WO2017122382A1 - Glass ceramic sintered body, glass ceramic composition, multilayer ceramic capacitor and method for manufacturing multilayer ceramic capacitor - Google Patents

Glass ceramic sintered body, glass ceramic composition, multilayer ceramic capacitor and method for manufacturing multilayer ceramic capacitor Download PDF

Info

Publication number
WO2017122382A1
WO2017122382A1 PCT/JP2016/073588 JP2016073588W WO2017122382A1 WO 2017122382 A1 WO2017122382 A1 WO 2017122382A1 JP 2016073588 W JP2016073588 W JP 2016073588W WO 2017122382 A1 WO2017122382 A1 WO 2017122382A1
Authority
WO
WIPO (PCT)
Prior art keywords
weight
parts
glass
less
ceramic
Prior art date
Application number
PCT/JP2016/073588
Other languages
French (fr)
Japanese (ja)
Inventor
義人 早田
大樹 足立
Original Assignee
株式会社村田製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社村田製作所 filed Critical 株式会社村田製作所
Priority to JP2017561510A priority Critical patent/JP6635126B2/en
Priority to CN201680065795.1A priority patent/CN108290794B/en
Publication of WO2017122382A1 publication Critical patent/WO2017122382A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C8/00Enamels; Glazes; Fusion seal compositions being frit compositions having non-frit additions
    • C03C8/14Glass frit mixtures having non-frit additions, e.g. opacifiers, colorants, mill-additions
    • C03C8/20Glass frit mixtures having non-frit additions, e.g. opacifiers, colorants, mill-additions containing titanium compounds; containing zirconium compounds
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/46Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates
    • C04B35/462Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/48Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on zirconium or hafnium oxides, zirconates, zircon or hafnates
    • C04B35/49Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on zirconium or hafnium oxides, zirconates, zircon or hafnates containing also titanium oxides or titanates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G4/00Fixed capacitors; Processes of their manufacture
    • H01G4/002Details
    • H01G4/018Dielectrics
    • H01G4/06Solid dielectrics
    • H01G4/08Inorganic dielectrics
    • H01G4/12Ceramic dielectrics
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G4/00Fixed capacitors; Processes of their manufacture
    • H01G4/002Details
    • H01G4/228Terminals
    • H01G4/232Terminals electrically connecting two or more layers of a stacked or rolled capacitor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G4/00Fixed capacitors; Processes of their manufacture
    • H01G4/30Stacked capacitors

