horizontal in the opening in the oxidant introduction part.
  • a generated gas outflow portion for flowing out the generated gas is provided above the opening in the oxidant introduction portion, and is formed on the outer surface of the region corresponding to the assumed char layer.
  • a raw material introduction portion for introducing the raw material is provided above the uppermost portion of the predetermined assumed char layer
  • An oxidant introduction part for introducing an oxidant is provided below the uppermost part of the assumed char layer
  • an oxidant contact time control part for controlling an oxidant contact time for contacting the oxidant with the char is provided, and the generated gas
  • a product gas outflow part for allowing the gas to flow out is provided above the oxidant introduction part
  • an endothermic reactant introduction part for introducing an endothermic reactant at a position facing the assumed char layer, and a heat capacity agent introduction for introducing a heat capacity agent The aspect which provided at least one among the parts can be illustrated.
  • a raw material introduction portion for introducing the raw material is provided above the uppermost portion of the predetermined assumed char layer, An oxidant introduction part for introducing an oxidant is provided below the uppermost part of the assumed char layer, an oxidant contact time control part for controlling an oxidant contact time for contacting the oxidant with the char is provided, and the generated gas
  • a product gas outflow portion for allowing the char to flow out is provided at a position facing the lowermost portion of the assumed char layer, and a char deposition time control unit for controlling the char deposition time for depositing char is provided.
  • a raw material introduction portion for introducing the raw material is provided above the uppermost portion of the predetermined assumed char layer, An oxidant introduction part for introducing an oxidant is provided below the uppermost part of the assumed char layer, and an oxidant contact time control unit for controlling an oxidant contact time for contacting the oxidant with the char is provided.
  • the oxidant introduction part further provided with a oxidant introduction part to be introduced at a position facing the lowermost part of the assumed char layer, and a product gas outflow part through which the produced gas flows out is provided below the uppermost part of the assumed char layer.
  • an oxidant introduction part further provided at a position facing the lowermost part of the assumed char layer.
  • a raw material introduction portion for introducing the raw material is provided above the uppermost portion of the predetermined assumed char layer
  • An oxidant introduction part for introducing an oxidant is provided at a position facing the lowermost part of the assumed char layer and above the uppermost part of the assumed char layer and below an opening in the raw material introduction part
  • An opening in the oxidant introduction portion provided at a position facing the bottom of the layer is formed so that the introduction direction of the oxidant is directed upward or substantially upward, and the raw material introduction is performed above the uppermost portion of the assumed char layer.
  • An opening in the oxidant introduction part provided below the opening in the part is formed so that the introduction direction of the oxidant is along the horizontal direction or upward from the horizontal direction, and the generated gas is allowed to flow out.
  • the formed gas outlet portion may be exemplified embodiments provided above the all of the oxidant introduction.
  • a raw material introduction portion for introducing the raw material is provided above the uppermost portion of the predetermined assumed char layer,
  • An oxidant introduction part for introducing an oxidant is provided at a position facing the lowest part of the assumed char layer, an oxidant introduction amount control part for controlling the introduction amount of the oxidant is provided, and an oxidant introduction for introducing the oxidant is provided.
  • a raw material introduction portion for introducing the raw material is provided above the uppermost portion of the predetermined assumed char layer
  • An oxidant introduction part for introducing an oxidant is provided at a position facing the lowermost part of the assumed char layer
  • an adjustment control part for adjusting the oxidant and at least one of an endothermic reaction agent and a heat capacity agent is provided, and the oxidant introduction
  • a raw material introduction part for introducing the raw material and an oxidant introduction part for introducing an oxidant are provided in parallel,
  • An opening in the raw material introduction part is formed such that the introduction direction of the raw material is along the flow direction of the product gas or substantially the flow direction, and the opening in the oxidant introduction part is the flow direction of the product gas.
  • a generated gas outflow portion for flowing out the generated gas is provided on the downstream side of the raw material introducing portion and the oxidant introducing portion in the flowing direction of the generated gas.
  • a raw material introduction part for introducing the raw material and an oxidant introduction part for introducing an oxidant are flowed in the product gas.
  • Oxidant introduction amount control for controlling the introduction amount of the oxidant by providing a product gas outflow portion for allowing the product gas to flow out on the downstream end surface opposite to the upstream end surface.
  • a raw material introduction portion for introducing the raw material is provided on an upstream end face in the flow direction of the generated gas, and the generated gas is
  • a product gas outflow portion to be flowed out is provided on the downstream end surface opposite to the upstream end surface, and a plurality of oxidant introduction portions for introducing an oxidant are provided between the upstream end surface and the downstream end surface.
  • an oxidant introduction amount control unit for controlling the introduction amount of the oxidant of the plurality of oxidant introduction units, and from the upstream side to the downstream side in the flow direction of the product gas
  • An embodiment in which an oxidant temperature control unit is provided which is placed on the side to gradually lower the temperature of the oxidant can be exemplified.
  • a raw material introduction portion for introducing the raw material is provided on an upstream end face in the flow direction of the generated gas, and the generated gas is
  • a product gas outflow portion to be flowed out is provided on the downstream end surface opposite to the upstream end surface, and a plurality of oxidant introduction portions for introducing an oxidant are provided between the upstream end surface and the downstream end surface.
  • an oxidant introduction amount control unit for controlling the introduction amount of the oxidant of the plurality of oxidant introduction units, and from the upstream side to the downstream side in the flow direction of the product gas
  • an oxidant concentration control unit is provided to gradually reduce the concentration of the oxidant over the side.
  • a raw material introduction portion for introducing the raw material is provided on an upstream end face in the flow direction of the generated gas, and the generated gas is A flow of the product gas is provided between the upstream end surface and the downstream end surface, and a product gas outflow portion to be flowed is provided on the downstream end surface that is a surface opposite to the upstream end surface.
  • An endothermic reactant that is provided on the upstream side in the direction and includes an oxidant introduction amount control unit that controls an introduction amount of the oxidant in the oxidant introduction unit, and introduces an endothermic reactant downstream from the oxidant introduction unit
  • the aspect which provided at least one among the introduction part and the heat capacity agent introduction part which introduces a heat capacity agent can be illustrated.
  • a raw material introduction portion for introducing the raw material is provided on an upstream end face in the flow direction of the generated gas, and the generated gas is
  • a product gas outflow portion to be flowed out is provided on the downstream end surface opposite to the upstream end surface, and an oxidant introduction portion for introducing an oxidant is provided between the upstream end surface and the downstream end surface.
  • a raw material introduction portion for introducing the raw material is provided on an upstream end face in the flow direction of the generated gas, and the generated gas is
  • a product gas outflow portion to be flowed out is provided on the downstream end surface opposite to the upstream end surface, and an oxidant introduction portion for introducing an oxidant is provided between the upstream end surface and the downstream end surface.
  • An example is provided in which an introduction amount control unit for controlling the introduction amount is provided, and an oxidant concentration switching control unit that switches the oxidants having a plurality of different concentrations is provided.
  • a mode in which the correlation is set or updated at the time of installation of the gasifier or at the time of determining or changing the source of the raw material can be exemplified.
  • FIG. 1 is a schematic configuration diagram illustrating an overall configuration of a gasification apparatus including a gasification furnace according to an embodiment of the present invention.
  • FIG. 2 is a schematic side view showing a part of the gasification furnace shown in FIG. 1 in a broken state, and shows a state in which the raw material is oxidized and gasified.
  • FIG. 3 is an explanatory diagram for explaining the oxidation region, and is an enlarged view showing the vicinity of the boundary between the combustion gas layer and the char layer in the furnace shown in FIG. 2, and (a) shows the char layer.
  • FIG. 4 is a graph showing a diffraction pattern by X-ray diffraction of silica in ash obtained from the gasification furnace according to the present embodiment using rice husk as a raw material, compared with the case of crystalline silica, ) Is a diagram showing the result of the top of the char layer performed at the position shown in FIG.
  • FIG. 3A is a graph showing the relationship between crystalline silica formation temperature and potassium content.
  • FIG. 6 is a graph showing the correlation between the oxidizing atmosphere temperature and the crystalline silica formation temperature arrival time obtained as a result of an experiment conducted when the crystalline silica formation temperature is 750 ° C.
  • FIG. 7 is a schematic diagram schematically showing the gasification furnace according to the first embodiment of Example 1.
  • FIG. 8 is a schematic view schematically showing a gasification furnace according to the second embodiment of Example 1.
  • FIG. 9 is a schematic view schematically showing a gasification furnace according to the third embodiment of Example 1.
  • FIG. 10 is a schematic view schematically showing a gasification furnace according to the fourth embodiment of Example 1.
  • FIG. 11 is a schematic diagram schematically showing a gasification furnace according to the fifth embodiment of Example 1.
  • FIG. 12 is a schematic view schematically showing a gasification furnace according to the sixth embodiment of Example 1.
  • FIG. 13 is a schematic view schematically showing a gasification furnace according to a seventh embodiment of Example 1.
  • FIG. 14 is a schematic diagram schematically showing the gasification furnace according to the first embodiment of Example 2.
  • FIG. FIG. 15 is a schematic view schematically showing a gasification furnace according to a second embodiment of Example 2.
  • FIG. 16 is a schematic diagram schematically illustrating a gasification furnace according to a third embodiment of Example 2.
  • FIG. 17 is a schematic diagram schematically illustrating a gasification furnace according to a fourth embodiment of Example 2.
  • FIG. 18 is a schematic diagram schematically illustrating the gasification furnace according to the first embodiment of Example 3.
  • FIG. 19 is a schematic view schematically showing a gasification furnace according to the second embodiment of Example 3.
  • FIG. 20 is a schematic diagram schematically illustrating a gasification furnace according to a third embodiment of Example 3.
  • FIG. 21 is a schematic diagram schematically illustrating a gasification furnace according to a fourth embodiment of Example 3.
  • FIG. 22 is a schematic diagram schematically illustrating a gasification furnace according to a fifth embodiment of Example 3.
  • FIG. 23 is a schematic diagram schematically illustrating a gasification furnace according to a sixth embodiment of Example 3.
  • FIG. 24 is a schematic diagram schematically illustrating a gasification furnace according to a seventh embodiment of Example 3.
  • FIG. 25 is a schematic diagram schematically illustrating a gasification furnace according to an eighth embodiment of Example 3.
  • FIG. 26 is a schematic diagram schematically illustrating the gasification furnace according to the ninth embodiment of Example 3.
  • FIG. 27 is a schematic diagram schematically showing the gasification furnace according to the tenth embodiment of Example 3.
  • FIG. 28 is a schematic diagram schematically illustrating a gasification furnace according to an eleventh embodiment of Example 3.
  • FIG. 29 is a schematic diagram schematically showing a gasification furnace according to a twelfth embodiment of Example 3.
  • FIG. 30 is a schematic diagram schematically illustrating a gasification furnace according to a thirteenth embodiment of Example 3.
  • FIG. 1 is a schematic configuration diagram showing an overall configuration of a gasification apparatus 100 including a gasification furnace 102 according to an embodiment of the present invention.
  • a gasifier 100 includes a storage hopper 101, a gasifier 102, a bag filter 103, a gas cooler 104, a scrubber 105, a circulating water tank 106 (water tank), and a cooling tower. 107, a gas filter 108, an induction blower 109, a pretreatment unit 110, a next process apparatus (in this example, a gas engine 111, more specifically, a gas engine power generation apparatus), a water seal, The tank 112 and the surplus gas combustion apparatus 113 (flare stack) are provided.
  • the storage hopper 101 stores the raw material F of the generated gas (in this example, fuel gas G).
  • the raw material F of the generated gas in this example, fuel gas G.
  • the raw material containing a silica and potassium can be illustrated,
  • non-food crops such as rice husks and rice straw, such as rice and wheat
  • the raw material is rice husk biomass containing silica and potassium
  • the fuel gas G is biogas. Therefore, the gasifier 100 is a biogasifier.
  • the gasification furnace 102 includes a raw material introduction unit 102a that introduces the raw material F stored in the storage hopper 101, and a single furnace 102b that generates fuel gas G from the raw material F introduced by the raw material introduction unit 102a. ing.
  • the raw material introduction unit 102a includes a raw material introduction conveyor 102a1 and a raw material introduction feeder 102a2 in this example.
  • the raw material introduction conveyor 102a1 conveys the raw material F stored in the storage hopper 101 to the raw material introduction feeder 102a2.
  • the raw material introduction feeder 102a2 introduces the raw material F that has been conveyed by the raw material introduction conveyor 102a1 into the furnace 102b.
  • the gasification furnace 102 will be described in detail later.
  • the bag filter 103 removes unnecessary materials such as soot contained in the fuel gas G generated in the gasification furnace 102.
  • the gas cooler 104 is provided in the fuel gas supply path from the gasifier 102 to the gas engine 111.
  • the gas cooler 104 cleans the fuel gas G from which unnecessary substances have been removed by the bag filter 103 with the cleaning water WW, and further cools it with the cooling water CW.
  • the scrubber 105 is further cleaned by letting the fuel gas G cleaned and cooled by the gas cooler 104 submerge in the cleaning water WW.
  • the circulating water tank 106 stores the cleaning water WW supplied to the gas cooler 104 and the scrubber 105.
  • the cooling tower 107 stores the cooling water CW supplied to the gas cooler 104.
  • the gas filter 108 removes unnecessary substances such as tar contained in the fuel gas G cleaned by the scrubber 105 by filtration.
  • the induction blower 109 sucks the fuel gas G in the fuel gas supply path on the gasification furnace 102 side and discharges it to the fuel gas supply path on the gas engine 111 side and the fuel gas supply path on the surplus gas combustion device 113 side.
  • the pretreatment unit 110 removes impurities in the fuel gas G discharged to the fuel gas supply path on the gas engine 111 side by the induction blower 109.
  • the gas engine 111 burns the fuel gas G from which impurities have been removed by the pretreatment unit 110.
  • the water seal tank 112 controls the pressure of the fuel gas G discharged to the fuel gas supply path on the gas engine 111 side by the induction blower 109.
  • the surplus gas combustion device 113 burns the surplus fuel gas SG that has not been supplied to the gas engine 111 and flows when the pressure of the fuel gas G exceeds the pressure of the water sealing tank 112.
  • the raw material F containing silica and potassium (in this example, rice husk) is introduced into the gasification furnace 102 by the raw material introduction unit 102a, and the combustible fuel gas G is generated in the gasification furnace 102. Is done.
  • the fuel gas G generated in the gasification furnace 102 flows in the order of the bag filter 103, the gas cooler 104, the scrubber 105, the gas filter 108, and the induction blower 109, and the gas engine 111 side and surplus gas downstream of the induction blower 109.
  • the fuel flows in a branched manner to the combustion device 113 side, the surplus gas combustion device 113 burns surplus fuel gas SG, and the gas engine 111 burns fuel gas G.
  • the raw material F is stored in the storage hopper 101, and the raw material F in the storage hopper 101 is introduced into the gasifier 102 by the raw material introduction conveyor 102a1 and the raw material introduction feeder 102a2 in the raw material introduction portion 102a.
  • the raw material F is incompletely burned to generate fuel gas G.
  • the fuel gas G generated in the gasification furnace 102 is introduced into the bag filter 103 through the gas pipe 201.
  • the fuel gas G is a fuel gas containing carbon monoxide as a main component.
  • the fuel gas G includes unnecessary substances such as soot, tar (tar below the allowable level generated in the gasifier 102), dust, and the like. It is included.
  • the bag filter 103 unnecessary substances such as soot contained in the fuel gas G are removed by a filter called a filter cloth.
  • the fuel gas G from which unnecessary substances such as soot have been removed by the bag filter 103 is introduced into the gas cooler 104 through the gas pipe 202.
  • a gas pipe (not shown) through which the fuel gas G flows is provided in the gas cooler 104.
  • the fuel gas G in the gas pipe is cleaned with the cleaning water WW and the cooling water that flows around the gas pipe. Cooled with CW.
  • the fuel gas G cleaned and cooled by the gas cooler 104 is introduced into the scrubber 105 through the gas pipe 203.
  • the cooling water CW supplied to the gas cooler 104 is stored in the cooling tower 107, and the cooling water CW in the cooling tower 107 is introduced into the gas cooler 104 through the water distribution pipe 204.
  • the cooling water CW in the distribution pipe 204 is pumped to the gas cooler 104 side by the pump 205, and the fuel gas G is cooled by the gas cooler 104.
  • the cooling water CW that has cooled the fuel gas G is led to the cooling tower 107 through the water distribution pipe 206.
  • the cleaning water WW is stored in the scrubber 105, and the fuel gas G is cleaned by diving in the cleaning water WW in the scrubber 105.
  • the fuel gas G cleaned by the scrubber 105 is introduced into the gas filter 108 through the gas pipe 207.
  • Wash water WW supplied to the gas cooler 104 and the scrubber 105 is stored in the circulating water tank 106.
  • the cleaning water WW in the circulating water tank 106 is introduced into the gas cooler 104 through the water distribution pipe 209 and is introduced into the scrubber 105 through the water distribution pipe 210 branched from the water distribution pipe 209.
  • the cleaning water WW in the distribution pipes 209 and 210 is pumped to the gas cooler 104 side and the scrubber 105 side by the pump 211, and the fuel gas G is cleaned by the gas cooler 104 and the scrubber 105.
  • the cleaning water WW cleaned with the fuel gas G by the gas cooler 104 is led to the circulating water tank 106 through the water distribution pipe 212, while the cleaning water WW cleaned with the fuel gas G by the scrubber 105 circulates through the water distribution pipe 213. It is led out to the water tank 106.
  • the gas filter 108 unnecessary substances such as tar contained in the fuel gas G are removed by filtration.
  • the fuel gas G from which unnecessary substances such as tar are removed by the gas filter 108 is introduced into the induction blower 109 via the gas pipe 214.
  • the fuel gas G sucked from the fuel gas supply path on the upstream side of the attraction blower 109 is discharged to the fuel gas supply path on the downstream side of the attraction blower 109.
  • the fuel gas supply path upstream of the induction blower 109 has a negative pressure
  • the fuel gas supply path downstream of the induction blower 109 has a positive pressure.
  • the fuel gas G is attracted to the downstream fuel gas supply path by the attracting blower 109.
  • the fuel gas G attracted by the attraction blower 109 is introduced into the gas engine 111 via the gas supply pipe 215 and the pretreatment unit 110 provided in the gas supply pipe 215.
  • the fuel gas G from which impurities have been removed by the pretreatment unit 110 is supplied to the gas engine 111.
  • the gas engine 111 includes a power generation device (not shown) driven by a gas engine unit (not shown), generates power with the power generation device, and uses exhaust heat of the gas engine unit to supply hot water, air conditioning, or the like. It is a cogeneration system used for
  • surplus fuel gas SG that has not been supplied to the gas engine 111 among the fuel gas G generated in the gasification furnace 102 is supplied from the gas supply pipe 215 that supplies the fuel gas G from the induction blower 109 to the gas engine 111 side.
  • the surplus gas is supplied to the surplus gas combustion device 113 via the branching surplus gas supply pipe 216 and the water sealing tank 112 provided in the surplus gas supply pipe 216.
  • the surplus gas supply pipe 216 is provided on the upstream side of the water sealing tank 112 and is provided on the downstream side of the water sealing tank 112 and the upstream gas supply pipe 216 a that connects the induction blower 109 and the water sealing tank 112.
  • a downstream gas supply pipe 216b that connects the sealing tank 112 and the surplus gas combustion device 113 is provided.
  • water is sealed up to a predetermined water level.
  • the water sealing tank 112 acts on the surplus fuel gas SG discharged from the upstream gas supply pipe 216a by applying water pressure to the surplus fuel gas in the downstream gas supply pipe 216b from the water sealing tank 112 to the surplus gas combustion device 113.
  • the supply amount of SG is controlled.
  • the water sealing tank 112 can control the pressure of the fuel gas G in the gas supply pipe 215.
  • surplus fuel gas SG sent through the upstream gas supply pipe 216a, the water sealing tank 112, and the downstream gas supply pipe 216b is burned in the surplus gas combustion section 113a.
  • the gasification furnace 102 is a gasification furnace that generates a fuel gas G by oxidizing the raw material F.
  • FIG. 2 is a schematic side view showing a part of the gasification furnace 102 shown in FIG. 1 in a broken state, and shows a state in which the raw material F is oxidized and gasified.
  • the raw material F is pyrolyzed to generate a fuel gas G (for example, carbon monoxide or hydrogen).
  • a fuel gas G for example, carbon monoxide or hydrogen.
  • the raw material F is carbonized, the char R (carbide) that is carbonized is burned, and the burned ash S is discharged to the outside.
  • the raw material F is introduced together with an oxidizing agent H such as air.
  • the gasification furnace 102 includes a raw material introduction part 102a for introducing the raw material F, an oxidant introduction part 102d for introducing the oxidant H, and a fuel gas outflow part 102e for letting out the fuel gas G.
  • the raw material introduction part 102a is provided above the uppermost part ⁇ xa of a predetermined predetermined char layer ⁇ x (in this example, an assumed char deposition layer).
  • the oxidant introduction portion 102d is provided below the opening 102ah (the raw material dropping portion in this example) in the raw material introduction portion 102a.
  • the fuel gas outflow portion 102e is provided above the opening 102dh in the oxidant introduction portion 102d.
  • the raw material introduction part 102a is provided on the top surface 102b1 (upper surface) of the furnace 102b.
  • transducing part 102a may be provided in side 102b2 upper part of the furnace 102b.
  • the gasification furnace 102 further includes a preheating part 102c (in this example, a temperature rising burner) for preheating the inside of the furnace 102b, and a discharge part 102f for discharging the ash S and moving the char R downward.
  • a preheating part 102c in this example, a temperature rising burner
  • a discharge part 102f for discharging the ash S and moving the char R downward.
  • the preheating unit 102c is a temperature rising burner that preheats using combustion of fossil fuel such as propane gas.
  • the preheating unit 102c includes a gas supply unit 102c1 provided on the side surface 102b2 of the furnace 102b, a gas cylinder 102c2 connected to the gas supply unit 102c1 and configured to supply the combustible gas g (propane gas in this example) to the gas supply unit 102c1. It has. Thereby, the preheating part 102c can preheat the inside of the furnace 102b by combustion of the combustible gas g supplied from the gas cylinder 102c2 via the gas supply part 102c1.
  • the oxidizing agent introduction part 102d is provided on the side surface 102b2 of the furnace 102b.
  • the opening 102dh in the oxidant introduction portion 102d is formed so that the introduction direction of the oxidant H is along the horizontal direction, the substantially horizontal direction, or upward (for example, obliquely upward).
  • the fuel gas outflow portion 102e is provided on the top surface 102b1 of the furnace 102b.
  • the fuel gas outflow portion 102e may be provided on the upper side surface 102b2 of the furnace 102b.
  • the discharge unit 102f is provided on the bottom surface 102b3 (lower surface) of the furnace 102b.
  • the discharge unit 102f includes an ash discharge conveyor 102f1 that discharges the ash S flowing out of the furnace 102b to the outside.
  • the oxidizing atmosphere is set to a relatively low temperature (for example, a temperature lower than about 800 ° C.) in order to suppress the generation of crystalline silica, the generation of tar cannot be suppressed.
  • the oxidation region ⁇ for oxidizing the raw material F is set to a predetermined temperature (for example, 1050 ° C.) or a predetermined temperature range (for example, 1050 ° C. as the central temperature).
  • the raw material F is allowed to pass through the oxidation zone ⁇ within a predetermined time range (for example, about 2 minutes) while being maintained within a predetermined temperature range of 1000 ° C. to 1100 ° C.
  • the gasification furnace 102 according to the present embodiment has a predetermined temperature (for example, 1050 ° C.) or a predetermined temperature range (for example, 1000 ° C. to 1100 ° C.
  • the oxidation region ⁇ for oxidizing the raw material F.
  • the temperature of the raw material F itself is higher than that of crystalline silica. The generation of tar is suppressed to an allowable level or less until the temperature at which the crystalline silica is formed or the temperature near the crystalline silica forming temperature is reached.
  • “maintaining at a predetermined temperature” is a concept including not only maintaining at a constant temperature but also maintaining at a substantially constant temperature.
  • a gas containing oxygen typically air
  • the oxidant H may be pure or substantially pure oxygen, but in this example, it is air.
  • “passing the raw material F through the oxidation zone ⁇ ” is a concept including passing the char R through the oxidation zone ⁇ .
  • the “temperature in the vicinity of the crystalline silica formation temperature” is a temperature at which the generation of crystalline silica can be made to an allowable level or lower even if the crystalline silica formation temperature is exceeded.
  • the gasification furnace 102 allows the raw material F to pass through the oxidation zone ⁇ within a predetermined time (for example, about 2 minutes), and then is adjacent to the oxidation zone ⁇ at a predetermined temperature or a predetermined temperature range in the oxidation zone ⁇ . It reaches the low temperature range ⁇ at a temperature lower than the central temperature or the lower limit temperature (specifically, a temperature lower than the crystalline silica formation temperature).
  • the gasification furnace 102 may be configured to allow the raw material F to pass through the low temperature region ⁇ and then reach the oxidation region ⁇ .
  • the first means includes an oxidant introduction part 102d.
  • the second means includes a raw material introduction part 102a and a discharge part 102f.
  • the introduction amount of the oxidant H from the oxidant introduction unit 102d per unit time is determined based on the predetermined introduction amount of the raw material F and the preset discharge amount of the ash S in the furnace 102b at a predetermined temperature (for example, 1050 ° C.) or It is set to a predetermined value by a predetermined experiment or the like so as to be maintained within a predetermined temperature range (for example, a predetermined temperature range of 1000 ° C. to 1100 ° C. with 1050 ° C. being the central temperature).
  • a predetermined temperature for example, 1050 ° C.
  • the movement distance per unit time of the char R at the time is determined in advance so that the oxidation zone passage time tp, which is the time for the raw material F to pass through the oxidation zone ⁇ , is within a predetermined time range (about 2 minutes in this example). It is set to a predetermined value.
  • the oxidation zone passage time tp is the time from when the raw material F is introduced and enters the oxidation zone ⁇ until it exits the oxidation zone ⁇ .
  • the oxidation zone passage time tp is introduced from the oxidant introduction part 102d into the furnace 102b. It also includes the time during which the raw material F falls freely until it reaches the char layer ⁇ . The falling distance of the raw material F from the raw material introducing portion 102a may be set so that the oxidation zone passage time tp is within a predetermined time range.
  • the oxidation region ⁇ is not limited to this, but includes, for example, a region from the opening 102dh through which the oxidant H is introduced to the outlet 102eh of the fuel gas G.
  • control device 102g and the thermocouple 102h which are not described will be described later.
  • FIG. 3 is an explanatory diagram for explaining the oxidation region ⁇ , and is an enlarged view showing the vicinity of the boundary between the combustion gas layer ⁇ and the char layer ⁇ in the furnace 102b shown in FIG.
  • FIG. 3A shows an example in which the top portion ⁇ a of the char layer ⁇ is set so that the char layer ⁇ is not in contact with the oxidant H or is in contact with the surface.
  • FIG. 3B shows an example in which the top portion ⁇ a of the char layer ⁇ is set so that the inner side of the char layer ⁇ is located at a position where the char layer ⁇ comes into contact with the oxidizing agent H.
  • the position where the char layer ⁇ is brought into contact with the surface of the oxidant H and the top ⁇ a is a position where the oxidant H is introduced toward the surface of the char layer ⁇ .
  • the position where the inner side of the char layer ⁇ is in contact with the oxidant H is a position where the oxidant H is introduced toward the side of the char layer ⁇ .
  • the position of the top portion ⁇ a of the char layer ⁇ is the introduction amount of the raw material F from the raw material introduction portion 102a and the discharge amount of the ash S from the discharge portion 102f, that is, the movement distance per unit time of the char R in the char layer ⁇ . It can be adjusted by adjusting. For example, a predetermined introduction amount of the raw material F and a predetermined discharge amount of the ash S that maintain the position of the top portion ⁇ a of the char layer ⁇ constant or substantially constant are adjusted in advance to raise the position of the top portion ⁇ a of the char layer ⁇ .
  • the raw material F is set to a predetermined introduction amount after the predetermined amount of introduction of the raw material F is made larger than the predetermined discharge amount of the ash S or the predetermined discharge amount of the ash S is made smaller than the predetermined introduction amount by the distance to be raised.
  • the predetermined introduction amount of the raw material F is made smaller than the predetermined discharge amount of the ash S or the predetermined amount of the ash S is decreased. For example, after the operation is performed with the discharge amount larger than the predetermined introduction amount, the raw material F is returned to the predetermined introduction amount or the ash S is returned to the predetermined discharge amount.
  • the oxidation region ⁇ is not only the region of the combustion gas layer ⁇ (see FIGS. 3 (a) and 3 (b)), but also the char layer ⁇ (a char deposition layer or a char fluidized layer, in this example).
  • the char layer ⁇ a char deposition layer or a char fluidized layer, in this example.
  • the region of the char layer ⁇ is also exposed to the oxidant H (see FIG. 3B).
  • the inside of the furnace 102b is preheated to a predetermined temperature or a predetermined temperature range by the preheating unit 102c, and the oxidation zone ⁇ is formed in advance.
  • the predetermined temperature for example, 1050 ° C.
  • the predetermined temperature range for example, 1000 ° C. to 1100 ° C. with 1050 ° C. as the central temperature
  • the thermal decomposition temperature of the raw material F for example, about 400 ° C. when the raw material F is rice husk.
  • the raw material introduction part 102a when the raw material introduction part 102a is operated and the raw material F is introduced from the raw material introduction part 102a, the raw material F is thermally decomposed. Further, the oxidant introduction unit 102d is operated to introduce the oxidant H from the oxidant introduction unit 102d. Then, the oxidation region ⁇ is maintained within a predetermined temperature (for example, 1050 ° C.) or a predetermined temperature range (for example, 1000 ° C. to 1100 ° C. with 1050 ° C. being the central temperature), and the raw material F is within the oxidation region ⁇ within a predetermined time range (in this example) Then let it pass in about 2 minutes).
  • a predetermined temperature for example, 1050 ° C.
  • a predetermined temperature range for example, 1000 ° C. to 1100 ° C. with 1050 ° C. being the central temperature
  • the raw material F is carbonized, the carbonized char R (carbide) is burned, and the burned ash S is discharged to the outside by the discharge unit 102f, while the generated fuel gas G is discharged from the fuel gas outflow unit 102e.
  • the oxidation region ⁇ for oxidizing the raw material F is maintained at a predetermined temperature (for example, 1050 ° C.) or a predetermined temperature range (for example, 1000 ° C. to 1100 ° C. with 1050 ° C. being the central temperature). Since it passes through the oxidation zone ⁇ within a predetermined time range (in this example, about 2 minutes), in other words, the temperature of the raw material F itself is crystallized from the time when the raw material F is heated in an oxidizing atmosphere higher than the tar pyrolysis temperature.
  • a predetermined temperature for example, 1050 ° C.
  • a predetermined temperature range for example, 1000 ° C. to 1100 ° C. with 1050 ° C. being the central temperature. Since it passes through the oxidation zone ⁇ within a predetermined time range (in this example, about 2 minutes), in other words, the temperature of the raw material F itself is crystallized from the time when the raw material F is heated in an oxidizing atmosphere higher than the tar
  • a fuel gas G is produced using a raw material containing silica and potassium (for example, rice husk) as the raw material F
  • a predetermined temperature for example, 1050 ° C.
  • a predetermined temperature range for example, 1000 ° C.
  • FIG. 4 is a graph showing a diffraction pattern by X-ray diffraction of silica in the ash S obtained from the gasification furnace 102 according to the present embodiment using rice husk as a raw material F, compared with the case of crystalline silica.
  • FIG. 4A shows the result of the top portion ⁇ a of the char layer ⁇ performed at the position shown in FIG. 3A
  • FIG. 4B shows the top portion ⁇ a of the char layer ⁇ as shown in FIG. The result performed at the position shown in FIG. In FIG.
  • a solid line represents a diffraction pattern by X-ray diffraction of silica generated in the gasification furnace 102 according to the present embodiment, and a broken line represents a diffraction pattern by X-ray diffraction of crystalline silica.
  • the X-ray diffractometer analyzes diffraction that occurs when X-rays are scattered and interfered by electrons around the atoms of the sample when the sample is irradiated with X-rays. Therefore, if the silica is amorphous, X-rays are scattered and interfered to make the diffraction pattern gentle, and if the silica is crystalline, the X-ray is reflected at a certain diffraction angle and has a steep peak. It becomes a diffraction pattern.
  • the silica in the ash S obtained by the gasification furnace 102 according to the present embodiment is such that the top ⁇ a of the char layer ⁇ is positioned at the position shown in FIG. 3A (see FIG. 4A). ) And at any of the positions shown in FIG. 3B (see FIG. 4B), it is amorphous, and crystalline silica is confirmed by the diffraction pattern by X-ray diffraction. I could't.
  • the tar in the fuel gas G obtained from the gasification furnace 102 according to the present embodiment using rice husks as the raw material F is also below the allowable level.
  • the fuel gas generated in the gasification furnace 102 according to the present embodiment using rice husks as the raw material F can be used without problems in the next process (for example, the gas engine 111), and the amount of heat necessary for the next process ( For example, it has been found that the heat quantity necessary for operating the gas engine 111).
  • the crystalline silica formation temperature varies depending on the potassium concentration.
  • FIG. 5 is a graph showing the relationship between the crystalline silica formation temperature Tc and the potassium concentration Kc.
  • the crystalline silica formation temperature Tc is 1350 ° C., whereas as the potassium concentration Kc increases, the crystalline silica formation temperature Tc gradually increases. It decreases (for example, the temperature decreases to 750 ° C.).
  • the predetermined temperature or the predetermined temperature range is a temperature equal to or higher than the tar pyrolysis temperature or a temperature range having the temperature as a central temperature.
  • the predetermined time range is the crystalline silica which is the time required to suppress the generation of crystalline silica to the allowable level or more, and the time required to suppress the generation of crystalline silica to the allowable level or less. It is less than the generation allowable time.
  • the tar pyrolysis temperature for example, the same time and the same space 1000 ° C.
  • a predetermined temperature for example, 1050 ° C.
  • a predetermined temperature range for example, a temperature range in which 1050 ° C. is the central temperature. If it is within the predetermined time range (for example, 2 minutes) below crystalline silica production allowable time, while generating
  • the tar generation allowable time is a time when tar is not generated or is an allowable generation amount even if tar is generated.
  • the allowable level of tar can be a level at which the tar level does not impede practically.
  • the tar level after removal in the subsequent process is reduced.
  • the level can be a level that does not impede practical use.
  • the crystalline silica production allowable time is a time when the crystalline silica is not produced, or the production amount is acceptable even if crystalline silica is produced.
  • the acceptable level of crystalline silica can be a level defined in view of the effect of crystalline silica.
  • the predetermined temperature or the predetermined temperature range for example, although not limited thereto, any temperature in the range of 900 ° C. to 1100 ° C. or a temperature range in which the temperature is the central temperature can be exemplified. If the central temperature of the predetermined temperature or the predetermined temperature range is below 900 ° C., tar generation tends to exceed an allowable level. On the other hand, if the central temperature of the predetermined temperature or the predetermined temperature range exceeds 1100 ° C., the oxidation zone passage time tp becomes too short. Further, the oxidation region passage time tp within the predetermined time range depends on, for example, the potassium concentration Kc in the raw material F containing silica and potassium.
  • the potassium concentration at which the crystalline silica formation temperature Tc is 750 ° C.
  • about 5 minutes can be mentioned when the central temperature of the predetermined temperature or the predetermined temperature range is 900 ° C., and about 1 minute 30 seconds when the central temperature of the predetermined temperature or the predetermined temperature range is 1100 ° C. .
  • the gasification furnace 102 has a predetermined predetermined amount of heat necessary for the next process (in this example, necessary for operating the gas engine 111). Or a fuel gas having a predetermined heat amount or more in the low temperature region ⁇ before and / or after the raw material F passes through the oxidation region ⁇ . It may be.
  • the oxidizing atmosphere temperature T in the oxidation region ⁇ and the temperature of the raw material F itself reaches the crystalline silica generation temperature Tc from the time when the raw material F enters the oxidation region ⁇ .
  • the crystalline silica formation temperature arrival time tc which is the time until the oxidation, the oxidation within the predetermined temperature or the central temperature of the predetermined temperature range and the predetermined time range The band transit time tp is determined.
  • the gasification furnace 102 has a predetermined temperature or a central temperature within a predetermined temperature range and an oxidation region within a predetermined time range based on the correlation ⁇ between the oxidizing atmosphere temperature T and the crystalline silica formation temperature arrival time tc. Third means for determining the passage time tp is further provided.
  • the third means controls the operation of the first means (specifically, the oxidant introduction part 102d) and the second means (specifically, the raw material introduction part 102a and the discharge part 102f).
  • the gasification furnace 102 includes a control device 102g (see FIG. 2) that controls the entire gasification furnace 102, and temperature detection means (in this example, a thermocouple 102h) that detects the temperature of the oxidation zone ⁇ in the furnace 102b. ).
  • the third means constitutes part of the control means of the control device 102g.
  • the thermocouple 102h is provided in the oxidation region ⁇ .
  • the control device 102g includes a processing unit 102g1 (see FIG. 2) including a microcomputer such as a CPU (Central Processing Unit), a nonvolatile memory such as a ROM (Read Only Memory), and a volatile memory such as a RAM (Random Access Memory). And a storage unit 102g2 (see FIG. 2) including a timer function.
  • a processing unit 102g1 including a microcomputer such as a CPU (Central Processing Unit), a nonvolatile memory such as a ROM (Read Only Memory), and a volatile memory such as a RAM (Random Access Memory).
  • a storage unit 102g2 including a timer function.
  • the processing unit 102g1 loads and executes a control program stored in advance in the ROM of the storage unit 102g2 on the RAM of the storage unit 102g2, thereby performing operation control of various components. .
  • the control device 102g controls the operation of the raw material introduction unit 102a to adjust the introduction amount of the raw material F from the raw material introduction unit 102a per unit time (specifically, the conveyance speed of the raw material introduction conveyor 102a1).
  • the control device 102g controls the operation of the oxidant introduction unit 102d to adjust the amount of oxidant H introduced from the oxidant introduction unit 102d per unit time.
  • the control device 102g controls the discharge unit 102f to discharge the ash S from the discharge unit 102f per unit time (specifically, the conveyance speed of the ash discharge conveyor 102f1), that is, the char R in the char layer ⁇ . Adjust the downward movement distance per unit time.
  • the thermocouple 102h transmits an electrical signal related to the detected temperature of the oxidation zone ⁇ to the control device 102g.
  • the control device 102g detects (recognizes) the temperature of the oxidation zone ⁇ based on an electrical signal related to the temperature of the oxidation zone ⁇ .
  • control device 102g uses the amount of introduction of the raw material F from the raw material introduction unit 102a per unit time and the amount of discharge of the ash S from the discharge unit 102f per unit time within the predetermined time range. tp can be set.
  • Can be easily changed for example, automatically or manually, in this example, automatically by a control operation by the control device 102g).
  • FIG. 6 is a graph showing the correlation ⁇ between the oxidizing atmosphere temperature T and the crystalline silica formation temperature arrival time tc obtained as a result of the experiment when the crystalline silica formation temperature is 750 ° C.
  • the correlation ⁇ between the oxidizing atmosphere temperature T and the crystalline silica formation temperature arrival time tc can be made to correspond to the correlation function equation ⁇ shown by the following equation [1].
  • T is an oxidizing atmosphere temperature
  • t is a crystalline silica production allowable time
  • tmin is a tar generation allowable time
  • a, b, and c are components of the raw material F. It is a constant that varies depending on the amount (particularly the potassium concentration).
  • the constants a, b, c, and d are values that can be calculated by experiments and / or simulations performed in advance, and depend on the component amount of the raw material F (for example, rice husk), in particular, the concentration of potassium.
  • the constants a, b, c, and d are four simultaneous equations obtained by substituting the values of (T, t) at four points obtained by experiments or the like into the equation [1], for example, the raw material F is crystalline.
  • the expression ⁇ of the correlation function indicating the correlation ⁇ between the oxidizing atmosphere temperature T and the crystalline silica formation temperature arrival time tc is stored in advance in the storage unit 102g2.
  • the control device 102g can detect (recognize) the crystalline silica formation temperature arrival time tc from the oxidizing atmosphere temperature T. Thereby, the control apparatus 102g can make the predetermined time range (oxidation zone passage time tp) according to the oxidation atmosphere temperature T into the range enclosed by the oblique line shown in FIG. On the other hand, the control device 102g can detect (recognize) the oxidizing atmosphere temperature T from the crystalline silica generation temperature arrival time tc. Thereby, the control apparatus 102g can make the center temperature (oxidation atmosphere temperature T) of the predetermined temperature or predetermined temperature range according to the crystalline silica production temperature arrival time tc into the range enclosed by the oblique line shown in FIG.
  • the control device 102g can control the predetermined time range or / or the predetermined temperature or the predetermined temperature range so as to satisfy the relationship of the expression [1]. Further, the operator can set a predetermined time range or / or a predetermined temperature or a predetermined temperature range so as to satisfy the relationship of Expression [1].
  • control configuration for setting the predetermined time range or / or the predetermined temperature or the predetermined temperature range can be easily and easily realized by using the correlation function expression ⁇ .
  • the correlation ⁇ between the oxidizing atmosphere temperature T and the crystalline silica formation temperature arrival time tc should correspond to the correlation table shown in [Table 1] below based on the raw material F having a predetermined content concentration of potassium. Can do.
  • T is the oxidizing atmosphere temperature
  • t is the allowable time for crystalline silica formation
  • t (small K) is a raw material less than the concentration of potassium contained in the reference raw material F
  • F represents the allowable time for crystalline silica production in F
  • t (large K) represents the allowable time t for crystalline silica production in raw material F that is higher than the content concentration of potassium in reference raw material F.
  • A, B, C, D, and E are set values for the allowable time t of crystalline silica generation with respect to the oxidizing atmosphere temperature T, and are set values that vary depending on the amount of the component of the raw material F (particularly, the potassium concentration). The set value is equal to or longer than the allowable generation time tmin.
  • A, B, C, D, and E satisfy the relationship of A> B> C> D> E.
  • the set values A, B, C, D, and E are values that can be set by experiments and / or simulations performed in advance, and the component amount of the raw material F (for example, rice husk) (particularly, the potassium concentration) Depends on.
  • a in [Table 1] is 5 minutes or approximately 5 minutes
  • B is 4 minutes or approximately 4 minutes
  • C can be 2 minutes 50 seconds or approximately 2 minutes 50 seconds
  • D can be 2 minutes or approximately 2 minutes
  • E can be 1 minute 30 seconds or approximately 1 minute 30 seconds.
  • the correlation table showing the correlation ⁇ between the oxidizing atmosphere temperature T and the crystalline silica formation temperature arrival time tc is stored in advance in the storage unit 102g2.
  • the control device 102g can control the predetermined time range or / or the predetermined temperature or the predetermined temperature range so as to satisfy the relationship of [Table 1]. Further, the operator can set a predetermined time range or / or a predetermined temperature or a predetermined temperature range so as to satisfy the relationship of [Table 1].
  • a control configuration for setting a predetermined time range or / or a predetermined temperature or a predetermined temperature range can be realized easily and easily.
  • the correlation ⁇ is set or updated when the gasification furnace 102 is installed or when the source of the raw material F is determined or changed.
  • the correlation ⁇ is measured for the raw material F at the place where the gasification furnace 102 is installed or the raw material F is procured, or with respect to the raw material F having various component amounts (particularly, the potassium concentration).
  • the correlation ⁇ with respect to the raw material F of various component amounts is obtained by conducting experiments in advance, and the component amount of the raw material F at the place where the gasification furnace 102 is installed or where the raw material F is procured (particularly the potassium concentration) ), And the location of the gasification furnace 102 or the procurement of the raw material F from various correlations ⁇ to ⁇ obtained in advance through experiments or the like based on the amount of the raw material F component (particularly the potassium concentration)
  • the correlation ⁇ to be applied to the raw material F at the ground is selected, and the generation of tar according to the amount of the component of the raw material F (particularly the potassium concentration) at the place where the gasifier 102 is installed or the raw material F is procured Suppression of both crystalline silica formation and It is possible to adjust the oxidizing atmosphere
  • the inside of the furnace 102b is preheated to a predetermined temperature or a predetermined temperature range.
  • the gasification furnace 102 according to the present embodiment further includes a fourth means for preheating the inside of the furnace 102b to a predetermined temperature or a predetermined temperature range before introducing the raw material F.
  • the fourth means includes a preheating portion 102c.
  • the gasification process can be performed quickly by preheating (heating in advance) the inside of the furnace 102b to a predetermined temperature or a predetermined temperature range before introducing the raw material F.
  • the control device 102g allows the temperature of the oxidation zone ⁇ to be maintained at a predetermined temperature by the detected temperature from the thermocouple 102h or enters a predetermined temperature range.
  • the amount of raw material F introduced from the raw material introduction unit 102a per unit time, the amount of oxidant H introduced from the oxidant introduction unit 102d per unit time, the amount of ash S discharged from the discharge unit 102f per unit time, That is, at least one of the downward moving distances per unit time of the char R in the char layer ⁇ may be adjusted.
  • Example 1 Next, another embodiment (Example 1) of the gasification furnace 102 according to the present embodiment will be described below with reference to FIGS.
  • 7 to 13 are schematic views schematically showing other embodiments of the gasification furnace 102 according to the present embodiment.
  • 7 to 13 show gasification furnaces 1021A to 1021G according to the first to seventh embodiments of Example 1, respectively. 7 to 13, the control device 102g and the like are not shown.
  • a gasification furnace 1021A according to the first embodiment shown in FIG. 7 is a gasification furnace for depositing char R to form a char layer ⁇ (specifically, a char deposition layer).
  • This is a gasification furnace (so-called fixed bed type updraft gasification furnace) that flows upward.
  • the material introduction part 102a is provided above the uppermost part ⁇ xa of the assumed char layer ⁇ x, and the oxidant introduction part 102d is provided from the uppermost part ⁇ xa of the assumed char layer ⁇ x. Is provided above and below the opening 102ah in the raw material introduction portion 102a.
  • the opening 102dh in the oxidant introduction portion 102d is formed such that the introduction direction of the oxidant H is along the horizontal direction or upward (for example, obliquely upward) from the horizontal direction.
  • the fuel gas outflow portion 102e is provided above the opening 102dh in the oxidant introduction portion 102d.
  • the fuel gas outflow portion 102e is provided below the opening 102ah in the raw material introduction portion 102a.
  • the oxidant introduction portion 102d is provided at one place or a plurality of places (two places in this example).
  • the raw material introduction portion 102a is provided on the top surface 102b1 of the furnace 102b, and the oxidant introduction portion 102d and the fuel gas outflow portion 102e are provided on the side surface 102b2 of the furnace 102b.
  • the raw material F surely falls in the oxidation zone ⁇ , and thus the raw material F can be reliably passed through the oxidation zone ⁇ within a predetermined time range.
  • the raw material introduction portion 102a is provided above the uppermost portion ⁇ xa of the assumed char layer ⁇ x
  • the fuel gas outflow portion 102e is provided above the opening 102dh in the oxidant introduction portion 102d, so that the char layer ⁇
  • the introduction of the oxidant H and the outflow of the fuel gas G can be avoided, and the oxidation zone ⁇ can be reliably controlled within a predetermined temperature or a predetermined temperature range.
  • the arrangement position of the raw material introduction part 102a and the arrangement position of the fuel gas outflow part 102e may be switched.
  • the gasification furnace 1021B according to the second embodiment shown in FIG. 8 is provided with at least one (both in this example) of the endothermic reactant introduction part 102i and the heat capacity agent introduction part 102j in the gasification furnace 1021A shown in FIG. It is a thing.
  • the gasification furnace 1021B further includes an endothermic reactant introduction unit 102i that introduces the endothermic reactant M and a heat capacity agent introduction unit 102j that introduces the heat capacity agent N.
  • the gasification furnace 1021B may include either one of the endothermic reactant introduction unit 102i and the heat capacity agent introduction unit 102j.
  • At least one of the endothermic reactant introduction part 102i and the heat capacity agent introduction part 102j (both in this example) is provided at a position facing the assumed char layer ⁇ x of the furnace 102b.
  • both the endothermic reactant introduction part 102i and the heat capacity agent introduction part 102j are provided on the bottom face 102b3 of the furnace 102b.
  • any one that causes an endothermic reaction may be used, and examples thereof include water vapor and carbon dioxide.
  • the heat capacity agent N any material can be used as long as it increases the heat capacity of the char layer ⁇ , and examples thereof include nitrogen.
  • an endothermic reaction of an endothermic reactant M for example, water vapor or carbon dioxide
  • a cooling effect by adding an endothermic reactant M (for example, a low-temperature substance) and / or a char layer by a heat capacity agent N (for example, nitrogen).
  • a heat capacity agent N for example, nitrogen
  • a gasification furnace 1021C according to the third embodiment shown in FIG. 9 is obtained by providing a char layer temperature control unit 102k in the gasification furnace 1021A shown in FIG.
  • the gasification furnace 1021C further includes a char layer temperature control unit 102k that controls the temperature of the char layer ⁇ .
  • the char layer temperature control unit 102k includes a part of the control device 102g.
  • the char layer temperature control section 102k is provided on the outer surface of the region corresponding to the assumed char layer ⁇ x of the furnace 102b (in this example, a part of the side surface 102b2 and the bottom surface 102b3 of the furnace 102b).
  • the char layer temperature control unit 102k includes a heat exchange unit 102k1 for flowing a heat exchange medium W such as water, a supply unit 102k2 for supplying the heat exchange medium W to the heat exchange unit 102k1, and a heat exchange from the heat exchange unit 102k1. And a discharge unit 102k3 for discharging the medium W.
  • the supply unit 102k2 and the discharge unit 102k3 are connected to a circulation pump and a temperature control unit that are not shown.
  • the char layer temperature control unit 102k is configured to circulate the heat exchange medium W, the temperature of which has been adjusted by the temperature adjustment unit, of the supply unit 102k2, the heat exchange unit 102k1, and the supply unit 102k2 using a circulation pump.
  • the char layer temperature control unit 102k includes temperature detection means (in this example, a thermocouple 102k4) that detects the temperature of the low temperature region ⁇ in the furnace 102b.
  • the thermocouple 102k4 is provided in a portion where the temperature of the low temperature region ⁇ is expected to be highest, in this example, in the adjacent portion of the oxidation region ⁇ and the low temperature region ⁇ (near the boundary of the low temperature region ⁇ ).
  • the char layer temperature control unit 102k controls the operation of the circulation pump to adjust the circulation amount per unit time of the heat exchange medium W by the circulation pump.
  • the char layer temperature control unit 102k controls the temperature adjustment unit to adjust the temperature of the heat exchange medium W by the temperature adjustment unit.
  • the thermocouple 102k4 transmits an electrical signal related to the detected temperature in the low temperature region ⁇ to the char layer temperature control unit 102k.
  • the char layer temperature control unit 102k detects (recognizes) the temperature of the low temperature region ⁇ by an electrical signal related to the temperature of the low temperature region ⁇ .
  • the char layer temperature control unit 102k is configured to fall below the predetermined temperature or the lower limit temperature of the predetermined temperature range.
  • the low-temperature region ⁇ is cooled by adjusting the circulation amount per unit time of the heat exchange medium W by the circulation pump and the temperature of the heat exchange medium W by the temperature adjusting unit.
  • the char layer temperature control unit 102k exceeds the predetermined low temperature when the temperature in the low temperature region ⁇ is equal to or lower than a predetermined temperature or a predetermined low temperature lower than the predetermined temperature range due to the detected temperature from the thermocouple 102k4.
  • the low-temperature region ⁇ is heated by adjusting the circulation amount per unit time of the heat exchange medium W by the circulation pump and the temperature of the heat exchange medium W by the temperature adjusting unit.
  • the third embodiment it is possible to effectively prevent the low temperature region ⁇ including the char layer ⁇ from reaching the predetermined temperature or the lower limit temperature of the predetermined temperature range due to the cooling effect of the char layer temperature control unit 102k.
  • the char layer ⁇ is heated to a temperature equal to or higher than the temperature that promotes volatilization of the gas remaining in the char R. The volatilization of the gas remaining in the char R can be promoted by maintaining the temperature.
  • a gasification furnace 1021D according to the fourth embodiment shown in FIG. 10 is a gasification furnace for depositing char R to form a char layer ⁇ (specifically, a char deposition layer). It is a gasification furnace (so-called fixed bed type downdraft type gasification furnace) that flows downward.
  • a fuel gas outflow portion 102e is provided below the opening 102dh in the oxidant introduction portion 102d in the gasification furnace 1021A shown in FIG.
  • the fuel gas outflow portion 102e is provided at a position facing the assumed char layer ⁇ x of the furnace 102b (specifically, the lowermost ⁇ xb of the assumed char layer ⁇ x).
  • the fuel gas outflow part 102e is provided in the center part of the bottom face 102b3 of the furnace 102b.
  • the assumed char layer ⁇ x is lower than the assumed char layer ⁇ x of the gasification furnace 1021A shown in FIG. 7, and the char layer ⁇ is lower than the char layer ⁇ of the gasification furnace 1021A shown in FIG. Kept low.
  • the raw material F surely falls in the oxidation zone ⁇ , and thus the raw material F can be reliably passed through the oxidation zone ⁇ within a predetermined time range. Furthermore, the fuel gas G can flow out from the bottom surface 102b3 of the furnace 102b. Further, by maintaining the char layer ⁇ low, the oxidation zone passage time tp in the char layer ⁇ can be shortened.
  • a gasification furnace 1021E according to the fifth embodiment shown in FIG. 11 is the same as the gasification furnace 1021D shown in FIG. 10 except that a char layer temperature control unit 102k is provided on the outer surface of the region corresponding to the assumed char layer ⁇ x of the furnace 102b. It is.
  • the fifth embodiment it is possible to effectively prevent the oxidation region ⁇ in the char layer ⁇ from deviating from the predetermined temperature or the predetermined temperature range by the temperature control of the char layer ⁇ by the char layer temperature control unit 102k.
  • a gasification furnace 1021F according to the sixth embodiment shown in FIG. 12 is provided with a partition device 102l for temporarily storing char R and ash S in the gasification furnace 1021D shown in FIG.
  • the partition device 102l temporarily stores the char R and the ash S, and drops them downward after a predetermined time.
  • the partition device 102l is detachable with respect to the furnace 102b (in this example, slidable along the horizontal direction), and an operation unit 102l2 (specifically, an actuator) that operates the partition unit 102l1.
  • the partition part 102l1 is provided in the middle of the furnace 102b in the up-down direction.
  • the part below the partition part 10211 constitutes a tray part 102b4 that receives the char R and the ash S.
  • the partition portion 10211 When the partition portion 10211 is attached to the furnace 102b, the char R is deposited and the char layer ⁇ is stored.
  • the partition portion 102l1 When the partition portion 102l1 is detached from the furnace 102b, the stored char R and ash S are transferred to the lower tray portion 102b4. It is designed to be dropped.
  • the partition portion 102l1 is provided with a large number of passage holes 102la to 102la through which the fuel gas G passes. Note that the ash S burned in the tray part 102b4 is discharged to the outside by the discharge part 102f.
  • the operating unit 102l2 attaches the partition unit 102l1 to the furnace 102b and periodically removes it from the furnace 102b to receive the char R and ash S on the dish unit 102b4. It is like that.
  • the char R and the ash S can be periodically dropped onto the tray part 102b4.
  • a gasification furnace 1021G according to the seventh embodiment shown in FIG. 13 is a gasification furnace for depositing char R to form a char layer ⁇ (specifically, a char deposition layer).
  • This is a gasification furnace (a so-called fixed-bed double-fired gasification furnace) introduced from below.
  • the fuel gas outflow portion 102e is provided below the opening 102dh in the oxidant introduction portion 102d, and the oxidant introduction portion 102d is disposed at the top of the assumed char layer ⁇ x. It is provided at a position facing the lower part ⁇ xb.
  • the oxidant introduction part 102d is further provided at a position facing the lowermost part ⁇ xb of the assumed char layer ⁇ x.
  • the fuel gas outflow portion 102e is between the oxidant introduction portion 102d provided above the uppermost portion ⁇ xa of the assumed char layer ⁇ x and the oxidant introduction portion 102d further provided at a position facing the lowermost portion ⁇ xb of the assumed char layer ⁇ x. (Preferably at an intermediate position).
  • the fuel gas outflow portion 102e is provided between the uppermost portion ⁇ xa and the lowermost portion ⁇ xb of the assumed char layer ⁇ x.
  • the fuel gas outflow portion 102e is provided at a position facing the assumed char layer ⁇ x of the furnace 102b.
  • the fuel gas outflow portion 102e is provided on the side surface 102b2 of the furnace 102b.
  • the oxidant introduction part 102d further provided at the position facing the lowermost part ⁇ xb of the assumed char layer ⁇ x is provided at the center of the bottom surface 102b3 of the furnace 102b.
  • the raw material F surely falls in the oxidation zone ⁇ , and thus the raw material F can be reliably passed through the oxidation zone ⁇ within a predetermined time range. Furthermore, the oxidant H can be introduced from above and below, and the fuel gas G can flow out from the side surface 102b2 of the furnace 102b.
  • the fuel gas outflow portion 102e exists below the opening 102dh in the oxidant introduction portion 102d. Therefore, when the raw material F (more precisely, char R and ash S) exits the oxidation zone ⁇ , it is discharged from the furnace 102b.
  • Example 2 Next, still another embodiment (Example 2) of the gasification furnace 102 according to the present embodiment will be described below with reference to FIGS. 14 to 17.
  • FIGS. 14 to 17 are schematic views schematically showing still another embodiment of the gasification furnace 102 according to the present embodiment.
  • FIGS. 14 to 17 show gasification furnaces 1022A to 1022D according to the first to fourth embodiments of Example 2, respectively. 14 to 17, the control device 102g and the like are not shown.
  • a gasification furnace 1022A according to the first embodiment shown in FIG. 14 is a gasification furnace in which char R is deposited to form a char layer ⁇ (specifically, a char deposition layer). This is a gasification furnace (so-called fixed bed type updraft gasification furnace) that flows upward.
  • the material introduction part 102a is provided above the uppermost part ⁇ xa of the assumed char layer ⁇ x, and the oxidant introduction part 102d is provided from the uppermost part ⁇ xa of the assumed char layer ⁇ x. Is provided below, and further, an oxidant contact time control unit 102m is provided.
  • the fuel gas outflow portion 102e is provided above the opening 102dh in the oxidant introduction portion 102d.
  • the fuel gas outflow portion 102e is provided below the opening 102ah in the raw material introduction portion 102a.
  • the oxidant introduction portion 102d is provided at a position facing the assumed char layer ⁇ x of the furnace 102b.
  • the oxidant introduction portion 102d is provided at one place or a plurality of places (two places in this example).
  • the raw material introduction portion 102a is provided on the top surface 102b1 of the furnace 102b, and the oxidant introduction portion 102d and the fuel gas outflow portion 102e are provided on the side surface 102b2 of the furnace 102b.
  • the gasification furnace 1022A further includes an oxidant contact time control unit 102m that controls an oxidant contact time that is a time during which the oxidant H is brought into contact with the char R.
  • the oxidant contact time control unit 102m includes a part of the control device 102g.
  • the oxidant contact time control unit 102m is configured to introduce the raw material F from the raw material introducing unit 102a per unit time and the amount of ash S discharged from the discharging unit 102f per unit time, that is, the char R in the char layer ⁇ . At least one of the downward movement distances per unit time is adjusted. Thereby, the oxidant contact time control unit 102m can control the oxidant contact time.
  • the raw material F surely falls in the oxidation zone ⁇ , and thus the raw material F can be reliably passed through the oxidation zone ⁇ within a predetermined time range.
  • the oxidant contact time can be controlled in introducing the oxidant H into the char layer ⁇ , whereby the oxidation region ⁇ in the char layer ⁇ can be reliably controlled within a predetermined temperature or a predetermined temperature range. it can.
  • the gasification furnace 1022B according to the second embodiment shown in FIG. 15 is provided with at least one (both in this example) of the endothermic reactant introduction part 102i and the heat capacity agent introduction part 102j in the gasification furnace 1022A shown in FIG. It is a thing.
  • the gasification furnace 1022B further includes an endothermic reactant introduction part 102i for introducing the endothermic reactant M and a heat capacity agent introduction part 102j for introducing the heat capacity agent N.
  • the gasification furnace 1022B may include either one of the endothermic reactant introduction unit 102i and the heat capacity agent introduction unit 102j.
  • At least one of the endothermic reactant introduction part 102i and the heat capacity agent introduction part 102j (both in this example) is provided at a position facing the assumed char layer ⁇ x of the furnace 102b.
  • both the endothermic reactant introduction part 102i and the heat capacity agent introduction part 102j are provided on the bottom face 102b3 of the furnace 102b.
  • any one that causes an endothermic reaction may be used, and examples thereof include water vapor and carbon dioxide.
  • the heat capacity agent N any material can be used as long as it increases the heat capacity of the char layer ⁇ , and examples thereof include nitrogen.
  • an endothermic reaction of an endothermic reactant M for example, water vapor or carbon dioxide
  • a cooling effect by adding an endothermic reactant M for example, a low-temperature substance
  • a heat capacity agent N for example, nitrogen
  • a gasification furnace 1022C according to the third embodiment shown in FIG. 16 is a gasification furnace for depositing char R to form a char layer ⁇ (specifically, a char deposition layer). It is a gasification furnace (so-called fixed bed type downdraft type gasification furnace) that flows downward.
  • a fuel gas outflow part 102e is provided below the opening 102dh in the oxidant introduction part 102d, and further a char deposition time control part 102n is provided.
  • the fuel gas outflow portion 102e is provided at a position facing the assumed char layer ⁇ x of the furnace 102b (specifically, the lowermost ⁇ xb of the assumed char layer ⁇ x).
  • the fuel gas outflow part 102e is provided in the center part of the bottom face 102b3 of the furnace 102b.
  • the assumed char layer ⁇ x is lower than the assumed char layer ⁇ x of the gasification furnace 1022A shown in FIG. 14, and the char layer ⁇ is lower than the char layer ⁇ of the gasification furnace 1022A shown in FIG. Kept low.
  • the gasification furnace 1022C includes a char deposition time control unit 102n that controls the char deposition time for depositing the char R.
  • the char deposition time control unit 102n includes a part of the control device 102g.
  • the char deposition time control unit 102n is configured to introduce the raw material F from the raw material introducing unit 102a per unit time, and discharge the ash S from the discharging unit 102f per unit time, that is, the unit of char R in the char layer ⁇ . At least one of the downward movement distances per hour is adjusted. Thereby, the char deposition time control unit 102n can control the char deposition time.
  • the oxidation zone passage time tp of the raw material F including the char deposition time can be within a predetermined time range. Further, it is possible to easily and effectively prevent the oxidation region ⁇ in the char layer ⁇ from deviating from the predetermined temperature or the predetermined temperature range. Furthermore, the fuel gas G can flow out from the bottom surface 102b3 of the furnace 102b. Further, by maintaining the char layer ⁇ low, the oxidation zone passage time tp in the char layer ⁇ can be shortened.
  • a gasification furnace 1022D according to the fourth embodiment shown in FIG. 17 is a gasification furnace in which the char R is deposited to form a char layer ⁇ (specifically, a char deposition layer).
  • This is a gasification furnace (a so-called fixed-bed double-fired gasification furnace) introduced from below.
  • the fuel gas outflow part 102e is provided below the opening 102dh in the oxidant introduction part 102d, and the oxidant introduction part 102d is provided at the uppermost portion of the assumed char layer ⁇ x. It is provided at a position facing the lower part ⁇ xb.
  • the oxidant introduction part 102d is further provided at a position facing the lowermost part ⁇ xb of the assumed char layer ⁇ x.
  • the fuel gas outflow portion 102e is between the oxidant introduction portion 102d provided below the uppermost portion ⁇ xa of the assumed char layer ⁇ x and the oxidant introduction portion 102d further provided at a position facing the lowermost portion ⁇ xb of the assumed char layer ⁇ x. (Preferably at an intermediate position).
  • the fuel gas outflow portion 102e is provided at a position facing the assumed char layer ⁇ x of the furnace 102b.
  • the fuel gas outflow portion 102e is provided on the side surface 102b2 of the furnace 102b.
  • the oxidant introduction part 102d further provided at the position facing the lowermost part ⁇ xb of the assumed char layer ⁇ x is provided at the center of the bottom surface 102b3 of the furnace 102b.
  • the oxidant H can be introduced from above and below, and the fuel gas G can flow out from the side surface 102b2 of the furnace 102b.
  • the fuel gas outflow portion 102e exists below the opening 102dh in the oxidant introduction portion 102d. Therefore, when the raw material F (more precisely, char R and ash S) exits the oxidation zone ⁇ , it is discharged from the furnace 102b.
  • Example 3 Next, still another embodiment (Example 3) of the gasification furnace 102 according to the present embodiment will be described below with reference to FIGS.
  • FIGS. 18 to 30 are schematic views schematically showing still another embodiment of the gasification furnace 102 according to the present embodiment.
  • FIGS. 18 to 30 show gasification furnaces 1023A to 1023M according to the first to thirteenth embodiments of Example 3, respectively. Note that the control device 102g and the like are not shown in FIGS.
  • a gasification furnace 1023A according to the first embodiment shown in FIG. 18 is a gasification furnace (so-called fluidized bed type gasification furnace) that forms a char layer ⁇ (specifically, a char fluidized bed) by causing the char R to flow. is there.
  • the gasification apparatus 100 shown in FIG. 1 is provided with a fluidized bed circulation line (not shown).
  • the raw material introduction part 102a is provided above the uppermost part ⁇ xa of the assumed char layer ⁇ x (assumed char fluidized bed in this example), and the oxidant introduction part 102d is provided.
  • the fuel gas is provided at a position (lower side) facing the lowermost part ⁇ xb of the assumed char layer ⁇ x and above the uppermost part ⁇ xa of the assumed char layer ⁇ x and below (upper side) the opening 102ah in the raw material introduction part 102a.
  • the outflow part 102e is provided above all the oxidant introduction parts 102d to 102d.
  • the opening 102dh in the oxidant introduction portion 102d provided on the lower side is formed such that the introduction direction of the oxidant H is directed upward (specifically, the deposition direction of char on which the char R is deposited) or substantially upward. Yes.
  • the opening 102dh in the oxidant introduction portion 102d provided on the upper side is formed so that the introduction direction of the oxidant H is along the horizontal direction or upward (for example, obliquely upward) from the horizontal direction.
  • the fuel gas outflow portion 102e is provided below the opening 102ah in the raw material introduction portion 102a.
  • the present invention is not limited to this, and the arrangement position of the raw material introduction portion 102a and the fuel gas are not limited thereto. You may replace the arrangement
  • the oxidant introduction portion 102d provided on the upper side is provided at one place or a plurality of places (two places in this example).
  • the raw material introduction portion 102a is provided on the top surface 102b1 of the furnace 102b, and the oxidant introduction portion 102d provided on the lower side is provided on the bottom surface 102b3 of the furnace 102b, and the oxidant introduction portion 102d provided on the upper side.
  • the fuel gas outflow portion 102e is provided on the side surface 102b2 of the furnace 102b.
  • the raw material F surely falls in the oxidation zone ⁇ , and thus the raw material F can be reliably passed through the oxidation zone ⁇ within a predetermined time range. Furthermore, the oxidant H can be introduced from the lowermost ⁇ xb of the assumed char layer ⁇ x, thereby shortening the oxidation zone passage time tp of the raw material F so that the char layer ⁇ deviates from a predetermined temperature or a predetermined temperature range. It can be effectively prevented.
  • various methods such as an upper discharge method and a hollow discharge method may be used as the discharge method of Char R, in addition to the lower discharge method described here. it can.
  • the raw material F can be reliably passed through the oxidation zone ⁇ within a predetermined time range.
  • a gasification furnace 1023B according to the second embodiment shown in FIG. 19 is a gasification furnace (so-called fluidized bed type gasification furnace) that forms a char layer ⁇ (specifically, a char fluidized bed) by causing the char R to flow. is there.
  • the material introduction part 102a is provided above the uppermost part ⁇ xa of the assumed char layer ⁇ x, and the oxidant introduction part 102d is provided at the lowermost part ⁇ xb of the assumed char layer ⁇ x.
  • the fuel gas outflow part 102e is provided above the uppermost part ⁇ xa of the assumed char layer ⁇ x, and the oxidant introduction amount control part 102o is further provided.
  • the arrangement position of the raw material introduction part 102a and the arrangement position of the fuel gas outflow part 102e may be switched.
  • the gasification furnace 1023B further includes an oxidant introduction amount control unit 102o that controls the introduction amount of the oxidant H.
  • the oxidant introduction unit 102d includes an oxidant introduction amount control unit 102o.
  • the oxidant introduction amount control unit 102o includes a part of the control device 102g.
  • the opening 102dh in the oxidant introduction part 102d is formed so that the introduction direction of the oxidant H is directed upward (specifically, the deposition direction of the char R is deposited) or substantially upward.
  • the furnace 102b is not limited thereto, but the width (size in the horizontal direction) is larger than the furnace 102b in the gasification furnace 1023A shown in FIG.
  • the gasification furnace 1023A shown in FIG. 18 has a separate inlet for the oxidant H, and the amount of the oxidant H from the lower part of the furnace 102b for fluidizing the raw material F is reduced.
  • the width specifically, the diameter
  • the gasification furnace 1023B shown in FIG. 19 can be fluidized even if the width of the furnace 102b is large, since the entire amount enters from the lower part of the furnace 102b.
  • the raw material introduction portion 102a is provided on the top surface 102b1 of the furnace 102b, the fuel gas outflow portion 102e is provided on the side surface 102b2 of the furnace 102b, and the oxidant introduction portion 102d is provided on the bottom surface 102b3 of the furnace 102b.
  • the raw material F surely falls in the oxidation zone ⁇ , and thus the raw material F can be reliably passed through the oxidation zone ⁇ within a predetermined time range. Furthermore, the amount of the oxidant H introduced can be controlled (for example, controlled so as to increase the air volume), thereby shortening the oxidation zone passage time tp of the raw material F so that the char layer has a predetermined temperature or a predetermined temperature range. Can be effectively prevented from coming off.
  • a gasification furnace 1023C according to the third embodiment shown in FIG. 20 is a gasification furnace (so-called fluidized bed type gasification furnace) that forms a char bed ⁇ (specifically a char fluidized bed) by flowing the char R. is there.
  • the material introduction part 102a is provided above the uppermost part ⁇ xa of the assumed char layer ⁇ x, and the oxidant introduction part 102d is provided at the lowermost part ⁇ xb of the assumed char layer ⁇ x.
  • the fuel gas outflow part 102e is provided above the uppermost part ⁇ xa of the assumed char layer ⁇ x, and the adjustment control part 102p is further provided.
  • the arrangement position of the raw material introduction part 102a and the arrangement position of the fuel gas outflow part 102e may be switched.
  • the gasification furnace 1023C further includes an adjustment control unit 102p that adjusts the oxidizing agent H and at least one of the endothermic reactant M and the heat capacity agent N.
  • the adjustment control unit 102p includes a part of the control device 102g.
  • any one that causes an endothermic reaction may be used, and examples thereof include water vapor and carbon dioxide.
  • Any heat capacity agent N may be used as long as it increases the heat capacity of the char layer ⁇ .
  • nitrogen can be mentioned.
  • the opening 102dh in the oxidant introduction part 102d is formed so that the introduction direction of the oxidant H is directed upward (specifically, the deposition direction of the char R is deposited) or substantially upward.
  • the furnace 102b is not limited thereto, but the width (size in the horizontal direction) is larger than the furnace 102b in the gasification furnace 1023A shown in FIG.
  • the gasification furnace 1023A shown in FIG. 18 has a separate inlet for the oxidant H, and the amount of the oxidant H from the lower part of the furnace 102b for fluidizing the raw material F is reduced.
  • the raw material introduction portion 102a is provided on the top surface 102b1 of the furnace 102b
  • the fuel gas outflow portion 102e is provided on the side surface 102b2 of the furnace 102b
  • the oxidant introduction portion 102d is provided on the bottom surface 102b3 of the furnace 102b.
  • the adjustment control unit 102p includes a first adjustment unit 102p1 for adjusting the oxidant H and the endothermic reactant M, and a second adjustment unit 102p2 for adjusting the oxidant H and the heat capacity agent N. .
  • the endothermic reactant introduction unit 102i is connected to the oxidant introduction unit 102d via the first adjustment unit 102p1.
  • the heat capacity agent introduction unit 102j is connected to the oxidant introduction unit 102d via the second adjustment unit 102p2 on the downstream side of the first adjustment unit 102p1.
  • the adjustment control unit 102p controls the operation of the first adjustment unit 102p1 and adjusts the oxidant H and the endothermic reactant M in the first adjustment unit 102p1 to properly balance both and / or the second adjustment unit.
  • 102p2 is controlled and the second adjusting unit 102p2 adjusts the oxidizing agent H and the heat capacity agent N so that they are properly balanced.
  • the raw material F surely falls in the oxidation zone ⁇ , and thus the raw material F can be reliably passed through the oxidation zone ⁇ within a predetermined time range. Furthermore, the oxidizing agent H and the endothermic reactant M (for example, water vapor or carbon dioxide) and / or the heat capacity agent N (for example, nitrogen) can be adjusted, thereby reducing the oxidation zone passage time tp of the raw material F. Thus, it is possible to effectively prevent the char layer ⁇ from deviating from the predetermined temperature or the predetermined temperature range.
  • the oxidizing agent H and the endothermic reactant M for example, water vapor or carbon dioxide
  • the heat capacity agent N for example, nitrogen
  • a gasification furnace 1023D according to the fourth embodiment shown in FIG. 21 is a gasification furnace (so-called spouted bed type gasification furnace) in which the char R is jetted to move the fuel gas G in a predetermined flow direction V. is there.
  • a gasification furnace 1023D includes a raw material introduction part 102a and an oxidant introduction part 102d provided in parallel in the gasification furnace 102 shown in FIG. 2, and a fuel gas outflow part 102e in the flow direction V of the fuel gas G. This is provided downstream of the oxidant introduction part 102d and further provided with an oxidant introduction amount control part 102o.
  • the opening 102ah in the raw material introduction portion 102a is formed so that the introduction direction of the raw material F is along the flow direction V or substantially the flow direction V of the fuel gas G.
  • the opening 102dh in the oxidant introduction portion 102d is formed so that the introduction direction of the oxidant H is along the flow direction V or substantially the flow direction V of the fuel gas G.
  • the fuel gas outflow portion 102e is provided above the raw material introduction portion 102a and the oxidant introduction portion 102d.
  • the raw material introduction part 102a and the oxidant introduction part 102d are provided in the lower part (specifically, the bottom face 102b3) of the furnace 102b, and the fuel gas outflow part 102e is provided in the top face 102b1 of the furnace 102b. .
  • the fuel gas outflow portion 102e may be provided on the side surface 102b2 of the furnace 102b.
  • the gasifier 1023D further includes an oxidant introduction amount control unit 102o that controls the introduction amount of the oxidant H.
  • the oxidant introduction unit 102d includes an oxidant introduction amount control unit 102o.
  • the oxidant introduction amount control unit 102o includes a part of the control device 102g.
  • the fuel gas G discharged from the furnace 102b contains char R and / or ash S
  • the char R and / or by a removal device for example, a cyclone (not shown) in the next process.
  • Ash S is removed.
  • the raw material F can be flowed in parallel with the oxidant H, and the introduction amount of the oxidant H can be set to a predetermined amount (for example, the air volume).
  • can be reliably passed within a predetermined time range.
  • the oxidation zone ⁇ can be reliably controlled within a predetermined temperature or a predetermined temperature range.
  • a gasification furnace 1023E according to the fifth embodiment shown in FIG. 22 is provided with a furnace temperature control unit 102q in the gasification furnace 1023D shown in FIG.
  • the gasification furnace 1023E further includes a furnace temperature control unit 102q.
  • the furnace temperature control unit 102q includes a part of the control device 102g.
  • the furnace temperature control unit 102q includes a heat source 102q1 such as a heating element and a drive unit 102q2 for driving the heat source 102q1.
  • the heat source 102q1 is provided on the entire side surface 102b2 of the furnace 102b.
  • the thermocouple 102h transmits an electrical signal related to the detected temperature of the oxidation zone ⁇ to the furnace temperature control unit 102q.
  • the furnace temperature control unit 102q controls the driving unit 102q2 so that the temperature of the oxidation region ⁇ becomes a predetermined temperature by an electrical signal related to the temperature of the oxidation region ⁇ , and the temperature in the furnace 102b is set to a predetermined temperature or a predetermined temperature range by the heat source 102q1. Adjust in.
  • the oxidation zone ⁇ can be stably and reliably controlled within a predetermined temperature or a predetermined temperature range.
  • a gasification furnace 1023F according to the sixth embodiment shown in FIG. 23 is a gasification furnace (so-called rotary kill type gasification furnace) that moves the fuel gas G in a predetermined flow direction V while rotating the furnace 102b around the axis. ).
  • the gasification furnace 1023F in the gasification furnace 102 shown in FIG. 2 is configured such that the furnace 102b is inclined so as to be rotatable about the axis, and the raw material introduction part 102a and the oxidant introduction part 102d are upstream in the flow direction V of the fuel gas G.
  • the fuel gas outflow portion 102e is provided on the downstream end surface 102b6, which is the opposite surface of the upstream end surface 102b5, and the oxidant introduction amount control unit 102o is further provided in parallel with the end surface 102b5.
  • the opening 102ah in the raw material introduction portion 102a is formed so that the introduction direction of the raw material F is along the flow direction V or substantially the flow direction V of the fuel gas G.
  • the opening 102dh in the oxidant introduction portion 102d is formed so that the introduction direction of the oxidant H is along the flow direction V or substantially the flow direction V of the fuel gas G.
  • the gasification furnace 1023F further includes an oxidant introduction amount control unit 102o that controls the introduction amount of the oxidant H.
  • the oxidant introduction unit 102d includes an oxidant introduction amount control unit 102o.
  • the oxidant introduction amount control unit 102o includes a part of the control device 102g.
  • the oxidation zone passage time tp of the raw material F can be adjusted by the length of the furnace 102b and the rotational speed of the furnace 102b.
  • gasifiers 1023G to 1023M according to seventh to thirteenth embodiments which will be described later.
  • the raw material F can be flowed in parallel with the oxidant H, and the introduction amount of the oxidant H can be set to a predetermined amount (for example, the air volume).
  • can be reliably passed within a predetermined time range.
  • the oxidation zone ⁇ can be reliably controlled within a predetermined temperature or a predetermined temperature range.
  • a gasification furnace 1023G according to the seventh embodiment shown in FIG. 24 is a gasification furnace (so-called rotary kill gasification) that moves the fuel gas G in a predetermined flow direction V while rotating the furnace 102b about the axis X. Furnace).
  • the furnace 102b is tilted so as to be rotatable about the axis, and the raw material introduction part 102a is provided on the upstream end face 102b5 in the flow direction V of the fuel gas G.
  • a gas outflow portion 102e is provided on the downstream end surface 102b6, which is the surface facing the upstream end surface 102b5, and a plurality (n, n is an integer of 2 or more) of oxidant introduction portions 102d (1) to 102d (n) are disposed upstream.
  • the fuel gas G is provided in order from the upstream side to the downstream side in the flow direction V, and further includes a plurality of oxidant introduction amount control units 102o (1) to 102o (n) and a plurality of oxidations.
  • Agent temperature controllers 102r (1) to 102r (n) are provided.
  • the gasification furnace 1023G controls the temperature of the oxidant H and the plurality of oxidant introduction units 102d (1) to 102d (n), the plurality of oxidant introduction amount control units 102o (1) to 102o (n).
  • a plurality of oxidant temperature controllers 102r (1) to 102r (n) are further provided.
  • the plurality of oxidant introduction units 102d (1) to 102d (n) includes a plurality of oxidant introduction amount control units 102o (1) to 102o (n) and a plurality of oxidant temperature control units 102r (1). To 102r (n), respectively.
  • the plurality of oxidant introduction amount controllers 102o (1) to 102o (n) and the plurality of oxidant temperature controllers 102r (1) to 102r (n) include a part of the controller 102g.
  • the plurality of oxidant introduction amount control units 102o (1) to 102o (n) respectively control the introduction amount of the oxidant H of the oxidant introduction units 102d (1) to 102d (n).
  • the plurality of oxidant temperature control units 102r (1) to 102r (n) controls the oxidant introduction amount so that the oxidant temperature gradually decreases from the upstream side to the downstream side in the flow direction V of the fuel gas G.
  • the units 102o (1) to 102o (n) are controlled to operate.
  • the plurality of oxidant introduction portions 102d (1) to 102d (n) are arranged in parallel along the axis X direction at the lower portion of the side surface 102b2 of the furnace 102b.
  • the temperature of the oxidant H is gradually lowered from the upstream side to the downstream side in the flow direction V of the fuel gas G, so that the oxidation atmosphere of the oxidation zone ⁇ is increased according to the promotion of the oxidation of the raw material F.
  • the temperature can be lowered, so that the oxidation zone ⁇ can be reliably controlled within a predetermined temperature or a predetermined temperature range.
  • the introduction amount of the oxidizing agent H can be set to a predetermined control amount (for example, control air amount), whereby the raw material F can be reliably passed through the oxidation region ⁇ within a predetermined time range.
  • a low temperature region ⁇ may be provided on the downstream side in the flow direction V of the fuel gas G adjacent to the oxidation region ⁇ .
  • a gasification furnace 1023H according to the eighth embodiment shown in FIG. 25 is different from the gasification furnace 1023G shown in FIG. 24 in that a plurality of oxidant concentrations are used instead of the plurality of oxidant temperature control units 102r (1) to 102r (n). Control units 102s (1) to 102s (n) are provided.
  • the gasifier 1023G includes a plurality of oxidant introduction units 102d (1) to 102d (n), a plurality of oxidant introduction amount control units 102o (1) to 102o (n), and a concentration of oxidant H (for example, oxygen It further includes a plurality of oxidant concentration control units 102s (1) to 102s (n) for controlling the concentration and the air concentration.
  • the plurality of oxidant introduction units 102d (1) to 102d (n) includes a plurality of oxidant introduction amount control units 102o (1) to 102o (n) and a plurality of oxidant concentration control units 102s (1). To 102 s (n), respectively.
  • the plurality of oxidant introduction amount controllers 102o (1) to 102o (n) and the plurality of oxidant concentration controllers 102s (1) to 102s (n) include a part of the controller 102g.
  • the plurality of oxidant introduction amount control units 102o (1) to 102o (n) respectively control the introduction amount (for example, oxygen amount and air amount) of the oxidant H of the oxidant introduction units 102d (1) to 102d (n). To do.
  • the plurality of oxidant concentration control units 102s (1) to 102s (n) include oxidant cylinders provided in the plurality of oxidant introduction amount control units 102o (1) to 102o (n), respectively, and the stored oxidation.
  • the concentration of the agent H (for example, oxygen concentration or air concentration) gradually decreases from the upstream side to the downstream side in the flow direction V of the fuel gas G.
  • the oxidation of the raw material F is promoted by gradually reducing the concentration of the oxidant H (for example, oxygen concentration or air concentration) from the upstream side to the downstream side in the flow direction V of the fuel gas G. Accordingly, the oxidation atmosphere temperature in the oxidation region ⁇ can be lowered, and thus the oxidation region ⁇ can be reliably controlled within a predetermined temperature or a predetermined temperature range. Moreover, the introduction amount of the oxidizing agent H can be set to a predetermined control amount (for example, control air amount), whereby the raw material F can be reliably passed through the oxidation region ⁇ within a predetermined time range.
  • a low temperature region ⁇ may be provided on the downstream side in the flow direction V of the fuel gas G adjacent to the oxidation region ⁇ .
  • a gasification furnace 1023I according to the ninth embodiment shown in FIG. 26 is a gasification furnace (so-called rotary kill type gasification furnace) that moves the fuel gas G in a predetermined flow direction V while rotating the furnace 102b around the axis. ).
  • the raw material introduction part 102a is provided on the upstream end face 102b5 in the flow direction V of the fuel gas G by tilting the furnace 102b so as to be rotatable about the axis.
  • the gas outflow portion 102e is provided on the downstream end surface 102b6, which is the surface facing the upstream end surface 102b5, and the oxidant introduction portion 102d is located upstream in the fuel gas G flow direction V between the upstream end surface 102b5 and the downstream end surface 102b6.
  • the oxidant introduction part 102d is provided with at least one of the endothermic reactant introduction part 102i and the heat capacity agent introduction part 102j (both in this example) on the downstream side, and further provided with the oxidant introduction amount control part 102o. is there.
  • the gasification furnace 1023I introduces an oxidant introduction amount control unit 102o that controls the introduction amount of the oxidant H in the oxidant introduction unit 102d, an endothermic reactant introduction unit 102i that introduces the endothermic reactant M, and a heat capacity agent N. And a heat capacity agent introducing portion 102j.
  • the endothermic reactant introduction part 102i and the heat capacity agent introduction part 102j are provided downstream of the oxidant introduction part 102d in the flow direction V of the fuel gas G. Either one of the endothermic reactant introduction part 102i and the heat capacity agent introduction part 102j may be downstream or upstream in the flow direction V, or may be aligned or substantially aligned. .
  • the gasification furnace 1023I may include either one of the endothermic reactant introduction section 102i and the heat capacity agent introduction section 102j.
  • the oxidant introduction amount control unit 102o includes a part of the control device 102g.
  • the oxidant introduction unit 102d includes an oxidant introduction amount control unit 102o.
  • the oxidant introduction amount control unit 102o, the endothermic reactant introduction unit 102i, and the heat capacity agent introduction unit 102j are juxtaposed along the axis X direction below the side surface 102b2 of the furnace 102b.
  • an endothermic reaction of an endothermic reactant M for example, water vapor or carbon dioxide
  • a cooling effect by adding an endothermic reactant M (for example, a low temperature substance) and / or a char layer by a heat capacity agent N (for example, nitrogen).
  • a heat capacity agent N for example, nitrogen
  • the introduction amount of the oxidizing agent H can be set to a predetermined control amount (for example, control air amount), whereby the raw material F can be reliably passed through the oxidation region ⁇ within a predetermined time range.
  • a predetermined control amount for example, control air amount
  • a low temperature region ⁇ may be provided on the downstream side in the flow direction V of the fuel gas G adjacent to the oxidation region ⁇ .
  • a gasification furnace 1023J according to the tenth embodiment shown in FIG. 27 is a gasification furnace (so-called rotary kill gasification) that moves the fuel gas G in a predetermined flow direction V while rotating the furnace 102b about the axis X. Furnace).
  • the raw material introduction part 102a is provided on the upstream end face 102b5 in the flow direction V of the fuel gas G by tilting the furnace 102b so as to be rotatable about the axis.
  • the gas outflow portion 102e is provided on the downstream end surface 102b6, which is the surface facing the upstream end surface 102b5, the oxidant introduction portion 102d is provided between the upstream end surface 102b5 and the downstream end surface 102b6, and a plurality of oxidant introduction amount controls.
  • the gasifier 1023J includes a plurality of oxidant introduction amount control units 102o (1) to 102o (m) that respectively control the introduction amount of the oxidant H in the oxidant introduction unit 102d, and oxidant H (Ha (1) to A plurality of oxidant temperature controllers 102r (1) to 102r (m) for controlling the temperature of Ha (m)) and oxidants H (Ha (1) to Ha (m)) having a plurality of different temperatures from each other.
  • An oxidant temperature switching control unit 102t for switching is further provided.
  • the oxidant introduction unit 102d includes a plurality of oxidant introduction amount control units 102o (1) to 102o (m), a plurality of oxidant temperature control units 102r (1) to 102r (m), and an oxidant temperature switching.
  • a control unit 102t is included.
  • the plurality of oxidant introduction amount control units 102o (1) to 102o (m), the plurality of oxidant temperature control units 102r (1) to 102r (m), and the oxidant temperature switching control unit 102t are part of the control device 102g. Is included.
  • the plurality of oxidant temperature control units 102r (1) to 102r (m) has the oxidant introduction amount control units 102o (1) to 102o (1) 102o (m) is controlled to operate.
  • the oxidant temperature switching control unit 102t is any one of the oxidants Ha (1) to Ha (m) that are set to different temperatures by the plurality of oxidant temperature control units 102r (1) to 102r (m). To switch selectively.
  • the oxidation zone ⁇ can be reliably controlled within a predetermined temperature or a predetermined temperature range by switching the oxidants Ha (1) to Ha (m) having a plurality of different temperatures.
  • the introduction amount of the oxidizing agent H can be set to a predetermined control amount (for example, control air amount), whereby the raw material F can be reliably passed through the oxidation region ⁇ within a predetermined time range.
  • a gasification furnace 1023K according to the eleventh embodiment shown in FIG. 28 is similar to the gasification furnace 1023J shown in FIG. 27, but includes a plurality of oxidant temperature control units 102r (1) to 102r (m) and an oxidant temperature switching control unit 102t. Instead, a plurality of oxidant concentration control units 102s (1) to 102s (m) and an oxidant concentration switching control unit 102u are provided.
  • the gasifier 1023K includes a plurality of oxidant introduction amount control units 102o (1) to 102o (m) that respectively control the introduction amount of the oxidant H in the oxidant introduction unit 102d, and the oxidant H (Hb (1) to Hb (m)) concentration (for example, oxygen concentration and air concentration), a plurality of oxidant concentration control units 102s (1) to 102s (m), and a plurality of different concentrations (for example, oxygen concentration and air concentration). And an oxidant concentration switching control unit 102u for switching the oxidant H (Hb (1) to Hb (m)).
  • the oxidant introduction unit 102d includes a plurality of oxidant introduction amount control units 102o (1) to 102o (m), a plurality of oxidant concentration control units 102s (1) to 102s (m), and an oxidant concentration switching.
  • a control unit 102u is included.
  • the plurality of oxidant introduction amount control units 102o (1) to 102o (m), the plurality of oxidant concentration control units 102s (1) to 102s (m), and the oxidant temperature switching control unit 102t are part of the control device 102g. Is included.
  • the plurality of oxidant introduction amount control units 102o (1) to 102o (m) respectively control the introduction amount (for example, oxygen amount and air amount) of the oxidant H (Hb (1) to Hb (m)).
  • the plurality of oxidant concentration control units 102s (1) to 102s (m) include oxidant cylinders provided in the plurality of oxidant introduction amount control units 102o (1) to 102o (m), respectively, and stored oxidation.
  • the concentrations of the agent H (for example, oxygen concentration and air concentration) are different from each other.
  • the oxidant concentration switching control unit 102u includes oxidants Hb (1) to Hb () having different concentrations (for example, oxygen concentration and air concentration) in the plurality of oxidant concentration control units 102s (1) to 102s (m). m) is selectively switched.
  • the oxidation region ⁇ can be reliably controlled within a predetermined temperature or a predetermined temperature range by switching the oxidant H having a plurality of different concentrations (for example, oxygen concentration and air concentration). Moreover, the introduction amount of the oxidizing agent H can be set to a predetermined control amount (for example, control air amount), whereby the raw material F can be reliably passed through the oxidation region ⁇ within a predetermined time range.
  • a predetermined control amount for example, control air amount
  • a gasification furnace 1023L according to the twelfth embodiment shown in FIG. 29 is obtained by providing a furnace temperature control unit 102q in the gasification furnace 1023F shown in FIG.
  • the gasification furnace 1023L further includes a furnace temperature control unit 102q.
  • the furnace temperature control unit 102q includes a part of the control device 102g.
  • the furnace temperature control unit 102q includes a heat source 102q1 such as a heating element and a drive unit 102q2 for driving the heat source 102q1.
  • the heat source 102q1 is provided on the entire side surface 102b2 of the furnace 102b.
  • the thermocouple 102h transmits an electrical signal related to the detected temperature of the oxidation zone ⁇ to the furnace temperature control unit 102q.
  • the furnace temperature control unit 102q controls the driving unit 102q2 so that the temperature of the oxidation region ⁇ becomes a predetermined temperature by an electrical signal related to the temperature of the oxidation region ⁇ , and the temperature in the furnace 102b is set to a predetermined temperature or a predetermined temperature range by the heat source 102q1. Adjust in.
  • the oxidation zone ⁇ can be stably and reliably controlled within a predetermined temperature or a predetermined temperature range.
  • a gasification furnace 1023M according to the thirteenth embodiment shown in FIG. 30 is obtained by reducing the area in which the furnace temperature control unit 102q is provided in the gasification furnace 1023L shown in FIG.
  • the heat source 102q1 is provided in a part of the upstream side of the side surface 102b2 of the furnace 102b (only half in this example) in the flow direction V of the fuel gas G.
  • the thermocouple 102h detects the temperature of the region corresponding to the heat source 102q1 in the furnace 102b.
  • the oxidation atmosphere temperature of the oxidation region ⁇ can be lowered in accordance with the promotion of the oxidation of the raw material F, whereby the oxidation region ⁇ can be reliably controlled within a predetermined temperature or a predetermined temperature range. it can.
  • a low temperature region ⁇ may be provided on the downstream side in the flow direction V of the fuel gas G adjacent to the oxidation region ⁇ .
  • the present invention relates to a gasification furnace that oxidizes a raw material to generate a product gas, and an operation method of the gasification furnace, and in particular, in generating the product gas, generation of tar and generation of crystalline silica
  • the present invention can be applied to a use for making both suppressions compatible simultaneously.

