WO2017122414A1 - Ultrasonic diagnostic device and sonic speed quantification method - Google Patents

Ultrasonic diagnostic device and sonic speed quantification method Download PDF

Info

Publication number
WO2017122414A1
WO2017122414A1 PCT/JP2016/082043 JP2016082043W WO2017122414A1 WO 2017122414 A1 WO2017122414 A1 WO 2017122414A1 JP 2016082043 W JP2016082043 W JP 2016082043W WO 2017122414 A1 WO2017122414 A1 WO 2017122414A1
Authority
WO
WIPO (PCT)
Prior art keywords
time difference
region
interest
sound speed
elements
Prior art date
Application number
PCT/JP2016/082043
Other languages
French (fr)
Japanese (ja)
Inventor
拓明 山本
Original Assignee
富士フイルム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士フイルム株式会社 filed Critical 富士フイルム株式会社
Publication of WO2017122414A1 publication Critical patent/WO2017122414A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/13Tomography
    • A61B8/14Echo-tomography

Definitions

  • the present invention relates to an ultrasonic diagnostic apparatus and a sound velocity quantification method, and more particularly, to sound velocity quantification in a region between an array transducer and an ultrasonic beam reflection point.
  • an ultrasonic diagnostic apparatus using an ultrasonic image has been put into practical use.
  • an ultrasonic beam is transmitted from an array transducer in which a plurality of elements are arranged into the subject, and ultrasonic echoes from the subject are received by the array transducer, and element data is received.
  • an elemental data is electrically processed by the apparatus body to generate an ultrasonic image.
  • the ultrasonic beam when an ultrasonic beam is transmitted for the purpose of improving the azimuth resolution of the ultrasonic image, the ultrasonic beam is transmitted from each element of the array transducer by focusing on each scanning line.
  • the transmission focus is performed and the ultrasonic echo is received, the reception focus for aligning the time phases of the element data according to the arrangement position of each element of the array transducer is performed.
  • These transmission focus and reception focus are performed using the sound velocity of the propagation medium of the ultrasonic beam, but it is necessary to estimate the sound velocity in the subject that is the propagation medium.
  • a plurality of received signals obtained from a plurality of elements of an array transducer are used, and a plurality of evaluation frames are formed corresponding to a plurality of sound speed candidates, A sound speed candidate that maximizes the intensity of the signal obtained by the phasing addition processing in the evaluation frame is used as an optimum sound speed estimation value.
  • phasing addition processing is performed by applying a uniform sound speed candidate to a received signal acquired by a plurality of elements of an array transducer.
  • the region between the reflection points has a uniform sound velocity
  • the optimum sound velocity value can be estimated, but the sound velocity in the region between the plurality of elements and the reflection point in the subject is uniform. Otherwise, there is a problem that the accuracy of sound speed estimation is lowered.
  • the speed of sound is often different in a lesion area compared to other regions, and if a lesion area exists between multiple elements of an array transducer and a reflection point in a subject, the sound speed is accurately estimated. Will become difficult.
  • An object of the present invention is to provide an ultrasonic diagnostic apparatus and a sound speed quantification method that can be quantified.
  • the ultrasonic diagnostic apparatus transmits an ultrasonic beam toward an object from an array transducer in which a plurality of elements are arranged, receives an ultrasonic echo from the object, and generates an ultrasonic image
  • a diagnostic apparatus, a region-of-interest setting unit for setting a region of interest on an ultrasound image, and an ultrasonic wave reflected by the reflection point in response to transmission of an ultrasonic beam toward the reflection point in the subject A time difference measurement data acquisition unit that compares a plurality of element data output from a plurality of elements that have received an echo to acquire a time difference measurement data that represents a time difference between the element data, and a distance from the reflection point to each of the plurality of elements
  • a time difference calculation data acquisition unit for acquiring time difference calculation data representing a time difference between element data based on the set assumed sound speed, and an overall assumed sound speed as an assumed sound speed, and a plurality of elements
  • the overall sound speed determination unit calculates a difference between the first time difference measurement data and the first time difference calculation data acquired corresponding to an element that has received an ultrasonic echo passing through a region other than the region of interest among a plurality of elements.
  • An overall assumed sound speed at which the determination value calculated based on the first threshold value is equal to or less than the first threshold value can be determined as the overall sound speed.
  • the overall sound speed determination unit uses the sum of absolute values of the differences between the first time difference measurement data corresponding to the plurality of elements and the first time difference calculation data or the sum of squares of the absolute values of the differences as a determination value. Can do.
  • the second time difference measurement data acquired by the time difference measurement data acquisition unit corresponding to the element that has received the ultrasonic echo that passes through the region of interest, the local assumed sound speed as the assumed sound speed, and the ultrasonic echo that passes through the region of interest It is preferable to include a local sound speed determination unit that determines the local sound speed in the region of interest based on the difference from the second time difference calculation data acquired by the time difference calculation data acquisition unit corresponding to the received element.
  • the total sound speed determination unit is configured to display a region of interest set by the region of interest setting unit when the region of interest set by the region of interest setting unit has at least one of a length in the scanning direction and a length in the depth direction equal to or less than a set value. Only when the length in the scanning direction and the length in the depth direction are both larger than the set value and the straight line passing through the region of interest is less than or equal to a predetermined ratio among the plurality of straight lines connecting the reflection point and the plurality of elements. Can be configured to determine.
  • the local sound speed determination unit may determine the local sound speed only when the length in the scanning direction and the length in the depth direction of the region of interest set by the region of interest setting unit are both larger than the set value.
  • the time difference measurement data acquisition unit can acquire time difference measurement data representing a time difference between adjacent elements, and the time difference calculation data acquisition unit can be configured to acquire time difference calculation data representing a time difference between adjacent elements. .
  • the time difference measurement data acquisition unit acquires time difference measurement data representing a time difference between the reference element and other elements among the plurality of elements, and the time difference calculation data acquisition unit acquires the difference between the reference element and other elements. You may comprise so that the time difference calculation data showing the time difference between elements may be acquired.
  • the time difference measurement data acquisition unit acquires time difference measurement data for each of the plurality of reflection points by transmitting an ultrasonic beam toward the plurality of reflection points located on different scanning lines, and the time difference calculation data acquisition unit
  • the time difference calculation data is acquired for each of the plurality of reflection points, and the overall sound speed determination unit corresponds to the element that has received the ultrasonic echo that passes through the region other than the region of interest among the plurality of elements and corresponds to the plurality of reflection points.
  • Based on a plurality of first time difference calculation data and a plurality of first time difference calculation data for a plurality of reflection points corresponding to an element that has received an ultrasonic echo passing through a region other than the region of interest among the plurality of elements. Can also be determined.
  • the overall sound speed determination unit may determine the overall assumed sound speed at which the difference between the plurality of first time difference measurement data and the plurality of first time difference calculation data for the plurality of reflection points is minimum as the overall sound speed. .
  • the total sound speed determination unit calculates a plurality of global sound speed candidate values for each of the plurality of reflection points based on a difference between the first time difference measurement data and the first time difference calculation data for each of the plurality of reflection points.
  • the overall sound speed can also be determined based on a plurality of candidate values for the overall sound speed.
  • the region-of-interest setting unit can set the region of interest according to user designation. Alternatively, the region-of-interest setting unit may automatically set the region of interest from the generated ultrasonic image.
  • the sound velocity quantification method sets a region of interest on an ultrasonic image and receives an ultrasonic echo reflected by the reflection point in response to transmission of an ultrasonic beam toward the reflection point in the subject.
  • a plurality of element data output from a plurality of elements of the array transducer are compared to obtain time difference measurement data representing a time difference between the element data, and a distance from the reflection point to each of the plurality of elements and a set assumed sound speed
  • Time difference calculation data representing the time difference between the element data is obtained, the overall assumed sound speed is set as the assumed sound speed, and the ultrasonic echo that passes through the region other than the region of interest among the plurality of elements is received.
  • a region of interest is set on an ultrasonic image, a plurality of element data output from a plurality of elements of an array transducer are compared, time difference measurement data representing a time difference between element data is acquired, and reflection is performed.
  • time difference calculation data representing the time difference between element data based on the distance from the point to each of the plurality of elements and the set assumed sound speed, and set the overall assumed sound speed as the assumed sound speed.
  • FIG. 1 is a block diagram showing a configuration of an ultrasonic diagnostic apparatus according to Embodiment 1 of the present invention.
  • 3 is a block diagram showing an internal configuration of a receiving circuit in the first embodiment.
  • FIG. 3 is a block diagram illustrating an internal configuration of an image generation unit according to Embodiment 1.
  • FIG. 4 is a block diagram showing an internal configuration of a sound speed quantification unit in Embodiment 1.
  • FIG. It is a figure which shows a mode that the ultrasonic echo from the reflective point in a subject reaches
  • FIG. 10 is a diagram illustrating a state in which an ultrasonic echo from one reflection point in the second embodiment reaches a plurality of elements of an array transducer.
  • FIG. 6 is a flowchart showing the operation of the ultrasonic diagnostic apparatus according to the second embodiment. 6 is a graph showing the difference between time difference measurement data and time difference calculation data between adjacent elements that have received ultrasonic echoes corresponding to two reflection points and passing through a region other than the region of interest in the second embodiment.
  • 10 is a flowchart showing the operation of the ultrasonic diagnostic apparatus according to the third embodiment. 3 is a flowchart showing an operation of a quantification process 100.
  • 5 is a flowchart showing an operation of a quantification process 200.
  • 10 is a flowchart showing the operation of an ultrasonic diagnostic apparatus according to a modification of the third embodiment. 5 is a flowchart showing an operation of a quantification process 300.
  • FIG. 1 shows the configuration of an ultrasonic diagnostic apparatus according to Embodiment 1 of the present invention.
  • the ultrasonic diagnostic apparatus includes an array transducer 1, and a transmission circuit 2 and a reception circuit 3 are connected to the array transducer 1.
  • An image generating unit 4, a display control unit 5, and a display unit 6 are sequentially connected to the receiving circuit 3.
  • An element data memory 7 is connected to the receiving circuit 3
  • a sound speed quantification unit 8 is connected to the element data memory 7 and the image generation unit 4
  • a region of interest setting unit 17 is connected to the sound speed quantification unit 8.
  • control unit 9 is connected to the transmission circuit 2, the reception circuit 3, the image generation unit 4, the display control unit 5, the sound speed quantification unit 8, and the region of interest setting unit 17, and the operation unit 10 and the storage unit 11 are connected to the control unit 9. Are connected to each other.
  • the array transducer 1 has a plurality of elements (ultrasonic transducers) arranged one-dimensionally or two-dimensionally. Each of these elements transmits an ultrasonic wave according to a drive signal supplied from the transmission circuit 2 and receives an ultrasonic echo from the subject to output a reception signal.
  • Each element is, for example, a piezoelectric ceramic represented by PZT (lead zirconate titanate), a polymer piezoelectric element represented by PVDF (polyvinylidene fluoride), or PMN-PT (magnesium niobate / lead titanate solid solution). It is comprised by the vibrator
  • each transducer When a pulsed or continuous wave voltage is applied to the electrodes of such a vibrator, the piezoelectric body expands and contracts, and pulsed or continuous wave ultrasonic waves are generated from the respective vibrators, and the synthesis of those ultrasonic waves. As a result, an ultrasonic beam is formed.
  • each transducer generates an electric signal by expanding and contracting by receiving propagating ultrasonic waves, and these electric signals are output as ultrasonic reception signals.
  • the transmission circuit 2 includes, for example, a plurality of pulse generators, and ultrasonic waves transmitted from a plurality of elements of the array transducer 1 based on a transmission delay pattern selected according to a control signal from the control unit 9. Adjusts the delay amount of each drive signal so as to form an ultrasonic beam, and supplies it to a plurality of elements.
  • the reception circuit 3 has a configuration in which an amplification unit 12 and an AD (Analogue Digital) conversion unit 13 are connected in series.
  • the receiving circuit 3 amplifies the reception signal output from each element of the array transducer 1 by the amplifying unit 12, and digitizes the element data obtained by the AD converting unit 13.
  • the image generating unit 4 and the element data memory 7 Output to.
  • the image generation unit 4 has a configuration in which a signal processing unit 14, a DSC (Digital Scan Converter) 15, and an image processing unit 16 are sequentially connected in series.
  • the signal processing unit 14 Based on the reception delay pattern selected according to the control signal from the control unit 9, the signal processing unit 14 gives each element data a respective delay and adds (phased addition) according to the set sound speed.
  • Receive focus processing By this reception focus processing, a sound ray signal in which the focus of the ultrasonic echo is narrowed is generated. Further, the signal processing unit 14 corrects the attenuation by the distance according to the depth of the reflection position of the ultrasonic wave on the sound ray signal, and then performs envelope detection processing to thereby obtain a tomography relating to the tissue in the subject.
  • a B mode (Brightness Mode) image signal which is image information is generated.
  • the DSC 15 converts (raster conversion) the B-mode image signal generated by the signal processing unit 14 into an image signal according to a normal television signal scanning method.
  • the image processing unit 16 performs various necessary image processing such as gradation processing on the B-mode image signal input from the DSC 15, and then outputs the B-mode image signal to the display control unit 5.
  • the display control unit 5 displays an ultrasound diagnostic image on the display unit 6 based on the B-mode image signal output from the image generation unit 4.
  • the display unit 6 includes a display device such as an LCD (Liquid Crystal Display), for example, and displays an ultrasound diagnostic image under the control of the display control unit 5.
  • LCD Liquid Crystal Display
  • the element data memory 7 sequentially stores element data output from the receiving circuit 3.
  • the sound velocity quantifying unit 8 uses the element data stored in the element data memory 7 to select a region R1 other than the region of interest R2 set by the region-of-interest setting unit 17 among the imaging regions imaged by the array transducer 1.
  • the overall sound speed V1 indicating the sound speed and the local sound speed V2 indicating the sound speed of the region of interest R2 are each quantified and output to the image generation unit 4.
  • the sound velocity quantification unit 8 includes a time difference measurement data acquisition unit 21 and a time difference calculation data acquisition unit 22, and the time difference measurement data acquisition unit 21 and the time difference calculation data acquisition unit 22 include An overall sound speed determination unit 23 and a local sound speed determination unit 25 are connected to each other.
  • the region-of-interest setting unit 17 is connected to the time difference calculation data acquisition unit 22, the overall sound speed determination unit 23, and the local sound speed determination unit 25.
  • the region-of-interest setting unit 17 sets the region of interest R2 within the imaging region imaged by the array transducer 1.
  • the region of interest R2 is set in accordance with, for example, the position of the lesion, and the region of interest setting unit 17 sets the region of interest R2 based on the user designation input from the operation unit 10, or the image generating unit 4
  • the region of interest R2 can be automatically set by recognizing the generated ultrasonic image.
  • the control unit 9 controls each unit of the ultrasonic diagnostic apparatus based on a command input from the operation unit 10 by the user.
  • the operation unit 10 is for a user to perform an input operation, and can be formed from a keyboard, a mouse, a trackball, a touch panel, or the like.
  • the storage unit 11 stores an operation program and the like.
  • the image generation unit 4, the display control unit 5, the sound speed quantification unit 8, the control unit 9, and the region of interest setting unit 17 are each a CPU (Central Processing Unit) and operations for causing the CPU to perform various processes. Although composed of programs, they may be composed of digital circuits.
  • the image generation unit 4, the display control unit 5, the sound speed quantification unit 8, the control unit 9, and the region-of-interest setting unit 17 may be partially or wholly integrated into one CPU.
  • the time difference measurement data acquisition unit 21 corresponds to the ultrasonic wave transmitted from the plurality of elements of the array transducer 1 toward the reflection point in the subject from the element data stored in the element data memory 7.
  • the time difference measurement data Dm representing the time difference ⁇ T is acquired.
  • an ultrasonic beam is transmitted from a plurality of elements E1 to En of the array transducer 1 with the reflection point A in the subject as a focal point. It is assumed that the reflected ultrasonic echo is received by a plurality of elements E1 to En.
  • the element Ec that receives the earliest ultrasonic echo at the element Ec that is the shortest from the reflection point A and is disposed at a position away from the element Ec. As the distance from the reflection point A increases, the ultrasonic echo is received later.
  • FIG. 7 shows a representative point of the ultrasonic echo where the maximum amplitude of the ultrasonic echo directed to each element shown in FIG. 6 is represented. It can be seen that the ultrasonic echoes passing through the lesion B toward the element Ek and the element Ek + 1 are ahead of the surrounding ultrasonic echoes.
  • k represents an integer in the range of 1 to n.
  • the time difference measurement data Dm as shown in FIG. 8 is calculated by calculating the time difference ⁇ T between the element data of the adjacent elements for the element data output from the plurality of elements E1 to En that have received the ultrasonic echo. Is acquired.
  • the horizontal axis represents adjacent elements.
  • the time difference calculation data acquisition unit 22 uses the distances from the reflection point A in the subject to the plurality of elements E1 to En of the array transducer 1 and the set assumed sound speeds to determine the elements of adjacent elements.
  • Time difference calculation data Dc representing the calculation value of the time difference ⁇ T between the data is calculated and acquired.
  • an overall assumed sound speed Va indicating the assumed sound speed of the region R1 other than the region of interest R2 is input from the overall sound speed determination unit 23, and first time difference calculation data Dc1 for the region R1 other than the region of interest R2 is acquired.
  • the first time difference calculation data Dc1 as shown in FIG. 11 is obtained for the region R1 other than the region of interest R2. Is done.
  • Fr represents an adjacent element corresponding to the element Er that has received the ultrasonic echo passing through the region of interest R2, and the time difference ⁇ T in the adjacent element Fr is blank.
  • the total sound speed determination unit 23 includes the first time difference measurement data Dm1 and the time difference calculation data acquisition unit acquired by the time difference measurement data acquisition unit 21 corresponding to the element that has received the ultrasonic echo passing through the region R1 other than the region of interest R2.
  • the difference ⁇ D1 of the first time difference calculation data Dc1 acquired in Step 22 is obtained, a determination value G1 is calculated based on the difference ⁇ D1, and the total assumed sound speed Va at which the determination value G1 is equal to or less than the first threshold Th1 is obtained.
  • the overall sound speed V1 corresponding to the region R1 other than the region of interest R2 is determined.
  • the first time difference calculation data Dc1 shown in FIG. 11 is displayed superimposed on the first time difference measurement data Dm1 corresponding to the element that has received the ultrasonic echo passing through the region R1 other than the region of interest R2, FIG. As can be seen from the graph, the first time difference calculation data Dc1 is located at a position shifted from the first time difference measurement data Dm1. This is because the total assumed sound speed Va used when obtaining the first time difference calculation data Dc1 is different from the actual sound speed, so that it is actually different from the first time difference calculation data Dc1 calculated based on the total assumed sound speed Va. This is probably because an error has occurred between the measured first time difference measurement data Dm1.
  • the overall sound speed determination unit 23 obtains a difference ⁇ D1 between the first time difference measurement data Dm1 and the first time difference calculation data Dc1, and the determination value G1 based on the difference ⁇ D1 is the first value.
  • the calculation of the difference ⁇ D1 and the determination value G1 is repeated using the first time difference calculation data Dc1 acquired by the time difference calculation data acquisition unit 22 while changing the value of the overall assumed sound speed Va until the threshold Th1 becomes equal to or less than the threshold Th1.
  • the determination value G1 the sum of absolute values of the difference ⁇ D1 or the sum of squares of the absolute values of the difference ⁇ D1 can be used. In this way, the overall assumed sound speed Va at which the determination value G1 is equal to or less than the first threshold Th1 is determined as the overall sound speed V1.
  • the time difference calculation data acquisition unit 22 inputs data indicating the region of interest R2 from the region of interest setting unit 17 and the local sound speed.
  • the local assumed sound speed Vb indicating the assumed sound speed of the region of interest R2 is input from the determination unit 25, and second time difference calculation data Dc2 for the region of interest R2 is acquired.
  • j is an integer in the range of 1 to n, and from the reflection point A to the region of interest R2 on the path of the ultrasonic echo from the reflection point A to the element Ej through the region of interest R2.