Definitions

  • the present invention relates to a glass ceramic sintered body, a glass ceramic composition, a multilayer ceramic capacitor, and a method for producing a multilayer ceramic capacitor.
  • a mobile communication device When a mobile communication device is provided with a function of switching a frequency band to be received, if a circuit or an electronic component is provided for each frequency to be received, the request for downsizing of the electronic component is reversed. Therefore, it is desirable to have a function to switch the frequency band to be received by using a variable capacitance element that can change the electrostatic capacity by applying an applied voltage in common with circuits and electronic components used for reception. It is rare.
  • Patent Document 1 describes that a borosilicate glass composition is contained as a sintering aid for barium titanate for sintering at a low temperature.
  • Patent Document 1 since barium titanate is used as a dielectric, the voltage dependency of the dielectric constant is small and the composition is not suitable for use as a variable capacitance element.
  • the present invention has been made to solve the above problems, and provides a sintered glass ceramic that can be used as a dielectric of a multilayer ceramic capacitor and a variable capacitance element, and at a low temperature of 1000 ° C. or lower.
  • An object of the present invention is to provide a glass ceramic composition that is a raw material of a sintered body that can be sintered and can be used not only as a multilayer ceramic capacitor but also as a dielectric of a variable capacitance element.
  • the sintered glass-ceramic of the present invention is A perovskite type compound represented by the general formula ABO 3 (A site contains Ba and Sr, may contain Ca, B site contains Ti, Zr may be contained, and O is oxygen).
  • Mn oxide Glass containing RO (R is at least one alkaline earth metal selected from the group consisting of Ba, Ca and Sr), Li 2 O, B 2 O 3 , SiO 2 , MgO and Al 2 O 3 ;
  • R is at least one alkaline earth metal selected from the group consisting of Ba, Ca and Sr
  • Li 2 O, B 2 O 3 , SiO 2 , MgO and Al 2 O 3 A glass-ceramic sintered body containing
  • the Mn oxide is 0.03 part by weight or more and 0.31 part by weight or less in terms of MnO,
  • the glass is 3.0 parts by weight or more and 7.0 parts by weight or less
  • the RO is 44.0 parts by weight or more and 69.0 parts by weight or less
  • Li 2 O is 0.3 parts by weight or more and 7.5 parts by weight or less
  • B 2 O 3 is 10.0 parts by weight or more and 20.0 parts by weight or less
  • the SiO 2 is 14.2 parts by weight or more and 30.0 parts by weight or less
  • the glass ceramic sintered body of the present invention has a large capacitance change rate when the DC voltage is changed, it can be suitably used as a dielectric for multilayer ceramic capacitors and variable capacitance elements. Moreover, it has high insulation reliability.
  • the glass ceramic sintered body of the present invention can be obtained, for example, by firing the glass ceramic composition of the present invention at a temperature of 1000 ° C. or lower.
  • the glass ceramic composition of the present invention comprises: A perovskite type compound represented by the general formula ABO 3 (A site contains Ba and Sr, may contain Ca, B site contains Ti, Zr may be contained, and O is oxygen).
  • a Mn compound Glass containing RO (R is at least one alkaline earth metal selected from the group consisting of Ba, Ca and Sr), Li 2 O, B 2 O 3 , SiO 2 , MgO and Al 2 O 3 ;
  • a glass ceramic composition comprising: When the content of each component contained in the glass ceramic composition is 100 parts by weight of the total weight of the glass ceramic composition, The Mn compound is 0.03 part by weight or more and 0.31 part by weight or less in terms of MnO.
  • the glass is 3.0 parts by weight or more and 7.0 parts by weight or less, When the content of each component contained in the glass is 100 parts by weight of the whole glass,
  • the RO is 44.0 parts by weight or more and 69.0 parts by weight or less
  • Li 2 O is 0.3 parts by weight or more and 7.5 parts by weight or less
  • B 2 O 3 is 10.0 parts by weight or more and 20.0 parts by weight or less
  • the SiO 2 is 14.2 parts by weight or more and 30.0 parts by weight or less
  • MgO is 0.1 parts by weight or more and 5.5 parts by weight or less
  • the Al 2 O 3 is 0.5 parts by weight or more and 4.0 parts by weight or less, It is characterized by being.
  • a perovskite type compound having the above composition When a perovskite type compound having the above composition, a glass having the above composition, and a Mn compound are further contained, sintering at a low temperature of 1000 ° C. or lower is possible, and by co-sintering with a copper electrode or a silver electrode, A dense sintered body can be obtained. Since the obtained glass ceramic sintered body has a large capacitance change rate when the DC voltage is changed, it can be suitably used as a dielectric of a variable capacitance element. Further, the obtained glass ceramic sintered body can be used as a dielectric of a multilayer ceramic capacitor. Moreover, it becomes the glass ceramic sintered compact which has high insulation reliability.
  • the multilayer ceramic capacitor of the present invention is A laminate having a plurality of dielectric ceramic layers and a plurality of internal electrode layers; A multilayer ceramic capacitor comprising an external electrode formed on the surface of the multilayer body and electrically connected to the internal electrode layer exposed on the surface of the multilayer body,
  • the dielectric ceramic layer is made of the glass ceramic sintered body of the present invention,
  • the internal electrode layer is an electrode layer containing copper or silver.
  • the multilayer ceramic capacitor is preferably used as a variable capacitance element (tunable capacitor). Can do. Further, since the internal electrode layer is an electrode layer containing copper or silver, the resistance of the internal electrode layer is preferably low.
  • the method for producing the multilayer ceramic capacitor of the present invention comprises: A step of stacking a ceramic green sheet containing the glass ceramic composition of the present invention and an internal electrode layer containing copper or silver to obtain a laminate before firing; The laminated body before firing is fired at a firing temperature of 1000 ° C. or less to form a dielectric ceramic layer made of the glass ceramic sintered body of the present invention, and an internal electrode containing copper or silver between the dielectric ceramic layers And a step of obtaining a laminate in which a layer is formed.
  • a ceramic green sheet containing the glass ceramic composition of the present invention and an internal electrode layer containing copper or silver are laminated and fired at a firing temperature of 1000 ° C. or lower. Since the glass-ceramic composition of the present invention is a composition suitable for low-temperature firing at 1000 ° C. or less, it becomes a dielectric ceramic layer comprising the glass-ceramic sintered body of the present invention as a dense sintered body, and between the dielectric ceramic layers. A laminate in which an internal electrode layer containing copper or silver is formed is obtained.
  • a sintered glass ceramic that can be used not only as a multilayer ceramic capacitor but also as a dielectric of a variable capacitance element, and can be sintered at a low temperature of 1000 ° C. or less.
  • a glass ceramic composition as a raw material for a sintered body that can also be used as a dielectric of a variable capacitance element.
  • FIG. 1 is a cross-sectional view schematically showing an example of the structure of the multilayer ceramic capacitor of the present invention.
  • the glass ceramic composition the glass ceramic sintered body, the multilayer ceramic capacitor, and the method for producing the multilayer ceramic capacitor of the present invention will be described.
  • the present invention is not limited to the following configurations, and can be applied with appropriate modifications without departing from the scope of the present invention.
  • Each embodiment shown below is an illustration, and it cannot be overemphasized that a partial substitution or combination of composition shown in a different embodiment is possible.
  • a combination of two or more of the individual preferable configurations of the present invention described below is also the present invention.
  • the glass-ceramic composition of the present invention has a general formula ABO 3 (A site contains Ba and Sr, may further contain Ca, B site may contain Ti, Zr may further contain, O Perovskite type compounds represented by (oxygen).
  • this perovskite type compound is expressed by omitting Ca which may be contained in the A site and Zr which may be contained in the B site, BST, that is, barium strontium titanate (Ba x Sr 1-x TiO 3 : It can be said that x is a number greater than 0 and less than 1.
  • the ratio of Ba at the A site is preferably 60 mol% or more and 80 mol% or less, the ratio of Sr is preferably 20 mol% or more and 40 mol% or less, and the ratio of Ca is 1 mol% or more and 10 mol% or less. It is preferable.
  • the ratio of Ti in B site is 95 mol% or more and 80 mol% or less, and it is preferable that the ratio of Zr is 5 mol% or more and 20 mol% or less.
  • BST has a characteristic that the relative permittivity changes greatly when a voltage is applied, it can be used as a dielectric of a variable capacitance element that can change the capacitance greatly.
  • a method for producing the perovskite type compound is not particularly limited, and a known method such as a solid phase method, a hydrothermal synthesis method, or a hydrolysis method can be used.
  • the A site / B site ratio of the perovskite type compound represented by the general formula ABO 3 does not have to be a stoichiometric composition as long as the effect of the present invention is achieved, but the molar ratio A / B site A / B is preferably in the range of 0.980 to 1.020.
  • the Ba source is a Ba compound such as BaCO 3
  • the Sr source is an Sr compound such as SrCO 3
  • the Ca source is a Ca compound such as CaCO 3
  • the Ti source is a Ti compound such as TiO 2
  • the Zr source is ZrO 2.
  • Zr compounds such as can be preferably used.
  • the perovskite type compound is preferably contained in an amount of 92.50 parts by weight or more and 96.95 parts by weight or less based on 100 parts by weight of the entire glass ceramic composition. That is, it can be said that the main component of the glass ceramic composition of the present invention is the perovskite type compound.
  • the Mn compound is preferably at least one selected from the group consisting of MnCO 3 , MnO 2 , Mn 3 O 4 , MnO and Mn 2 O 3 .
  • the Mn compound is contained in an amount of 0.03 part by weight or more and 0.31 part by weight or less in terms of MnO, based on 100 parts by weight of the entire glass ceramic composition.
  • the compounding amount of the Mn compound in terms of MnO can be calculated from the ratio of the formula amount of the Mn compound and MnO.
  • the blending amount of the Mn compound in terms of MnO is synonymous with the blending amount of MnCO 3 being 0.05 parts by weight or more and 0.50 parts by weight or less when the Mn compound is blended as MnCO 3 .
  • the glass contains RO (R is at least one alkaline earth metal selected from the group consisting of Ba, Ca and Sr), Li 2 O, B 2 O 3 , SiO 2 , MgO and Al 2 O 3 . .
  • RO is at least one alkaline earth metal selected from the group consisting of Ba, Ca and Sr
  • Li 2 O is 0.3 parts by weight or more and 7.5 parts by weight or less
  • B 2 O 3 is 10.0 parts by weight or more and 20.0 parts by weight or less
  • SiO 2 is 14.2 parts by weight or more and 30.0 parts by weight or less
  • MgO is 0.1 parts by weight or more and 5.5 parts by weight or less
  • Al 2 O 3 is 0.5 parts by weight or more and 4.0 parts by weight or less, It is.
  • the content of each of the above components is the content of R, Li, B, Si, Mg, and Al contained in the glass in terms of oxides.
  • the content is determined in terms of.
  • a plurality of types of alkaline earth metal oxides (CaO, SrO, BaO) are included as RO, the content of RO is determined as the total amount thereof.
  • requiring content of each component in glass by analyzing glass it can obtain
  • the glass is contained in an amount of 3.0 parts by weight or more and 7.0 parts by weight or less based on 100 parts by weight of the entire glass ceramic composition. Preferably it is 4.0 weight part or more, Preferably it is 6.0 weight part or less. Moreover, Na, K, Zn, etc. may be contained in glass as components other than the above.
  • the glass ceramic composition of the present invention may contain an additive in addition to the perovskite type compound, the Mn compound and the glass, and examples of the additive include an organic binder, a solvent, and a plasticizer.
  • the organic binder for example, polyvinyl butyral, acrylic resin, methacrylic resin, or the like can be used.
  • the solvent for example, alcohol such as toluene and isopropylene alcohol can be used.
  • the plasticizer for example, di-n-butyl phthalate can be used.
  • the glass ceramic composition of the present invention may be in the form of a powder (solid) which is a mixture of a perovskite type compound, a Mn compound and glass, or in the form of a slurry obtained by adding a solvent or the like. Also good. Moreover, the form of the ceramic green sheet
  • the glass ceramic composition of the present invention can be produced by mixing the above-described perovskite type compound, Mn compound, glass and, if necessary, the above additives.
  • the glass ceramic sintered body of the present invention is a sintered body containing a perovskite type compound, an Mn oxide, and glass.
  • the perovskite type compound is represented by the general formula ABO 3 (the A site contains Ba and Sr, may further contain Ca, the B site may contain Ti, may further contain Zr, and O is oxygen). It is a BST similar to the perovskite type compound contained in the glass ceramic composition of the present invention.
  • Mn oxides (MnO 2 , Mn 3 O 4 , MnO and Mn 2 O 3 ) are oxides obtained by firing a Mn compound contained in a glass ceramic composition before sintering.
  • Mn oxide is contained in an amount of 0.03 parts by weight or more and 0.31 parts by weight or less in terms of MnO, with the weight of the glass ceramic sintered body being 100 parts by weight.
  • the ratio of Mn oxide contained in the glass ceramic sintered body can be determined by determining the ratio of Mn by ICP (inductively coupled plasma) emission spectroscopic analysis and converting it to MnO as an oxide.
  • the glass contains RO (R is at least one alkaline earth metal selected from the group consisting of Ba, Ca and Sr), Li 2 O, B 2 O 3 , SiO 2 , MgO and Al 2 O 3 . .
  • RO is at least one alkaline earth metal selected from the group consisting of Ba, Ca and Sr
  • Li 2 O is 0.3 parts by weight or more and 7.5 parts by weight or less
  • B 2 O 3 is 10.0 parts by weight or more and 20.0 parts by weight or less
  • SiO 2 is 14.2 parts by weight or more and 30.0 parts by weight or less
  • MgO is 0.1 parts by weight or more and 5.5 parts by weight or less
  • Al 2 O 3 is 0.5 parts by weight or more and 4.0 parts by weight or less, It is.
  • each said component is content which converted R, Li, B, Si, Mg, and Al contained in glass into an oxide, and more than one kind of alkaline earth metal oxide (CaO, SrO) as RO. , BaO), the content of RO is defined as the total amount thereof.
  • requiring content of each component in glass by analyzing glass, it can obtain
  • the glass is contained in an amount of 3.0 parts by weight or more and 7.0 parts by weight or less based on 100 parts by weight of the entire glass ceramic sintered body. Preferably it is 4.0 weight part or more, Preferably it is 6.0 weight part or less.
  • the glass ceramic sintered body of the present invention can be obtained by firing the glass ceramic composition of the present invention.
  • a part of the perovskite type compound contained in the glass ceramic composition reacts with the glass.
  • Fresnoit [Ba (TiO) Si 2 O 7 ] may occur. Therefore, the glass ceramic sintered body of the present invention may contain fresnoite.
  • the Fresnoit may contain Sr.
  • the glass ceramic sintered body of the present invention can be obtained by firing a glass ceramic composition. Specifically, in the production of a multilayer ceramic capacitor, a ceramic green sheet containing a glass ceramic composition is stacked with an internal electrode layer and fired to obtain a glass ceramic sintered body as a dielectric ceramic layer. Therefore, the detail of the manufacturing method of the glass ceramic sintered compact of this invention is mentioned later as a manufacturing method of a multilayer ceramic capacitor.
  • FIG. 1 is a cross-sectional view schematically showing an example of the structure of the multilayer ceramic capacitor of the present invention.
  • a plurality of dielectric ceramic layers 11 and a plurality of internal electrode layers 12 are stacked to form a multilayer body 10.
  • the internal electrode layers 12 are alternately exposed at the surface of the multilayer body 10 at the opposite end faces 14 a and 14 b of the multilayer body 10.
  • a pair of external electrodes 13 a and 13 b are formed on both end faces 14 a and 14 b of the laminate 10 so as to electrically connect the internal electrode layer 12.
  • the dielectric ceramic layer is formed of the glass ceramic sintered body of the present invention.
  • the internal electrode layer is an electrode layer containing copper or silver.
  • the electrode which contains copper or silver as a main component is mentioned, for example. Specifically, there are those composed of a thick film formed by baking a conductive paste containing copper or silver, a nickel plating film formed thereon, and a tin plating film formed thereon. An electrode having a known configuration can be used.
  • a ceramic green sheet containing the glass ceramic composition of the present invention and an internal electrode layer containing copper or silver are stacked to obtain a laminate before firing.
  • a ceramic green sheet is formed by molding a slurry obtained by adding an organic binder, a plasticizer, a solvent, and the like to a mixture of a perovskite type compound, a Mn compound and glass using a ball mill or the like by a doctor blade method or the like, followed by drying. Can be obtained.
  • a conductive paste film to be an internal electrode layer containing copper or silver is formed on the ceramic green sheet, and the ceramic green sheets formed with the conductive paste film are stacked to obtain a laminate before firing.
  • the laminate before firing is fired at a firing temperature of 1000 ° C. or less, so that the glass ceramic composition and copper or silver are co-sintered to form a dielectric made of a glass ceramic sintered body.
  • a ceramic layer is formed, and an internal electrode layer containing copper or silver is formed between the dielectric ceramic layers to form a laminate.
  • the firing atmosphere is not particularly limited, and examples thereof include an air atmosphere and a low oxygen atmosphere.
  • the low oxygen atmosphere means an atmosphere having a lower oxygen partial pressure than the atmosphere, for example, an inert gas atmosphere such as a nitrogen atmosphere or an argon atmosphere, or an atmosphere in which an inert gas such as nitrogen is mixed in the atmosphere. And vacuum atmosphere. Further, a mixed gas atmosphere of nitrogen and hydrogen may be used.
  • the firing temperature is preferably 850 ° C. or higher, more preferably 900 ° C. or higher, and preferably 990 ° C. or lower.
  • the dielectric ceramic layer formed by this firing becomes the glass ceramic sintered body of the present invention.
  • a multilayer ceramic capacitor can be manufactured by forming external electrodes on both end faces of the multilayer body.
  • Known techniques and process conditions can be used to form the external electrodes.
  • a method for forming the external electrode a method may be mentioned in which a conductive paste layer to be an external electrode is applied and formed before firing the ceramic green sheet, and the conductive paste layer is baked in accordance with the firing of the laminate.
  • Glasses of glass compositions G1 to G26 were prepared according to the composition shown in Table 1, dissolved at 1100 ° C. or higher and 1400 ° C. or lower, and wet pulverized to produce glass powder. Next, according to Table 2, BaCO 3 , SrCO 3 , CaCO 3 , TiO 2 , and ZrO 2 are mixed at a predetermined ratio, calcined at 1200 ° C. or higher and 1400 ° C. or lower, and sized to obtain ABO having a composition of F1 to F4. A 3- system ceramic compound 1 was obtained.
  • glass powder, ABO 3 series ceramic compound 1 powder, MnCO 3 as Mn compound were prepared and mixed according to Table 3, mixed solvent of ethanol and toluene as organic solvent, butyral resin as binder, Slurries according to Examples 1 to 21 and Comparative Examples 1 to 16 were prepared. This slurry was formed and dried by a doctor blade method or the like to produce a ceramic green sheet. Table 3 also shows values obtained by converting the blending amount of MnCO 3 into MnO.
  • the capacitance change rate was measured in comparison with the most reduced capacitance.
  • the insulation resistance between the internal electrodes of the capacitor was measured with an IR measuring machine. Table 4 shows the capacitance change rate and the insulation resistance (logIR).
  • the capacitor using the ceramic green sheet produced in each example can be used as a capacitor because the logIR value is sufficiently high.
  • condenser using the ceramic green sheet manufactured in each Example has a large capacitance change rate, it can be used conveniently as a variable capacitance element.
  • the content of any component is outside the range of the content defined in the present invention, or in each comparative example not containing any component, it is not sintered (unsintered) or vitrified. There were many things.
  • many sintered products have low log IR values, and there is a problem in insulation. Since these comparative examples have a problem in insulation, it is difficult to measure the capacitance change rate itself. Further, the comparative example having no problem from the viewpoint of insulation is also not suitable for application as a variable capacitance element because the rate of change in capacitance is small.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Ceramic Engineering (AREA)
  • Organic Chemistry (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Composite Materials (AREA)
  • Compositions Of Oxide Ceramics (AREA)
  • Ceramic Capacitors (AREA)
  • Inorganic Insulating Materials (AREA)
  • Fixed Capacitors And Capacitor Manufacturing Machines (AREA)
  • Glass Compositions (AREA)

