WO2017121428A1 - Porous glycopolymer-functionalized cryogels and use thereof - Google Patents

Porous glycopolymer-functionalized cryogels and use thereof Download PDF

Info

Publication number
WO2017121428A1
WO2017121428A1 PCT/DE2017/100014 DE2017100014W WO2017121428A1 WO 2017121428 A1 WO2017121428 A1 WO 2017121428A1 DE 2017100014 W DE2017100014 W DE 2017100014W WO 2017121428 A1 WO2017121428 A1 WO 2017121428A1
Authority
WO
WIPO (PCT)
Prior art keywords
cryogel
glycopolymer
formula
bacteria
cryogels
Prior art date
Application number
PCT/DE2017/100014
Other languages
German (de)
French (fr)
Inventor
Michael Gottschaldt
Ulrich Sigmar SCHUBERT
Original Assignee
Friedrich-Schiller-Universität Jena
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Friedrich-Schiller-Universität Jena filed Critical Friedrich-Schiller-Universität Jena
Publication of WO2017121428A1 publication Critical patent/WO2017121428A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08BPOLYSACCHARIDES; DERIVATIVES THEREOF
    • C08B37/00Preparation of polysaccharides not provided for in groups C08B1/00 - C08B35/00; Derivatives thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D15/00Separating processes involving the treatment of liquids with solid sorbents; Apparatus therefor
    • B01D15/08Selective adsorption, e.g. chromatography
    • B01D15/26Selective adsorption, e.g. chromatography characterised by the separation mechanism
    • B01D15/265Adsorption chromatography
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/22Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising organic material
    • B01J20/24Naturally occurring macromolecular compounds, e.g. humic acids or their derivatives
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/22Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising organic material
    • B01J20/26Synthetic macromolecular compounds
    • B01J20/261Synthetic macromolecular compounds obtained by reactions only involving carbon to carbon unsaturated bonds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28014Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their form
    • B01J20/28047Gels
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • B01J20/32Impregnating or coating ; Solid sorbent compositions obtained from processes involving impregnating or coating
    • B01J20/3202Impregnating or coating ; Solid sorbent compositions obtained from processes involving impregnating or coating characterised by the carrier, support or substrate used for impregnation or coating
    • B01J20/3206Organic carriers, supports or substrates
    • B01J20/3208Polymeric carriers, supports or substrates
    • B01J20/321Polymeric carriers, supports or substrates consisting of a polymer obtained by reactions involving only carbon to carbon unsaturated bonds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • B01J20/32Impregnating or coating ; Solid sorbent compositions obtained from processes involving impregnating or coating
    • B01J20/3214Impregnating or coating ; Solid sorbent compositions obtained from processes involving impregnating or coating characterised by the method for obtaining this coating or impregnating
    • B01J20/3217Resulting in a chemical bond between the coating or impregnating layer and the carrier, support or substrate, e.g. a covalent bond
    • B01J20/3219Resulting in a chemical bond between the coating or impregnating layer and the carrier, support or substrate, e.g. a covalent bond involving a particular spacer or linking group, e.g. for attaching an active group
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • B01J20/32Impregnating or coating ; Solid sorbent compositions obtained from processes involving impregnating or coating
    • B01J20/3231Impregnating or coating ; Solid sorbent compositions obtained from processes involving impregnating or coating characterised by the coating or impregnating layer
    • B01J20/3242Layers with a functional group, e.g. an affinity material, a ligand, a reactant or a complexing group
    • B01J20/3268Macromolecular compounds
    • B01J20/3272Polymers obtained by reactions otherwise than involving only carbon to carbon unsaturated bonds
    • B01J20/3274Proteins, nucleic acids, polysaccharides, antibodies or antigens

Definitions

  • the invention relates to novel cryogels which are functionalized on their surface with glycopolymers, thereby possessing the property of undergoing specific interactions with particular bacteria or cells.
  • Cryogels are hydrogels which are frozen in preparation in aqueous solution and are therefore hydrophilic and swellable in water, and in particular have a very large pore size (VI; Galaev, IY; Plieva, FM; Savina, IN; Jungvid, H. Mattiasson. B., Polymeric cryogels as promising materials of biotechnological interest Vladimir Lozinsky, Trends Biotechnol., 2003, 21 (10), 445-451).
  • Cryogels can be treated with an active substance, which can then be released slowly and in a controlled manner into the solution that can flow through the gel.
  • Cryogels of various monomer types have been used for the controlled release of the hydrophilic active ingredient verapamil hydrochloride (Kostova, Bistra, Momekova, Denitsa, Petrov, Petar, Momekov, Georgi, Toncheva-Moncheva, Natalia, Tsvetanov, Christo B., Lambov, Nikolai, Poly. ethoxytriethylene glycol acrylate) cryogels as novel sustained drug release system for oral application ", Polymer (2011), 52 (5), 1217-1222 DOI 10.1016 / j.polymer.2011.01.049).
  • Cryogels were used as a porous carrier material for catalytically active substances.
  • enzymes can be immobilized on a cryogel surface and then perform their function there. This gives a surface-immobilized catalyst that can be handled very easily (heterogeneous catalysis).
  • Luisa; del Monte, Francisco Soft, "Enzyme-induced graft polymerization for preparation of hydrogels: synergetic effect of laccase-immobilized-cryogels for pollutants adsorption", Soft Matter (2010), 6 (15), 3533-3540, DOI 10.1039 / c0sm00079e) can be used to immobilize bacteria so that they can be used as a bioreactor, keeping the bacteria alive and functioning, so that bacteria that are able to break down phenol are encased in polyethylene oxide cryograms can then be used to degrade phenolic contaminants in industrial water wastes (G. Satchanska, Y. Topalova, R. Dimkov, V. Groudeva, P. Petrov, C. Tsvetanov, S.
  • Cryogels are used as a stationary material for affinity chromatography with a biological background.
  • the reason for this is the large pore size, through which the gel has no general filter properties and thus does not retain non-specific relatively large objects such as bacteria or cells.
  • Retention of certain analytes is by specific interaction with surface-fixed ligands (KKR Tetala, TA van Beek, J. Sep. Sci. 2010, 33 (3), 422-438, DOI 10.1002 / jssc.200900635.).
  • surface-fixed cryogels were PDMAEMA (cationic polymer) for DNA enrichment Hanora, I. Savina, FM Plieva, VA Izumrudov, B. Mattiasson, IY Galaev, J. Biotechnol., 2006, 123, 343-355).
  • Cryogels A big advantage of Cryogels is their ability to elute whole cells due to their large pore size and thus to make cells and cell mixtures of biological samples accessible for analysis by chromatography (KKR Tetala, TA van Beek, J. Sep. Sei. 2010, 33 (3), 422-438, DOI 10.1002 / jssc.200900635.).
  • a concept for more selective retention of E. coli bacteria is the use of 2- (dimethylamino) ethyl groups as anion exchangers together with an immobilized metal affinity (IMA) ligand (Cu 2+ complexed by iminodiacetic acid, IDA).
  • IMA immobilized metal affinity
  • IDA immobilized metal affinity
  • Poly (acrylamide) used.
  • Cu 2+ / IDA ligands immobilized on a poly (acrylamide) cryogel were used to separate E. coli and Bacillus halodurans bacteria (MB Dainiak, FM Plieva, IY Galaev, R. Hatti-Kaul, B. Mattiasson, Biotechnol., Prog , 21, 644-649.).
  • the enrichment or separation of the E. coli is based in the cases described on nonspecific electrostatic interactions (anion exchange gels) or also known to be non-specific interactions with metal chelates (Cu 2+ / IDA gels) and it is assumed that a variety of cells and bacteria are nonspecifically bound to the gels and released again.
  • a cryogel based on methacrylic acid as a backbone and poly (ethylene glycol) diacrylate as a crosslinker was used as a stationary material for liquid chromatography for separation / purification of chicken egg-type lysosome.
  • the carboxyl groups forming the cryogel polymer backbone served as a ligand for the necessary chemical interaction, similar to a cation exchange resin (polyethylenes) glycol diacrylate-based supermacroporous monolithic cryogel as high-performance liquid chromatography Separation Chen, Zhiyong; Xu, Li; Liang, Yuan; Wang, Jianbin; Zhao, Meiping; Li, Yuanzong Journal of Chromatography A (2008), 1182 (1), 128-131, DOI 10.1016 / j.chroma.2007.12.084).
  • Cryogel structures i. Cryogels, which are functionalized by polymerization, additionally have sugar residues in the grafted polymer, and are therefore able to interact with biological systems containing lectins, specific interactions.
  • the solution Prior to the addition of ascorbic acid, the solution is pumped continuously through the column and degassed with argon in a surge tank to give the solution oxygen free (60 min). Thereafter, the ascorbic acid can be added in the form of an aqueous solution and the polymerization can be started with it. The reaction solution is then pumped continuously through the cryogel for 21 h (flow rate 6 mL / min). Finally, the functionalized cryogels are rinsed extensively with water and dried in vacuo. In this principled manner, it is possible to obtain, for example, functionalized cryogels corresponding to formula II using the specified amounts:
  • Cryogel without saccharide residues (CG-PNiPAM): 421 mg (3.7 mmol) of n-isopropylacrylamide (MPAm) dissolved in 143 DMF and 9.327 mL of methanol / water (1: 2). 274 (5.7 mg, 0.025 mmol) of a Me 6 TREN solution (41.58 mg in 2.00 mL of solvent) are added, followed by 618.6 ⁇ ⁇ (2.76 mg, 0.012 mmol) of a CuBr 2 solution ( 4.47 mg in 1.00 mL solvent mixture).
  • MPAm n-isopropylacrylamide
  • the solution is pumped through the cryoprotectant functionalized with the ATRP initiator (77.37 mg cryogel, 0.16 mmol Br per gram) and then 159.4 ⁇ L x (1.96 mg, 0.011 mmol) ascorbic acid solution (61.55 mg in 5.0 mL Solvent mixture) was added to start the polymerization. After reaction and work-up, 139.0 mg of functionalized cryogel are obtained.
  • Mannose-functionalized cryogel (CG-PMan): 417 mg (3.68 mmol) of MPAm together with 125 mg (0.41 mmol) of D- (mercaptoethylmethacryloyl) -mannoside (ManMAmOH) are dissolved in 157 DMF and 9.236 mL of methanocewater (1: 1). 2) solved. 240 (6.28 mg, 0.027 mmol) of a Me 6 TREN solution (52.30 mg in 2.00 mL solvent mixture) are added followed by 480.7 ⁇ L x (3.04 mg, 0.014 mmol) of a CuBr 2 solution ( 6.33 mg in 1.00 mL solvent mixture).
  • the solution is pumped through the Cryogel functionalized with the ATRP initiator (85.15 mg cryogel, 0.16 mmol Br per gram) and then 175.4 ⁇ L x (2.16 mg, 0.012 mmol) ascorbic acid solution (61.55 mg in 5.0 mL solvent mixture) was added to start the polymerization. After reaction and work-up, 188.0 mg of functionalized cryogel are obtained.
  • E. coli bacteria obtained from the Leibniz Institute DSMZ-German Collection of Microorganisms and Cell Cultures (DSMZ, Braunschweig, Germany, DSM No. 6302)
  • the E. coli bacteria were first cultured (overnight, at 37 ° C. in LB medium (LB Broth, Luria / Miller, Carl Roth)).
  • the bacterial suspension was then transferred to 15 mL vials, centrifuged (10,000 g for 15 min) and washed three times with PBS buffer.
  • the bacterial solution was then diluted with PBS buffer to an optical density of 1.0 (at 600 nm).