  • Lj1 the distance in the region of interest R2 is Lj2
  • the distance from the region of interest R2 to the element Ej is Lj3
  • the ultrasonic echo passing through the region of interest R2 is set with the origin at the time when the ultrasonic echo is emitted from the reflection point A.
  • the graph shown in FIG. 15 is obtained.
  • the reception time of the ultrasonic echo corresponding to elements other than the element Er that has received the ultrasonic echo passing through the region of interest R2 is blank.
  • the initial value of the local assumed sound speed Vb corresponding to the region of interest R2 1530 m / s or 1540 m / s, which is a general sound speed value of a normal tissue, can be set in the same manner as the overall assumed sound speed Va. .
  • second time difference calculation data Dc2 as shown in FIG. 16 is obtained for the region of interest R2.
  • the time difference ⁇ T in the adjacent elements other than the adjacent element Fr corresponding to the element Er that has received the ultrasonic echo passing through the region of interest R2 is blank.
  • the local sound speed determination unit 25 is acquired by the second time difference measurement data Dm2 acquired by the time difference measurement data acquisition unit 21 and the time difference calculation data acquisition unit 22 corresponding to the element that has received the ultrasonic echo passing through the region of interest R2.
  • a difference ⁇ D2 of the second time difference calculation data Dc2 is obtained, a determination value G2 is calculated based on the difference ⁇ D2, and a local assumed sound speed Vb at which the determination value G2 is equal to or less than the first threshold Th1 is set in the region of interest R2.
  • the corresponding local sound speed V2 is determined.
  • the second time difference calculation data Dc2 shown in FIG. 16 is displayed superimposed on the second time difference measurement data Dm2 corresponding to the element that has received the ultrasonic echo passing through the region of interest R2, as shown in FIG.
  • the second time difference calculation data Dc2 is at a position shifted from the second time difference measurement data Dm2. This is because the local assumed sound speed Vb used when obtaining the second time difference calculation data Dc2 is different from the actual sound speed, and therefore actually calculated with the second time difference calculation data Dc2 calculated based on the local assumed sound speed Vb. This is probably because an error has occurred between the measured second time difference measurement data Dm2.
  • the local sound speed determination unit 25 obtains a difference ⁇ D2 between the second time difference measurement data Dm2 and the second time difference calculation data Dc2, and the determination value G2 based on the difference ⁇ D2 is the first value.
  • the calculation of the difference ⁇ D2 and the determination value G2 is repeated using the second time difference calculation data Dc2 acquired by the time difference calculation data acquisition unit 22 while changing the value of the local assumed sound speed Vb until the threshold Th1 becomes equal to or less than the threshold Th1.
  • the determination value G2 the sum of absolute values of the difference ⁇ D2 or the sum of squares of the absolute values of the difference ⁇ D2 can be used. In this way, the assumed local sound speed Vb at which the determination value G2 is equal to or less than the first threshold value Th1 is determined as the local sound speed V2.
  • Step S1 the region of interest R2 is set by the region of interest setting unit 17 between the plurality of elements E1 to En of the array transducer 1 and the reflection point A in the subject.
  • step S2 ultrasonic waves are transmitted / received only once from the plurality of elements E1 to En of the array transducer 1 toward the reflection point A in the subject, and in step S3, element data is acquired. That is, ultrasonic waves are transmitted from the plurality of elements E1 to En to the reflection point A according to the drive signal supplied from the transmission circuit 2, and reception signals are received from the elements E1 to En that have received the ultrasonic echoes from the reflection point A.
  • the data is output to the receiving circuit 3, element data is generated by the receiving circuit 3, and sequentially stored in the element data memory 7.
  • step S4 the time difference measurement data acquisition unit 21 of the sound velocity quantification unit 8 compares a plurality of element data, and acquires time difference measurement data Dm representing the time difference ⁇ T between element data of adjacent elements. Is done. Furthermore, in step S5, the initial value of the overall assumed sound velocity Va corresponding to the region R1 other than the region of interest R2 is set by the overall sound velocity determination unit 23, and the first difference for the region R1 other than the region of interest R2 is set by the time difference calculation data acquisition unit 22. Time difference calculation data Dc1 is acquired.
  • step S6 based on the first time difference measurement data Dm1 and the first time difference calculation data Dc1 corresponding to the element that has received the ultrasonic echo passing through the region R1 other than the region of interest R2 by the overall sound speed determination unit 23.
  • the difference ⁇ D1 and the determination value G1 are calculated, and the first difference acquired by the time difference calculation data acquisition unit 22 while changing the value of the overall assumed sound speed Va until the determination value G1 becomes equal to or less than the first threshold Th1.
  • the calculation of the difference ⁇ D1 and the determination value G1 is repeated using the time difference calculation data Dc1, and the total assumed sound speed Va at which the determination value G1 is equal to or less than the first threshold Th1 is the total sound speed in the region R1 other than the region of interest R2. Determined as V1.
  • step S7 the initial value of the assumed local sound speed Vb corresponding to the region of interest R2 is set by the local sound speed determination unit 25, and the second time difference calculation data Dc2 for the region of interest R2 is acquired by the time difference calculation data acquisition unit 22.
  • step S8 the local sound speed determination unit 25 determines the difference ⁇ D2 based on the second time difference measurement data Dm2 and the second time difference calculation data Dc2 corresponding to the element that has received the ultrasonic echo passing through the region of interest R2.
  • the determination value G2 is calculated, and the second time difference calculation data Dc2 acquired by the time difference calculation data acquisition unit 22 while changing the value of the local assumed sound speed Vb until the determination value G2 becomes equal to or less than the first threshold Th1.
  • the calculation of the difference ⁇ D2 and the determination value G2 is repeated using, and the local assumed sound speed Vb at which the determination value G2 is equal to or less than the first threshold value Th1 is determined as the local sound speed V2 in the region of interest R2.
  • a B-mode image signal is generated by the image generator 4, and this B
  • the mode image signal is output to the display control unit 5, and the ultrasonic image is displayed on the display unit 6.
  • the total sound speed V1 and the local sound speed V2 determined by the sound speed quantification unit 8 are output to the image generation unit 4, and the values of the total sound speed V1 and the local sound speed V2 are displayed on the display unit 6 together with the ultrasonic image. Only the value of the local sound speed V2 may be displayed instead of both the overall sound speed V1 and the local sound speed V2.
  • the image generation unit 4 Based on the total sound speed V1 and the local sound speed V2 output from the sound speed quantification unit 8, the image generation unit 4 generates a B-mode image signal using the total sound speed V1 for the region R1 other than the region of interest R2. For the region of interest R2, a B-mode image signal using the local sound speed V2 can also be generated. In this way, it is possible to generate a high-quality ultrasound image in the region R1 other than the region of interest R2 and also in the region of interest R2.
  • the time difference measurement data acquisition unit 21 acquires the time difference measurement data Dm representing the time difference ⁇ T between the element data of the adjacent elements
  • the time difference calculation data acquisition unit 22 acquires the time difference of the adjacent elements.
  • the first time difference calculation data Dc1 and the second time difference calculation data Dc2 representing the calculation value of the time difference ⁇ T between the element data are acquired, the present invention is not limited to this.
  • the time difference measurement data acquisition unit 21 acquires time difference measurement data Dm representing the time difference ⁇ T between the element data of one element serving as a reference and the element data of another element among the plurality of elements E1 to En.
  • the time difference calculation data acquisition unit 22 calculates the time difference ⁇ T between the element data of one element serving as a reference and the element data of other elements among a plurality of elements in the region R1 other than the region of interest R2.
  • the first time difference calculation data Dc1 representing the value and the calculation value of the time difference ⁇ T between the element data of one reference element and the element data of the other elements among the plurality of elements in the region of interest R2.
  • the second time difference calculation data Dc2 can also be acquired.
  • the total sound speed V1 and the local sound speed V2 are quantified by transmitting and receiving ultrasonic waves only once toward one reflection point A in the subject.
  • the element data obtained by transmitting and receiving ultrasonic waves once toward the reflection point Av on one scanning line Cv, and the scanning line as shown in FIG. Element data acquired by performing ultrasonic wave transmission / reception once toward the reflection point Aw on the scanning line Cw different from Cv is used.
  • the region of interest R2 is set by the region of interest setting unit 17 in step S1, and in step S2, the plurality of elements E1 to En of the array transducer 1 are covered.
  • Ultrasonic waves are transmitted / received only once toward the reflection point Av in the specimen, and element data is acquired and stored in the element data memory 7 in step S3.
  • step S9 it is determined whether or not transmission / reception of ultrasonic waves to / from the plurality of set reflection points has been completed. If it is determined that transmission / reception has not been completed, the reflection point is changed in step S10, and then step S2 and S3 are repeated. That is, instead of the scanning line Cv to the scanning line Cw, ultrasonic waves are transmitted / received only once toward the reflection point Aw, and element data is acquired and stored in the element data memory 7.
  • step S9 If it is determined in step S9 that transmission / reception of ultrasonic waves to all reflection points has been completed, the time difference measurement data acquisition unit 21 of the sound speed quantification unit 8 corresponds to each of the reflection points Av and Aw in step S4.
  • a comparison between a plurality of element data is performed to obtain time difference measurement data Dm, and in step S5, an initial value of the total assumed sound speed Va in the region R1 other than the region of interest R2 is set by the total sound speed determination unit 23, and a time difference calculation is performed.
  • the data acquisition unit 22 acquires first time difference calculation data Dc1 corresponding to the region R1 other than the region of interest R2 corresponding to each of the reflection points Av and Aw. Further, in step S6, as shown in FIG.
  • the entire sound speed determination unit 23 performs first time difference measurement data Dm1 corresponding to the region R1 other than the region of interest R2 corresponding to each of the reflection points Av and Aw. Differences ⁇ D1v and ⁇ D1w of the first time difference calculation data Dc1 are calculated, and the first difference acquired by the time difference calculation data acquisition unit 22 corresponding to each of the reflection points Av and Aw while changing the value of the overall assumed sound speed Va. The calculation of the differences ⁇ D1v and ⁇ D1w is repeated using the time difference calculation data Dc1 and the overall assumed sound velocity Va at which the differences ⁇ D1v and ⁇ D1w with respect to all the reflection points Av and Aw are minimized by using the least square method or the like.
  • the difference ⁇ D1v and ⁇ D1w is the smallest means that the sum of the absolute values of the differences ⁇ D1v and ⁇ D1w in each element corresponding to the region R1 other than the region of interest R2 is the smallest, or the region of interest R2 This means that the sum of squares of the absolute values of the differences ⁇ D1v and ⁇ D1w in each element corresponding to the region R1 other than the region R1 is minimized.
  • step S7 an initial value of the assumed local sound speed Vb in the region of interest R2 is set by the local sound speed determination unit 25, and the time difference calculation data acquisition unit 22 corresponds to the region of interest R2 corresponding to each of the reflection points Av and Aw. Second time difference calculation data Dc2 to be acquired is acquired.
  • step S8 the local sound speed determination unit 25 calculates the differences ⁇ D2v and ⁇ D2w between the second time difference measurement data Dm2 and the second time difference calculation data Dc2 corresponding to the reflection points Av and Aw, respectively, and the local assumption While changing the value of the sound speed Vb, the calculation of the differences ⁇ D2v and ⁇ D2w is repeated using the second time difference calculation data Dc2 acquired corresponding to each of the reflection points Av and Aw by the time difference calculation data acquisition unit 22, By using the least square method or the like, the local assumed sound speed Vb at which the differences ⁇ D2v and ⁇ D2w with respect to all the reflection points Av and Aw are minimum is determined as the local sound speed V2 of the region of interest R2.
  • the difference ⁇ D2v and ⁇ D2w is the smallest means that the total value of the absolute values of the differences ⁇ D2v and ⁇ D2w in each element corresponding to the region of interest R2 is minimized, or each of the elements corresponding to the region of interest R2 This means that the sum of squares of absolute values of the differences ⁇ D2v and ⁇ D2w in the element is minimized.
  • step S6 the overall assumed sound speed Va at which the differences ⁇ D1v and ⁇ D1w with respect to all the reflection points Av and Aw are minimized is determined as the overall sound speed V1, but the present invention is not limited to this.
  • the reflection points Av and Determination values G1v and G1w are calculated for each reflection point based on the differences ⁇ D1v and ⁇ D1w between the first time difference measurement data Dm1 and the first time difference calculation data Dc1 with respect to Aw, and the determination values G1v and G1w are the first threshold values.
  • An overall hypothetical sound speed Va that is equal to or less than the value Th1 is calculated as a candidate value for the total sound speed, and an average value and a mode value are calculated based on the plurality of total sound speed candidate values calculated for the plurality of reflection points Av and Aw.
  • the overall sound speed V1 can also be determined by taking
  • step S8 determination values G2v and G2w are calculated for each reflection point based on the differences ⁇ D2v and ⁇ D2w between the second time difference measurement data Dm2 and the second time difference calculation data Dc2 for the reflection points Av and Aw, respectively.
  • the local assumed sound speed Vb at which the determination values G2v and G2w are equal to or less than the first threshold value Th1 is calculated as a local sound speed candidate value, and a plurality of local sound speeds calculated for the plurality of reflection points Av and Aw are calculated.
  • the local sound velocity V2 can be determined by taking an average value, a mode value, or the like based on the candidate values.
  • the total sound speed V1 and the local sound speed V2 can be quantified with higher accuracy.
  • Embodiment 3 In Embodiment 1 described above, when the region of interest R2 is set by the region of interest setting unit 17, both the overall sound velocity V1 in the region R1 other than the region of interest R2 and the local sound velocity V2 in the region of interest R2 are determined. Depending on the size of the region of interest R2 set by the region-of-interest setting unit 17, the sound speed to be quantified can be selected from the overall sound speed V1 and the local sound speed V2.
  • the ultrasonic diagnostic apparatus according to Embodiment 3 quantifies both the total sound speed V1 and the local sound speed V2 when both the length in the scanning direction and the length in the depth direction of the region of interest R2 are larger than the set values. When at least one of the length in the scanning direction and the length in the depth direction of the region of interest R2 is equal to or less than the set value, only the total sound speed V1 is quantified without quantifying the local sound speed V2. is there.
  • FIG. 24 shows the operation of the ultrasonic diagnostic apparatus according to the third embodiment.
  • the region of interest R2 is set by the region of interest setting unit 17, and in step S2, ultrasonic waves are transmitted only once from the plurality of elements E1 to En of the array transducer 1 toward the reflection point A in the subject. Transmission and reception are performed, and element data is acquired and stored in the element data memory 7 in step S3.
  • step S11 the controller 9 determines whether or not the condition Y1 regarding the length in the scanning direction and the length in the depth direction of the region of interest R2 is satisfied.
  • the condition Y1 is a condition that both the length in the scanning direction and the length in the depth direction of the region of interest R2 are larger than a preset set value.
  • the set value can be, for example, a length that is 1/10 of the arrangement pitch of the plurality of elements E1 to En of the array transducer 1.
  • the propagation time of the ultrasonic echo that reaches the element of the array transducer 1 from the reflection point through the region of interest R2 It is difficult to accurately quantify the local sound speed V2 in the region of interest R2 because the influence of the region of interest R2 on the region is too small.
  • step S11 when it is determined in step S11 that the length in the scanning direction and the length in the depth direction of the region of interest R2 are both greater than the set value and the condition Y1 is satisfied, the process proceeds to step S12, where the overall sound speed V1 and the local sound speed V1 A quantification process 100 for quantifying both the sound speeds V2 is executed.
  • step S12 it is determined that the condition Y1 is not satisfied because at least one of the length in the scanning direction and the length in the depth direction of the region of interest R2 is equal to or less than the set value. If so, the process proceeds to step S13, and a quantification process 200 for quantifying only the overall sound speed V1 is executed.
  • step S4 the time difference measurement data acquisition unit 21 compares the plurality of element data, and in step S5, the total sound speed determination unit 23 performs the total assumed sound speed.
  • the initial value of Va is set, and in step S6, the overall sound speed determination unit 23 changes the value of the overall assumed sound speed Va until the determination value G1 becomes equal to or less than the first threshold value Th1, and the difference ⁇ D1 and the determination value G1. Is repeated, and the overall assumed sound speed Va at which the determination value G1 is equal to or less than the first threshold Th1 is determined as the overall sound speed V1 of the region R1 other than the region of interest R2.
  • step S7 the initial value of the assumed local sound speed Vb is set by the local sound speed determination unit 25, and in step S8, the local sound speed determination unit 25 sets the local value until the determination value G2 becomes equal to or less than the first threshold value Th1.
  • the calculation of the difference ⁇ D2 and the determination value G2 is repeated while changing the value of the assumed sound speed Vb, and the local assumed sound speed Vb at which the determination value G2 is equal to or less than the first threshold Th1 is defined as the local sound speed V2 of the region of interest R2. It is determined.
  • step S4 the time difference measurement data acquisition unit 21 compares the plurality of element data, and in step S5, the total sound speed determination unit 23 performs overall comparison.
  • An initial value of the assumed sound speed Va is set, and in step S6, the overall sound speed determining unit 23 changes the value of the overall assumed sound speed Va and the determination while changing the value of the overall assumed sound speed Va until the determination value G1 becomes equal to or less than the first threshold value Th1.
  • the calculation of the value G1 is repeated, and the overall assumed sound speed Va at which the determination value G1 is equal to or less than the first threshold Th1 is determined as the overall sound speed V1 of the region R1 other than the region of interest R2. Note that the local sound speed V2 in the region of interest R2 is not quantified.
  • the region of interest R2 set by the region of interest setting unit 17 is long in the scanning direction, and the region of interest R2 is selected from the plurality of straight lines connecting the reflection points in the subject and the plurality of elements E1 to En of the array transducer 1.
  • a predetermined ratio for example, 80%
  • the total sound velocity V1 in the region R1 is accurately quantified. It becomes difficult to do.
  • a condition where the straight line passing through the region of interest R2 out of a plurality of straight lines connecting the reflection point and the plurality of elements E1 to En of the array transducer 1 exceeds a predetermined ratio (for example, 80%) is defined as a condition Y2.
  • a predetermined ratio for example, 80%
  • step S14 the condition Y2 is satisfied because the straight line passing through the region of interest R2 out of a plurality of straight lines connecting the reflection point and the plurality of elements E1 to En of the array transducer 1 is equal to or less than a predetermined ratio (for example, 80%).
  • a predetermined ratio for example, 80%
  • the local sound speed determination unit 25 performs local comparison in step S7.
  • the initial value of the assumed sound speed Vb is set, and in step S8, the local sound speed determination unit 25 changes the difference ⁇ D2 and the determination while changing the value of the local assumed sound speed Vb until the determination value G2 becomes equal to or less than the first threshold value Th1.
  • the calculation of the value G2 is repeated, and the assumed local sound speed Vb at which the determination value G2 is equal to or less than the first threshold Th1 is determined as the local sound speed V2 of the region of interest R2.
  • the overall sound speed V1 is not quantified.
  • the sound speed to be quantified is selected from the overall sound speed V1 and the local sound speed V2 according to the size of the region of interest R2 set by the region of interest setting unit 17, and the like. Quantification of sound speed is possible.
  • the size of the region of interest R2 set by the region of interest setting unit 17 is also determined.
  • the sound speed to be quantified can be selected from the overall sound speed V1 and the local sound speed V2. Note that even if the reflection point is changed, the length in the scanning direction and the length in the depth direction of the region of interest R2 do not change. Therefore, the determination in step S11 as to whether or not the condition Y1 is satisfied is determined by a plurality of reflection points. Produces the same result.
  • step S14 determines whether or not may give different results for a plurality of reflection points.
  • the reflection point that does not satisfy the condition Y2 in step S14 that is, a straight line that passes through the region of interest R2 when connecting the plurality of elements E1 to En of the array transducer 1 with a plurality of straight lines.
  • the total sound speed V1 quantified in the quantification process 100 in step S12 for the reflection point may be adopted as the sound speed of the region R1 other than the region of interest R2. it can.
  • the control unit 9 determines whether or not the condition Y1 is satisfied in step S11 and whether or not the condition Y2 is satisfied in step S14.
  • the present invention is not limited to this.
  • the local sound speed determination unit 25 can also be configured to make these determinations.
  • the total sound velocity V1 and the local sound velocity V2 are quantified using the element data output from the plurality of elements E1 to En of the array transducer 1, amplified by the receiving circuit 3, and digitized.
  • the present invention is not limited to this, and the total sound speed V1 and the local sound speed V2 can be quantified using element data that has been digitized and phase-matched.