Abstract

This glass ceramic sintered body contains a perovskite compound represented by general formula ABO3 (wherein the A site contains Ba and Sr, and optionally contains Ca; the B site contains Ti, and optionally contains Zr; and O represents oxygen), and is characterized in that: if the weight of the entire glass ceramic sintered body is taken as 100 parts by weight, the glass ceramic sintered body contains 0.03-0.31 part by weight of Mn oxides in terms of MnO and 3.0-7.0 parts by weight of glass; and if the weight of the entire glass is taken as 100 parts by weight, the glass contains 44.0-69.0 parts by weight of RO (wherein R represents at least one alkaline earth metal selected from the group consisting of Ba, Ca and Sr), 0.3-7.5 parts by weight of Li2O, 10.0-20.0 parts by weight of B2O3, 14.2-30.0 parts by weight of SiO2, 0.1-5.5 parts by weight of MgO and 0.5-4.0 parts by weight of Al2O3. Consequently, the present invention provides a glass ceramic sintered body which is able to be used not only as a dielectric body for multilayer ceramic capacitors but also as a dielectric body for variable capacitance elements.

Description

ガラスセラミック焼結体、ガラスセラミック組成物、積層セラミックコンデンサ及び積層セラミックコンデンサの製造方法Glass ceramic sintered body, glass ceramic composition, multilayer ceramic capacitor, and method for producing multilayer ceramic capacitor
本発明は、ガラスセラミック焼結体、ガラスセラミック組成物、積層セラミックコンデンサ及び積層セラミックコンデンサの製造方法に関する。 The present invention relates to a glass ceramic sintered body, a glass ceramic composition, a multilayer ceramic capacitor, and a method for producing a multilayer ceramic capacitor.
近年、移動体通信機器では、受信する周波数帯を切り替えることのできるマルチバンド対応の機能を有する通信機器が求められている。一方、この分野においては電子部品の小型化及び軽量化が強く求められている。 In recent years, there has been a demand for mobile communication devices that have a multiband function capable of switching the frequency band to be received. On the other hand, in this field, there is a strong demand for downsizing and weight reduction of electronic components.
移動体通信機器において受信する周波数帯を切り替える機能を持たせる場合に、受信する周波数ごとに回路や電子部品を設けると電子部品の小型化の要請に逆行してしまう。そのため、受信に使用される回路や電子部品を共通化しておき、印加電圧により静電容量を変えることが可能な可変容量素子を使用することで受信する周波数帯を切り替える機能を持たせることが望まれている。 When a mobile communication device is provided with a function of switching a frequency band to be received, if a circuit or an electronic component is provided for each frequency to be received, the request for downsizing of the electronic component is reversed. Therefore, it is desirable to have a function to switch the frequency band to be received by using a variable capacitance element that can change the electrostatic capacity by applying an applied voltage in common with circuits and electronic components used for reception. It is rare.
また、積層セラミックコンデンサの分野では、従来よりも低温で焼結することが可能なセラミック組成物の開発が進められている。特許文献1には、低温で焼結を行うためにチタン酸バリウムの焼成補助剤としてホウケイ酸塩系ガラス組成物を含有させることが記載されている。 In the field of multilayer ceramic capacitors, development of ceramic compositions that can be sintered at a lower temperature than in the past has been underway. Patent Document 1 describes that a borosilicate glass composition is contained as a sintering aid for barium titanate for sintering at a low temperature.
特開2010-155768号公報JP 2010-155768 A
積層セラミックコンデンサにおいて、内部電極の抵抗を小さくするために導体として銅や銀を用いることが望まれているが、導体として銅や銀を用いる場合は1000℃以下の低温での焼結が必要となる。しかしながら、特許文献1では内部電極としてニッケルが用いられているため、焼結温度は1000℃を超えている。また、特許文献1に記載されたガラスの組成や配合量では、銅や銀を導体として用いた場合に1000℃以下の低温で焼結させても、緻密な焼結体が得られなかった。 In a multilayer ceramic capacitor, it is desired to use copper or silver as a conductor in order to reduce the resistance of the internal electrode. However, when copper or silver is used as a conductor, sintering at a low temperature of 1000 ° C. or lower is required. Become. However, in Patent Document 1, since nickel is used as the internal electrode, the sintering temperature exceeds 1000 ° C. In addition, with the glass composition and blending amount described in Patent Document 1, a dense sintered body was not obtained even when sintered at a low temperature of 1000 ° C. or lower when copper or silver was used as a conductor.
また、特許文献1では誘電体としてチタン酸バリウムを用いているため誘電率の電圧依存性が小さく、可変容量素子として使用するには適さない組成となっていた。 Further, in Patent Document 1, since barium titanate is used as a dielectric, the voltage dependency of the dielectric constant is small and the composition is not suitable for use as a variable capacitance element.
本発明は上記の課題を解決するためになされたものであり、積層セラミックコンデンサ及び可変容量素子の誘電体として使用可能なガラスセラミック焼結体を提供すること、並びに、1000℃以下の低温での焼結が可能であり、積層セラミックコンデンサだけでなく可変容量素子の誘電体としても使用可能な焼結体の原料となるガラスセラミック組成物を提供することを目的とする。 The present invention has been made to solve the above problems, and provides a sintered glass ceramic that can be used as a dielectric of a multilayer ceramic capacitor and a variable capacitance element, and at a low temperature of 1000 ° C. or lower. An object of the present invention is to provide a glass ceramic composition that is a raw material of a sintered body that can be sintered and can be used not only as a multilayer ceramic capacitor but also as a dielectric of a variable capacitance element.
上記目的を達成するための、本発明のガラスセラミック焼結体は、
一般式ABO(AサイトはBa及びSrを含み、さらにCaを含んでいてもよく、BサイトはTiを含み、さらにZrを含んでいてもよく、Oは酸素)で表されるペロブスカイト型化合物と、
Mn酸化物と、
RO(RはBa、Ca及びSrからなる群から選択された少なくとも1種のアルカリ土類金属)、LiO、B、SiO、MgO及びAlを含有するガラスと、を含むガラスセラミック焼結体であって、
上記ガラスセラミック焼結体に含まれる各成分の含有量が、上記ガラスセラミック焼結体全体の重量を100重量部とした場合に、
上記Mn酸化物がMnO換算で0.03重量部以上、0.31重量部以下、
上記ガラスが3.0重量部以上、7.0重量部以下であり、
上記ガラスに含まれる各成分の含有量が、上記ガラス全体の重量を100重量部とした場合に、
上記ROが44.0重量部以上、69.0重量部以下、
上記LiOが0.3重量部以上、7.5重量部以下、
上記Bが10.0重量部以上、20.0重量部以下、
上記SiOが14.2重量部以上、30.0重量部以下、
上記MgOが0.1重量部以上、5.5重量部以下、
上記Alが0.5重量部以上、4.0重量部以下、
であることを特徴とする。
In order to achieve the above object, the sintered glass-ceramic of the present invention is
A perovskite type compound represented by the general formula ABO 3 (A site contains Ba and Sr, may contain Ca, B site contains Ti, Zr may be contained, and O is oxygen). When,
Mn oxide,
Glass containing RO (R is at least one alkaline earth metal selected from the group consisting of Ba, Ca and Sr), Li 2 O, B 2 O 3 , SiO 2 , MgO and Al 2 O 3 ; A glass-ceramic sintered body containing
When the content of each component contained in the glass ceramic sintered body is 100 parts by weight of the entire glass ceramic sintered body,
The Mn oxide is 0.03 part by weight or more and 0.31 part by weight or less in terms of MnO,
The glass is 3.0 parts by weight or more and 7.0 parts by weight or less,
When the content of each component contained in the glass is 100 parts by weight of the whole glass,
The RO is 44.0 parts by weight or more and 69.0 parts by weight or less,
Li 2 O is 0.3 parts by weight or more and 7.5 parts by weight or less,
B 2 O 3 is 10.0 parts by weight or more and 20.0 parts by weight or less,
The SiO 2 is 14.2 parts by weight or more and 30.0 parts by weight or less,
MgO is 0.1 parts by weight or more and 5.5 parts by weight or less,
The Al 2 O 3 is 0.5 parts by weight or more and 4.0 parts by weight or less,
It is characterized by being.
本発明のガラスセラミック焼結体は、DC電圧を変化させた際の静電容量変化率が大きいため積層セラミックコンデンサ及び可変容量素子の誘電体として好適に使用することができる。また、高い絶縁信頼性を有する。
本発明のガラスセラミック焼結体は、例えば本発明のガラスセラミック組成物を1000℃以下の温度で焼成することによって得ることができる。
Since the glass ceramic sintered body of the present invention has a large capacitance change rate when the DC voltage is changed, it can be suitably used as a dielectric for multilayer ceramic capacitors and variable capacitance elements. Moreover, it has high insulation reliability.
The glass ceramic sintered body of the present invention can be obtained, for example, by firing the glass ceramic composition of the present invention at a temperature of 1000 ° C. or lower.
また、本発明のガラスセラミック組成物は、
一般式ABO(AサイトはBa及びSrを含み、さらにCaを含んでいてもよく、BサイトはTiを含み、さらにZrを含んでいてもよく、Oは酸素)で表されるペロブスカイト型化合物と、
Mn化合物と、
RO(RはBa、Ca及びSrからなる群から選択された少なくとも1種のアルカリ土類金属)、LiO、B、SiO、MgO及びAlを含有するガラスと、を含むガラスセラミック組成物であって、
上記ガラスセラミック組成物に含まれる各成分の含有量が、上記ガラスセラミック組成物全体の重量を100重量部とした場合に、
上記Mn化合物がMnO換算で0.03重量部以上、0.31重量部以下、
上記ガラスが3.0重量部以上、7.0重量部以下であり、
上記ガラスに含まれる各成分の含有量が、上記ガラス全体の重量を100重量部とした場合に、
上記ROが44.0重量部以上、69.0重量部以下、
上記LiOが0.3重量部以上、7.5重量部以下、
上記Bが10.0重量部以上、20.0重量部以下、
上記SiOが14.2重量部以上、30.0重量部以下、
上記MgOが0.1重量部以上、5.5重量部以下、
上記Alが0.5重量部以上、4.0重量部以下、
であることを特徴とする。
Moreover, the glass ceramic composition of the present invention comprises:
A perovskite type compound represented by the general formula ABO 3 (A site contains Ba and Sr, may contain Ca, B site contains Ti, Zr may be contained, and O is oxygen). When,
A Mn compound;
Glass containing RO (R is at least one alkaline earth metal selected from the group consisting of Ba, Ca and Sr), Li 2 O, B 2 O 3 , SiO 2 , MgO and Al 2 O 3 ; A glass ceramic composition comprising:
When the content of each component contained in the glass ceramic composition is 100 parts by weight of the total weight of the glass ceramic composition,
The Mn compound is 0.03 part by weight or more and 0.31 part by weight or less in terms of MnO.
The glass is 3.0 parts by weight or more and 7.0 parts by weight or less,
When the content of each component contained in the glass is 100 parts by weight of the whole glass,
The RO is 44.0 parts by weight or more and 69.0 parts by weight or less,
Li 2 O is 0.3 parts by weight or more and 7.5 parts by weight or less,
B 2 O 3 is 10.0 parts by weight or more and 20.0 parts by weight or less,
The SiO 2 is 14.2 parts by weight or more and 30.0 parts by weight or less,
MgO is 0.1 parts by weight or more and 5.5 parts by weight or less,
The Al 2 O 3 is 0.5 parts by weight or more and 4.0 parts by weight or less,
It is characterized by being.