Abstract

This gasification furnace, which oxidizes a starter material to generate producer gas, is provided with a means for maintaining an oxidation zone, which oxidizes the starter material, at a predetermined prescribed temperature or within a predetermined prescribed temperature range, and is provided with a means that passes the starter material in the oxidation zone within a predetermined prescribed time range. This gasification furnace operation method, which oxidizes a starter material to generate producer gas, maintains the oxidation zone, which oxidizes the starter material, at a predetermined prescribed temperature or within a predetermined prescribed temperature range, and passes the starter material in the oxidation zone within a predetermined prescribed time range.

Description

ガス化炉およびガス化炉の運転方法Gasification furnace and operation method of gasification furnace
 本発明は、バイオマス等の原料を酸化して生成ガスを生成するガス化炉およびガス化炉の運転方法に関する。 The present invention relates to a gasification furnace that oxidizes a raw material such as biomass to generate a product gas and a method for operating the gasification furnace.
 バイオマス等の原料を酸化して生成ガスを生成するガス化炉では、原料を熱分解して生成ガス(例えば一酸化炭素や水素)を生成する。かかる生成ガスの生成過程において、一般的には、原料を炭化し、炭化したチャー(炭化物)を燃焼し、燃焼した灰を外部に排出する。このとき、原料を空気等の酸化剤と共に導入したり、炉を外部から加熱したりする。 In a gasifier that oxidizes a raw material such as biomass to generate a product gas, the raw material is pyrolyzed to generate a product gas (for example, carbon monoxide or hydrogen). In the process of generating the product gas, generally, the raw material is carbonized, char char (carbide) is combusted, and the burned ash is discharged to the outside. At this time, the raw material is introduced together with an oxidizing agent such as air, or the furnace is heated from the outside.
 また、このようなガス化炉においては、生成ガスを生成する過程で、タールが発生する。すなわち、生成した生成ガス中にはタール分が含まれる。例えば、生成ガスをガスエンジンで燃焼させる場合、発生したタールにより、バルブ等の生成ガスに触れる可動部材の動作不良(具体的にはタールの付着により可動部材が円滑に可動しないといった動作不良)等の不都合が発生する恐れがある。 Also, in such a gasification furnace, tar is generated in the process of generating product gas. That is, the generated product gas contains tar. For example, when the generated gas is burned by a gas engine, the malfunction of the movable member that touches the generated gas such as a valve due to the generated tar (specifically, the malfunction that the movable member does not move smoothly due to adhesion of tar), etc. Inconvenience may occur.
 かかる不都合を解消するために、従来のガス化炉では、酸化雰囲気をタールが熱分解するために必要な温度であるタール熱分解温度以上(具体的には800℃程度以上、好ましくは1000℃程度以上)とすることで、タールの発生を抑制している。 In order to eliminate such inconvenience, in the conventional gasification furnace, the thermal decomposition temperature is higher than the tar thermal decomposition temperature (specifically, about 800 ° C. or higher, preferably about 1000 ° C.), which is the temperature necessary for thermal decomposition of the oxidizing atmosphere. Thus, the generation of tar is suppressed.
 一方、シリカ(二酸化ケイ素)を含む原料をタール熱分解温度(例えば800℃~1000℃程度)で燃焼するに当たり、原料にさらにカリウムが含まれていると(例えば籾殻等の原料の場合)、カリウムにより非晶質のシリカから結晶性シリカへの結晶化が促進されることが知られており、好ましくない。 On the other hand, when burning a raw material containing silica (silicon dioxide) at a tar pyrolysis temperature (eg, about 800 ° C. to 1000 ° C.), if the raw material further contains potassium (eg, a raw material such as rice husk), potassium Is known to promote crystallization from amorphous silica to crystalline silica, which is not preferred.
 従って、従来のガス化炉では、結晶性シリカの生成を抑制するという観点から、酸化雰囲気を比較的低温(例えば800℃程度を下回る温度)に抑える必要があるが、そうすると、タールの発生を抑制することと相反してしまう。 Therefore, in the conventional gasification furnace, it is necessary to suppress the oxidizing atmosphere to a relatively low temperature (for example, a temperature lower than about 800 ° C.) from the viewpoint of suppressing the generation of crystalline silica. It is contrary to what you do.
 すなわち、タールの発生を抑制するべく、タールが熱分解するために必要な温度以上(具体的には800℃程度以上)とすると、結晶性シリカが生成する一方、結晶性シリカの生成を抑制するべく、酸化雰囲気を比較的低温(例えば800℃程度を下回る温度)にすると、タールの発生を抑制することができない。 That is, in order to suppress the generation of tar, when the temperature is higher than the temperature necessary for thermal decomposition of tar (specifically, about 800 ° C. or higher), crystalline silica is generated, while the generation of crystalline silica is suppressed. Therefore, if the oxidizing atmosphere is set at a relatively low temperature (for example, a temperature lower than about 800 ° C.), the generation of tar cannot be suppressed.
 そのため、従来のガス化炉では、次のような構成としていた。すなわち、前処理で酸洗浄を行って結晶性シリカの生成を促進させるカリウムを原料から除去する構成、或いは、前段において結晶性シリカが生成しない温度(例えば700℃~800℃)で原料を気体分と固体分とに分離した後に後段において気体分のみをタール熱分解温度(例えば1000℃)以上で酸化してタールの発生を抑制するという複数段酸化処理を行う構成、別手段として原料を結晶性シリカが生成しない温度(例えば700℃~800℃)で酸化後にガス化炉の後処理で生成した生成ガス中のタール分を除去する構成、または、タール熱分解温度(例えば1000℃)以上で酸化してタールの発生を抑制した後に結晶性シリカを後処理で除去する構成である。 Therefore, the conventional gasifier has the following configuration. That is, the acid cleaning is performed in the pretreatment to remove potassium that promotes the formation of crystalline silica from the raw material, or the raw material is gasified at a temperature (for example, 700 ° C. to 800 ° C.) at which the crystalline silica is not generated in the previous stage. In the latter stage, after the gas is separated into a solid component, only the gas component is oxidized at a tar pyrolysis temperature (for example, 1000 ° C.) or higher to suppress the generation of tar. A structure in which the tar content in the product gas generated in the post-treatment of the gasification furnace is removed after oxidation at a temperature at which silica is not generated (eg, 700 ° C. to 800 ° C.), or oxidation is performed at a tar pyrolysis temperature (eg, 1000 ° C.) or higher. Then, after suppressing the generation of tar, the crystalline silica is removed by post-treatment.
 このように、従来のガス化炉では、シリカおよびカリウムを含む原料(例えば籾殻)を酸化して生成ガスを生成する場合は、タールの発生と結晶性シリカの生成との双方を抑制するために、前処理するか、酸化を複数段階に分ける(例えば700℃~800℃で一次酸化した後にガス化後のガスのみ1000℃以上で二次酸化する)か、タール(例えば原料を700℃~800℃で酸化することにより発生するタール)または結晶性シリカ(例えば原料を1000℃以上で酸化することにより生成する結晶性シリカ)を後処理で除去する、というように複数段階の工程を必要としており、タールの発生と結晶性シリカの生成との双方の抑制を同時的に両立する構成にはなっていない。 Thus, in a conventional gasification furnace, when generating a product gas by oxidizing a raw material containing silica and potassium (for example, rice husk), in order to suppress both generation of tar and generation of crystalline silica. , Pretreatment or dividing the oxidation into a plurality of stages (for example, primary oxidation at 700 ° C. to 800 ° C. followed by secondary oxidation of only the gasified gas at 1000 ° C. or more) or tar (for example, the raw material is 700 ° C. to 800 ° C. Requires a multi-step process such as removing tars generated by oxidation at 0 ° C.) or crystalline silica (for example, crystalline silica produced by oxidizing raw materials at 1000 ° C. or higher) by post-treatment. Further, it is not configured to simultaneously suppress both the generation of tar and the generation of crystalline silica.
 この点に関し、特許文献1は、ダウンドラフト型ガス化炉においてチャーが堆積する還元層よりも上方の酸化層に酸化剤(空気または酸素)を吹き込む構成を開示している(特許文献1の図1参照)。特許文献2は、流動床式ガス化炉においてチャー堆積層より上方で酸化剤を吹き込む構成を開示している(特許文献2の図1参照)。また、特許文献3は、アップドラフト型ガス化炉においてバイオマス原料の炭化物の堆積層に向けて酸化剤を吹き込む構成を開示している(特許文献3の図1参照)。 In this regard, Patent Document 1 discloses a configuration in which an oxidizing agent (air or oxygen) is blown into an oxide layer above a reducing layer on which char is deposited in a downdraft gasification furnace (see FIG. 1). 1). Patent Document 2 discloses a configuration in which an oxidizing agent is blown above a char deposition layer in a fluidized bed gasification furnace (see FIG. 1 of Patent Document 2). Patent Document 3 discloses a configuration in which an oxidizing agent is blown toward a carbide deposition layer of a biomass raw material in an updraft gasification furnace (see FIG. 1 of Patent Document 3).
特開2005-146188号公報JP 2005-146188 A 特開2010-223564号公報JP 2010-223564 A 特開2013-213647号公報JP 2013-213647 A
 しかしながら、何れの特許文献1~3もタールの発生と結晶性シリカの生成との双方の抑制を同時的に両立するための構成については何ら開示していない。 However, none of Patent Documents 1 to 3 discloses a configuration for simultaneously suppressing both the generation of tar and the generation of crystalline silica.
 そこで、本発明は、原料を酸化して生成ガスを生成するガス化炉およびガス化炉の運転方法であって、生成ガスを生成するに当たって、タールの発生と結晶性シリカの生成との双方の抑制を同時的に両立させることができるガス化炉およびガス化炉の運転方法を提供することを目的とする。 Therefore, the present invention is a gasification furnace that oxidizes a raw material to generate a product gas and a method for operating the gasification furnace. In generating the product gas, both the generation of tar and the generation of crystalline silica are performed. It is an object of the present invention to provide a gasification furnace and a gasification furnace operation method capable of simultaneously achieving suppression.
 本発明者らは、前記課題を解決するために、鋭意研鑽を重ねた結果、次のことを見出し、本発明を完成した。 The present inventors have intensively studied in order to solve the above problems, and as a result, have found the following and completed the present invention.
 すなわち、本発明者らは、シリカおよびカリウムを含む原料(例えば籾殻)に関し、該原料自身の温度が結晶性シリカを生成する温度である結晶性シリカ生成温度(例えば750℃)に達したときに結晶性シリカを生成する、という知見を得て、原料を酸化して生成ガスを生成するガス化炉において、生成ガスを生成するに当たって、同一工程(同一時期にかつ同一空間)で、予め定めた所定温度または所定温度範囲の酸化雰囲気下に該原料を曝す時間が、予め定めた所定時間範囲内であれば、タールの熱分解が進んでタールの発生を抑制する一方で、原料自身の温度が十分に上がりきらないことで、結晶性シリカの生成を抑制することができること、換言すれば、タールが熱分解するために必要な温度であるタール熱分解温度以上の酸化雰囲気下で原料を加熱した時点から結晶性シリカ生成温度または結晶性シリカ生成温度近傍の温度に達するまでにタールの発生を許容レベル以下に抑えることができることを見出した。 That is, the present inventors, regarding a raw material containing silica and potassium (for example, rice husk), when the temperature of the raw material itself reaches a crystalline silica formation temperature (for example, 750 ° C.), which is a temperature for forming crystalline silica. In the gasification furnace that generates the product gas by oxidizing the raw material by obtaining the knowledge that the crystalline silica is produced, it is predetermined in the same process (at the same time and in the same space) to produce the product gas. If the time during which the raw material is exposed to an oxidizing atmosphere of a predetermined temperature or a predetermined temperature range is within a predetermined time range, tar decomposition proceeds to suppress tar generation, while the temperature of the raw material itself is It is possible to suppress the formation of crystalline silica by not fully rising, in other words, oxidation above the thermal decomposition temperature of tar, which is the temperature necessary for thermal decomposition of tar. It found that the raw material it is possible to suppress generation of tar to acceptable levels in the up from the time of heating reaches the crystalline silica product temperature or temperature of the crystalline silica product temperature near under 囲気.
 さらに詳しく説明すると、本発明者らは、原料を酸化して生成ガスを生成するガス化炉において、生成ガスを生成するに当たって、同一工程(同一時期にかつ同一空間)で、タール熱分解温度(例えば1000℃)以上の温度の酸化雰囲気下に該原料を曝した時点から該原料自身の温度が結晶性シリカ生成温度(例えば750℃)に達するまでの時間である結晶性シリカ生成温度到達時間(例えば2分を超える時間)がタールの発生を許容レベル以下に抑えるために必要な時間であるタール発生許容時間以上になるとの仮説の下、実験を行った結果、結晶性シリカ生成温度到達時間がタール発生許容時間以上になることを見出した。これにより、同一工程(同一時期にかつ同一空間)で、タール熱分解温度(例えば1000℃)以上の所定温度(例えば1050℃)または所定温度範囲(例えば1050℃を中央温度とする温度範囲)の酸化雰囲気下に該原料を曝す時間が、タール発生許容時間以上で、かつ、結晶性シリカの生成を許容レベル以下に抑えるための時間である結晶性シリカ生成許容時間以下の所定時間範囲内(例えば2分)であれば、タールの発生を抑制すると共に、結晶性シリカの生成を抑制することができる。 More specifically, in the gasification furnace that oxidizes the raw material to generate the product gas, the present inventors generate tar gas decomposition temperature (at the same time and in the same space) in generating the product gas. Crystalline silica formation temperature attainment time (time until the temperature of the raw material itself reaches crystalline silica formation temperature (for example, 750 ° C.) from the time when the raw material is exposed to an oxidizing atmosphere having a temperature of 1000 ° C. or higher) As a result of experiments under the hypothesis that, for example, a time exceeding 2 minutes) is equal to or longer than the allowable tar generation time, which is a time necessary for suppressing the generation of tar below the allowable level, the time for reaching the crystalline silica formation temperature is determined. It was found that the tar generation allowable time is exceeded. Thereby, in the same process (in the same time and in the same space), a predetermined temperature (for example, 1050 ° C.) or a predetermined temperature range (for example, a temperature range in which 1050 ° C. is the central temperature) above the tar pyrolysis temperature (for example, 1000 ° C.) The exposure time of the raw material in an oxidizing atmosphere is within a predetermined time range that is equal to or longer than the allowable tar generation time and equal to or shorter than the allowable crystalline silica generation time, which is a time for suppressing the generation of crystalline silica to an allowable level or lower (for example, 2 minutes), tar generation can be suppressed and generation of crystalline silica can be suppressed.
 なお、結晶性シリカ生成温度は、カリウムの含有濃度に応じて変化し、例えば、カリウムがない場合には、結晶性シリカ生成温度が1350℃であるのに対して、カリウムの含有濃度が増えるに従って、結晶性シリカ生成温度が次第に低下していく(例えば750℃といった温度に低下する)。 The crystalline silica formation temperature varies depending on the potassium concentration. For example, when there is no potassium, the crystalline silica formation temperature is 1350 ° C., whereas the potassium content increases. The crystalline silica formation temperature gradually decreases (for example, decreases to a temperature of 750 ° C.).
 本発明は、かかる知見に基づくものであり、次のガス化炉およびガス化炉の運転方法を提供する。 The present invention is based on such knowledge, and provides the following gasification furnace and operation method of the gasification furnace.
 (1)ガス化炉
 本発明に係るガス化炉は、原料を酸化して生成ガスを生成するガス化炉であって、前記原料を酸化する酸化域を予め定めた所定温度または所定温度範囲に維持する手段を設け、前記原料を前記酸化域に予め定めた所定時間範囲内で通過させる手段を設けたことを特徴とする。
(1) Gasification furnace The gasification furnace according to the present invention is a gasification furnace that oxidizes a raw material to generate a product gas, and an oxidation region for oxidizing the raw material is set to a predetermined temperature or a predetermined temperature range. Means for maintaining is provided, and means for passing the raw material through the oxidation zone within a predetermined time range is provided.
 (2)ガス化炉の運転方法
 本発明に係るガス化炉の運転方法は、原料を酸化して生成ガスを生成するガス化炉の運転方法であって、前記原料を酸化する酸化域を予め定めた所定温度または所定温度範囲に維持し、前記原料を前記酸化域に予め定めた所定時間範囲内で通過させることを特徴とする。
(2) Gasification furnace operation method The gasification furnace operation method according to the present invention is a gasification furnace operation method in which a raw material is oxidized to generate a product gas, and an oxidation region for oxidizing the raw material is previously set. A predetermined temperature or a predetermined temperature range is maintained, and the raw material is allowed to pass through the oxidation zone within a predetermined time range.
 本発明において、前記所定温度または前記所定温度範囲は、タールが熱分解するために必要な温度であるタール熱分解温度以上の温度または該温度を中央温度とする温度範囲であり、前記所定時間範囲は、タールの発生を許容レベル以下に抑えるために必要な時間であるタール発生許容時間以上、かつ、結晶性シリカの生成を許容レベル以下に抑えるための時間である結晶性シリカ生成許容時間以下である態様を例示できる。 In the present invention, the predetermined temperature or the predetermined temperature range is a temperature equal to or higher than a tar pyrolysis temperature, which is a temperature necessary for thermal decomposition of tar, or a temperature range having the temperature as a central temperature, and the predetermined time range. Is longer than the allowable tar generation time, which is the time required to suppress the generation of tar below the allowable level, and below the allowable time of crystalline silica generation, which is the time required to suppress the generation of crystalline silica below the allowable level. A certain aspect can be illustrated.
 本発明に係るガス化炉において、前記酸化域の酸化雰囲気温度と、前記原料が前記酸化域に入った時点から該原料自身の温度が結晶性シリカを生成する温度である結晶性シリカ生成温度に達するまでの時間である結晶性シリカ生成温度到達時間との相関関係に基づいて前記所定温度または前記所定温度範囲の中央温度および前記所定時間範囲内で前記原料が前記酸化域を通過する時間である酸化域通過時間を決定する手段を設けた態様を例示できる。本発明に係るガス化炉の運転方法において、前記酸化域の酸化雰囲気温度と、前記原料が前記酸化域に入った時点から該原料自身の温度が結晶性シリカを生成する温度である結晶性シリカ生成温度に達するまでの時間である結晶性シリカ生成温度到達時間との相関関係に基づいて前記所定温度または前記所定温度範囲の中央温度および前記所定時間範囲内で前記原料が前記酸化域を通過する時間である酸化域通過時間を決定する態様を例示できる。 In the gasification furnace according to the present invention, the oxidizing atmosphere temperature in the oxidation zone and the crystalline silica production temperature, which is the temperature at which the raw material itself produces crystalline silica from the time when the raw material enters the oxidation zone. The time required for the raw material to pass through the oxidation region within the predetermined temperature or the central temperature of the predetermined temperature range and the predetermined time range based on the correlation with the time until the crystalline silica formation temperature is reached An embodiment in which means for determining the oxidation zone passage time is provided can be exemplified. In the operation method of the gasification furnace according to the present invention, the crystalline silica in which the oxidizing atmosphere temperature in the oxidation zone and the temperature of the raw material itself is a temperature at which crystalline silica is produced from the time when the raw material enters the oxidation zone The raw material passes through the oxidation zone within the predetermined temperature or the central temperature of the predetermined temperature range and the predetermined time range based on the correlation with the crystalline silica generation temperature arrival time, which is the time until the formation temperature is reached. The aspect which determines the oxidation zone passage time which is time can be illustrated.
 本発明において、前記相関関係は、以下の式[1]で示される相関関数の式に対応する態様を例示できる。 In the present invention, the correlation can be exemplified by a mode corresponding to a correlation function expression represented by the following expression [1].
Figure JPOXMLDOC01-appb-M000005
Figure JPOXMLDOC01-appb-M000005
 但し、前記式[1]において、Tは、前記酸化雰囲気温度であり、tは、結晶性シリカの生成を許容レベル以下に抑えるための時間である結晶性シリカ生成許容時間であり、tminは、タールの発生を許容レベル以下に抑えるために必要な時間であるタール発生許容時間であり、a,b,cは、前記原料の成分量(特にカリウムの含有濃度)により変化する定数である。 However, in the formula [1], T is the oxidizing atmosphere temperature, t is a crystalline silica production allowable time which is a time for suppressing the generation of crystalline silica to an allowable level or less, and tmin is The tar generation allowable time is a time required to suppress the generation of tar below the allowable level, and a, b, and c are constants that change depending on the amount of the raw material components (particularly, the concentration of potassium contained).
 本発明において、前記相関関係は、カリウムの所定の含有濃度の前記原料を基準とした以下の[表1]で示される相関表に対応する態様を例示できる。 In the present invention, the correlation can be exemplified by a mode corresponding to a correlation table shown in the following [Table 1] based on the raw material having a predetermined concentration of potassium.
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000006
 但し、前記[表1]において、Tは、前記酸化雰囲気温度であり、tは、結晶性シリカの生成を許容レベル以下に抑えるための時間である結晶性シリカ生成許容時間であり、t(K小)は、基準となる前記原料のカリウムの含有濃度よりも少ない原料での前記結晶性シリカ生成許容時間を表しており、t(K大)は、基準となる前記原料のカリウムの含有濃度よりも多い原料での前記結晶性シリカ生成許容時間を表しており、A,B,C,D,Eは、前記酸化雰囲気温度Tに対する前記結晶性シリカ生成許容時間tの設定値であり、前記原料の成分量(特にカリウムの含有濃度)により変化する設定値であってタールの発生を許容レベル以下に抑えるために必要な時間であるタール発生許容時間tmin以上の設定値である。 However, in the above [Table 1], T is the oxidizing atmosphere temperature, t is a crystalline silica production allowable time which is a time for suppressing the generation of crystalline silica to an allowable level or less, and t (K (Small) represents the permissible time for crystalline silica generation with a raw material that is less than the standard potassium content of the raw material, and t (large K) is greater than the standard potassium content of the raw material. The crystalline silica production permissible time with a large amount of raw material is represented, and A, B, C, D, E are set values of the crystalline silica production permissible time t with respect to the oxidizing atmosphere temperature T, and the raw material Is a set value that varies depending on the amount of the component (particularly the potassium concentration), and is a set value that is equal to or greater than the allowable tar generation time tmin, which is the time required to suppress the generation of tar below the allowable level.
 本発明に係るガス化炉において、前記原料を導入するに先立ち、炉内を前記所定温度または前記所定温度範囲に予熱する手段を設けた態様を例示できる。 In the gasification furnace according to the present invention, a mode in which means for preheating the inside of the furnace to the predetermined temperature or the predetermined temperature range before introducing the raw material can be exemplified.
 本発明において、前記原料を前記酸化域に予め定めた所定時間範囲内で通過させる手段として、前記原料を導入する原料導入部を予め定めた所定の想定チャー層の最上部よりも上方に設け、酸化剤を導入する酸化剤導入部を前記想定チャー層の最上部よりも上方でかつ前記原料導入部における開口よりも下方に設け、前記酸化剤導入部における開口を前記酸化剤の導入方向が水平方向または水平方向よりも上向きに沿うように形成し、前記生成ガスを流出させる生成ガス流出部を前記酸化剤導入部における前記開口よりも上方に設け、前記想定チャー層に臨む位置に、吸熱反応剤を導入する吸熱反応剤導入部、および、熱容量剤を導入する熱容量剤導入部のうち少なくとも一方を設けた態様を例示できる。 In the present invention, as a means for allowing the raw material to pass through the oxidation region within a predetermined time range, a raw material introduction portion for introducing the raw material is provided above the uppermost portion of the predetermined assumed char layer, An oxidant introduction part for introducing an oxidant is provided above the uppermost part of the assumed char layer and below an opening in the raw material introduction part, and the introduction direction of the oxidant is horizontal in the opening in the oxidant introduction part. A product gas outflow part for allowing the product gas to flow out is provided above the opening in the oxidant introduction part, and an endothermic reaction is performed at a position facing the assumed char layer. An embodiment in which at least one of an endothermic reactant introduction part for introducing the agent and a heat capacity agent introduction part for introducing the heat capacity agent is provided can be exemplified.
 本発明において、前記原料を前記酸化域に予め定めた所定時間範囲内で通過させる手段として、前記原料を導入する原料導入部を予め定めた所定の想定チャー層の最上部よりも上方に設け、酸化剤を導入する酸化剤導入部を前記想定チャー層の最上部よりも上方でかつ前記原料導入部における開口よりも下方に設け、前記酸化剤導入部における開口を前記酸化剤の導入方向が水平方向または水平方向よりも上向きに沿うように形成し、前記生成ガスを流出させる生成ガス流出部を前記酸化剤導入部における前記開口よりも上方に設け、前記想定チャー層に対応する領域の外面に、チャー層の温度を制御するチャー層温度制御部を設けた態様を例示できる。 In the present invention, as a means for allowing the raw material to pass through the oxidation region within a predetermined time range, a raw material introduction portion for introducing the raw material is provided above the uppermost portion of the predetermined assumed char layer, An oxidant introduction part for introducing an oxidant is provided above the uppermost part of the assumed char layer and below an opening in the raw material introduction part, and the introduction direction of the oxidant is horizontal in the opening in the oxidant introduction part. A generated gas outflow portion for flowing out the generated gas is provided above the opening in the oxidant introduction portion, and is formed on the outer surface of the region corresponding to the assumed char layer. An embodiment in which a char layer temperature control unit for controlling the temperature of the char layer is provided can be exemplified.
 本発明において、前記原料を前記酸化域に予め定めた所定時間範囲内で通過させる手段として、前記原料を導入する原料導入部を予め定めた所定の想定チャー層の最上部よりも上方に設け、酸化剤を導入する酸化剤導入部を前記想定チャー層の最上部よりも下方に設け、前記酸化剤をチャーに接触させる酸化剤接触時間を制御する酸化剤接触時間制御部を設け、前記生成ガスを流出させる生成ガス流出部を前記酸化剤導入部よりも上方に設け、前記想定チャー層に臨む位置に、吸熱反応剤を導入する吸熱反応剤導入部、および、熱容量剤を導入する熱容量剤導入部のうち少なくとも一方を設けた態様を例示できる。 In the present invention, as a means for allowing the raw material to pass through the oxidation region within a predetermined time range, a raw material introduction portion for introducing the raw material is provided above the uppermost portion of the predetermined assumed char layer, An oxidant introduction part for introducing an oxidant is provided below the uppermost part of the assumed char layer, an oxidant contact time control part for controlling an oxidant contact time for contacting the oxidant with the char is provided, and the generated gas A product gas outflow part for allowing the gas to flow out is provided above the oxidant introduction part, and an endothermic reactant introduction part for introducing an endothermic reactant at a position facing the assumed char layer, and a heat capacity agent introduction for introducing a heat capacity agent The aspect which provided at least one among the parts can be illustrated.
 本発明において、前記原料を前記酸化域に予め定めた所定時間範囲内で通過させる手段として、前記原料を導入する原料導入部を予め定めた所定の想定チャー層の最上部よりも上方に設け、酸化剤を導入する酸化剤導入部を前記想定チャー層の最上部よりも下方に設け、前記酸化剤をチャーに接触させる酸化剤接触時間を制御する酸化剤接触時間制御部を設け、前記生成ガスを流出させる生成ガス流出部を前記想定チャー層の最下部に臨む位置に設け、チャーを堆積させるためのチャー堆積時間を制御するチャー堆積時間制御部を設けた態様を例示できる。 In the present invention, as a means for allowing the raw material to pass through the oxidation region within a predetermined time range, a raw material introduction portion for introducing the raw material is provided above the uppermost portion of the predetermined assumed char layer, An oxidant introduction part for introducing an oxidant is provided below the uppermost part of the assumed char layer, an oxidant contact time control part for controlling an oxidant contact time for contacting the oxidant with the char is provided, and the generated gas An example is provided in which a product gas outflow portion for allowing the char to flow out is provided at a position facing the lowermost portion of the assumed char layer, and a char deposition time control unit for controlling the char deposition time for depositing char is provided.
 本発明において、前記原料を前記酸化域に予め定めた所定時間範囲内で通過させる手段として、前記原料を導入する原料導入部を予め定めた所定の想定チャー層の最上部よりも上方に設け、酸化剤を導入する酸化剤導入部を前記想定チャー層の最上部よりも下方に設け、前記酸化剤をチャーに接触させる酸化剤接触時間を制御する酸化剤接触時間制御部を設け、酸化剤を導入する酸化剤導入部を前記想定チャー層の最下部に臨む位置にさらに設け、前記生成ガスを流出させる生成ガス流出部を前記想定チャー層の最上部よりも下方に設けた前記酸化剤導入部と前記想定チャー層の最下部に臨む位置にさらに設けた前記酸化剤導入部との間に設けた態様を例示できる。 In the present invention, as a means for allowing the raw material to pass through the oxidation region within a predetermined time range, a raw material introduction portion for introducing the raw material is provided above the uppermost portion of the predetermined assumed char layer, An oxidant introduction part for introducing an oxidant is provided below the uppermost part of the assumed char layer, and an oxidant contact time control unit for controlling an oxidant contact time for contacting the oxidant with the char is provided. The oxidant introduction part further provided with a oxidant introduction part to be introduced at a position facing the lowermost part of the assumed char layer, and a product gas outflow part through which the produced gas flows out is provided below the uppermost part of the assumed char layer. And an oxidant introduction part further provided at a position facing the lowermost part of the assumed char layer.
 本発明において、前記原料を前記酸化域に予め定めた所定時間範囲内で通過させる手段として、前記原料を導入する原料導入部を予め定めた所定の想定チャー層の最上部よりも上方に設け、酸化剤を導入する酸化剤導入部を、前記想定チャー層の最下部に臨む位置と前記想定チャー層の最上部よりも上方でかつ前記原料導入部における開口よりも下方とに設け、前記想定チャー層の最下部に臨む位置に設けた前記酸化剤導入部における開口を前記酸化剤の導入方向が上方または略上方に向くように形成し、前記想定チャー層の最上部よりも上方で前記原料導入部における開口よりも下方に設けた前記酸化剤導入部における開口を前記酸化剤の導入方向が水平方向または水平方向よりも上向きに沿うように形成し、前記生成ガスを流出させる生成ガス流出部を全ての前記酸化剤導入部よりも上方に設けた態様を例示できる。 In the present invention, as a means for allowing the raw material to pass through the oxidation region within a predetermined time range, a raw material introduction portion for introducing the raw material is provided above the uppermost portion of the predetermined assumed char layer, An oxidant introduction part for introducing an oxidant is provided at a position facing the lowermost part of the assumed char layer and above the uppermost part of the assumed char layer and below an opening in the raw material introduction part, An opening in the oxidant introduction portion provided at a position facing the bottom of the layer is formed so that the introduction direction of the oxidant is directed upward or substantially upward, and the raw material introduction is performed above the uppermost portion of the assumed char layer. An opening in the oxidant introduction part provided below the opening in the part is formed so that the introduction direction of the oxidant is along the horizontal direction or upward from the horizontal direction, and the generated gas is allowed to flow out. The formed gas outlet portion may be exemplified embodiments provided above the all of the oxidant introduction.
 本発明において、前記原料を前記酸化域に予め定めた所定時間範囲内で通過させる手段として、前記原料を導入する原料導入部を予め定めた所定の想定チャー層の最上部よりも上方に設け、酸化剤を導入する酸化剤導入部を前記想定チャー層の最下部に臨む位置に設け、前記酸化剤の導入量を制御する酸化剤導入量制御部を設け、前記酸化剤を導入する酸化剤導入部における開口を前記酸化剤の導入方向が上方または略上方に向くように形成し、前記生成ガスを流出させる生成ガス流出部を前記想定チャー層の最上部よりも上方に設けた態様を例示できる。 In the present invention, as a means for allowing the raw material to pass through the oxidation region within a predetermined time range, a raw material introduction portion for introducing the raw material is provided above the uppermost portion of the predetermined assumed char layer, An oxidant introduction part for introducing an oxidant is provided at a position facing the lowest part of the assumed char layer, an oxidant introduction amount control part for controlling the introduction amount of the oxidant is provided, and an oxidant introduction for introducing the oxidant is provided. An embodiment in which the opening in the portion is formed so that the introduction direction of the oxidant is directed upward or substantially upward, and the generated gas outflow portion for flowing out the generated gas is provided above the uppermost portion of the assumed char layer can be exemplified. .
 本発明において、前記原料を前記酸化域に予め定めた所定時間範囲内で通過させる手段として、前記原料を導入する原料導入部を予め定めた所定の想定チャー層の最上部よりも上方に設け、酸化剤を導入する酸化剤導入部を前記想定チャー層の最下部に臨む位置に設け、前記酸化剤と吸熱反応剤および熱容量剤の少なくとも一方とを調整する調整制御部を設け、前記酸化剤導入部における開口を前記酸化剤の導入方向が上方または略上方に向くように形成し、前記生成ガスを流出させる生成ガス流出部を前記想定チャー層の最上部よりも上方に設けた態様を例示できる。 In the present invention, as a means for allowing the raw material to pass through the oxidation region within a predetermined time range, a raw material introduction portion for introducing the raw material is provided above the uppermost portion of the predetermined assumed char layer, An oxidant introduction part for introducing an oxidant is provided at a position facing the lowermost part of the assumed char layer, an adjustment control part for adjusting the oxidant and at least one of an endothermic reaction agent and a heat capacity agent is provided, and the oxidant introduction An embodiment in which the opening in the portion is formed so that the introduction direction of the oxidant is directed upward or substantially upward, and the generated gas outflow portion for flowing out the generated gas is provided above the uppermost portion of the assumed char layer can be exemplified. .
 本発明において、前記原料を前記酸化域に予め定めた所定時間範囲内で通過させる手段として、前記原料を導入する原料導入部、および、酸化剤を導入する酸化剤導入部を並列に設け、前記原料導入部における開口を前記原料の導入方向が前記生成ガスの流れ方向または略前記流れ方向に沿うように形成し、前記酸化剤導入部における開口を前記酸化剤の導入方向が前記生成ガスの流れ方向または略前記流れ方向に沿うように形成し、前記生成ガスを流出させる生成ガス流出部を前記生成ガスの流れ方向において前記原料導入部および前記酸化剤導入部よりも下流側に設け、前記酸化剤の導入量を制御する酸化剤導入量制御部を設けた態様を例示できる。 In the present invention, as means for allowing the raw material to pass through the oxidation region within a predetermined time range, a raw material introduction part for introducing the raw material and an oxidant introduction part for introducing an oxidant are provided in parallel, An opening in the raw material introduction part is formed such that the introduction direction of the raw material is along the flow direction of the product gas or substantially the flow direction, and the opening in the oxidant introduction part is the flow direction of the product gas. A generated gas outflow portion for flowing out the generated gas is provided on the downstream side of the raw material introducing portion and the oxidant introducing portion in the flowing direction of the generated gas. An example in which an oxidant introduction amount control unit for controlling the introduction amount of the agent is provided.
 本発明において、前記原料を前記酸化域に予め定めた所定時間範囲内で通過させる手段として、前記原料を導入する原料導入部、および、酸化剤を導入する酸化剤導入部を前記生成ガスの流れ方向における上流側端面に並列に設け、前記生成ガスを流出させる生成ガス流出部を前記上流側端面の対向面である下流側端面に設け、前記酸化剤の導入量を制御する酸化剤導入量制御部を設けた態様を例示できる。 In the present invention, as means for passing the raw material through the oxidation zone within a predetermined time range, a raw material introduction part for introducing the raw material and an oxidant introduction part for introducing an oxidant are flowed in the product gas. Oxidant introduction amount control for controlling the introduction amount of the oxidant by providing a product gas outflow portion for allowing the product gas to flow out on the downstream end surface opposite to the upstream end surface. The aspect which provided the part can be illustrated.
 本発明において、前記原料を前記酸化域に予め定めた所定時間範囲内で通過させる手段として、前記原料を導入する原料導入部を前記生成ガスの流れ方向における上流側端面に設け、前記生成ガスを流出させる生成ガス流出部を前記上流側端面の対向面である下流側端面に設け、酸化剤を導入する複数の酸化剤導入部を前記上流側端面と前記下流側端面との間で前記生成ガスの流れ方向における上流側から下流側に順に設け、前記複数の酸化剤導入部の前記酸化剤の導入量を制御する酸化剤導入量制御部を設け、前記生成ガスの流れ方向における上流側から下流側に掛けて前記酸化剤の温度を次第に低くする酸化剤温度制御部を設けた態様を例示できる。 In the present invention, as a means for allowing the raw material to pass through the oxidation zone within a predetermined time range, a raw material introduction portion for introducing the raw material is provided on an upstream end face in the flow direction of the generated gas, and the generated gas is A product gas outflow portion to be flowed out is provided on the downstream end surface opposite to the upstream end surface, and a plurality of oxidant introduction portions for introducing an oxidant are provided between the upstream end surface and the downstream end surface. Provided in order from the upstream side to the downstream side in the flow direction of the gas, and provided with an oxidant introduction amount control unit for controlling the introduction amount of the oxidant of the plurality of oxidant introduction units, and from the upstream side to the downstream side in the flow direction of the product gas An embodiment in which an oxidant temperature control unit is provided which is placed on the side to gradually lower the temperature of the oxidant can be exemplified.
 本発明において、前記原料を前記酸化域に予め定めた所定時間範囲内で通過させる手段として、前記原料を導入する原料導入部を前記生成ガスの流れ方向における上流側端面に設け、前記生成ガスを流出させる生成ガス流出部を前記上流側端面の対向面である下流側端面に設け、酸化剤を導入する複数の酸化剤導入部を前記上流側端面と前記下流側端面との間で前記生成ガスの流れ方向における上流側から下流側に順に設け、前記複数の酸化剤導入部の前記酸化剤の導入量を制御する酸化剤導入量制御部を設け、前記生成ガスの流れ方向における上流側から下流側に掛けて前記酸化剤の濃度を次第に低くする酸化剤濃度制御部を設けた態様を例示できる。 In the present invention, as a means for allowing the raw material to pass through the oxidation zone within a predetermined time range, a raw material introduction portion for introducing the raw material is provided on an upstream end face in the flow direction of the generated gas, and the generated gas is A product gas outflow portion to be flowed out is provided on the downstream end surface opposite to the upstream end surface, and a plurality of oxidant introduction portions for introducing an oxidant are provided between the upstream end surface and the downstream end surface. Provided in order from the upstream side to the downstream side in the flow direction of the gas, and provided with an oxidant introduction amount control unit for controlling the introduction amount of the oxidant of the plurality of oxidant introduction units, and from the upstream side to the downstream side in the flow direction of the product gas An example in which an oxidant concentration control unit is provided to gradually reduce the concentration of the oxidant over the side.
 本発明において、前記原料を前記酸化域に予め定めた所定時間範囲内で通過させる手段として、前記原料を導入する原料導入部を前記生成ガスの流れ方向における上流側端面に設け、前記生成ガスを流出させる生成ガス流出部を前記上流側端面の対向面である下流側端面に設け、酸化剤を導入する酸化剤導入部を前記上流側端面と前記下流側端面との間で前記生成ガスの流れ方向における上流側に設け、前記酸化剤導入部の前記酸化剤の導入量を制御する酸化剤導入量制御部を設け、前記酸化剤導入部よりも下流側に吸熱反応剤を導入する吸熱反応剤導入部、および、熱容量剤を導入する熱容量剤導入部のうち少なくとも一方を設けた態様を例示できる。 In the present invention, as a means for allowing the raw material to pass through the oxidation zone within a predetermined time range, a raw material introduction portion for introducing the raw material is provided on an upstream end face in the flow direction of the generated gas, and the generated gas is A flow of the product gas is provided between the upstream end surface and the downstream end surface, and a product gas outflow portion to be flowed is provided on the downstream end surface that is a surface opposite to the upstream end surface. An endothermic reactant that is provided on the upstream side in the direction and includes an oxidant introduction amount control unit that controls an introduction amount of the oxidant in the oxidant introduction unit, and introduces an endothermic reactant downstream from the oxidant introduction unit The aspect which provided at least one among the introduction part and the heat capacity agent introduction part which introduces a heat capacity agent can be illustrated.
 本発明において、前記原料を前記酸化域に予め定めた所定時間範囲内で通過させる手段として、前記原料を導入する原料導入部を前記生成ガスの流れ方向における上流側端面に設け、前記生成ガスを流出させる生成ガス流出部を前記上流側端面の対向面である下流側端面に設け、酸化剤を導入する酸化剤導入部を前記上流側端面および前記下流側端面の間に設け、前記酸化剤の導入量を制御する導入量制御部を設け、互いに異なる複数種類の温度の前記酸化剤を切り替える酸化剤温度切替制御部を設けた態様を例示できる。 In the present invention, as a means for allowing the raw material to pass through the oxidation zone within a predetermined time range, a raw material introduction portion for introducing the raw material is provided on an upstream end face in the flow direction of the generated gas, and the generated gas is A product gas outflow portion to be flowed out is provided on the downstream end surface opposite to the upstream end surface, and an oxidant introduction portion for introducing an oxidant is provided between the upstream end surface and the downstream end surface. An embodiment in which an introduction amount control unit that controls the introduction amount is provided and an oxidant temperature switching control unit that switches the oxidants at a plurality of different temperatures can be exemplified.
 本発明において、前記原料を前記酸化域に予め定めた所定時間範囲内で通過させる手段として、前記原料を導入する原料導入部を前記生成ガスの流れ方向における上流側端面に設け、前記生成ガスを流出させる生成ガス流出部を前記上流側端面の対向面である下流側端面に設け、酸化剤を導入する酸化剤導入部を前記上流側端面および前記下流側端面の間に設け、前記酸化剤の導入量を制御する導入量制御部を設け、互いに異なる複数種類の濃度の前記酸化剤を切り替える酸化剤濃度切替制御部を設けた態様を例示できる。 In the present invention, as a means for allowing the raw material to pass through the oxidation zone within a predetermined time range, a raw material introduction portion for introducing the raw material is provided on an upstream end face in the flow direction of the generated gas, and the generated gas is A product gas outflow portion to be flowed out is provided on the downstream end surface opposite to the upstream end surface, and an oxidant introduction portion for introducing an oxidant is provided between the upstream end surface and the downstream end surface. An example is provided in which an introduction amount control unit for controlling the introduction amount is provided, and an oxidant concentration switching control unit that switches the oxidants having a plurality of different concentrations is provided.
 本発明に係るガス化炉の運転方法において、前記ガス化炉の設置時または前記原料の調達地の決定時若しくは変更時に前記相関関係を設定または更新する態様を例示できる。 In the operation method of the gasifier according to the present invention, a mode in which the correlation is set or updated at the time of installation of the gasifier or at the time of determining or changing the source of the raw material can be exemplified.
 本発明によると、タールの発生と結晶性シリカの生成との双方の抑制を同時的に両立させることが可能となる。 According to the present invention, it is possible to simultaneously suppress both the generation of tar and the generation of crystalline silica.