Abstract

The invention relates to novel cryogels, the surface of which is functionalized with glycopolymers, whereby the cryogels have the property of interacting with specific bacteria or cells in a specified manner. The aim of the invention is to provide porous cryogel structures which can be flushed with aqueous suspensions of cells or bacteria and which are capable of binding specific cells or bacteria to the solid phase and becoming enriched by means of a specific interaction between the cryogel structure and said cells or bacteria. According to the invention, this is achieved by cryogel structures which consist of a base structure of the general formula (I), comprising a cryogel: a hydrogel which is polymerized in a frozen state; a linker: any alkyl or aryl group, preferably connected to the cryogel and glycopolymer via an ether, ester, and/or amid bond; and a glycopolymer: a polymer which has monosaccharides or disaccharides at all or at individual repeating units.

Description

Beschreibung der Erfindung  Description of the invention
Poröse Glycopolymer-funktionalisierte Cryogele und deren Verwendung Porous Glycopolymer-Functionalized Cryogels and Their Use
Die Erfindung betrifft neue Cryogele, die an ihrer Oberfläche mit Glykopolymeren funktionalisiert sind, wodurch sie die Eigenschaft besitzen, spezifische Wechselwirkungen mit bestimmten Bakterien oder Zellen einzugehen. The invention relates to novel cryogels which are functionalized on their surface with glycopolymers, thereby possessing the property of undergoing specific interactions with particular bacteria or cells.
Cryogele sind Hydrogele, welche bei der Herstellung in wässriger Lösung eingefroren werden und dadurch hydrophil und in Wasser quellbar sind und insbesondere eine sehr große Porengröße aufweisen (V. I.; Galaev, I. Y.; Plieva, F. M.; Savina, I. N.; Jungvid, H.; Mattiasson, B., Polymerie cryogels as promising materials of biotechnological interest VladimirLozinsky, Trends Biotechnol. 2003, 21 (10), 445-451). Cryogels are hydrogels which are frozen in preparation in aqueous solution and are therefore hydrophilic and swellable in water, and in particular have a very large pore size (VI; Galaev, IY; Plieva, FM; Savina, IN; Jungvid, H. Mattiasson. B., Polymeric cryogels as promising materials of biotechnological interest Vladimir Lozinsky, Trends Biotechnol., 2003, 21 (10), 445-451).
Cryogele können mit einem Wirkstoff versetzt werden, welcher anschließend langsam und kontrolliert in die Lösung, welche das Gel durchströmen kann, wieder freigesetzt werden kann. Zur kontrollierten Freisetzung des hydrophilen Wirkstoffes Verapamil Hydrochlorid wurden Cryogele aus verschiedenen Monomertypen verwendet (Kostova, Bistra; Momekova, Denitsa; Petrov, Petar; Momekov, Georgi; Toncheva-Moncheva, Natalia; Tsvetanov, Christo B.; Lambov, Nikolai,„Poly(ethoxytriethylene glycol acrylate) cryogels as novel sustained drug release Systems for oral application", Polymer (2011), 52(5), 1217- 1222 DOI 10.1016/j.polymer.2011.01.049). Cryogels can be treated with an active substance, which can then be released slowly and in a controlled manner into the solution that can flow through the gel. Cryogels of various monomer types have been used for the controlled release of the hydrophilic active ingredient verapamil hydrochloride (Kostova, Bistra, Momekova, Denitsa, Petrov, Petar, Momekov, Georgi, Toncheva-Moncheva, Natalia, Tsvetanov, Christo B., Lambov, Nikolai, Poly. ethoxytriethylene glycol acrylate) cryogels as novel sustained drug release system for oral application ", Polymer (2011), 52 (5), 1217-1222 DOI 10.1016 / j.polymer.2011.01.049).
Cryogele wurden als als poröses Trägermaterial für katalytisch aktive Stoffe eingesetzt. So können Enzyme auf einer Cryogel-Oberfläche immobilisiert werden und anschließend dort ihre Funktion ausüben. So erhält man einen Oberflächen-immobilisierten Katalysator, der sehr einfach gehandhabt werden kann (heterogene Katalyse). Die Immobilisierung kann nicht-kovalent durch Einschließen von Enzymen und anschließende Verwendung des Cryogles mit aktiver Oberfläche erfolgen (Petrov, Petar; Pavlova, Severina; Tsvetanov, Christo B.; Topalova, Yana; Dimkov, Raycho,„In situ entrapment of urease in cryogels of poly(N-isopropylacrylamide): An effective strategy for noncovalent immobilization of enzymes", Journal of Applied Polymer Science (2011), 122(3), 1742-1748 DOI 10.1002/app.34063). Auch Laccase kann auf Cryogel-Oberflächen unter Erhalt der Enzymaktivität immobilisiert werden (Nieto, Marina; Nardecchia, Stefania; Peinado, Carmen; Catalina, Fernando; Abrusci, Concepcion; Gutierrez, Maria C; Ferrer, M. Luisa; del Monte, FranciscoSoft, „Enzyme-induced graft polymerization for preparation of hydrogels: synergetic effect of laccase-immobilized-cryogels for pollutants adsorption", Soft Matter (2010), 6(15), 3533-3540 DOI 10.1039/c0sm00079e). Cryogele können zur Immobilisierung von Bakterien verwendet werden, so dass diese als Bioreaktor eingesetzt werden können, in dem die Bakterien lebendig bleiben und ihre Funktion behalten. So wurden Bakterien, welche in der Lage sind, Phenol abzubauen, in Polyethylene oxid)-Cryogelen eingeschlossen. Diese können dann zum Abbau von phenolischen Verunreinigungen in industriellen Wasserabfällen verwendet werden (G. Satchanska, Y. Topalova, R. Dimkov, V. Groudeva, P. Petrov, C. Tsvetanov, S. Selenska- Pobell, E. Golovinsky, "Phenol degradation by environmental bacteria entrapped in cryogels", Biotechnology & Biotechnological Equipment 2015, 29, 514-521). Photobakterien wurden in Poly(vinylalkohol) basierte Cryogele eingeschlossen und als Biosensoren verwendet (E. N. Efremenko, O. V. Senko, L. E. Aleskerova, K. A. Alenina, M. M. Mazhul, A. D. Ismailov, "Biosensors Based on the Luminous Bacteria Photobaterium phosphoreum Immobilized in Polyvinyl Alcohol Cryogel for the Monitoring of Ecotoxicants", Applied Biochemistry and Microbiology 2014, 50, 477-482). Cryogels were used as a porous carrier material for catalytically active substances. Thus, enzymes can be immobilized on a cryogel surface and then perform their function there. This gives a surface-immobilized catalyst that can be handled very easily (heterogeneous catalysis). Immobilization may be non-covalently by entrapping enzymes and then using the cryoprotectant with active surface (Petrov, Petar, Pavlova, Severina, Tsvetanov, Christo B, Topalova, Yana, Dimkov, Raycho, "In situ entrapment of urease in cryogels of poly (N-isopropylacrylamide): An effective strategy for noncovalent immobilization of enzymes ", Journal of Applied Polymer Science (2011), 122 (3), 1742-1748, DOI 10.1002 / app.34063.) Laccase can also be applied to cryogel surfaces immobilized while retaining enzyme activity (Nieto, Marina, Nardecchia, Stefania, Peinado, Carmen; Catalina, Fernando; Abrusci, Concepcion; Gutierrez, Maria C; Ferrer, M. Luisa; del Monte, Francisco Soft, "Enzyme-induced graft polymerization for preparation of hydrogels: synergetic effect of laccase-immobilized-cryogels for pollutants adsorption", Soft Matter (2010), 6 (15), 3533-3540, DOI 10.1039 / c0sm00079e) can be used to immobilize bacteria so that they can be used as a bioreactor, keeping the bacteria alive and functioning, so that bacteria that are able to break down phenol are encased in polyethylene oxide cryograms can then be used to degrade phenolic contaminants in industrial water wastes (G. Satchanska, Y. Topalova, R. Dimkov, V. Groudeva, P. Petrov, C. Tsvetanov, S. Selenska- Pobell, E. Golovinsky, "Phenol Degradation by environmental bacteria entrapped in cryogels ", Biotechnology & Biotechnological Equipment 2015, 29, 514-521.) Photobacteria were included in poly (vinyl alcohol) based cryogels and used as biosensors (EN Efremenko, OV Senko, LE Aleskerova, KA Alenina, MM Mazhul, AD Ismailov, "Biosensors Based on the Luminous Bacteria Photobaterium Phosphoreum Immobilized in Polyvinyl Alcohol Cryogel for the Monitoring of Ecotoxicants", Applied Biochemistry and Microbiology 2014, 50, 477 -482).