Abstract

This ultrasonic diagnostic device comprises: a region-of-interest setting unit (17) that sets a region of interest (R2) on an ultrasonic image; a time difference measurement data acquisition unit (21) that compares a plurality of pieces of element data which are output from a plurality of elements of an array transducer, and acquires time difference measurement data indicating time differences among the pieces of element data; a time difference calculation data acquisition unit (22) that acquires time difference calculation data indicating time differences among the pieces of element data on the basis of respective distances from a reflection point to the plurality of elements and an assumed sonic speed that has been set; and an overall sonic speed determination unit (23) that determines an overall sonic speed in a region other than said region of interest on the basis of the difference between first time difference measurement data acquired in association with elements, among said plurality of elements, that have received an ultrasonic echo passing through said region other than said region of interest (R2) and first time difference calculation data acquired in association with said elements, among said plurality of elements, that have received the ultrasonic echo passing through said region other than said region of interest (R2) and by setting an overall assumed sonic speed as the assumed sonic speed.

Description

超音波診断装置および音速定量化方法Ultrasonic diagnostic apparatus and sound speed quantification method
 この発明は、超音波診断装置および音速定量化方法に係り、特に、アレイトランスデューサと超音波ビームの反射点との間の領域における音速の定量化に関する。 The present invention relates to an ultrasonic diagnostic apparatus and a sound velocity quantification method, and more particularly, to sound velocity quantification in a region between an array transducer and an ultrasonic beam reflection point.
 従来から、医療分野において、超音波画像を利用した超音波診断装置が実用化されている。一般に、この種の超音波診断装置では、複数の素子が配列されたアレイトランスデューサから被検体内に向けて超音波ビームを送信し、被検体からの超音波エコーをアレイトランスデューサで受信して素子データを取得し、素子データを装置本体で電気的に処理することにより超音波画像が生成される。 Conventionally, in the medical field, an ultrasonic diagnostic apparatus using an ultrasonic image has been put into practical use. In general, in this type of ultrasonic diagnostic apparatus, an ultrasonic beam is transmitted from an array transducer in which a plurality of elements are arranged into the subject, and ultrasonic echoes from the subject are received by the array transducer, and element data is received. And an elemental data is electrically processed by the apparatus body to generate an ultrasonic image.
 このような超音波診断装置においては、超音波画像の方位分解能を向上させる目的で、超音波ビームを送信する際に、各走査線上に焦点を定めてアレイトランスデューサの各素子から超音波ビームを送信する送信フォーカスが行われ、超音波エコーを受信する際には、アレイトランスデューサの各素子の配置位置に応じて素子データの時相を揃える受信フォーカスが行われる。
 これらの送信フォーカスおよび受信フォーカスは、超音波ビームの伝搬媒質の音速を用いて行われるが、伝搬媒質である被検体内における音速を推定する必要がある。
In such an ultrasonic diagnostic apparatus, when an ultrasonic beam is transmitted for the purpose of improving the azimuth resolution of the ultrasonic image, the ultrasonic beam is transmitted from each element of the array transducer by focusing on each scanning line. When the transmission focus is performed and the ultrasonic echo is received, the reception focus for aligning the time phases of the element data according to the arrangement position of each element of the array transducer is performed.
These transmission focus and reception focus are performed using the sound velocity of the propagation medium of the ultrasonic beam, but it is necessary to estimate the sound velocity in the subject that is the propagation medium.
 例えば、特許文献1に開示された超音波診断装置では、アレイトランスデューサの複数の素子から得られる複数の受波信号を用い、複数の音速の候補に対応して複数の評価用フレームを形成し、評価用フレーム内の整相加算処理により得られる信号の強度が最大になる音速の候補を最適な音速の推定値としている。 For example, in the ultrasonic diagnostic apparatus disclosed in Patent Document 1, a plurality of received signals obtained from a plurality of elements of an array transducer are used, and a plurality of evaluation frames are formed corresponding to a plurality of sound speed candidates, A sound speed candidate that maximizes the intensity of the signal obtained by the phasing addition processing in the evaluation frame is used as an optimum sound speed estimation value.
特開2015-62483号公報JP2015-62483A
 しかしながら、特許文献1の装置では、アレイトランスデューサの複数の素子により取得される受波信号に対して一律の音速の候補を適用して整相加算処理を行うため、複数の素子と被検体内の反射点との間の領域が一様な音速を有する場合には、最適な音速値を推定することができるものの、複数の素子と被検体内の反射点との間の領域における音速が一様でない場合には、音速推定の精度が低下するという問題がある。
 特に、病変部においては、他の領域に比べて音速が異なることが多く、アレイトランスデューサの複数の素子と被検体内の反射点との間に病変部が存在すると、音速を精度よく推定することが困難になってしまう。
However, in the apparatus of Patent Document 1, phasing addition processing is performed by applying a uniform sound speed candidate to a received signal acquired by a plurality of elements of an array transducer. When the region between the reflection points has a uniform sound velocity, the optimum sound velocity value can be estimated, but the sound velocity in the region between the plurality of elements and the reflection point in the subject is uniform. Otherwise, there is a problem that the accuracy of sound speed estimation is lowered.
In particular, the speed of sound is often different in a lesion area compared to other regions, and if a lesion area exists between multiple elements of an array transducer and a reflection point in a subject, the sound speed is accurately estimated. Will become difficult.
 この発明は、このような従来の問題点を解消するためになされたもので、アレイトランスデューサの複数の素子と反射点との間の領域における音速が一様でない場合であっても精度よく音速を定量化することができる超音波診断装置および音速定量化方法を提供することを目的とする。 The present invention has been made to solve such a conventional problem. Even when the sound speed in the region between the plurality of elements of the array transducer and the reflection point is not uniform, the sound speed can be accurately obtained. An object of the present invention is to provide an ultrasonic diagnostic apparatus and a sound speed quantification method that can be quantified.
 この発明に係る超音波診断装置は、複数の素子が配列されたアレイトランスデューサから被検体に向けて超音波ビームを送信し、被検体による超音波エコーを受信して超音波画像を生成する超音波診断装置であって、超音波画像上に関心領域を設定するための関心領域設定部と、被検体内の反射点に向けた超音波ビームの送信に対応して反射点により反射される超音波エコーを受信した複数の素子から出力される複数の素子データを比較して素子データ間の時間差を表す時間差測定データを取得する時間差測定データ取得部と、反射点から複数の素子の各々までの距離と設定された仮定音速に基づいて素子データ間の時間差を表す時間差演算データを取得する時間差演算データ取得部と、仮定音速として全体仮定音速を設定し、複数の素子のうち関心領域以外の領域を通る超音波エコーを受信した素子に対応して時間差測定データ取得部により取得された第1の時間差測定データと、仮定音速として全体仮定音速を設定し且つ複数の素子のうち関心領域以外の領域を通る超音波エコーを受信した素子に対応して時間差演算データ取得部により取得された第1の時間差演算データとの差分に基づいて関心領域以外の領域に対応する全体音速を決定する全体音速決定部とを備えたものである。 The ultrasonic diagnostic apparatus according to the present invention transmits an ultrasonic beam toward an object from an array transducer in which a plurality of elements are arranged, receives an ultrasonic echo from the object, and generates an ultrasonic image A diagnostic apparatus, a region-of-interest setting unit for setting a region of interest on an ultrasound image, and an ultrasonic wave reflected by the reflection point in response to transmission of an ultrasonic beam toward the reflection point in the subject A time difference measurement data acquisition unit that compares a plurality of element data output from a plurality of elements that have received an echo to acquire a time difference measurement data that represents a time difference between the element data, and a distance from the reflection point to each of the plurality of elements A time difference calculation data acquisition unit for acquiring time difference calculation data representing a time difference between element data based on the set assumed sound speed, and an overall assumed sound speed as an assumed sound speed, and a plurality of elements The first time difference measurement data acquired by the time difference measurement data acquisition unit corresponding to the element that has received the ultrasonic echo that passes through the region other than the region of interest, the overall assumed sound speed is set as the assumed sound speed, and the plurality of elements The total sound speed corresponding to the region other than the region of interest based on the difference from the first time difference calculation data acquired by the time difference calculation data acquisition unit corresponding to the element that has received the ultrasonic echo passing through the region other than the region of interest. And an overall sound speed determination unit.
 前記全体音速決定部は、複数の素子のうち関心領域以外の領域を通る超音波エコーを受信した素子に対応して取得された第1の時間差測定データと第1の時間差演算データとの差分に基づいて算出された判定値が第1のしきい値以下となる全体仮定音速を全体音速として決定することができる。
 さらに、全体音速決定部は、複数の素子に対応する第1の時間差測定データと第1の時間差演算データとの差分の絶対値の合計値または差分の絶対値の二乗和を判定値として用いることができる。
 関心領域を通る超音波エコーを受信した素子に対応して時間差測定データ取得部により取得された第2の時間差測定データと、仮定音速として局所仮定音速を設定し且つ関心領域を通る超音波エコーを受信した素子に対応して時間差演算データ取得部により取得された第2の時間差演算データとの差分に基づいて関心領域内における局所音速を決定する局所音速決定部を備えることが好ましい。
The overall sound speed determination unit calculates a difference between the first time difference measurement data and the first time difference calculation data acquired corresponding to an element that has received an ultrasonic echo passing through a region other than the region of interest among a plurality of elements. An overall assumed sound speed at which the determination value calculated based on the first threshold value is equal to or less than the first threshold value can be determined as the overall sound speed.
Furthermore, the overall sound speed determination unit uses the sum of absolute values of the differences between the first time difference measurement data corresponding to the plurality of elements and the first time difference calculation data or the sum of squares of the absolute values of the differences as a determination value. Can do.
The second time difference measurement data acquired by the time difference measurement data acquisition unit corresponding to the element that has received the ultrasonic echo that passes through the region of interest, the local assumed sound speed as the assumed sound speed, and the ultrasonic echo that passes through the region of interest It is preferable to include a local sound speed determination unit that determines the local sound speed in the region of interest based on the difference from the second time difference calculation data acquired by the time difference calculation data acquisition unit corresponding to the received element.
 全体音速決定部は、関心領域設定部により設定された関心領域の走査方向の長さおよび深度方向の長さの少なくとも一方が設定値以下の場合、および、関心領域設定部により設定された関心領域の走査方向の長さおよび深度方向の長さがいずれも設定値より大きく且つ反射点と複数の素子とを結ぶ複数の直線のうち関心領域を通る直線が所定の割合以下の場合にのみ全体音速を決定するように構成することができる。
 この場合、局所音速決定部は、関心領域設定部により設定された関心領域の走査方向の長さおよび深度方向の長さがいずれも設定値より大きい場合にのみ局所音速を決定してもよい。
 時間差測定データ取得部は、隣接する素子間の時間差を表す時間差測定データを取得し、時間差演算データ取得部は、隣接する素子間の時間差を表す時間差演算データを取得するように構成することができる。あるいは、時間差測定データ取得部は、複数の素子のうち基準となる素子と他の素子との間の時間差を表す時間差測定データを取得し、時間差演算データ取得部は、基準となる素子と他の素子との間の時間差を表す時間差演算データを取得するように構成してもよい。
The total sound speed determination unit is configured to display a region of interest set by the region of interest setting unit when the region of interest set by the region of interest setting unit has at least one of a length in the scanning direction and a length in the depth direction equal to or less than a set value. Only when the length in the scanning direction and the length in the depth direction are both larger than the set value and the straight line passing through the region of interest is less than or equal to a predetermined ratio among the plurality of straight lines connecting the reflection point and the plurality of elements. Can be configured to determine.
In this case, the local sound speed determination unit may determine the local sound speed only when the length in the scanning direction and the length in the depth direction of the region of interest set by the region of interest setting unit are both larger than the set value.
The time difference measurement data acquisition unit can acquire time difference measurement data representing a time difference between adjacent elements, and the time difference calculation data acquisition unit can be configured to acquire time difference calculation data representing a time difference between adjacent elements. . Alternatively, the time difference measurement data acquisition unit acquires time difference measurement data representing a time difference between the reference element and other elements among the plurality of elements, and the time difference calculation data acquisition unit acquires the difference between the reference element and other elements. You may comprise so that the time difference calculation data showing the time difference between elements may be acquired.
 時間差測定データ取得部は、互いに異なる走査線上に位置する複数の反射点に向けて超音波ビームを送信することにより複数の反射点に対してそれぞれ時間差測定データを取得し、時間差演算データ取得部は、複数の反射点に対してそれぞれ時間差演算データを取得し、全体音速決定部は、複数の素子のうち関心領域以外の領域を通る超音波エコーを受信した素子に対応し且つ複数の反射点に対する複数の第1の時間差測定データおよび複数の素子のうち関心領域以外の領域を通る超音波エコーを受信した素子に対応し且つ複数の反射点に対する複数の第1の時間差演算データに基づいて全体音速を決定することもできる。
 この場合、全体音速決定部は、複数の反射点に対する複数の第1の時間差測定データと複数の第1の時間差演算データとの差分が最小となる全体仮定音速を全体音速として決定してもよい。あるいは、全体音速決定部は、複数の反射点の各々に対する第1の時間差測定データと第1の時間差演算データとの差分に基づいて複数の反射点の各々に対する複数の全体音速の候補値を算出し、且つ、複数の全体音速の候補値に基づいて全体音速を決定することもできる。
 関心領域設定部は、ユーザの指定により関心領域を設定することができる。あるいは、関心領域設定部は、生成された超音波画像から自動的に関心領域を設定してもよい。
The time difference measurement data acquisition unit acquires time difference measurement data for each of the plurality of reflection points by transmitting an ultrasonic beam toward the plurality of reflection points located on different scanning lines, and the time difference calculation data acquisition unit The time difference calculation data is acquired for each of the plurality of reflection points, and the overall sound speed determination unit corresponds to the element that has received the ultrasonic echo that passes through the region other than the region of interest among the plurality of elements and corresponds to the plurality of reflection points. Based on a plurality of first time difference calculation data and a plurality of first time difference calculation data for a plurality of reflection points corresponding to an element that has received an ultrasonic echo passing through a region other than the region of interest among the plurality of elements. Can also be determined.
In this case, the overall sound speed determination unit may determine the overall assumed sound speed at which the difference between the plurality of first time difference measurement data and the plurality of first time difference calculation data for the plurality of reflection points is minimum as the overall sound speed. . Alternatively, the total sound speed determination unit calculates a plurality of global sound speed candidate values for each of the plurality of reflection points based on a difference between the first time difference measurement data and the first time difference calculation data for each of the plurality of reflection points. In addition, the overall sound speed can also be determined based on a plurality of candidate values for the overall sound speed.
The region-of-interest setting unit can set the region of interest according to user designation. Alternatively, the region-of-interest setting unit may automatically set the region of interest from the generated ultrasonic image.
 この発明に係る音速定量化方法は、超音波画像上に関心領域を設定し、被検体内の反射点に向けた超音波ビームの送信に対応して反射点により反射される超音波エコーを受信したアレイトランスデューサの複数の素子から出力される複数の素子データを比較して素子データ間の時間差を表す時間差測定データを取得し、反射点から複数の素子の各々までの距離と設定された仮定音速に基づいて素子データ間の時間差を表す時間差演算データを取得し、仮定音速として全体仮定音速を設定し、複数の素子のうち関心領域以外の領域を通る超音波エコーを受信した素子に対応して取得された第1の時間差測定データと、仮定音速として全体仮定音速を設定し且つ複数の素子のうち関心領域以外の領域を通る超音波エコーを受信した素子に対応して取得された第1の時間差演算データとの差分に基づいて関心領域以外の領域に対応する全体音速を決定する方法である。 The sound velocity quantification method according to the present invention sets a region of interest on an ultrasonic image and receives an ultrasonic echo reflected by the reflection point in response to transmission of an ultrasonic beam toward the reflection point in the subject. A plurality of element data output from a plurality of elements of the array transducer are compared to obtain time difference measurement data representing a time difference between the element data, and a distance from the reflection point to each of the plurality of elements and a set assumed sound speed Time difference calculation data representing the time difference between the element data is obtained, the overall assumed sound speed is set as the assumed sound speed, and the ultrasonic echo that passes through the region other than the region of interest among the plurality of elements is received. Corresponding to the acquired first time difference measurement data and the element that has set the overall assumed sound speed as the assumed sound speed and has received an ultrasonic echo that passes through a region other than the region of interest among the plurality of elements. It is a method of determining the overall speed of sound corresponding to the region other than the region of interest based on the difference between the acquired first time difference calculation data.
 この発明によれば、超音波画像上に関心領域を設定し、アレイトランスデューサの複数の素子から出力される複数の素子データを比較して素子データ間の時間差を表す時間差測定データを取得し、反射点から複数の素子の各々までの距離と設定された仮定音速に基づいて素子データ間の時間差を表す時間差演算データを取得し、仮定音速として全体仮定音速を設定し、複数の素子のうち関心領域以外の領域を通る超音波エコーを受信した素子に対応して取得された第1の時間差測定データと、仮定音速として全体仮定音速を設定し且つ複数の素子のうち関心領域以外の領域を通る超音波エコーを受信した素子に対応して取得された第1の時間差演算データとの差分に基づいて関心領域以外の領域に対応する全体音速を決定するので、アレイトランスデューサの複数の素子と反射点との間の領域における音速が一様でない場合であっても精度よく音速を定量化することが可能となる。 According to the present invention, a region of interest is set on an ultrasonic image, a plurality of element data output from a plurality of elements of an array transducer are compared, time difference measurement data representing a time difference between element data is acquired, and reflection is performed. Obtain time difference calculation data representing the time difference between element data based on the distance from the point to each of the plurality of elements and the set assumed sound speed, and set the overall assumed sound speed as the assumed sound speed. First time difference measurement data acquired corresponding to an element that has received an ultrasonic echo that passes through a region other than, and an overall assumed sound speed as an assumed sound speed, and a super-pass that passes through a region other than the region of interest among a plurality of elements Since the entire sound speed corresponding to the region other than the region of interest is determined based on the difference from the first time difference calculation data acquired corresponding to the element that has received the acoustic echo, the array It is possible to quantify accurately the sound speed even if the sound velocity is not uniform in the region between the plurality of elements of transducer and the reflection point.
この発明の実施の形態1に係る超音波診断装置の構成を示すブロック図である。1 is a block diagram showing a configuration of an ultrasonic diagnostic apparatus according to Embodiment 1 of the present invention. 実施の形態1における受信回路の内部構成を示すブロック図である。3 is a block diagram showing an internal configuration of a receiving circuit in the first embodiment. FIG. 実施の形態1における画像生成部の内部構成を示すブロック図である。3 is a block diagram illustrating an internal configuration of an image generation unit according to Embodiment 1. FIG. 実施の形態1における音速定量化部の内部構成を示すブロック図である。4 is a block diagram showing an internal configuration of a sound speed quantification unit in Embodiment 1. FIG. 被検体内の反射点からの超音波エコーがアレイトランスデューサの複数の素子に到達する様子を示す図である。It is a figure which shows a mode that the ultrasonic echo from the reflective point in a subject reaches | attains the several element of an array transducer. 被検体内の反射点から発せられて各素子に向かう超音波エコーを示す図である。It is a figure which shows the ultrasonic echo emitted from the reflective point in a subject and toward each element. 被検体内の反射点から発せられて各素子に向かう超音波エコーの最も振幅の大きい点を結ぶ波形を示す図である。It is a figure which shows the waveform which connects the point with the largest amplitude of the ultrasonic echo which is emitted from the reflective point in a subject and goes to each element. 隣接素子間の時間差測定データを示すグラフである。It is a graph which shows the time difference measurement data between adjacent elements. 関心領域以外の領域を通る超音波エコーを受信した素子と被検体内の反射点との幾何学的配置関係を示す図である。It is a figure which shows the geometric arrangement | positioning relationship between the element which received the ultrasonic echo which passes along areas other than the region of interest, and the reflective point in a subject. 関心領域以外の領域を通る超音波エコーを受信した各素子により被検体内の反射点からの超音波エコーを受信する時刻の演算値を示すグラフである。It is a graph which shows the calculated value of the time which receives the ultrasonic echo from the reflective point in a subject by each element which received the ultrasonic echo which passes along areas other than a region of interest. 関心領域以外の領域を通る超音波エコーを受信した隣接素子間の時間差演算データを示すグラフである。It is a graph which shows the time difference calculation data between the adjacent elements which received the ultrasonic echo which passes along areas other than the region of interest. 関心領域以外の領域を通る超音波エコーを受信した隣接素子間における時間差測定データと時間差演算データを重ねて表示したグラフである。It is the graph which displayed by superimposing the time difference measurement data and the time difference calculation data between the adjacent elements which received the ultrasonic echo which passes through areas other than the region of interest. 関心領域以外の領域を通る超音波エコーを受信した隣接素子間における時間差測定データと時間差演算データの差分を示すグラフである。It is a graph which shows the difference of the time difference measurement data and the time difference calculation data between the adjacent elements which received the ultrasonic echo which passes through areas other than the region of interest. 関心領域を通る超音波エコーを受信した素子と被検体内の反射点との幾何学的配置関係を示す図である。It is a figure which shows the geometric arrangement | positioning relationship between the element which received the ultrasonic echo which passes through a region of interest, and the reflective point in a subject. 関心領域を通る超音波エコーを受信した各素子により被検体内の反射点からの超音波エコーを受信する時刻の演算値を示すグラフである。It is a graph which shows the calculated value of the time which receives the ultrasonic echo from the reflective point in a subject by each element which received the ultrasonic echo which passes the region of interest. 関心領域を通る超音波エコーを受信した隣接素子間の時間差演算データを示すグラフである。It is a graph which shows the time difference calculation data between the adjacent elements which received the ultrasonic echo which passes the region of interest. 関心領域を通る超音波エコーを受信した隣接素子間における時間差測定データと時間差演算データを重ねて表示したグラフである。It is the graph which displayed by superimposing the time difference measurement data and time difference calculation data between the adjacent elements which received the ultrasonic echo which passes through the region of interest. 関心領域を通る超音波エコーを受信した隣接素子間における時間差測定データと時間差演算データの差分を示すグラフである。It is a graph which shows the difference of the time difference measurement data and the time difference calculation data between the adjacent elements which received the ultrasonic echo which passes the region of interest. 実施の形態1に係る超音波診断装置の動作を示すフローチャートである。3 is a flowchart showing an operation of the ultrasonic diagnostic apparatus according to the first embodiment. 実施の形態2における1つの反射点からの超音波エコーがアレイトランスデューサの複数の素子に到達する様子を示す図である。FIG. 10 is a diagram illustrating a state in which an ultrasonic echo from one reflection point in the second embodiment reaches a plurality of elements of an array transducer. 実施の形態2における他の反射点からの超音波エコーがアレイトランスデューサの複数の素子に到達する様子を示す図である。It is a figure which shows a mode that the ultrasonic echo from the other reflective point in Embodiment 2 arrives at the several element of an array transducer. 実施の形態2に係る超音波診断装置の動作を示すフローチャートである。6 is a flowchart showing the operation of the ultrasonic diagnostic apparatus according to the second embodiment. 実施の形態2における2つの反射点に対応し且つ関心領域以外の領域を通る超音波エコーを受信した隣接素子間における時間差測定データと時間差演算データの差分をそれぞれ示すグラフである。6 is a graph showing the difference between time difference measurement data and time difference calculation data between adjacent elements that have received ultrasonic echoes corresponding to two reflection points and passing through a region other than the region of interest in the second embodiment. 実施の形態3に係る超音波診断装置の動作を示すフローチャートである。10 is a flowchart showing the operation of the ultrasonic diagnostic apparatus according to the third embodiment. 定量化処理100の動作を示すフローチャートである。3 is a flowchart showing an operation of a quantification process 100. 定量化処理200の動作を示すフローチャートである。5 is a flowchart showing an operation of a quantification process 200. 実施の形態3の変形例に係る超音波診断装置の動作を示すフローチャートである。10 is a flowchart showing the operation of an ultrasonic diagnostic apparatus according to a modification of the third embodiment. 定量化処理300の動作を示すフローチャートである。5 is a flowchart showing an operation of a quantification process 300.