上記組成のペロブスカイト型化合物と、上記組成のガラスと、さらにMn化合物を含有していると、1000℃以下での低温での焼結が可能であり、銅電極や銀電極との共焼結により緻密な焼結体を得ることができる。得られたガラスセラミック焼結体はDC電圧を変化させた際の静電容量変化率が大きいため可変容量素子の誘電体として好適に使用することができる。さらに、得られたガラスセラミック焼結体は積層セラミックコンデンサの誘電体としても使用することができる。また、高い絶縁信頼性を有するガラスセラミック焼結体となる。 When a perovskite type compound having the above composition, a glass having the above composition, and a Mn compound are further contained, sintering at a low temperature of 1000 ° C. or lower is possible, and by co-sintering with a copper electrode or a silver electrode, A dense sintered body can be obtained. Since the obtained glass ceramic sintered body has a large capacitance change rate when the DC voltage is changed, it can be suitably used as a dielectric of a variable capacitance element. Further, the obtained glass ceramic sintered body can be used as a dielectric of a multilayer ceramic capacitor. Moreover, it becomes the glass ceramic sintered compact which has high insulation reliability.
本発明の積層セラミックコンデンサは、
複数の誘電体セラミック層と複数の内部電極層とを有する積層体と、
上記積層体の表面に形成され、上記積層体の表面に露出した上記内部電極層を電気的に接続する外部電極とを備えた、積層セラミックコンデンサであって、
上記誘電体セラミック層が、本発明のガラスセラミック焼結体からなり、
上記内部電極層が、銅又は銀を含む電極層であることを特徴とする。
The multilayer ceramic capacitor of the present invention is
A laminate having a plurality of dielectric ceramic layers and a plurality of internal electrode layers;
A multilayer ceramic capacitor comprising an external electrode formed on the surface of the multilayer body and electrically connected to the internal electrode layer exposed on the surface of the multilayer body,
The dielectric ceramic layer is made of the glass ceramic sintered body of the present invention,
The internal electrode layer is an electrode layer containing copper or silver.
本発明の積層セラミックコンデンサが備える誘電体セラミック層は、DC電圧を変化させた際の静電容量変化率が大きいため、この積層セラミックコンデンサは可変容量素子(チューナブルコンデンサ)として好適に使用することができる。また、内部電極層が銅又は銀を含む電極層であるため内部電極層の抵抗が低く好ましい。 Since the dielectric ceramic layer provided in the multilayer ceramic capacitor of the present invention has a large capacitance change rate when the DC voltage is changed, the multilayer ceramic capacitor is preferably used as a variable capacitance element (tunable capacitor). Can do. Further, since the internal electrode layer is an electrode layer containing copper or silver, the resistance of the internal electrode layer is preferably low.
本発明の積層セラミックコンデンサの製造方法は、
本発明のガラスセラミック組成物を含むセラミックグリーンシートと、銅又は銀を含む内部電極層とを積み重ねて焼成前の積層体を得る工程と、
焼成前の積層体を1000℃以下の焼成温度で焼成して、本発明のガラスセラミック焼結体からなる誘電体セラミック層を形成するとともに、上記誘電体セラミック層間に、銅又は銀を含む内部電極層が形成された積層体を得る工程とを有することを特徴とする。
The method for producing the multilayer ceramic capacitor of the present invention comprises:
A step of stacking a ceramic green sheet containing the glass ceramic composition of the present invention and an internal electrode layer containing copper or silver to obtain a laminate before firing;
The laminated body before firing is fired at a firing temperature of 1000 ° C. or less to form a dielectric ceramic layer made of the glass ceramic sintered body of the present invention, and an internal electrode containing copper or silver between the dielectric ceramic layers And a step of obtaining a laminate in which a layer is formed.
本発明の積層セラミックコンデンサの製造方法では、本発明のガラスセラミック組成物を含むセラミックグリーンシートと銅又は銀を含む内部電極層を積層して1000℃以下の焼成温度で焼成する。本発明のガラスセラミック組成物は1000℃以下での低温焼成に適した組成であるので緻密な焼結体としての本発明のガラスセラミック焼結体からなる誘電体セラミック層となり、誘電体セラミック層間に銅又は銀を含む内部電極層が形成された積層体が得られる。 In the method for producing a multilayer ceramic capacitor of the present invention, a ceramic green sheet containing the glass ceramic composition of the present invention and an internal electrode layer containing copper or silver are laminated and fired at a firing temperature of 1000 ° C. or lower. Since the glass-ceramic composition of the present invention is a composition suitable for low-temperature firing at 1000 ° C. or less, it becomes a dielectric ceramic layer comprising the glass-ceramic sintered body of the present invention as a dense sintered body, and between the dielectric ceramic layers. A laminate in which an internal electrode layer containing copper or silver is formed is obtained.
この発明によれば、積層セラミックコンデンサだけでなく可変容量素子の誘電体としても使用可能なガラスセラミック焼結体、及び、1000℃以下の低温での焼結が可能であり、積層セラミックコンデンサだけでなく可変容量素子の誘電体としても使用可能な焼結体の原料となるガラスセラミック組成物を提供することができる。 According to the present invention, a sintered glass ceramic that can be used not only as a multilayer ceramic capacitor but also as a dielectric of a variable capacitance element, and can be sintered at a low temperature of 1000 ° C. or less. In addition, it is possible to provide a glass ceramic composition as a raw material for a sintered body that can also be used as a dielectric of a variable capacitance element.
図1は、本発明の積層セラミックコンデンサの構造の例を模式的に示す断面図である。FIG. 1 is a cross-sectional view schematically showing an example of the structure of the multilayer ceramic capacitor of the present invention.
以下、本発明のガラスセラミック組成物、ガラスセラミック焼結体、積層セラミックコンデンサ及び積層セラミックコンデンサの製造方法について説明する。
しかしながら、本発明は、以下の構成に限定されるものではなく、本発明の要旨を変更しない範囲において適宜変更して適用することができる。
以下に示す各実施形態は例示であり、異なる実施形態で示した構成の部分的な置換又は組み合わせが可能であることは言うまでもない。
以下において記載する本発明の個々の好ましい構成を2つ以上組み合わせたものもまた本発明である。
Hereinafter, the glass ceramic composition, the glass ceramic sintered body, the multilayer ceramic capacitor, and the method for producing the multilayer ceramic capacitor of the present invention will be described.
However, the present invention is not limited to the following configurations, and can be applied with appropriate modifications without departing from the scope of the present invention.
Each embodiment shown below is an illustration, and it cannot be overemphasized that a partial substitution or combination of composition shown in a different embodiment is possible.
A combination of two or more of the individual preferable configurations of the present invention described below is also the present invention.
<ガラスセラミック組成物>
本発明のガラスセラミック組成物は、一般式ABO(AサイトはBa及びSrを含み、さらにCaを含んでいてもよく、BサイトはTiを含み、さらにZrを含んでいてもよく、Oは酸素)で表されるペロブスカイト型化合物を含む。
<Glass ceramic composition>
The glass-ceramic composition of the present invention has a general formula ABO 3 (A site contains Ba and Sr, may further contain Ca, B site may contain Ti, Zr may further contain, O Perovskite type compounds represented by (oxygen).
このペロブスカイト型化合物は、Aサイトに含まれていてもよいCaとBサイトに含まれていてもよいZrを省略して表現すると、BSTすなわちバリウムストロンチウムチタネート(BaSr1-xTiO:ただしxは0より大きく1未満の数)であるともいえる。
AサイトにおけるBaの割合は60mol%以上、80mol%以下であることが好ましく、Srの割合は20mol%以上、40mol%以下であることが好ましく、Caの割合は1mol%以上、10mol%以下であることが好ましい。また、BサイトにおけるTiの割合は95mol%以上、80mol%以下であることが好ましく、Zrの割合は5mol%以上、20mol%以下であることが好ましい。
When this perovskite type compound is expressed by omitting Ca which may be contained in the A site and Zr which may be contained in the B site, BST, that is, barium strontium titanate (Ba x Sr 1-x TiO 3 : It can be said that x is a number greater than 0 and less than 1.
The ratio of Ba at the A site is preferably 60 mol% or more and 80 mol% or less, the ratio of Sr is preferably 20 mol% or more and 40 mol% or less, and the ratio of Ca is 1 mol% or more and 10 mol% or less. It is preferable. Moreover, it is preferable that the ratio of Ti in B site is 95 mol% or more and 80 mol% or less, and it is preferable that the ratio of Zr is 5 mol% or more and 20 mol% or less.
BSTは電圧を印加すると比誘電率が大きく変化する特性を有するため、静電容量を大きく変化させ得る可変容量素子の誘電体として使用することができる。 Since BST has a characteristic that the relative permittivity changes greatly when a voltage is applied, it can be used as a dielectric of a variable capacitance element that can change the capacitance greatly.
上記ペロブスカイト型化合物の作製方法としては、特に限定されるものではなく、固相法、水熱合成法、加水分解法等の公知の方法を使用することができる。
一般式ABOで表されるペロブスカイト型化合物のAサイト/Bサイト比は本発明の効果を奏する範囲であれば化学量論組成である必要はないが、AサイトとBサイトのモル比A/Bが0.980以上、1.020以下の範囲であることが好ましい。
Ba源としてはBaCOなどのBa化合物、Sr源としてはSrCOなどのSr化合物、Ca源としてはCaCOなどのCa化合物、Ti源としてはTiOなどのTi化合物、Zr源としてはZrOなどのZr化合物を好ましく用いることができる。
A method for producing the perovskite type compound is not particularly limited, and a known method such as a solid phase method, a hydrothermal synthesis method, or a hydrolysis method can be used.
The A site / B site ratio of the perovskite type compound represented by the general formula ABO 3 does not have to be a stoichiometric composition as long as the effect of the present invention is achieved, but the molar ratio A / B site A / B is preferably in the range of 0.980 to 1.020.
The Ba source is a Ba compound such as BaCO 3 , the Sr source is an Sr compound such as SrCO 3 , the Ca source is a Ca compound such as CaCO 3 , the Ti source is a Ti compound such as TiO 2 , and the Zr source is ZrO 2. Zr compounds such as can be preferably used.
ペロブスカイト型化合物は、ガラスセラミック組成物全体の重量を100重量部として、92.50重量部以上、96.95重量部以下含まれていることが好ましい。即ち、本発明のガラスセラミック組成物の主成分は上記ペロブスカイト型化合物であるといえる。 The perovskite type compound is preferably contained in an amount of 92.50 parts by weight or more and 96.95 parts by weight or less based on 100 parts by weight of the entire glass ceramic composition. That is, it can be said that the main component of the glass ceramic composition of the present invention is the perovskite type compound.
Mn化合物としては、MnCO、MnO、Mn、MnO及びMnからなる群より選択される少なくとも1種であることが好ましい。
Mn化合物として上記の酸化物又は炭酸塩を用いることにより、ガラスセラミック組成物の焼成の際にガラスセラミック組成物に含有される有機バインダ等の有機成分の分解を促進させることができる。その結果、ガラスセラミック焼結体に生じる欠陥を減らすことができる。
すなわち、Mn化合物を含有すると、ガラスセラミック組成物の焼成条件が、有機バインダが分解しにくい1000℃以下の低温での焼成である場合や、低酸素雰囲気下での焼成である場合であっても、有機バインダの分解を促進して、ガラスセラミック焼結体に生じる欠陥を減らすことができる。
The Mn compound is preferably at least one selected from the group consisting of MnCO 3 , MnO 2 , Mn 3 O 4 , MnO and Mn 2 O 3 .
By using the above oxide or carbonate as the Mn compound, decomposition of organic components such as an organic binder contained in the glass ceramic composition can be promoted when the glass ceramic composition is fired. As a result, defects generated in the glass ceramic sintered body can be reduced.
That is, when the Mn compound is contained, the firing condition of the glass-ceramic composition is a case of firing at a low temperature of 1000 ° C. or less where the organic binder is difficult to decompose, or a firing in a low oxygen atmosphere. By promoting the decomposition of the organic binder, defects generated in the glass ceramic sintered body can be reduced.
Mn化合物は、ガラスセラミック組成物全体の重量を100重量部として、MnO換算で0.03重量部以上、0.31重量部以下含まれている。MnO換算でのMn化合物の配合量は、Mn化合物とMnOの式量の比から算出することができる。