図1は、本発明の実施の形態に係るガス化炉を備えたガス化装置の全体構成を示す概略構成図である。FIG. 1 is a schematic configuration diagram illustrating an overall configuration of a gasification apparatus including a gasification furnace according to an embodiment of the present invention. 図2は、図1に示すガス化炉の一部を破断状態にして示す概略側面図であって、原料を酸化してガス化する状態を示す図である。FIG. 2 is a schematic side view showing a part of the gasification furnace shown in FIG. 1 in a broken state, and shows a state in which the raw material is oxidized and gasified. 図3は、酸化域を説明するための説明図であって、図2に示す炉内の燃焼ガス層とチャー層との境目付近を拡大して示す図であり、(a)は、チャー層が酸化剤と接触しない或いは表面と接触して炙られる位置に位置するようにチャー層の頂部を設定した例を示す図であり、(b)は、チャー層の内側が酸化剤と接触して炙られる位置に位置するようにチャー層の頂部を設定した例を示す図である。FIG. 3 is an explanatory diagram for explaining the oxidation region, and is an enlarged view showing the vicinity of the boundary between the combustion gas layer and the char layer in the furnace shown in FIG. 2, and (a) shows the char layer. It is a figure which shows the example which set the top part of the char layer so that it may be located in the position which does not contact with an oxidizing agent, or is in contact with the surface, (b) is the inside of a char layer contacting an oxidizing agent It is a figure which shows the example which set the top part of the char layer so that it may be located in the position to be beaten. 図4は、籾殻を原料として本実施の形態に係るガス化炉で得られた灰中のシリカのX線回折による回折パターンを結晶性シリカの場合と比較して示すグラフであって、(a)は、チャー層の頂部を図3(a)に示す位置で行った結果を示す図であり、(b)は、チャー層の頂部を図3(b)に示す位置で行った結果を示す図である。FIG. 4 is a graph showing a diffraction pattern by X-ray diffraction of silica in ash obtained from the gasification furnace according to the present embodiment using rice husk as a raw material, compared with the case of crystalline silica, ) Is a diagram showing the result of the top of the char layer performed at the position shown in FIG. 3A, and (b) is the result of the top of the char layer performed at the position shown in FIG. 3B. FIG. 図5は、結晶性シリカ生成温度とカリウムの含有濃度との関係を示すグラフである。FIG. 5 is a graph showing the relationship between crystalline silica formation temperature and potassium content. 図6は、結晶性シリカ生成温度が750℃の場合で実験を行った結果得られた酸化雰囲気温度と結晶性シリカ生成温度到達時間との相関関係を示すグラフである。FIG. 6 is a graph showing the correlation between the oxidizing atmosphere temperature and the crystalline silica formation temperature arrival time obtained as a result of an experiment conducted when the crystalline silica formation temperature is 750 ° C. 図7は、実施例1の第1実施形態に係るガス化炉を概略的に示す模式図である。FIG. 7 is a schematic diagram schematically showing the gasification furnace according to the first embodiment of Example 1. As shown in FIG. 図8は、実施例1の第2実施形態に係るガス化炉を概略的に示す模式図である。FIG. 8 is a schematic view schematically showing a gasification furnace according to the second embodiment of Example 1. As shown in FIG. 図9は、実施例1の第3実施形態に係るガス化炉を概略的に示す模式図である。FIG. 9 is a schematic view schematically showing a gasification furnace according to the third embodiment of Example 1. As shown in FIG. 図10は、実施例1の第4実施形態に係るガス化炉を概略的に示す模式図である。FIG. 10 is a schematic view schematically showing a gasification furnace according to the fourth embodiment of Example 1. As shown in FIG. 図11は、実施例1の第5実施形態に係るガス化炉を概略的に示す模式図である。FIG. 11 is a schematic diagram schematically showing a gasification furnace according to the fifth embodiment of Example 1. As shown in FIG. 図12は、実施例1の第6実施形態に係るガス化炉を概略的に示す模式図である。FIG. 12 is a schematic view schematically showing a gasification furnace according to the sixth embodiment of Example 1. As shown in FIG. 図13は、実施例1の第7実施形態に係るガス化炉を概略的に示す模式図である。FIG. 13 is a schematic view schematically showing a gasification furnace according to a seventh embodiment of Example 1. As shown in FIG. 図14は、実施例2の第1実施形態に係るガス化炉を概略的に示す模式図である。FIG. 14 is a schematic diagram schematically showing the gasification furnace according to the first embodiment of Example 2. As shown in FIG. 図15は、実施例2の第2実施形態に係るガス化炉を概略的に示す模式図である。FIG. 15 is a schematic view schematically showing a gasification furnace according to a second embodiment of Example 2. As shown in FIG. 図16は、実施例2の第3実施形態に係るガス化炉を概略的に示す模式図である。FIG. 16 is a schematic diagram schematically illustrating a gasification furnace according to a third embodiment of Example 2. 図17は、実施例2の第4実施形態に係るガス化炉を概略的に示す模式図である。FIG. 17 is a schematic diagram schematically illustrating a gasification furnace according to a fourth embodiment of Example 2. 図18は、実施例3の第1実施形態に係るガス化炉を概略的に示す模式図である。FIG. 18 is a schematic diagram schematically illustrating the gasification furnace according to the first embodiment of Example 3. As illustrated in FIG. 図19は、実施例3の第2実施形態に係るガス化炉を概略的に示す模式図である。FIG. 19 is a schematic view schematically showing a gasification furnace according to the second embodiment of Example 3. As shown in FIG. 図20は、実施例3の第3実施形態に係るガス化炉を概略的に示す模式図である。FIG. 20 is a schematic diagram schematically illustrating a gasification furnace according to a third embodiment of Example 3. 図21は、実施例3の第4実施形態に係るガス化炉を概略的に示す模式図である。FIG. 21 is a schematic diagram schematically illustrating a gasification furnace according to a fourth embodiment of Example 3. 図22は、実施例3の第5実施形態に係るガス化炉を概略的に示す模式図である。FIG. 22 is a schematic diagram schematically illustrating a gasification furnace according to a fifth embodiment of Example 3. 図23は、実施例3の第6実施形態に係るガス化炉を概略的に示す模式図である。FIG. 23 is a schematic diagram schematically illustrating a gasification furnace according to a sixth embodiment of Example 3. 図24は、実施例3の第7実施形態に係るガス化炉を概略的に示す模式図である。FIG. 24 is a schematic diagram schematically illustrating a gasification furnace according to a seventh embodiment of Example 3. 図25は、実施例3の第8実施形態に係るガス化炉を概略的に示す模式図である。FIG. 25 is a schematic diagram schematically illustrating a gasification furnace according to an eighth embodiment of Example 3. 図26は、実施例3の第9実施形態に係るガス化炉を概略的に示す模式図である。FIG. 26 is a schematic diagram schematically illustrating the gasification furnace according to the ninth embodiment of Example 3. As illustrated in FIG. 図27は、実施例3の第10実施形態に係るガス化炉を概略的に示す模式図である。FIG. 27 is a schematic diagram schematically showing the gasification furnace according to the tenth embodiment of Example 3. As shown in FIG. 図28は、実施例3の第11実施形態に係るガス化炉を概略的に示す模式図である。FIG. 28 is a schematic diagram schematically illustrating a gasification furnace according to an eleventh embodiment of Example 3. 図29は、実施例3の第12実施形態に係るガス化炉を概略的に示す模式図である。FIG. 29 is a schematic diagram schematically showing a gasification furnace according to a twelfth embodiment of Example 3. As shown in FIG. 図30は、実施例3の第13実施形態に係るガス化炉を概略的に示す模式図である。FIG. 30 is a schematic diagram schematically illustrating a gasification furnace according to a thirteenth embodiment of Example 3.
 以下、本発明に係る実施の形態について図面を参照しながら説明する。 Embodiments according to the present invention will be described below with reference to the drawings.
 [ガス化装置]
 先ず、本発明の実施の形態に係るガス化炉102を備えたガス化装置100(ガス化システム)の全体構成について説明する。
[Gasification equipment]
First, the whole structure of the gasifier 100 (gasification system) provided with the gasification furnace 102 which concerns on embodiment of this invention is demonstrated.
 図1は、本発明の実施の形態に係るガス化炉102を備えたガス化装置100の全体構成を示す概略構成図である。 FIG. 1 is a schematic configuration diagram showing an overall configuration of a gasification apparatus 100 including a gasification furnace 102 according to an embodiment of the present invention.
 図1に示すように、ガス化装置100は、貯留ホッパ101と、ガス化炉102と、バグフィルタ103と、ガス冷却器104と、スクラバー105と、循環水槽106(貯水槽)と、冷却塔107と、ガスフィルター108と、誘引ブロワ109と、前処理ユニット110と、次工程の装置である次工程装置(この例ではガスエンジン111、より具体的にはガスエンジン発電装置)と、水封槽112と、余剰ガス燃焼装置113(フレアスタック)とを備えている。 As shown in FIG. 1, a gasifier 100 includes a storage hopper 101, a gasifier 102, a bag filter 103, a gas cooler 104, a scrubber 105, a circulating water tank 106 (water tank), and a cooling tower. 107, a gas filter 108, an induction blower 109, a pretreatment unit 110, a next process apparatus (in this example, a gas engine 111, more specifically, a gas engine power generation apparatus), a water seal, The tank 112 and the surplus gas combustion apparatus 113 (flare stack) are provided.
 貯留ホッパ101は、生成ガス(この例では燃料ガスG)の原料Fを貯溜する。ここで、原料としては、シリカおよびカリウムを含む原料を例示でき、例えば、稲や麦等の籾殻や藁等の非食用農作物を挙げることができる。この例では、原料は、シリカおよびカリウムを含む籾殻のバイオマスとされ、燃料ガスGは、バイオガスとされている。よって、ガス化装置100は、バイオガス化装置とされている。 The storage hopper 101 stores the raw material F of the generated gas (in this example, fuel gas G). Here, as a raw material, the raw material containing a silica and potassium can be illustrated, For example, non-food crops, such as rice husks and rice straw, such as rice and wheat, can be mentioned. In this example, the raw material is rice husk biomass containing silica and potassium, and the fuel gas G is biogas. Therefore, the gasifier 100 is a biogasifier.
 ガス化炉102は、貯留ホッパ101に貯溜された原料Fを導入する原料導入部102aと、原料導入部102aにて導入された原料Fから燃料ガスGを生成する単一の炉102bとを備えている。 The gasification furnace 102 includes a raw material introduction unit 102a that introduces the raw material F stored in the storage hopper 101, and a single furnace 102b that generates fuel gas G from the raw material F introduced by the raw material introduction unit 102a. ing.
 原料導入部102aは、この例では、原料導入コンベア102a1と、原料導入フィーダー102a2とを備えている。原料導入コンベア102a1は、貯留ホッパ101に貯溜された原料Fを原料導入フィーダー102a2に搬送する。原料導入フィーダー102a2は、原料導入コンベア102a1にて搬送されてきた原料Fを炉102bに導入する。なお、ガス化炉102については、後ほど詳しく説明する。 The raw material introduction unit 102a includes a raw material introduction conveyor 102a1 and a raw material introduction feeder 102a2 in this example. The raw material introduction conveyor 102a1 conveys the raw material F stored in the storage hopper 101 to the raw material introduction feeder 102a2. The raw material introduction feeder 102a2 introduces the raw material F that has been conveyed by the raw material introduction conveyor 102a1 into the furnace 102b. The gasification furnace 102 will be described in detail later.
 バグフィルタ103は、ガス化炉102にて生成された燃料ガスGに含まれる煤等の不要物を除去する。 The bag filter 103 removes unnecessary materials such as soot contained in the fuel gas G generated in the gasification furnace 102.
 ガス冷却器104は、ガス化炉102からガスエンジン111への燃料ガス供給経路に設けられている。ガス冷却器104は、バグフィルタ103にて不要物が除去された燃料ガスGを、洗浄水WWにより洗浄し、さらに冷却水CWにより冷却する。スクラバー105は、ガス冷却器104にて洗浄されて冷却された燃料ガスGを洗浄水WW中に潜らせることによりさらに洗浄する。 The gas cooler 104 is provided in the fuel gas supply path from the gasifier 102 to the gas engine 111. The gas cooler 104 cleans the fuel gas G from which unnecessary substances have been removed by the bag filter 103 with the cleaning water WW, and further cools it with the cooling water CW. The scrubber 105 is further cleaned by letting the fuel gas G cleaned and cooled by the gas cooler 104 submerge in the cleaning water WW.
 循環水槽106は、ガス冷却器104およびスクラバー105に供給する洗浄水WWを貯溜する。冷却塔107は、ガス冷却器104に供給する冷却水CWを貯留する。 The circulating water tank 106 stores the cleaning water WW supplied to the gas cooler 104 and the scrubber 105. The cooling tower 107 stores the cooling water CW supplied to the gas cooler 104.
 ガスフィルター108は、スクラバー105にて洗浄された燃料ガスGに含まれるタール等の不要物を濾過により除去する。誘引ブロワ109は、ガス化炉102側の燃料ガス供給経路における燃料ガスGを吸入してガスエンジン111側の燃料ガス供給経路および余剰ガス燃焼装置113側の燃料ガス供給経路に吐出する。 The gas filter 108 removes unnecessary substances such as tar contained in the fuel gas G cleaned by the scrubber 105 by filtration. The induction blower 109 sucks the fuel gas G in the fuel gas supply path on the gasification furnace 102 side and discharges it to the fuel gas supply path on the gas engine 111 side and the fuel gas supply path on the surplus gas combustion device 113 side.
 前処理ユニット110は、誘引ブロワ109にてガスエンジン111側の燃料ガス供給経路に吐出された燃料ガスGにおける不純物を除去する。ガスエンジン111は、前処理ユニット110にて不純物が除去された燃料ガスGを燃焼する。 The pretreatment unit 110 removes impurities in the fuel gas G discharged to the fuel gas supply path on the gas engine 111 side by the induction blower 109. The gas engine 111 burns the fuel gas G from which impurities have been removed by the pretreatment unit 110.
 水封槽112は、誘引ブロワ109にてガスエンジン111側の燃料ガス供給経路に吐出された燃料ガスGの圧力を制御する。余剰ガス燃焼装置113は、燃料ガスGの圧力が水封槽112の圧力を超えた場合に流れ込む、ガスエンジン111に供給されなかった余剰燃料ガスSGを燃焼させる。 The water seal tank 112 controls the pressure of the fuel gas G discharged to the fuel gas supply path on the gas engine 111 side by the induction blower 109. The surplus gas combustion device 113 burns the surplus fuel gas SG that has not been supplied to the gas engine 111 and flows when the pressure of the fuel gas G exceeds the pressure of the water sealing tank 112.
 以上説明したガス化装置100では、原料導入部102aにてシリカおよびカリウムを含む原料F(この例では籾殻)がガス化炉102に導入されてガス化炉102で可燃性の燃料ガスGが生成される。ガス化炉102で生成された燃料ガスGは、バグフィルタ103、ガス冷却器104、スクラバー105、ガスフィルター108、誘引ブロワ109の順に流れ、誘引ブロワ109の下流側でガスエンジン111側と余剰ガス燃焼装置113側とに分岐して流れ、さらに、余剰ガス燃焼装置113で余剰燃料ガスSGが燃焼され、ガスエンジン111で燃料ガスGが燃焼される。 In the gasification apparatus 100 described above, the raw material F containing silica and potassium (in this example, rice husk) is introduced into the gasification furnace 102 by the raw material introduction unit 102a, and the combustible fuel gas G is generated in the gasification furnace 102. Is done. The fuel gas G generated in the gasification furnace 102 flows in the order of the bag filter 103, the gas cooler 104, the scrubber 105, the gas filter 108, and the induction blower 109, and the gas engine 111 side and surplus gas downstream of the induction blower 109. The fuel flows in a branched manner to the combustion device 113 side, the surplus gas combustion device 113 burns surplus fuel gas SG, and the gas engine 111 burns fuel gas G.
 詳しくは、貯留ホッパ101には、原料Fが貯溜され、貯留ホッパ101内の原料Fが原料導入部102aにおける原料導入コンベア102a1および原料導入フィーダー102a2によりガス化炉102内に導入される。 Specifically, the raw material F is stored in the storage hopper 101, and the raw material F in the storage hopper 101 is introduced into the gasifier 102 by the raw material introduction conveyor 102a1 and the raw material introduction feeder 102a2 in the raw material introduction portion 102a.
 ガス化炉102では、原料Fが不完全燃焼されて燃料ガスGが生成される。ガス化炉102で生成された燃料ガスGは、ガス管201を経てバグフィルタ103に導入される。ここで、燃料ガスGは、一酸化炭素を主成分とする燃料ガスであり、燃料ガスGには、煤やタール(ガス化炉102で発生した許容レベル以下のタール)、塵等の不要物が含まれている。 In the gasification furnace 102, the raw material F is incompletely burned to generate fuel gas G. The fuel gas G generated in the gasification furnace 102 is introduced into the bag filter 103 through the gas pipe 201. Here, the fuel gas G is a fuel gas containing carbon monoxide as a main component. The fuel gas G includes unnecessary substances such as soot, tar (tar below the allowable level generated in the gasifier 102), dust, and the like. It is included.
 バグフィルタ103では、燃料ガスGに含まれる煤等の不要物が、濾布と呼ばれるフィルタによって除去される。バグフィルタ103で煤等の不要物が除去された燃料ガスGは、ガス管202を経てガス冷却器104に導入される。 In the bag filter 103, unnecessary substances such as soot contained in the fuel gas G are removed by a filter called a filter cloth. The fuel gas G from which unnecessary substances such as soot have been removed by the bag filter 103 is introduced into the gas cooler 104 through the gas pipe 202.
 ガス冷却器104内には、燃料ガスGが流れる図示しないガス管が設けられており、該ガス管内の燃料ガスGが、洗浄水WWで洗浄されると共に、該ガス管の周囲を流れる冷却水CWで冷却される。ガス冷却器104で洗浄、冷却された燃料ガスGは、ガス管203を経てスクラバー105に導入される。 A gas pipe (not shown) through which the fuel gas G flows is provided in the gas cooler 104. The fuel gas G in the gas pipe is cleaned with the cleaning water WW and the cooling water that flows around the gas pipe. Cooled with CW. The fuel gas G cleaned and cooled by the gas cooler 104 is introduced into the scrubber 105 through the gas pipe 203.
 ガス冷却器104に供給される冷却水CWは、冷却塔107に貯溜されており、冷却塔107内の冷却水CWは、配水管204を経てガス冷却器104に導入される。配水管204内の冷却水CWは、ポンプ205によりガス冷却器104側に圧送され、ガス冷却器104で燃料ガスGを冷却する。燃料ガスGを冷却した冷却水CWは、配水管206を経て冷却塔107に導出される。 The cooling water CW supplied to the gas cooler 104 is stored in the cooling tower 107, and the cooling water CW in the cooling tower 107 is introduced into the gas cooler 104 through the water distribution pipe 204. The cooling water CW in the distribution pipe 204 is pumped to the gas cooler 104 side by the pump 205, and the fuel gas G is cooled by the gas cooler 104. The cooling water CW that has cooled the fuel gas G is led to the cooling tower 107 through the water distribution pipe 206.
 スクラバー105内には、洗浄水WWが貯溜されており、燃料ガスGがスクラバー105内の洗浄水WW中を潜ることにより洗浄される。スクラバー105で洗浄された燃料ガスGは、ガス管207を経てガスフィルター108に導入される。 The cleaning water WW is stored in the scrubber 105, and the fuel gas G is cleaned by diving in the cleaning water WW in the scrubber 105. The fuel gas G cleaned by the scrubber 105 is introduced into the gas filter 108 through the gas pipe 207.
 ガス冷却器104およびスクラバー105に供給される洗浄水WWは、循環水槽106に貯溜されている。循環水槽106内の洗浄水WWは、配水管209を経てガス冷却器104に導入されると共に、配水管209から分岐する配水管210を経てスクラバー105に導入される。配水管209,210内の洗浄水WWは、ポンプ211によりガス冷却器104側およびスクラバー105側に圧送され、ガス冷却器104およびスクラバー105で燃料ガスGを洗浄する。ガス冷却器104で燃料ガスGを洗浄した洗浄水WWは、配水管212を経て循環水槽106に導出される一方、スクラバー105で燃料ガスGを洗浄した洗浄水WWは、配水管213を経て循環水槽106に導出される。 Wash water WW supplied to the gas cooler 104 and the scrubber 105 is stored in the circulating water tank 106. The cleaning water WW in the circulating water tank 106 is introduced into the gas cooler 104 through the water distribution pipe 209 and is introduced into the scrubber 105 through the water distribution pipe 210 branched from the water distribution pipe 209. The cleaning water WW in the distribution pipes 209 and 210 is pumped to the gas cooler 104 side and the scrubber 105 side by the pump 211, and the fuel gas G is cleaned by the gas cooler 104 and the scrubber 105. The cleaning water WW cleaned with the fuel gas G by the gas cooler 104 is led to the circulating water tank 106 through the water distribution pipe 212, while the cleaning water WW cleaned with the fuel gas G by the scrubber 105 circulates through the water distribution pipe 213. It is led out to the water tank 106.
 ガスフィルター108では、燃料ガスGに含まれるタール等の不要物が、濾過によって除去される。ガスフィルター108でタール等の不要物が除去された燃料ガスGは、ガス管214を経て誘引ブロワ109に導入される。 In the gas filter 108, unnecessary substances such as tar contained in the fuel gas G are removed by filtration. The fuel gas G from which unnecessary substances such as tar are removed by the gas filter 108 is introduced into the induction blower 109 via the gas pipe 214.
 誘引ブロワ109では、誘引ブロワ109よりも上流側の燃料ガス供給経路から吸入された燃料ガスGが誘引ブロワ109よりも下流側の燃料ガス供給経路に吐出される。つまり、誘引ブロワ109の上流側の燃料ガス供給経路は負圧となる一方、誘引ブロワ109の下流側の燃料ガス供給経路は正圧となるため、誘引ブロワ109の上流側の燃料ガス供給経路における燃料ガスGが誘引ブロワ109で下流側の燃料ガス供給経路に誘引される。 In the attraction blower 109, the fuel gas G sucked from the fuel gas supply path on the upstream side of the attraction blower 109 is discharged to the fuel gas supply path on the downstream side of the attraction blower 109. In other words, the fuel gas supply path upstream of the induction blower 109 has a negative pressure, while the fuel gas supply path downstream of the induction blower 109 has a positive pressure. The fuel gas G is attracted to the downstream fuel gas supply path by the attracting blower 109.
 誘引ブロワ109で誘引された燃料ガスGは、ガス供給管215およびガス供給管215に設けられた前処理ユニット110を介してガスエンジン111に導入される。ガスエンジン111には、前処理ユニット110で不純物が除去された燃料ガスGが供給される。この例では、ガスエンジン111は、ガスエンジン部(図示省略)により駆動される発電装置(図示省略)を備え、該発電装置で発電し、かつ、該ガスエンジン部の排熱を給湯や空調等に利用するコージェネレーションシステムとされている。 The fuel gas G attracted by the attraction blower 109 is introduced into the gas engine 111 via the gas supply pipe 215 and the pretreatment unit 110 provided in the gas supply pipe 215. The fuel gas G from which impurities have been removed by the pretreatment unit 110 is supplied to the gas engine 111. In this example, the gas engine 111 includes a power generation device (not shown) driven by a gas engine unit (not shown), generates power with the power generation device, and uses exhaust heat of the gas engine unit to supply hot water, air conditioning, or the like. It is a cogeneration system used for
 一方、ガス化炉102で生成された燃料ガスGのうちガスエンジン111に供給されなかった余剰燃料ガスSGは、誘引ブロワ109からの燃料ガスGをガスエンジン111側へ供給するガス供給管215から分岐する余剰ガス供給管216および余剰ガス供給管216に設けられた水封槽112を介して余剰ガス燃焼装置113に導入される。 On the other hand, surplus fuel gas SG that has not been supplied to the gas engine 111 among the fuel gas G generated in the gasification furnace 102 is supplied from the gas supply pipe 215 that supplies the fuel gas G from the induction blower 109 to the gas engine 111 side. The surplus gas is supplied to the surplus gas combustion device 113 via the branching surplus gas supply pipe 216 and the water sealing tank 112 provided in the surplus gas supply pipe 216.
 余剰ガス供給管216は、水封槽112の上流側に設けられて誘引ブロワ109と水封槽112とを接続する上流側ガス供給管216aと、水封槽112の下流側に設けられて水封槽112と余剰ガス燃焼装置113とを接続する下流側ガス供給管216bとを備えている。 The surplus gas supply pipe 216 is provided on the upstream side of the water sealing tank 112 and is provided on the downstream side of the water sealing tank 112 and the upstream gas supply pipe 216 a that connects the induction blower 109 and the water sealing tank 112. A downstream gas supply pipe 216b that connects the sealing tank 112 and the surplus gas combustion device 113 is provided.
 水封槽112内には、所定の水位まで水が封入されている。水封槽112は、上流側ガス供給管216aから吐出される余剰燃料ガスSGに水圧を作用させることにより、水封槽112から余剰ガス燃焼装置113への下流側ガス供給管216bにおける余剰燃料ガスSGの供給量を制御する。これにより、水封槽112は、ガス供給管215内の燃料ガスGの圧力を制御することができる。 In the water sealing tank 112, water is sealed up to a predetermined water level. The water sealing tank 112 acts on the surplus fuel gas SG discharged from the upstream gas supply pipe 216a by applying water pressure to the surplus fuel gas in the downstream gas supply pipe 216b from the water sealing tank 112 to the surplus gas combustion device 113. The supply amount of SG is controlled. Thereby, the water sealing tank 112 can control the pressure of the fuel gas G in the gas supply pipe 215.
 余剰ガス燃焼装置113では、上流側ガス供給管216a、水封槽112および下流側ガス供給管216bを経て送られてきた余剰燃料ガスSGが余剰ガス燃焼部113aで燃焼される。 In the surplus gas combustion device 113, surplus fuel gas SG sent through the upstream gas supply pipe 216a, the water sealing tank 112, and the downstream gas supply pipe 216b is burned in the surplus gas combustion section 113a.
 次に、ガス化炉102について、図2および図3を参照しながら以下に説明する。 Next, the gasification furnace 102 will be described below with reference to FIGS. 2 and 3.
 [ガス化炉]
 本実施の形態に係るガス化炉102は、原料Fを酸化して燃料ガスGを生成するガス化炉である。
[Gasification furnace]
The gasification furnace 102 according to the present embodiment is a gasification furnace that generates a fuel gas G by oxidizing the raw material F.
 図2は、図1に示すガス化炉102の一部を破断状態にして示す概略側面図であって、原料Fを酸化してガス化する状態を示す図である。 FIG. 2 is a schematic side view showing a part of the gasification furnace 102 shown in FIG. 1 in a broken state, and shows a state in which the raw material F is oxidized and gasified.
 ガス化炉102では、原料Fを熱分解して燃料ガスG(例えば一酸化炭素や水素)を生成する。燃料ガスGの生成過程において、原料Fを炭化し、炭化したチャーR(炭化物)を燃焼し、燃焼した灰Sを外部に排出する。この例では、原料Fを空気等の酸化剤Hと共に導入する。 In the gasification furnace 102, the raw material F is pyrolyzed to generate a fuel gas G (for example, carbon monoxide or hydrogen). In the process of generating the fuel gas G, the raw material F is carbonized, the char R (carbide) that is carbonized is burned, and the burned ash S is discharged to the outside. In this example, the raw material F is introduced together with an oxidizing agent H such as air.
 ガス化炉102は、原料Fを導入する原料導入部102aと、酸化剤Hを導入する酸化剤導入部102dと、燃料ガスGを流出させる燃料ガス流出部102eとを備えている。 The gasification furnace 102 includes a raw material introduction part 102a for introducing the raw material F, an oxidant introduction part 102d for introducing the oxidant H, and a fuel gas outflow part 102e for letting out the fuel gas G.
 原料導入部102aは、予め定めた所定の想定チャー層δx(この例では想定チャー堆積層)の最上部δxaよりも上方に設けられている。酸化剤導入部102dは、原料導入部102aにおける開口102ah(この例では原料落下部)よりも下方に設けられている。燃料ガス流出部102eは、酸化剤導入部102dにおける開口102dhよりも上方に設けられている。 The raw material introduction part 102a is provided above the uppermost part δxa of a predetermined predetermined char layer δx (in this example, an assumed char deposition layer). The oxidant introduction portion 102d is provided below the opening 102ah (the raw material dropping portion in this example) in the raw material introduction portion 102a. The fuel gas outflow portion 102e is provided above the opening 102dh in the oxidant introduction portion 102d.
 詳しくは、原料導入部102aは、炉102bの頂面102b1(上面)に設けられている。なお、原料導入部102aは、炉102bの側面102b2上部に設けられていてもよい。 Specifically, the raw material introduction part 102a is provided on the top surface 102b1 (upper surface) of the furnace 102b. In addition, the raw material introducing | transducing part 102a may be provided in side 102b2 upper part of the furnace 102b.
 ガス化炉102は、炉102b内を予熱する予熱部102c(この例では昇温バーナー)と、灰Sを排出してチャーRを下方へ移動させる排出部102fとをさらに備えている。 The gasification furnace 102 further includes a preheating part 102c (in this example, a temperature rising burner) for preheating the inside of the furnace 102b, and a discharge part 102f for discharging the ash S and moving the char R downward.
 予熱部102cは、プロパンガス等の化石燃料の燃焼を利用して予熱する昇温バーナーとされている。予熱部102cは、炉102bの側面102b2に設けられたガス供給部102c1と、ガス供給部102c1に接続されて可燃性ガスg(この例ではプロパンガス)をガス供給部102c1に供給するガスボンベ102c2とを備えている。これにより、予熱部102cは、ガスボンベ102c2からガス供給部102c1を介して供給された可燃性ガスgの燃焼により炉102b内を予熱することができる。 The preheating unit 102c is a temperature rising burner that preheats using combustion of fossil fuel such as propane gas. The preheating unit 102c includes a gas supply unit 102c1 provided on the side surface 102b2 of the furnace 102b, a gas cylinder 102c2 connected to the gas supply unit 102c1 and configured to supply the combustible gas g (propane gas in this example) to the gas supply unit 102c1. It has. Thereby, the preheating part 102c can preheat the inside of the furnace 102b by combustion of the combustible gas g supplied from the gas cylinder 102c2 via the gas supply part 102c1.
 酸化剤導入部102dは、炉102bの側面102b2に設けられている。酸化剤導入部102dにおける開口102dhは、酸化剤Hの導入方向が水平方向または略水平方向或いは上向き(例えば斜め上向き)に沿うように形成されている。 The oxidizing agent introduction part 102d is provided on the side surface 102b2 of the furnace 102b. The opening 102dh in the oxidant introduction portion 102d is formed so that the introduction direction of the oxidant H is along the horizontal direction, the substantially horizontal direction, or upward (for example, obliquely upward).
 燃料ガス流出部102eは、炉102bの頂面102b1に設けられている。なお、燃料ガス流出部102eは、炉102bの側面102b2上部に設けられていてもよい。 The fuel gas outflow portion 102e is provided on the top surface 102b1 of the furnace 102b. The fuel gas outflow portion 102e may be provided on the upper side surface 102b2 of the furnace 102b.
 排出部102fは、炉102bの底面102b3(下面)に設けられている。排出部102fは、炉102bから流出した灰Sを外部に排出する灰排出コンベア102f1を備えている。 The discharge unit 102f is provided on the bottom surface 102b3 (lower surface) of the furnace 102b. The discharge unit 102f includes an ash discharge conveyor 102f1 that discharges the ash S flowing out of the furnace 102b to the outside.
 ところで、従来のガス化炉においては、既述したとおり、タールの発生を抑制するべく、タールが熱分解するために必要な温度以上(具体的には800℃程度以上)とすると、結晶性シリカが生成する一方、結晶性シリカの生成を抑制するべく、酸化雰囲気を比較的低温(例えば800℃程度を下回る温度)にすると、タールの発生を抑制することができない。 By the way, in the conventional gasification furnace, as described above, when the temperature is higher than the temperature necessary for thermal decomposition of tar (specifically, about 800 ° C. or higher) in order to suppress the generation of tar, crystalline silica On the other hand, if the oxidizing atmosphere is set to a relatively low temperature (for example, a temperature lower than about 800 ° C.) in order to suppress the generation of crystalline silica, the generation of tar cannot be suppressed.
 この点、本実施の形態に係るガス化炉102の運転方法では、原料Fを酸化する酸化域αを予め定めた所定温度(例えば1050℃)または所定温度範囲(例えば1050℃を中央温度とする1000℃~1100℃の所定温度範囲)に維持しつつ、原料Fを酸化域αに予め定めた所定時間範囲内(例えば2分程度)で通過させる。本実施の形態に係るガス化炉102は、原料Fを酸化する酸化域αを予め定めた所定温度(例えば1050℃)または所定温度範囲(例えば1050℃を中央温度とする1000℃~1100℃の所定温度範囲)に維持する第1手段と、原料Fを酸化域αに予め定めた所定時間範囲内(例えば2分程度)で通過させる第2手段とを備えている。換言すれば、本実施の形態において、タールが熱分解するために必要な温度であるタール熱分解温度以上の酸化雰囲気下で原料Fを加熱した時点から該原料F自身の温度が結晶性シリカを生成する温度である結晶性シリカ生成温度または結晶性シリカ生成温度近傍の温度に達するまでにタールの発生を許容レベル以下に抑える。 In this regard, in the operation method of the gasification furnace 102 according to the present embodiment, the oxidation region α for oxidizing the raw material F is set to a predetermined temperature (for example, 1050 ° C.) or a predetermined temperature range (for example, 1050 ° C. as the central temperature). The raw material F is allowed to pass through the oxidation zone α within a predetermined time range (for example, about 2 minutes) while being maintained within a predetermined temperature range of 1000 ° C. to 1100 ° C. The gasification furnace 102 according to the present embodiment has a predetermined temperature (for example, 1050 ° C.) or a predetermined temperature range (for example, 1000 ° C. to 1100 ° C. with a central temperature of 1050 ° C.) as the oxidation region α for oxidizing the raw material F. A first means for maintaining the temperature within a predetermined temperature range; and a second means for allowing the raw material F to pass through the oxidation zone α within a predetermined time range (for example, about 2 minutes). In other words, in the present embodiment, since the raw material F is heated in an oxidizing atmosphere equal to or higher than the tar pyrolysis temperature, which is a temperature necessary for thermal decomposition of tar, the temperature of the raw material F itself is higher than that of crystalline silica. The generation of tar is suppressed to an allowable level or less until the temperature at which the crystalline silica is formed or the temperature near the crystalline silica forming temperature is reached.
 ここで、「所定温度に維持する」とは、一定の温度に維持することだけでなく、略一定の温度に維持することも含む概念である。また、酸化剤Hとしては、酸素を含む気体(代表的には空気)を例示できる。酸化剤Hは、純粋または略純粋な酸素であってもよいが、この例では、空気とされている。また、「原料Fを酸化域αに通過させる」とは、チャーRを酸化域αに通過させることも含む概念である。また、「結晶性シリカ生成温度近傍の温度」とは、結晶性シリカ生成温度をたとえ超えたとしても結晶性シリカの生成を許容レベル以下とすることができる温度である。 Here, “maintaining at a predetermined temperature” is a concept including not only maintaining at a constant temperature but also maintaining at a substantially constant temperature. Moreover, as the oxidizing agent H, a gas containing oxygen (typically air) can be exemplified. The oxidant H may be pure or substantially pure oxygen, but in this example, it is air. Further, “passing the raw material F through the oxidation zone α” is a concept including passing the char R through the oxidation zone α. In addition, the “temperature in the vicinity of the crystalline silica formation temperature” is a temperature at which the generation of crystalline silica can be made to an allowable level or lower even if the crystalline silica formation temperature is exceeded.
 ガス化炉102は、この例では、原料Fを所定時間以内(例えば2分程度)で酸化域αに通過させた後、酸化域αに隣接して酸化域αの所定温度または所定温度範囲の中央温度若しくは下限温度よりも低い温度(具体的には結晶性シリカ生成温度を下回る温度)の低温域βに到達させるようになっている。なお、ガス化炉102は、原料Fを低温域βに通過させた後、酸化域αに到達させるようになっていてもよい。 In this example, the gasification furnace 102 allows the raw material F to pass through the oxidation zone α within a predetermined time (for example, about 2 minutes), and then is adjacent to the oxidation zone α at a predetermined temperature or a predetermined temperature range in the oxidation zone α. It reaches the low temperature range β at a temperature lower than the central temperature or the lower limit temperature (specifically, a temperature lower than the crystalline silica formation temperature). The gasification furnace 102 may be configured to allow the raw material F to pass through the low temperature region β and then reach the oxidation region α.
 詳しくは、第1手段は、酸化剤導入部102dを含んでいる。第2手段は、原料導入部102aおよび排出部102fを含んでいる。 Specifically, the first means includes an oxidant introduction part 102d. The second means includes a raw material introduction part 102a and a discharge part 102f.
 酸化剤導入部102dからの酸化剤Hの単位時間当たりの導入量は、予め設定した原料Fの導入量および予め設定した灰Sの排出量において、炉102b内が所定温度(例えば1050℃)または所定温度範囲(例えば1050℃を中央温度とする1000℃~1100℃の所定温度範囲)に維持されるように、予め行った実験等により、予め定めた所定値に設定されている。 The introduction amount of the oxidant H from the oxidant introduction unit 102d per unit time is determined based on the predetermined introduction amount of the raw material F and the preset discharge amount of the ash S in the furnace 102b at a predetermined temperature (for example, 1050 ° C.) or It is set to a predetermined value by a predetermined experiment or the like so as to be maintained within a predetermined temperature range (for example, a predetermined temperature range of 1000 ° C. to 1100 ° C. with 1050 ° C. being the central temperature).
 原料導入部102aからの原料Fの単位時間当たりの導入量、および、排出部102fからの灰Sの単位時間当たりの排出量、すなわちチャー層δ(この例ではチャーRが堆積したチャー堆積層)におけるチャーRの単位時間当たりの移動距離は、原料Fが酸化域αを通過する時間である酸化域通過時間tpが所定時間範囲内(この例では2分程度)となるように、予め定めた所定値に設定されている。 The introduction amount per unit time of the raw material F from the raw material introduction unit 102a and the discharge amount per unit time of the ash S from the discharge unit 102f, that is, the char layer δ (in this example, the char deposition layer on which the char R is deposited) The movement distance per unit time of the char R at the time is determined in advance so that the oxidation zone passage time tp, which is the time for the raw material F to pass through the oxidation zone α, is within a predetermined time range (about 2 minutes in this example). It is set to a predetermined value.
 ここで、酸化域通過時間tpは、原料Fが導入されて酸化域αに突入した時点から酸化域αを抜け出るまでの時間であり、この例では、酸化剤導入部102dから炉102bに導入された原料Fがチャー層δに到るまで自由落下する時間も含む。なお、酸化域通過時間tpが所定時間範囲内となるように、原料導入部102aからの原料Fの落下距離を設定するようにしてもよい。 Here, the oxidation zone passage time tp is the time from when the raw material F is introduced and enters the oxidation zone α until it exits the oxidation zone α. In this example, the oxidation zone passage time tp is introduced from the oxidant introduction part 102d into the furnace 102b. It also includes the time during which the raw material F falls freely until it reaches the char layer δ. The falling distance of the raw material F from the raw material introducing portion 102a may be set so that the oxidation zone passage time tp is within a predetermined time range.
 また、酸化域αとしては、それには限定されないが、例えば、酸化剤Hを導入する開口102dhから燃料ガスGの流出口102ehまでの領域を挙げることができる。 Further, the oxidation region α is not limited to this, but includes, for example, a region from the opening 102dh through which the oxidant H is introduced to the outlet 102eh of the fuel gas G.
 なお、図2において、説明していない制御装置102gおよび熱電対102h等については後ほど説明する。 In FIG. 2, the control device 102g and the thermocouple 102h which are not described will be described later.
 図3は、酸化域αを説明するための説明図であって、図2に示す炉102b内の燃焼ガス層γとチャー層δとの境目付近を拡大して示す図である。図3(a)は、チャー層δが酸化剤Hと接触しない或いは表面と接触して炙られる位置に位置するようにチャー層δの頂部δaを設定した例を示している。図3(b)は、チャー層δの内側が酸化剤Hと接触して炙られる位置に位置するようにチャー層δの頂部δaを設定した例を示している。 FIG. 3 is an explanatory diagram for explaining the oxidation region α, and is an enlarged view showing the vicinity of the boundary between the combustion gas layer γ and the char layer δ in the furnace 102b shown in FIG. FIG. 3A shows an example in which the top portion δa of the char layer δ is set so that the char layer δ is not in contact with the oxidant H or is in contact with the surface. FIG. 3B shows an example in which the top portion δa of the char layer δ is set so that the inner side of the char layer δ is located at a position where the char layer δ comes into contact with the oxidizing agent H.
 ここで、チャー層δが酸化剤Hと頂部δaの表面と接触して炙られる位置(図3(a)参照)は、チャー層δの表面に向けて酸化剤Hを導入する位置である。また、チャー層δの内側が酸化剤Hと接触して炙られる位置(図3(b)参照)は、チャー層δの側方に向けて酸化剤Hを導入する位置である。 Here, the position where the char layer δ is brought into contact with the surface of the oxidant H and the top δa (see FIG. 3A) is a position where the oxidant H is introduced toward the surface of the char layer δ. The position where the inner side of the char layer δ is in contact with the oxidant H (see FIG. 3B) is a position where the oxidant H is introduced toward the side of the char layer δ.
 なお、チャー層δの頂部δaの位置は、原料導入部102aからの原料Fの導入量および排出部102fからの灰Sの排出量、すなわちチャー層δにおけるチャーRの単位時間当たりの移動距離を調整することで調整することができる。例えば、チャー層δの頂部δaの位置が一定または略一定に維持される原料Fの所定導入量および灰Sの所定排出量を予め調整しておき、チャー層δの頂部δaの位置を上昇させるときには、上昇させる距離だけ原料Fの所定導入量を灰Sの所定排出量よりも多くする或いは灰Sの所定排出量を所定導入量よりも少なくして運転した後、原料Fを所定導入量に或いは灰Sを所定排出量に戻す一方、チャー層δの頂部δaの位置を下降させるときには、下降させる距離だけ原料Fの所定導入量を灰Sの所定排出量よりも少なくする或いは灰Sの所定排出量を所定導入量よりも多くして運転した後、原料Fを所定導入量に或いは灰Sを所定排出量に戻す態様を例示できる。 It should be noted that the position of the top portion δa of the char layer δ is the introduction amount of the raw material F from the raw material introduction portion 102a and the discharge amount of the ash S from the discharge portion 102f, that is, the movement distance per unit time of the char R in the char layer δ. It can be adjusted by adjusting. For example, a predetermined introduction amount of the raw material F and a predetermined discharge amount of the ash S that maintain the position of the top portion δa of the char layer δ constant or substantially constant are adjusted in advance to raise the position of the top portion δa of the char layer δ. In some cases, the raw material F is set to a predetermined introduction amount after the predetermined amount of introduction of the raw material F is made larger than the predetermined discharge amount of the ash S or the predetermined discharge amount of the ash S is made smaller than the predetermined introduction amount by the distance to be raised. Alternatively, when the ash S is returned to the predetermined discharge amount, and the position of the top portion δa of the char layer δ is lowered, the predetermined introduction amount of the raw material F is made smaller than the predetermined discharge amount of the ash S or the predetermined amount of the ash S is decreased. For example, after the operation is performed with the discharge amount larger than the predetermined introduction amount, the raw material F is returned to the predetermined introduction amount or the ash S is returned to the predetermined discharge amount.
 図3に示すように、酸化域αは、燃焼ガス層γの領域(図3(a)および図3(b)参照)だけでなく、チャー層δ(チャー堆積層またはチャー流動層、この例ではチャー堆積層)が存在して酸化剤Hに曝される場合には、チャー層δの領域のうち酸化剤Hに曝される領域(図3(b)参照)も含む。 As shown in FIG. 3, the oxidation region α is not only the region of the combustion gas layer γ (see FIGS. 3 (a) and 3 (b)), but also the char layer δ (a char deposition layer or a char fluidized layer, in this example). In the case where the char deposit layer is present and exposed to the oxidant H, the region of the char layer δ is also exposed to the oxidant H (see FIG. 3B).
 以上説明したガス化炉102では、先ず、予熱部102cにより炉102b内を所定温度または所定温度範囲に予め加熱して、酸化域αを事前に形成しておく。ここで、所定温度(例えば1050℃)または所定温度範囲(例えば1050℃を中央温度とする1000℃~1100℃)は、原料Fの熱分解温度(例えば原料Fが籾殻の場合には400℃程度)以上の温度または温度範囲である。次に、原料導入部102aを稼動して原料導入部102aから原料Fを導入すると、原料Fが熱分解する。また、酸化剤導入部102dを稼動して酸化剤導入部102dから酸化剤Hを導入する。そして、所定温度(例えば1050℃)または所定温度範囲(例えば1050℃を中央温度とする1000℃~1100℃)に酸化域αを維持し、原料Fを酸化域αに所定時間範囲内(この例では2分程度)で通過させる。このとき、原料Fを炭化し、炭化したチャーR(炭化物)を燃焼し、燃焼した灰Sを排出部102fにより外部に排出する一方、生成した燃料ガスGを燃料ガス流出部102eから流出させる。 In the gasification furnace 102 described above, first, the inside of the furnace 102b is preheated to a predetermined temperature or a predetermined temperature range by the preheating unit 102c, and the oxidation zone α is formed in advance. Here, the predetermined temperature (for example, 1050 ° C.) or the predetermined temperature range (for example, 1000 ° C. to 1100 ° C. with 1050 ° C. as the central temperature) is the thermal decomposition temperature of the raw material F (for example, about 400 ° C. when the raw material F is rice husk). ) Above temperature or temperature range. Next, when the raw material introduction part 102a is operated and the raw material F is introduced from the raw material introduction part 102a, the raw material F is thermally decomposed. Further, the oxidant introduction unit 102d is operated to introduce the oxidant H from the oxidant introduction unit 102d. Then, the oxidation region α is maintained within a predetermined temperature (for example, 1050 ° C.) or a predetermined temperature range (for example, 1000 ° C. to 1100 ° C. with 1050 ° C. being the central temperature), and the raw material F is within the oxidation region α within a predetermined time range (in this example) Then let it pass in about 2 minutes). At this time, the raw material F is carbonized, the carbonized char R (carbide) is burned, and the burned ash S is discharged to the outside by the discharge unit 102f, while the generated fuel gas G is discharged from the fuel gas outflow unit 102e.
 本実施の形態によれば、原料Fを酸化する酸化域αを所定温度(例えば1050℃)または所定温度範囲(例えば1050℃を中央温度とする1000℃~1100℃)に維持し、原料Fを酸化域αに所定時間範囲内(この例では2分程度)で通過させるので、換言すれば、タール熱分解温度以上の酸化雰囲気下で原料Fを加熱した時点から該原料F自身の温度が結晶性シリカ生成温度または結晶性シリカ生成温度近傍の温度に達するまでにタールの発生を許容レベル以下に抑えるので、原料Fとして、シリカおよびカリウムを含む原料(例えば籾殻)を用いて燃料ガスGを生成するに当たって、同一工程(同一時期にかつ同一空間)で、所定温度(例えば1050℃)または所定温度範囲(例えば1050℃を中央温度とする1000℃~1100℃)の酸化雰囲気中で、原料Fを酸化しても、酸化域通過時間tpが所定時間範囲内(この例では2分程度)であれば、タールの発生を抑制すると共に、結晶性シリカの生成を抑制することができるという本発明者らの新たな知見に基づいたガス化炉を実現することができる。これにより、燃料ガスGを生成するに当たって、タールの発生と結晶性シリカの生成との双方の抑制を同時的に両立させることが可能となる。 According to the present embodiment, the oxidation region α for oxidizing the raw material F is maintained at a predetermined temperature (for example, 1050 ° C.) or a predetermined temperature range (for example, 1000 ° C. to 1100 ° C. with 1050 ° C. being the central temperature). Since it passes through the oxidation zone α within a predetermined time range (in this example, about 2 minutes), in other words, the temperature of the raw material F itself is crystallized from the time when the raw material F is heated in an oxidizing atmosphere higher than the tar pyrolysis temperature. Generation of tar is suppressed to an allowable level or less before reaching a temperature near the crystalline silica formation temperature or a temperature near the crystalline silica formation temperature, so that a fuel gas G is produced using a raw material containing silica and potassium (for example, rice husk) as the raw material F In doing so, in the same process (at the same time and in the same space), a predetermined temperature (for example, 1050 ° C.) or a predetermined temperature range (for example, 1000 ° C. with a central temperature of 1050 ° C.) Even if the raw material F is oxidized in an oxidizing atmosphere of 1100 ° C., if the oxidation zone passage time tp is within a predetermined time range (in this example, about 2 minutes), tar generation is suppressed and crystalline silica is suppressed. Therefore, it is possible to realize a gasification furnace based on the new knowledge of the present inventors that the production of methane can be suppressed. Thereby, in producing | generating fuel gas G, it becomes possible to make compatible both suppression of generation | occurrence | production of a tar and the production | generation of crystalline silica simultaneously.