 以下、この発明の実施の形態を添付図面に基づいて説明する。
実施の形態1
 図1に、この発明の実施の形態1に係る超音波診断装置の構成を示す。超音波診断装置は、アレイトランスデューサ1を備え、このアレイトランスデューサ1に送信回路2および受信回路3が接続されている。受信回路3には、画像生成部4、表示制御部5および表示部6が順次接続されている。また、受信回路3に素子データメモリ7が接続され、素子データメモリ7および画像生成部4に音速定量化部8が接続され、音速定量化部8に関心領域設定部17が接続されている。
 さらに、送信回路2、受信回路3、画像生成部4、表示制御部5、音速定量化部8および関心領域設定部17に制御部9が接続され、制御部9に操作部10と格納部11がそれぞれ接続されている。
Embodiments of the present invention will be described below with reference to the accompanying drawings.
Embodiment 1
FIG. 1 shows the configuration of an ultrasonic diagnostic apparatus according to Embodiment 1 of the present invention. The ultrasonic diagnostic apparatus includes an array transducer 1, and a transmission circuit 2 and a reception circuit 3 are connected to the array transducer 1. An image generating unit 4, a display control unit 5, and a display unit 6 are sequentially connected to the receiving circuit 3. An element data memory 7 is connected to the receiving circuit 3, a sound speed quantification unit 8 is connected to the element data memory 7 and the image generation unit 4, and a region of interest setting unit 17 is connected to the sound speed quantification unit 8.
Further, the control unit 9 is connected to the transmission circuit 2, the reception circuit 3, the image generation unit 4, the display control unit 5, the sound speed quantification unit 8, and the region of interest setting unit 17, and the operation unit 10 and the storage unit 11 are connected to the control unit 9. Are connected to each other.
 アレイトランスデューサ1は、1次元または2次元に配列された複数の素子(超音波トランスデューサ)を有している。これらの素子は、それぞれ送信回路2から供給される駆動信号に従って超音波を送信すると共に被検体からの超音波エコーを受信して受信信号を出力する。各素子は、例えば、PZT(チタン酸ジルコン酸鉛)に代表される圧電セラミックや、PVDF(ポリフッ化ビニリデン)に代表される高分子圧電素子、PMN-PT(マグネシウムニオブ酸・チタン酸鉛固溶体)に代表される圧電単結晶等からなる圧電体の両端に電極を形成した振動子によって構成される。 The array transducer 1 has a plurality of elements (ultrasonic transducers) arranged one-dimensionally or two-dimensionally. Each of these elements transmits an ultrasonic wave according to a drive signal supplied from the transmission circuit 2 and receives an ultrasonic echo from the subject to output a reception signal. Each element is, for example, a piezoelectric ceramic represented by PZT (lead zirconate titanate), a polymer piezoelectric element represented by PVDF (polyvinylidene fluoride), or PMN-PT (magnesium niobate / lead titanate solid solution). It is comprised by the vibrator | oscillator which formed the electrode in the both ends of the piezoelectric material which consists of a piezoelectric single crystal etc. which are represented by.
 そのような振動子の電極に、パルス状又は連続波の電圧を印加すると、圧電体が伸縮し、それぞれの振動子からパルス状又は連続波の超音波が発生して、それらの超音波の合成により超音波ビームが形成される。また、それぞれの振動子は、伝搬する超音波を受信することにより伸縮して電気信号を発生し、それらの電気信号は、超音波の受信信号として出力される。 When a pulsed or continuous wave voltage is applied to the electrodes of such a vibrator, the piezoelectric body expands and contracts, and pulsed or continuous wave ultrasonic waves are generated from the respective vibrators, and the synthesis of those ultrasonic waves. As a result, an ultrasonic beam is formed. In addition, each transducer generates an electric signal by expanding and contracting by receiving propagating ultrasonic waves, and these electric signals are output as ultrasonic reception signals.
 送信回路2は、例えば、複数のパルス発生器を含んでおり、制御部9からの制御信号に応じて選択された送信遅延パターンに基づいて、アレイトランスデューサ1の複数の素子から送信される超音波が超音波ビームを形成するようにそれぞれの駆動信号の遅延量を調節して複数の素子に供給する。
 受信回路3は、図2に示されるように、増幅部12とAD(Analogue Digital)変換部13が直列接続された構成を有している。受信回路3は、アレイトランスデューサ1の各素子から出力される受信信号を増幅部12で増幅し、AD変換部13でデジタル化することにより得られた素子データを画像生成部4および素子データメモリ7に出力する。
The transmission circuit 2 includes, for example, a plurality of pulse generators, and ultrasonic waves transmitted from a plurality of elements of the array transducer 1 based on a transmission delay pattern selected according to a control signal from the control unit 9. Adjusts the delay amount of each drive signal so as to form an ultrasonic beam, and supplies it to a plurality of elements.
As shown in FIG. 2, the reception circuit 3 has a configuration in which an amplification unit 12 and an AD (Analogue Digital) conversion unit 13 are connected in series. The receiving circuit 3 amplifies the reception signal output from each element of the array transducer 1 by the amplifying unit 12, and digitizes the element data obtained by the AD converting unit 13. The image generating unit 4 and the element data memory 7 Output to.
 画像生成部4は、図3に示されるように、信号処理部14とDSC(Digital Scan Converter)15と画像処理部16が順次直列に接続された構成を有している。
 信号処理部14は、制御部9からの制御信号に応じて選択された受信遅延パターンに基づき、設定された音速に従い、各素子データにそれぞれの遅延を与えて加算(整相加算)することにより、受信フォーカス処理を行う。この受信フォーカス処理により、超音波エコーの焦点が絞り込まれた音線信号が生成される。さらに、信号処理部14は、音線信号に対し、超音波の反射位置の深度に応じて距離による減衰の補正を施した後、包絡線検波処理を施すことにより、被検体内の組織に関する断層画像情報であるBモード(Brightness Mode)画像信号を生成する。
As shown in FIG. 3, the image generation unit 4 has a configuration in which a signal processing unit 14, a DSC (Digital Scan Converter) 15, and an image processing unit 16 are sequentially connected in series.
Based on the reception delay pattern selected according to the control signal from the control unit 9, the signal processing unit 14 gives each element data a respective delay and adds (phased addition) according to the set sound speed. Receive focus processing. By this reception focus processing, a sound ray signal in which the focus of the ultrasonic echo is narrowed is generated. Further, the signal processing unit 14 corrects the attenuation by the distance according to the depth of the reflection position of the ultrasonic wave on the sound ray signal, and then performs envelope detection processing to thereby obtain a tomography relating to the tissue in the subject. A B mode (Brightness Mode) image signal which is image information is generated.
 DSC15は、信号処理部14により生成されたBモード画像信号を通常のテレビジョン信号の走査方式に従う画像信号に変換(ラスター変換)する。
 画像処理部16は、DSC15から入力されるBモード画像信号に階調処理等の各種の必要な画像処理を施した後、Bモード画像信号を表示制御部5に出力する。
The DSC 15 converts (raster conversion) the B-mode image signal generated by the signal processing unit 14 into an image signal according to a normal television signal scanning method.
The image processing unit 16 performs various necessary image processing such as gradation processing on the B-mode image signal input from the DSC 15, and then outputs the B-mode image signal to the display control unit 5.
 表示制御部5は、画像生成部4から出力されたBモード画像信号に基づいて、表示部6に超音波診断画像を表示させる。
 表示部6は、例えば、LCD(Liquid Crystal Display)等のディスプレイ装置を含んでおり、表示制御部5の制御の下で、超音波診断画像を表示する。
The display control unit 5 displays an ultrasound diagnostic image on the display unit 6 based on the B-mode image signal output from the image generation unit 4.
The display unit 6 includes a display device such as an LCD (Liquid Crystal Display), for example, and displays an ultrasound diagnostic image under the control of the display control unit 5.
 素子データメモリ7は、受信回路3から出力される素子データを順次格納する。
 音速定量化部8は、素子データメモリ7に格納されている素子データを用いて、アレイトランスデューサ1により撮像される撮像領域のうち関心領域設定部17により設定された関心領域R2以外の領域R1の音速を示す全体音速V1と、関心領域R2の音速を示す局所音速V2をそれぞれ定量化し、画像生成部4に出力する。音速定量化部8は、図4に示されるように、時間差測定データ取得部21と時間差演算データ取得部22とを有しており、これら時間差測定データ取得部21および時間差演算データ取得部22に全体音速決定部23および局所音速決定部25がそれぞれ接続されている。そして、時間差演算データ取得部22、全体音速決定部23および局所音速決定部25に関心領域設定部17が接続されている。
The element data memory 7 sequentially stores element data output from the receiving circuit 3.
The sound velocity quantifying unit 8 uses the element data stored in the element data memory 7 to select a region R1 other than the region of interest R2 set by the region-of-interest setting unit 17 among the imaging regions imaged by the array transducer 1. The overall sound speed V1 indicating the sound speed and the local sound speed V2 indicating the sound speed of the region of interest R2 are each quantified and output to the image generation unit 4. As shown in FIG. 4, the sound velocity quantification unit 8 includes a time difference measurement data acquisition unit 21 and a time difference calculation data acquisition unit 22, and the time difference measurement data acquisition unit 21 and the time difference calculation data acquisition unit 22 include An overall sound speed determination unit 23 and a local sound speed determination unit 25 are connected to each other. The region-of-interest setting unit 17 is connected to the time difference calculation data acquisition unit 22, the overall sound speed determination unit 23, and the local sound speed determination unit 25.
 関心領域設定部17は、アレイトランスデューサ1により撮像される撮像領域内に関心領域R2を設定する。関心領域R2は、例えば病変部の位置に合わせて設定され、関心領域設定部17は、操作部10から入力されたユーザの指定に基づいて関心領域R2を設定する、あるいは、画像生成部4により生成された超音波画像を認識することにより自動的に関心領域R2を設定することができる。 The region-of-interest setting unit 17 sets the region of interest R2 within the imaging region imaged by the array transducer 1. The region of interest R2 is set in accordance with, for example, the position of the lesion, and the region of interest setting unit 17 sets the region of interest R2 based on the user designation input from the operation unit 10, or the image generating unit 4 The region of interest R2 can be automatically set by recognizing the generated ultrasonic image.
 制御部9は、ユーザにより操作部10から入力された指令に基づいて超音波診断装置各部の制御を行う。
 操作部10は、ユーザが入力操作を行うためのもので、キーボード、マウス、トラックボール、タッチパネル等から形成することができる。
 格納部11は、動作プログラム等を格納するもので、ハードディスク、フレキシブルディスク、MO(Magneto-Optical Disk)、MT(Magnetic Tape)、RAM(Random Access Memory)、CD-ROM(Compact Disk Read Only Memory)、DVD-ROM(Digital Versatile Disk Read Only Memory)、SDカード(Secure Digital Card)、CFカード(Compact Flash Card)、USBメモリ(Universal Serial Bus Memory)等の記録メディア、またはサーバ等を用いることができる。
 なお、画像生成部4、表示制御部5、音速定量化部8、制御部9および関心領域設定部17は、それぞれ、CPU(Central Processing Unit)と、CPUに各種の処理を行わせるための動作プログラムから構成されるが、それらをデジタル回路で構成してもよい。また、これら画像生成部4、表示制御部5、音速定量化部8、制御部9および関心領域設定部17を、部分的にあるいは全体的に1つのCPUに統合させて構成することもできる。
The control unit 9 controls each unit of the ultrasonic diagnostic apparatus based on a command input from the operation unit 10 by the user.
The operation unit 10 is for a user to perform an input operation, and can be formed from a keyboard, a mouse, a trackball, a touch panel, or the like.
The storage unit 11 stores an operation program and the like. A hard disk, a flexible disk, an MO (Magneto-Optical Disk), an MT (Magnetic Tape), a RAM (Random Access Memory), a CD-ROM (Compact Disk Read Only Memory). Recording media such as DVD-ROM (Digital Versatile Disk Read Only Memory), SD card (Secure Digital Card), CF card (Compact Flash Card), USB memory (Universal Serial Bus Memory), or server can be used. .
The image generation unit 4, the display control unit 5, the sound speed quantification unit 8, the control unit 9, and the region of interest setting unit 17 are each a CPU (Central Processing Unit) and operations for causing the CPU to perform various processes. Although composed of programs, they may be composed of digital circuits. The image generation unit 4, the display control unit 5, the sound speed quantification unit 8, the control unit 9, and the region-of-interest setting unit 17 may be partially or wholly integrated into one CPU.
 ここで、音速定量化部8の作用について詳細に説明する。
 時間差測定データ取得部21は、素子データメモリ7に格納されている素子データの中から、アレイトランスデューサ1の複数の素子から被検体内の反射点に向けて送信された超音波に対応して、反射点により反射される超音波エコーを受信したアレイトランスデューサ1の複数の素子から出力された複数の素子データを読み出し、読み出された複数の素子データを比較することにより、隣接する素子の素子データ間の時間差ΔTを表す時間差測定データDmを取得する。
Here, the operation of the sound velocity quantification unit 8 will be described in detail.
The time difference measurement data acquisition unit 21 corresponds to the ultrasonic wave transmitted from the plurality of elements of the array transducer 1 toward the reflection point in the subject from the element data stored in the element data memory 7. By reading a plurality of element data output from a plurality of elements of the array transducer 1 that has received the ultrasonic echo reflected by the reflection point, and comparing the read plurality of element data, the element data of adjacent elements The time difference measurement data Dm representing the time difference ΔT is acquired.
 例えば、図5に示されるように、nを2以上の整数とし、アレイトランスデューサ1の複数の素子E1~Enから被検体内の反射点Aを焦点として超音波ビームを送信し、反射点Aにより反射された超音波エコーを複数の素子E1~Enで受信するものとする。反射点Aから超音波エコーが発せられた時点を原点として、それぞれの素子により反射点Aからの超音波エコーを受信する時刻は、反射点Aとそれぞれの素子との間の距離に応じたものとなる。図6に示されるように、複数の素子E1~Enのうち、反射点Aからの距離が最も短い素子Ecにおいて最も早く超音波エコーを受信し、素子Ecから離れた位置に配置されている素子ほど、反射点Aからの距離が大きくなるため、超音波エコーは遅れて受信される。 For example, as shown in FIG. 5, an ultrasonic beam is transmitted from a plurality of elements E1 to En of the array transducer 1 with the reflection point A in the subject as a focal point. It is assumed that the reflected ultrasonic echo is received by a plurality of elements E1 to En. The time at which the ultrasonic echo from the reflection point A is received by each element with the point in time when the ultrasonic echo is emitted from the reflection point A as a function of the distance between the reflection point A and each element. It becomes. As shown in FIG. 6, among the plurality of elements E1 to En, the element Ec that receives the earliest ultrasonic echo at the element Ec that is the shortest from the reflection point A and is disposed at a position away from the element Ec. As the distance from the reflection point A increases, the ultrasonic echo is received later.
 図5に示されるように、超音波エコーの経路上に病変部Bが存在し、病変部Bにおける音速が周辺の音速よりも高い場合には、病変部Bを通過してきた超音波エコーは、音速が高い領域を通過した分だけ、対応する素子で受信される時刻が早くなる。図6に示した各素子に向かう超音波エコーの最も振幅が大きいところをその超音波エコーの代表点として表すと、図7のようになる。病変部Bを通過して素子Ekおよび素子Ek+1に向かう超音波エコーが周辺の超音波エコーよりも進んでいることがわかる。ここで、kは、1~nの範囲内の整数を示している。 As shown in FIG. 5, when the lesioned part B exists on the path of the ultrasound echo and the sound speed at the lesioned part B is higher than the surrounding sound speed, the ultrasound echo that has passed through the lesioned part B is The time received by the corresponding element is advanced by the amount that has passed through the high sound velocity region. FIG. 7 shows a representative point of the ultrasonic echo where the maximum amplitude of the ultrasonic echo directed to each element shown in FIG. 6 is represented. It can be seen that the ultrasonic echoes passing through the lesion B toward the element Ek and the element Ek + 1 are ahead of the surrounding ultrasonic echoes. Here, k represents an integer in the range of 1 to n.
 そこで、超音波エコーを受信した複数の素子E1~Enから出力される素子データに対し、隣接する素子の素子データ間の時間差ΔTを算出することにより、図8に示されるような時間差測定データDmが取得される。図8において、横軸は、隣接する素子を表している。 Therefore, the time difference measurement data Dm as shown in FIG. 8 is calculated by calculating the time difference ΔT between the element data of the adjacent elements for the element data output from the plurality of elements E1 to En that have received the ultrasonic echo. Is acquired. In FIG. 8, the horizontal axis represents adjacent elements.
 一方、時間差演算データ取得部22は、被検体内の反射点Aからアレイトランスデューサ1の複数の素子E1~Enまでのそれぞれの距離と、設定された仮定音速とに基づいて、隣接する素子の素子データ間の時間差ΔTの演算値を表す時間差演算データDcを算出し取得する。
 まず、全体音速決定部23により関心領域R2以外の領域R1に対応する全体音速V1を決定する際には、時間差演算データ取得部22は、関心領域設定部17から関心領域R2を示すデータを入力すると共に全体音速決定部23から関心領域R2以外の領域R1の仮定音速を示す全体仮定音速Vaを入力し、関心領域R2以外の領域R1に対する第1の時間差演算データDc1を取得する。
On the other hand, the time difference calculation data acquisition unit 22 uses the distances from the reflection point A in the subject to the plurality of elements E1 to En of the array transducer 1 and the set assumed sound speeds to determine the elements of adjacent elements. Time difference calculation data Dc representing the calculation value of the time difference ΔT between the data is calculated and acquired.
First, when the total sound speed V1 corresponding to the region R1 other than the region of interest R2 is determined by the total sound speed determination unit 23, the time difference calculation data acquisition unit 22 inputs data indicating the region of interest R2 from the region of interest setting unit 17. At the same time, an overall assumed sound speed Va indicating the assumed sound speed of the region R1 other than the region of interest R2 is input from the overall sound speed determination unit 23, and first time difference calculation data Dc1 for the region R1 other than the region of interest R2 is acquired.
 図9に示されるように、iを1~nの範囲内の整数として、反射点Aから、関心領域R2以外の領域R1を通る超音波エコーを受信した素子Eiまでの距離をLiとすると、反射点Aから素子Eiまでの超音波エコーの伝搬時間Tiは、Ti=Li/Vaとなる。そこで、反射点Aと複数の素子E1~Enの幾何学的配置並びに全体仮定音速Vaに基づき、反射点Aから超音波エコーが発せられた時点を原点として、関心領域R2以外の領域R1を通る超音波エコーを受信したそれぞれの素子により反射点Aからの超音波エコーを受信する時刻を計算により求めると、図10に示されるグラフが得られる。図10において、Erは、関心領域R2を通る超音波エコーを受信した1つ以上の素子を表しており、この素子Erに対応する超音波エコーの受信時刻は空白となっている。 As shown in FIG. 9, when i is an integer in the range of 1 to n, and Li is the distance from the reflection point A to the element Ei that has received the ultrasonic echo passing through the region R1 other than the region of interest R2, The propagation time Ti of the ultrasonic echo from the reflection point A to the element Ei is Ti = Li / Va. Therefore, based on the geometrical arrangement of the reflection point A and the plurality of elements E1 to En and the overall assumed sound velocity Va, the point in time when an ultrasonic echo is emitted from the reflection point A is passed through the region R1 other than the region of interest R2. When the time at which the ultrasonic echo from the reflection point A is received by each element that has received the ultrasonic echo is obtained by calculation, the graph shown in FIG. 10 is obtained. In FIG. 10, Er represents one or more elements that have received an ultrasonic echo passing through the region of interest R2, and the reception time of the ultrasonic echo corresponding to this element Er is blank.
 ここで、関心領域R2以外の領域R1に対応する全体仮定音速Vaの初期値としては、正常組織の一般的な音速値である1530m/sまたは1540m/sを設定することができる。
 図10のグラフに基づいて、隣接素子の素子データ間の時間差ΔTを算出することにより、関心領域R2以外の領域R1に対して、図11に示されるような第1の時間差演算データDc1が取得される。図11において、Frは、関心領域R2を通る超音波エコーを受信した素子Erに対応する隣接素子を表しており、この隣接素子Frにおける時間差ΔTは空白となっている。
Here, as an initial value of the overall assumed sound speed Va corresponding to the region R1 other than the region of interest R2, 1530 m / s or 1540 m / s, which is a general sound speed value of a normal tissue, can be set.
Based on the graph of FIG. 10, by calculating the time difference ΔT between the element data of adjacent elements, the first time difference calculation data Dc1 as shown in FIG. 11 is obtained for the region R1 other than the region of interest R2. Is done. In FIG. 11, Fr represents an adjacent element corresponding to the element Er that has received the ultrasonic echo passing through the region of interest R2, and the time difference ΔT in the adjacent element Fr is blank.
 全体音速決定部23は、関心領域R2以外の領域R1を通る超音波エコーを受信した素子に対応して時間差測定データ取得部21により取得された第1の時間差測定データDm1と時間差演算データ取得部22により取得された第1の時間差演算データDc1の差分ΔD1を求め、この差分ΔD1に基づいて判定値G1を算出し、判定値G1が第1のしきい値Th1以下となる全体仮定音速Vaを関心領域R2以外の領域R1に対応する全体音速V1として決定する。 The total sound speed determination unit 23 includes the first time difference measurement data Dm1 and the time difference calculation data acquisition unit acquired by the time difference measurement data acquisition unit 21 corresponding to the element that has received the ultrasonic echo passing through the region R1 other than the region of interest R2. The difference ΔD1 of the first time difference calculation data Dc1 acquired in Step 22 is obtained, a determination value G1 is calculated based on the difference ΔD1, and the total assumed sound speed Va at which the determination value G1 is equal to or less than the first threshold Th1 is obtained. The overall sound speed V1 corresponding to the region R1 other than the region of interest R2 is determined.