上記MnO換算でのMn化合物の配合量は、Mn化合物をMnCOとして配合する場合にMnCOの配合量が0.05重量部以上、0.50重量部以下であることと同義である。
The Mn compound is contained in an amount of 0.03 part by weight or more and 0.31 part by weight or less in terms of MnO, based on 100 parts by weight of the entire glass ceramic composition. The compounding amount of the Mn compound in terms of MnO can be calculated from the ratio of the formula amount of the Mn compound and MnO.
The blending amount of the Mn compound in terms of MnO is synonymous with the blending amount of MnCO 3 being 0.05 parts by weight or more and 0.50 parts by weight or less when the Mn compound is blended as MnCO 3 .
ガラスは、RO(RはBa、Ca及びSrからなる群から選択された少なくとも1種のアルカリ土類金属)、LiO、B、SiO、MgO及びAlを含有する。
ガラスに含まれる各成分の含有量は、ガラス全体の重量を100重量部とした場合に、
ROが44.0重量部以上、69.0重量部以下、
LiOが0.3重量部以上、7.5重量部以下、
が10.0重量部以上、20.0重量部以下、
SiOが14.2重量部以上、30.0重量部以下、
MgOが0.1重量部以上、5.5重量部以下、
Alが0.5重量部以上、4.0重量部以下、
である。
The glass contains RO (R is at least one alkaline earth metal selected from the group consisting of Ba, Ca and Sr), Li 2 O, B 2 O 3 , SiO 2 , MgO and Al 2 O 3 . .
When the content of each component contained in the glass is 100 parts by weight of the entire glass,
RO is 44.0 parts by weight or more and 69.0 parts by weight or less,
Li 2 O is 0.3 parts by weight or more and 7.5 parts by weight or less,
B 2 O 3 is 10.0 parts by weight or more and 20.0 parts by weight or less,
SiO 2 is 14.2 parts by weight or more and 30.0 parts by weight or less,
MgO is 0.1 parts by weight or more and 5.5 parts by weight or less,
Al 2 O 3 is 0.5 parts by weight or more and 4.0 parts by weight or less,
It is.
上記各成分の含有量は、ガラスに含まれるR、Li、B、Si、Mg、Alを酸化物換算した含有量であり、酸化物でない形で配合された成分については上記した酸化物の重量に換算して含有量を定める。また、ROとして複数種類のアルカリ土類金属酸化物(CaO、SrO、BaO)を含む場合は、ROの含有量をそれらの合計量として定める。
また、ガラスを分析してガラス中の各成分の含有量を求める場合は、ICP(誘導結合プラズマ)発光分光分析法により各元素の割合を求め、それを酸化物換算することにより求めることができる。
The content of each of the above components is the content of R, Li, B, Si, Mg, and Al contained in the glass in terms of oxides. The content is determined in terms of. When a plurality of types of alkaline earth metal oxides (CaO, SrO, BaO) are included as RO, the content of RO is determined as the total amount thereof.
Moreover, when calculating | requiring content of each component in glass by analyzing glass, it can obtain | require by calculating | requiring the ratio of each element by ICP (inductively coupled plasma) emission spectrometry, and converting it into an oxide. .
ガラスは、ガラスセラミック組成物全体の重量を100重量部として、3.0重量部以上、7.0重量部以下含まれている。好ましくは4.0重量部以上であり、好ましくは6.0重量部以下である。
また、ガラス中に上記以外の成分としてNa、K、Zn等が含まれていてもよい。
The glass is contained in an amount of 3.0 parts by weight or more and 7.0 parts by weight or less based on 100 parts by weight of the entire glass ceramic composition. Preferably it is 4.0 weight part or more, Preferably it is 6.0 weight part or less.
Moreover, Na, K, Zn, etc. may be contained in glass as components other than the above.
本発明のガラスセラミック組成物は、ペロブスカイト型化合物、Mn化合物及びガラスの他に添加剤を含んでいてもよく、添加剤としては有機バインダ、溶剤、可塑剤等が挙げられる。
有機バインダとしては、例えば、ポリビニルブチラール、アクリル樹脂、メタクリル樹脂等を用いることができる。溶剤としては、例えば、トルエン、イソプロピレンアルコール等のアルコール等を用いることができる。可塑剤としては、例えば、ジ-n-ブチルフタレート等を用いることができる。
本発明のガラスセラミック組成物は、ペロブスカイト型化合物、Mn化合物及びガラスの混合物である粉体(固体)の形態であってもよいし、溶剤等を加えることによって得られたスラリーの形態であってもよい。また、ドクターブレード法等により成形され、乾燥されて得られたセラミックグリーンシートの形態であってもよい。
The glass ceramic composition of the present invention may contain an additive in addition to the perovskite type compound, the Mn compound and the glass, and examples of the additive include an organic binder, a solvent, and a plasticizer.
As the organic binder, for example, polyvinyl butyral, acrylic resin, methacrylic resin, or the like can be used. As the solvent, for example, alcohol such as toluene and isopropylene alcohol can be used. As the plasticizer, for example, di-n-butyl phthalate can be used.
The glass ceramic composition of the present invention may be in the form of a powder (solid) which is a mixture of a perovskite type compound, a Mn compound and glass, or in the form of a slurry obtained by adding a solvent or the like. Also good. Moreover, the form of the ceramic green sheet | seat obtained by shape | molding by the doctor blade method etc. and drying may be sufficient.
本発明のガラスセラミック組成物は、上述したペロブスカイト型化合物、Mn化合物、ガラス及び必要に応じて上記添加剤を混合することによって製造することができる。 The glass ceramic composition of the present invention can be produced by mixing the above-described perovskite type compound, Mn compound, glass and, if necessary, the above additives.
<ガラスセラミック焼結体>
本発明のガラスセラミック焼結体は、ペロブスカイト型化合物と、Mn酸化物と、ガラスとを含む焼結体である。
ペロブスカイト型化合物は、一般式ABO(AサイトはBa及びSrを含み、さらにCaを含んでいてもよく、BサイトはTiを含み、さらにZrを含んでいてもよく、Oは酸素)で表される化合物であり、本発明のガラスセラミック組成物に含まれるペロブスカイト型化合物と同様のBSTである。
<Glass ceramic sintered body>
The glass ceramic sintered body of the present invention is a sintered body containing a perovskite type compound, an Mn oxide, and glass.
The perovskite type compound is represented by the general formula ABO 3 (the A site contains Ba and Sr, may further contain Ca, the B site may contain Ti, may further contain Zr, and O is oxygen). It is a BST similar to the perovskite type compound contained in the glass ceramic composition of the present invention.
Mn酸化物(MnO、Mn、MnO及びMn)は、焼結前のガラスセラミック組成物に含まれるMn化合物が焼成されて得られる酸化物である。 Mn oxides (MnO 2 , Mn 3 O 4 , MnO and Mn 2 O 3 ) are oxides obtained by firing a Mn compound contained in a glass ceramic composition before sintering.
Mn酸化物は、ガラスセラミック焼結体の重量を100重量部として、MnO換算で0.03重量部以上、0.31重量部以下含まれている。
ガラスセラミック焼結体中に含まれるMn酸化物の割合は、ICP(誘導結合プラズマ)発光分光分析法によりMnの割合を求め、それを酸化物としてのMnOに換算することにより求めることができる。
Mn oxide is contained in an amount of 0.03 parts by weight or more and 0.31 parts by weight or less in terms of MnO, with the weight of the glass ceramic sintered body being 100 parts by weight.
The ratio of Mn oxide contained in the glass ceramic sintered body can be determined by determining the ratio of Mn by ICP (inductively coupled plasma) emission spectroscopic analysis and converting it to MnO as an oxide.
ガラスは、RO(RはBa、Ca及びSrからなる群から選択された少なくとも1種のアルカリ土類金属)、LiO、B、SiO、MgO及びAlを含有する。
ガラスに含まれる各成分の含有量は、ガラス全体の重量を100重量部とした場合に、
ROが44.0重量部以上、69.0重量部以下、
LiOが0.3重量部以上、7.5重量部以下、
が10.0重量部以上、20.0重量部以下、
SiOが14.2重量部以上、30.0重量部以下、
MgOが0.1重量部以上、5.5重量部以下、
Alが0.5重量部以上、4.0重量部以下、
である。
The glass contains RO (R is at least one alkaline earth metal selected from the group consisting of Ba, Ca and Sr), Li 2 O, B 2 O 3 , SiO 2 , MgO and Al 2 O 3 . .
When the content of each component contained in the glass is 100 parts by weight of the entire glass,
RO is 44.0 parts by weight or more and 69.0 parts by weight or less,
Li 2 O is 0.3 parts by weight or more and 7.5 parts by weight or less,
B 2 O 3 is 10.0 parts by weight or more and 20.0 parts by weight or less,
SiO 2 is 14.2 parts by weight or more and 30.0 parts by weight or less,
MgO is 0.1 parts by weight or more and 5.5 parts by weight or less,
Al 2 O 3 is 0.5 parts by weight or more and 4.0 parts by weight or less,
It is.
上記各成分の含有量は、ガラスに含まれるR、Li、B、Si、Mg、Alを酸化物換算した含有量であり、また、ROとして複数種類のアルカリ土類金属酸化物(CaO、SrO、BaO)を含む場合は、ROの含有量をそれらの合計量として定める。
また、ガラスを分析してガラス中の各成分の含有量を求める場合は、ICP(誘導結合プラズマ)発光分光分析法により各元素の割合を求め、それを酸化物換算することにより求めることができる。
Content of each said component is content which converted R, Li, B, Si, Mg, and Al contained in glass into an oxide, and more than one kind of alkaline earth metal oxide (CaO, SrO) as RO. , BaO), the content of RO is defined as the total amount thereof.
Moreover, when calculating | requiring content of each component in glass by analyzing glass, it can obtain | require by calculating | requiring the ratio of each element by ICP (inductively coupled plasma) emission spectroscopy, and converting it into an oxide. .
ガラスは、ガラスセラミック焼結体全体の重量を100重量部として、3.0重量部以上、7.0重量部以下含まれている。好ましくは4.0重量部以上であり、好ましくは6.0重量部以下である。 The glass is contained in an amount of 3.0 parts by weight or more and 7.0 parts by weight or less based on 100 parts by weight of the entire glass ceramic sintered body. Preferably it is 4.0 weight part or more, Preferably it is 6.0 weight part or less.
本発明のガラスセラミック焼結体は、本発明のガラスセラミック組成物を焼成することにより得ることができるが、この場合、ガラスセラミック組成物に含まれるペロブスカイト型化合物の一部がガラスと反応してフレスノイト[Ba(TiO)Si]が生じる場合がある。そのため、本発明のガラスセラミック焼結体にはフレスノイトが含まれていてもよい。なお、上記フレスノイトにはSrが含まれていてもよい。 The glass ceramic sintered body of the present invention can be obtained by firing the glass ceramic composition of the present invention. In this case, a part of the perovskite type compound contained in the glass ceramic composition reacts with the glass. Fresnoit [Ba (TiO) Si 2 O 7 ] may occur. Therefore, the glass ceramic sintered body of the present invention may contain fresnoite. The Fresnoit may contain Sr.
本発明のガラスセラミック焼結体は、ガラスセラミック組成物を焼成することにより得ることができる。具体的には、積層セラミックコンデンサの製造においてガラスセラミック組成物を含むセラミックグリーンシートを内部電極層と積み重ねて焼成することにより誘電体セラミックス層としてガラスセラミック焼結体が得られる。
そのため、本発明のガラスセラミック焼結体の製造方法の詳細は、積層セラミックコンデンサの製造方法として後述する。
The glass ceramic sintered body of the present invention can be obtained by firing a glass ceramic composition. Specifically, in the production of a multilayer ceramic capacitor, a ceramic green sheet containing a glass ceramic composition is stacked with an internal electrode layer and fired to obtain a glass ceramic sintered body as a dielectric ceramic layer.
Therefore, the detail of the manufacturing method of the glass ceramic sintered compact of this invention is mentioned later as a manufacturing method of a multilayer ceramic capacitor.
<積層セラミックコンデンサ>
図1は、本発明の積層セラミックコンデンサの構造の例を模式的に示す断面図である。
積層セラミックコンデンサ1においては、複数の誘電体セラミック層11と複数の内部電極層12が積層されて積層体10が形成されている。
内部電極層12は、積層体10の対向する両端面14a、14bにおいて、交互に積層体10の表面に露出している。
そして、積層体10の両端面14a、14bには、内部電極層12を電気的に接続するように一対の外部電極13a、13bが形成されている。
<Multilayer ceramic capacitor>
FIG. 1 is a cross-sectional view schematically showing an example of the structure of the multilayer ceramic capacitor of the present invention.
In the multilayer ceramic capacitor 1, a plurality of dielectric ceramic layers 11 and a plurality of internal electrode layers 12 are stacked to form a multilayer body 10.
The internal electrode layers 12 are alternately exposed at the surface of the multilayer body 10 at the opposite end faces 14 a and 14 b of the multilayer body 10.
A pair of external electrodes 13 a and 13 b are formed on both end faces 14 a and 14 b of the laminate 10 so as to electrically connect the internal electrode layer 12.
本発明の積層セラミックコンデンサは、誘電体セラミック層が本発明のガラスセラミック焼結体からなる。また、内部電極層は銅又は銀を含む電極層である。
また、外部電極としては、例えば銅又は銀を主成分として含む電極が挙げられる。具体的には、銅又は銀を含む導電性ペーストを焼き付けて形成される厚膜と、その上に形成されるニッケルめっき膜と、その上に形成される錫めっき膜とから構成されるものが挙げられ、公知の構成の電極を使用することができる。
In the multilayer ceramic capacitor of the present invention, the dielectric ceramic layer is formed of the glass ceramic sintered body of the present invention. The internal electrode layer is an electrode layer containing copper or silver.
Moreover, as an external electrode, the electrode which contains copper or silver as a main component is mentioned, for example. Specifically, there are those composed of a thick film formed by baking a conductive paste containing copper or silver, a nickel plating film formed thereon, and a tin plating film formed thereon. An electrode having a known configuration can be used.
<積層セラミックコンデンサの製造方法>
本発明の積層セラミックコンデンサの製造方法では、本発明のガラスセラミック組成物を含むセラミックグリーンシートと、銅又は銀を含む内部電極層とを積み重ねて焼成前の積層体を得る。セラミックグリーンシートは、ペロブスカイト型化合物、Mn化合物及びガラスの混合物に有機バインダ、可塑剤及び溶剤等を加えてボールミル等を用いて混合して得られたスラリーをドクターブレード法等により成形して、乾燥することによって得ることができる。
そして、セラミックグリーンシートに銅又は銀を含む内部電極層となるべき導電性ペースト膜を形成し、導電性ペースト膜を形成したセラミックグリーンシートを積み重ねて焼成前の積層体を得る。
<Manufacturing method of multilayer ceramic capacitor>
In the method for producing a multilayer ceramic capacitor of the present invention, a ceramic green sheet containing the glass ceramic composition of the present invention and an internal electrode layer containing copper or silver are stacked to obtain a laminate before firing. A ceramic green sheet is formed by molding a slurry obtained by adding an organic binder, a plasticizer, a solvent, and the like to a mixture of a perovskite type compound, a Mn compound and glass using a ball mill or the like by a doctor blade method or the like, followed by drying. Can be obtained.
Then, a conductive paste film to be an internal electrode layer containing copper or silver is formed on the ceramic green sheet, and the ceramic green sheets formed with the conductive paste film are stacked to obtain a laminate before firing.
このようにして得られた焼成前の積層体を、1000℃以下の焼成温度で焼成することにより、ガラスセラミック組成物と銅又は銀が共焼結して、ガラスセラミック焼結体からなる誘電体セラミック層が形成されるとともに、誘電体セラミック層間に銅又は銀を含む内部電極層が形成されて、積層体となる。 The laminate before firing is fired at a firing temperature of 1000 ° C. or less, so that the glass ceramic composition and copper or silver are co-sintered to form a dielectric made of a glass ceramic sintered body. A ceramic layer is formed, and an internal electrode layer containing copper or silver is formed between the dielectric ceramic layers to form a laminate.
焼成雰囲気は特に限定されず、例えば、大気雰囲気、低酸素雰囲気等が挙げられる。
本明細書において、低酸素雰囲気とは、大気よりも酸素分圧が低い雰囲気を意味し、例えば、窒素雰囲気又はアルゴン雰囲気等の不活性ガス雰囲気、窒素等の不活性ガスを大気に混入した雰囲気、真空雰囲気等が挙げられる。また、窒素と水素の混合ガス雰囲気であってもよい。
また、焼成温度は850℃以上であることが好ましく、900℃以上であることがより好ましく、990℃以下であることが好ましい。
この焼成によって形成される誘電体セラミック層は、本発明のガラスセラミック焼結体となる。
The firing atmosphere is not particularly limited, and examples thereof include an air atmosphere and a low oxygen atmosphere.
In this specification, the low oxygen atmosphere means an atmosphere having a lower oxygen partial pressure than the atmosphere, for example, an inert gas atmosphere such as a nitrogen atmosphere or an argon atmosphere, or an atmosphere in which an inert gas such as nitrogen is mixed in the atmosphere. And vacuum atmosphere. Further, a mixed gas atmosphere of nitrogen and hydrogen may be used.
The firing temperature is preferably 850 ° C. or higher, more preferably 900 ° C. or higher, and preferably 990 ° C. or lower.
The dielectric ceramic layer formed by this firing becomes the glass ceramic sintered body of the present invention.
また、積層体の両端面に外部電極を形成することによって積層セラミックコンデンサを製造することができる。
外部電極の形成には公知の技術及び工程条件を使用することができる。
また、外部電極の形成方法としては、セラミックグリーンシートの焼成前に外部電極となる導電性ペースト層を塗布形成しておき、積層体の焼成時に合わせて導電性ペースト層を焼き付ける方法も挙げられる。
A multilayer ceramic capacitor can be manufactured by forming external electrodes on both end faces of the multilayer body.
Known techniques and process conditions can be used to form the external electrodes.
Further, as a method for forming the external electrode, a method may be mentioned in which a conductive paste layer to be an external electrode is applied and formed before firing the ceramic green sheet, and the conductive paste layer is baked in accordance with the firing of the laminate.
以下、本発明のガラスセラミック組成物、ガラスセラミック焼結体、積層セラミックコンデンサ及び積層セラミックコンデンサの製造方法をより具体的に開示した実施例を示す。なお、本発明は、これらの実施例のみに限定されるものではない。 Examples of the glass ceramic composition, glass ceramic sintered body, multilayer ceramic capacitor, and multilayer ceramic capacitor manufacturing method of the present invention will be described below more specifically. In addition, this invention is not limited only to these Examples.
(実施例1~21、比較例1~16)
表1の組成に従ってガラス組成G1~G26のガラスを調合して1100℃以上、1400℃以下で溶解した後、湿式粉砕してガラス粉末を作製した。
次に表2に従いBaCO、SrCO、CaCO、TiO、ZrOを所定の比率で調合して1200℃以上、1400℃以下で仮焼し、整粒してF1~F4の組成のABO系セラミック化合物1とした。
そして、ガラス粉末、ABO系セラミック化合物1の粉末、Mn化合物としてのMnCOを表3に従い調合・混合して、有機溶剤としてエタノールとトルエンの混合溶媒を、バインダとしてブチラール樹脂を加えて、実施例1~21及び比較例1~16に係るスラリーを作製した。このスラリーをドクターブレード法等で成形・乾燥しセラミックグリーンシートを作製した。
なお、表3にはMnCOの配合量をMnO換算した値を合わせて示す。
(Examples 1 to 21, Comparative Examples 1 to 16)
Glasses of glass compositions G1 to G26 were prepared according to the composition shown in Table 1, dissolved at 1100 ° C. or higher and 1400 ° C. or lower, and wet pulverized to produce glass powder.
Next, according to Table 2, BaCO 3 , SrCO 3 , CaCO 3 , TiO 2 , and ZrO 2 are mixed at a predetermined ratio, calcined at 1200 ° C. or higher and 1400 ° C. or lower, and sized to obtain ABO having a composition of F1 to F4. A 3- system ceramic compound 1 was obtained.
Then, glass powder, ABO 3 series ceramic compound 1 powder, MnCO 3 as Mn compound were prepared and mixed according to Table 3, mixed solvent of ethanol and toluene as organic solvent, butyral resin as binder, Slurries according to Examples 1 to 21 and Comparative Examples 1 to 16 were prepared. This slurry was formed and dried by a doctor blade method or the like to produce a ceramic green sheet.
Table 3 also shows values obtained by converting the blending amount of MnCO 3 into MnO.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
このセラミックグリーンシートを用いて下記測定評価を行った。
<DC電圧による静電容量変化率測定、絶縁抵抗測定>
セラミックグリーンシートをカット、Cu電極ペーストを印刷し、これを積層、圧着した後、Cu電極ペーストと同じペーストを積層体の端面に塗布することにより、外部電極を形成した。この積層体を950℃で1時間、窒素、水素を含む混合ガス雰囲気下で焼成して積層セラミックコンデンサ(電極間距離10μm)を作製した。
このコンデンサについて、DC電圧による静電容量変化率をLCRメーターにて測定した。DC電圧は-30~+30Vで1Vスパンで印加し、各DC電圧にてAC電圧Vp-p=0.1V、周波数100kHzで静電容量を測定し、DC電圧0V時の静電容量値を基準として最も低下した静電容量と比較し静電容量変化率を測定した。また、コンデンサの内部電極間の絶縁抵抗をIR測定機にて測定した。
静電容量変化率および絶縁抵抗(logIR)を表4に示す。
The following measurement evaluation was performed using this ceramic green sheet.
<Measurement of capacitance change rate by DC voltage, insulation resistance measurement>
After cutting the ceramic green sheet, printing the Cu electrode paste, laminating and crimping it, the same paste as the Cu electrode paste was applied to the end face of the laminate to form an external electrode. This multilayer body was fired at 950 ° C. for 1 hour in a mixed gas atmosphere containing nitrogen and hydrogen to produce a multilayer ceramic capacitor (interelectrode distance 10 μm).
About this capacitor | condenser, the electrostatic capacitance change rate by DC voltage was measured with the LCR meter. DC voltage is -30 to + 30V with 1V span, and each DC voltage is measured with AC voltage Vp-p = 0.1V, frequency 100kHz, and the capacitance value at DC voltage 0V is the standard. The capacitance change rate was measured in comparison with the most reduced capacitance. Moreover, the insulation resistance between the internal electrodes of the capacitor was measured with an IR measuring machine.
Table 4 shows the capacitance change rate and the insulation resistance (logIR).
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
表4から明らかなように、各実施例で製造したセラミックグリーンシートを使用したコンデンサはlogIR値が充分に高いためコンデンサとして使用することができる。また、各実施例で製造したセラミックグリーンシートを使用したコンデンサは静電容量変化率が大きいため、可変容量素子として好適に使用することができる。
なお、いずれかの成分の含有量が本発明で規定する含有量の範囲外である、又は、いずれかの成分を含まない各比較例では、焼結しない(未焼結)か、ガラス化しないものが多かった。また、焼結したものであってもlogIR値が低いものが多く、絶縁性に問題があった。これらの比較例は絶縁性に問題があるため静電容量変化率を測定すること自体が難しかった。
また、絶縁性の観点では問題がない比較例についても、静電容量変化率が小さいため、可変容量素子としての適用には適していないものであった。
As is apparent from Table 4, the capacitor using the ceramic green sheet produced in each example can be used as a capacitor because the logIR value is sufficiently high. Moreover, since the capacitor | condenser using the ceramic green sheet manufactured in each Example has a large capacitance change rate, it can be used conveniently as a variable capacitance element.
In addition, the content of any component is outside the range of the content defined in the present invention, or in each comparative example not containing any component, it is not sintered (unsintered) or vitrified. There were many things. In addition, many sintered products have low log IR values, and there is a problem in insulation. Since these comparative examples have a problem in insulation, it is difficult to measure the capacitance change rate itself.
Further, the comparative example having no problem from the viewpoint of insulation is also not suitable for application as a variable capacitance element because the rate of change in capacitance is small.
1 積層セラミックコンデンサ
10 積層体
11 誘電体セラミック層
12 内部電極層
13a、13b 外部電極
14a、14b 積層体の端面
DESCRIPTION OF SYMBOLS 1 Multilayer ceramic capacitor 10 Laminated body 11 Dielectric ceramic layer 12 Internal electrode layer 13a, 13b External electrode 14a, 14b End surface of laminated body

Claims (4)

  1. 一般式ABO(AサイトはBa及びSrを含み、さらにCaを含んでいてもよく、BサイトはTiを含み、さらにZrを含んでいてもよく、Oは酸素)で表されるペロブスカイト型化合物と、
    Mn酸化物と、
    RO(RはBa、Ca及びSrからなる群から選択された少なくとも1種のアルカリ土類金属)、LiO、B、SiO、MgO及びAlを含有するガラスと、を含むガラスセラミック焼結体であって、
    前記ガラスセラミック焼結体に含まれる各成分の含有量が、前記ガラスセラミック焼結体全体の重量を100重量部とした場合に、
    前記Mn酸化物がMnO換算で0.03重量部以上、0.31重量部以下、
    前記ガラスが3.0重量部以上、7.0重量部以下であり、
    前記ガラスに含まれる各成分の含有量が、前記ガラス全体の重量を100重量部とした場合に、
    前記ROが44.0重量部以上、69.0重量部以下、
    前記LiOが0.3重量部以上、7.5重量部以下、
    前記Bが10.0重量部以上、20.0重量部以下、
    前記SiOが14.2重量部以上、30.0重量部以下、
    前記MgOが0.1重量部以上、5.5重量部以下、
    前記Alが0.5重量部以上、4.0重量部以下、
    であることを特徴とするガラスセラミック焼結体。
    A perovskite type compound represented by the general formula ABO 3 (A site contains Ba and Sr, may contain Ca, B site contains Ti, Zr may be contained, and O is oxygen). When,
    Mn oxide,
    Glass containing RO (R is at least one alkaline earth metal selected from the group consisting of Ba, Ca and Sr), Li 2 O, B 2 O 3 , SiO 2 , MgO and Al 2 O 3 ; A glass-ceramic sintered body containing
    When the content of each component contained in the glass ceramic sintered body is 100 parts by weight of the total weight of the glass ceramic sintered body,
    The Mn oxide is 0.03 part by weight or more and 0.31 part by weight or less in terms of MnO.
    The glass is 3.0 parts by weight or more and 7.0 parts by weight or less,
    When the content of each component contained in the glass is 100 parts by weight of the whole glass,
    The RO is 44.0 parts by weight or more and 69.0 parts by weight or less,
    Li 2 O is 0.3 parts by weight or more and 7.5 parts by weight or less,
    B 2 O 3 is 10.0 parts by weight or more and 20.0 parts by weight or less,
    The SiO 2 is 14.2 parts by weight or more and 30.0 parts by weight or less,
    MgO is 0.1 parts by weight or more and 5.5 parts by weight or less,
    The Al 2 O 3 is 0.5 parts by weight or more and 4.0 parts by weight or less,
    A glass-ceramic sintered body characterized by the above.
  2. 一般式ABO(AサイトはBa及びSrを含み、さらにCaを含んでいてもよく、BサイトはTiを含み、さらにZrを含んでいてもよく、Oは酸素)で表されるペロブスカイト型化合物と、
    Mn化合物と、
    RO(RはBa、Ca及びSrからなる群から選択された少なくとも1種のアルカリ土類金属)、LiO、B、SiO、MgO及びAlを含有するガラスと、を含むガラスセラミック組成物であって、
    前記ガラスセラミック組成物に含まれる各成分の含有量が、前記ガラスセラミック組成物全体の重量を100重量部とした場合に、
    前記Mn化合物がMnO換算で0.03重量部以上、0.31重量部以下、
    前記ガラスが3.0重量部以上、7.0重量部以下であり、
    前記ガラスに含まれる各成分の含有量が、前記ガラス全体の重量を100重量部とした場合に、
    前記ROが44.0重量部以上、69.0重量部以下、
    前記LiOが0.3重量部以上、7.5重量部以下、
    前記Bが10.0重量部以上、20.0重量部以下、
    前記SiOが14.2重量部以上、30.0重量部以下、
    前記MgOが0.1重量部以上、5.5重量部以下、
    前記Alが0.5重量部以上、4.0重量部以下、
    であることを特徴とするガラスセラミック組成物。
    A perovskite type compound represented by the general formula ABO 3 (A site contains Ba and Sr, may contain Ca, B site contains Ti, Zr may be contained, and O is oxygen). When,
    A Mn compound;
    Glass containing RO (R is at least one alkaline earth metal selected from the group consisting of Ba, Ca and Sr), Li 2 O, B 2 O 3 , SiO 2 , MgO and Al 2 O 3 ; A glass ceramic composition comprising:
    When the content of each component contained in the glass ceramic composition is 100 parts by weight of the total weight of the glass ceramic composition,
    The Mn compound is 0.03 part by weight or more and 0.31 part by weight or less in terms of MnO,
    The glass is 3.0 parts by weight or more and 7.0 parts by weight or less,
    When the content of each component contained in the glass is 100 parts by weight of the whole glass,
    The RO is 44.0 parts by weight or more and 69.0 parts by weight or less,
    Li 2 O is 0.3 parts by weight or more and 7.5 parts by weight or less,
    B 2 O 3 is 10.0 parts by weight or more and 20.0 parts by weight or less,
    The SiO 2 is 14.2 parts by weight or more and 30.0 parts by weight or less,
    MgO is 0.1 parts by weight or more and 5.5 parts by weight or less,
    The Al 2 O 3 is 0.5 parts by weight or more and 4.0 parts by weight or less,
    A glass-ceramic composition characterized by the above.
  3. 複数の誘電体セラミック層と複数の内部電極層とを有する積層体と、
    前記積層体の表面に形成され、前記積層体の表面に露出した前記内部電極層を電気的に接続する外部電極とを備えた、積層セラミックコンデンサであって、
    前記誘電体セラミック層が、請求項1に記載のガラスセラミック焼結体からなり、
    前記内部電極層が、銅又は銀を含む電極層であることを特徴とする積層セラミックコンデンサ。
    A laminate having a plurality of dielectric ceramic layers and a plurality of internal electrode layers;
    A multilayer ceramic capacitor comprising an external electrode formed on the surface of the multilayer body and electrically connected to the internal electrode layer exposed on the surface of the multilayer body;
    The dielectric ceramic layer comprises the glass ceramic sintered body according to claim 1,
    The multilayer ceramic capacitor, wherein the internal electrode layer is an electrode layer containing copper or silver.
  4. 請求項2に記載のガラスセラミック組成物を含むセラミックグリーンシートと、銅又は銀を含む内部電極層とを積み重ねて焼成前の積層体を得る工程と、
    焼成前の積層体を1000℃以下の焼成温度で焼成して、請求項1に記載のガラスセラミック焼結体からなる誘電体セラミック層を形成するとともに、前記誘電体セラミック層間に、銅又は銀を含む内部電極層が形成された積層体を得る工程とを有することを特徴とする、請求項3に記載の積層セラミックコンデンサの製造方法。
    A step of stacking a ceramic green sheet containing the glass ceramic composition according to claim 2 and an internal electrode layer containing copper or silver to obtain a laminate before firing;
    The laminated body before firing is fired at a firing temperature of 1000 ° C. or less to form a dielectric ceramic layer comprising the glass ceramic sintered body according to claim 1, and copper or silver is interposed between the dielectric ceramic layers. The method for producing a multilayer ceramic capacitor according to claim 3, further comprising a step of obtaining a multilayer body in which an internal electrode layer is formed.
PCT/JP2016/073588 2016-01-13 2016-08-10 Glass ceramic sintered body, glass ceramic composition, multilayer ceramic capacitor and method for manufacturing multilayer ceramic capacitor WO2017122382A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2017561510A JP6635126B2 (en) 2016-01-13 2016-08-10 Glass ceramic sintered body, glass ceramic composition, multilayer ceramic capacitor and method for manufacturing multilayer ceramic capacitor
CN201680065795.1A CN108290794B (en) 2016-01-13 2016-08-10 Glass ceramic sintered body, glass ceramic composition, laminated ceramic capacitor, and method for producing laminated ceramic capacitor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016004469 2016-01-13
JP2016-004469 2016-01-13

Publications (1)

Publication Number Publication Date
WO2017122382A1 true WO2017122382A1 (en) 2017-07-20

Family

ID=59311116

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/073588 WO2017122382A1 (en) 2016-01-13 2016-08-10 Glass ceramic sintered body, glass ceramic composition, multilayer ceramic capacitor and method for manufacturing multilayer ceramic capacitor

Country Status (3)

Country Link
JP (1) JP6635126B2 (en)
CN (1) CN108290794B (en)
WO (1) WO2017122382A1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10957485B2 (en) 2018-03-06 2021-03-23 Taiyo Yuden Co., Ltd. Multilayer ceramic capacitor and ceramic material powder
JP2021002646A (en) * 2019-06-18 2021-01-07 太陽誘電株式会社 Ceramic electronic component and method of manufacturing the same
CN113072379A (en) * 2021-03-31 2021-07-06 中国振华集团云科电子有限公司 High-dielectric high-mechanical-strength glass ceramic sintered substrate and preparation method thereof

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04368709A (en) * 1991-06-17 1992-12-21 Murata Mfg Co Ltd Nonreducing dielectric porcelain composition material
JP2001278664A (en) * 2000-03-31 2001-10-10 Samsung Electro Mech Co Ltd Dielectric ceramic composition and ceramic capacitor using it
JP2008254936A (en) * 2007-03-30 2008-10-23 Tdk Corp Dielectric ceramic composition, complex electronic device and multilayer ceramic capacitor
WO2012157299A1 (en) * 2011-05-19 2012-11-22 株式会社村田製作所 Glass ceramic composition
WO2012157300A1 (en) * 2011-05-19 2012-11-22 株式会社村田製作所 Composite laminate ceramic electronic component
WO2013121929A1 (en) * 2012-02-13 2013-08-22 株式会社村田製作所 Composite multilayer ceramic electronic component
WO2013121928A1 (en) * 2012-02-13 2013-08-22 株式会社村田製作所 Composite laminated ceramic electronic part

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3680683B2 (en) * 2000-03-06 2005-08-10 株式会社村田製作所 Insulator porcelain composition
JP3680765B2 (en) * 2000-07-21 2005-08-10 株式会社村田製作所 Dielectric porcelain composition
JP4371141B2 (en) * 2004-03-01 2009-11-25 株式会社村田製作所 Insulator ceramic composition, insulating ceramic sintered body, and multilayer ceramic electronic component
JP2007297258A (en) * 2006-04-28 2007-11-15 Taiyo Yuden Co Ltd Dielectric ceramic and laminated ceramic capacitor

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04368709A (en) * 1991-06-17 1992-12-21 Murata Mfg Co Ltd Nonreducing dielectric porcelain composition material
JP2001278664A (en) * 2000-03-31 2001-10-10 Samsung Electro Mech Co Ltd Dielectric ceramic composition and ceramic capacitor using it
JP2008254936A (en) * 2007-03-30 2008-10-23 Tdk Corp Dielectric ceramic composition, complex electronic device and multilayer ceramic capacitor
WO2012157299A1 (en) * 2011-05-19 2012-11-22 株式会社村田製作所 Glass ceramic composition
WO2012157300A1 (en) * 2011-05-19 2012-11-22 株式会社村田製作所 Composite laminate ceramic electronic component
WO2013121929A1 (en) * 2012-02-13 2013-08-22 株式会社村田製作所 Composite multilayer ceramic electronic component
WO2013121928A1 (en) * 2012-02-13 2013-08-22 株式会社村田製作所 Composite laminated ceramic electronic part

Also Published As

Publication number Publication date
JPWO2017122382A1 (en) 2018-09-27
CN108290794B (en) 2023-01-20
CN108290794A (en) 2018-07-17
JP6635126B2 (en) 2020-01-22

Similar Documents

Publication Publication Date Title
US7498285B2 (en) Nonreducing dielectric ceramic, and manufacturing method and monolithic ceramic capacitor of the same
US20120075768A1 (en) Dielectric ceramic composition and manufacturing method thereof, and ceramic electronic device
KR20070106396A (en) Dielectric ceramics and multi layer ceramic capacitor
JP2011011918A (en) Dielectric ceramic, method for producing the same and laminated ceramic capacitor
JP2001291632A (en) Non-reducing dielectric ceramic and laminated ceramic capacitor using the same
US10618846B2 (en) Dielectric porcelain composition, multilayer ceramic capacitor, and method for producing multilayer ceramic capacitor
KR20150036391A (en) Multilayer ceramic capacitor and method for manufacturing multilayer ceramic capacitor
KR20130040993A (en) Dielectric ceramic and laminated ceramic capacitor
JP2018022750A (en) Multilayer ceramic capacitor
JP2008280231A (en) Dielectric porcelain composition and electronic parts
US7239501B2 (en) Dielectric ceramic composition and laminated ceramic capacitor
KR100859264B1 (en) Dielectric ceramic and multilayer ceramic capacitor
KR101650745B1 (en) Laminate ceramic capacitor and method for producing same
KR101432442B1 (en) Dielectic ceramic composition and electronic device
JP6467648B2 (en) Dielectric composition, dielectric element, electronic component and laminated electronic component
WO2017122382A1 (en) Glass ceramic sintered body, glass ceramic composition, multilayer ceramic capacitor and method for manufacturing multilayer ceramic capacitor
WO2012096223A1 (en) Multilayer ceramic capacitor and method for manufacturing multilayer ceramic capacitor
KR101650746B1 (en) Laminate ceramic capacitor and method for producing same
JP2004323315A (en) Dielectric ceramic composition, its production method, and multilayer ceramic capacitor obtained by using the same
KR20180008769A (en) Bismuth sodium strontium titanate based dielectric composition, dielectric element, electronic part and laminated electronic part thereof
KR101504583B1 (en) Layered ceramic capacitor and method for producing layered ceramic capacitor
JP2005187296A (en) Dielectric ceramic composition and multilayer ceramic capacitor
JPWO2011162044A1 (en) Dielectric ceramic composition and multilayer ceramic electronic component
JP6766848B2 (en) Dielectric porcelain compositions and electronic components
US8248753B2 (en) Dielectric ceramic and laminated ceramic capacitor

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16884985

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017561510

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16884985

Country of ref document: EP

Kind code of ref document: A1