 次に、タールの発生と結晶性シリカの生成との双方が抑制できているか否かを確認したので、これについて以下に説明する。 Next, since it was confirmed whether or not both the generation of tar and the generation of crystalline silica could be suppressed, this will be described below.
 図4は、籾殻を原料Fとして本実施の形態に係るガス化炉102で得られた灰S中のシリカのX線回折による回折パターンを結晶性シリカの場合と比較して示すグラフである。図4(a)は、チャー層δの頂部δaを図3(a)に示す位置で行った結果を示しており、図4(b)は、チャー層δの頂部δaを図3(b)に示す位置で行った結果を示している。図4において、実線は、本実施の形態に係るガス化炉102で生成したシリカのX線回折による回折パターンを表しており、破線は、結晶性シリカのX線回折による回折パターンを表している。 FIG. 4 is a graph showing a diffraction pattern by X-ray diffraction of silica in the ash S obtained from the gasification furnace 102 according to the present embodiment using rice husk as a raw material F, compared with the case of crystalline silica. FIG. 4A shows the result of the top portion δa of the char layer δ performed at the position shown in FIG. 3A, and FIG. 4B shows the top portion δa of the char layer δ as shown in FIG. The result performed at the position shown in FIG. In FIG. 4, a solid line represents a diffraction pattern by X-ray diffraction of silica generated in the gasification furnace 102 according to the present embodiment, and a broken line represents a diffraction pattern by X-ray diffraction of crystalline silica. .
 X線回折装置は、試料にX線を照射した際に、X線が試料の原子の周りにある電子によって散乱、干渉した結果起こる回折を解析するものである。従って、シリカが非晶質であれば、X線が散乱、干渉して回折パターンがなだらかな回折パターンとなり、結晶性シリカであれば、X線がある回折角度で反射して急峻なピークを有する回折パターンとなる。 The X-ray diffractometer analyzes diffraction that occurs when X-rays are scattered and interfered by electrons around the atoms of the sample when the sample is irradiated with X-rays. Therefore, if the silica is amorphous, X-rays are scattered and interfered to make the diffraction pattern gentle, and if the silica is crystalline, the X-ray is reflected at a certain diffraction angle and has a steep peak. It becomes a diffraction pattern.
 図4に示すように、本実施の形態に係るガス化炉102で得られた灰S中のシリカは、チャー層δの頂部δaを図3(a)に示す位置(図4(a)参照)、および、図3(b)に示す位置(図4(b)参照)の何れの位置であっても、非晶質となっており、X線回折による回折パターンでは結晶性シリカを確認することができなかった。 As shown in FIG. 4, the silica in the ash S obtained by the gasification furnace 102 according to the present embodiment is such that the top δa of the char layer δ is positioned at the position shown in FIG. 3A (see FIG. 4A). ) And at any of the positions shown in FIG. 3B (see FIG. 4B), it is amorphous, and crystalline silica is confirmed by the diffraction pattern by X-ray diffraction. I couldn't.
 また、結晶性シリカの定量分析を行った結果、許容レベル以下であることが分かった。 In addition, as a result of quantitative analysis of crystalline silica, it was found that it was below an acceptable level.
 一方、籾殻を原料Fとして本実施の形態に係るガス化炉102で得られた燃料ガスG中のタールについても許容レベル以下であることが分かった。しかも、籾殻を原料Fとして本実施の形態に係るガス化炉102で生成した燃料ガスは、次工程(例えばガスエンジン111)で支障なく使用することができ、次工程のために必要な熱量(例えばガスエンジン111を稼動するために必要な熱量)を有していることが分かった。 On the other hand, it was found that the tar in the fuel gas G obtained from the gasification furnace 102 according to the present embodiment using rice husks as the raw material F is also below the allowable level. In addition, the fuel gas generated in the gasification furnace 102 according to the present embodiment using rice husks as the raw material F can be used without problems in the next process (for example, the gas engine 111), and the amount of heat necessary for the next process ( For example, it has been found that the heat quantity necessary for operating the gas engine 111).
 なお、既述のとおり、結晶性シリカ生成温度は、カリウムの含有濃度に応じて変化する。 As described above, the crystalline silica formation temperature varies depending on the potassium concentration.
 図5は、結晶性シリカ生成温度Tcとカリウムの含有濃度Kcとの関係を示すグラフである。 FIG. 5 is a graph showing the relationship between the crystalline silica formation temperature Tc and the potassium concentration Kc.
 図5に示すように、例えば、カリウムが存在しない場合には、結晶性シリカ生成温度Tcが1350℃であるのに対して、カリウムの含有濃度Kcが増えるに従って、結晶性シリカ生成温度Tcが次第に低下していく(例えば750℃といった温度に低下する)。 As shown in FIG. 5, for example, when potassium is not present, the crystalline silica formation temperature Tc is 1350 ° C., whereas as the potassium concentration Kc increases, the crystalline silica formation temperature Tc gradually increases. It decreases (for example, the temperature decreases to 750 ° C.).
 詳しくは、本実施の形態に係るガス化炉102およびガス化炉102の運転方法において、所定温度または所定温度範囲は、タール熱分解温度以上の温度または該温度を中央温度とする温度範囲である。また、所定時間範囲は、タールの発生を許容レベル以下に抑えるために必要な時間であるタール発生許容時間以上、かつ、結晶性シリカの生成を許容レベル以下に抑えるための時間である結晶性シリカ生成許容時間以下である。 Specifically, in the gasification furnace 102 and the operation method of the gasification furnace 102 according to the present embodiment, the predetermined temperature or the predetermined temperature range is a temperature equal to or higher than the tar pyrolysis temperature or a temperature range having the temperature as a central temperature. . Further, the predetermined time range is the crystalline silica which is the time required to suppress the generation of crystalline silica to the allowable level or more, and the time required to suppress the generation of crystalline silica to the allowable level or less. It is less than the generation allowable time.
 本実施の形態によると、原料として、シリカおよびカリウムを含む原料F(例えば籾殻)を用いて燃料ガスGを生成するに当たって、同一工程(同一時期にかつ同一空間)で、タール熱分解温度(例えば1000℃)以上の所定温度(例えば1050℃)または所定温度範囲(例えば1050℃を中央温度とする温度範囲)の酸化雰囲気下に原料Fを曝す時間が、タール発生許容時間以上で、かつ、結晶性シリカ生成許容時間以下の所定時間範囲内(例えば2分)であれば、タールの発生を確実に抑制すると共に、結晶性シリカの生成を確実に抑制することができる。 According to the present embodiment, when generating the fuel gas G using the raw material F (for example, rice husk) containing silica and potassium as the raw material, the tar pyrolysis temperature (for example, the same time and the same space) 1000 ° C.) or higher at a predetermined temperature (for example, 1050 ° C.) or a predetermined temperature range (for example, a temperature range in which 1050 ° C. is the central temperature). If it is within the predetermined time range (for example, 2 minutes) below crystalline silica production allowable time, while generating | generating tar is reliably suppressed, the production | generation of crystalline silica can be suppressed reliably.
 ここで、タール発生許容時間は、タールが生成しない、或いは、タールが生成したとしても許容できる発生量となる時間である。タールの許容レベルは、タールのレベルが実用上支障のないレベルとすることができ、後工程(例えばスクラバー105等の装置)でタールを除去する場合には、後工程で除去した後のタールのレベルが実用上支障のないレベルとすることができる。また、結晶性シリカ生成許容時間は、結晶性シリカが生成しない、或いは、結晶性シリカが生成したとしても許容できる生成量となる時間である。結晶性シリカの許容レベルは、結晶性シリカが及ぼす影響を考慮して規定されたレベルとすることができる。 Here, the tar generation allowable time is a time when tar is not generated or is an allowable generation amount even if tar is generated. The allowable level of tar can be a level at which the tar level does not impede practically. When tar is removed in a subsequent process (for example, an apparatus such as a scrubber 105), the tar level after removal in the subsequent process is reduced. The level can be a level that does not impede practical use. Further, the crystalline silica production allowable time is a time when the crystalline silica is not produced, or the production amount is acceptable even if crystalline silica is produced. The acceptable level of crystalline silica can be a level defined in view of the effect of crystalline silica.
 所定温度または所定温度範囲としては、例えば、それには限定されないが、900℃~1100℃の範囲のうち何れかの温度または該温度を中央温度とする温度範囲を挙げることができる。所定温度または所定温度範囲の中央温度が900℃を下回ると、タールの発生が許容レベルを超えてしまい易い。一方、所定温度または所定温度範囲の中央温度が1100℃を上回ると、酸化域通過時間tpが短くなり過ぎる。また、所定時間範囲内の酸化域通過時間tpとしては、シリカおよびカリウムを含む原料Fにおけるカリウムの含有濃度Kcにもよるが、例えば、結晶性シリカ生成温度Tcが750℃となるカリウムの含有濃度Kcの場合には、所定温度または所定温度範囲の中央温度が900℃のときで5分程度、所定温度または所定温度範囲の中央温度が1100℃のときで1分30秒程度を挙げることができる。 As the predetermined temperature or the predetermined temperature range, for example, although not limited thereto, any temperature in the range of 900 ° C. to 1100 ° C. or a temperature range in which the temperature is the central temperature can be exemplified. If the central temperature of the predetermined temperature or the predetermined temperature range is below 900 ° C., tar generation tends to exceed an allowable level. On the other hand, if the central temperature of the predetermined temperature or the predetermined temperature range exceeds 1100 ° C., the oxidation zone passage time tp becomes too short. Further, the oxidation region passage time tp within the predetermined time range depends on, for example, the potassium concentration Kc in the raw material F containing silica and potassium. For example, the potassium concentration at which the crystalline silica formation temperature Tc is 750 ° C. In the case of Kc, about 5 minutes can be mentioned when the central temperature of the predetermined temperature or the predetermined temperature range is 900 ° C., and about 1 minute 30 seconds when the central temperature of the predetermined temperature or the predetermined temperature range is 1100 ° C. .
 なお、ガス化炉102は、原料Fが酸化域αを通過するときに(通過中に)、次工程のために必要な予め定めた所定熱量(この例ではガスエンジン111を稼動するために必要な熱量)以上の燃料ガスを生成するようになっていてもよいし、原料Fが酸化域αを通過する前および/または通過した後に、低温域βで所定熱量以上の燃料ガスを生成するようになっていてもよい。 Note that when the raw material F passes through the oxidation zone α (during the passage), the gasification furnace 102 has a predetermined predetermined amount of heat necessary for the next process (in this example, necessary for operating the gas engine 111). Or a fuel gas having a predetermined heat amount or more in the low temperature region β before and / or after the raw material F passes through the oxidation region α. It may be.
 [酸化雰囲気温度と結晶性シリカ生成温度到達時間との相関関係について]
 本実施の形態に係るガス化炉102の運転方法では、酸化域αの酸化雰囲気温度Tと、原料Fが酸化域αに入った時点から原料F自身の温度が結晶性シリカ生成温度Tcに達するまでの時間である結晶性シリカ生成温度到達時間tcとの相関関係ρ(後述する図6参照および[表1]参照)に基づいて所定温度または所定温度範囲の中央温度および所定時間範囲内の酸化域通過時間tpを決定する。本実施の形態に係るガス化炉102は、酸化雰囲気温度Tと結晶性シリカ生成温度到達時間tcとの相関関係ρに基づいて所定温度または所定温度範囲の中央温度および所定時間範囲内の酸化域通過時間tpを決定する第3手段をさらに備えている。
[Correlation between oxidizing atmosphere temperature and crystalline silica formation temperature arrival time]
In the operation method of the gasification furnace 102 according to the present embodiment, the oxidizing atmosphere temperature T in the oxidation region α and the temperature of the raw material F itself reaches the crystalline silica generation temperature Tc from the time when the raw material F enters the oxidation region α. Based on the correlation ρ (see FIG. 6 and [Table 1] described later) with the crystalline silica formation temperature arrival time tc, which is the time until the oxidation, the oxidation within the predetermined temperature or the central temperature of the predetermined temperature range and the predetermined time range The band transit time tp is determined. The gasification furnace 102 according to the present embodiment has a predetermined temperature or a central temperature within a predetermined temperature range and an oxidation region within a predetermined time range based on the correlation ρ between the oxidizing atmosphere temperature T and the crystalline silica formation temperature arrival time tc. Third means for determining the passage time tp is further provided.
 第3手段は、第1手段(具体的には酸化剤導入部102d)および第2手段(具体的には原料導入部102aおよび排出部102f)を作動制御する。 The third means controls the operation of the first means (specifically, the oxidant introduction part 102d) and the second means (specifically, the raw material introduction part 102a and the discharge part 102f).
 詳しくは、ガス化炉102は、ガス化炉102全体の制御を司る制御装置102g(図2参照)と、炉102b内における酸化域αの温度を検知する温度検知手段(この例では熱電対102h)とを備えている。第3手段は、制御装置102gの一部の制御手段を構成している。熱電対102hは、酸化域αに設けられている。 Specifically, the gasification furnace 102 includes a control device 102g (see FIG. 2) that controls the entire gasification furnace 102, and temperature detection means (in this example, a thermocouple 102h) that detects the temperature of the oxidation zone α in the furnace 102b. ). The third means constitutes part of the control means of the control device 102g. The thermocouple 102h is provided in the oxidation region α.
 制御装置102gは、CPU(Central Processing Unit)等のマイクロコンピュータからなる処理部102g1(図2参照)と、ROM(Read Only Memory)等の不揮発性メモリ、RAM(Randam Access Memory)等の揮発性メモリを含む記憶部102g2(図2参照)とを備え、タイマー機能を有している。 The control device 102g includes a processing unit 102g1 (see FIG. 2) including a microcomputer such as a CPU (Central Processing Unit), a nonvolatile memory such as a ROM (Read Only Memory), and a volatile memory such as a RAM (Random Access Memory). And a storage unit 102g2 (see FIG. 2) including a timer function.
 制御装置102gは、処理部102g1が記憶部102g2のROMに予め格納された制御プログラムを記憶部102g2のRAM上にロードして実行することにより、各種構成要素の作動制御を行うようになっている。 In the control device 102g, the processing unit 102g1 loads and executes a control program stored in advance in the ROM of the storage unit 102g2 on the RAM of the storage unit 102g2, thereby performing operation control of various components. .
 制御装置102gは、原料導入部102aを作動制御して原料導入部102aからの原料Fの単位時間当たりの導入量(具体的には原料導入コンベア102a1の搬送速度)を調整する。制御装置102gは、酸化剤導入部102dを作動制御して酸化剤導入部102dからの酸化剤Hの単位時間当たりの導入量を調整する。また、制御装置102gは、排出部102fを作動制御して排出部102fからの灰Sの単位時間当たりの排出量(具体的には灰排出コンベア102f1の搬送速度)、すなわちチャー層δにおけるチャーRの単位時間当たりの下方への移動距離を調整する。熱電対102hは、検知した酸化域αの温度に関する電気信号を制御装置102gに送信する。制御装置102gは、酸化域αの温度に関する電気信号により酸化域αの温度を検出(認識)する。 The control device 102g controls the operation of the raw material introduction unit 102a to adjust the introduction amount of the raw material F from the raw material introduction unit 102a per unit time (specifically, the conveyance speed of the raw material introduction conveyor 102a1). The control device 102g controls the operation of the oxidant introduction unit 102d to adjust the amount of oxidant H introduced from the oxidant introduction unit 102d per unit time. The control device 102g controls the discharge unit 102f to discharge the ash S from the discharge unit 102f per unit time (specifically, the conveyance speed of the ash discharge conveyor 102f1), that is, the char R in the char layer δ. Adjust the downward movement distance per unit time. The thermocouple 102h transmits an electrical signal related to the detected temperature of the oxidation zone α to the control device 102g. The control device 102g detects (recognizes) the temperature of the oxidation zone α based on an electrical signal related to the temperature of the oxidation zone α.
 そして、制御装置102gは、原料導入部102aからの原料Fの単位時間当たりの導入量、および、排出部102fからの灰Sの単位時間当たりの排出量により、所定時間範囲内の酸化域通過時間tpを設定することができる。 Then, the control device 102g uses the amount of introduction of the raw material F from the raw material introduction unit 102a per unit time and the amount of discharge of the ash S from the discharge unit 102f per unit time within the predetermined time range. tp can be set.
 本実施の形態によると、たとえ所定温度または所定温度範囲或いは/さらに所定時間範囲内の酸化域通過時間tpを変更することがあっても、酸化雰囲気温度Tと結晶性シリカ生成温度到達時間tcとの相関関係ρを用いて酸化域αの酸化雰囲気温度Tに対応する所定温度または所定温度範囲、或いは/さらに、結晶性シリカ生成温度到達時間tcに対応する所定時間範囲内の酸化域通過時間tpを容易に(例えば自動的に或いはマニュアル操作で、この例では制御装置102gによる制御動作により自動的に)変更することができる。 According to this embodiment, even if the predetermined temperature or the predetermined temperature range or / or the oxidation zone passage time tp within the predetermined time range may be changed, the oxidizing atmosphere temperature T and the crystalline silica formation temperature arrival time tc Is used for a predetermined temperature or a predetermined temperature range corresponding to the oxidation atmosphere temperature T in the oxidation region α, and / or an oxidation region passage time tp within a predetermined time range corresponding to the crystalline silica formation temperature arrival time tc. Can be easily changed (for example, automatically or manually, in this example, automatically by a control operation by the control device 102g).
 (相関関数の式)
 本発明者らの知見によると、酸化雰囲気温度Tが結晶性シリカ生成温度Tc(この例では750℃)より下回る場合には、結晶性シリカは生成されず、結晶性シリカ生成温度到達時間tcは理論上無限大になる。一方、結晶性シリカ生成温度到達時間tcは実際上0分になることはない。そして、実験結果のグラフ(図6参照)からすると、酸化雰囲気温度Tと結晶性シリカ生成温度到達時間tcとの相関関係ρは反比例の関係とみなすことができる。
(Correlation function formula)
According to the knowledge of the present inventors, when the oxidizing atmosphere temperature T is lower than the crystalline silica generation temperature Tc (750 ° C. in this example), no crystalline silica is generated, and the crystalline silica generation temperature arrival time tc is It becomes infinite in theory. On the other hand, the crystalline silica formation temperature arrival time tc is not practically 0 minutes. From the graph of the experimental results (see FIG. 6), the correlation ρ between the oxidizing atmosphere temperature T and the crystalline silica formation temperature arrival time tc can be regarded as an inversely proportional relationship.
 図6は、結晶性シリカ生成温度が750℃の場合で実験を行った結果得られた酸化雰囲気温度Tと結晶性シリカ生成温度到達時間tcとの相関関係ρを示すグラフである。 FIG. 6 is a graph showing the correlation ρ between the oxidizing atmosphere temperature T and the crystalline silica formation temperature arrival time tc obtained as a result of the experiment when the crystalline silica formation temperature is 750 ° C.
 図6に示すように、酸化雰囲気温度Tと結晶性シリカ生成温度到達時間tcとの相関関係ρは、以下の式[1]で示される相関関数の式κに対応させることができる。 As shown in FIG. 6, the correlation ρ between the oxidizing atmosphere temperature T and the crystalline silica formation temperature arrival time tc can be made to correspond to the correlation function equation κ shown by the following equation [1].
Figure JPOXMLDOC01-appb-M000007
Figure JPOXMLDOC01-appb-M000007
 但し、式[1]において、Tは、酸化雰囲気温度であり、tは、結晶性シリカ生成許容時間であり、tminは、タール発生許容時間であり、a,b,cは、原料Fの成分量(特にカリウムの含有濃度)により変化する定数である。 However, in Formula [1], T is an oxidizing atmosphere temperature, t is a crystalline silica production allowable time, tmin is a tar generation allowable time, and a, b, and c are components of the raw material F. It is a constant that varies depending on the amount (particularly the potassium concentration).
 ここで、定数a,b,c,dは、予め行った実験および/またはシミュレーションによって算出することができる値であり、原料F(例えば籾殻)の成分量、特にカリウムの含有濃度に依存する。 Here, the constants a, b, c, and d are values that can be calculated by experiments and / or simulations performed in advance, and depend on the component amount of the raw material F (for example, rice husk), in particular, the concentration of potassium.
 定数a,b,c,dは、実験等により得られた4点の(T,t)の値を式[1]に代入して得られる4つの連立方程式、例えば、原料Fが、結晶性シリカ生成温度が750℃となるカリウムの含有濃度の原料の場合、T=900℃、t=5分としたときの式[1]から得られる第1方程式と、T=950℃、t=4分としたときの式[1]から得られる第2方程式と、T=1050℃、t=2分としたときの式[1]から得られる第3方程式と、T=1100℃、t=1分30秒としたときの式[1]から得られる第4方程式との4つの連立方程式を解くことで、得ることができる。 The constants a, b, c, and d are four simultaneous equations obtained by substituting the values of (T, t) at four points obtained by experiments or the like into the equation [1], for example, the raw material F is crystalline. In the case of a raw material having a potassium content concentration at which the silica formation temperature is 750 ° C., the first equation obtained from Equation [1] when T = 900 ° C. and t = 5 minutes, T = 950 ° C., t = 4 The second equation obtained from the equation [1] when minutes are taken, the third equation obtained from the equation [1] when T = 1050 ° C. and t = 2 minutes, and T = 1100 ° C., t = 1 It can be obtained by solving four simultaneous equations with the fourth equation obtained from the equation [1] when the time is 30 minutes.
 酸化雰囲気温度Tと結晶性シリカ生成温度到達時間tcとの相関関係ρを示す相関関数の式κは、記憶部102g2に予め記憶されている。 The expression κ of the correlation function indicating the correlation ρ between the oxidizing atmosphere temperature T and the crystalline silica formation temperature arrival time tc is stored in advance in the storage unit 102g2.
 制御装置102gは、酸化雰囲気温度Tから結晶性シリカ生成温度到達時間tcを検出(認識)することができる。これにより、制御装置102gは、酸化雰囲気温度Tに応じた所定時間範囲(酸化域通過時間tp)を図6に示す斜線で囲む範囲とすることができる。一方、制御装置102gは、結晶性シリカ生成温度到達時間tcから酸化雰囲気温度Tを検出(認識)することができる。これにより、制御装置102gは、結晶性シリカ生成温度到達時間tcに応じた所定温度または所定温度範囲の中央温度(酸化雰囲気温度T)を図6に示す斜線で囲む範囲とすることができる。 The control device 102g can detect (recognize) the crystalline silica formation temperature arrival time tc from the oxidizing atmosphere temperature T. Thereby, the control apparatus 102g can make the predetermined time range (oxidation zone passage time tp) according to the oxidation atmosphere temperature T into the range enclosed by the oblique line shown in FIG. On the other hand, the control device 102g can detect (recognize) the oxidizing atmosphere temperature T from the crystalline silica generation temperature arrival time tc. Thereby, the control apparatus 102g can make the center temperature (oxidation atmosphere temperature T) of the predetermined temperature or predetermined temperature range according to the crystalline silica production temperature arrival time tc into the range enclosed by the oblique line shown in FIG.
 そして、制御装置102gは、式[1]の関係を満たすように、所定時間範囲或いは/さらに所定温度または所定温度範囲を制御することができる。また、操作者は、式[1]の関係を満たすように、所定時間範囲或いは/さらに所定温度または所定温度範囲を設定することができる。 The control device 102g can control the predetermined time range or / or the predetermined temperature or the predetermined temperature range so as to satisfy the relationship of the expression [1]. Further, the operator can set a predetermined time range or / or a predetermined temperature or a predetermined temperature range so as to satisfy the relationship of Expression [1].
 かかる構成によると、相関関数の式κを用いることで、所定時間範囲或いは/さらに所定温度または所定温度範囲を設定するための制御構成を簡単にかつ容易に実現させることができる。 According to such a configuration, the control configuration for setting the predetermined time range or / or the predetermined temperature or the predetermined temperature range can be easily and easily realized by using the correlation function expression κ.
 (相関表)
 また、酸化雰囲気温度Tと結晶性シリカ生成温度到達時間tcとの相関関係ρは、カリウムの所定の含有濃度の原料Fを基準とした以下の[表1]で示される相関表に対応させることができる。
(Correlation table)
The correlation ρ between the oxidizing atmosphere temperature T and the crystalline silica formation temperature arrival time tc should correspond to the correlation table shown in [Table 1] below based on the raw material F having a predetermined content concentration of potassium. Can do.
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000008
 但し、[表1]において、Tは、酸化雰囲気温度であり、tは、結晶性シリカ生成許容時間であり、t(K小)は、基準となる原料Fのカリウムの含有濃度よりも少ない原料Fでの結晶性シリカ生成許容時間を表しており、t(K大)は、基準となる原料Fのカリウムの含有濃度よりも多い原料Fでの結晶性シリカ生成許容時間tを表しており、A,B,C,D,Eは、酸化雰囲気温度Tに対する結晶性シリカ生成許容時間tの設定値であり、原料Fの成分量(特にカリウムの含有濃度)により変化する設定値であってタール発生許容時間tmin以上の設定値である。なお、A,B,C,D,Eは、A>B>C>D>Eの関係を満たす。 However, in [Table 1], T is the oxidizing atmosphere temperature, t is the allowable time for crystalline silica formation, and t (small K) is a raw material less than the concentration of potassium contained in the reference raw material F F represents the allowable time for crystalline silica production in F, and t (large K) represents the allowable time t for crystalline silica production in raw material F that is higher than the content concentration of potassium in reference raw material F. A, B, C, D, and E are set values for the allowable time t of crystalline silica generation with respect to the oxidizing atmosphere temperature T, and are set values that vary depending on the amount of the component of the raw material F (particularly, the potassium concentration). The set value is equal to or longer than the allowable generation time tmin. A, B, C, D, and E satisfy the relationship of A> B> C> D> E.
 ここで、設定値A,B,C,D,Eは、予め行った実験および/またはシミュレーションによって設定することができる値であり、原料F(例えば籾殻)の成分量(特にカリウムの含有濃度)に依存する。 Here, the set values A, B, C, D, and E are values that can be set by experiments and / or simulations performed in advance, and the component amount of the raw material F (for example, rice husk) (particularly, the potassium concentration) Depends on.
 例えば、基準原料が、結晶性シリカ生成温度が750℃となるカリウムの含有濃度の原料の場合、[表1]中のAを5分または略5分とし、Bを4分または略4分とし、Cを2分50秒または略2分50秒とし、Dを2分または略2分とし、Eを1分30秒または略1分30秒とすることができる。 For example, when the reference raw material is a raw material having a potassium concentration at which the crystalline silica formation temperature is 750 ° C., A in [Table 1] is 5 minutes or approximately 5 minutes, and B is 4 minutes or approximately 4 minutes. , C can be 2 minutes 50 seconds or approximately 2 minutes 50 seconds, D can be 2 minutes or approximately 2 minutes, and E can be 1 minute 30 seconds or approximately 1 minute 30 seconds.
 酸化雰囲気温度Tと結晶性シリカ生成温度到達時間tcとの相関関係ρを示す相関表は、記憶部102g2に予め記憶されている。 The correlation table showing the correlation ρ between the oxidizing atmosphere temperature T and the crystalline silica formation temperature arrival time tc is stored in advance in the storage unit 102g2.
 そして、制御装置102gは、[表1]の関係を満たすように、所定時間範囲或いは/さらに所定温度または所定温度範囲を制御することができる。また、操作者は、[表1]の関係を満たすように、所定時間範囲或いは/さらに所定温度または所定温度範囲を設定することができる。 The control device 102g can control the predetermined time range or / or the predetermined temperature or the predetermined temperature range so as to satisfy the relationship of [Table 1]. Further, the operator can set a predetermined time range or / or a predetermined temperature or a predetermined temperature range so as to satisfy the relationship of [Table 1].
 かかる構成によると、相関表を用いることで、所定時間範囲或いは/さらに所定温度または所定温度範囲を設定するための制御構成を簡単にかつ容易に実現させることができる。 According to such a configuration, by using the correlation table, a control configuration for setting a predetermined time range or / or a predetermined temperature or a predetermined temperature range can be realized easily and easily.
 (相関関係の設定)
 本実施の形態において、ガス化炉102の設置時または原料Fの調達地の決定時若しくは変更時に相関関係ρを設定または更新する。
(Correlation setting)
In the present embodiment, the correlation ρ is set or updated when the gasification furnace 102 is installed or when the source of the raw material F is determined or changed.
 本実施の形態では、ガス化炉102の設置場所または原料Fの調達地での原料Fについて相関関係ρを計測して、或いは、各種の成分量(特にカリウムの含有濃度)の原料Fに対して予め実験等を行って各種の成分量の原料Fに対する相関関係ρを取得しておき、ガス化炉102の設置場所または原料Fの調達地での原料Fの成分量(特にカリウムの含有濃度)を計測し、得られた原料Fの成分量(特にカリウムの含有濃度)により予め実験等により取得しておいた各種の相関関係ρ~ρからガス化炉102の設置場所または原料Fの調達地での原料Fに適用する相関関係ρを選択して、ガス化炉102の設置場所または原料Fの調達地での原料Fの成分量(特にカリウムの含有濃度)に応じてタールの発生と結晶性シリカの生成との双方の抑制を同時的に両立させる酸化域αの酸化雰囲気温度Tと原料Fの酸化域通過時間tpとを調整することができる。なお、各種の相関関係ρ~ρは、予め記憶部102g2に設定(記憶)しておくことができる。 In the present embodiment, the correlation ρ is measured for the raw material F at the place where the gasification furnace 102 is installed or the raw material F is procured, or with respect to the raw material F having various component amounts (particularly, the potassium concentration). The correlation ρ with respect to the raw material F of various component amounts is obtained by conducting experiments in advance, and the component amount of the raw material F at the place where the gasification furnace 102 is installed or where the raw material F is procured (particularly the potassium concentration) ), And the location of the gasification furnace 102 or the procurement of the raw material F from various correlations ρ to ρ obtained in advance through experiments or the like based on the amount of the raw material F component (particularly the potassium concentration) The correlation ρ to be applied to the raw material F at the ground is selected, and the generation of tar according to the amount of the component of the raw material F (particularly the potassium concentration) at the place where the gasifier 102 is installed or the raw material F is procured Suppression of both crystalline silica formation and It is possible to adjust the oxidizing atmosphere temperature T of the oxidation zone α and the oxidation zone passage time tp of the raw material F that simultaneously balance the control. The various correlations ρ to ρ can be set (stored) in the storage unit 102g2 in advance.
 [予熱について]
 第6実施形態に係るガス化炉102の運転方法は、原料Fを導入するに先立ち、炉102b内を所定温度または所定温度範囲に予熱する。本実施の形態に係るガス化炉102は、原料Fを導入するに先立ち、炉102b内を所定温度または所定温度範囲に予熱する第4手段をさらに備えている。詳しくは、第4手段は、予熱部102cを含んでいる。
[About preheating]
In the operation method of the gasification furnace 102 according to the sixth embodiment, before the raw material F is introduced, the inside of the furnace 102b is preheated to a predetermined temperature or a predetermined temperature range. The gasification furnace 102 according to the present embodiment further includes a fourth means for preheating the inside of the furnace 102b to a predetermined temperature or a predetermined temperature range before introducing the raw material F. Specifically, the fourth means includes a preheating portion 102c.
 かかる構成によると、原料Fを導入するに先立ち、炉102b内を所定温度または所定温度範囲に予熱(事前に加熱)することで、ガス化処理を迅速に行うことができる。 According to such a configuration, the gasification process can be performed quickly by preheating (heating in advance) the inside of the furnace 102b to a predetermined temperature or a predetermined temperature range before introducing the raw material F.
 なお、本実施の形態に係るガス化炉102において、制御装置102gは、熱電対102hからの検知温度により酸化域αの温度が所定温度に維持するように、または、所定温度範囲内に入るように原料導入部102aからの原料Fの単位時間当たりの導入量、酸化剤導入部102dからの酸化剤Hの単位時間当たりの導入量、排出部102fからの灰Sの単位時間当たりの排出量、すなわちチャー層δにおけるチャーRの単位時間当たりの下方への移動距離のうち少なくとも1つを調整する構成とされていてもよい。 In the gasification furnace 102 according to the present embodiment, the control device 102g allows the temperature of the oxidation zone α to be maintained at a predetermined temperature by the detected temperature from the thermocouple 102h or enters a predetermined temperature range. The amount of raw material F introduced from the raw material introduction unit 102a per unit time, the amount of oxidant H introduced from the oxidant introduction unit 102d per unit time, the amount of ash S discharged from the discharge unit 102f per unit time, That is, at least one of the downward moving distances per unit time of the char R in the char layer δ may be adjusted.
 [実施例1]
 次に、本実施の形態に係るガス化炉102の他の実施形態(実施例1)について、図7から図13を参照しながら以下に説明する。
[Example 1]
Next, another embodiment (Example 1) of the gasification furnace 102 according to the present embodiment will be described below with reference to FIGS.
 図7から図13は、本実施の形態に係るガス化炉102の他の実施形態を概略的に示す模式図である。図7から図13は、それぞれ、実施例1の第1実施形態から第7実施形態に係るガス化炉1021A~1021Gを示している。なお、図7から図13において制御装置102g等は図示を省略している。 7 to 13 are schematic views schematically showing other embodiments of the gasification furnace 102 according to the present embodiment. 7 to 13 show gasification furnaces 1021A to 1021G according to the first to seventh embodiments of Example 1, respectively. 7 to 13, the control device 102g and the like are not shown.
 図7から図13に示すガス化炉1021A~1021Gにおいて、図2に示すガス化炉102の構成と実質的に同様の構成には同一符号を付し、その説明を省略する。 In the gasification furnaces 1021A to 1021G shown in FIG. 7 to FIG. 13, the same reference numerals are given to substantially the same configurations as those of the gasification furnace 102 shown in FIG.
 (第1実施形態)
 図7に示す第1実施形態に係るガス化炉1021Aは、チャーRを堆積させてチャー層δ(具体的にはチャー堆積層)を形成するガス化炉であって、生成した燃料ガスGを上方へ流出させるガス化炉(いわゆる固定床式アップドラフト型ガス化炉)である。
(First embodiment)
A gasification furnace 1021A according to the first embodiment shown in FIG. 7 is a gasification furnace for depositing char R to form a char layer δ (specifically, a char deposition layer). This is a gasification furnace (so-called fixed bed type updraft gasification furnace) that flows upward.
 ガス化炉1021Aは、図2に示すガス化炉102において、原料導入部102aを想定チャー層δxの最上部δxaよりも上方に設け、酸化剤導入部102dを想定チャー層δxの最上部δxaよりも上方でかつ原料導入部102aにおける開口102ahよりも下方に設けたものである。 In the gasification furnace 1021A, in the gasification furnace 102 shown in FIG. 2, the material introduction part 102a is provided above the uppermost part δxa of the assumed char layer δx, and the oxidant introduction part 102d is provided from the uppermost part δxa of the assumed char layer δx. Is provided above and below the opening 102ah in the raw material introduction portion 102a.
 また、酸化剤導入部102dにおける開口102dhは、酸化剤Hの導入方向が水平方向または水平方向よりも上向き(例えば斜め上向き)に沿うように形成されている。燃料ガス流出部102eは、酸化剤導入部102dにおける開口102dhよりも上方に設けられている。 In addition, the opening 102dh in the oxidant introduction portion 102d is formed such that the introduction direction of the oxidant H is along the horizontal direction or upward (for example, obliquely upward) from the horizontal direction. The fuel gas outflow portion 102e is provided above the opening 102dh in the oxidant introduction portion 102d.
 詳しくは、燃料ガス流出部102eは、原料導入部102aにおける開口102ahよりも下方に設けられている。酸化剤導入部102dは、1箇所または複数個所(この例では2箇所)に設けられている。 Specifically, the fuel gas outflow portion 102e is provided below the opening 102ah in the raw material introduction portion 102a. The oxidant introduction portion 102d is provided at one place or a plurality of places (two places in this example).
 この例では、原料導入部102aは、炉102bの頂面102b1に設けられ、酸化剤導入部102dおよび燃料ガス流出部102eは、炉102bの側面102b2に設けられている。 In this example, the raw material introduction portion 102a is provided on the top surface 102b1 of the furnace 102b, and the oxidant introduction portion 102d and the fuel gas outflow portion 102e are provided on the side surface 102b2 of the furnace 102b.
 第1実施形態によると、原料Fが酸化域αを確実に落下する構成とすることができ、これにより、原料Fを酸化域αに所定時間範囲内で確実に通過させることができる。さらに、原料導入部102aが想定チャー層δxの最上部δxaよりも上方に設けられ、燃料ガス流出部102eが酸化剤導入部102dにおける開口102dhよりも上方に設けられていることで、チャー層δを避けて酸化剤Hの導入および燃料ガスGの流出を行わせることができ、これにより、酸化域αを所定温度または所定温度範囲内に確実に制御することができる。 According to the first embodiment, it can be configured that the raw material F surely falls in the oxidation zone α, and thus the raw material F can be reliably passed through the oxidation zone α within a predetermined time range. Furthermore, the raw material introduction portion 102a is provided above the uppermost portion δxa of the assumed char layer δx, and the fuel gas outflow portion 102e is provided above the opening 102dh in the oxidant introduction portion 102d, so that the char layer δ Thus, the introduction of the oxidant H and the outflow of the fuel gas G can be avoided, and the oxidation zone α can be reliably controlled within a predetermined temperature or a predetermined temperature range.
 なお、第1実施形態に係るガス化炉1021Aにおいて、原料導入部102aの配設位置と燃料ガス流出部102eの配設位置とを入れ替えてもよい。 In addition, in the gasification furnace 1021A according to the first embodiment, the arrangement position of the raw material introduction part 102a and the arrangement position of the fuel gas outflow part 102e may be switched.
 (第2実施形態)
 図8に示す第2実施形態に係るガス化炉1021Bは、図7に示すガス化炉1021Aにおいて、吸熱反応剤導入部102iおよび熱容量剤導入部102jのうち少なくとも一方(この例では双方)を設けたものである。
(Second Embodiment)
The gasification furnace 1021B according to the second embodiment shown in FIG. 8 is provided with at least one (both in this example) of the endothermic reactant introduction part 102i and the heat capacity agent introduction part 102j in the gasification furnace 1021A shown in FIG. It is a thing.
 ガス化炉1021Bは、吸熱反応剤Mを導入する吸熱反応剤導入部102iと、熱容量剤Nを導入する熱容量剤導入部102jとをさらに備えている。ガス化炉1021Bは、吸熱反応剤導入部102iおよび熱容量剤導入部102jの何れか一方を備えていてもよい。 The gasification furnace 1021B further includes an endothermic reactant introduction unit 102i that introduces the endothermic reactant M and a heat capacity agent introduction unit 102j that introduces the heat capacity agent N. The gasification furnace 1021B may include either one of the endothermic reactant introduction unit 102i and the heat capacity agent introduction unit 102j.
 吸熱反応剤導入部102iおよび熱容量剤導入部102jのうち少なくとも一方(この例では双方)は、炉102bの想定チャー層δxに臨む位置に設けられている。この例では、吸熱反応剤導入部102iおよび熱容量剤導入部102jの双方は、炉102bの底面102b3に設けられている。 At least one of the endothermic reactant introduction part 102i and the heat capacity agent introduction part 102j (both in this example) is provided at a position facing the assumed char layer δx of the furnace 102b. In this example, both the endothermic reactant introduction part 102i and the heat capacity agent introduction part 102j are provided on the bottom face 102b3 of the furnace 102b.
 ここで、吸熱反応剤Mとしては、吸熱反応を起こさせるものであれば、何れのものを用いてもよく、例えば、水蒸気や二酸化炭素を挙げることができる。熱容量剤Nとしては、チャー層δの熱容量を大きくするものであれば、何れのものを用いてもよく、例えば、窒素を挙げることができる。 Here, as the endothermic reactant M, any one that causes an endothermic reaction may be used, and examples thereof include water vapor and carbon dioxide. As the heat capacity agent N, any material can be used as long as it increases the heat capacity of the char layer δ, and examples thereof include nitrogen.
 第2実施形態によると、吸熱反応剤M(例えば水蒸気や二酸化炭素)の吸熱反応若しくは吸熱反応剤M(例えば低温物質)投入による冷却効果、および/または、熱容量剤N(例えば窒素)によるチャー層δの熱容量向上効果で、チャー層δの低温域βが所定温度または所定温度範囲の下限温度以上になることを効果的に防止することができる。 According to the second embodiment, an endothermic reaction of an endothermic reactant M (for example, water vapor or carbon dioxide) or a cooling effect by adding an endothermic reactant M (for example, a low-temperature substance) and / or a char layer by a heat capacity agent N (for example, nitrogen). With the effect of improving the heat capacity of δ, it is possible to effectively prevent the low temperature region β of the char layer δ from reaching the predetermined temperature or the lower limit temperature of the predetermined temperature range.
 (第3実施形態)
 図9に示す第3実施形態に係るガス化炉1021Cは、図7に示すガス化炉1021Aにおいて、チャー層温度制御部102kを設けたものである。
(Third embodiment)
A gasification furnace 1021C according to the third embodiment shown in FIG. 9 is obtained by providing a char layer temperature control unit 102k in the gasification furnace 1021A shown in FIG.
 ガス化炉1021Cは、チャー層δの温度を制御するチャー層温度制御部102kをさらに備えている。チャー層温度制御部102kは、制御装置102gの一部を含んでいる。 The gasification furnace 1021C further includes a char layer temperature control unit 102k that controls the temperature of the char layer δ. The char layer temperature control unit 102k includes a part of the control device 102g.
 チャー層温度制御部102kは、炉102bの想定チャー層δxに対応する領域の外面(この例では炉102bの側面102b2の一部および底面102b3)に設けられている。 The char layer temperature control section 102k is provided on the outer surface of the region corresponding to the assumed char layer δx of the furnace 102b (in this example, a part of the side surface 102b2 and the bottom surface 102b3 of the furnace 102b).
 詳しくは、チャー層温度制御部102kは、水等の熱交換媒体Wを流す熱交換部102k1と、熱交換部102k1に熱交換媒体Wを供給する供給部102k2と、熱交換部102k1から熱交換媒体Wを排出する排出部102k3とを備えている。供給部102k2および排出部102k3は、図示を省略した循環ポンプおよび温度調節部に接続されている。チャー層温度制御部102kは、温度調節部により温度が調節された熱交換媒体Wを循環ポンプにより供給部102k2、熱交換部102k1および供給部102k2を循環させるようになっている。 Specifically, the char layer temperature control unit 102k includes a heat exchange unit 102k1 for flowing a heat exchange medium W such as water, a supply unit 102k2 for supplying the heat exchange medium W to the heat exchange unit 102k1, and a heat exchange from the heat exchange unit 102k1. And a discharge unit 102k3 for discharging the medium W. The supply unit 102k2 and the discharge unit 102k3 are connected to a circulation pump and a temperature control unit that are not shown. The char layer temperature control unit 102k is configured to circulate the heat exchange medium W, the temperature of which has been adjusted by the temperature adjustment unit, of the supply unit 102k2, the heat exchange unit 102k1, and the supply unit 102k2 using a circulation pump.
 また、チャー層温度制御部102kは、炉102b内における低温域βの温度を検知する温度検知手段(この例では熱電対102k4)を備えている。熱電対102k4は、低温域βの温度が最も高くなると予想される部分、この例では、酸化域αと低温域βとの隣接部(低温域βの境界の近傍)に設けられている。 Further, the char layer temperature control unit 102k includes temperature detection means (in this example, a thermocouple 102k4) that detects the temperature of the low temperature region β in the furnace 102b. The thermocouple 102k4 is provided in a portion where the temperature of the low temperature region β is expected to be highest, in this example, in the adjacent portion of the oxidation region α and the low temperature region β (near the boundary of the low temperature region β).
 チャー層温度制御部102kは、循環ポンプを作動制御して循環ポンプによる熱交換媒体Wの単位時間当たりの循環量を調整する。チャー層温度制御部102kは、温度調節部を作動制御して温度調節部による熱交換媒体Wの温度を調整する。熱電対102k4は、検知した低温域βの温度に関する電気信号をチャー層温度制御部102kに送信する。チャー層温度制御部102kは、低温域βの温度に関する電気信号により低温域βの温度を検出(認識)する。 The char layer temperature control unit 102k controls the operation of the circulation pump to adjust the circulation amount per unit time of the heat exchange medium W by the circulation pump. The char layer temperature control unit 102k controls the temperature adjustment unit to adjust the temperature of the heat exchange medium W by the temperature adjustment unit. The thermocouple 102k4 transmits an electrical signal related to the detected temperature in the low temperature region β to the char layer temperature control unit 102k. The char layer temperature control unit 102k detects (recognizes) the temperature of the low temperature region β by an electrical signal related to the temperature of the low temperature region β.