 例えば、図11に示した第1の時間差演算データDc1を、関心領域R2以外の領域R1を通る超音波エコーを受信した素子に対応する第1の時間差測定データDm1に重ねて表示すると、図12に示されるように、第1の時間差演算データDc1は、第1の時間差測定データDm1からずれた位置にあることがわかる。これは、第1の時間差演算データDc1を求める際に使用した全体仮定音速Vaが実際の音速と異なっていたために、全体仮定音速Vaに基づいて演算された第1の時間差演算データDc1と実際に測定された第1の時間差測定データDm1との間に誤差が生じたためと考えられる。 For example, when the first time difference calculation data Dc1 shown in FIG. 11 is displayed superimposed on the first time difference measurement data Dm1 corresponding to the element that has received the ultrasonic echo passing through the region R1 other than the region of interest R2, FIG. As can be seen from the graph, the first time difference calculation data Dc1 is located at a position shifted from the first time difference measurement data Dm1. This is because the total assumed sound speed Va used when obtaining the first time difference calculation data Dc1 is different from the actual sound speed, so that it is actually different from the first time difference calculation data Dc1 calculated based on the total assumed sound speed Va. This is probably because an error has occurred between the measured first time difference measurement data Dm1.
 そこで、全体音速決定部23は、図13に示されるように、第1の時間差測定データDm1と第1の時間差演算データDc1の差分ΔD1を求め、この差分ΔD1に基づいた判定値G1が第1のしきい値Th1以下となるまで全体仮定音速Vaの値を変化させつつ、時間差演算データ取得部22により取得された第1の時間差演算データDc1を用いて差分ΔD1および判定値G1の算出を繰り返す。判定値G1としては、差分ΔD1の絶対値の合計値または差分ΔD1の絶対値の二乗和を使用することができる。
 このようにして、判定値G1が第1のしきい値Th1以下となった全体仮定音速Vaが、全体音速V1として決定される。
Therefore, as shown in FIG. 13, the overall sound speed determination unit 23 obtains a difference ΔD1 between the first time difference measurement data Dm1 and the first time difference calculation data Dc1, and the determination value G1 based on the difference ΔD1 is the first value. The calculation of the difference ΔD1 and the determination value G1 is repeated using the first time difference calculation data Dc1 acquired by the time difference calculation data acquisition unit 22 while changing the value of the overall assumed sound speed Va until the threshold Th1 becomes equal to or less than the threshold Th1. . As the determination value G1, the sum of absolute values of the difference ΔD1 or the sum of squares of the absolute values of the difference ΔD1 can be used.
In this way, the overall assumed sound speed Va at which the determination value G1 is equal to or less than the first threshold Th1 is determined as the overall sound speed V1.
 また、局所音速決定部25により関心領域R2に対応する局所音速V2を決定する際には、時間差演算データ取得部22は、関心領域設定部17から関心領域R2を示すデータを入力すると共に局所音速決定部25から関心領域R2の仮定音速を示す局所仮定音速Vbを入力し、関心領域R2に対する第2の時間差演算データDc2を取得する。 In addition, when the local sound speed determination unit 25 determines the local sound speed V2 corresponding to the region of interest R2, the time difference calculation data acquisition unit 22 inputs data indicating the region of interest R2 from the region of interest setting unit 17 and the local sound speed. The local assumed sound speed Vb indicating the assumed sound speed of the region of interest R2 is input from the determination unit 25, and second time difference calculation data Dc2 for the region of interest R2 is acquired.
 図14に示されるように、jを1~nの範囲内の整数とし、反射点Aから関心領域R2を通って素子Ejまで達する超音波エコーの経路上において、反射点Aから関心領域R2までの距離をLj1、関心領域R2内の距離をLj2、関心領域R2から素子Ejまでの距離をLj3とすると、関心領域R2以外の領域R1の全体音速V1が全体音速決定部23により決定されているので、反射点Aから素子Ejまでの超音波エコーの伝搬時間Tjは、Tj=(Lj1/V1)+(Lj2/Vb)+(Lj3/V1)となる。
 そこで、反射点Aと複数の素子E1~Enの幾何学的配置並びに局所仮定音速Vbに基づき、反射点Aから超音波エコーが発せられた時点を原点として、関心領域R2を通る超音波エコーを受信したそれぞれの素子により反射点Aからの超音波エコーを受信する時刻を計算により求めると、図15に示されるグラフが得られる。図15において、Erは、関心領域R2を通る超音波エコーを受信した素子Er以外の素子に対応する超音波エコーの受信時刻は空白となっている。
As shown in FIG. 14, j is an integer in the range of 1 to n, and from the reflection point A to the region of interest R2 on the path of the ultrasonic echo from the reflection point A to the element Ej through the region of interest R2. Lj1, the distance in the region of interest R2 is Lj2, and the distance from the region of interest R2 to the element Ej is Lj3, the overall sound speed V1 of the region R1 other than the region of interest R2 is determined by the overall sound speed determination unit 23. Therefore, the propagation time Tj of the ultrasonic echo from the reflection point A to the element Ej is Tj = (Lj1 / V1) + (Lj2 / Vb) + (Lj3 / V1).
Therefore, based on the geometrical arrangement of the reflection point A and the plurality of elements E1 to En and the local assumed sound velocity Vb, the ultrasonic echo passing through the region of interest R2 is set with the origin at the time when the ultrasonic echo is emitted from the reflection point A. When the time at which an ultrasonic echo from the reflection point A is received by each received element is obtained by calculation, the graph shown in FIG. 15 is obtained. In FIG. 15, the reception time of the ultrasonic echo corresponding to elements other than the element Er that has received the ultrasonic echo passing through the region of interest R2 is blank.
 ここで、関心領域R2に対応する局所仮定音速Vbの初期値としては、全体仮定音速Vaと同様に、正常組織の一般的な音速値である1530m/sまたは1540m/sを設定することができる。
 図15のグラフに基づいて、隣接素子の素子データ間の時間差ΔTを算出することにより、関心領域R2に対して、図16に示されるような第2の時間差演算データDc2が取得される。図16において、関心領域R2を通る超音波エコーを受信した素子Erに対応する隣接素子Fr以外の隣接素子における時間差ΔTは空白となっている。
Here, as the initial value of the local assumed sound speed Vb corresponding to the region of interest R2, 1530 m / s or 1540 m / s, which is a general sound speed value of a normal tissue, can be set in the same manner as the overall assumed sound speed Va. .
By calculating the time difference ΔT between the element data of adjacent elements based on the graph of FIG. 15, second time difference calculation data Dc2 as shown in FIG. 16 is obtained for the region of interest R2. In FIG. 16, the time difference ΔT in the adjacent elements other than the adjacent element Fr corresponding to the element Er that has received the ultrasonic echo passing through the region of interest R2 is blank.
 局所音速決定部25は、関心領域R2を通る超音波エコーを受信した素子に対応して時間差測定データ取得部21により取得された第2の時間差測定データDm2と時間差演算データ取得部22により取得された第2の時間差演算データDc2の差分ΔD2を求め、この差分ΔD2に基づいて判定値G2を算出し、判定値G2が第1のしきい値Th1以下となる局所仮定音速Vbを関心領域R2に対応する局所音速V2として決定する。 The local sound speed determination unit 25 is acquired by the second time difference measurement data Dm2 acquired by the time difference measurement data acquisition unit 21 and the time difference calculation data acquisition unit 22 corresponding to the element that has received the ultrasonic echo passing through the region of interest R2. A difference ΔD2 of the second time difference calculation data Dc2 is obtained, a determination value G2 is calculated based on the difference ΔD2, and a local assumed sound speed Vb at which the determination value G2 is equal to or less than the first threshold Th1 is set in the region of interest R2. The corresponding local sound speed V2 is determined.
 例えば、図16に示した第2の時間差演算データDc2を、関心領域R2を通る超音波エコーを受信した素子に対応する第2の時間差測定データDm2に重ねて表示すると、図17に示されるように、第2の時間差演算データDc2は、第2の時間差測定データDm2からずれた位置にあることがわかる。これは、第2の時間差演算データDc2を求める際に使用した局所仮定音速Vbが実際の音速と異なっていたために、局所仮定音速Vbに基づいて演算された第2の時間差演算データDc2と実際に測定された第2の時間差測定データDm2との間に誤差が生じたためと考えられる。 For example, when the second time difference calculation data Dc2 shown in FIG. 16 is displayed superimposed on the second time difference measurement data Dm2 corresponding to the element that has received the ultrasonic echo passing through the region of interest R2, as shown in FIG. In addition, it can be seen that the second time difference calculation data Dc2 is at a position shifted from the second time difference measurement data Dm2. This is because the local assumed sound speed Vb used when obtaining the second time difference calculation data Dc2 is different from the actual sound speed, and therefore actually calculated with the second time difference calculation data Dc2 calculated based on the local assumed sound speed Vb. This is probably because an error has occurred between the measured second time difference measurement data Dm2.
 そこで、局所音速決定部25は、図18に示されるように、第2の時間差測定データDm2と第2の時間差演算データDc2の差分ΔD2を求め、この差分ΔD2に基づいた判定値G2が第1のしきい値Th1以下となるまで局所仮定音速Vbの値を変化させつつ、時間差演算データ取得部22により取得された第2の時間差演算データDc2を用いて差分ΔD2および判定値G2の算出を繰り返す。判定値G2としては、差分ΔD2の絶対値の合計値または差分ΔD2の絶対値の二乗和を使用することができる。
 このようにして、判定値G2が第1のしきい値Th1以下となった局所仮定音速Vbが、局所音速V2として決定される。
Accordingly, as shown in FIG. 18, the local sound speed determination unit 25 obtains a difference ΔD2 between the second time difference measurement data Dm2 and the second time difference calculation data Dc2, and the determination value G2 based on the difference ΔD2 is the first value. The calculation of the difference ΔD2 and the determination value G2 is repeated using the second time difference calculation data Dc2 acquired by the time difference calculation data acquisition unit 22 while changing the value of the local assumed sound speed Vb until the threshold Th1 becomes equal to or less than the threshold Th1. . As the determination value G2, the sum of absolute values of the difference ΔD2 or the sum of squares of the absolute values of the difference ΔD2 can be used.
In this way, the assumed local sound speed Vb at which the determination value G2 is equal to or less than the first threshold value Th1 is determined as the local sound speed V2.
 次に、図19のフローチャートを参照して実施の形態1の動作について説明する。
 まず、ステップS1で、関心領域設定部17により、アレイトランスデューサ1の複数の素子E1~Enと被検体内の反射点Aとの間に関心領域R2が設定される。
 続くステップS2で、アレイトランスデューサ1の複数の素子E1~Enから被検体内の反射点Aに向けて1回だけ超音波の送受信が行われ、ステップS3で、素子データが取得される。すなわち、送信回路2から供給される駆動信号に従って複数の素子E1~Enから反射点Aに向けて超音波が送信され、反射点Aからの超音波エコーを受信した素子E1~Enから受信信号が受信回路3に出力され、受信回路3で素子データが生成されて、順次、素子データメモリ7に格納される。
Next, the operation of the first embodiment will be described with reference to the flowchart of FIG.
First, in Step S1, the region of interest R2 is set by the region of interest setting unit 17 between the plurality of elements E1 to En of the array transducer 1 and the reflection point A in the subject.
In subsequent step S2, ultrasonic waves are transmitted / received only once from the plurality of elements E1 to En of the array transducer 1 toward the reflection point A in the subject, and in step S3, element data is acquired. That is, ultrasonic waves are transmitted from the plurality of elements E1 to En to the reflection point A according to the drive signal supplied from the transmission circuit 2, and reception signals are received from the elements E1 to En that have received the ultrasonic echoes from the reflection point A. The data is output to the receiving circuit 3, element data is generated by the receiving circuit 3, and sequentially stored in the element data memory 7.
 次に、ステップS4で、音速定量化部8の時間差測定データ取得部21により、複数の素子データ間の比較が行われ、隣接する素子の素子データ間の時間差ΔTを表す時間差測定データDmが取得される。さらに、ステップS5で、全体音速決定部23により関心領域R2以外の領域R1に対応する全体仮定音速Vaの初期値が設定され、時間差演算データ取得部22により関心領域R2以外の領域R1に対する第1の時間差演算データDc1が取得される。
 そして、ステップS6で、全体音速決定部23により、関心領域R2以外の領域R1を通る超音波エコーを受信した素子に対応する第1の時間差測定データDm1および第1の時間差演算データDc1に基づいて、差分ΔD1および判定値G1が算出され、判定値G1が第1のしきい値Th1以下となるまで全体仮定音速Vaの値を変化させつつ、時間差演算データ取得部22により取得された第1の時間差演算データDc1を用いて差分ΔD1および判定値G1の算出が繰り返され、判定値G1が第1のしきい値Th1以下となった全体仮定音速Vaが、関心領域R2以外の領域R1における全体音速V1として決定される。
Next, in step S4, the time difference measurement data acquisition unit 21 of the sound velocity quantification unit 8 compares a plurality of element data, and acquires time difference measurement data Dm representing the time difference ΔT between element data of adjacent elements. Is done. Furthermore, in step S5, the initial value of the overall assumed sound velocity Va corresponding to the region R1 other than the region of interest R2 is set by the overall sound velocity determination unit 23, and the first difference for the region R1 other than the region of interest R2 is set by the time difference calculation data acquisition unit 22. Time difference calculation data Dc1 is acquired.
Then, in step S6, based on the first time difference measurement data Dm1 and the first time difference calculation data Dc1 corresponding to the element that has received the ultrasonic echo passing through the region R1 other than the region of interest R2 by the overall sound speed determination unit 23. The difference ΔD1 and the determination value G1 are calculated, and the first difference acquired by the time difference calculation data acquisition unit 22 while changing the value of the overall assumed sound speed Va until the determination value G1 becomes equal to or less than the first threshold Th1. The calculation of the difference ΔD1 and the determination value G1 is repeated using the time difference calculation data Dc1, and the total assumed sound speed Va at which the determination value G1 is equal to or less than the first threshold Th1 is the total sound speed in the region R1 other than the region of interest R2. Determined as V1.
 その後、ステップS7で、局所音速決定部25により関心領域R2に対応する局所仮定音速Vbの初期値が設定され、時間差演算データ取得部22により関心領域R2に対する第2の時間差演算データDc2が取得される。
 そして、ステップS8で、局所音速決定部25により、関心領域R2を通る超音波エコーを受信した素子に対応する第2の時間差測定データDm2および第2の時間差演算データDc2に基づいて、差分ΔD2および判定値G2が算出され、判定値G2が第1のしきい値Th1以下となるまで局所仮定音速Vbの値を変化させつつ、時間差演算データ取得部22により取得された第2の時間差演算データDc2を用いて差分ΔD2および判定値G2の算出が繰り返され、判定値G2が第1のしきい値Th1以下となった局所仮定音速Vbが、関心領域R2における局所音速V2として決定される。
Thereafter, in step S7, the initial value of the assumed local sound speed Vb corresponding to the region of interest R2 is set by the local sound speed determination unit 25, and the second time difference calculation data Dc2 for the region of interest R2 is acquired by the time difference calculation data acquisition unit 22. The
In step S8, the local sound speed determination unit 25 determines the difference ΔD2 based on the second time difference measurement data Dm2 and the second time difference calculation data Dc2 corresponding to the element that has received the ultrasonic echo passing through the region of interest R2. The determination value G2 is calculated, and the second time difference calculation data Dc2 acquired by the time difference calculation data acquisition unit 22 while changing the value of the local assumed sound speed Vb until the determination value G2 becomes equal to or less than the first threshold Th1. The calculation of the difference ΔD2 and the determination value G2 is repeated using, and the local assumed sound speed Vb at which the determination value G2 is equal to or less than the first threshold value Th1 is determined as the local sound speed V2 in the region of interest R2.
 また、アレイトランスデューサ1の複数の素子E1~Enから超音波ビームの走査を行うことで受信回路3により生成された素子データに基づいて、画像生成部4によりBモード画像信号が生成され、このBモード画像信号が表示制御部5に出力され、超音波画像が表示部6に表示される。
 音速定量化部8により決定された全体音速V1および局所音速V2は画像生成部4に出力され、超音波画像と共に全体音速V1および局所音速V2の値が表示部6に表示される。全体音速V1および局所音速V2の双方でなく、局所音速V2の値のみを表示してもよい。
Further, based on the element data generated by the receiving circuit 3 by scanning the ultrasonic beam from the plurality of elements E1 to En of the array transducer 1, a B-mode image signal is generated by the image generator 4, and this B The mode image signal is output to the display control unit 5, and the ultrasonic image is displayed on the display unit 6.
The total sound speed V1 and the local sound speed V2 determined by the sound speed quantification unit 8 are output to the image generation unit 4, and the values of the total sound speed V1 and the local sound speed V2 are displayed on the display unit 6 together with the ultrasonic image. Only the value of the local sound speed V2 may be displayed instead of both the overall sound speed V1 and the local sound speed V2.
 さらに、音速定量化部8から出力された全体音速V1および局所音速V2に基づき、画像生成部4が、関心領域R2以外の領域R1については全体音速V1を用いたBモード画像信号を生成し、関心領域R2については局所音速V2を用いたBモード画像信号を生成することもできる。このようにすれば、関心領域R2以外の領域R1においても、関心領域R2においても、高品質の超音波画像を生成することが可能となる。 Further, based on the total sound speed V1 and the local sound speed V2 output from the sound speed quantification unit 8, the image generation unit 4 generates a B-mode image signal using the total sound speed V1 for the region R1 other than the region of interest R2. For the region of interest R2, a B-mode image signal using the local sound speed V2 can also be generated. In this way, it is possible to generate a high-quality ultrasound image in the region R1 other than the region of interest R2 and also in the region of interest R2.
 なお、上記の実施の形態1では、時間差測定データ取得部21が、隣接する素子の素子データ間の時間差ΔTを表す時間差測定データDmを取得し、時間差演算データ取得部22が、隣接する素子の素子データ間の時間差ΔTの演算値を表す第1の時間差演算データDc1および第2の時間差演算データDc2を取得したが、これに限るものではない。例えば、時間差測定データ取得部21が、複数の素子E1~Enのうち、基準となる1つの素子の素子データと他の素子の素子データとの間の時間差ΔTを表す時間差測定データDmを取得し、同様に、時間差演算データ取得部22が、関心領域R2以外の領域R1における複数の素子のうち、基準となる1つの素子の素子データと他の素子の素子データとの間の時間差ΔTの演算値を表す第1の時間差演算データDc1、および、関心領域R2における複数の素子のうち、基準となる1つの素子の素子データと他の素子の素子データとの間の時間差ΔTの演算値を表す第2の時間差演算データDc2を取得することもできる。 In the first embodiment, the time difference measurement data acquisition unit 21 acquires the time difference measurement data Dm representing the time difference ΔT between the element data of the adjacent elements, and the time difference calculation data acquisition unit 22 acquires the time difference of the adjacent elements. Although the first time difference calculation data Dc1 and the second time difference calculation data Dc2 representing the calculation value of the time difference ΔT between the element data are acquired, the present invention is not limited to this. For example, the time difference measurement data acquisition unit 21 acquires time difference measurement data Dm representing the time difference ΔT between the element data of one element serving as a reference and the element data of another element among the plurality of elements E1 to En. Similarly, the time difference calculation data acquisition unit 22 calculates the time difference ΔT between the element data of one element serving as a reference and the element data of other elements among a plurality of elements in the region R1 other than the region of interest R2. The first time difference calculation data Dc1 representing the value and the calculation value of the time difference ΔT between the element data of one reference element and the element data of the other elements among the plurality of elements in the region of interest R2. The second time difference calculation data Dc2 can also be acquired.
実施の形態2
 上記の実施の形態1では、被検体内の1つの反射点Aに向けて1回だけ超音波の送受信を行うことで全体音速V1および局所音速V2を定量化したが、複数の反射点に対してそれぞれ1回ずつ超音波の送受信を行って全体音速V1および局所音速V2を定量化することもできる。
 例えば、図20に示されるように、1本の走査線Cv上の反射点Avに向けて超音波の送受信を1回行って取得された素子データと、図21に示されるように、走査線Cvとは異なる走査線Cw上の反射点Awに向けて超音波の送受信を1回行って取得された素子データが用いられる。
Embodiment 2
In the first embodiment, the total sound speed V1 and the local sound speed V2 are quantified by transmitting and receiving ultrasonic waves only once toward one reflection point A in the subject. Thus, it is possible to quantify the total sound speed V1 and the local sound speed V2 by transmitting and receiving ultrasonic waves once each.
For example, as shown in FIG. 20, the element data obtained by transmitting and receiving ultrasonic waves once toward the reflection point Av on one scanning line Cv, and the scanning line as shown in FIG. Element data acquired by performing ultrasonic wave transmission / reception once toward the reflection point Aw on the scanning line Cw different from Cv is used.
 図22のフローチャートに示されるように、実施の形態2においては、ステップS1で、関心領域設定部17により関心領域R2が設定され、ステップS2で、アレイトランスデューサ1の複数の素子E1~Enから被検体内の反射点Avに向けて1回だけ超音波の送受信が行われ、ステップS3で、素子データが取得されて素子データメモリ7に格納される。
 続くステップS9で、設定された複数の反射点に対する超音波の送受信が完了したか否かが判定され、完了していないと判定された場合は、ステップS10で、反射点を変更した後、ステップS2およびS3が繰り返される。すなわち、走査線Cvから走査線Cwに変えて、反射点Awに向けて1回だけ超音波の送受信が行われ、素子データが取得されて素子データメモリ7に格納される。
As shown in the flowchart of FIG. 22, in the second embodiment, the region of interest R2 is set by the region of interest setting unit 17 in step S1, and in step S2, the plurality of elements E1 to En of the array transducer 1 are covered. Ultrasonic waves are transmitted / received only once toward the reflection point Av in the specimen, and element data is acquired and stored in the element data memory 7 in step S3.
In subsequent step S9, it is determined whether or not transmission / reception of ultrasonic waves to / from the plurality of set reflection points has been completed. If it is determined that transmission / reception has not been completed, the reflection point is changed in step S10, and then step S2 and S3 are repeated. That is, instead of the scanning line Cv to the scanning line Cw, ultrasonic waves are transmitted / received only once toward the reflection point Aw, and element data is acquired and stored in the element data memory 7.
 ステップS9で、すべての反射点に対する超音波の送受信が完了したと判定されると、ステップS4で、音速定量化部8の時間差測定データ取得部21により反射点AvおよびAwのそれぞれに対応して複数の素子データ間の比較が行われて時間差測定データDmが取得され、ステップS5で、全体音速決定部23により関心領域R2以外の領域R1における全体仮定音速Vaの初期値が設定され、時間差演算データ取得部22により反射点AvおよびAwのそれぞれに対応して関心領域R2以外の領域R1に対応する第1の時間差演算データDc1が取得される。
 さらに、ステップS6で、図23に示されるように、全体音速決定部23により、反射点AvおよびAwのそれぞれに対応して関心領域R2以外の領域R1に対応する第1の時間差測定データDm1と第1の時間差演算データDc1の差分ΔD1vおよびΔD1wが算出され、全体仮定音速Vaの値を変化させつつ、時間差演算データ取得部22により反射点AvおよびAwのそれぞれに対応して取得された第1の時間差演算データDc1を用いて差分ΔD1vおよびΔD1wの算出が繰り返され、最小二乗法等を利用することにより、すべての反射点AvおよびAwに対する差分ΔD1vおよびΔD1wが最小となる全体仮定音速Vaが関心領域R2以外の領域R1の全体音速V1として決定される。ここで、「差分ΔD1vおよびΔD1wが最小となる」とは、関心領域R2以外の領域R1に対応する各素子における差分ΔD1vおよびΔD1wの絶対値の合計値が最小になること、あるいは、関心領域R2以外の領域R1に対応する各素子における差分ΔD1vおよびΔD1wの絶対値の二乗和が最小になることを意味している。
If it is determined in step S9 that transmission / reception of ultrasonic waves to all reflection points has been completed, the time difference measurement data acquisition unit 21 of the sound speed quantification unit 8 corresponds to each of the reflection points Av and Aw in step S4. A comparison between a plurality of element data is performed to obtain time difference measurement data Dm, and in step S5, an initial value of the total assumed sound speed Va in the region R1 other than the region of interest R2 is set by the total sound speed determination unit 23, and a time difference calculation is performed. The data acquisition unit 22 acquires first time difference calculation data Dc1 corresponding to the region R1 other than the region of interest R2 corresponding to each of the reflection points Av and Aw.