Wenn es um die Extraktion damit resultierende Entfernung eines Analyten geht, können speziell funktionalisierte Oberflächen als Extraktionsmatrix verwendet werden. Hierfür finden funktionalisierte Cryogele Verwendung (O. G. Potter, E. F. Hilder, "Porous polymer monoliths for extraction: Diverse applications and platforms", J. Sep. Sei. 2008, 31, 1881-1906, DOI: 10.1002/jssc.200800116). When it comes to extraction resulting in the removal of an analyte, specially functionalized surfaces can be used as the extraction matrix. Functionalized cryogels are used for this (O.G. Potter, E.F. Hilder, "Porous polymer monoliths for extraction: Diverse applications and platforms", J. Sep. Sci. 2008, 31, 1881-1906, DOI: 10.1002 / jssc.200800116).
Cryogele werden als stationäres Material für die Affinitätschromatographie mit biologischem Anwendungshintergrund eingesetzt. Der Grund hierfür ist die große Porengröße, durch die das Gel keine allgemeinen Filtereigenschaften aufweist und somit auch relativ große Objekte wie Bakterien oder Zellen nicht unspezifisch zurückhält. Eine Retention von bestimmten Analyten erfolgt durch spezifische Wechselwirkung mit an der Oberfläche fixierten Liganden (K. K. R. Tetala, T. A. van Beek, J. Sep. Sei. 2010, 33 (3), 422-438, DOI 10.1002/jssc.200900635.). Nach einem solchen Prinzip wurden Cryogele mit Oberflächen-fixiertem PDMAEMA (kationisches Polymer) zur DNA Anreicherung werdendet (A. Hanora, I. Savina, F. M. Plieva, V. A. Izumrudov, B. Mattiasson, I. Y. Galaev, J. Biotechnol. 2006, 123, 343-355). Cryogels are used as a stationary material for affinity chromatography with a biological background. The reason for this is the large pore size, through which the gel has no general filter properties and thus does not retain non-specific relatively large objects such as bacteria or cells. Retention of certain analytes is by specific interaction with surface-fixed ligands (KKR Tetala, TA van Beek, J. Sep. Sci. 2010, 33 (3), 422-438, DOI 10.1002 / jssc.200900635.). Following such a principle, surface-fixed cryogels were PDMAEMA (cationic polymer) for DNA enrichment Hanora, I. Savina, FM Plieva, VA Izumrudov, B. Mattiasson, IY Galaev, J. Biotechnol., 2006, 123, 343-355).
Ein großer Vorteil der Cryogele ist durch ihre große Porengröße die Möglichkeit, ganze Zellen zu eluieren und somit Zellen und Zell-Mischungen aus biologischen Proben der Analyse durch Chromatographie zugänglich zu machen (K. K. R. Tetala, T. A. van Beek, J. Sep. Sei. 2010, 33 (3), 422-438, DOI 10.1002/jssc.200900635.). A big advantage of Cryogels is their ability to elute whole cells due to their large pore size and thus to make cells and cell mixtures of biological samples accessible for analysis by chromatography (KKR Tetala, TA van Beek, J. Sep. Sei. 2010, 33 (3), 422-438, DOI 10.1002 / jssc.200900635.).
Ein Konzept zur selektiveren Retention von E. coli Bakterien stellt die Verwendung von 2- (Dimethylamino)ethyl-Gruppen als Anionenaustauscher zusammen mit einem immobilisierten Metall Affinitäts (IMA) Ligand (Cu2+ komplexiert von Iminodiessigsäure, IDA) dar. Als Cryogel Material wurde Poly(acrylamid) verwendet. (P. Arvidsson, F. M. Plieva, I. N. Savina, V. I. Lozinsky, S. Fexby, L. Bülow, I. Y. Galaev, B. Mattiasson, J. Chromatogr. A 2002, 977, 27-38, DOI 10.1016/S0021-9673(02)01114-7). Cu2+/IDA Liganden immobilisiert auf einem Poly(acrylamid) Cryogel wurden zur Trennung von E coli und Bacillus halodurans Bakterien verwendet (M. B. Dainiak, F. M. Plieva, I. Y. Galaev, R. Hatti-Kaul, B. Mattiasson, Biotechnol. Prog. 2005, 21, 644-649.). Die Anreicherung bzw. Auftrennung der E. coli basiert in den beschriebenen Fällen auf unspezifischen elektrostatischen Wechselwirkungen (Anionenaustauscher Gele) bzw. ebenfalls bekanntermaßen unspezifischen Wechselwirkungen zu Metallchelaten (Cu2+/IDA-Gele) und es ist davon auszugehen, dass eine Vielzahl von Zellen und Bakterien unspezifisch an die Gele gebunden und wieder freigesetzt werden. A concept for more selective retention of E. coli bacteria is the use of 2- (dimethylamino) ethyl groups as anion exchangers together with an immobilized metal affinity (IMA) ligand (Cu 2+ complexed by iminodiacetic acid, IDA). As a cryogel material Poly (acrylamide) used. (P. Arvidsson, FM Plieva, IN Savina, VI Lozinsky, S. Fexby, L. Bulow, IY Galaev, B. Mattiasson, J. Chromatogr. A 2002, 977, 27-38, DOI 10.1016 / S0021-9673 (02 ) 01114-7). Cu 2+ / IDA ligands immobilized on a poly (acrylamide) cryogel were used to separate E. coli and Bacillus halodurans bacteria (MB Dainiak, FM Plieva, IY Galaev, R. Hatti-Kaul, B. Mattiasson, Biotechnol., Prog , 21, 644-649.). The enrichment or separation of the E. coli is based in the cases described on nonspecific electrostatic interactions (anion exchange gels) or also known to be non-specific interactions with metal chelates (Cu 2+ / IDA gels) and it is assumed that a variety of cells and bacteria are nonspecifically bound to the gels and released again.
Auch wurde als immobilisierter Affinitäts-Ligand Concanavalin A zur Trennung von Saccharomyces cerevisiae und Escherichia coli Bakterien eingesetzt (M. B. Dainiak, I. Y. Galaev, B. Mattiasson, J. Chromatogr. A 2006, 1123, 145-150.). Concanavalin A wurde ebenfalls eingesetzt auf einem Poly(vinylalkohol) Cryogel zur Affinitätschromatographie von Glykoproteinen (S. Hajizadeh, H. Kirsebom, A. Leistner, B. Mattiasson, J. Sep. Sei. 2012, 35, 2978-2985). Concanavalin A was also used as the immobilized affinity ligand for the separation of Saccharomyces cerevisiae and Escherichia coli bacteria (M.B. Dainiak, I.Y. Galaev, B. Mattiasson, J. Chromatogr. A 2006, 1123, 145-150.). Concanavalin A has also been used on a poly (vinyl alcohol) cryogel for affinity chromatography of glycoproteins (Hajizadeh, H. Kirsebom, A. Leistner, B. Mattiasson, J. Sep. Sei. 2012, 35, 2978-2985).