 チャー層温度制御部102kは、熱電対102k4からの検知温度により低温域βの温度が所定温度または所定温度範囲の下限温度以上の場合には、所定温度または所定温度範囲の下限温度を下回るように循環ポンプによる熱交換媒体Wの単位時間当たりの循環量および温度調節部による熱交換媒体Wの温度を調整して低温域βを冷却する構成とされている。一方、チャー層温度制御部102kは、熱電対102k4からの検知温度により低温域βの温度が所定温度または所定温度範囲よりも低い予め定めた所定低温温度以下の場合には、所定低温温度を上回るように循環ポンプによる熱交換媒体Wの単位時間当たりの循環量および温度調節部による熱交換媒体Wの温度を調整して低温域βを加温する構成とされている。 When the temperature of the low temperature region β is equal to or higher than the predetermined temperature or the lower limit temperature of the predetermined temperature range due to the detected temperature from the thermocouple 102k4, the char layer temperature control unit 102k is configured to fall below the predetermined temperature or the lower limit temperature of the predetermined temperature range. The low-temperature region β is cooled by adjusting the circulation amount per unit time of the heat exchange medium W by the circulation pump and the temperature of the heat exchange medium W by the temperature adjusting unit. On the other hand, the char layer temperature control unit 102k exceeds the predetermined low temperature when the temperature in the low temperature region β is equal to or lower than a predetermined temperature or a predetermined low temperature lower than the predetermined temperature range due to the detected temperature from the thermocouple 102k4. As described above, the low-temperature region β is heated by adjusting the circulation amount per unit time of the heat exchange medium W by the circulation pump and the temperature of the heat exchange medium W by the temperature adjusting unit.
 第3実施形態によると、チャー層温度制御部102kの冷却効果によってチャー層δを含む低温域βが所定温度または所定温度範囲の下限温度以上になることを効果的に防止することができる。また、例えば、運転開始時のチャー層δを含む低温域βの温度が所定低温温度以下の場合は加温効果によってチャー層δを、チャーRに残留する気体分の揮発を促進させる温度以上の温度に保ってチャーRに残留する気体分の揮発を促進させることができる。 According to the third embodiment, it is possible to effectively prevent the low temperature region β including the char layer δ from reaching the predetermined temperature or the lower limit temperature of the predetermined temperature range due to the cooling effect of the char layer temperature control unit 102k. Further, for example, when the temperature of the low temperature region β including the char layer δ at the start of operation is equal to or lower than a predetermined low temperature, the char layer δ is heated to a temperature equal to or higher than the temperature that promotes volatilization of the gas remaining in the char R. The volatilization of the gas remaining in the char R can be promoted by maintaining the temperature.
 (第4実施形態)
 図10に示す第4実施形態に係るガス化炉1021Dは、チャーRを堆積させてチャー層δ(具体的にはチャー堆積層)を形成するガス化炉であって、生成した燃料ガスGを下方へ流出させるガス化炉(いわゆる固定床式ダウンドラフト型ガス化炉)である。
(Fourth embodiment)
A gasification furnace 1021D according to the fourth embodiment shown in FIG. 10 is a gasification furnace for depositing char R to form a char layer δ (specifically, a char deposition layer). It is a gasification furnace (so-called fixed bed type downdraft type gasification furnace) that flows downward.
 ガス化炉1021Dは、図7に示すガス化炉1021Aにおいて、燃料ガス流出部102eを酸化剤導入部102dにおける開口102dhよりも下方に設けたものである。 In the gasification furnace 1021D, a fuel gas outflow portion 102e is provided below the opening 102dh in the oxidant introduction portion 102d in the gasification furnace 1021A shown in FIG.
 詳しくは、燃料ガス流出部102eは、炉102bの想定チャー層δx(具体的には想定チャー層δxの最下部δxb)に臨む位置に設けられている。この例では、燃料ガス流出部102eは、炉102bの底面102b3の中央部に設けられている。そして、想定チャー層δxの高さが図7に示すガス化炉1021Aの想定チャー層δxの高さよりも低くなっており、チャー層δが図7に示すガス化炉1021Aのチャー層δよりも低く維持されている。 Specifically, the fuel gas outflow portion 102e is provided at a position facing the assumed char layer δx of the furnace 102b (specifically, the lowermost δxb of the assumed char layer δx). In this example, the fuel gas outflow part 102e is provided in the center part of the bottom face 102b3 of the furnace 102b. The assumed char layer δx is lower than the assumed char layer δx of the gasification furnace 1021A shown in FIG. 7, and the char layer δ is lower than the char layer δ of the gasification furnace 1021A shown in FIG. Kept low.
 第4実施形態によると、原料Fが酸化域αを確実に落下する構成とすることができ、これにより、原料Fを酸化域αに所定時間範囲内で確実に通過させることができる。さらに、燃料ガスGを炉102bの底面102b3から流出させることができる。また、チャー層δが低く維持されることで、チャー層δでの酸化域通過時間tpを短くすることができる。 According to the fourth embodiment, it can be configured that the raw material F surely falls in the oxidation zone α, and thus the raw material F can be reliably passed through the oxidation zone α within a predetermined time range. Furthermore, the fuel gas G can flow out from the bottom surface 102b3 of the furnace 102b. Further, by maintaining the char layer δ low, the oxidation zone passage time tp in the char layer δ can be shortened.
 (第5実施形態)
 図11に示す第5実施形態に係るガス化炉1021Eは、図10に示すガス化炉1021Dにおいて、炉102bの想定チャー層δxに対応する領域の外面にチャー層温度制御部102kを設けたものである。
(Fifth embodiment)
A gasification furnace 1021E according to the fifth embodiment shown in FIG. 11 is the same as the gasification furnace 1021D shown in FIG. 10 except that a char layer temperature control unit 102k is provided on the outer surface of the region corresponding to the assumed char layer δx of the furnace 102b. It is.
 第5実施形態によると、チャー層温度制御部102kによるチャー層δの温度制御によってチャー層δでの酸化域αが所定温度または所定温度範囲から外れることを効果的に防止することができる。 According to the fifth embodiment, it is possible to effectively prevent the oxidation region α in the char layer δ from deviating from the predetermined temperature or the predetermined temperature range by the temperature control of the char layer δ by the char layer temperature control unit 102k.
 (第6実施形態)
 図12に示す第6実施形態に係るガス化炉1021Fは、図10に示すガス化炉1021Dにおいて、チャーRおよび灰Sを一時的に貯留する仕切り装置102lを設けたものである。
(Sixth embodiment)
A gasification furnace 1021F according to the sixth embodiment shown in FIG. 12 is provided with a partition device 102l for temporarily storing char R and ash S in the gasification furnace 1021D shown in FIG.
 仕切り装置102lは、チャーRおよび灰Sを一時的に貯留して一定時間経過後に下方に落下させるようになっている。 The partition device 102l temporarily stores the char R and the ash S, and drops them downward after a predetermined time.
 詳しくは、仕切り装置102lは、炉102bに対して着脱自在な(この例では水平方向に沿ってスライド自在な)仕切り部102l1と、仕切り部102l1を作動する作動部102l2(具体的にはアクチュエータ)とを備えている。仕切り部102l1は、上下方向において炉102bの途中に設けられている。炉102bにおいて、仕切り部102l1よりも下方の部分がチャーRおよび灰Sを受ける受け皿部102b4を構成している。 Specifically, the partition device 102l is detachable with respect to the furnace 102b (in this example, slidable along the horizontal direction), and an operation unit 102l2 (specifically, an actuator) that operates the partition unit 102l1. And. The partition part 102l1 is provided in the middle of the furnace 102b in the up-down direction. In the furnace 102b, the part below the partition part 10211 constitutes a tray part 102b4 that receives the char R and the ash S.
 仕切り部102l1は、炉102bに装着されているときには、チャーRを堆積させてチャー層δを貯留する一方、炉102bから離脱されると、貯留したチャーRおよび灰Sを下方の受け皿部102b4に落下させるようになっている。仕切り部102l1には、燃料ガスGを通過させる多数の通過孔102la~102laが設けられている。なお、受け皿部102b4で燃焼した灰Sは、排出部102fにより外部に排出される。 When the partition portion 10211 is attached to the furnace 102b, the char R is deposited and the char layer δ is stored. When the partition portion 102l1 is detached from the furnace 102b, the stored char R and ash S are transferred to the lower tray portion 102b4. It is designed to be dropped. The partition portion 102l1 is provided with a large number of passage holes 102la to 102la through which the fuel gas G passes. Note that the ash S burned in the tray part 102b4 is discharged to the outside by the discharge part 102f.
 作動部102l2は、制御装置102gからの指示命令の下、仕切り部102l1を炉102bに装着し、かつ、炉102bに対して定期的に脱着してチャーRおよび灰Sを受け皿部102b4に落下させるようになっている。 Under the instruction command from the control device 102g, the operating unit 102l2 attaches the partition unit 102l1 to the furnace 102b and periodically removes it from the furnace 102b to receive the char R and ash S on the dish unit 102b4. It is like that.
 第6実施形態によると、チャーRおよび灰Sを定期的に受け皿部102b4に落下させることができる。 According to the sixth embodiment, the char R and the ash S can be periodically dropped onto the tray part 102b4.
 (第7実施形態)
 図13に示す第7実施形態に係るガス化炉1021Gは、チャーRを堆積させてチャー層δ(具体的にはチャー堆積層)を形成するガス化炉であって、酸化剤Hを上方および下方から導入するガス化炉(いわゆる固定床式ダブルファイヤ型ガス化炉)である。
(Seventh embodiment)
A gasification furnace 1021G according to the seventh embodiment shown in FIG. 13 is a gasification furnace for depositing char R to form a char layer δ (specifically, a char deposition layer). This is a gasification furnace (a so-called fixed-bed double-fired gasification furnace) introduced from below.
 ガス化炉1021Gは、図7に示すガス化炉1021Aにおいて、燃料ガス流出部102eを酸化剤導入部102dにおける開口102dhよりも下方に設け、さらに、酸化剤導入部102dを想定チャー層δxの最下部δxbに臨む位置に設けたものである。 In the gasification furnace 1021G, in the gasification furnace 1021A shown in FIG. 7, the fuel gas outflow portion 102e is provided below the opening 102dh in the oxidant introduction portion 102d, and the oxidant introduction portion 102d is disposed at the top of the assumed char layer δx. It is provided at a position facing the lower part δxb.
 酸化剤導入部102dは、想定チャー層δxの最下部δxbに臨む位置にさらに設けられている。 The oxidant introduction part 102d is further provided at a position facing the lowermost part δxb of the assumed char layer δx.
 燃料ガス流出部102eは、想定チャー層δxの最上部δxaよりも上方に設けた酸化剤導入部102dと想定チャー層δxの最下部δxbに臨む位置にさらに設けた酸化剤導入部102dとの間(好ましくは中間位置)に設けられている。この例では、燃料ガス流出部102eは、想定チャー層δxの最上部δxaと最下部δxbとの間に設けられている。 The fuel gas outflow portion 102e is between the oxidant introduction portion 102d provided above the uppermost portion δxa of the assumed char layer δx and the oxidant introduction portion 102d further provided at a position facing the lowermost portion δxb of the assumed char layer δx. (Preferably at an intermediate position). In this example, the fuel gas outflow portion 102e is provided between the uppermost portion δxa and the lowermost portion δxb of the assumed char layer δx.
 詳しくは、燃料ガス流出部102eは、炉102bの想定チャー層δxに臨む位置に設けられている。この例では、燃料ガス流出部102eは、炉102bの側面102b2に設けられている。 Specifically, the fuel gas outflow portion 102e is provided at a position facing the assumed char layer δx of the furnace 102b. In this example, the fuel gas outflow portion 102e is provided on the side surface 102b2 of the furnace 102b.
 想定チャー層δxの最下部δxbに臨む位置にさらに設けた酸化剤導入部102dは、炉102bの底面102b3の中央部に設けられている。 The oxidant introduction part 102d further provided at the position facing the lowermost part δxb of the assumed char layer δx is provided at the center of the bottom surface 102b3 of the furnace 102b.
 第7実施形態によると、原料Fが酸化域αを確実に落下する構成とすることができ、これにより、原料Fを酸化域αに所定時間範囲内で確実に通過させることができる。さらに、酸化剤Hを上方および下方から導入すると共に、燃料ガスGを炉102bの側面102b2から流出させることができる。 According to the seventh embodiment, it can be configured that the raw material F surely falls in the oxidation zone α, and thus the raw material F can be reliably passed through the oxidation zone α within a predetermined time range. Furthermore, the oxidant H can be introduced from above and below, and the fuel gas G can flow out from the side surface 102b2 of the furnace 102b.
 なお、図10から図13に示す第4実施形態から第7実施形態に係るガス化炉1021D~1021Gでは、燃料ガス流出部102eが酸化剤導入部102dにおける開口102dhよりも下方に存在しているので、原料F(より正確にはチャーRや灰S)が酸化域αを抜け出たときに、炉102bから排出される。 In the gasification furnaces 1021D to 1021G according to the fourth to seventh embodiments shown in FIGS. 10 to 13, the fuel gas outflow portion 102e exists below the opening 102dh in the oxidant introduction portion 102d. Therefore, when the raw material F (more precisely, char R and ash S) exits the oxidation zone α, it is discharged from the furnace 102b.
 [実施例2]
 次に、本実施の形態に係るガス化炉102のさらに他の実施形態(実施例2)について、図14から図17を参照しながら以下に説明する。
[Example 2]
Next, still another embodiment (Example 2) of the gasification furnace 102 according to the present embodiment will be described below with reference to FIGS. 14 to 17.
 図14から図17は、本実施の形態に係るガス化炉102のさらに他の実施形態を概略的に示す模式図である。図14から図17は、それぞれ、実施例2の第1実施形態から第4実施形態に係るガス化炉1022A~1022Dを示している。なお、図14から図17において制御装置102g等は図示を省略している。 14 to 17 are schematic views schematically showing still another embodiment of the gasification furnace 102 according to the present embodiment. FIGS. 14 to 17 show gasification furnaces 1022A to 1022D according to the first to fourth embodiments of Example 2, respectively. 14 to 17, the control device 102g and the like are not shown.
 図14から図17に示すガス化炉1022A~1022Dにおいて、図2に示すガス化炉102の構成と実質的に同様の構成には同一符号を付し、その説明を省略する。 In the gasification furnaces 1022A to 1022D shown in FIG. 14 to FIG. 17, the same reference numerals are given to substantially the same configurations as those of the gasification furnace 102 shown in FIG.
 (第1実施形態)
 図14に示す第1実施形態に係るガス化炉1022Aは、チャーRを堆積させてチャー層δ(具体的にはチャー堆積層)を形成するガス化炉であって、生成した燃料ガスGを上方へ流出させるガス化炉(いわゆる固定床式アップドラフト型ガス化炉)である。
(First embodiment)
A gasification furnace 1022A according to the first embodiment shown in FIG. 14 is a gasification furnace in which char R is deposited to form a char layer δ (specifically, a char deposition layer). This is a gasification furnace (so-called fixed bed type updraft gasification furnace) that flows upward.
 ガス化炉1022Aは、図2に示すガス化炉102において、原料導入部102aを想定チャー層δxの最上部δxaよりも上方に設け、酸化剤導入部102dを想定チャー層δxの最上部δxaよりも下方に設け、さらに酸化剤接触時間制御部102mを設けたものである。 In the gasification furnace 1022A, in the gasification furnace 102 shown in FIG. 2, the material introduction part 102a is provided above the uppermost part δxa of the assumed char layer δx, and the oxidant introduction part 102d is provided from the uppermost part δxa of the assumed char layer δx. Is provided below, and further, an oxidant contact time control unit 102m is provided.
 また、燃料ガス流出部102eは、酸化剤導入部102dにおける開口102dhよりも上方に設けられている。 Further, the fuel gas outflow portion 102e is provided above the opening 102dh in the oxidant introduction portion 102d.
 詳しくは、燃料ガス流出部102eは、原料導入部102aにおける開口102ahよりも下方に設けられている。 Specifically, the fuel gas outflow portion 102e is provided below the opening 102ah in the raw material introduction portion 102a.
 酸化剤導入部102dは、炉102bの想定チャー層δxに臨む位置に設けられている。酸化剤導入部102dは、1箇所または複数個所(この例では2箇所)に設けられている。 The oxidant introduction portion 102d is provided at a position facing the assumed char layer δx of the furnace 102b. The oxidant introduction portion 102d is provided at one place or a plurality of places (two places in this example).
 この例では、原料導入部102aは、炉102bの頂面102b1に設けられ、酸化剤導入部102dおよび燃料ガス流出部102eは、炉102bの側面102b2に設けられている。 In this example, the raw material introduction portion 102a is provided on the top surface 102b1 of the furnace 102b, and the oxidant introduction portion 102d and the fuel gas outflow portion 102e are provided on the side surface 102b2 of the furnace 102b.
 ガス化炉1022Aは、酸化剤HをチャーRに接触させる時間である酸化剤接触時間を制御する酸化剤接触時間制御部102mをさらに備えている。酸化剤接触時間制御部102mは、制御装置102gの一部を含んでいる。 The gasification furnace 1022A further includes an oxidant contact time control unit 102m that controls an oxidant contact time that is a time during which the oxidant H is brought into contact with the char R. The oxidant contact time control unit 102m includes a part of the control device 102g.
 酸化剤接触時間制御部102mは、原料導入部102aからの原料Fの単位時間当たりの導入量、および、排出部102fからの灰Sの単位時間当たりの排出量、すなわちチャー層δにおけるチャーRの単位時間当たりの下方への移動距離のうち少なくとも一方を調整する。これにより、酸化剤接触時間制御部102mは、酸化剤接触時間を制御することができる。 The oxidant contact time control unit 102m is configured to introduce the raw material F from the raw material introducing unit 102a per unit time and the amount of ash S discharged from the discharging unit 102f per unit time, that is, the char R in the char layer δ. At least one of the downward movement distances per unit time is adjusted. Thereby, the oxidant contact time control unit 102m can control the oxidant contact time.
 第1実施形態によると、原料Fが酸化域αを確実に落下する構成とすることができ、これにより、原料Fを酸化域αに所定時間範囲内で確実に通過させることができる。そして、チャー層δに酸化剤Hを導入するのに当たって酸化剤接触時間を制御することができ、これにより、チャー層δにおける酸化域αを所定温度または所定温度範囲内に確実に制御することができる。 According to the first embodiment, it can be configured that the raw material F surely falls in the oxidation zone α, and thus the raw material F can be reliably passed through the oxidation zone α within a predetermined time range. In addition, the oxidant contact time can be controlled in introducing the oxidant H into the char layer δ, whereby the oxidation region α in the char layer δ can be reliably controlled within a predetermined temperature or a predetermined temperature range. it can.
 (第2実施形態)
 図15に示す第2実施形態に係るガス化炉1022Bは、図14に示すガス化炉1022Aにおいて、吸熱反応剤導入部102iおよび熱容量剤導入部102jのうち少なくとも一方(この例では双方)を設けたものである。
(Second Embodiment)
The gasification furnace 1022B according to the second embodiment shown in FIG. 15 is provided with at least one (both in this example) of the endothermic reactant introduction part 102i and the heat capacity agent introduction part 102j in the gasification furnace 1022A shown in FIG. It is a thing.
 ガス化炉1022Bは、吸熱反応剤Mを導入する吸熱反応剤導入部102iと、熱容量剤Nを導入する熱容量剤導入部102jとをさらに備えている。ガス化炉1022Bは、吸熱反応剤導入部102iおよび熱容量剤導入部102jの何れか一方を備えていてもよい。 The gasification furnace 1022B further includes an endothermic reactant introduction part 102i for introducing the endothermic reactant M and a heat capacity agent introduction part 102j for introducing the heat capacity agent N. The gasification furnace 1022B may include either one of the endothermic reactant introduction unit 102i and the heat capacity agent introduction unit 102j.
 吸熱反応剤導入部102iおよび熱容量剤導入部102jのうち少なくとも一方(この例では双方)は、炉102bの想定チャー層δxに臨む位置に設けられている。この例では、吸熱反応剤導入部102iおよび熱容量剤導入部102jの双方は、炉102bの底面102b3に設けられている。 At least one of the endothermic reactant introduction part 102i and the heat capacity agent introduction part 102j (both in this example) is provided at a position facing the assumed char layer δx of the furnace 102b. In this example, both the endothermic reactant introduction part 102i and the heat capacity agent introduction part 102j are provided on the bottom face 102b3 of the furnace 102b.
 ここで、吸熱反応剤Mとしては、吸熱反応を起こさせるものであれば、何れのものを用いてもよく、例えば、水蒸気や二酸化炭素を挙げることができる。熱容量剤Nとしては、チャー層δの熱容量を大きくするものであれば、何れのものを用いてもよく、例えば、窒素を挙げることができる。 Here, as the endothermic reactant M, any one that causes an endothermic reaction may be used, and examples thereof include water vapor and carbon dioxide. As the heat capacity agent N, any material can be used as long as it increases the heat capacity of the char layer δ, and examples thereof include nitrogen.
 第2実施形態によると、吸熱反応剤M(例えば水蒸気や二酸化炭素)の吸熱反応若しくは吸熱反応剤M(例えば低温物質)投入による冷却効果、および/または、熱容量剤N(例えば窒素)によるチャー層δの熱容量向上効果で、チャー層δの低温域βが所定温度または所定温度範囲の下限温度以上になることを容易にかつ効果的に防止することができる。
(第3実施形態)
 図16に示す第3実施形態に係るガス化炉1022Cは、チャーRを堆積させてチャー層δ(具体的にはチャー堆積層)を形成するガス化炉であって、生成した燃料ガスGを下方へ流出させるガス化炉(いわゆる固定床式ダウンドラフト型ガス化炉)である。
According to the second embodiment, an endothermic reaction of an endothermic reactant M (for example, water vapor or carbon dioxide) or a cooling effect by adding an endothermic reactant M (for example, a low-temperature substance) and / or a char layer by a heat capacity agent N (for example, nitrogen). With the effect of improving the heat capacity of δ, it is possible to easily and effectively prevent the low temperature region β of the char layer δ from reaching the predetermined temperature or the lower limit temperature of the predetermined temperature range.
(Third embodiment)
A gasification furnace 1022C according to the third embodiment shown in FIG. 16 is a gasification furnace for depositing char R to form a char layer δ (specifically, a char deposition layer). It is a gasification furnace (so-called fixed bed type downdraft type gasification furnace) that flows downward.
 ガス化炉1022Cは、図14に示すガス化炉1022Aにおいて、燃料ガス流出部102eを酸化剤導入部102dにおける開口102dhよりも下方に設け、さらにチャー堆積時間制御部102nを設けたものである。 In the gasification furnace 1022C, in the gasification furnace 1022A shown in FIG. 14, a fuel gas outflow part 102e is provided below the opening 102dh in the oxidant introduction part 102d, and further a char deposition time control part 102n is provided.
 詳しくは、燃料ガス流出部102eは、炉102bの想定チャー層δx(具体的には想定チャー層δxの最下部δxb)に臨む位置に設けられている。この例では、燃料ガス流出部102eは、炉102bの底面102b3の中央部に設けられている。そして、想定チャー層δxの高さが図14に示すガス化炉1022Aの想定チャー層δxの高さよりも低くなっており、チャー層δが図14に示すガス化炉1022Aのチャー層δよりも低く維持されている。 Specifically, the fuel gas outflow portion 102e is provided at a position facing the assumed char layer δx of the furnace 102b (specifically, the lowermost δxb of the assumed char layer δx). In this example, the fuel gas outflow part 102e is provided in the center part of the bottom face 102b3 of the furnace 102b. The assumed char layer δx is lower than the assumed char layer δx of the gasification furnace 1022A shown in FIG. 14, and the char layer δ is lower than the char layer δ of the gasification furnace 1022A shown in FIG. Kept low.
 また、ガス化炉1022Cは、チャーRを堆積させるためのチャー堆積時間を制御するチャー堆積時間制御部102nを備えている。チャー堆積時間制御部102nは、制御装置102gの一部を含んでいる。 The gasification furnace 1022C includes a char deposition time control unit 102n that controls the char deposition time for depositing the char R. The char deposition time control unit 102n includes a part of the control device 102g.
 チャー堆積時間制御部102nは、原料導入部102aからの原料Fの単位時間当たりの導入量、および、排出部102fからの灰Sの単位時間当たりの排出量、すなわちチャー層δにおけるチャーRの単位時間当たりの下方への移動距離のうち少なくとも一方を調整する。これにより、チャー堆積時間制御部102nは、チャー堆積時間を制御することができる。 The char deposition time control unit 102n is configured to introduce the raw material F from the raw material introducing unit 102a per unit time, and discharge the ash S from the discharging unit 102f per unit time, that is, the unit of char R in the char layer δ. At least one of the downward movement distances per hour is adjusted. Thereby, the char deposition time control unit 102n can control the char deposition time.
 第3実施形態によると、チャー堆積時間を含む原料Fの酸化域通過時間tpを所定時間範囲内とすることができる。また、チャー層δでの酸化域αが所定温度または所定温度範囲から外れることを容易にかつ効果的に防止することができる。さらに、燃料ガスGを炉102bの底面102b3から流出させることができる。また、チャー層δが低く維持されることで、チャー層δでの酸化域通過時間tpを短くすることができる。 According to the third embodiment, the oxidation zone passage time tp of the raw material F including the char deposition time can be within a predetermined time range. Further, it is possible to easily and effectively prevent the oxidation region α in the char layer δ from deviating from the predetermined temperature or the predetermined temperature range. Furthermore, the fuel gas G can flow out from the bottom surface 102b3 of the furnace 102b. Further, by maintaining the char layer δ low, the oxidation zone passage time tp in the char layer δ can be shortened.
 (第4実施形態)
 図17に示す第4実施形態に係るガス化炉1022Dは、チャーRを堆積させてチャー層δ(具体的にはチャー堆積層)を形成するガス化炉であって、酸化剤Hを上方および下方から導入するガス化炉(いわゆる固定床式ダブルファイヤ型ガス化炉)である。
(Fourth embodiment)
A gasification furnace 1022D according to the fourth embodiment shown in FIG. 17 is a gasification furnace in which the char R is deposited to form a char layer δ (specifically, a char deposition layer). This is a gasification furnace (a so-called fixed-bed double-fired gasification furnace) introduced from below.
 ガス化炉1022Dは、図14に示すガス化炉1022Aにおいて、燃料ガス流出部102eを酸化剤導入部102dにおける開口102dhよりも下方に設け、さらに、酸化剤導入部102dを想定チャー層δxの最下部δxbに臨む位置に設けたものである。 In the gasification furnace 1022D, in the gasification furnace 1022A shown in FIG. 14, the fuel gas outflow part 102e is provided below the opening 102dh in the oxidant introduction part 102d, and the oxidant introduction part 102d is provided at the uppermost portion of the assumed char layer δx. It is provided at a position facing the lower part δxb.
 酸化剤導入部102dは、想定チャー層δxの最下部δxbに臨む位置にさらに設けられている。 The oxidant introduction part 102d is further provided at a position facing the lowermost part δxb of the assumed char layer δx.
 燃料ガス流出部102eは、想定チャー層δxの最上部δxaよりも下方に設けた酸化剤導入部102dと想定チャー層δxの最下部δxbに臨む位置にさらに設けた酸化剤導入部102dとの間(好ましくは中間位置)に設けられている。 The fuel gas outflow portion 102e is between the oxidant introduction portion 102d provided below the uppermost portion δxa of the assumed char layer δx and the oxidant introduction portion 102d further provided at a position facing the lowermost portion δxb of the assumed char layer δx. (Preferably at an intermediate position).
 詳しくは、燃料ガス流出部102eは、炉102bの想定チャー層δxに臨む位置に設けられている。この例では、燃料ガス流出部102eは、炉102bの側面102b2に設けられている。 Specifically, the fuel gas outflow portion 102e is provided at a position facing the assumed char layer δx of the furnace 102b. In this example, the fuel gas outflow portion 102e is provided on the side surface 102b2 of the furnace 102b.
 想定チャー層δxの最下部δxbに臨む位置にさらに設けた酸化剤導入部102dは、炉102bの底面102b3の中央部に設けられている。 The oxidant introduction part 102d further provided at the position facing the lowermost part δxb of the assumed char layer δx is provided at the center of the bottom surface 102b3 of the furnace 102b.
 第4実施形態によると、酸化剤Hを上方および下方から導入すると共に、燃料ガスGを炉102bの側面102b2から流出させることができる。 According to the fourth embodiment, the oxidant H can be introduced from above and below, and the fuel gas G can flow out from the side surface 102b2 of the furnace 102b.
 なお、図16および図17に示す第3実施形態および第4実施形態に係るガス化炉1022C,1022Dでは、燃料ガス流出部102eが酸化剤導入部102dにおける開口102dhよりも下方に存在しているので、原料F(より正確にはチャーRや灰S)が酸化域αを抜け出たときに、炉102bから排出される。 In the gasification furnaces 1022C and 1022D according to the third and fourth embodiments shown in FIGS. 16 and 17, the fuel gas outflow portion 102e exists below the opening 102dh in the oxidant introduction portion 102d. Therefore, when the raw material F (more precisely, char R and ash S) exits the oxidation zone α, it is discharged from the furnace 102b.
 [実施例3]
 次に、本実施の形態に係るガス化炉102のさらに他の実施形態(実施例3)について、図18から図30を参照しながら以下に説明する。
[Example 3]
Next, still another embodiment (Example 3) of the gasification furnace 102 according to the present embodiment will be described below with reference to FIGS.
 図18から図30は、本実施の形態に係るガス化炉102のさらに他の実施形態を概略的に示す模式図である。図18から図30は、それぞれ、実施例3の第1実施形態から第13実施形態に係るガス化炉1023A~1023Mを示している。なお、図18から図30において制御装置102g等は図示を省略している。 18 to 30 are schematic views schematically showing still another embodiment of the gasification furnace 102 according to the present embodiment. FIGS. 18 to 30 show gasification furnaces 1023A to 1023M according to the first to thirteenth embodiments of Example 3, respectively. Note that the control device 102g and the like are not shown in FIGS.
 図18から図30に示すガス化炉1023A~1023Mにおいて、図2に示すガス化炉102の構成と実質的に同様の構成には同一符号を付し、その説明を省略する。 In the gasification furnaces 1023A to 1023M shown in FIG. 18 to FIG. 30, the same reference numerals are given to substantially the same configurations as those of the gasification furnace 102 shown in FIG.
 (第1実施形態)
 図18に示す第1実施形態に係るガス化炉1023Aは、チャーRを流動させてチャー層δ(具体的にはチャー流動層)を形成するガス化炉(いわゆる流動床式ガス化炉)である。なお、第1実施形態に係るガス化炉1023Aにおいて、図1に示すガス化装置100には、図示を省略した流動層用の循環ラインが設けられている。このことは、後述する第2実施形態および第3実施形態に係るガス化炉1023B,1023Cについても同様である。
(First embodiment)
A gasification furnace 1023A according to the first embodiment shown in FIG. 18 is a gasification furnace (so-called fluidized bed type gasification furnace) that forms a char layer δ (specifically, a char fluidized bed) by causing the char R to flow. is there. In the gasification furnace 1023A according to the first embodiment, the gasification apparatus 100 shown in FIG. 1 is provided with a fluidized bed circulation line (not shown). The same applies to the gasification furnaces 1023B and 1023C according to the second and third embodiments described later.
 ガス化炉1023Aは、図2に示すガス化炉102において、原料導入部102aを想定チャー層δx(この例では想定チャー流動層)の最上部δxaよりも上方に設け、酸化剤導入部102dを、想定チャー層δxの最下部δxbに臨む位置(下側)と、想定チャー層δxの最上部δxaよりも上方でかつ原料導入部102aにおける開口102ahよりも下方(上側)とに設け、燃料ガス流出部102eを全ての酸化剤導入部102d~102dよりも上方に設けたものである。 In the gasification furnace 1023A, in the gasification furnace 102 shown in FIG. 2, the raw material introduction part 102a is provided above the uppermost part δxa of the assumed char layer δx (assumed char fluidized bed in this example), and the oxidant introduction part 102d is provided. The fuel gas is provided at a position (lower side) facing the lowermost part δxb of the assumed char layer δx and above the uppermost part δxa of the assumed char layer δx and below (upper side) the opening 102ah in the raw material introduction part 102a. The outflow part 102e is provided above all the oxidant introduction parts 102d to 102d.
 また、下側に設けた酸化剤導入部102dにおける開口102dhは、酸化剤Hの導入方向が上方(具体的にはチャーRが堆積するチャーの堆積方向)または略上方に向くように形成されている。上側に設けた酸化剤導入部102dにおける開口102dhは、酸化剤Hの導入方向が水平方向または水平方向よりも上向き(例えば斜め上向き)に沿うように形成されている。 The opening 102dh in the oxidant introduction portion 102d provided on the lower side is formed such that the introduction direction of the oxidant H is directed upward (specifically, the deposition direction of char on which the char R is deposited) or substantially upward. Yes. The opening 102dh in the oxidant introduction portion 102d provided on the upper side is formed so that the introduction direction of the oxidant H is along the horizontal direction or upward (for example, obliquely upward) from the horizontal direction.
 詳しくは、燃料ガス流出部102eは、この例では、原料導入部102aにおける開口102ahよりも下方に設けられているが、それに限定されるものではなく、原料導入部102aの配設位置と燃料ガス流出部102eの配設位置とを入れ替えてもよい。上側に設けた酸化剤導入部102dは、1箇所または複数個所(この例では2箇所)に設けられている。 Specifically, in this example, the fuel gas outflow portion 102e is provided below the opening 102ah in the raw material introduction portion 102a. However, the present invention is not limited to this, and the arrangement position of the raw material introduction portion 102a and the fuel gas are not limited thereto. You may replace the arrangement | positioning position of the outflow part 102e. The oxidant introduction portion 102d provided on the upper side is provided at one place or a plurality of places (two places in this example).
 この例では、原料導入部102aは、炉102bの頂面102b1に設けられ、下側に設けた酸化剤導入部102dは、炉102bの底面102b3に設けられ、上側に設けた酸化剤導入部102dおよび燃料ガス流出部102eは、炉102bの側面102b2に設けられている。 In this example, the raw material introduction portion 102a is provided on the top surface 102b1 of the furnace 102b, and the oxidant introduction portion 102d provided on the lower side is provided on the bottom surface 102b3 of the furnace 102b, and the oxidant introduction portion 102d provided on the upper side. The fuel gas outflow portion 102e is provided on the side surface 102b2 of the furnace 102b.
 第1実施形態によると、原料Fが酸化域αを確実に落下する構成とすることができ、これにより、原料Fを酸化域αに所定時間範囲内で確実に通過させることができる。さらに、想定チャー層δxの最下部δxbから酸化剤Hを導入することができ、これにより、原料Fの酸化域通過時間tpを短縮してチャー層δが所定温度または所定温度範囲から外れることを効果的に防止することができる。 According to the first embodiment, it can be configured that the raw material F surely falls in the oxidation zone α, and thus the raw material F can be reliably passed through the oxidation zone α within a predetermined time range. Furthermore, the oxidant H can be introduced from the lowermost δxb of the assumed char layer δx, thereby shortening the oxidation zone passage time tp of the raw material F so that the char layer δ deviates from a predetermined temperature or a predetermined temperature range. It can be effectively prevented.
 なお、流動床式ガス化炉の場合には、チャーRの排出手法としては、ここに記載された下抜き排出手法の他、上抜き排出手法、中抜き排出手法など各種の手法を用いることができる。何れにしても原料Fを酸化域αに所定時間範囲内で確実に通過させることができる。このことは、後述する第2実施形態および第3実施形態に係るガス化炉1023B,1023Cについても同様である。 In the case of a fluidized bed gasifier, various methods such as an upper discharge method and a hollow discharge method may be used as the discharge method of Char R, in addition to the lower discharge method described here. it can. In any case, the raw material F can be reliably passed through the oxidation zone α within a predetermined time range. The same applies to the gasification furnaces 1023B and 1023C according to the second and third embodiments described later.
 (第2実施形態)
 図19に示す第2実施形態に係るガス化炉1023Bは、チャーRを流動させてチャー層δ(具体的にはチャー流動層)を形成するガス化炉(いわゆる流動床式ガス化炉)である。
(Second Embodiment)
A gasification furnace 1023B according to the second embodiment shown in FIG. 19 is a gasification furnace (so-called fluidized bed type gasification furnace) that forms a char layer δ (specifically, a char fluidized bed) by causing the char R to flow. is there.
 ガス化炉1023Bは、図2に示すガス化炉102において、原料導入部102aを想定チャー層δxの最上部δxaよりも上方に設け、酸化剤導入部102dを想定チャー層δxの最下部δxbに臨む位置に設け、燃料ガス流出部102eを想定チャー層δxの最上部δxaよりも上方に設け、さらに酸化剤導入量制御部102oを設けたものである。 In the gasification furnace 1023B, in the gasification furnace 102 shown in FIG. 2, the material introduction part 102a is provided above the uppermost part δxa of the assumed char layer δx, and the oxidant introduction part 102d is provided at the lowermost part δxb of the assumed char layer δx. The fuel gas outflow part 102e is provided above the uppermost part δxa of the assumed char layer δx, and the oxidant introduction amount control part 102o is further provided.
 なお、第2実施形態に係るガス化炉1023Bにおいて、原料導入部102aの配設位置と燃料ガス流出部102eの配設位置とを入れ替えてもよい。 In addition, in the gasification furnace 1023B according to the second embodiment, the arrangement position of the raw material introduction part 102a and the arrangement position of the fuel gas outflow part 102e may be switched.
 ガス化炉1023Bは、酸化剤Hの導入量を制御する酸化剤導入量制御部102oをさらに備えている。この例では、酸化剤導入部102dは、酸化剤導入量制御部102oを含んでいる。酸化剤導入量制御部102oは、制御装置102gの一部を含んでいる。 The gasification furnace 1023B further includes an oxidant introduction amount control unit 102o that controls the introduction amount of the oxidant H. In this example, the oxidant introduction unit 102d includes an oxidant introduction amount control unit 102o. The oxidant introduction amount control unit 102o includes a part of the control device 102g.
 酸化剤導入部102dにおける開口102dhは、酸化剤Hの導入方向が上方(具体的にはチャーRが堆積するチャーの堆積方向)または略上方に向くように形成されている。 The opening 102dh in the oxidant introduction part 102d is formed so that the introduction direction of the oxidant H is directed upward (specifically, the deposition direction of the char R is deposited) or substantially upward.
 この例では、炉102bは、それには限定されないが、幅(水平方向のサイズ)が図18に示すガス化炉1023Aにおける炉102bよりも大きくなっている。詳しくは、図18に示すガス化炉1023Aは、酸化剤Hの導入口が分かれており、原料Fを流動化させるための炉102bの下部からの酸化剤Hの量が少なくなるので、炉102b内の流速を上げるためには、炉102bの幅(具体的には径)を小さくする必要がある。一方で、図19に示すガス化炉1023Bは、炉102bの幅が大きくても全量が炉102bの下部から入るので流動化が可能である。原料導入部102aは、炉102bの頂面102b1に設けられ、燃料ガス流出部102eは、炉102bの側面102b2に設けられ、酸化剤導入部102dは、炉102bの底面102b3に設けられている。 In this example, the furnace 102b is not limited thereto, but the width (size in the horizontal direction) is larger than the furnace 102b in the gasification furnace 1023A shown in FIG. Specifically, the gasification furnace 1023A shown in FIG. 18 has a separate inlet for the oxidant H, and the amount of the oxidant H from the lower part of the furnace 102b for fluidizing the raw material F is reduced. In order to increase the internal flow rate, it is necessary to reduce the width (specifically, the diameter) of the furnace 102b. On the other hand, the gasification furnace 1023B shown in FIG. 19 can be fluidized even if the width of the furnace 102b is large, since the entire amount enters from the lower part of the furnace 102b. The raw material introduction portion 102a is provided on the top surface 102b1 of the furnace 102b, the fuel gas outflow portion 102e is provided on the side surface 102b2 of the furnace 102b, and the oxidant introduction portion 102d is provided on the bottom surface 102b3 of the furnace 102b.
 第2実施形態によると、原料Fが酸化域αを確実に落下する構成とすることができ、これにより、原料Fを酸化域αに所定時間範囲内で確実に通過させることができる。さらに、酸化剤Hの導入量を制御する(例えば風量を増加させるように制御する)ことができ、これにより、原料Fの酸化域通過時間tpを短縮してチャー層が所定温度または所定温度範囲から外れることを効果的に防止することができる。 According to the second embodiment, it can be configured that the raw material F surely falls in the oxidation zone α, and thus the raw material F can be reliably passed through the oxidation zone α within a predetermined time range. Furthermore, the amount of the oxidant H introduced can be controlled (for example, controlled so as to increase the air volume), thereby shortening the oxidation zone passage time tp of the raw material F so that the char layer has a predetermined temperature or a predetermined temperature range. Can be effectively prevented from coming off.
 (第3実施形態)
 図20に示す第3実施形態に係るガス化炉1023Cは、チャーRを流動させてチャー層δ(具体的にはチャー流動層)を形成するガス化炉(いわゆる流動床式ガス化炉)である。
(Third embodiment)
A gasification furnace 1023C according to the third embodiment shown in FIG. 20 is a gasification furnace (so-called fluidized bed type gasification furnace) that forms a char bed δ (specifically a char fluidized bed) by flowing the char R. is there.
 ガス化炉1023Cは、図2に示すガス化炉102において、原料導入部102aを想定チャー層δxの最上部δxaよりも上方に設け、酸化剤導入部102dを想定チャー層δxの最下部δxbに臨む位置に設け、燃料ガス流出部102eを想定チャー層δxの最上部δxaよりも上方に設け、さらに調整制御部102pを設けたものである。 In the gasification furnace 1023C, in the gasification furnace 102 shown in FIG. 2, the material introduction part 102a is provided above the uppermost part δxa of the assumed char layer δx, and the oxidant introduction part 102d is provided at the lowermost part δxb of the assumed char layer δx. The fuel gas outflow part 102e is provided above the uppermost part δxa of the assumed char layer δx, and the adjustment control part 102p is further provided.
 なお、第3実施形態に係るガス化炉1023Cにおいて、原料導入部102aの配設位置と燃料ガス流出部102eの配設位置とを入れ替えてもよい。 In addition, in the gasification furnace 1023C according to the third embodiment, the arrangement position of the raw material introduction part 102a and the arrangement position of the fuel gas outflow part 102e may be switched.
 ガス化炉1023Cは、酸化剤Hと吸熱反応剤Mおよび熱容量剤Nの少なくとも一方とを調整する調整制御部102pをさらに備えている。調整制御部102pは、制御装置102gの一部を含んでいる。 The gasification furnace 1023C further includes an adjustment control unit 102p that adjusts the oxidizing agent H and at least one of the endothermic reactant M and the heat capacity agent N. The adjustment control unit 102p includes a part of the control device 102g.
 ここで、吸熱反応剤Mとしては、吸熱反応を起こさせるものであれば、何れのものを用いてもよく、例えば、水蒸気や二酸化炭素を挙げることができる。熱容量剤Nとしては、チャー層δの熱容量を大きくするものであれば、何れのものを用いてもよく。例えば、窒素を挙げることができる。 Here, as the endothermic reactant M, any one that causes an endothermic reaction may be used, and examples thereof include water vapor and carbon dioxide. Any heat capacity agent N may be used as long as it increases the heat capacity of the char layer δ. For example, nitrogen can be mentioned.
 酸化剤導入部102dにおける開口102dhは、酸化剤Hの導入方向が上方(具体的にはチャーRが堆積するチャーの堆積方向)または略上方に向くように形成されている。 The opening 102dh in the oxidant introduction part 102d is formed so that the introduction direction of the oxidant H is directed upward (specifically, the deposition direction of the char R is deposited) or substantially upward.
 この例では、炉102bは、それには限定されないが、幅(水平方向のサイズ)が図18に示すガス化炉1023Aにおける炉102bよりも大きくなっている。詳しくは、図18に示すガス化炉1023Aは、酸化剤Hの導入口が分かれており、原料Fを流動化させるための炉102bの下部からの酸化剤Hの量が少なくなるので、炉102b内の流速を上げるためには、炉102bの幅(具体的には径)を小さくする必要がある。一方で、図20に示すガス化炉1023Cは、炉102bの幅が大きくても全量が炉102bの下部から入ることと、吸熱反応剤Mおよび熱容量剤Nが加わるので流動化が可能である。原料導入部102aは、炉102bの頂面102b1に設けられ、燃料ガス流出部102eは、炉102bの側面102b2に設けられ、酸化剤導入部102dは、炉102bの底面102b3に設けられている。 In this example, the furnace 102b is not limited thereto, but the width (size in the horizontal direction) is larger than the furnace 102b in the gasification furnace 1023A shown in FIG. Specifically, the gasification furnace 1023A shown in FIG. 18 has a separate inlet for the oxidant H, and the amount of the oxidant H from the lower part of the furnace 102b for fluidizing the raw material F is reduced. In order to increase the internal flow rate, it is necessary to reduce the width (specifically, the diameter) of the furnace 102b. On the other hand, even if the width of the furnace 102b is large, the gasification furnace 1023C shown in FIG. 20 can be fluidized because the entire amount enters from the lower part of the furnace 102b and the endothermic reactant M and the heat capacity agent N are added. The raw material introduction portion 102a is provided on the top surface 102b1 of the furnace 102b, the fuel gas outflow portion 102e is provided on the side surface 102b2 of the furnace 102b, and the oxidant introduction portion 102d is provided on the bottom surface 102b3 of the furnace 102b.
 調整制御部102pは、酸化剤Hと吸熱反応剤Mとを調整するための第1調整部102p1、および、酸化剤Hと熱容量剤Nとを調整するための第2調整部102p2を備えている。吸熱反応剤導入部102iは、第1調整部102p1を介して酸化剤導入部102dに接続されている。熱容量剤導入部102jは、第1調整部102p1よりも下流側に第2調整部102p2を介して酸化剤導入部102dに接続されている。 The adjustment control unit 102p includes a first adjustment unit 102p1 for adjusting the oxidant H and the endothermic reactant M, and a second adjustment unit 102p2 for adjusting the oxidant H and the heat capacity agent N. . The endothermic reactant introduction unit 102i is connected to the oxidant introduction unit 102d via the first adjustment unit 102p1. The heat capacity agent introduction unit 102j is connected to the oxidant introduction unit 102d via the second adjustment unit 102p2 on the downstream side of the first adjustment unit 102p1.