Further, in step S6, as shown in FIG. 23, the entire sound speed determination unit 23 performs first time difference measurement data Dm1 corresponding to the region R1 other than the region of interest R2 corresponding to each of the reflection points Av and Aw. Differences ΔD1v and ΔD1w of the first time difference calculation data Dc1 are calculated, and the first difference acquired by the time difference calculation data acquisition unit 22 corresponding to each of the reflection points Av and Aw while changing the value of the overall assumed sound speed Va. The calculation of the differences ΔD1v and ΔD1w is repeated using the time difference calculation data Dc1 and the overall assumed sound velocity Va at which the differences ΔD1v and ΔD1w with respect to all the reflection points Av and Aw are minimized by using the least square method or the like. It is determined as the overall sound velocity V1 in the region R1 other than the region R2. Here, “the difference ΔD1v and ΔD1w is the smallest” means that the sum of the absolute values of the differences ΔD1v and ΔD1w in each element corresponding to the region R1 other than the region of interest R2 is the smallest, or the region of interest R2 This means that the sum of squares of the absolute values of the differences ΔD1v and ΔD1w in each element corresponding to the region R1 other than the region R1 is minimized.
 その後、ステップS7で、局所音速決定部25により関心領域R2における局所仮定音速Vbの初期値が設定され、時間差演算データ取得部22により反射点AvおよびAwのそれぞれに対応して関心領域R2に対応する第2の時間差演算データDc2が取得される。
 さらに、ステップS8で、局所音速決定部25により、反射点AvおよびAwのそれぞれに対応して第2の時間差測定データDm2と第2の時間差演算データDc2の差分ΔD2vおよびΔD2wが算出され、局所仮定音速Vbの値を変化させつつ、時間差演算データ取得部22により反射点AvおよびAwのそれぞれに対応して取得された第2の時間差演算データDc2を用いて差分ΔD2vおよびΔD2wの算出が繰り返され、最小二乗法等を利用することにより、すべての反射点AvおよびAwに対する差分ΔD2vおよびΔD2wが最小となる局所仮定音速Vbが関心領域R2の局所音速V2として決定される。ここで、「差分ΔD2vおよびΔD2wが最小となる」とは、関心領域R2に対応する各素子における差分ΔD2vおよびΔD2wの絶対値の合計値が最小になること、あるいは、関心領域R2に対応する各素子における差分ΔD2vおよびΔD2wの絶対値の二乗和が最小になることを意味している。
Thereafter, in step S7, an initial value of the assumed local sound speed Vb in the region of interest R2 is set by the local sound speed determination unit 25, and the time difference calculation data acquisition unit 22 corresponds to the region of interest R2 corresponding to each of the reflection points Av and Aw. Second time difference calculation data Dc2 to be acquired is acquired.
Further, in step S8, the local sound speed determination unit 25 calculates the differences ΔD2v and ΔD2w between the second time difference measurement data Dm2 and the second time difference calculation data Dc2 corresponding to the reflection points Av and Aw, respectively, and the local assumption While changing the value of the sound speed Vb, the calculation of the differences ΔD2v and ΔD2w is repeated using the second time difference calculation data Dc2 acquired corresponding to each of the reflection points Av and Aw by the time difference calculation data acquisition unit 22, By using the least square method or the like, the local assumed sound speed Vb at which the differences ΔD2v and ΔD2w with respect to all the reflection points Av and Aw are minimum is determined as the local sound speed V2 of the region of interest R2. Here, “the difference ΔD2v and ΔD2w is the smallest” means that the total value of the absolute values of the differences ΔD2v and ΔD2w in each element corresponding to the region of interest R2 is minimized, or each of the elements corresponding to the region of interest R2 This means that the sum of squares of absolute values of the differences ΔD2v and ΔD2w in the element is minimized.
 なお、ステップS6で、すべての反射点AvおよびAwに対する差分ΔD1vおよびΔD1wが最小となる全体仮定音速Vaを全体音速V1として決定したが、これに限るものではなく、例えば、それぞれの反射点AvおよびAwに対する第1の時間差測定データDm1と第1の時間差演算データDc1の差分ΔD1vおよびΔD1wに基づいて、反射点毎に判定値G1vおよびG1wを算出し、判定値G1vおよびG1wが第1のしきい値Th1以下となる全体仮定音速Vaを全体音速の候補値として算出し、これら複数の反射点AvおよびAwに対して算出された複数の全体音速の候補値に基づいて、平均値、最頻値をとる等により全体音速V1を決定することもできる。 In step S6, the overall assumed sound speed Va at which the differences ΔD1v and ΔD1w with respect to all the reflection points Av and Aw are minimized is determined as the overall sound speed V1, but the present invention is not limited to this. For example, the reflection points Av and Determination values G1v and G1w are calculated for each reflection point based on the differences ΔD1v and ΔD1w between the first time difference measurement data Dm1 and the first time difference calculation data Dc1 with respect to Aw, and the determination values G1v and G1w are the first threshold values. An overall hypothetical sound speed Va that is equal to or less than the value Th1 is calculated as a candidate value for the total sound speed, and an average value and a mode value are calculated based on the plurality of total sound speed candidate values calculated for the plurality of reflection points Av and Aw. The overall sound speed V1 can also be determined by taking
 同様に、ステップS8で、それぞれの反射点AvおよびAwに対する第2の時間差測定データDm2と第2の時間差演算データDc2の差分ΔD2vおよびΔD2wに基づいて、反射点毎に判定値G2vおよびG2wを算出し、判定値G2vおよびG2wが第1のしきい値Th1以下となる局所仮定音速Vbを局所音速の候補値として算出し、これら複数の反射点AvおよびAwに対して算出された複数の局所音速の候補値に基づいて、平均値、最頻値をとる等により局所音速V2を決定することもできる。 Similarly, in step S8, determination values G2v and G2w are calculated for each reflection point based on the differences ΔD2v and ΔD2w between the second time difference measurement data Dm2 and the second time difference calculation data Dc2 for the reflection points Av and Aw, respectively. Then, the local assumed sound speed Vb at which the determination values G2v and G2w are equal to or less than the first threshold value Th1 is calculated as a local sound speed candidate value, and a plurality of local sound speeds calculated for the plurality of reflection points Av and Aw are calculated. The local sound velocity V2 can be determined by taking an average value, a mode value, or the like based on the candidate values.
 このように、複数の反射点に対してそれぞれ超音波の送受信を行って素子データを取得することにより、全体音速V1および局所音速V2をより精度よく定量化することが可能となる。 Thus, by transmitting / receiving ultrasonic waves to / from a plurality of reflection points to acquire element data, the total sound speed V1 and the local sound speed V2 can be quantified with higher accuracy.
実施の形態3
 上述した実施の形態1では、関心領域設定部17により関心領域R2が設定されると、関心領域R2以外の領域R1における全体音速V1と関心領域R2における局所音速V2の双方が決定されたが、関心領域設定部17により設定された関心領域R2の大きさ等に応じて、全体音速V1および局所音速V2のうち定量化する音速を選択することもできる。
 実施の形態3に係る超音波診断装置は、関心領域R2の走査方向の長さおよび深度方向の長さがいずれも設定値より大きい場合には、全体音速V1および局所音速V2の双方を定量化し、関心領域R2の走査方向の長さおよび深度方向の長さの少なくとも一方が設定値以下の場合には、局所音速V2を定量化することなく全体音速V1のみを定量化するようにしたものである。
Embodiment 3
In Embodiment 1 described above, when the region of interest R2 is set by the region of interest setting unit 17, both the overall sound velocity V1 in the region R1 other than the region of interest R2 and the local sound velocity V2 in the region of interest R2 are determined. Depending on the size of the region of interest R2 set by the region-of-interest setting unit 17, the sound speed to be quantified can be selected from the overall sound speed V1 and the local sound speed V2.
The ultrasonic diagnostic apparatus according to Embodiment 3 quantifies both the total sound speed V1 and the local sound speed V2 when both the length in the scanning direction and the length in the depth direction of the region of interest R2 are larger than the set values. When at least one of the length in the scanning direction and the length in the depth direction of the region of interest R2 is equal to or less than the set value, only the total sound speed V1 is quantified without quantifying the local sound speed V2. is there.
 図24に、実施の形態3に係る超音波診断装置の動作を示す。
 まず、ステップS1で、関心領域設定部17により関心領域R2が設定され、ステップS2で、アレイトランスデューサ1の複数の素子E1~Enから被検体内の反射点Aに向けて1回だけ超音波の送受信が行われ、ステップS3で、素子データが取得されて素子データメモリ7に格納される。
FIG. 24 shows the operation of the ultrasonic diagnostic apparatus according to the third embodiment.
First, in step S1, the region of interest R2 is set by the region of interest setting unit 17, and in step S2, ultrasonic waves are transmitted only once from the plurality of elements E1 to En of the array transducer 1 toward the reflection point A in the subject. Transmission and reception are performed, and element data is acquired and stored in the element data memory 7 in step S3.
 その後、ステップS11で、制御部9により関心領域R2の走査方向の長さおよび深度方向の長さに関する条件Y1が成立するか否かが判定される。条件Y1は、関心領域R2の走査方向の長さおよび深度方向の長さがいずれも予め設定された設定値より大きいという条件である。設定値は、例えば、アレイトランスデューサ1の複数の素子E1~Enの配列ピッチの1/10の長さとすることができる。関心領域R2の走査方向の長さおよび深度方向の長さがこのような設定値以下の場合には、反射点から関心領域R2を通ってアレイトランスデューサ1の素子に到達する超音波エコーの伝搬時間に対する関心領域R2の影響が小さすぎて関心領域R2内の局所音速V2を正確に定量化することが困難になる。 Thereafter, in step S11, the controller 9 determines whether or not the condition Y1 regarding the length in the scanning direction and the length in the depth direction of the region of interest R2 is satisfied. The condition Y1 is a condition that both the length in the scanning direction and the length in the depth direction of the region of interest R2 are larger than a preset set value. The set value can be, for example, a length that is 1/10 of the arrangement pitch of the plurality of elements E1 to En of the array transducer 1. When the length in the scanning direction and the length in the depth direction of the region of interest R2 are equal to or smaller than such set values, the propagation time of the ultrasonic echo that reaches the element of the array transducer 1 from the reflection point through the region of interest R2 It is difficult to accurately quantify the local sound speed V2 in the region of interest R2 because the influence of the region of interest R2 on the region is too small.
 そこで、ステップS11において、関心領域R2の走査方向の長さおよび深度方向の長さがいずれも設定値より大きくて条件Y1が成立すると判定されたときには、ステップS12に進んで、全体音速V1および局所音速V2の双方を定量化する定量化処理100が実行され、一方、関心領域R2の走査方向の長さおよび深度方向の長さの少なくとも一方が設定値以下であるので条件Y1が成立しないと判定されたときには、ステップS13に進んで、全体音速V1のみを定量化する定量化処理200が実行される。 Therefore, when it is determined in step S11 that the length in the scanning direction and the length in the depth direction of the region of interest R2 are both greater than the set value and the condition Y1 is satisfied, the process proceeds to step S12, where the overall sound speed V1 and the local sound speed V1 A quantification process 100 for quantifying both the sound speeds V2 is executed. On the other hand, it is determined that the condition Y1 is not satisfied because at least one of the length in the scanning direction and the length in the depth direction of the region of interest R2 is equal to or less than the set value. If so, the process proceeds to step S13, and a quantification process 200 for quantifying only the overall sound speed V1 is executed.
 定量化処理100においては、図25に示されるように、ステップS4で、時間差測定データ取得部21により複数の素子データ間の比較が行われ、ステップS5で、全体音速決定部23により全体仮定音速Vaの初期値が設定され、ステップS6で、全体音速決定部23により、判定値G1が第1のしきい値Th1以下となるまで全体仮定音速Vaの値を変化させつつ差分ΔD1および判定値G1の算出が繰り返され、判定値G1が第1のしきい値Th1以下となった全体仮定音速Vaが、関心領域R2以外の領域R1の全体音速V1として決定される。さらに、ステップS7で、局所音速決定部25により局所仮定音速Vbの初期値が設定され、ステップS8で、局所音速決定部25により、判定値G2が第1のしきい値Th1以下となるまで局所仮定音速Vbの値を変化させつつ差分ΔD2および判定値G2の算出が繰り返され、判定値G2が第1のしきい値Th1以下となった局所仮定音速Vbが、関心領域R2の局所音速V2として決定される。 In the quantification process 100, as shown in FIG. 25, in step S4, the time difference measurement data acquisition unit 21 compares the plurality of element data, and in step S5, the total sound speed determination unit 23 performs the total assumed sound speed. The initial value of Va is set, and in step S6, the overall sound speed determination unit 23 changes the value of the overall assumed sound speed Va until the determination value G1 becomes equal to or less than the first threshold value Th1, and the difference ΔD1 and the determination value G1. Is repeated, and the overall assumed sound speed Va at which the determination value G1 is equal to or less than the first threshold Th1 is determined as the overall sound speed V1 of the region R1 other than the region of interest R2. Further, in step S7, the initial value of the assumed local sound speed Vb is set by the local sound speed determination unit 25, and in step S8, the local sound speed determination unit 25 sets the local value until the determination value G2 becomes equal to or less than the first threshold value Th1. The calculation of the difference ΔD2 and the determination value G2 is repeated while changing the value of the assumed sound speed Vb, and the local assumed sound speed Vb at which the determination value G2 is equal to or less than the first threshold Th1 is defined as the local sound speed V2 of the region of interest R2. It is determined.
 一方、定量化処理200においては、図26に示されるように、ステップS4で、時間差測定データ取得部21により複数の素子データ間の比較が行われ、ステップS5で、全体音速決定部23により全体仮定音速Vaの初期値が設定され、ステップS6で、全体音速決定部23により、判定値G1が第1のしきい値Th1以下となるまで全体仮定音速Vaの値を変化させつつ差分ΔD1および判定値G1の算出が繰り返され、判定値G1が第1のしきい値Th1以下となった全体仮定音速Vaが、関心領域R2以外の領域R1の全体音速V1として決定される。なお、関心領域R2の局所音速V2の定量化は行われない。 On the other hand, in the quantification process 200, as shown in FIG. 26, in step S4, the time difference measurement data acquisition unit 21 compares the plurality of element data, and in step S5, the total sound speed determination unit 23 performs overall comparison. An initial value of the assumed sound speed Va is set, and in step S6, the overall sound speed determining unit 23 changes the value of the overall assumed sound speed Va and the determination while changing the value of the overall assumed sound speed Va until the determination value G1 becomes equal to or less than the first threshold value Th1. The calculation of the value G1 is repeated, and the overall assumed sound speed Va at which the determination value G1 is equal to or less than the first threshold Th1 is determined as the overall sound speed V1 of the region R1 other than the region of interest R2. Note that the local sound speed V2 in the region of interest R2 is not quantified.
 また、関心領域設定部17により設定された関心領域R2が走査方向に長くて、被検体内の反射点とアレイトランスデューサ1の複数の素子E1~Enとを結ぶ複数の直線のうち関心領域R2を通る直線が所定の割合(例えば、80%)を越えるような場合には、関心領域R2以外の領域R1を通る超音波エコーを受信した素子が少なく、領域R1の全体音速V1を正確に定量化することが困難になる。 Further, the region of interest R2 set by the region of interest setting unit 17 is long in the scanning direction, and the region of interest R2 is selected from the plurality of straight lines connecting the reflection points in the subject and the plurality of elements E1 to En of the array transducer 1. When the passing straight line exceeds a predetermined ratio (for example, 80%), there are few elements that have received an ultrasonic echo passing through the region R1 other than the region of interest R2, and the total sound velocity V1 in the region R1 is accurately quantified. It becomes difficult to do.
 そこで、反射点とアレイトランスデューサ1の複数の素子E1~Enとを結ぶ複数の直線のうち関心領域R2を通る直線が所定の割合(例えば、80%)を越える条件を条件Y2とし、図27に示されるように、ステップS11で、関心領域R2の走査方向の長さおよび深度方向の長さがいずれも設定値より大きくて条件Y1が成立すると判定された場合に、続くステップS14で、制御部9により条件Y2が成立するか否かを判定し、条件Y2が成立する場合に、さらにステップS15に進んで、局所音速V2のみを定量化する定量化処理300を実行することもできる。
 ステップS14で、反射点とアレイトランスデューサ1の複数の素子E1~Enとを結ぶ複数の直線のうち関心領域R2を通る直線が所定の割合(例えば、80%)以下であるために条件Y2が成立しないと判定されたときには、ステップS12に進んで、全体音速V1および局所音速V2の双方を定量化する定量化処理100が実行される。
Therefore, a condition where the straight line passing through the region of interest R2 out of a plurality of straight lines connecting the reflection point and the plurality of elements E1 to En of the array transducer 1 exceeds a predetermined ratio (for example, 80%) is defined as a condition Y2. As shown, if it is determined in step S11 that the length in the scanning direction and the length in the depth direction of the region of interest R2 are both greater than the set value and the condition Y1 is satisfied, in the subsequent step S14, the control unit 9 determines whether or not the condition Y2 is satisfied. If the condition Y2 is satisfied, the process further proceeds to step S15 to execute the quantification process 300 for quantifying only the local sound velocity V2.
In step S14, the condition Y2 is satisfied because the straight line passing through the region of interest R2 out of a plurality of straight lines connecting the reflection point and the plurality of elements E1 to En of the array transducer 1 is equal to or less than a predetermined ratio (for example, 80%). When it is determined not to proceed, the process proceeds to step S12, and a quantification process 100 for quantifying both the overall sound speed V1 and the local sound speed V2 is executed.
 定量化処理300においては、図28に示されるように、ステップS4で、時間差測定データ取得部21により複数の素子データ間の比較が行われた後、ステップS7で、局所音速決定部25により局所仮定音速Vbの初期値が設定され、ステップS8で、局所音速決定部25により、判定値G2が第1のしきい値Th1以下となるまで局所仮定音速Vbの値を変化させつつ差分ΔD2および判定値G2の算出が繰り返され、判定値G2が第1のしきい値Th1以下となった局所仮定音速Vbが、関心領域R2の局所音速V2として決定される。なお、全体音速V1の定量化は行われない。
 この実施の形態3のように、関心領域設定部17により設定された関心領域R2の大きさ等に応じて、全体音速V1および局所音速V2のうち定量化する音速を選択することにより、高精度な音速の定量化が可能となる。
In the quantification process 300, as shown in FIG. 28, after the time difference measurement data acquisition unit 21 compares a plurality of element data in step S4, the local sound speed determination unit 25 performs local comparison in step S7. The initial value of the assumed sound speed Vb is set, and in step S8, the local sound speed determination unit 25 changes the difference ΔD2 and the determination while changing the value of the local assumed sound speed Vb until the determination value G2 becomes equal to or less than the first threshold value Th1. The calculation of the value G2 is repeated, and the assumed local sound speed Vb at which the determination value G2 is equal to or less than the first threshold Th1 is determined as the local sound speed V2 of the region of interest R2. Note that the overall sound speed V1 is not quantified.
As in the third embodiment, the sound speed to be quantified is selected from the overall sound speed V1 and the local sound speed V2 according to the size of the region of interest R2 set by the region of interest setting unit 17, and the like. Quantification of sound speed is possible.
 同様に、複数の反射点を利用して全体音速V1および局所音速V2を定量化する実施の形態2に対しても、関心領域設定部17により設定された関心領域R2の大きさ等に応じて、全体音速V1および局所音速V2のうち定量化する音速を選択することができる。
 なお、反射点を変更しても、関心領域R2の走査方向の長さおよび深度方向の長さは変わらないので、条件Y1が成立するか否かについてのステップS11における判定は、複数の反射点に対して同一の結果になる。一方、反射点とアレイトランスデューサ1の複数の素子E1~Enとを結ぶ複数の直線のうち関心領域R2を通る直線が占める割合は、反射点の位置に応じて変化するため、条件Y2が成立するか否かについてのステップS14における判定は、複数の反射点に対して異なる結果をもたらす場合がある。
Similarly, in the second embodiment in which the total sound speed V1 and the local sound speed V2 are quantified using a plurality of reflection points, the size of the region of interest R2 set by the region of interest setting unit 17 is also determined. The sound speed to be quantified can be selected from the overall sound speed V1 and the local sound speed V2.
Note that even if the reflection point is changed, the length in the scanning direction and the length in the depth direction of the region of interest R2 do not change. Therefore, the determination in step S11 as to whether or not the condition Y1 is satisfied is determined by a plurality of reflection points. Produces the same result. On the other hand, since the ratio of the straight line passing through the region of interest R2 among the plurality of straight lines connecting the reflection point and the plurality of elements E1 to En of the array transducer 1 varies depending on the position of the reflection point, the condition Y2 is satisfied. The determination in step S14 as to whether or not may give different results for a plurality of reflection points.
 そこで、複数の反射点のうち、ステップS14における条件Y2が成立しない反射点、すなわち、アレイトランスデューサ1の複数の素子E1~Enとの間を複数の直線で結んだ際に関心領域R2を通る直線が80%以下となる反射点が存在する場合に、その反射点に対してステップS12の定量化処理100で定量化した全体音速V1を、関心領域R2以外の領域R1の音速として採用することができる。 Therefore, among the plurality of reflection points, the reflection point that does not satisfy the condition Y2 in step S14, that is, a straight line that passes through the region of interest R2 when connecting the plurality of elements E1 to En of the array transducer 1 with a plurality of straight lines. When there is a reflection point with a value of 80% or less, the total sound speed V1 quantified in the quantification process 100 in step S12 for the reflection point may be adopted as the sound speed of the region R1 other than the region of interest R2. it can.
 なお、ステップS11における条件Y1が成立するか否かの判定およびステップS14における条件Y2が成立するか否かの判定を制御部9が行ったが、これに限るものではなく、全体音速決定部23および局所音速決定部25がこれらの判定を行うように構成することもできる。 The control unit 9 determines whether or not the condition Y1 is satisfied in step S11 and whether or not the condition Y2 is satisfied in step S14. However, the present invention is not limited to this. The local sound speed determination unit 25 can also be configured to make these determinations.
 上記の実施の形態1~3では、アレイトランスデューサ1の複数の素子E1~Enから出力されて受信回路3で増幅され且つデジタル化された素子データを用いて全体音速V1および局所音速V2を定量化したが、これに限るものではなく、デジタル化された後に位相整合された素子データを用いて全体音速V1および局所音速V2の定量化を行うこともできる。 In the above first to third embodiments, the total sound velocity V1 and the local sound velocity V2 are quantified using the element data output from the plurality of elements E1 to En of the array transducer 1, amplified by the receiving circuit 3, and digitized. However, the present invention is not limited to this, and the total sound speed V1 and the local sound speed V2 can be quantified using element data that has been digitized and phase-matched.
 1 アレイトランスデューサ、2 送信回路、3 受信回路、4 画像生成部、5 表示制御部、6 表示部、7 素子データメモリ、8 音速定量化部、9 制御部、10 操作部、11 格納部、12 増幅部、13 AD変換部、14 信号処理部、15 DSC、16 画像処理部、17 関心領域設定部、21 時間差測定データ取得部、22 時間差演算データ取得部、23 全体音速決定部、25 局所音速決定部、V1 全体音速、V2 局所音速、Va 全体仮定音速、Vb 局所仮定音速、R1 関心領域以外の領域、R2 関心領域,E1~En,Ec,Ek,Ek+1,Ei,Ej,Er 素子、Fr 隣接素子、A,Av,Aw 反射点、Cv,Cw 走査線、ΔT 時間差、Dm 時間差測定データ、Dm1 第1の時間差測定データ、Dm2 第2の時間差測定データ、Dc1 第1の時間差演算データ、Dc2 第2の時間差演算データ、Ti 伝搬時間、Li,Lj1,Lj2,Lj3 距離、ΔD1,ΔD2,ΔD1v,ΔD1w 差分。 1 array transducer, 2 transmission circuit, 3 reception circuit, 4 image generation unit, 5 display control unit, 6 display unit, 7 element data memory, 8 sound velocity quantification unit, 9 control unit, 10 operation unit, 11 storage unit, 12 Amplification unit, 13 AD conversion unit, 14 signal processing unit, 15 DSC, 16 image processing unit, 17 region of interest setting unit, 21 time difference measurement data acquisition unit, 22 time difference calculation data acquisition unit, 23 global sound speed determination unit, 25 local sound speed Determining unit, V1 overall sound speed, V2 local sound speed, Va overall assumed sound speed, Vb local assumed sound speed, R1 region other than the region of interest, R2 region of interest, E1 to En, Ec, Ek, Ek + 1, Ei, Ej, Er element, Fr Adjacent element, A, Av, Aw reflection point, Cv, Cw scanning line, ΔT time difference, Dm time difference measurement data, Dm1 First time difference measurement data, Dm2, second time difference measurement data, Dc1, first time difference calculation data, Dc2, second time difference calculation data, Ti propagation time, Li, Lj1, Lj2, Lj3 distance, ΔD1, ΔD2, ΔD1v, ΔD1w difference.