Ein Cryogel basierend auf Methacrylsäure als Rückgrat und Poly(ethyleneglycol)diacrylat als Vernetzer wurde als stationäres Material für Flüssigkeits-Chromatographie zur Trennung/Aufreinigung von Hühnereiweis-Lysosom verwendet. Hierbei dienten die Carboxylgruppen, welche das Cryogel-Polymer Rückgrat bilden, als Ligand für die nötige chemische Wechselwirkung, ähnlich einem Kationen-Austauscherharz (Polyethylene glycol diacrylate-based supermacroporous monolithic cryogel as high-performance liquid chromatography stationary phase for protein and polymeric nanoparticle Separation Chen, Zhiyong; Xu, Li; Liang, Yuan; Wang, Jianbin; Zhao, Meiping; Li, Yuanzong Journal of Chromatography A (2008), 1182(1), 128-131, DOI 10.1016/j.chroma.2007.12.084). Durch die Verwendung von Cryogel-immobilisierten Antikörpern konnten spezifische Antigene gebunden werden ( G. C. Ingavle, L. W. J. Baillie, Y. Zheng, E. K. Lis, I. N. Savina, C. a. Howell, S. V. Mikhalovsky, S. R. Sandeman,„Affinity binding of antibodies to supermacroporous cryogel adsorbents with immobilized protein A for removal of anthrax toxin protective antigen", Biomaterials 2015, 50, 140-153, DOI: 10.1016/j.biomaterials.2015.01.039). A cryogel based on methacrylic acid as a backbone and poly (ethylene glycol) diacrylate as a crosslinker was used as a stationary material for liquid chromatography for separation / purification of chicken egg-type lysosome. Here, the carboxyl groups forming the cryogel polymer backbone served as a ligand for the necessary chemical interaction, similar to a cation exchange resin (polyethylenes) glycol diacrylate-based supermacroporous monolithic cryogel as high-performance liquid chromatography Separation Chen, Zhiyong; Xu, Li; Liang, Yuan; Wang, Jianbin; Zhao, Meiping; Li, Yuanzong Journal of Chromatography A (2008), 1182 (1), 128-131, DOI 10.1016 / j.chroma.2007.12.084). By using cryogel-immobilized antibodies specific antigens could be bound (GC Ingavle, LWJ Baillie, Y. Zheng, EK Lis, IN Savina, C.A. Howell, SV Mikhalovsky, SR Sandeman, "Affinity binding of antibodies to supermacroporous cryogel adsorbents with immobilized protein A for removal of anthrax toxin protective antigen ", Biomaterials 2015, 50, 140-153, DOI: 10.1016 / j.biomaterials.2015.01.039).
Von Glycopolymeren ist bekannt, dass sie in der Lage sind, verstärkt durch den„Cluster Glycoside Effect" (J. J. Lundquist, E. J. Toone, Chem. Rev. 2002, 102, 555-578.), mit Rezeptoren, so genannten Lektinen, stabile und selektive Bindungen einzugehen (Ting, S. R. S.; Chen, G.; Stenzel, M. H. Polym. Chem. 2010, 1, 1392-1412). So ist beschrieben, dass Glycopolymere an Bakterien binden, was zu einer Agglomeration der Bakterien führt (Yang, Q.; Strathmann, M.; Rumpf, A.; Schaule, G.; Ulbricht, M. ACS Appl. Mat. Interf. 2010, 2, 3555-3562). Solche Wechselwirkungen wurden auch für die Bindung an E. coli Bakterien beschrieben (Song, W.; Xiao, C; Cui, L.; Tang, Z.; Zhuang, X.; Chen, X. Coli. Surf. B: Bioint. 2012, 93, 188-194; Pasparakis, G.; Cockayne, A.; Alexander, C. . Am. Chem. Soc. 2007, 129, 11014-11015; Ting, S. R. S.; Min, E. H.; Zetterlund, P. B.; Stenzel, M. H. Macromolecules 2010, 43, 5211-5221; Toyoshima, M.; Miura, Y. . Polym. Sei., Part A: Polym. Chem. 2009, 47, 1412-1421)., konnten jedoch in Lösung z.B. nicht für die einfache Abtrennung, Aufkonzentration usw. angewendet werden. Der Erfindung liegt daher die Aufgabe zugrunde, poröse Cryogel-Strukturen zu schaffen, die mit wässrigen Suspensionen von Zellen oder Bakterien durchspült werden können und die in der Lage sind durch spezifische Wechselwirkung der Cryogel-Struktur mit bestimmten Zellen oder Bakterien, diese an der festen Phase zu binden und anzureichern. Glycopolymers are known to be capable of being amplified by the "cluster glycoside effect" (JJ Lundquist, EJ Toone, Chem. Rev. 2002, 102, 555-578.), With receptors called lectins, stable and Chen, G., Stenzel, MH Polym. Chem., 2010, 1, 1392-1412.) It is described that glycopolymers bind to bacteria, resulting in agglomeration of the bacteria (Yang, Q. Strathmann, M .; Rumpf, A., Schaule, G .; Ulbricht, M. ACS Appl., Mat., Interf., 2010, 2, 3555-3562.) Such interactions have also been described for binding to E. coli bacteria (Song, W .; Xiao, C; Cui, L .; Tang, Z .; Zhuang, X .; Chen, X. Coli., Surf., B: Bioint., 2012, 93, 188-194, Pasparakis, G .; Cockayne, A .; Alexander, C. Am. Chem. Soc., 2007, 129, 11014-11015; Ting, SRS; Min, EH; Zetterlund, PB; Stenzel, MH Macromolecules 2010, 43, 5211-5221; Toyoshima, M., Miura, Y. Polym., Sci., Part A: Polym. Chem., 2009, 47, 1412-1421) B should not be used for easy separation, concentration, etc. The invention is therefore based on the object to provide porous cryogel structures, which can be flushed with aqueous suspensions of cells or bacteria and which are capable of specific interaction of the cryogel structure with certain cells or bacteria, these on the solid phase to bind and enrich.
Erfindungsgemäß werden zur Lösung dieser Aufgabe Cryogel-Strukturen vorgeschlagen, die aus einer Grundstruktur der allgemeinen Formel I bestehen: According to the invention cryogel structures are proposed to solve this problem, which consist of a basic structure of general formula I:
Figure imgf000006_0001
Figure imgf000006_0001
mit With
Cryogel: ein im gefrorenen Zustand polymerisiertes Hydrogel,  Cryogel: a hydrogel polymerized in the frozen state,
Linker: beliebiger Alkyl- oder Arylrest, vorzugsweise über Ether-, Ester- und/oder  Linker: any alkyl or aryl radical, preferably via ether, ester and / or
Amidbindung verbunden mit Cryogel und Glycopolymer, Glycopolymer: ein Polymer, welches an allen oder an einzelnen Wiederholeinheiten  Amide bond associated with cryogel and glycopolymer, glycopolymer: a polymer which is attached to all or to individual repeating units
Monosachharide oder Disaccharide trägt.  Monosachharide or disaccharides contributes.
Cryogel-Strukturen, d.h. Cryogele, welche durch Polymerisation funktionalisiert werden, besitzen zusätzlich Zucker-Reste im aufgepfropften Polymer, und sind daher in der Lage, mit biologischen Systemen, welche Lectine enthalten, spezifische Wechselwirkungen einzugehen. Cryogel structures, i. Cryogels, which are functionalized by polymerization, additionally have sugar residues in the grafted polymer, and are therefore able to interact with biological systems containing lectins, specific interactions.
Als vorteilhaft hat sich dabei ein Cryogel aus N,N-Dimethylacrylamid mit N-Hydroxyethylacrylamid als funktionellem Comonomer gezeigt. Auf der Oberfläche dieses Cryogels kann mittels Veresterung ein Polymerisationsinitiator gebunden werden. Anschließend kann das Cryogel mittels bekannter Atom-Transfer-Radikal-Polymerisation (ATRP) mit verschiedenen Glycopolymeren auf Acrylamid-Basis funktionalisiert werden. Es können so funktionalisierte Cryogele gemäß nachstehender Formel II erhalten werden: A cryogel made from N, N-dimethylacrylamide with N-hydroxyethylacrylamide as a functional comonomer has proved to be advantageous. On the surface of this cryogel, a polymerization initiator can be bound by esterification. Subsequently, the cryogel can be functionalized by means of known atom transfer radical polymerization (ATRP) with various acrylamide-based glycopolymers. Thus, functionalized cryogels can be obtained according to formula II below:
Figure imgf000007_0001
Figure imgf000007_0001
CG-ManOH CG-GIcOH  CG-ManOH CG-GICOH
So werden z.B. insbesondere E. coli Bakterien von einem Gel, welches Mannose-Reste trägt, gebunden, da Escherichia coli (E. coli) Bakterien entsprechende Rezeptoren besitzen, die an Mannose binden können. Auf diese Weise können diese E. coli aus verdünnten Lösungen auf dem Gel angereichert und damit auf einer festen Phase isoliert werden. Durch Zugabe kleiner Mengen freier Mannose können die Bakterien dann wieder von der Cryogel-Struktur gelöst und z.B. weitergehenden Analysen zugeführt werden. Die Erfindung soll nachstehend anhand der besagten Cryogel-Struktur in Formel II näher erläutert werden. Thus, e.g. in particular E. coli bacteria from a gel which carries mannose residues bound, since Escherichia coli (E. coli) bacteria have corresponding receptors that can bind to mannose. In this way, these E. coli can be enriched from dilute solutions on the gel and thus isolated on a solid phase. By adding small amounts of free mannose, the bacteria can then be released from the cryogel structure again, e.g. further analyzes are supplied. The invention will be explained in more detail below with reference to the said cryogel structure in formula II.
Synthese des Cryogels: 190 mL einer wässrigen Lösung der Monomere (151 mg N- Hydroxyethylacrylamid, 6,11 g N,N-Dimethylacrylamid und 404 mg Ν,Ν'- Methylenbisacrylamid) wird mit 49,9 mg Ammoniumperoxodisulfat versetzt und eine Stunde mit Argon entgast. Mit Argon gespülte Edelstahlsäulen (30 cm x 8 mm 0) werden mit jeweils 14,5 mL der Monomerlösung befüllt und kurz vor dem Verschließen der Säulen mit jeweils 3 μΐ^ Tetraethylmethylenediamin (Me6TREN) versetzt und anschließend bei -13 °C eingefroren und bei -20 °C für 40 h gelagert, um eine vollständige Polymerisation zu gewährleisten. Funktionalisierung des Cryogels mit Linker- bzw. Initiatorgruppe: Nach dem Auftauen und Waschen der Gele mit Wasser, werden die Gele mit trockenem N,N-Dimethylformamid gewaschen. Danach wird jedes Gel mit einer Lösung von 595,8 μΐ^ Bromoisobutyrylbromid und 672 μL· trockenem Triethylamin in trockenem N,N- Dimethylformamid (DMF) versetzt und anschließend extensiv mit trockenem DMF und nachfolgend mit Wasser gewaschen. Die so erhaltenen Gele werden in Glasröhren überführt und mittels eines kontinuierlichen Luftstroms vorgetrocknet bevor sie im Vakuum vollständig getrocknet werden können. Die auf diese Weise erhaltenen Gele weisen in der Elementaranalyse einen Bromanteil von 1,28% auf (0.16 mmol/g). Synthesis of the Cryogel: To 190 ml of an aqueous solution of the monomers (151 mg of N-hydroxyethylacrylamide, 6.11 g of N, N-dimethylacrylamide and 404 mg of Ν, Ν'-methylenebisacrylamide) is added 49.9 mg of ammonium peroxodisulfate and one hour with argon degassed. Argon-purged stainless steel columns (30 cm x 8 mm 0) are each filled with 14.5 mL of the monomer solution and shortly before the closing of the columns with 3 μΐ ^ Tetraethylmethylenediamin (Me 6 TREN), and then frozen at -13 ° C and stored at -20 ° C for 40 h to ensure complete polymerization. Functionalization of the Cryogel with Linker or Initiator Group: After thawing and washing the gels with water, the gels become dry Washed N, N-dimethylformamide. Thereafter, each gel is treated with a solution of 595.8 μΐ ^ Bromoisobutyrylbromid and added 672 .mu.l · dry triethylamine in dry N, N-dimethylformamide (DMF) and then washed extensively with dry DMF and then with water. The gels thus obtained are transferred into glass tubes and pre-dried by means of a continuous stream of air before they can be completely dried in vacuo. The gels obtained in this way have a bromine content of 1.28% in the elemental analysis (0.16 mmol / g).
Funktionalisierung des Cryogels mit Glycopolymer: Um auf der Oberfläche der so erhaltenen Cryogele verschiedene Glycopolymere zu synthetisieren, werden entsprechende Mengen N-Isopropylacrylamid sowie des Glycomonomers (10 mol% im Verhältnis zum N- Isopropylacrylamid) sowie CuBr2 und Me6TREN in einem Gemisch aus Methanol und Wasser (1:2) gelöst (resultierende Monomerkonzentration 0,42 mol/L). Die theoretische Konzentration des Initiators wird zu 1,25 mmol/L eingestellt. Das Verhältnis Monomer : Initiator : CuBr2 : Ligand : reduzierendes Reagenz wird zu 300 : 1 : 1: 2 : 0,9 eingestellt. Vor der Zugabe der Ascorbinsäure wird die Lösung kontinuierlich durch die Säule gepumpt und in einem Ausgleichsgefäß mit Argon entgast, um die Lösung sauerstofffrei zu erhalten (60 min). Danach kann die Ascorbinsäure in Form einer wässrigen Lösung zugegeben und die Polymerisation damit gestartet werden. Die Reaktionslösung wird nun 21 h kontinuierlich durch das Cryogel gepumpt (Flussrate 6 mL/min). Abschließend werden die so funktionalisierten Cryogele extensiv mit Wasser gespült und im Vakuum getrocknet. Auf diese prinzipielle Weise können unter Verwendung der konkret angegebenen Mengen z.B. nachfolgende, Formel II entsprechenden, funktionalisierte Cryogele erhalten werden: Functionalization of the Cryogel with Glycopolymer: In order to synthesize various glycopolymers on the surface of the cryogels thus obtained, appropriate amounts of N-isopropylacrylamide and of the glycomonomer (10 mol% relative to N-isopropylacrylamide) and CuBr 2 and Me 6 TREN in a mixture Methanol and water (1: 2) dissolved (resulting monomer concentration 0.42 mol / L). The theoretical concentration of the initiator is set to 1.25 mmol / L. The ratio of monomer: initiator: CuBr 2 : ligand: reducing reagent is set to 300: 1: 1: 2: 0.9. Prior to the addition of ascorbic acid, the solution is pumped continuously through the column and degassed with argon in a surge tank to give the solution oxygen free (60 min). Thereafter, the ascorbic acid can be added in the form of an aqueous solution and the polymerization can be started with it. The reaction solution is then pumped continuously through the cryogel for 21 h (flow rate 6 mL / min). Finally, the functionalized cryogels are rinsed extensively with water and dried in vacuo. In this principled manner, it is possible to obtain, for example, functionalized cryogels corresponding to formula II using the specified amounts:
Cryogel ohne Saccharidreste (CG-PNiPAM): 421 mg (3,7 mmol) n-Isopropylacrylamid (MPAm) gelöst in 143 DMF und 9,327 mL Methanol/Wasser (1:2). 274 (5,7 mg, 0,025 mmol) einer Me6TREN Lösung (41,58 mg in 2,00 mL Lösungsmittel) werden zugegeben gefolgt von 618,6 μΐ^ (2,76 mg, 0,012 mmol) einer CuBr2 Lösung (4,47 mg in 1,00 mL Lösungsmittelgemisch). Die Lösung wird durch das mit dem ATRP Initiator funktionalisierte Cryogel (77,37 mg Cryogel, 0,16 mmol Br pro Gramm) gepumpt und anschließend 159,4 μL· (1,96 mg, 0,011 mmol) Ascorbinsäure-Lösung (61,55 mg in 5,0 mL Lösungsmittelgemisch) zugegeben, um die Polymerisation zu starten. Nach Reaktion und Aufarbeitung werden 139,0 mg funktionalisiertes Cryogel erhalten. Cryogel without saccharide residues (CG-PNiPAM): 421 mg (3.7 mmol) of n-isopropylacrylamide (MPAm) dissolved in 143 DMF and 9.327 mL of methanol / water (1: 2). 274 (5.7 mg, 0.025 mmol) of a Me 6 TREN solution (41.58 mg in 2.00 mL of solvent) are added, followed by 618.6 μΐ ^ (2.76 mg, 0.012 mmol) of a CuBr 2 solution ( 4.47 mg in 1.00 mL solvent mixture). The solution is pumped through the cryoprotectant functionalized with the ATRP initiator (77.37 mg cryogel, 0.16 mmol Br per gram) and then 159.4 μL x (1.96 mg, 0.011 mmol) ascorbic acid solution (61.55 mg in 5.0 mL Solvent mixture) was added to start the polymerization. After reaction and work-up, 139.0 mg of functionalized cryogel are obtained.
Mannose funktionalisiertes Cryogel (CG-PMan): 417 mg (3,68 mmol) MPAm zusammen mit 125 mg (0,41 mmol) -D-(Mercaptoethylmethacryloyl)-mannosid (ManMAmOH) werden in 157 DMF und 9,236 mL MethanokWasser (1:2) gelöst. 240 (6,28 mg, 0,027 mmol) einer Me6TREN Lösung (52,30 mg in 2,00 mL Lösungsmittelgemisch) werden zugegeben gefolgt von 480,7 μL· (3,04 mg, 0,014 mmol) einer CuBr2 Lösung (6,33 mg in 1,00 mL Lösungsmittelgemisch). Die Lösung wird durch das mit dem ATRP Initiator funktionalisierte Cryogel (85,15 mg Cryogel, 0,16 mmol Br pro Gramm) gepumpt und anschließend 175,4 μL· (2,16 mg, 0,012 mmol) Ascorbinsäure- Lösung (61,55 mg in 5,0 mL Lösungsmittelgemisch) zugegeben, um die Polymerisation zu starten. Nach Reaktion und Aufarbeitung werden 188,0 mg funktionalisiertes Cryogel erhalten. Mannose-functionalized cryogel (CG-PMan): 417 mg (3.68 mmol) of MPAm together with 125 mg (0.41 mmol) of D- (mercaptoethylmethacryloyl) -mannoside (ManMAmOH) are dissolved in 157 DMF and 9.236 mL of methanocewater (1: 1). 2) solved. 240 (6.28 mg, 0.027 mmol) of a Me 6 TREN solution (52.30 mg in 2.00 mL solvent mixture) are added followed by 480.7 μL x (3.04 mg, 0.014 mmol) of a CuBr 2 solution ( 6.33 mg in 1.00 mL solvent mixture). The solution is pumped through the Cryogel functionalized with the ATRP initiator (85.15 mg cryogel, 0.16 mmol Br per gram) and then 175.4 μL x (2.16 mg, 0.012 mmol) ascorbic acid solution (61.55 mg in 5.0 mL solvent mixture) was added to start the polymerization. After reaction and work-up, 188.0 mg of functionalized cryogel are obtained.
Glucose funktionalisiertes (CG-PGlc): 413 mg (3,64 mmol) MPAm zusammen mit 125 mg (0,40 mmol) ß-D-(Mercaptoethylmethacryloyl)-glucosid (GlcMAmOH) werden in 156 DMF und 9,094 mL MethanokWasser (1:2) gelöst. 255 μΐ, (6,22 mg, 0,027 mmol ) einer Me6TREN Lösung (48,77 mg in 2,00 mL Lösungsmittelgemisch) werden zugegeben gefolgt von 327,1 μL· (3,01 mg, 0,013 mmol mmol) einer CuBr2 Lösung (18,43 mg in 2,00 mL Lösungsmittelgemisch). Die Lösung wird durch das mit dem ATRP Initiator funktionalisierte Cryogel (84,36 mg Cryogel, 0,16 mmol Br pro Gramm) gepumpt und anschließend 213,0 μΐ^ (2,14 mg, 0,012 mmol) einer Ascorbinsäure-Lösung (40,17 mg in 4,0 mL Lösungsmittelgemisch) zugegeben, um die Polymerisation zu starten. Nach Reaktion und Aufarbeitung werden 122,0 mg funktionalisiertes Cryogel erhalten. Glucose Functionalized (CG-PGlc): 413 mg (3.64 mmol) of MPAm together with 125 mg (0.40 mmol) of β-D- (mercaptoethylmethacryloyl) glucoside (GlcMAmOH) are dissolved in 156 DMF and 9.094 mL of methanocewater (1: 1). 2) solved. 255 μΐ, (6.22 mg, 0.027 mmol) of a Me 6 TREN solution (48.77 mg in 2.00 mL solvent mixture) are added, followed by 327.1 μL x (3.01 mg, 0.013 mmol mmol) of a CuBr 2 solution (18.43 mg in 2.00 mL solvent mixture). The solution is pumped through the functionalized with the ATRP initiator Cryogel (84.36 mg Cryogel, 0.16 mmol Br per gram) and then 213.0 μΐ ^ (2.14 mg, 0.012 mmol) (a solution of ascorbic acid 40, 17 mg in 4.0 mL solvent mixture) was added to start the polymerization. After reaction and workup, 122.0 mg of functionalized cryogel are obtained.
Wechselwirkung mit E. coli Bakterien als Beispiel-Analyt: Als Escherichia coli Stamm wurde W3110 untersucht (E. coli erhalten vom Leibniz-Institut DSMZ-German Collection of Microorganisms and Cell Cultures (DSMZ, Braunschweig, Germany, DSM No. 6302)). Die E. coli Bakterien wurden zunächst kultiviert (über Nacht, bei 37 °C in LB Medium (LB Broth, Luria/Miller, Carl Roth)). Die Bakteriensuspension wurde dann in 15 mL Gefäßen überführt, zentrifugiert (10 000 g für 15 min) und dreimal mit PBS Puffer gewaschen. Die Bakterienlösung wurde dann mit PBS Puffer verdünnt bis zu einer optische Dichte von 1,0 (bei 600 nm). Die hergestellten Cryogel-Strukturen wurden in PBS Puffer gequollen und mit den E. coli Lösungen inkubiert (1 mL, Raumtemperatur). Danach wurden sie ausgiebig mit kaltem PBS Puffer gewaschen (jeweils 30 min) und die Gele der elektronenmikroskopischen Untersuchung zugeführt (SEM, Proben fixiert mit 2% Glutaraldehyd, dehydratisiert mit Alkohol, getrocknet (Leica EM CPD300), anschließend mit Gold bedampft (BAL-TEC SCD 005 Sputter Coater) und mit einem Sigma VP Field Emission SEM (Zeiss, Germany) mit SE Detektor bei 10 kV untersucht). Interaction with E. coli bacteria as an example analyte: W3110 was investigated as the Escherichia coli strain (E. coli obtained from the Leibniz Institute DSMZ-German Collection of Microorganisms and Cell Cultures (DSMZ, Braunschweig, Germany, DSM No. 6302)). The E. coli bacteria were first cultured (overnight, at 37 ° C. in LB medium (LB Broth, Luria / Miller, Carl Roth)). The bacterial suspension was then transferred to 15 mL vials, centrifuged (10,000 g for 15 min) and washed three times with PBS buffer. The bacterial solution was then diluted with PBS buffer to an optical density of 1.0 (at 600 nm). The prepared cryogel structures were swollen in PBS buffer and incubated with the E. coli solutions (1 mL, room temperature). Thereafter, they were washed extensively with cold PBS buffer (each 30 min) and the gels were subjected to electron microscopic examination (SEM, samples fixed with 2% glutaraldehyde, dehydrated with alcohol, dried (Leica EM CPD300), then steamed with gold (BAL-TEC SCD 005 Sputter Coater) and examined with a Sigma VP Field Emission SEM (Zeiss, Germany) with SE detector at 10 kV).
Dabei zeigte sich, dass keine Bakterien auf dem Cryogel ohne Glycopolymer (CG- PNiPAM) siedelten, nur einige wenige Bakterien auf dem Glucose-funktionalisiertem Gel (CG-PGlc) nachzuweisen waren, wohingegen das Mannose-funktionalisierte Gel (CG- PMan) stark mit E. coli Bakterien besiedelt war. Mittels Spülen des CG-PMan-Gels mit einer Lösung von Methyl-a-D-mannosid in Wasser konnten die gebundenen E. coli Bakterien wieder vollständig vom Gel abgelöst und erneut in Lösung überführt werden.  It was found that no bacteria on the cryogel without glycopolymer (CG-PNiPAM) settled, only a few bacteria were detected on the glucose-functionalized gel (CG-PGlc), whereas the mannose-functionalized gel (CG-PMan) strongly with E. coli bacteria was colonized. By rinsing the CG-PMan gel with a solution of methyl a-D-mannoside in water, the bound E. coli bacteria were again completely detached from the gel and reconverted into solution.

Claims

Patentansprüche claims
1. Cryogel-Struktur mit auf der Oberfläche immobilisiertem Glycopolymer entsprechend der allgemeinen Formel I: 1. Cryogel structure with immobilized on the surface glycopolymer according to the general formula I:
Figure imgf000011_0001
Figure imgf000011_0001
mit den Bestandteilen: with the ingredients:
a) Cryogel: ein im gefrorenen Zustand polymerisiertes Hydrogel; a) cryogel: a hydrogel polymerized in the frozen state;
b) Linker: beliebiger Alkyl- oder Arylrest, vorzugsweise über Ether-, Esterund/oder Amidbindung verbunden mit Cryogel und Glycopolymer; c) Glycopolymer: Polymere, welche an allen oder an einzelnen Wiederholeinheiten b) linker: any alkyl or aryl radical, preferably via ether, ester and / or amide bond bonded to cryogel and glycopolymer; c) Glycopolymer: Polymers which are present at all or at individual repeat units
Monosaccharide oder Disaccharide tragen.  Monosaccharides or disaccharides wear.
2. Cryogel-Strukturen gemäß Anspruch 1, dadurch gekennzeichnet, dass als Monomere in der Polymerisation des Cryogels (Formel III): 2. cryogel structures according to claim 1, characterized in that as monomers in the polymerization of the cryogel (formula III):
1) wasserlösliches Acrylamid (R^H, X=NH), Methacrylamid (R^CHs, X=NH), Acrylat (R^H, X=0) oder Methacrylat (R^CHs, X=0) mit beliebigen aliphatischen oder aromatischen Resten R3 und R4, die ihrerseits chemische Funktionalitäten tragen können, und 1) water-soluble acrylamide (R ^ H, X = NH), methacrylamide (R ^ CHs, X = NH), acrylate (R ^ H, X = 0) or methacrylate (R ^ CHs, X = 0) with any aliphatic or aromatic radicals R 3 and R 4 , which in turn can carry chemical functionalities, and
2) Vernetzer auf Basis eines Di(acrylamid)s (R^H) oder Di(methacrylamid)s (R^CHs) mit beliebiger alipathischer Kette R5 als Verknüpfung, und 2) cross-linking agent based on a di (acrylamide) s (R ^ H) or di (methacrylamide) s (R ^ CHs) with any alipathischer chain R 5 as a link, and
3) funktionelle Comonomere auf Basis eines Acrylates (R^H, X=0), Methacrylates (R^CHs, X=0), Acrylamids (R^H, X=NH) oder Methacrylamids (R^CHg, X=NH) die eine funktionelle Gruppe R tragen, welche die nachfolgende Funktionalisierung des Cryogels erlaubt, insbesondere OH, NH2, COOH, gewählt werden. radikalische 3) functional comonomers based on an acrylate (R 1 H, X = O), methacrylates (R 1 CH 3, X = O), acrylamides (R 1 H, X = NH) or methacrylamide (R 1 CH 4, X = NH) which carry a functional group R which allows the subsequent functionalization of the cryogel, in particular OH, NH 2 , COOH. radical
Polymerisation in Wasser  Polymerization in water
in gefrorenem in frozen
Figure imgf000011_0002
Zustand
Figure imgf000011_0002
Status
2) 3) 2) 3)
3. Cryogel-Struktur gemäß Anspruch 1 oder 2, dadurch gekennzeichnet, dass dieses Glycopolymer vorzugsweise als statistisches Copolymer gemäß Formel IV oder Blockcopolymer gemäß Formel V oder als Blockcopolymer gemäß Formel VI vorliegt, 3. cryogel structure according to claim 1 or 2, characterized in that this glycol copolymer is preferably present as a random copolymer of formula IV or block copolymer of formula V or as a block copolymer of formula VI,
Figure imgf000012_0001
Figure imgf000012_0001
wobei R für eine Gruppe steht, welche ein Monosaccharid oder Disaccharid vorzugsweise Glucose, Mannose, Fructose, Galactose, Lactose trägt, und R6=H oder CH3 sowie X=0 oder NH, sowie m und n ganze Zahlen sind, und A für eine Widerholeinheit steht, die vorzugsweise aus einem der wasserlöslichen Comonomere in Formel VII gebildet wird. wherein R is a group which carries a monosaccharide or disaccharide, preferably glucose, mannose, fructose, galactose, lactose, and R 6 = H or CH 3 and X = 0 or NH, and m and n are integers, and A is a repeating unit, which is preferably formed from one of the water-soluble comonomers in formula VII.
Figure imgf000012_0002
Figure imgf000012_0002
p = ganze Zahl zwischen 0 und 20  p = integer between 0 and 20
(VII)  (VII)
Figure imgf000012_0003
Figure imgf000012_0003
4. Cryogel-Strukturen gemäß Anspruch 1, 2 oder 3, dadurch gekennzeichnet, dass zur Kopplung des Cryogels mit dem Glycopolymer mittels bekannter chemische Kopplungstechniken, Linker gewählt werden, die aliphatische oder aromatische Gruppen enthalten können und beispielhaft aber nicht ausschließlich über Amid-, Ester-, Ether-, Thioetherbindung an das Cryogel und das Glycopolymer gebunden sind. 4. cryogel structures according to claim 1, 2 or 3, characterized in that are selected for coupling the cryogel with the glycopolymer by means of known chemical coupling techniques, linkers which may contain aliphatic or aromatic groups and exemplified but not exclusively via amide, ester -, ether, thioether bond to the cryogel and the glycopolymer are bound.
5. Cryogel-Strukturen gemäß Anspruch 1, 2 oder 3, dadurch gekennzeichnet, dass sie gebildet werden durch Modifikation der Oberfläche mit Initiatoren zur Polymerisation des Glycopolymer s, wobei zu diesem Zweck ein entsprechender Linker mit den funktionellen Gruppen des Cryogels (Funktionalität R in Formel III) umgesetzt wird, vorzugsweise halogenid-haltige Linker gemäß Formel VIII 5. cryogel structures according to claim 1, 2 or 3, characterized in that they are formed by modification of the surface with initiators for the polymerization of the glycopolymer s, for which purpose a corresponding linker with the functional groups of the cryogel (functionality R in formula III) is reacted, preferably halide-containing linker of formula VIII
Figure imgf000013_0001
Figure imgf000013_0001
wobei„Alk" eine beliebig lange, verzweigte oder unverzweigte Alkylkette bedeutet und „Hai" ein Halogenatom (Chlor oder Brom) bezeichnet und R =0 oder NH ist, oder Linker mit Azoinitiatorstrukturen gemäß Formel IX, where "Alk" denotes an arbitrarily long, branched or unbranched alkyl chain and "Hal" denotes a halogen atom (chlorine or bromine) and R = 0 or NH, or linkers with azo initiator structures according to Formula IX,
Figure imgf000013_0002
Figure imgf000013_0002
wobei „Azoinitiator" eine beliebige Diazostruktur bedeutet, die unter thermischer Einwirkung in Radikale zerfällt und R9=0 oder NH oder COO ist. wherein "azo initiator" means any diazo structure which decomposes into free radicals under thermal action and R 9 = 0 or NH or COO.
6. Cryogel-Strukturen gemäß Anspruch 1, 2 oder 3, dadurch gekennzeichnet, dass sie gebildet werden durch Modifikation der Oberfläche zur Teilnahme des Cryogels an einer Polymerisation als Comonomer, wobei zu diesem Zweck ein entsprechender Linker mit den funktionellen Gruppen des Cryogels (Funktionalität R in Formel III) umgesetzt wird, vorzugsweise Doppelbindungs-haltige Linker gemäß Formel X, 6. cryogel structures according to claim 1, 2 or 3, characterized in that they are formed by modifying the surface for participation of the cryogel in a polymerization as comonomer, for which purpose a corresponding linker with the functional groups of the cryogel (functionality R in formula III), preferably double bond-containing linker according to formula X,
Figure imgf000014_0001
Figure imgf000014_0001
7. Verwendung der Cryogel- Strukturen gemäß einem der Ansprüche 1 bis 6 zur Anreicherung, Abtrennung, Isolierung oder gezielten Freisetzung von Bakterien oder Zellen. 7. Use of the cryogel structures according to one of claims 1 to 6 for the enrichment, separation, isolation or targeted release of bacteria or cells.
PCT/DE2017/100014 2016-01-12 2017-01-11 Porous glycopolymer-functionalized cryogels and use thereof WO2017121428A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DEDE102016000458.4 2016-01-12
DE102016000458.4A DE102016000458A1 (en) 2016-01-12 2016-01-12 Porous Glycopolymer-Functionalized Cryogels and Their Use

Publications (1)

Publication Number Publication Date
WO2017121428A1 true WO2017121428A1 (en) 2017-07-20

Family

ID=58227876

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/DE2017/100014 WO2017121428A1 (en) 2016-01-12 2017-01-11 Porous glycopolymer-functionalized cryogels and use thereof

Country Status (2)

Country Link
DE (1) DE102016000458A1 (en)
WO (1) WO2017121428A1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102005002343A1 (en) * 2005-01-18 2006-07-27 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Process for the specific or unspecific separation of cells and / or viruses from liquid media and its use
WO2006121396A1 (en) * 2005-05-13 2006-11-16 Protista Biotechnology Ab Process for adsorption-based separation of bioparticles from an aqueous suspension

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5863551A (en) * 1996-10-16 1999-01-26 Organogel Canada Ltee Implantable polymer hydrogel for therapeutic uses

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102005002343A1 (en) * 2005-01-18 2006-07-27 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Process for the specific or unspecific separation of cells and / or viruses from liquid media and its use
WO2006121396A1 (en) * 2005-05-13 2006-11-16 Protista Biotechnology Ab Process for adsorption-based separation of bioparticles from an aqueous suspension

Non-Patent Citations (25)

* Cited by examiner, † Cited by third party
Title
A. HANORA; I. SAVINA; F. M. PLIEVA; V. A. IZUMRUDOV; B. MATTIASSON; I. Y. GALAEV, J. BIOTECHNOL., vol. 123, 2006, pages 343 - 355
CHEN, ZHIYONG; XU, LI; LIANG, YUAN; WANG, JIANBIN; ZHAO, MEIPING; LI, YUANZONG, JOURNAL OF CHROMATOGRAPHY ,A, vol. 1182, no. 1, 2008, pages 128 - 131
CHRISTIAN VON DER EHE ET AL: "Glycopolymer-Functionalized Cryogels as Catch and Release Devices for the Pre-Enrichment of Pathogens", ACS MACRO LETTERS, vol. 5, no. 3, 15 March 2016 (2016-03-15), pages 326 - 331, XP055366409, ISSN: 2161-1653, DOI: 10.1021/acsmacrolett.5b00856 *
E. N. EFREMENKO; O. V. SENKO; L. E. ALESKEROVA; K. A. ALENINA; M. M. MAZHUL; A. D. ISMAILOV: "Biosensors Based on the Luminous Bacteria Photobaterium phosphoreum Immobilized in Polyvinyl Alcohol Cryogel for the Monitoring of Ecotoxicants", APPLIED BIOCHEMISTRY AND MICROBIOLOGY, vol. 50, 2014, pages 477 - 482
G. C. INGAVLE; L. W. J. BAILLIE; Y. ZHENG; E. K. LIS; I. N. SAVINA; C. A. HOWELL; S. V. MIKHALOVSKY; S. R. SANDEMAN: "Affinity binding of antibodies to supermacroporous cryogel adsorbents with immobilized protein A for removal of anthrax toxin protective antigen", BIOMATERIALS, vol. 50, 2015, pages 140 - 153
G. SATCHANSKA; Y. TOPALOVA; R. DIMKOV; V. ,GROUDEVA; P. PETROV; C. TSVETANOV; S. SELENSKA-POBELL; E. GOLOVINSKY: "Phenol degradation by environmental bacteria entrapped in cryogels", BIOTECHNOLOGY' & BIOTECHNOLOGICAL EQUIPMENT, vol. 29, 2015, pages 514 - 521
GALAEV, I. Y.; PLIEVA, F. M.; SAVINA, I. N.; JUNGVID, H.; MATTIASSON, B.: "Polymeric cryogels as promising materials of biotechnological interest VladimirLozinsky", TRENDS BIOTECHNOL., vol. 21, no. 10, 2003, pages 445 - 451
J. J. LUNDQUIST; E. J. TOONE, CHEM. REV., vol. 102, 2002, pages 555 - 578
K. K. R. TETALA; T. A. VAN BEEK, J. SEP. SCI., vol. 33, no. 3, 2010, pages 422 - 438
K. K. R. TETALA; T. A. VAN BEEK, J. SEP. SEI., vol. 33, no. 3, 2010, pages 422 - 438
KISHORE K. R. TETALA ET AL: "Bioaffinity chromatography on monolithic supports", JOURNAL OF SEPARATION SCIENCE., vol. 33, no. 3, 1 February 2010 (2010-02-01), DE, pages 422 - 438, XP055366855, ISSN: 1615-9306, DOI: 10.1002/jssc.200900635 *
KOSTOVA, BISTRA; MOMEKOVA, DENITSA; PETROV, PETAR; MOMEKOV, GEORGI; TONCHEVA MONCHEVA, NATALIA; TSVETANOV, CHRISTO B.; LAMBOV, NIK: "Poly(ethoxytriethylene glycol acrylate) cryogels as novel sustained drug release systems for oral application", POLYMER, vol. 52, no. 5, 2011, pages 1217 - 1222
M. B. DAINIAK; F. M. PLIEVA; I. Y. GALAEV; R. HATTI-KAUL; B. MATTIASSON, BIOTECHNOL. PROG., vol. 21, 2005, pages 644 - 649
M. B. DAINIAK; I. Y. GALAEV; B. MATTIASSON, J. CHROMATOGR. A, vol. 1123, 2006, pages 145 - 150
NIETO, MARINA; NARDECCHIA, STEFANIA; PEINADO, CARMEN; CATALINA, FERNANDO; ABRUSCI, CONCEPCION; GUTIERREZ, MARIA C.; FERRER, M. LUI: "Enzyme-induced graft polymerizatiön for preparation of hydrogels: synergetic effect of laccase-immobilized-cryogels for pollutants adsorption", SOFT MATTER, vol. 6, no. 15, 2010, pages 3533 - 3540
O. G. POTTER; E. F. HILDER: "Porous polymer monoliths for extraction: Diverse applications and platforms", J. SEP. SCI., vol. 31, 2008, pages 1881 - 1906
P. ARVIDSSON; F. M. PLIEVA; I. N. SAVINA; V. I. LOZINSKY; S. FEXBY; L. BÜLOW; I. Y. GALAEV; B. MATTIASSON, J. CHROMATOGR. A, vol. 977, 2002, pages 27 - 38
PASPARAKIS, G.; COCKAYNE, A.; ALEXANDER, C., J. AM. CHEM. SOC., vol. 129, 2007, pages 11014 - 11015
PETROV, PETAR; PAVLOVA, SEVERINA; TSVETANOV, CHRISTO B.; TOPALOVA, YANA; DIMKOV, RAYCHO: "In situ entrapment of urease in cryogels of poly(N-isopropylacrylamide): An effective strategy for noncovalent immobilization of enzymes", JOURNAL OF APPLIED POLYMER SCIENCE, vol. 122, no. 3, 2011, pages 1742 - 1748
S. HAJIZADEH; H. KIRSEBOM; A. LEISTNER; B. MATTIASSON, J. SEP. SCI., vol. 35, 2012, pages 2978 - 2985
SONG, W.; XIAO, C.; CUI, L.; TANG, Z.; ZHUANG, X.; CHEN, X., COLL. SURF. B: BIOINT., vol. 93, 2012, pages 188 - 194
TING, S. R. S.; CHEN, G.; STENZEL, M. H., POLYM. CHEM., vol. 1, 2010, pages 1392 - 1412
TING, S. R. S.; MIN, E. H.; ZETTERLUND, P. B.; STENZEL, M. H., MACROMOLECULES, vol. 43, 2010, pages 5211 - 5221
TOYOSHIMA, M.; MIURA, Y., J. POLYM. SCI., PART A: POLYM. CHEM., vol. 47, 2009, pages 1412 - 1421
YANG, Q.; STRATHMANN, M.; RUMPF, A.; SCHAULE, G.; ULBRICHT, M., ACS APPL. MAT. INTERF, vol. 2, 2010, pages 3555 - 3562

Also Published As

Publication number Publication date
DE102016000458A1 (en) 2017-07-27

Similar Documents

Publication Publication Date Title
Qi et al. Efficient decontamination of lead ions from wastewater by salecan polysaccharide-based hydrogels
CN110804144B (en) Cationic-zwitterionic block copolymers
Dragan et al. Macroporous composite IPN hydrogels based on poly (acrylamide) and chitosan with tuned swelling and sorption of cationic dyes
Kundakci et al. Swelling and dye sorption studies of acrylamide/2-acrylamido-2-methyl-1-propanesulfonic acid/bentonite highly swollen composite hydrogels
EP2310104B1 (en) Mixed graft polymers for ion exchange chromatography
Srivastava et al. Boronate affinity chromatography of cells and biomacromolecules using cryogel matrices
DE69722491T2 (en) Adsorbent and method for removing chemokines of the CC subtype from body fluids
CN107286355B (en) Cation-zwitterion copolymer and polycaprolactone blended membrane and preparation method and application thereof
EP1259322B1 (en) Polymeric anion exchanger resins and their use in chromatographic methods
DE60008380T2 (en) METHOD FOR PRODUCING FLUORINATED ABSORBENT POLYMER PARTICLES
EP3484612B1 (en) Chromatography medium having bonded microglobuli and method for the production thereof
Xiong et al. Reversible bacterial adhesion on mixed poly (dimethylaminoethyl methacrylate)/poly (acrylamidophenyl boronic acid) brush surfaces
EP3347125B1 (en) Adsorption medium, method for production thereof, and use thereof for purification of biomolecules
El-Tahlawy et al. Preparation and application of chitosan/poly (methacrylic acid) graft copolymer
DE60015514T2 (en) AMINO GROUPS CONTAINING AMINO GROUPS, USE AND MANUFACTURE THEREOF
CH619246A5 (en)
Gallastegui et al. Catechol-containing acrylic poly (ionic liquid) hydrogels as bioinspired filters for water decontamination
Hajizadeh et al. Hierarchical macroporous material with dual responsive copolymer brushes and phenylboronic acid ligands for bioseparation of proteins and living cells
Xu et al. Design of AgNPs doped chitosan/sodium lignin sulfonate/polypyrrole films with antibacterial and endotoxin adsorption functions
WO2002068481A1 (en) Polymers containing phosphor for optical signal transducers
JP3441530B2 (en) Temperature-responsive separation material and method of manufacturing the same
Turu et al. Synthesis and characterization of cryogel structures for isolation of EPSs from Botryococcus braunii
WO2017121428A1 (en) Porous glycopolymer-functionalized cryogels and use thereof
EP2285485B1 (en) Ce(iv)-initiated graft polymerization on polymers not containing hydroxyl groups
Baimenov et al. Novel amphoteric cryogels for Cd2+ ions removal from aqueous solutions

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17708672

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 17708672

Country of ref document: EP

Kind code of ref document: A1