 調整制御部102pは、第1調整部102p1を作動制御して第1調整部102p1にて酸化剤Hおよび吸熱反応剤Mを調整して適正に両者をバランスさせる、および/または、第2調整部102p2を作動制御して第2調整部102p2にて酸化剤Hおよび熱容量剤Nを調整して適正に両者をバランスさせる。 The adjustment control unit 102p controls the operation of the first adjustment unit 102p1 and adjusts the oxidant H and the endothermic reactant M in the first adjustment unit 102p1 to properly balance both and / or the second adjustment unit. 102p2 is controlled and the second adjusting unit 102p2 adjusts the oxidizing agent H and the heat capacity agent N so that they are properly balanced.
 なお、酸化剤Hと吸熱反応剤Mおよび熱容量剤Nの少なくとも一方とを切り替えるようにしてもよい。 In addition, you may make it switch at least one of the oxidizing agent H, the endothermic reactant M, and the heat capacity agent N.
 第3実施形態によると、原料Fが酸化域αを確実に落下する構成とすることができ、これにより、原料Fを酸化域αに所定時間範囲内で確実に通過させることができる。さらに、酸化剤Hと吸熱反応剤M(例えば水蒸気や二酸化炭素)および熱容量剤N(例えば窒素)の少なくとも一方とを調整することができ、これにより、原料Fの酸化域通過時間tpを短縮してチャー層δが所定温度または所定温度範囲から外れることを効果的に防止することができる。 According to the third embodiment, it can be configured that the raw material F surely falls in the oxidation zone α, and thus the raw material F can be reliably passed through the oxidation zone α within a predetermined time range. Furthermore, the oxidizing agent H and the endothermic reactant M (for example, water vapor or carbon dioxide) and / or the heat capacity agent N (for example, nitrogen) can be adjusted, thereby reducing the oxidation zone passage time tp of the raw material F. Thus, it is possible to effectively prevent the char layer δ from deviating from the predetermined temperature or the predetermined temperature range.
 (第4実施形態)
 図21に示す第4実施形態に係るガス化炉1023Dは、チャーRを噴流させて燃料ガスGを予め定めた所定の流れ方向Vに移動させるガス化炉(いわゆる噴流床式ガス化炉)である。
(Fourth embodiment)
A gasification furnace 1023D according to the fourth embodiment shown in FIG. 21 is a gasification furnace (so-called spouted bed type gasification furnace) in which the char R is jetted to move the fuel gas G in a predetermined flow direction V. is there.
 ガス化炉1023Dは、図2に示すガス化炉102において、原料導入部102aおよび酸化剤導入部102dを並列に設け、燃料ガス流出部102eを燃料ガスGの流れ方向Vにおいて原料導入部102aおよび酸化剤導入部102dよりも下流側に設け、さらに酸化剤導入量制御部102oを設けたものである。 A gasification furnace 1023D includes a raw material introduction part 102a and an oxidant introduction part 102d provided in parallel in the gasification furnace 102 shown in FIG. 2, and a fuel gas outflow part 102e in the flow direction V of the fuel gas G. This is provided downstream of the oxidant introduction part 102d and further provided with an oxidant introduction amount control part 102o.
 原料導入部102aにおける開口102ahは、原料Fの導入方向が燃料ガスGの流れ方向Vまたは略流れ方向Vに沿うように形成されている。酸化剤導入部102dにおける開口102dhは、酸化剤Hの導入方向が燃料ガスGの流れ方向Vまたは略流れ方向Vに沿うように形成されている。 The opening 102ah in the raw material introduction portion 102a is formed so that the introduction direction of the raw material F is along the flow direction V or substantially the flow direction V of the fuel gas G. The opening 102dh in the oxidant introduction portion 102d is formed so that the introduction direction of the oxidant H is along the flow direction V or substantially the flow direction V of the fuel gas G.
 詳しくは、燃料ガス流出部102eは、原料導入部102aおよび酸化剤導入部102dよりも上方に設けられている。 Specifically, the fuel gas outflow portion 102e is provided above the raw material introduction portion 102a and the oxidant introduction portion 102d.
 この例では、原料導入部102aおよび酸化剤導入部102dは、炉102bの下部(具体的には底面102b3)に設けられ、燃料ガス流出部102eは、炉102bの頂面102b1に設けられている。なお、燃料ガス流出部102eは、炉102bの側面102b2に設けられていてもよい。 In this example, the raw material introduction part 102a and the oxidant introduction part 102d are provided in the lower part (specifically, the bottom face 102b3) of the furnace 102b, and the fuel gas outflow part 102e is provided in the top face 102b1 of the furnace 102b. . The fuel gas outflow portion 102e may be provided on the side surface 102b2 of the furnace 102b.
 ガス化炉1023Dは、酸化剤Hの導入量を制御する酸化剤導入量制御部102oをさらに備えている。この例では、酸化剤導入部102dは、酸化剤導入量制御部102oを含んでいる。酸化剤導入量制御部102oは、制御装置102gの一部を含んでいる。 The gasifier 1023D further includes an oxidant introduction amount control unit 102o that controls the introduction amount of the oxidant H. In this example, the oxidant introduction unit 102d includes an oxidant introduction amount control unit 102o. The oxidant introduction amount control unit 102o includes a part of the control device 102g.
 なお、ガス化炉1023Dでは、炉102bから排出した燃料ガスGには、チャーRおよび/または灰Sが含まれているため、図示しない次工程の除去装置(例えばサイクロン)によりチャーRおよび/または灰Sが除去される。 In the gasification furnace 1023D, since the fuel gas G discharged from the furnace 102b contains char R and / or ash S, the char R and / or by a removal device (for example, a cyclone) (not shown) in the next process. Ash S is removed.
 第4実施形態によると、酸化剤Hと並行して原料Fを流すことができると共に、酸化剤Hの導入量を所定量(例えば風量)とすることができ、これにより、原料Fを酸化域αに所定時間範囲内で確実に通過させることができる。また、酸化域αを所定温度または所定温度範囲内に確実に制御することができる。 According to the fourth embodiment, the raw material F can be flowed in parallel with the oxidant H, and the introduction amount of the oxidant H can be set to a predetermined amount (for example, the air volume). α can be reliably passed within a predetermined time range. In addition, the oxidation zone α can be reliably controlled within a predetermined temperature or a predetermined temperature range.
 (第5実施形態)
 図22に示す第5実施形態に係るガス化炉1023Eは、図21に示すガス化炉1023Dにおいて、炉温度制御部102qを設けたものである。
(Fifth embodiment)
A gasification furnace 1023E according to the fifth embodiment shown in FIG. 22 is provided with a furnace temperature control unit 102q in the gasification furnace 1023D shown in FIG.
 ガス化炉1023Eは、炉温度制御部102qをさらに備えている。炉温度制御部102qは、制御装置102gの一部を含んでいる。 The gasification furnace 1023E further includes a furnace temperature control unit 102q. The furnace temperature control unit 102q includes a part of the control device 102g.
 詳しくは、炉温度制御部102qは、発熱体等の熱源102q1と、熱源102q1を駆動する駆動部102q2とを備えている。 Specifically, the furnace temperature control unit 102q includes a heat source 102q1 such as a heating element and a drive unit 102q2 for driving the heat source 102q1.
 熱源102q1は、炉102bの側面102b2に全面的に設けられている。熱電対102hは、検知した酸化域αの温度に関する電気信号を炉温度制御部102qに送信する。炉温度制御部102qは、酸化域αの温度に関する電気信号により酸化域αの温度が所定温度になるように駆動部102q2を制御して熱源102q1により炉102b内の温度を所定温度または所定温度範囲内に調整する。 The heat source 102q1 is provided on the entire side surface 102b2 of the furnace 102b. The thermocouple 102h transmits an electrical signal related to the detected temperature of the oxidation zone α to the furnace temperature control unit 102q. The furnace temperature control unit 102q controls the driving unit 102q2 so that the temperature of the oxidation region α becomes a predetermined temperature by an electrical signal related to the temperature of the oxidation region α, and the temperature in the furnace 102b is set to a predetermined temperature or a predetermined temperature range by the heat source 102q1. Adjust in.
 第5実施形態によると、酸化域αを所定温度または所定温度範囲内に安定的にかつ確実に制御することができる。 According to the fifth embodiment, the oxidation zone α can be stably and reliably controlled within a predetermined temperature or a predetermined temperature range.
 (第6実施形態)
 図23に示す第6実施形態に係るガス化炉1023Fは、炉102bを軸線回りに回転させながら燃料ガスGを予め定めた所定の流れ方向Vに移動させるガス化炉(いわゆるロータリキル式ガス化炉)である。
(Sixth embodiment)
A gasification furnace 1023F according to the sixth embodiment shown in FIG. 23 is a gasification furnace (so-called rotary kill type gasification furnace) that moves the fuel gas G in a predetermined flow direction V while rotating the furnace 102b around the axis. ).
 ガス化炉1023Fは、図2に示すガス化炉102において、炉102bを軸線回りに回転可能に傾斜させて、原料導入部102aおよび酸化剤導入部102dを燃料ガスGの流れ方向Vにおける上流側端面102b5に並列に設け、燃料ガス流出部102eを上流側端面102b5の対向面である下流側端面102b6に設け、さらに酸化剤導入量制御部102oを設けたものである。 The gasification furnace 1023F in the gasification furnace 102 shown in FIG. 2 is configured such that the furnace 102b is inclined so as to be rotatable about the axis, and the raw material introduction part 102a and the oxidant introduction part 102d are upstream in the flow direction V of the fuel gas G. The fuel gas outflow portion 102e is provided on the downstream end surface 102b6, which is the opposite surface of the upstream end surface 102b5, and the oxidant introduction amount control unit 102o is further provided in parallel with the end surface 102b5.
 また、原料導入部102aにおける開口102ahは、原料Fの導入方向が燃料ガスGの流れ方向Vまたは略流れ方向Vに沿うように形成されている。酸化剤導入部102dにおける開口102dhは、酸化剤Hの導入方向が燃料ガスGの流れ方向Vまたは略流れ方向Vに沿うように形成されている。 Further, the opening 102ah in the raw material introduction portion 102a is formed so that the introduction direction of the raw material F is along the flow direction V or substantially the flow direction V of the fuel gas G. The opening 102dh in the oxidant introduction portion 102d is formed so that the introduction direction of the oxidant H is along the flow direction V or substantially the flow direction V of the fuel gas G.
 ガス化炉1023Fは、酸化剤Hの導入量を制御する酸化剤導入量制御部102oをさらに備えている。この例では、酸化剤導入部102dは、酸化剤導入量制御部102oを含んでいる。酸化剤導入量制御部102oは、制御装置102gの一部を含んでいる。 The gasification furnace 1023F further includes an oxidant introduction amount control unit 102o that controls the introduction amount of the oxidant H. In this example, the oxidant introduction unit 102d includes an oxidant introduction amount control unit 102o. The oxidant introduction amount control unit 102o includes a part of the control device 102g.
 なお、原料Fの酸化域通過時間tpは、炉102bの長さや炉102bの回転速度で調整することができる。このことは、後述する第7実施形態から第13実施形態に係るガス化炉1023G~1023Mについても同様である。 In addition, the oxidation zone passage time tp of the raw material F can be adjusted by the length of the furnace 102b and the rotational speed of the furnace 102b. The same applies to gasifiers 1023G to 1023M according to seventh to thirteenth embodiments which will be described later.
 第6実施形態によると、酸化剤Hと並行して原料Fを流すことができると共に、酸化剤Hの導入量を所定量(例えば風量)とすることができ、これにより、原料Fを酸化域αに所定時間範囲内で確実に通過させることができる。さらに、酸化域αを所定温度または所定温度範囲内に確実に制御することができる。 According to the sixth embodiment, the raw material F can be flowed in parallel with the oxidant H, and the introduction amount of the oxidant H can be set to a predetermined amount (for example, the air volume). α can be reliably passed within a predetermined time range. Furthermore, the oxidation zone α can be reliably controlled within a predetermined temperature or a predetermined temperature range.
 (第7実施形態)
 図24に示す第7実施形態に係るガス化炉1023Gは、炉102bを軸線X回りに回転させながら燃料ガスGを予め定めた所定の流れ方向Vに移動させるガス化炉(いわゆるロータリキル式ガス化炉)である。
(Seventh embodiment)
A gasification furnace 1023G according to the seventh embodiment shown in FIG. 24 is a gasification furnace (so-called rotary kill gasification) that moves the fuel gas G in a predetermined flow direction V while rotating the furnace 102b about the axis X. Furnace).
 ガス化炉1023Gは、図2に示すガス化炉102において、炉102bを軸線回りに回転可能に傾斜させて、原料導入部102aを燃料ガスGの流れ方向Vにおける上流側端面102b5に設け、燃料ガス流出部102eを上流側端面102b5の対向面である下流側端面102b6に設け、複数(n個、nは2以上の整数)の酸化剤導入部102d(1)~102d(n)を上流側端面102b5と下流側端面102b6との間で燃料ガスGの流れ方向Vにおける上流側から下流側に順に設け、さらに複数の酸化剤導入量制御部102o(1)~102o(n)および複数の酸化剤温度制御部102r(1)~102r(n)を設けたものである。 In the gasification furnace 1023G, in the gasification furnace 102 shown in FIG. 2, the furnace 102b is tilted so as to be rotatable about the axis, and the raw material introduction part 102a is provided on the upstream end face 102b5 in the flow direction V of the fuel gas G. A gas outflow portion 102e is provided on the downstream end surface 102b6, which is the surface facing the upstream end surface 102b5, and a plurality (n, n is an integer of 2 or more) of oxidant introduction portions 102d (1) to 102d (n) are disposed upstream. Between the end surface 102b5 and the downstream end surface 102b6, the fuel gas G is provided in order from the upstream side to the downstream side in the flow direction V, and further includes a plurality of oxidant introduction amount control units 102o (1) to 102o (n) and a plurality of oxidations. Agent temperature controllers 102r (1) to 102r (n) are provided.
 ガス化炉1023Gは、複数の酸化剤導入部102d(1)~102d(n)と、複数の酸化剤導入量制御部102o(1)~102o(n)と、酸化剤Hの温度を制御する複数の酸化剤温度制御部102r(1)~102r(n)とをさらに備えている。この例では、複数の酸化剤導入部102d(1)~102d(n)は、複数の酸化剤導入量制御部102o(1)~102o(n)および複数の酸化剤温度制御部102r(1)~102r(n)をそれぞれ含んでいる。複数の酸化剤導入量制御部102o(1)~102o(n)および複数の酸化剤温度制御部102r(1)~102r(n)は、制御装置102gの一部を含んでいる。 The gasification furnace 1023G controls the temperature of the oxidant H and the plurality of oxidant introduction units 102d (1) to 102d (n), the plurality of oxidant introduction amount control units 102o (1) to 102o (n). A plurality of oxidant temperature controllers 102r (1) to 102r (n) are further provided. In this example, the plurality of oxidant introduction units 102d (1) to 102d (n) includes a plurality of oxidant introduction amount control units 102o (1) to 102o (n) and a plurality of oxidant temperature control units 102r (1). To 102r (n), respectively. The plurality of oxidant introduction amount controllers 102o (1) to 102o (n) and the plurality of oxidant temperature controllers 102r (1) to 102r (n) include a part of the controller 102g.
 複数の酸化剤導入量制御部102o(1)~102o(n)は、酸化剤導入部102d(1)~102d(n)の酸化剤Hの導入量をそれぞれ制御する。 The plurality of oxidant introduction amount control units 102o (1) to 102o (n) respectively control the introduction amount of the oxidant H of the oxidant introduction units 102d (1) to 102d (n).
 複数の酸化剤温度制御部102r(1)~102r(n)は、燃料ガスGの流れ方向Vにおける上流側から下流側に掛けて酸化剤の温度が次第に低くなるように、酸化剤導入量制御部102o(1)~102o(n)をそれぞれ作動制御する。 The plurality of oxidant temperature control units 102r (1) to 102r (n) controls the oxidant introduction amount so that the oxidant temperature gradually decreases from the upstream side to the downstream side in the flow direction V of the fuel gas G. The units 102o (1) to 102o (n) are controlled to operate.
 この例では、複数の酸化剤導入部102d(1)~102d(n)は、炉102bの側面102b2の下部に軸線X方向に沿って並設されている。 In this example, the plurality of oxidant introduction portions 102d (1) to 102d (n) are arranged in parallel along the axis X direction at the lower portion of the side surface 102b2 of the furnace 102b.
 第7実施形態によると、燃料ガスGの流れ方向Vにおける上流側から下流側に掛けて酸化剤Hの温度を次第に低くすることで、原料Fの酸化の促進に応じて酸化域αの酸化雰囲気温度を低くすることでき、これにより、酸化域αを所定温度または所定温度範囲内に確実に制御することができる。また、酸化剤Hの導入量を所定制御量(例えば制御風量)とすることができ、これにより、原料Fを酸化域αに所定時間範囲内で確実に通過させることができる。なお、炉102b内において酸化域αに隣接して燃料ガスGの流れ方向Vにおける下流側に低温域βを設けるようにしてもよい。 According to the seventh embodiment, the temperature of the oxidant H is gradually lowered from the upstream side to the downstream side in the flow direction V of the fuel gas G, so that the oxidation atmosphere of the oxidation zone α is increased according to the promotion of the oxidation of the raw material F. The temperature can be lowered, so that the oxidation zone α can be reliably controlled within a predetermined temperature or a predetermined temperature range. Moreover, the introduction amount of the oxidizing agent H can be set to a predetermined control amount (for example, control air amount), whereby the raw material F can be reliably passed through the oxidation region α within a predetermined time range. In the furnace 102b, a low temperature region β may be provided on the downstream side in the flow direction V of the fuel gas G adjacent to the oxidation region α.
 (第8実施形態)
 図25に示す第8実施形態に係るガス化炉1023Hは、図24に示すガス化炉1023Gにおいて、複数の酸化剤温度制御部102r(1)~102r(n)に代えて複数の酸化剤濃度制御部102s(1)~102s(n)を設けたものである。
(Eighth embodiment)
A gasification furnace 1023H according to the eighth embodiment shown in FIG. 25 is different from the gasification furnace 1023G shown in FIG. 24 in that a plurality of oxidant concentrations are used instead of the plurality of oxidant temperature control units 102r (1) to 102r (n). Control units 102s (1) to 102s (n) are provided.
 ガス化炉1023Gは、複数の酸化剤導入部102d(1)~102d(n)と、複数の酸化剤導入量制御部102o(1)~102o(n)と、酸化剤Hの濃度(例えば酸素濃度や空気濃度)を制御する複数の酸化剤濃度制御部102s(1)~102s(n)とをさらに備えている。この例では、複数の酸化剤導入部102d(1)~102d(n)は、複数の酸化剤導入量制御部102o(1)~102o(n)および複数の酸化剤濃度制御部102s(1)~102s(n)をそれぞれ含んでいる。複数の酸化剤導入量制御部102o(1)~102o(n)および複数の酸化剤濃度制御部102s(1)~102s(n)は、制御装置102gの一部を含んでいる。 The gasifier 1023G includes a plurality of oxidant introduction units 102d (1) to 102d (n), a plurality of oxidant introduction amount control units 102o (1) to 102o (n), and a concentration of oxidant H (for example, oxygen It further includes a plurality of oxidant concentration control units 102s (1) to 102s (n) for controlling the concentration and the air concentration. In this example, the plurality of oxidant introduction units 102d (1) to 102d (n) includes a plurality of oxidant introduction amount control units 102o (1) to 102o (n) and a plurality of oxidant concentration control units 102s (1). To 102 s (n), respectively. The plurality of oxidant introduction amount controllers 102o (1) to 102o (n) and the plurality of oxidant concentration controllers 102s (1) to 102s (n) include a part of the controller 102g.
 複数の酸化剤導入量制御部102o(1)~102o(n)は、酸化剤導入部102d(1)~102d(n)の酸化剤Hの導入量(例えば酸素量や空気量)をそれぞれ制御する。 The plurality of oxidant introduction amount control units 102o (1) to 102o (n) respectively control the introduction amount (for example, oxygen amount and air amount) of the oxidant H of the oxidant introduction units 102d (1) to 102d (n). To do.
 複数の酸化剤濃度制御部102s(1)~102s(n)は、複数の酸化剤導入量制御部102o(1)~102o(n)にそれぞれ設けられた酸化剤ボンベを備え、貯留される酸化剤Hの濃度(例えば酸素濃度や空気濃度)が燃料ガスGの流れ方向Vにおける上流側から下流側に掛けて次第に低くなっている。 The plurality of oxidant concentration control units 102s (1) to 102s (n) include oxidant cylinders provided in the plurality of oxidant introduction amount control units 102o (1) to 102o (n), respectively, and the stored oxidation. The concentration of the agent H (for example, oxygen concentration or air concentration) gradually decreases from the upstream side to the downstream side in the flow direction V of the fuel gas G.
 第8実施形態によると、燃料ガスGの流れ方向Vにおける上流側から下流側に掛けて酸化剤Hの濃度(例えば酸素濃度や空気濃度)を次第に低くすることで、原料Fの酸化の促進に応じて酸化域αの酸化雰囲気温度を低くすることでき、これにより、酸化域αを所定温度または所定温度範囲内に確実に制御することができる。また、酸化剤Hの導入量を所定制御量(例えば制御風量)とすることができ、これにより、原料Fを酸化域αに所定時間範囲内で確実に通過させることができる。なお、炉102b内において酸化域αに隣接して燃料ガスGの流れ方向Vにおける下流側に低温域βを設けるようにしてもよい。 According to the eighth embodiment, the oxidation of the raw material F is promoted by gradually reducing the concentration of the oxidant H (for example, oxygen concentration or air concentration) from the upstream side to the downstream side in the flow direction V of the fuel gas G. Accordingly, the oxidation atmosphere temperature in the oxidation region α can be lowered, and thus the oxidation region α can be reliably controlled within a predetermined temperature or a predetermined temperature range. Moreover, the introduction amount of the oxidizing agent H can be set to a predetermined control amount (for example, control air amount), whereby the raw material F can be reliably passed through the oxidation region α within a predetermined time range. In the furnace 102b, a low temperature region β may be provided on the downstream side in the flow direction V of the fuel gas G adjacent to the oxidation region α.
 (第9実施形態)
 図26に示す第9実施形態に係るガス化炉1023Iは、炉102bを軸線回りに回転させながら燃料ガスGを予め定めた所定の流れ方向Vに移動させるガス化炉(いわゆるロータリキル式ガス化炉)である。
(Ninth embodiment)
A gasification furnace 1023I according to the ninth embodiment shown in FIG. 26 is a gasification furnace (so-called rotary kill type gasification furnace) that moves the fuel gas G in a predetermined flow direction V while rotating the furnace 102b around the axis. ).
 ガス化炉1023Iは、図2に示すガス化炉102において、炉102bを軸線回りに回転可能に傾斜させて、原料導入部102aを燃料ガスGの流れ方向Vにおける上流側端面102b5に設け、燃料ガス流出部102eを上流側端面102b5の対向面である下流側端面102b6に設け、酸化剤導入部102dを上流側端面102b5と下流側端面102b6との間で燃料ガスGの流れ方向Vにおける上流側に設け、酸化剤導入部102dに下流側に吸熱反応剤導入部102iおよび熱容量剤導入部102jのうち少なくとも一方(この例では双方)を設け、さらに酸化剤導入量制御部102oを設けたものである。 In the gasification furnace 1023I, in the gasification furnace 102 shown in FIG. 2, the raw material introduction part 102a is provided on the upstream end face 102b5 in the flow direction V of the fuel gas G by tilting the furnace 102b so as to be rotatable about the axis. The gas outflow portion 102e is provided on the downstream end surface 102b6, which is the surface facing the upstream end surface 102b5, and the oxidant introduction portion 102d is located upstream in the fuel gas G flow direction V between the upstream end surface 102b5 and the downstream end surface 102b6. The oxidant introduction part 102d is provided with at least one of the endothermic reactant introduction part 102i and the heat capacity agent introduction part 102j (both in this example) on the downstream side, and further provided with the oxidant introduction amount control part 102o. is there.
 ガス化炉1023Iは、酸化剤導入部102dの酸化剤Hの導入量を制御する酸化剤導入量制御部102oと、吸熱反応剤Mを導入する吸熱反応剤導入部102iと、熱容量剤Nを導入する熱容量剤導入部102jとをさらに備えている。吸熱反応剤導入部102iおよび熱容量剤導入部102jは、燃料ガスGの流れ方向Vにおいて、酸化剤導入部102dよりも下流側に設けられている。吸熱反応剤導入部102iおよび熱容量剤導入部102jは、流れ方向Vにおいて、何れか一方が下流側であっても、上流側であってもよいし、また、揃ってまたは略揃っていてもよい。ガス化炉1023Iは、吸熱反応剤Mおよび熱容量剤Nの何れか一方を導入する場合には、吸熱反応剤導入部102iおよび熱容量剤導入部102jの何れか一方を備えていてもよい。酸化剤導入量制御部102oは、制御装置102gの一部を含んでいる。 The gasification furnace 1023I introduces an oxidant introduction amount control unit 102o that controls the introduction amount of the oxidant H in the oxidant introduction unit 102d, an endothermic reactant introduction unit 102i that introduces the endothermic reactant M, and a heat capacity agent N. And a heat capacity agent introducing portion 102j. The endothermic reactant introduction part 102i and the heat capacity agent introduction part 102j are provided downstream of the oxidant introduction part 102d in the flow direction V of the fuel gas G. Either one of the endothermic reactant introduction part 102i and the heat capacity agent introduction part 102j may be downstream or upstream in the flow direction V, or may be aligned or substantially aligned. . When introducing either one of the endothermic reactant M and the heat capacity agent N, the gasification furnace 1023I may include either one of the endothermic reactant introduction section 102i and the heat capacity agent introduction section 102j. The oxidant introduction amount control unit 102o includes a part of the control device 102g.
 この例では、酸化剤導入部102dは、酸化剤導入量制御部102oを含んでいる。酸化剤導入量制御部102o、吸熱反応剤導入部102iおよび熱容量剤導入部102jは、炉102bの側面102b2の下部に軸線X方向に沿って並設されている。 In this example, the oxidant introduction unit 102d includes an oxidant introduction amount control unit 102o. The oxidant introduction amount control unit 102o, the endothermic reactant introduction unit 102i, and the heat capacity agent introduction unit 102j are juxtaposed along the axis X direction below the side surface 102b2 of the furnace 102b.
 第9実施形態によると、吸熱反応剤M(例えば水蒸気や二酸化炭素)の吸熱反応若しくは吸熱反応剤M(例えば低温物質)投入による冷却効果、および/または、熱容量剤N(例えば窒素)によるチャー層δの熱容量向上効果で、原料Fの酸化の促進に応じて酸化域の酸化雰囲気温度を低くすることでき、これにより、酸化域αを所定温度または所定温度範囲内に確実に制御することができる。また、酸化剤Hの導入量を所定制御量(例えば制御風量)とすることができ、これにより、原料Fを酸化域αに所定時間範囲内で確実に通過させることができる。なお、炉102b内において酸化域αに隣接して燃料ガスGの流れ方向Vにおける下流側に低温域βを設けるようにしてもよい。 According to the ninth embodiment, an endothermic reaction of an endothermic reactant M (for example, water vapor or carbon dioxide) or a cooling effect by adding an endothermic reactant M (for example, a low temperature substance) and / or a char layer by a heat capacity agent N (for example, nitrogen). With the effect of improving the heat capacity of δ, the oxidation atmosphere temperature in the oxidation region can be lowered in accordance with the promotion of the oxidation of the raw material F, whereby the oxidation region α can be reliably controlled within a predetermined temperature or a predetermined temperature range. . Moreover, the introduction amount of the oxidizing agent H can be set to a predetermined control amount (for example, control air amount), whereby the raw material F can be reliably passed through the oxidation region α within a predetermined time range. In the furnace 102b, a low temperature region β may be provided on the downstream side in the flow direction V of the fuel gas G adjacent to the oxidation region α.
 (第10実施形態)
 図27に示す第10実施形態に係るガス化炉1023Jは、炉102bを軸線X回りに回転させながら燃料ガスGを予め定めた所定の流れ方向Vに移動させるガス化炉(いわゆるロータリキル式ガス化炉)である。
(10th Embodiment)
A gasification furnace 1023J according to the tenth embodiment shown in FIG. 27 is a gasification furnace (so-called rotary kill gasification) that moves the fuel gas G in a predetermined flow direction V while rotating the furnace 102b about the axis X. Furnace).
 ガス化炉1023Jは、図2に示すガス化炉102において、炉102bを軸線回りに回転可能に傾斜させて、原料導入部102aを燃料ガスGの流れ方向Vにおける上流側端面102b5に設け、燃料ガス流出部102eを上流側端面102b5の対向面である下流側端面102b6に設け、酸化剤導入部102dを上流側端面102b5と下流側端面102b6との間に設け、さらに複数の酸化剤導入量制御部102o(1)~102o(m)(mは2以上の整数、この例ではm=2)、複数の酸化剤温度制御部102r(1)~102r(m)および酸化剤温度切替制御部102tを設けたものである。 In the gasification furnace 1023J, in the gasification furnace 102 shown in FIG. 2, the raw material introduction part 102a is provided on the upstream end face 102b5 in the flow direction V of the fuel gas G by tilting the furnace 102b so as to be rotatable about the axis. The gas outflow portion 102e is provided on the downstream end surface 102b6, which is the surface facing the upstream end surface 102b5, the oxidant introduction portion 102d is provided between the upstream end surface 102b5 and the downstream end surface 102b6, and a plurality of oxidant introduction amount controls. Units 102o (1) to 102o (m) (m is an integer equal to or greater than 2, m = 2 in this example), a plurality of oxidant temperature control units 102r (1) to 102r (m), and an oxidant temperature switching control unit 102t Is provided.
 ガス化炉1023Jは、酸化剤導入部102dの酸化剤Hの導入量をそれぞれ制御する複数の酸化剤導入量制御部102o(1)~102o(m)と、酸化剤H(Ha(1)~Ha(m))の温度を制御する複数の酸化剤温度制御部102r(1)~102r(m)と、互いに異なる複数種類の温度の酸化剤H(Ha(1)~Ha(m))を切り替える酸化剤温度切替制御部102tとをさらに備えている。この例では、酸化剤導入部102dは、複数の酸化剤導入量制御部102o(1)~102o(m)、複数の酸化剤温度制御部102r(1)~102r(m)および酸化剤温度切替制御部102tを含んでいる。 The gasifier 1023J includes a plurality of oxidant introduction amount control units 102o (1) to 102o (m) that respectively control the introduction amount of the oxidant H in the oxidant introduction unit 102d, and oxidant H (Ha (1) to A plurality of oxidant temperature controllers 102r (1) to 102r (m) for controlling the temperature of Ha (m)) and oxidants H (Ha (1) to Ha (m)) having a plurality of different temperatures from each other. An oxidant temperature switching control unit 102t for switching is further provided. In this example, the oxidant introduction unit 102d includes a plurality of oxidant introduction amount control units 102o (1) to 102o (m), a plurality of oxidant temperature control units 102r (1) to 102r (m), and an oxidant temperature switching. A control unit 102t is included.
 複数の酸化剤導入量制御部102o(1)~102o(m)、複数の酸化剤温度制御部102r(1)~102r(m)および酸化剤温度切替制御部102tは、制御装置102gの一部を含んでいる。 The plurality of oxidant introduction amount control units 102o (1) to 102o (m), the plurality of oxidant temperature control units 102r (1) to 102r (m), and the oxidant temperature switching control unit 102t are part of the control device 102g. Is included.
 複数の酸化剤温度制御部102r(1)~102r(m)は、酸化剤Ha(1)~Ha(m)の温度が異なる温度になるように、酸化剤導入量制御部102o(1)~102o(m)をそれぞれ作動制御する。 The plurality of oxidant temperature control units 102r (1) to 102r (m) has the oxidant introduction amount control units 102o (1) to 102o (1) 102o (m) is controlled to operate.
 酸化剤温度切替制御部102tは、複数の酸化剤温度制御部102r(1)~102r(m)にて互いに異なる温度にされた酸化剤Ha(1)~Ha(m)のうち何れか一つを選択的に切り替える。 The oxidant temperature switching control unit 102t is any one of the oxidants Ha (1) to Ha (m) that are set to different temperatures by the plurality of oxidant temperature control units 102r (1) to 102r (m). To switch selectively.
 第10実施形態によると、互いに異なる複数種類の温度の酸化剤Ha(1)~Ha(m)を切り替えることで、酸化域αを所定温度または所定温度範囲内に確実に制御することができる。また、酸化剤Hの導入量を所定制御量(例えば制御風量)とすることができ、これにより、原料Fを酸化域αに所定時間範囲内で確実に通過させることができる。 According to the tenth embodiment, the oxidation zone α can be reliably controlled within a predetermined temperature or a predetermined temperature range by switching the oxidants Ha (1) to Ha (m) having a plurality of different temperatures. Moreover, the introduction amount of the oxidizing agent H can be set to a predetermined control amount (for example, control air amount), whereby the raw material F can be reliably passed through the oxidation region α within a predetermined time range.
 (第11実施形態)
 図28に示す第11実施形態に係るガス化炉1023Kは、図27に示すガス化炉1023Jにおいて、複数の酸化剤温度制御部102r(1)~102r(m)および酸化剤温度切替制御部102tに代えて複数の酸化剤濃度制御部102s(1)~102s(m)および酸化剤濃度切替制御部102uを設けたものである。
(Eleventh embodiment)
A gasification furnace 1023K according to the eleventh embodiment shown in FIG. 28 is similar to the gasification furnace 1023J shown in FIG. 27, but includes a plurality of oxidant temperature control units 102r (1) to 102r (m) and an oxidant temperature switching control unit 102t. Instead, a plurality of oxidant concentration control units 102s (1) to 102s (m) and an oxidant concentration switching control unit 102u are provided.
 ガス化炉1023Kは、酸化剤導入部102dの酸化剤Hの導入量をそれぞれ制御する複数の酸化剤導入量制御部102o(1)~102o(m)と、酸化剤H(Hb(1)~Hb(m))の濃度(例えば酸素濃度や空気濃度)を制御する複数の酸化剤濃度制御部102s(1)~102s(m)と、互いに異なる複数種類の濃度(例えば酸素濃度や空気濃度)の酸化剤H(Hb(1)~Hb(m))を切り替える酸化剤濃度切替制御部102uとをさらに備えている。この例では、酸化剤導入部102dは、複数の酸化剤導入量制御部102o(1)~102o(m)、複数の酸化剤濃度制御部102s(1)~102s(m)および酸化剤濃度切替制御部102uを含んでいる。 The gasifier 1023K includes a plurality of oxidant introduction amount control units 102o (1) to 102o (m) that respectively control the introduction amount of the oxidant H in the oxidant introduction unit 102d, and the oxidant H (Hb (1) to Hb (m)) concentration (for example, oxygen concentration and air concentration), a plurality of oxidant concentration control units 102s (1) to 102s (m), and a plurality of different concentrations (for example, oxygen concentration and air concentration). And an oxidant concentration switching control unit 102u for switching the oxidant H (Hb (1) to Hb (m)). In this example, the oxidant introduction unit 102d includes a plurality of oxidant introduction amount control units 102o (1) to 102o (m), a plurality of oxidant concentration control units 102s (1) to 102s (m), and an oxidant concentration switching. A control unit 102u is included.
 複数の酸化剤導入量制御部102o(1)~102o(m)、複数の酸化剤濃度制御部102s(1)~102s(m)および酸化剤温度切替制御部102tは、制御装置102gの一部を含んでいる。 The plurality of oxidant introduction amount control units 102o (1) to 102o (m), the plurality of oxidant concentration control units 102s (1) to 102s (m), and the oxidant temperature switching control unit 102t are part of the control device 102g. Is included.
 複数の酸化剤導入量制御部102o(1)~102o(m)は、酸化剤H(Hb(1)~Hb(m))の導入量(例えば酸素量や空気量)をそれぞれ制御する。 The plurality of oxidant introduction amount control units 102o (1) to 102o (m) respectively control the introduction amount (for example, oxygen amount and air amount) of the oxidant H (Hb (1) to Hb (m)).
 複数の酸化剤濃度制御部102s(1)~102s(m)は、複数の酸化剤導入量制御部102o(1)~102o(m)にそれぞれ設けられた酸化剤ボンベを備え、貯留される酸化剤Hの濃度(例えば酸素濃度や空気濃度)が互いに異なっている。 The plurality of oxidant concentration control units 102s (1) to 102s (m) include oxidant cylinders provided in the plurality of oxidant introduction amount control units 102o (1) to 102o (m), respectively, and stored oxidation. The concentrations of the agent H (for example, oxygen concentration and air concentration) are different from each other.
 酸化剤濃度切替制御部102uは、複数の酸化剤濃度制御部102s(1)~102s(m)にて互いに異なる濃度(例えば酸素濃度や空気濃度)にされた酸化剤Hb(1)~Hb(m)のうち何れか一つを選択的に切り替える。 The oxidant concentration switching control unit 102u includes oxidants Hb (1) to Hb () having different concentrations (for example, oxygen concentration and air concentration) in the plurality of oxidant concentration control units 102s (1) to 102s (m). m) is selectively switched.
 第11実施形態によると、互いに異なる複数種類の濃度(例えば酸素濃度や空気濃度)の酸化剤Hを切り替えることで、酸化域αを所定温度または所定温度範囲内に確実に制御することができる。また、酸化剤Hの導入量を所定制御量(例えば制御風量)とすることができ、これにより、原料Fを酸化域αに所定時間範囲内で確実に通過させることができる。 According to the eleventh embodiment, the oxidation region α can be reliably controlled within a predetermined temperature or a predetermined temperature range by switching the oxidant H having a plurality of different concentrations (for example, oxygen concentration and air concentration). Moreover, the introduction amount of the oxidizing agent H can be set to a predetermined control amount (for example, control air amount), whereby the raw material F can be reliably passed through the oxidation region α within a predetermined time range.
 (第12実施形態)
 図29に示す第12実施形態に係るガス化炉1023Lは、図23に示すガス化炉1023Fにおいて、炉温度制御部102qを設けたものである。
(Twelfth embodiment)
A gasification furnace 1023L according to the twelfth embodiment shown in FIG. 29 is obtained by providing a furnace temperature control unit 102q in the gasification furnace 1023F shown in FIG.
 ガス化炉1023Lは、炉温度制御部102qをさらに備えている。炉温度制御部102qは、制御装置102gの一部を含んでいる。 The gasification furnace 1023L further includes a furnace temperature control unit 102q. The furnace temperature control unit 102q includes a part of the control device 102g.
 詳しくは、炉温度制御部102qは、発熱体等の熱源102q1と、熱源102q1を駆動する駆動部102q2とを備えている。 Specifically, the furnace temperature control unit 102q includes a heat source 102q1 such as a heating element and a drive unit 102q2 for driving the heat source 102q1.
 熱源102q1は、炉102bの側面102b2に全面的に設けられている。熱電対102hは、検知した酸化域αの温度に関する電気信号を炉温度制御部102qに送信する。炉温度制御部102qは、酸化域αの温度に関する電気信号により酸化域αの温度が所定温度になるように駆動部102q2を制御して熱源102q1により炉102b内の温度を所定温度または所定温度範囲内に調整する。 The heat source 102q1 is provided on the entire side surface 102b2 of the furnace 102b. The thermocouple 102h transmits an electrical signal related to the detected temperature of the oxidation zone α to the furnace temperature control unit 102q. The furnace temperature control unit 102q controls the driving unit 102q2 so that the temperature of the oxidation region α becomes a predetermined temperature by an electrical signal related to the temperature of the oxidation region α, and the temperature in the furnace 102b is set to a predetermined temperature or a predetermined temperature range by the heat source 102q1. Adjust in.
 第12実施形態によると、酸化域αを所定温度または所定温度範囲内に安定的にかつ確実に制御することができる。 According to the twelfth embodiment, the oxidation zone α can be stably and reliably controlled within a predetermined temperature or a predetermined temperature range.
 (第13実施形態)
 図30に示す第13実施形態に係るガス化炉1023Mは、図29に示すガス化炉1023Lにおいて、炉温度制御部102qを設ける領域を小さくしたものである。
(13th Embodiment)
A gasification furnace 1023M according to the thirteenth embodiment shown in FIG. 30 is obtained by reducing the area in which the furnace temperature control unit 102q is provided in the gasification furnace 1023L shown in FIG.
 熱源102q1は、燃料ガスGの流れ方向Vにおいて、炉102bの側面102b2の上流側の一部(この例では半分だけ)に設けられている。熱電対102hは、炉102b内において熱源102q1に対応する領域の温度を検知する。 The heat source 102q1 is provided in a part of the upstream side of the side surface 102b2 of the furnace 102b (only half in this example) in the flow direction V of the fuel gas G. The thermocouple 102h detects the temperature of the region corresponding to the heat source 102q1 in the furnace 102b.
 第13実施形態によると、原料Fの酸化の促進に応じて酸化域αの酸化雰囲気温度を低くすることでき、これにより、酸化域αを所定温度または所定温度範囲内に確実に制御することができる。なお、炉102b内において酸化域αに隣接して燃料ガスGの流れ方向Vにおける下流側に低温域βを設けるようにしてもよい。 According to the thirteenth embodiment, the oxidation atmosphere temperature of the oxidation region α can be lowered in accordance with the promotion of the oxidation of the raw material F, whereby the oxidation region α can be reliably controlled within a predetermined temperature or a predetermined temperature range. it can. In the furnace 102b, a low temperature region β may be provided on the downstream side in the flow direction V of the fuel gas G adjacent to the oxidation region α.
 本発明は、以上説明した実施の形態に限定されるものではなく、他のいろいろな形で実施することができる。そのため、かかる実施の形態はあらゆる点で単なる例示にすぎず、限定的に解釈してはならない。本発明の範囲は請求の範囲によって示すものであって、明細書本文には、なんら拘束されない。さらに、請求の範囲の均等範囲に属する変形や変更は、全て本発明の範囲内のものである。 The present invention is not limited to the embodiment described above, and can be implemented in various other forms. Therefore, such an embodiment is merely an example in all respects and should not be interpreted in a limited manner. The scope of the present invention is shown by the scope of claims, and is not restricted by the text of the specification. Further, all modifications and changes belonging to the equivalent scope of the claims are within the scope of the present invention.
 この出願は、2016年1月15日に日本で出願された特願2016-006511号、特願2016-006512号、特願2016-006513号、特願2016-006514号および特願2016-006515号に基づく優先権を請求する。これらに言及することにより、それらの全ての内容は本出願に組み込まれるものである。 This application includes Japanese Patent Application Nos. 2016-006511, 2016-006512, 2016-006513, 2016-006514, and 2016-006515 filed in Japan on January 15, 2016. Claim priority based on. By referring to these, the entire contents thereof are incorporated into the present application.
 本発明は、原料を酸化して生成ガスを生成するガス化炉およびガス化炉の運転方法に係るものであり、特に、生成ガスを生成するに当たって、タールの発生と結晶性シリカの生成との双方の抑制を同時的に両立させるための用途に適用できる。 The present invention relates to a gasification furnace that oxidizes a raw material to generate a product gas, and an operation method of the gasification furnace, and in particular, in generating the product gas, generation of tar and generation of crystalline silica The present invention can be applied to a use for making both suppressions compatible simultaneously.
100     ガス化装置
101     貯留ホッパ
102     ガス化炉
1021A~G ガス化炉
1022A~D ガス化炉
1023A~M ガス化炉
102a    原料導入部
102a1   原料導入コンベア
102a2   原料導入フィーダー
102ah   開口
102b    炉
102b1   頂面
102b2   側面
102b3   底面
102b4   受け皿部
102b5   上流側端面
102b6   下流側端面
102c    予熱部
102c1   ガス供給部
102c2   ガスボンベ
102d    酸化剤導入部
102dh   開口
102e    燃料ガス流出部
102eh   流出口
102f    排出部
102f1   灰排出コンベア
102g    制御装置
102g1   処理部
102g2   記憶部
102h    熱電対
102i    吸熱反応剤導入部
102j    熱容量剤導入部
102k    チャー層温度制御部
102k1   熱交換部
102k2   供給部
102k3   排出部
102k4   熱電対
102l    仕切り装置
102l1   仕切り部
102l2   作動部
102la   通過孔
102m    酸化剤接触時間制御部
102n    チャー堆積時間制御部
102o    酸化剤導入量制御部
102p    調整制御部
102p1   第1調整部
102p2   第2調整部
102q    炉温度制御部
102q1   熱源
102q2   駆動部
102r    酸化剤温度制御部
102s    酸化剤濃度制御部
102t    酸化剤温度切替制御部
102u    酸化剤濃度切替制御部
103     バグフィルタ
104     ガス冷却器
105     スクラバー
106     循環水槽
107     冷却塔
108     ガスフィルター
109     誘引ブロワ
110     前処理ユニット
111     ガスエンジン
112     水封槽
113     余剰ガス燃焼装置
113a    余剰ガス燃焼部
A~E     設定値
F       原料
G       燃料ガス
H       酸化剤
Ha      酸化剤
Hb      酸化剤
Kc      含有濃度
M       吸熱反応剤
N       熱容量剤
R       チャー
S       灰
T       酸化雰囲気温度
Tc      結晶性シリカ生成温度
V       流れ方向
W       熱交換媒体
X       軸線
a~d     定数
g       可燃性ガス
t       結晶性シリカ生成許容時間
tc      結晶性シリカ生成温度到達時間
tmin    タール発生許容時間
tp      酸化域通過時間
α       酸化域
β       低温域
γ       燃焼ガス層
δ       チャー層
δa      頂部
δx      想定チャー層
δxa     最上部
δxb     最下部
κ       相関関数の式
ρ       相関関係
DESCRIPTION OF SYMBOLS 100 Gasifier 101 Storage hopper 102 Gasifier 1022A-G Gasifier 1022A-D Gasifier 1022A-M Gasifier 102a Raw material introduction part 102a1 Raw material introduction conveyor 102a2 Raw material introduction feeder 102ah Opening 102b Furnace 102b1 Top surface 102b2 Side surface 102b3 bottom surface 102b4 tray part 102b5 upstream end face 102b6 downstream end face 102c preheating part 102c1 gas supply part 102c2 gas cylinder 102d oxidant introduction part 102dh opening 102e fuel gas outflow part 102eh outlet 102f discharge part 102f1 ash discharge conveyor 102g control unit 102g1 processing part 102g2 storage unit 102h thermocouple 102i endothermic reactant introduction unit 102j heat capacity agent introduction unit 102k Layer temperature control unit 102k1 Heat exchange unit 102k2 Supply unit 102k3 Discharge unit 102k4 Thermocouple 102l Partition device 102l1 Partition unit 102l2 Actuator 102la Passing hole 102m Oxidant contact time control unit 102n Char deposition time control unit 102o Oxidant introduction amount control unit 102p Adjustment control unit 102p1 First adjustment unit 102p2 Second adjustment unit 102q Furnace temperature control unit 102q1 Heat source 102q2 Drive unit 102r Oxidant temperature control unit 102s Oxidant concentration control unit 102t Oxidant temperature switching control unit 102u Oxidant temperature switching control unit 103 Bag filter 104 Gas cooler 105 Scrubber 106 Circulating water tank 107 Cooling tower 108 Gas filter 109 Induction blower 110 Pretreatment unit 111 Gas engine 112 Water seal tank 113 Surplus gas combustion device 113a Surplus gas combustion section A to E Set value F Raw material G Fuel gas H Oxidant Ha Oxidant Hb Oxidant Kc Concentration M Endothermic reactant N Heat capacity agent R Char S Ash T Oxidation Atmospheric temperature Tc Crystalline silica generation temperature V Flow direction W Heat exchange medium X Axis ad constant g Flammable gas t Crystalline silica generation allowable time tc Crystalline silica generation temperature arrival time tmin Tar generation allowable time tp Oxidation zone passage time α Oxidation region β Low temperature region γ Combustion gas layer δ Char layer δa Top portion δx Expected char layer δxa Uppermost portion δxb Lowermost portion κ Expression of correlation function ρ Correlation

Claims (27)

  1.  原料を酸化して生成ガスを生成するガス化炉であって、
     前記原料を酸化する酸化域を予め定めた所定温度または所定温度範囲に維持する手段を設け、前記原料を前記酸化域に予め定めた所定時間範囲内で通過させる手段を設けたことを特徴とするガス化炉。
    A gasification furnace that generates a product gas by oxidizing a raw material,
    Means is provided for maintaining an oxidation zone for oxidizing the raw material at a predetermined temperature or a predetermined temperature range, and means for passing the raw material through the oxidation zone within a predetermined time range is provided. Gasification furnace.
  2.  請求項1に記載のガス化炉であって、
     前記所定温度または前記所定温度範囲は、タールが熱分解するために必要な温度であるタール熱分解温度以上の温度または該温度を中央温度とする温度範囲であり、
     前記所定時間範囲は、タールの発生を許容レベル以下に抑えるために必要な時間であるタール発生許容時間以上、かつ、結晶性シリカの生成を許容レベル以下に抑えるための時間である結晶性シリカ生成許容時間以下であることを特徴とするガス化炉。
    The gasification furnace according to claim 1, wherein
    The predetermined temperature or the predetermined temperature range is a temperature equal to or higher than the tar thermal decomposition temperature, which is a temperature necessary for thermal decomposition of tar, or a temperature range having the temperature as a central temperature.
    The predetermined time range is longer than the allowable tar generation time, which is a time necessary for suppressing the generation of tar below the allowable level, and is a time required to suppress the generation of crystalline silica below the allowable level. A gasification furnace characterized by having an allowable time or less.
  3.  請求項1または請求項2に記載のガス化炉であって、
     前記酸化域の酸化雰囲気温度と、前記原料が前記酸化域に入った時点から該原料自身の温度が結晶性シリカを生成する温度である結晶性シリカ生成温度に達するまでの時間である結晶性シリカ生成温度到達時間との相関関係に基づいて前記所定温度または前記所定温度範囲の中央温度および前記所定時間範囲内で前記原料が前記酸化域を通過する時間である酸化域通過時間を決定する手段を設けたことを特徴とするガス化炉。
    The gasification furnace according to claim 1 or 2, wherein
    Crystalline silica, which is the oxidizing atmosphere temperature in the oxidation region and the time from when the raw material enters the oxidation region until the temperature of the raw material itself reaches the crystalline silica formation temperature, which is the temperature at which crystalline silica is generated Means for determining an oxidation zone passage time, which is a time during which the raw material passes through the oxidation zone within the predetermined time range and a central temperature of the predetermined temperature or the predetermined temperature range based on a correlation with a generation temperature arrival time; A gasification furnace characterized by being provided.
  4.  請求項3に記載のガス化炉であって、
     前記相関関係は、以下の式[1]で示される相関関数の式に対応することを特徴とするガス化炉。
    Figure JPOXMLDOC01-appb-M000001
     但し、前記式[1]において、Tは、前記酸化雰囲気温度であり、tは、結晶性シリカの生成を許容レベル以下に抑えるための時間である結晶性シリカ生成許容時間であり、tminは、タールの発生を許容レベル以下に抑えるために必要な時間であるタール発生許容時間であり、a,b,cは、前記原料の成分量により変化する定数である。
    The gasification furnace according to claim 3, wherein
    The gasification furnace, wherein the correlation corresponds to an expression of a correlation function represented by the following expression [1].
    Figure JPOXMLDOC01-appb-M000001
    However, in the formula [1], T is the oxidizing atmosphere temperature, t is a crystalline silica production allowable time which is a time for suppressing the generation of crystalline silica to an allowable level or less, and tmin is The tar generation allowable time is a time necessary for suppressing the generation of tar below the allowable level, and a, b, and c are constants that vary depending on the amount of the components of the raw material.
  5.  請求項3に記載のガス化炉であって、
     前記相関関係は、カリウムの所定の含有濃度の前記原料を基準とした以下の[表1]で示される相関表に対応することを特徴とするガス化炉。
    Figure JPOXMLDOC01-appb-T000002
     但し、前記[表1]において、Tは、前記酸化雰囲気温度であり、tは、結晶性シリカの生成を許容レベル以下に抑えるための時間である結晶性シリカ生成許容時間であり、t(K小)は、基準となる前記原料のカリウムの含有濃度よりも少ない原料での前記結晶性シリカ生成許容時間を表しており、t(K大)は、基準となる前記原料のカリウムの含有濃度よりも多い原料での前記結晶性シリカ生成許容時間を表しており、A,B,C,D,Eは、前記酸化雰囲気温度Tに対する前記結晶性シリカ生成許容時間tの設定値であり、前記原料の成分量により変化する設定値であってタールの発生を許容レベル以下に抑えるために必要な時間であるタール発生許容時間tmin以上の設定値である。
    The gasification furnace according to claim 3, wherein
    The gasification furnace according to claim 1, wherein the correlation corresponds to a correlation table shown in Table 1 below based on the raw material having a predetermined concentration of potassium.
    Figure JPOXMLDOC01-appb-T000002
    However, in the above [Table 1], T is the oxidizing atmosphere temperature, t is a crystalline silica production allowable time which is a time for suppressing the generation of crystalline silica to an allowable level or less, and t (K (Small) represents the permissible time for crystalline silica generation with a raw material that is less than the standard potassium content of the raw material, and t (large K) is greater than the standard potassium content of the raw material. The crystalline silica production permissible time with a large amount of raw material is represented, and A, B, C, D, E are set values of the crystalline silica production permissible time t with respect to the oxidizing atmosphere temperature T, and the raw material Is a set value that varies depending on the amount of the component, and is a set value that is equal to or greater than the allowable tar generation time tmin, which is the time required to suppress the generation of tar below the allowable level.
  6.  請求項1から請求項5までの何れか1つに記載のガス化炉であって、
     前記原料を導入するに先立ち、炉内を前記所定温度または前記所定温度範囲に予熱する手段を設けたことを特徴とするガス化炉。
    A gasification furnace according to any one of claims 1 to 5, wherein
    Prior to the introduction of the raw material, a gasification furnace is provided that has means for preheating the inside of the furnace to the predetermined temperature or the predetermined temperature range.
  7.  請求項1から請求項6までの何れか1つに記載のガス化炉であって、
     前記原料を前記酸化域に予め定めた所定時間範囲内で通過させる手段として、
     前記原料を導入する原料導入部を予め定めた所定の想定チャー層の最上部よりも上方に設け、酸化剤を導入する酸化剤導入部を前記想定チャー層の最上部よりも上方でかつ前記原料導入部における開口よりも下方に設け、前記酸化剤導入部における開口を前記酸化剤の導入方向が水平方向または水平方向よりも上向きに沿うように形成し、前記生成ガスを流出させる生成ガス流出部を前記酸化剤導入部における前記開口よりも上方に設け、
     前記想定チャー層に臨む位置に、吸熱反応剤を導入する吸熱反応剤導入部、および、熱容量剤を導入する熱容量剤導入部のうち少なくとも一方を設けたことを特徴とするガス化炉。
    A gasification furnace according to any one of claims 1 to 6, wherein
    As means for passing the raw material through the oxidation zone within a predetermined time range,
    A raw material introduction part for introducing the raw material is provided above the uppermost part of a predetermined assumed char layer, and an oxidant introduction part for introducing an oxidant is provided above the uppermost part of the assumed char layer and the raw material. A product gas outflow part that is provided below the opening in the introduction part, forms the opening in the oxidant introduction part so that the introduction direction of the oxidant is along the horizontal direction or upward from the horizontal direction, and causes the product gas to flow out. Is provided above the opening in the oxidant introduction part,
    A gasification furnace characterized in that at least one of an endothermic reactant introduction part for introducing an endothermic reactant and a heat capacity agent introduction part for introducing a heat capacity agent is provided at a position facing the assumed char layer.
  8.  請求項1から請求項6までの何れか1つに記載のガス化炉であって、
     前記原料を前記酸化域に予め定めた所定時間範囲内で通過させる手段として、
     前記原料を導入する原料導入部を予め定めた所定の想定チャー層の最上部よりも上方に設け、酸化剤を導入する酸化剤導入部を前記想定チャー層の最上部よりも上方でかつ前記原料導入部における開口よりも下方に設け、前記酸化剤導入部における開口を前記酸化剤の導入方向が水平方向または水平方向よりも上向きに沿うように形成し、前記生成ガスを流出させる生成ガス流出部を前記酸化剤導入部における前記開口よりも上方に設け、
     前記想定チャー層に対応する領域の外面に、チャー層の温度を制御するチャー層温度制御部を設けたことを特徴とするガス化炉。
    A gasification furnace according to any one of claims 1 to 6, wherein
    As means for passing the raw material through the oxidation zone within a predetermined time range,
    A raw material introduction part for introducing the raw material is provided above the uppermost part of a predetermined assumed char layer, and an oxidant introduction part for introducing an oxidant is provided above the uppermost part of the assumed char layer and the raw material. A product gas outflow part that is provided below the opening in the introduction part, forms the opening in the oxidant introduction part so that the introduction direction of the oxidant is along the horizontal direction or upward from the horizontal direction, and causes the product gas to flow out. Is provided above the opening in the oxidant introduction part,
    A gasification furnace characterized in that a char layer temperature control unit for controlling the temperature of the char layer is provided on an outer surface of a region corresponding to the assumed char layer.
  9.  請求項1から請求項6までの何れか1つに記載のガス化炉であって、
     前記原料を前記酸化域に予め定めた所定時間範囲内で通過させる手段として、
     前記原料を導入する原料導入部を予め定めた所定の想定チャー層の最上部よりも上方に設け、酸化剤を導入する酸化剤導入部を前記想定チャー層の最上部よりも下方に設け、前記酸化剤をチャーに接触させる酸化剤接触時間を制御する酸化剤接触時間制御部を設け、
     前記生成ガスを流出させる生成ガス流出部を前記酸化剤導入部よりも上方に設け、前記想定チャー層に臨む位置に、吸熱反応剤を導入する吸熱反応剤導入部、および、熱容量剤を導入する熱容量剤導入部のうち少なくとも一方を設けたことを特徴とするガス化炉。
    A gasification furnace according to any one of claims 1 to 6, wherein
    As means for passing the raw material through the oxidation zone within a predetermined time range,
    The raw material introduction part for introducing the raw material is provided above the uppermost part of the predetermined assumed char layer, and the oxidant introduction part for introducing an oxidant is provided below the uppermost part of the assumed char layer, An oxidant contact time control unit for controlling the oxidant contact time for contacting the oxidant with the char is provided.
    A product gas outflow part for letting out the product gas is provided above the oxidant introduction part, and an endothermic reactant introduction part for introducing an endothermic reactant and a heat capacity agent are introduced at a position facing the assumed char layer. A gasification furnace provided with at least one of heat capacity agent introduction sections.
  10.  請求項1から請求項6までの何れか1つに記載のガス化炉であって、
     前記原料を前記酸化域に予め定めた所定時間範囲内で通過させる手段として、
     前記原料を導入する原料導入部を予め定めた所定の想定チャー層の最上部よりも上方に設け、酸化剤を導入する酸化剤導入部を前記想定チャー層の最上部よりも下方に設け、前記酸化剤をチャーに接触させる酸化剤接触時間を制御する酸化剤接触時間制御部を設け、
     前記生成ガスを流出させる生成ガス流出部を前記想定チャー層の最下部に臨む位置に設け、チャーを堆積させるためのチャー堆積時間を制御するチャー堆積時間制御部を設けたことを特徴とするガス化炉。
    A gasification furnace according to any one of claims 1 to 6, wherein
    As means for passing the raw material through the oxidation zone within a predetermined time range,
    The raw material introduction part for introducing the raw material is provided above the uppermost part of the predetermined assumed char layer, and the oxidant introduction part for introducing an oxidant is provided below the uppermost part of the assumed char layer, An oxidant contact time control unit for controlling the oxidant contact time for contacting the oxidant with char is provided,
    A gas characterized in that a product gas outflow part for allowing the product gas to flow out is provided at a position facing the lowermost part of the assumed char layer, and a char deposition time control unit for controlling a char deposition time for depositing char is provided. Chemical reactor.
  11.  請求項1から請求項6までの何れか1つに記載のガス化炉であって、
     前記原料を前記酸化域に予め定めた所定時間範囲内で通過させる手段として、
     前記原料を導入する原料導入部を予め定めた所定の想定チャー層の最上部よりも上方に設け、酸化剤を導入する酸化剤導入部を前記想定チャー層の最上部よりも下方に設け、前記酸化剤をチャーに接触させる酸化剤接触時間を制御する酸化剤接触時間制御部を設け、
     酸化剤を導入する酸化剤導入部を前記想定チャー層の最下部に臨む位置にさらに設け、
     前記生成ガスを流出させる生成ガス流出部を前記想定チャー層の最上部よりも下方に設けた前記酸化剤導入部と前記想定チャー層の最下部に臨む位置にさらに設けた前記酸化剤導入部との間に設けたことを特徴とするガス化炉。
    A gasification furnace according to any one of claims 1 to 6, wherein
    As means for passing the raw material through the oxidation zone within a predetermined time range,
    The raw material introduction part for introducing the raw material is provided above the uppermost part of the predetermined assumed char layer, and the oxidant introduction part for introducing an oxidant is provided below the uppermost part of the assumed char layer, An oxidant contact time control unit for controlling the oxidant contact time for contacting the oxidant with the char is provided.
    An oxidant introduction part for introducing an oxidant is further provided at a position facing the lowermost part of the assumed char layer,
    The oxidant introduction part provided below the uppermost part of the assumed char layer and the oxidant introduction part further provided at a position facing the lowermost part of the assumed char layer; A gasification furnace provided between the two.
  12.  請求項1から請求項6までの何れか1つに記載のガス化炉であって、
     前記原料を前記酸化域に予め定めた所定時間範囲内で通過させる手段として、
     前記原料を導入する原料導入部を予め定めた所定の想定チャー層の最上部よりも上方に設け、酸化剤を導入する酸化剤導入部を、前記想定チャー層の最下部に臨む位置と前記想定チャー層の最上部よりも上方でかつ前記原料導入部における開口よりも下方とに設け、前記想定チャー層の最下部に臨む位置に設けた前記酸化剤導入部における開口を前記酸化剤の導入方向が上方または略上方に向くように形成し、前記想定チャー層の最上部よりも上方で前記原料導入部における開口よりも下方に設けた前記酸化剤導入部における開口を前記酸化剤の導入方向が水平方向または水平方向よりも上向きに沿うように形成し、前記生成ガスを流出させる生成ガス流出部を全ての前記酸化剤導入部よりも上方に設けたことを特徴とするガス化炉。
    A gasification furnace according to any one of claims 1 to 6, wherein
    As means for passing the raw material through the oxidation zone within a predetermined time range,
    The raw material introduction part for introducing the raw material is provided above the uppermost part of a predetermined assumed char layer, and the oxidant introduction part for introducing an oxidant is located at the position facing the lowermost part of the assumed char layer. An opening in the oxidant introduction part provided above the uppermost part of the char layer and below the opening in the raw material introduction part, and provided at a position facing the lowermost part of the assumed char layer. Is formed so as to face upward or substantially upward, and an opening in the oxidant introduction part provided above the uppermost part of the assumed char layer and below the opening in the raw material introduction part has an introduction direction of the oxidant. A gasification furnace characterized in that it is formed so as to extend in a horizontal direction or upward from the horizontal direction, and a product gas outflow part for allowing the product gas to flow out is provided above all the oxidant introduction parts.
  13.  請求項1から請求項6までの何れか1つに記載のガス化炉であって、
     前記原料を前記酸化域に予め定めた所定時間範囲内で通過させる手段として、
     前記原料を導入する原料導入部を予め定めた所定の想定チャー層の最上部よりも上方に設け、酸化剤を導入する酸化剤導入部を前記想定チャー層の最下部に臨む位置に設け、前記酸化剤の導入量を制御する酸化剤導入量制御部を設け、前記酸化剤を導入する酸化剤導入部における開口を前記酸化剤の導入方向が上方または略上方に向くように形成し、前記生成ガスを流出させる生成ガス流出部を前記想定チャー層の最上部よりも上方に設けたことを特徴とするガス化炉。
    A gasification furnace according to any one of claims 1 to 6, wherein
    As means for passing the raw material through the oxidation zone within a predetermined time range,
    A raw material introduction part for introducing the raw material is provided above a predetermined uppermost portion of a predetermined assumed char layer, an oxidant introduction portion for introducing an oxidant is provided at a position facing the lowermost portion of the assumed char layer, An oxidant introduction amount control unit for controlling the introduction amount of the oxidant is provided, and an opening in the oxidant introduction unit for introducing the oxidant is formed so that the introduction direction of the oxidant is upward or substantially upward, and the generation A gasification furnace characterized in that a product gas outflow portion for allowing gas to flow out is provided above the uppermost portion of the assumed char layer.
  14.  請求項1から請求項6までの何れか1つに記載のガス化炉であって、
     前記原料を前記酸化域に予め定めた所定時間範囲内で通過させる手段として、
     前記原料を導入する原料導入部を予め定めた所定の想定チャー層の最上部よりも上方に設け、酸化剤を導入する酸化剤導入部を前記想定チャー層の最下部に臨む位置に設け、前記酸化剤と吸熱反応剤および熱容量剤の少なくとも一方とを調整する調整制御部を設け、前記酸化剤導入部における開口を前記酸化剤の導入方向が上方または略上方に向くように形成し、前記生成ガスを流出させる生成ガス流出部を前記想定チャー層の最上部よりも上方に設けたことを特徴とするガス化炉。
    A gasification furnace according to any one of claims 1 to 6, wherein
    As means for passing the raw material through the oxidation zone within a predetermined time range,
    A raw material introduction part for introducing the raw material is provided above a predetermined uppermost portion of a predetermined assumed char layer, an oxidant introduction portion for introducing an oxidant is provided at a position facing the lowermost portion of the assumed char layer, An adjustment control unit that adjusts the oxidant and at least one of the endothermic reactant and the heat capacity agent is provided, and an opening in the oxidant introduction unit is formed so that an introduction direction of the oxidant is upward or substantially upward, and the generation A gasification furnace characterized in that a product gas outflow portion for allowing gas to flow out is provided above the uppermost portion of the assumed char layer.
  15.  請求項1から請求項6までの何れか1つに記載のガス化炉であって、
     前記原料を前記酸化域に予め定めた所定時間範囲内で通過させる手段として、
     前記原料を導入する原料導入部、および、酸化剤を導入する酸化剤導入部を並列に設け、前記原料導入部における開口を前記原料の導入方向が前記生成ガスの流れ方向または略前記流れ方向に沿うように形成し、前記酸化剤導入部における開口を前記酸化剤の導入方向が前記生成ガスの流れ方向または略前記流れ方向に沿うように形成し、前記生成ガスを流出させる生成ガス流出部を前記生成ガスの流れ方向において前記原料導入部および前記酸化剤導入部よりも下流側に設け、前記酸化剤の導入量を制御する酸化剤導入量制御部を設けたことを特徴とするガス化炉。
    A gasification furnace according to any one of claims 1 to 6, wherein
    As means for passing the raw material through the oxidation zone within a predetermined time range,
    A raw material introduction part for introducing the raw material and an oxidant introduction part for introducing an oxidant are provided in parallel, and an opening in the raw material introduction part is arranged so that the introduction direction of the raw material is in the flow direction of the product gas or substantially the flow direction. And forming an opening in the oxidant introduction part so that the introduction direction of the oxidant is along the flow direction of the product gas or substantially the flow direction, and a product gas outflow part for letting out the product gas. A gasification furnace provided with an oxidant introduction amount control unit for controlling an introduction amount of the oxidant provided downstream of the raw material introduction unit and the oxidant introduction unit in the flow direction of the product gas .
  16.  請求項1から請求項6までの何れか1つに記載のガス化炉であって、
     前記原料を前記酸化域に予め定めた所定時間範囲内で通過させる手段として、
     前記原料を導入する原料導入部、および、酸化剤を導入する酸化剤導入部を前記生成ガスの流れ方向における上流側端面に並列に設け、前記生成ガスを流出させる生成ガス流出部を前記上流側端面の対向面である下流側端面に設け、前記酸化剤の導入量を制御する酸化剤導入量制御部を設けたことを特徴とするガス化炉。
    A gasification furnace according to any one of claims 1 to 6, wherein
    As means for passing the raw material through the oxidation zone within a predetermined time range,
    A raw material introduction part for introducing the raw material, and an oxidant introduction part for introducing an oxidant are provided in parallel on the upstream end face in the flow direction of the product gas, and a product gas outflow part for causing the product gas to flow out is provided on the upstream side A gasification furnace provided with an oxidant introduction amount control unit that is provided on a downstream end surface that is an opposite surface of the end surface and controls the introduction amount of the oxidant.
  17.  請求項1から請求項6までの何れか1つに記載のガス化炉であって、
     前記原料を前記酸化域に予め定めた所定時間範囲内で通過させる手段として、
     前記原料を導入する原料導入部を前記生成ガスの流れ方向における上流側端面に設け、前記生成ガスを流出させる生成ガス流出部を前記上流側端面の対向面である下流側端面に設け、酸化剤を導入する複数の酸化剤導入部を前記上流側端面と前記下流側端面との間で前記生成ガスの流れ方向における上流側から下流側に順に設け、前記複数の酸化剤導入部の前記酸化剤の導入量を制御する酸化剤導入量制御部を設け、前記生成ガスの流れ方向における上流側から下流側に掛けて前記酸化剤の温度を次第に低くする酸化剤温度制御部を設けたことを特徴とするガス化炉。
    A gasification furnace according to any one of claims 1 to 6, wherein
    As means for passing the raw material through the oxidation zone within a predetermined time range,
    A raw material introduction part for introducing the raw material is provided on the upstream end face in the flow direction of the product gas, and a product gas outflow part for letting out the product gas is provided on a downstream end face that is a face opposite to the upstream end face, A plurality of oxidant introduction portions for introducing gas from the upstream end surface to the downstream end surface in order from the upstream side to the downstream side in the flow direction of the generated gas, and the oxidant of the plurality of oxidant introduction portions An oxidant introduction amount control unit for controlling the introduction amount of the oxidant is provided, and an oxidant temperature control unit for gradually lowering the temperature of the oxidant from the upstream side to the downstream side in the flow direction of the product gas is provided. Gasification furnace.
  18.  請求項1から請求項6までの何れか1つに記載のガス化炉であって、
     前記原料を前記酸化域に予め定めた所定時間範囲内で通過させる手段として、
     前記原料を導入する原料導入部を前記生成ガスの流れ方向における上流側端面に設け、前記生成ガスを流出させる生成ガス流出部を前記上流側端面の対向面である下流側端面に設け、酸化剤を導入する複数の酸化剤導入部を前記上流側端面と前記下流側端面との間で前記生成ガスの流れ方向における上流側から下流側に順に設け、前記複数の酸化剤導入部の前記酸化剤の導入量を制御する酸化剤導入量制御部を設け、前記生成ガスの流れ方向における上流側から下流側に掛けて前記酸化剤の濃度を次第に低くする酸化剤濃度制御部を設けたことを特徴とするガス化炉。
    A gasification furnace according to any one of claims 1 to 6, wherein
    As means for passing the raw material through the oxidation zone within a predetermined time range,
    A raw material introduction part for introducing the raw material is provided on the upstream end face in the flow direction of the product gas, and a product gas outflow part for letting out the product gas is provided on a downstream end face that is a face opposite to the upstream end face, A plurality of oxidant introduction portions for introducing gas from the upstream end surface to the downstream end surface in order from the upstream side to the downstream side in the flow direction of the generated gas, and the oxidant of the plurality of oxidant introduction portions An oxidant introduction amount control unit that controls the introduction amount of the oxidant is provided, and an oxidant concentration control unit that gradually decreases the concentration of the oxidant from the upstream side to the downstream side in the flow direction of the product gas is provided. Gasification furnace.
  19.  請求項1から請求項6までの何れか1つに記載のガス化炉であって、
     前記原料を前記酸化域に予め定めた所定時間範囲内で通過させる手段として、
     前記原料を導入する原料導入部を前記生成ガスの流れ方向における上流側端面に設け、前記生成ガスを流出させる生成ガス流出部を前記上流側端面の対向面である下流側端面に設け、酸化剤を導入する酸化剤導入部を前記上流側端面と前記下流側端面との間で前記生成ガスの流れ方向における上流側に設け、前記酸化剤導入部の前記酸化剤の導入量を制御する酸化剤導入量制御部を設け、前記酸化剤導入部よりも下流側に吸熱反応剤を導入する吸熱反応剤導入部、および、熱容量剤を導入する熱容量剤導入部のうち少なくとも一方を設けたことを特徴とするガス化炉。
    A gasification furnace according to any one of claims 1 to 6, wherein
    As means for passing the raw material through the oxidation zone within a predetermined time range,
    A raw material introduction part for introducing the raw material is provided on the upstream end face in the flow direction of the product gas, and a product gas outflow part for letting out the product gas is provided on a downstream end face that is a face opposite to the upstream end face, An oxidant for introducing the oxidant is provided on the upstream side in the flow direction of the product gas between the upstream end face and the downstream end face, and an oxidant for controlling the amount of the oxidant introduced into the oxidant introduction part An introduction amount control unit is provided, and at least one of an endothermic reactant introduction unit that introduces an endothermic reactant downstream from the oxidant introduction unit and a heat capacity agent introduction unit that introduces a heat capacity agent is provided. Gasification furnace.
  20.  請求項1から請求項6までの何れか1つに記載のガス化炉であって、
     前記原料を前記酸化域に予め定めた所定時間範囲内で通過させる手段として、
     前記原料を導入する原料導入部を前記生成ガスの流れ方向における上流側端面に設け、前記生成ガスを流出させる生成ガス流出部を前記上流側端面の対向面である下流側端面に設け、酸化剤を導入する酸化剤導入部を前記上流側端面および前記下流側端面の間に設け、前記酸化剤の導入量を制御する導入量制御部を設け、互いに異なる複数種類の温度の前記酸化剤を切り替える酸化剤温度切替制御部を設けたことを特徴とするガス化炉。
    A gasification furnace according to any one of claims 1 to 6, wherein
    As means for passing the raw material through the oxidation zone within a predetermined time range,
    A raw material introduction part for introducing the raw material is provided on the upstream end face in the flow direction of the product gas, and a product gas outflow part for letting out the product gas is provided on a downstream end face that is a face opposite to the upstream end face, An oxidant introduction part for introducing the oxidant is provided between the upstream end face and the downstream end face, and an introduction amount control part for controlling the introduction amount of the oxidant is provided to switch the oxidants at a plurality of different temperatures. A gasification furnace provided with an oxidant temperature switching control unit.
  21.  請求項1から請求項6までの何れか1つに記載のガス化炉であって、
     前記原料を前記酸化域に予め定めた所定時間範囲内で通過させる手段として、
     前記原料を導入する原料導入部を前記生成ガスの流れ方向における上流側端面に設け、前記生成ガスを流出させる生成ガス流出部を前記上流側端面の対向面である下流側端面に設け、酸化剤を導入する酸化剤導入部を前記上流側端面および前記下流側端面の間に設け、前記酸化剤の導入量を制御する導入量制御部を設け、互いに異なる複数種類の濃度の前記酸化剤を切り替える酸化剤濃度切替制御部を設けたことを特徴とするガス化炉。
    A gasification furnace according to any one of claims 1 to 6, wherein
    As means for passing the raw material through the oxidation zone within a predetermined time range,
    A raw material introduction part for introducing the raw material is provided on the upstream end face in the flow direction of the product gas, and a product gas outflow part for letting out the product gas is provided on a downstream end face that is a face opposite to the upstream end face, An oxidant introduction part for introducing oxidant is provided between the upstream end face and the downstream end face, an introduction amount control part for controlling the introduction amount of the oxidant is provided, and the oxidants having a plurality of different concentrations are switched. A gasification furnace provided with an oxidant concentration switching control unit.
  22.  原料を酸化して生成ガスを生成するガス化炉の運転方法であって、
     前記原料を酸化する酸化域を予め定めた所定温度または所定温度範囲に維持し、前記原料を前記酸化域に予め定めた所定時間範囲内で通過させることを特徴とするガス化炉の運転方法。
    A method of operating a gasifier that oxidizes a raw material to generate a product gas,
    An operating method of a gasification furnace, wherein an oxidation zone for oxidizing the raw material is maintained at a predetermined temperature or a predetermined temperature range, and the raw material is passed through the oxidation zone within a predetermined time range.
  23.  請求項22に記載のガス化炉の運転方法であって、
     前記所定温度または前記所定温度範囲は、タールが熱分解するために必要な温度であるタール熱分解温度以上の温度または該温度を中央温度とする温度範囲であり、
     前記所定時間範囲は、タールの発生を許容レベル以下に抑えるために必要な時間であるタール発生許容時間以上、かつ、結晶性シリカの生成を許容レベル以下に抑えるための時間である結晶性シリカ生成許容時間以下であることを特徴とするガス化炉の運転方法。
    The operation method of the gasifier according to claim 22,
    The predetermined temperature or the predetermined temperature range is a temperature equal to or higher than the tar thermal decomposition temperature, which is a temperature necessary for thermal decomposition of tar, or a temperature range having the temperature as a central temperature.
    The predetermined time range is longer than the allowable tar generation time, which is a time necessary for suppressing the generation of tar below the allowable level, and is a time required to suppress the generation of crystalline silica below the allowable level. An operation method of a gasification furnace characterized by being within an allowable time.
  24.  請求項22または請求項23に記載のガス化炉の運転方法であって、
     前記酸化域の酸化雰囲気温度と、前記原料が前記酸化域に入った時点から該原料自身の温度が結晶性シリカを生成する温度である結晶性シリカ生成温度に達するまでの時間である結晶性シリカ生成温度到達時間との相関関係に基づいて前記所定温度または前記所定温度範囲の中央温度および前記所定時間範囲内で前記原料が前記酸化域を通過する時間である酸化域通過時間を決定することを特徴とするガス化炉の運転方法。
    The operation method of the gasifier according to claim 22 or claim 23,
    Crystalline silica, which is the oxidizing atmosphere temperature in the oxidation region and the time from when the raw material enters the oxidation region until the temperature of the raw material itself reaches the crystalline silica formation temperature, which is the temperature at which crystalline silica is generated Determining a central temperature of the predetermined temperature or the predetermined temperature range and an oxidation zone passage time which is a time for the raw material to pass through the oxidation zone within the predetermined time range based on the correlation with the generation temperature arrival time. The operation method of the gasifier characterized by the above.
  25.  請求項24に記載のガス化炉の運転方法であって、
     前記相関関係は、以下の式[1]で示される相関関数の式に対応することを特徴とするガス化炉の運転方法。
    Figure JPOXMLDOC01-appb-M000003
     但し、前記式[1]において、Tは、前記酸化雰囲気温度であり、tは、結晶性シリカの生成を許容レベル以下に抑えるための時間である結晶性シリカ生成許容時間であり、tminは、タールの発生を許容レベル以下に抑えるために必要な時間であるタール発生許容時間であり、a,b,cは、前記原料の成分量により変化する定数である。
    A gasification furnace operation method according to claim 24,
    The gasification furnace operating method, wherein the correlation corresponds to an expression of a correlation function represented by the following expression [1].
    Figure JPOXMLDOC01-appb-M000003
    However, in the formula [1], T is the oxidizing atmosphere temperature, t is a crystalline silica production allowable time which is a time for suppressing the generation of crystalline silica to an allowable level or less, and tmin is The tar generation allowable time is a time necessary for suppressing the generation of tar below the allowable level, and a, b, and c are constants that vary depending on the amount of the components of the raw material.
  26.  請求項24に記載のガス化炉の運転方法であって、
     前記相関関係は、カリウムの所定の含有濃度の前記原料を基準とした以下の[表1]で示される相関表に対応することを特徴とするガス化炉の運転方法。
    Figure JPOXMLDOC01-appb-T000004
     但し、前記[表1]において、Tは、前記酸化雰囲気温度であり、tは、結晶性シリカの生成を許容レベル以下に抑えるための時間である結晶性シリカ生成許容時間であり、t(K小)は、基準となる前記原料のカリウムの含有濃度よりも少ない原料での前記結晶性シリカ生成許容時間を表しており、t(K大)は、基準となる前記原料のカリウムの含有濃度よりも多い原料での前記結晶性シリカ生成許容時間を表しており、A,B,C,D,Eは、前記酸化雰囲気温度Tに対する前記結晶性シリカ生成許容時間tの設定値であり、前記原料の成分量により変化する設定値であってタールの発生を許容レベル以下に抑えるために必要な時間であるタール発生許容時間tmin以上の設定値である。
    A gasification furnace operation method according to claim 24,
    The method of operating a gasifier, wherein the correlation corresponds to a correlation table shown in Table 1 below based on the raw material having a predetermined concentration of potassium.
    Figure JPOXMLDOC01-appb-T000004
    However, in the above [Table 1], T is the oxidizing atmosphere temperature, t is a crystalline silica production allowable time which is a time for suppressing the generation of crystalline silica to an allowable level or less, and t (K (Small) represents the permissible time for crystalline silica generation with a raw material that is less than the standard potassium content of the raw material, and t (large K) is greater than the standard potassium content of the raw material. The crystalline silica production permissible time with a large amount of raw material is represented, and A, B, C, D, E are set values of the crystalline silica production permissible time t with respect to the oxidizing atmosphere temperature T, and the raw material Is a set value that varies depending on the amount of the component, and is a set value that is equal to or greater than the allowable tar generation time tmin, which is the time required to suppress the generation of tar below the allowable level.
  27.  請求項24から請求項26までの何れか1つに記載のガス化炉の運転方法であって、
     前記ガス化炉の設置時または前記原料の調達地の決定時若しくは変更時に前記相関関係を設定または更新することを特徴とするガス化炉の運転方法。
    A method for operating a gasifier according to any one of claims 24 to 26, comprising:
    The gasification furnace operating method, wherein the correlation is set or updated when the gasification furnace is installed or when the raw material procurement site is determined or changed.
PCT/JP2017/001090 2016-01-15 2017-01-13 Gasification furnace, and operation method for gasification furnace WO2017122804A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201780005270.3A CN108463540B (en) 2016-01-15 2017-01-13 Gasification furnace and method for operating gasification furnace
PH12018501371A PH12018501371A1 (en) 2016-01-15 2018-06-26 Gasification furnace and method for operating gasification furnace

Applications Claiming Priority (10)

Application Number Priority Date Filing Date Title
JP2016-006514 2016-01-15
JP2016006511A JP6487346B2 (en) 2016-01-15 2016-01-15 Gasifier
JP2016-006515 2016-01-15
JP2016-006513 2016-01-15
JP2016006513A JP6700045B2 (en) 2016-01-15 2016-01-15 Gasification furnace
JP2016006514A JP6700046B2 (en) 2016-01-15 2016-01-15 Gasification furnace
JP2016006512A JP6487347B2 (en) 2016-01-15 2016-01-15 Operation method of gasifier
JP2016-006511 2016-01-15
JP2016006515A JP6700047B2 (en) 2016-01-15 2016-01-15 Gasification furnace
JP2016-006512 2016-01-15

Publications (1)

Publication Number Publication Date
WO2017122804A1 true WO2017122804A1 (en) 2017-07-20

Family

ID=59311328

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/001090 WO2017122804A1 (en) 2016-01-15 2017-01-13 Gasification furnace, and operation method for gasification furnace

Country Status (3)

Country Link
CN (1) CN108463540B (en)
PH (1) PH12018501371A1 (en)
WO (1) WO2017122804A1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6223996B2 (en) * 1980-10-08 1987-05-26 Nippon Kokan Kk
JP2006143983A (en) * 2004-10-20 2006-06-08 Mitsui Eng & Shipbuild Co Ltd Method of operating gasifier and gasifier

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5842233B2 (en) * 1980-02-19 1983-09-17 通商産業大臣 Two-stage fluidized coal gasification method
US4439209A (en) * 1982-08-25 1984-03-27 Wilwerding Carl M Thermal decomposition apparatus
JP2004077118A (en) * 2002-07-31 2004-03-11 Jfe Steel Kk Operation method of waste gasifying melting furnace
JP5630626B2 (en) * 2008-11-20 2014-11-26 Jfeエンジニアリング株式会社 Organic raw material gasification apparatus and method
CN102530859B (en) * 2011-12-29 2013-11-06 武汉凯迪工程技术研究总院有限公司 External-heating-type microwave plasma gasification furnace and synthesis gas production method
NZ700523A (en) * 2012-05-18 2016-05-27 Japan Blue Energy Co Ltd Biomass gasifier device
US9683184B2 (en) * 2013-06-06 2017-06-20 General Electric Company Method and apparatus for gasification

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6223996B2 (en) * 1980-10-08 1987-05-26 Nippon Kokan Kk
JP2006143983A (en) * 2004-10-20 2006-06-08 Mitsui Eng & Shipbuild Co Ltd Method of operating gasifier and gasifier

Also Published As

Publication number Publication date
CN108463540A (en) 2018-08-28
CN108463540B (en) 2021-02-02
PH12018501371A1 (en) 2019-02-27

Similar Documents

Publication Publication Date Title
CN1213129C (en) Method for gasifying organic materials and mixtures of materials
JP4923934B2 (en) Fluidized bed gasification method and apparatus
JP2013521345A (en) Carbon conversion system with integrated treatment zone
JP2014511905A (en) Shaft gasifier operating with low stoichiometric oxidation
EP2850159B1 (en) Batch processing system and method for pyrolysis of organic material
JP5744904B2 (en) Fluidized bed furnace and waste treatment method
KR101452327B1 (en) Gasification reacting apparatus using biomass
JP2010522793A (en) Method and apparatus for variable output gasification of combustible materials
JP6700047B2 (en) Gasification furnace
WO2017122804A1 (en) Gasification furnace, and operation method for gasification furnace
JP6700046B2 (en) Gasification furnace
JP6700045B2 (en) Gasification furnace
JP6517704B2 (en) Gasification furnace
JP6487347B2 (en) Operation method of gasifier
JP6487346B2 (en) Gasifier
US20130025200A1 (en) System & Method for mixing and distributing air and steam in a gasifier
JP4266879B2 (en) Gasification furnace and combined recycling equipment
KR101260602B1 (en) Thermal Decomposition Smelting Furnace
JP5762109B2 (en) Tar decomposition method and tar decomposition equipment
JPH08152118A (en) Combustion temperature control method in melting furnace of wastes based on shaft furnace system
JP2005336233A (en) Organic substance gasification system using carbonization furnace of multiple stage
JP4021744B2 (en) Recycling equipment
CN110446774B (en) Gasification device
JP2006070171A (en) Method of fluidized bed type gasification and device for the same
JP2005188877A (en) Waste material gasification method and gasifier

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17738556

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 12018501371

Country of ref document: PH

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17738556

Country of ref document: EP

Kind code of ref document: A1