Claims (14)

  1.  複数の素子が配列されたアレイトランスデューサから被検体に向けて超音波ビームを送信し、被検体による超音波エコーを受信して超音波画像を生成する超音波診断装置であって、
     前記超音波画像上に関心領域を設定する関心領域設定部と、
     前記被検体内の反射点に向けた超音波ビームの送信に対応して前記反射点により反射される超音波エコーを受信した前記複数の素子から出力される複数の素子データを比較して素子データ間の時間差を表す時間差測定データを取得する時間差測定データ取得部と、
     前記反射点から前記複数の素子の各々までの距離と設定された仮定音速に基づいて素子データ間の時間差を表す時間差演算データを取得する時間差演算データ取得部と、
     前記複数の素子のうち前記関心領域以外の領域を通る前記超音波エコーを受信した素子に対応して前記時間差測定データ取得部により取得された第1の時間差測定データと、前記仮定音速として全体仮定音速を設定し且つ前記複数の素子のうち前記関心領域以外の領域を通る前記超音波エコーを受信した素子に対応して前記時間差演算データ取得部により取得された第1の時間差演算データとの差分に基づいて前記関心領域以外の領域に対応する全体音速を決定する全体音速決定部と
     を備えたことを特徴とする超音波診断装置。
    An ultrasonic diagnostic apparatus that transmits an ultrasonic beam toward an object from an array transducer in which a plurality of elements are arranged, receives an ultrasonic echo from the object, and generates an ultrasonic image,
    A region-of-interest setting unit that sets a region of interest on the ultrasound image;
    Element data by comparing a plurality of element data output from the plurality of elements having received an ultrasonic echo reflected by the reflection point in response to transmission of an ultrasonic beam toward the reflection point in the subject A time difference measurement data acquisition unit for acquiring time difference measurement data representing a time difference between;
    A time difference calculation data acquisition unit for acquiring time difference calculation data representing a time difference between element data based on a distance from the reflection point to each of the plurality of elements and a set assumed sound speed;
    The first time difference measurement data acquired by the time difference measurement data acquisition unit corresponding to the element that has received the ultrasonic echo passing through the region other than the region of interest among the plurality of elements, and the overall assumption as the assumed sound velocity The difference from the first time difference calculation data acquired by the time difference calculation data acquisition unit corresponding to the element that has set the speed of sound and has received the ultrasonic echo passing through the region other than the region of interest among the plurality of elements. And an overall sound speed determining unit for determining an overall sound speed corresponding to a region other than the region of interest based on the ultrasonic diagnostic apparatus.
  2.  前記全体音速決定部は、前記第1の時間差測定データと前記第1の時間差演算データとの差分に基づいて算出された判定値が第1のしきい値以下となる前記全体仮定音速を前記全体音速として決定する請求項1に記載の超音波診断装置。 The overall sound speed determination unit calculates the overall assumed sound speed at which a determination value calculated based on a difference between the first time difference measurement data and the first time difference calculation data is equal to or less than a first threshold value. The ultrasonic diagnostic apparatus according to claim 1, wherein the ultrasonic diagnostic apparatus is determined as a speed of sound.
  3.  前記全体音速決定部は、前記第1の時間差測定データと前記第1の時間差演算データとの差分の絶対値の合計値または差分の絶対値の二乗和を前記判定値として用いる請求項2に記載の超音波診断装置。 3. The total sound speed determination unit according to claim 2, wherein a sum of absolute values of differences between the first time difference measurement data and the first time difference calculation data or a sum of squares of absolute values of the differences is used as the determination value. Ultrasound diagnostic equipment.
  4.  前記関心領域を通る前記超音波エコーを受信した素子に対応して前記時間差測定データ取得部により取得された第2の時間差測定データと、前記仮定音速として局所仮定音速を設定し且つ前記関心領域を通る前記超音波エコーを受信した素子に対応して前記時間差演算データ取得部により取得された第2の時間差演算データとの差分に基づいて前記関心領域内における局所音速を決定する局所音速決定部を備えた請求項1~3のいずれか一項に記載の超音波診断装置。 The second time difference measurement data acquired by the time difference measurement data acquisition unit corresponding to the element that has received the ultrasonic echo passing through the region of interest, a local assumed sound speed is set as the assumed sound speed, and the region of interest is A local sound speed determination unit that determines a local sound speed in the region of interest based on a difference from the second time difference calculation data acquired by the time difference calculation data acquisition unit corresponding to the element that has received the ultrasonic echo passing therethrough. The ultrasonic diagnostic apparatus according to any one of claims 1 to 3, further comprising:
  5.  前記全体音速決定部は、前記関心領域設定部により設定された前記関心領域の走査方向の長さおよび深度方向の長さの少なくとも一方が設定値以下の場合、および、前記関心領域設定部により設定された前記関心領域の走査方向の長さおよび深度方向の長さがいずれも前記設定値より大きく且つ前記反射点と前記複数の素子とを結ぶ複数の直線のうち前記関心領域を通る直線が所定の割合以下の場合にのみ前記全体音速を決定する請求項4に記載の超音波診断装置。 The total sound speed determination unit is set by the region of interest setting unit when at least one of the length in the scanning direction and the length in the depth direction of the region of interest set by the region of interest setting unit is a set value or less. The length of the region of interest in the scanning direction and the length of the depth direction are both larger than the set value, and a straight line passing through the region of interest is predetermined among a plurality of straight lines connecting the reflection point and the plurality of elements. The ultrasonic diagnostic apparatus according to claim 4, wherein the overall sound velocity is determined only when the ratio is equal to or less than the ratio.
  6.  前記局所音速決定部は、前記関心領域設定部により設定された前記関心領域の走査方向の長さおよび深度方向の長さがいずれも前記設定値より大きい場合にのみ前記局所音速を決定する請求項5に記載の超音波診断装置。 The local sound speed determination unit determines the local sound speed only when the length in the scanning direction and the length in the depth direction of the region of interest set by the region of interest setting unit are both larger than the set value. 5. The ultrasonic diagnostic apparatus according to 5.
  7.  前記時間差測定データ取得部は、隣接する素子間の時間差を表す時間差測定データを取得し、前記時間差演算データ取得部は、隣接する素子間の時間差を表す時間差演算データを取得する請求項1~6のいずれか一項に記載の超音波診断装置。 The time difference measurement data acquisition unit acquires time difference measurement data representing a time difference between adjacent elements, and the time difference calculation data acquisition unit acquires time difference calculation data representing a time difference between adjacent elements. The ultrasonic diagnostic apparatus according to any one of the above.
  8.  前記時間差測定データ取得部は、前記複数の素子のうち基準となる素子と他の素子との間の時間差を表す時間差測定データを取得し、前記時間差演算データ取得部は、前記基準となる素子と他の素子との間の時間差を表す時間差演算データを取得する請求項1~6のいずれか一項に記載の超音波診断装置。 The time difference measurement data acquisition unit acquires time difference measurement data representing a time difference between a reference element and other elements among the plurality of elements, and the time difference calculation data acquisition unit includes the reference element and The ultrasonic diagnostic apparatus according to any one of claims 1 to 6, wherein time difference calculation data representing a time difference with another element is acquired.
  9.  前記時間差測定データ取得部は、互いに異なる走査線上に位置する複数の反射点に向けて超音波ビームを送信することにより前記複数の反射点に対してそれぞれ前記時間差測定データを取得し、
     前記時間差演算データ取得部は、前記複数の反射点に対してそれぞれ前記時間差演算データを取得し、
     前記全体音速決定部は、前記複数の素子のうち前記関心領域以外の領域を通る前記超音波エコーを受信した素子に対応し且つ前記複数の反射点に対する複数の前記第1の時間差測定データおよび前記複数の素子のうち前記関心領域以外の領域を通る前記超音波エコーを受信した素子に対応し且つ前記複数の反射点に対する複数の前記第1の時間差演算データに基づいて前記全体音速を決定する請求項1~8のいずれか一項に記載の超音波診断装置。
    The time difference measurement data acquisition unit acquires the time difference measurement data for each of the plurality of reflection points by transmitting an ultrasonic beam toward the plurality of reflection points located on different scanning lines.
    The time difference calculation data acquisition unit acquires the time difference calculation data for each of the plurality of reflection points,
    The overall sound speed determination unit corresponds to an element that has received the ultrasonic echo passing through a region other than the region of interest among the plurality of elements, and a plurality of the first time difference measurement data with respect to the plurality of reflection points, and The overall sound velocity is determined based on a plurality of first time difference calculation data corresponding to an element that has received the ultrasonic echo passing through a region other than the region of interest among a plurality of elements and the plurality of first time difference calculation data for the plurality of reflection points. Item 9. The ultrasonic diagnostic apparatus according to any one of Items 1 to 8.
  10.  前記全体音速決定部は、前記複数の第1の時間差測定データと前記複数の第1の時間差演算データとの差分が最小となる前記全体仮定音速を前記全体音速として決定する請求項9に記載の超音波診断装置。 10. The total sound speed determination unit according to claim 9, wherein the total assumed sound speed at which a difference between the plurality of first time difference measurement data and the plurality of first time difference calculation data is minimized is determined as the total sound speed. Ultrasonic diagnostic equipment.
  11.  前記全体音速決定部は、前記複数の反射点の各々に対する前記第1の時間差測定データと前記第1の時間差演算データとの差分に基づいて前記複数の反射点の各々に対する複数の全体音速の候補値を算出し、且つ、前記複数の全体音速の候補値に基づいて前記全体音速を決定する請求項9に記載の超音波診断装置。 The total sound speed determination unit is configured to select a plurality of global sound speed candidates for each of the plurality of reflection points based on a difference between the first time difference measurement data and the first time difference calculation data for each of the plurality of reflection points. The ultrasonic diagnostic apparatus according to claim 9, wherein a value is calculated and the overall sound speed is determined based on the plurality of overall sound speed candidate values.
  12.  前記関心領域設定部は、ユーザの指定により前記関心領域を設定する請求項1~11のいずれか一項に記載の超音波診断装置。 The ultrasonic diagnostic apparatus according to any one of claims 1 to 11, wherein the region-of-interest setting unit sets the region of interest as specified by a user.
  13.  前記関心領域設定部は、生成された前記超音波画像から自動的に前記関心領域を設定する請求項1~11のいずれか一項に記載の超音波診断装置。 The ultrasonic diagnostic apparatus according to any one of claims 1 to 11, wherein the region of interest setting unit automatically sets the region of interest from the generated ultrasonic image.
  14.  超音波画像上に関心領域を設定し、
     被検体内の反射点に向けた超音波ビームの送信に対応して前記反射点により反射される超音波エコーを受信したアレイトランスデューサの複数の素子から出力される複数の素子データを比較して素子データ間の時間差を表す時間差測定データを取得し、
     前記反射点から前記複数の素子の各々までの距離と設定された仮定音速に基づいて素子データ間の時間差を表す時間差演算データを取得し、
     前記複数の素子のうち前記関心領域以外の領域を通る前記超音波エコーを受信した素子に対応して取得された第1の時間差測定データと、前記仮定音速として全体仮定音速を設定し且つ前記複数の素子のうち前記関心領域以外の領域を通る前記超音波エコーを受信した素子に対応して取得された第1の時間差演算データとの差分に基づいて前記関心領域以外の領域に対応する全体音速を決定する
     ことを特徴とする音速定量化方法。
    Set the region of interest on the ultrasound image,
    A device that compares a plurality of element data output from a plurality of elements of an array transducer that receives an ultrasonic echo reflected by the reflection point in response to transmission of an ultrasonic beam toward the reflection point in the subject. Obtain time difference measurement data that represents the time difference between data,
    Obtaining time difference calculation data representing a time difference between element data based on a distance from the reflection point to each of the plurality of elements and a set assumed sound speed;
    First time difference measurement data acquired corresponding to an element that has received the ultrasonic echo passing through a region other than the region of interest among the plurality of elements, and an overall assumed sound speed as the assumed sound speed, and the plurality The total sound speed corresponding to the region other than the region of interest based on the difference from the first time difference calculation data acquired corresponding to the device that has received the ultrasonic echo passing through the region other than the region of interest A sound velocity quantification method characterized by determining
PCT/JP2016/082043 2016-01-13 2016-10-28 Ultrasonic diagnostic device and sonic speed quantification method WO2017122414A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016004282 2016-01-13
JP2016-004282 2016-01-13

Publications (1)

Publication Number Publication Date
WO2017122414A1 true WO2017122414A1 (en) 2017-07-20

Family

ID=59311141

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/082043 WO2017122414A1 (en) 2016-01-13 2016-10-28 Ultrasonic diagnostic device and sonic speed quantification method

Country Status (1)

Country Link
WO (1) WO2017122414A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012200443A (en) * 2011-03-25 2012-10-22 Fujifilm Corp Ultrasound diagnostic apparatus and ultrasound image producing method
JP2012217611A (en) * 2011-04-08 2012-11-12 Fujifilm Corp Ultrasonic diagnostic apparatus and method for generating ultrasonic image
JP2013244159A (en) * 2012-05-25 2013-12-09 Fujifilm Corp Ultrasonic diagnostic equipment and method for estimating sound velocity
JP2014233601A (en) * 2013-06-05 2014-12-15 富士フイルム株式会社 Ultrasonic diagnostic apparatus, and ultrasonic diagnostic method and program
JP2015173879A (en) * 2014-03-17 2015-10-05 古野電気株式会社 Sound speed measurement device, sound speed measurement method and sound speed measurement program

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012200443A (en) * 2011-03-25 2012-10-22 Fujifilm Corp Ultrasound diagnostic apparatus and ultrasound image producing method
JP2012217611A (en) * 2011-04-08 2012-11-12 Fujifilm Corp Ultrasonic diagnostic apparatus and method for generating ultrasonic image
JP2013244159A (en) * 2012-05-25 2013-12-09 Fujifilm Corp Ultrasonic diagnostic equipment and method for estimating sound velocity
JP2014233601A (en) * 2013-06-05 2014-12-15 富士フイルム株式会社 Ultrasonic diagnostic apparatus, and ultrasonic diagnostic method and program
JP2015173879A (en) * 2014-03-17 2015-10-05 古野電気株式会社 Sound speed measurement device, sound speed measurement method and sound speed measurement program

Similar Documents

Publication Publication Date Title
JP6419976B2 (en) Ultrasonic diagnostic apparatus and control method of ultrasonic diagnostic apparatus
JP6637611B2 (en) Ultrasonic diagnostic apparatus and control method for ultrasonic diagnostic apparatus
JP2009279306A (en) Ultrasonic diagnosing apparatus
WO2018051578A1 (en) Ultrasonic diagnostic device and method for controlling ultrasonic diagnostic device
WO2017038162A1 (en) Ultrasonic diagnostic device and method for controlling ultrasonic diagnostic device
JP6484389B2 (en) Ultrasonic diagnostic apparatus and control method of ultrasonic diagnostic apparatus
WO2019187649A1 (en) Ultrasonic diagnostic device and method for controlling ultrasonic diagnostic device
JP7227362B2 (en) ULTRASOUND DIAGNOSTIC APPARATUS, ULTRASOUND DIAGNOSTIC SYSTEM CONTROL METHOD AND PROCESSOR FOR ULTRASOUND DIAGNOSTIC APPARATUS
JP5588924B2 (en) Ultrasonic diagnostic equipment
JP2023155494A (en) Ultrasonic diagnostic device
JP2012192077A (en) Ultrasound diagnostic apparatus and ultrasound image generation method
JP5663552B2 (en) Ultrasonic inspection apparatus, signal processing method and program for ultrasonic inspection apparatus
US11116481B2 (en) Ultrasound diagnostic apparatus and control method of ultrasound diagnostic apparatus
WO2020110500A1 (en) Ultrasonic diagnostic device and method for controlling ultrasonic diagnostic device
WO2019163225A1 (en) Ultrasonic diagnostic device and method of controlling ultrasonic diagnostic device
JP5869411B2 (en) Ultrasonic diagnostic apparatus and ultrasonic image generation method
JP5829198B2 (en) Ultrasonic inspection apparatus, signal processing method and program for ultrasonic inspection apparatus
WO2014050889A1 (en) Ultrasonic inspection device, signal processing method for ultrasonic inspection device, and program
WO2017122411A1 (en) Ultrasonic diagnostic device and sonic speed quantification method
WO2017122414A1 (en) Ultrasonic diagnostic device and sonic speed quantification method
WO2019187647A1 (en) Ultrasonic diagnostic device and control method for ultrasonic diagnostic device
JP5851345B2 (en) Ultrasonic diagnostic apparatus and data processing method
WO2017126209A1 (en) Ultrasonic diagnostic device and sound velocity quantification method
JP7476376B2 (en) ULTRASONIC DIAGNOSTIC APPARATUS, CONTROL METHOD FOR ULTRASONIC DIAGNOSTIC APPARATUS, AND PROCESSOR FOR ULTRASONIC DIAGNOSTIC APPARATUS
JP7095177B2 (en) Ultrasound diagnostic equipment, control method of ultrasonic diagnostic equipment, and processor for ultrasonic diagnostic equipment

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16885017

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16885017

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP