WO2017121367A1 - Platinum complexes for blue oled application - Google Patents

Platinum complexes for blue oled application Download PDF

Info

Publication number
WO2017121367A1
WO2017121367A1 PCT/CN2017/071047 CN2017071047W WO2017121367A1 WO 2017121367 A1 WO2017121367 A1 WO 2017121367A1 CN 2017071047 W CN2017071047 W CN 2017071047W WO 2017121367 A1 WO2017121367 A1 WO 2017121367A1
Authority
WO
WIPO (PCT)
Prior art keywords
carbon atoms
emission
emitter
oled
substituted
Prior art date
Application number
PCT/CN2017/071047
Other languages
French (fr)
Inventor
Chi Ming Che
Original Assignee
The University Of Hong Kong
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by The University Of Hong Kong filed Critical The University Of Hong Kong
Priority to KR1020187022813A priority Critical patent/KR102213183B1/en
Priority to JP2018536790A priority patent/JP2019509621A/en
Priority to EP17738180.3A priority patent/EP3402861A4/en
Priority to CN201780006737.6A priority patent/CN108699435B/en
Publication of WO2017121367A1 publication Critical patent/WO2017121367A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/30Coordination compounds
    • H10K85/361Polynuclear complexes, i.e. complexes comprising two or more metal centers
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/06Luminescent, e.g. electroluminescent, chemiluminescent materials containing organic luminescent materials
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F15/00Compounds containing elements of Groups 8, 9, 10 or 18 of the Periodic System
    • C07F15/0006Compounds containing elements of Groups 8, 9, 10 or 18 of the Periodic System compounds of the platinum group
    • C07F15/0086Platinum compounds
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/02Use of particular materials as binders, particle coatings or suspension media therefor
    • C09K11/025Use of particular materials as binders, particle coatings or suspension media therefor non-luminescent particle coatings or suspension media
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
    • H10K50/12OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers comprising dopants
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/30Coordination compounds
    • H10K85/321Metal complexes comprising a group IIIA element, e.g. Tris (8-hydroxyquinoline) gallium [Gaq3]
    • H10K85/322Metal complexes comprising a group IIIA element, e.g. Tris (8-hydroxyquinoline) gallium [Gaq3] comprising boron
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/30Coordination compounds
    • H10K85/341Transition metal complexes, e.g. Ru(II)polypyridine complexes
    • H10K85/346Transition metal complexes, e.g. Ru(II)polypyridine complexes comprising platinum
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1003Carbocyclic compounds
    • C09K2211/1007Non-condensed systems
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • C09K2211/1025Heterocyclic compounds characterised by ligands
    • C09K2211/1044Heterocyclic compounds characterised by ligands containing two nitrogen atoms as heteroatoms
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/18Metal complexes
    • C09K2211/185Metal complexes of the platinum group, i.e. Os, Ir, Pt, Ru, Rh or Pd
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2101/00Properties of the organic materials covered by group H10K85/00
    • H10K2101/10Triplet emission

Definitions

  • Described herein are compounds that are platinum emitters and, more particularly compounds that are platinum emitters of blue light and their applications in blue emitting organic light-emitting diodes (OLED) . Also disclosed herein are devices that comprise the platinum emitters and methods of making and using the platinum emitters.
  • OLED organic light-emitting diodes
  • platinum (II) complexes can be thermally stable and have high emission quantum efficiency, they are potential dopant materials for OLED application. However, due to square planar geometry, platinum (II) complexes have a high self-aggregation tendency, which results in a red-shift in emission ⁇ max ; excimer emission; and low device efficiency.
  • one of the emitters shows a wide doping window and slow efficiency roll-off [Chem. Commun. 2013, 49, 1497-1499] .
  • the maximum current efficiency of the device can only achieve 66.7 cd/A, even the emission quantum efficiency of the device is 90%. If the self-aggregation effect is resolved, approximately, or even greater than 100 cd/A can be obtained with this emission quantum efficiency.
  • Che constructed a new ligand structure containing a spiro linkage in the ligand which resolved the self-aggregation problem; a green device with power efficiency up to 126 lm/W has been fabricated. [Chem. Sci. 2014, 4819-4830] These examples show that no universal approach can be used in all platinum (II) complexes. A method that works in system A may cause bigger problems in system B.
  • the compounds and techniques described herein provide an approach to developing blue emitting platinum (II) which minimizes the red-shift in emission ⁇ max attributed to excimer emission when an excimer suppression group (ESG) is added.
  • An excimer suppression group is a group whose characteristics are designed to minimize the appearance of, or compensate for, excimer molecule formation in dopant materials for OLED application.
  • excimer emission can be completely suppressed in OLED with an ESG.
  • Excimer suppression is valuable in fabricating blue light emitting OLED as blue light emission is particularly sensitive to the increase in wavelength toward the red spectrum caused by excimer emission. Further, with excimer formation being suppressed, blue OLED with dopant concentration larger than 5%can be fabricated and an improved device efficiency can be achieved.
  • the compounds and techniques described herein include blue platinum (II) emitters for use in OLED that have improved device efficiency and minimized excimer effects.
  • blue OLED are fabricated with dopant concentration larger than 5%.
  • the emitters described herein implement dopant concentrations of 5-6%, 6-7%, 7-8%, 8-9%, 9-10%, 10-11%, 11-12%, 12-13%, 13-14%, or 14-15%by weight or in the range of 5-30%by weight.
  • the blue light emitted has a wavelength between 440 nm and 500 nm, 460 nm and 480 nm, 465 nm and 475 nm, or 475 nm. In other embodiments, the blue light emitted has a wavelength between 440-450 nm, 450-460 nm, 460-470 nm, 470-480 nm, 480-490 nm, or 490nm-500nm.
  • the blue light emitted can also be measured according to the International Commission on Illumination (CIE) x, y coordinate system.
  • CIE International Commission on Illumination
  • the CIE x-coordinate has a value ⁇ 0.20 or in the range of 0.02-0.4. In certain embodiments, the CIE y-coordinate has a value ⁇ 0.35 or in the range of 0.05-0.7.
  • the platinum (II) emitters described herein minimize red-shift of ⁇ max .
  • An ESG can be selected to minimize red-shift effects (compared to non-ESG, non-halogen group) .
  • the selected ESG produces a red-shift of less than or equal to 10 nm, 9 nm, 8 nm, 7 nm, 6 nm, 5 nm, 4 nm, 3 nm, 2 nm, 1nm, or 0 nm relative to those emitters with a halogen in place of the ESG.
  • the OLED emitters provided herein produce no excimer emission in an electroluminescence (EL) spectrum.
  • the OLED emitter produces an EL spectrum having no new emission shoulder as compared to a solution PL spectrum produced by the OLED emitter.
  • the ‘’ emission shoulder” in EL spectrum means an emission band resulting from excimer emission.
  • the OLED emitters provided herein show short emission lifetime. In certain embodiments, the OLED emitter shows an emission lifetime of less than 10 ⁇ s, 9 ⁇ s 8 ⁇ s, 7 ⁇ s, 6 ⁇ s, 5 ⁇ s, 4 ⁇ s, 3 ⁇ s, 2 ⁇ s or 1 ⁇ s.
  • platinum (II) emitters having the chemical structure of Structure I as in Fig. 1F, and their applications in an organic light-emitting diode (OLED) .
  • the platinum (II) -based compounds of Structure I are shown as follows:
  • R 1 –R 6 are independently hydrogen, halogen, hydroxyl, an unsubstituted alkyl, a substituted alkyl, cycloalkyl, an unsubstituted aryl, a substituted aryl, acyl, alkoxy, acyloxy, amino, nitro, acylamino, aralkyl, cyano, carboxyl, thio, styryl, aminocarbonyl, carbamoyl, aryloxycarbonyl, phenoxycarbonyl, or an alkoxycarbonyl group.
  • Each pair of adjacent R groups of R 1 –R 6 can independently form 5–8 member ring (s) with 2 or 4 carbon atoms in the phenyl ring (s) as shown in Structure I.
  • ESG is an excimer suppression group which prevents red-shifting of the monomer emission of the [Pt (II) C (NHC) ⁇ C ⁇ C (NHC) ] emission core and suppresses excimer emission in OLED.
  • This disclosure also provides devices fabricated from the platinum (II) emitters of Structure I.
  • the devices of the invention exhibit high efficiency. Blue emission can be obtained in this material system as the high energy emission from the [Pt (II) C (NHC) ⁇ C ⁇ C (NHC) ] emission core is maintained and excimer emission is suppressed.
  • the present invention comprises the following embodiments:
  • R 1 –R 6 are independently hydrogen, halogen, hydroxyl, an unsubstituted alkyl, a substituted alkyl, cycloalkyl, an unsubstituted aryl, a substituted aryl, acyl, alkoxy, acyloxy, amino, nitro, acylamino, aralkyl, cyano, carboxyl, thio, styryl, aminocarbonyl, carbamoyl, aryloxycarbonyl, phenoxycarbonyl, or an alkoxycarbonyl group.
  • Each pair of adjacent R groups of R 1 –R 6 can be independently form 5–8 member ring (s) with other carbon and/or nitrogen atoms;
  • ESG is an excimer emission suppression group, preferably said OLED emitter is a blue organic light-emitting diode (OLED) emitter, and
  • the emitter has an emission wavelength between 440 nm and 500 nm.
  • R 1 –R 6 is independently selected from hydrogen, halogen, hydroxyl, an unsubstituted alkyl containing from 1 to 10 carbon atoms, a substituted alkyl containing from 1 to 20 carbon atoms, cycloalkyl containing from 4 to 20 carbon atoms, an unsubstituted aryl containing from 6 to 20 carbon atoms, a substituted aryl containing from 6 to 20 carbon atoms, acyl containing from 1 to 20 carbon atoms, alkoxy containing from 1 to 20 carbon atoms, acyloxy containing from 1 to 20 carbon atoms, amino, nitro, acylamino containing from 1 to 20 carbon atoms, aralkyl containing from 1 to 20 carbon atoms, cyano, carboxyl containing from 1 to 20 carbon atoms, thiol, styryl, aminocarbonyl containing from 1 to 20 carbon atoms
  • n is an integer.
  • R 10 –R 24 are independently hydrogen, halogen, hydroxyl, an unsubstituted alkyl, a substituted alkyl, cycloalkyl, an unsubstituted aryl, a substituted aryl, acyl, alkoxy, acyloxy, amino, nitro, acylamino, aralkyl, cyano, carboxyl, thio, styryl, aminocarbonyl, carbamoyl, aryloxycarbonyl, phenoxycarbonyl, or an alkoxycarbonyl group.
  • R 10 –R 19 are independently hydrogen, halogen, hydroxyl, an unsubstituted alkyl, a substituted alkyl, cycloalkyl, an unsubstituted aryl, a substituted aryl, acyl, alkoxy, acyloxy, amino, nitro, acylamino, aralkyl, cyano, carboxyl, thio, styryl, aminocarbonyl, carbamoyl, aryloxycarbonyl, phenoxycarbonyl, or an alkoxycarbonyl group; and n is an integer.
  • R 10 –R 14 are independently hydrogen, halogen, hydroxyl, an unsubstituted alkyl, a substituted alkyl, cycloalkyl, an unsubstituted aryl, a substituted aryl, acyl, alkoxy, acyloxy, amino, nitro, acylamino, aralkyl, cyano, carboxyl, thio, styryl, aminocarbonyl, carbamoyl, aryloxycarbonyl, phenoxycarbonyl, or an alkoxycarbonyl group; and n is an integer.
  • the OLED emitter of any one of the above embodiments wherein the OLED emitter produces an EL spectrum having no new emission shoulder as compared to a solution PL spectrum produced by the OLED emitter (In other word, the OLED emitter produces an EL spectrum similar to that of the solution PL spectrum with no excimer emission) .
  • a light-emitting device comprising at least one OLED emitter (s) in any one of the above embodiments as the emitting material (s) or comprising:
  • At least one OLED emitter as an emitting material
  • OLED emitter has a chemical structure according to Structure I:
  • R 1 –R 6 are independently selected from hydrogen, halogen, hydroxyl, an unsubstituted alkyl, a substituted alkyl, cycloalkyl, an unsubstituted aryl, a substituted aryl, acyl, alkoxy, acyloxy, amino, nitro, acylamino, aralkyl, cyano, carboxyl, thio, styryl, aminocarbonyl, carbamoyl, aryloxycarbonyl, phenoxycarbonyl, or an alkoxycarbonyl group;
  • each pair of adjacent R groups of R 1 –R 6 forms 5–8 member ring (s) with other carbon or nitrogen atoms;
  • ESG is an excimer emission suppression group
  • the emitter has an emission wavelength maximum between 440 nm and 500 nm.
  • OLED organic light-emitting diode
  • first, second, third, and fourth solvents are selected from: water, dimethylsulphoxide, MeOH, EtOH, THF, DCM, toluene, ethyl acetate, diethyl ether, acetonitrile, methylacetamide, dimethylacetamide, dimethylformamide, N-methylpyrrolidone, N-cyclo-hexylpyrrolidone, terpeniol, dimethylformamide, N-methylpyrrolidone, N, N-dimethylacetamide, dimethylformamide, N-methylpyrrolidone, N, N-dimethylacetamide, acetone, dioxane, chloroform, alkylated benzenes, halogenated benzenes, methyl ethyl ketone, cyclohexanone, ethyl benzoate, ethylene carbonate, propylene carbonate, 1, 2-dime
  • metal of the metal carbonate is selected from Li, Cs, Na, K, Ca, Mg, Ba, and Ra.
  • Figs. 1A-F present a synthetic route for fabricating a complex having chemical structure of Structure I according to one or more embodiments of the present invention
  • Fig. 2 presents an exemplary 1 H NMR spectrum of Intermediate 261 according to one or more embodiments ofthe present invention
  • Fig. 3 presents an exemplary 1 H NMR spectrum of Emitter 1016 according to one or more embodiments of the present invention
  • Fig. 4 presents an exemplary H-H COSY NMR spectrum of Emitter 1016 according to one or more embodiments of the present invention
  • Fig. 5 presents an exemplary NOESY-2D NMR spectrum of Emitter 1016 according to one or more embodiments of the present invention
  • Fig. 6 presents an exemplary 1 H NMR spectrum of Emitter 1017 according to one or more embodiments of the present invention
  • Fig. 7 presents an exemplary 19 F NMR spectrum of Emitter 1017 according to one or more embodiments of the present invention
  • Fig. 8 presents an exemplary 13 C NMR spectrum of Emitter 1017 according to one or more embodiments of the present invention
  • Fig. 9 presents an exemplary H-H COSY NMR spectrum of Emitter 1017 according to one or more embodiments of the present invention.
  • Fig. 10 presents an exemplary NOESY-2D NMR spectrum of Emitter 1017 according to one or more embodiments of the present invention
  • Fig. 11 presents a perspective view of Emitter 1016 according to one or more embodiments of the present invention.
  • Fig. 12 presents a perspective view of Emitter 1017 according to one or more embodiments of the present invention.
  • Fig. 13 presents a graphical illustration of a solution PL and electroluminescence (EL) spectra of a model complex according to one or more embodiments of the present invention
  • Fig. 14 presents a graphical illustration of a solution PL and EL spectra of Emitter 1016 according to one or more embodiments of the present invention
  • Fig. 15 presents a graphical illustration of a solution PL and EL spectra of Emitter 1017 according to one or more embodiments of the present invention.
  • Fig. 16 presents a graphical illustration of a solution PL and EL spectra of Emitter 1018 according to one or more embodiments of the present invention.
  • Amino refers to a primary, secondary, or tertiary amine which may be optionally substituted. Specifically included are secondary or tertiary amine nitrogen atoms which are members of a heterocyclic ring. Also specifically included, for example, are secondary or tertiary amino groups substituted by an acyl moiety. Some non-limiting examples of an amino group include–NR’ R” in which each of R’ and R” is independently H, alkyl, aryl, aralkyl, alkaryl, cycloalkyl, acyl, heteroalkyl, heteroaryl or heterocycyl.
  • Alkyl refers to a fully saturated acyclic monovalent radical containing carbon and hydrogen, and which may be branched or a straight chain.
  • alkyl groups include, but are not limited to, alkyl having 1-20 carbon atoms, 2-10 carbon atoms, or 4-6 carbon atoms, methyl, ethyl, n-propyl, isopropyl, n-butyl, t-butyl, n-heptyl, n-hexyl, n-octyl, and n-decyl.
  • Alkylamino means a radical-NHR or–NR 2 where each R is independently an alkyl group.
  • Representative examples of alkylamino groups include, but are not limited to, methylamino, (1-methylethyl) amino, methylamino, dimethylamino, methylethylamino, and di (1-methyethyl) amino.
  • hydroxyalkyl means an alkyl radical as defined herein, substituted with one or more, preferably one, two or three hydroxy groups.
  • Representative examples of hydroxyalkyl include, but are not limited to, hydroxymethyl, 2-hydroxyethyl, 2-hydroxypropyl, 3-hydroxypropyl, 1- (hydroxymethyl) -2-methylpropyl, 2-hydroxybutyl, 3-hydroxybutyl, 4-hydroxybutyl, 2, 3-dihydroxypropyl, 2-hydroxy-1-hydroxymethylethyl, 2, 3-dihydroxybutyl, 3, 4-dihydroxybutyl and 2- (hydroxymethyl) -3-hydroxy-propyl, preferably 2-hydroxyethyl, 2, 3-dihydroxypropyl, and 1- (hydroxymethyl) 2-hydroxyethyl.
  • alkoxy, ” as used herein, refers the radical–OR x .
  • Exemplary alkoxy groups include, but are not limited to, methoxy, ethoxy, and propoxy.
  • Aromatic or “aromatic group” refers to aryl or heteroaryl.
  • Aryl refers to optionally substituted carbocyclic aromatic groups.
  • the aryl group includes phenyl, biphenyl, naphthyl, substituted phenyl, substituted biphenyl or substituted naphthyl. In other embodiments, the aryl group is phenyl or substituted phenyl.
  • Alkyl refers to an alkyl group which is substituted with an aryl group. Some non-limiting examples of aralkyl include benzyl and phenethyl.
  • Halogen refers to fluorine, chlorine, bromine and iodine.
  • “Substituted” as used herein to describe a compound or chemical moiety refers to that at least one hydrogen atom of that compound or chemical moiety is replaced with a second chemical moiety.
  • substituents are those found in the exemplary compounds and embodiments disclosed herein, as well as halogen; alkyl; heteroalkyl; alkenyl; alkynyl; aryl; heteroaryl; hydroxy; alkoxyl; amino; nitro; thiol; thioether; imine; cyano; amido; phosphonato; phosphine; carboxyl; thiocarbonyl; sulfonyl; sulfonamide; ketone; aldehyde; ester; oxo; haloalkyl (e.g., trifluoromethyl) ; carbocyclic cycloalkyl, which can be monocyclic or fused or non-fused polycyclic (e.g., cyclopropyl,
  • substituents can optionally be further substituted with a substituent selected from such groups. All chemical groups disclosed herein can be substituted, unless it is specified otherwise.
  • “substituted” alkyl, alkenyl, alkynyl, aryl, hydrocarbyl or heterocyclo moieties described herein are moieties which are substituted with a hydrocarbyl moiety, a substituted hydrocarbyl moiety, a heteroatom, or a heterocyclo.
  • substituents may include moieties in which a carbon atom is substituted with a heteroatom such as nitrogen, oxygen, silicon, phosphorus, boron, sulfur, or a halogen atom.
  • substituents may include halogen, heterocyclo, alkoxy, alkenoxy, alkynoxy, aryloxy, hydroxy, protected hydroxy, keto, acyl, acyloxy, nitro, amino, amido, cyano, thiol, ketals, acetals, esters and ethers.
  • the present invention provides platinum (II) emitters.
  • an organometallic emitter represented by Structure I is provided, as illustrated below.
  • the platinum center in Structure I is in+2 oxidation state and has a square planar geometry.
  • the coordination sites of the platinum center are occupied by a tridentate ligand and an excimer emission suppression group (ESG) .
  • the tridentate ligand featuring 5-5 fused membered rings coordinates to the platinum center through a metal-carbon (NHC) bond, a metal-carbon (deprotonated carbon) bond and a metal-carbon (NHC) bond.
  • the ESG is coordinated with the platinum center through a metal-carbon (cyanide) bond.
  • the platinum (II) emitters have the chemical structures of Structure I:
  • R 1 –R 6 are independently hydrogen, halogen, hydroxyl, an unsubstituted alkyl, asubstituted alkyl, cycloalkyl, an unsubstituted aryl, a substituted aryl, acyl, alkoxy, acyloxy, amino, nitro, acylamino, aralkyl, cyano, carboxyl, thio, styryl, aminocarbonyl, carbamoyl, aryloxycarbonyl, phenoxycarbonyl, or an alkoxycarbonyl group.
  • Each pair of adjacent R groups of R 1 –R 6 can be independently form 5–8 member ring (s) with 2 or 4 carbon atoms in the phenyl ring (s) showed in Structure I and wherein ESG is an excimer emission suppression group.
  • the ESG group is in which R 7 –R 9 are independently an unsubstituted alkyl, a substituted alkyl, cycloalkyl, an unsubstituted aryl, a substituted aryl, acyl, alkoxy, acyloxy or amino group.
  • R 1 –R 6 is independently hydrogen, halogen, hydroxyl, an unsubstituted alkyl containing from 1 to 20 carbon atoms, a substituted alkyl containing from 1 to 20 carbon atoms, cycloalkyl containing from 4 to 20 carbon atoms, an unsubstituted aryl containing from 6 to 20 carbon atoms, a substituted aryl containing from 6 to 20 carbon atoms, acyl containing from 1 to 20 carbon atoms, alkoxy containing from 1 to 20 carbon atoms, acyloxy containing from 1 to 20 carbon atoms, amino, nitro, acylamino containing from 1 to 20 carbon atoms, aralkyl containing from 1 to 20 carbon atoms, cyano, carboxyl containing from 1 to 20 carbon atoms, thiol, styryl, aminocarbonyl containing from 1 to 20 carbon atoms, carbamoyl containing from 1 to 20 carbon atoms, carb
  • R 1 is C 4 H 9 or C 6 H 13 .
  • R 2 is H, F, or CH 3 .
  • R 3 is H, F or CH 3 .
  • R 4 is H, F, or CH 3 .
  • R 5 is H, F, CH 3 , or CF 3 .
  • R 6 is H, F, or CH 3 .
  • ESG is:
  • n is an integer.
  • n is an integer having a value of 1-3, 3-6, 6-8, 8-10, 10-15 or 15-20.
  • ESG is:
  • R 10 –R 24 are independently hydrogen, halogen, hydroxyl, an unsubstituted alkyl, a substituted alkyl, cycloalkyl, an unsubstituted aryl, a substituted aryl, acyl, alkoxy, acyloxy, amino, nitro, acylamino, aralkyl, cyano, carboxyl, thio, styryl, aminocarbonyl, carbamoyl, aryloxycarbonyl, phenoxycarbonyl, or an alkoxycarbonyl group.
  • ESG is:
  • R 10 –R 19 are independently hydrogen, halogen, hydroxyl, an unsubstituted alkyl, a substituted alkyl, cycloalkyl, an unsubstituted aryl, a substituted aryl, acyl, alkoxy, acyloxy, amino, nitro, acylamino, aralkyl, cyano, carboxyl, thio, styryl, aminocarbonyl, carbamoyl, aryloxycarbonyl, phenoxycarbonyl, or an alkoxycarbonyl group; and n is an integer. In certain embodiments, n is an integer having a value of 1-3, 3-6, 6-8, 8-10, 10-15 or 15-20.
  • ESG is:
  • R 10 –R 14 are independently hydrogen, halogen, hydroxyl, an unsubstituted alkyl, a substituted alkyl, cycloalkyl, an unsubstituted aryl, a substituted aryl, acyl, alkoxy, acyloxy, amino, nitro, acylamino, aralkyl, cyano, carboxyl, thio, styryl, aminocarbonyl, carbamoyl, aryloxycarbonyl, phenoxycarbonyl, or an alkoxycarbonyl group; and n is an integer. In certain embodiments, n is an integer having a value of 1-15, 1-3, 3-6, 6-8, 8-10, 10-15 or 15-20.
  • the ESG is B (C 4 H 9 ) 3 , B (C 6 H 13 ) 3 , BPh 3 or B (C 6 F 5 ) 3 .
  • platinum (II) emitters with Structure I are shown as follows:
  • the platinum (II) emitter with chemical structure of Structure I can be prepared by a series of reactions depicted in Figs 1A-F.
  • the solvents used in each step are the same. In other embodiments, the solvents used in each step are different.
  • the solvent used in the present invention is selected from: water, dimethylsulphoxide (DMSO) , MeOH, EtOH, THF, DCM, toluene, ethyl acetate, diethyl ether, acetonitrile, methylacetamide, dimethylacetamide, dimethylformamide, N-methylpyrrolidone, N-cyclo-hexylpyrrolidone, terpeniol, dimethylformamide (DMF) , N-methylpyrrolidone (NMP) , N, N-dimethylacetamide (DMAc) , dimethylformamide (DMF) , N-methylpyrrolidone (NMP) , N, N-dimethylacetamide (DMAc) , acetone, dioxane, chloroform, alkylated benzenes, halogenated benzenes, methyl ethyl ketone, cyclohexanone, ethyl
  • Raw Material 210 reacts with Raw Material 220 to form Intermediate 230 in the presence of CuO and a metal carbonate in suitable solvent (s) .
  • Raw Material 210 includes substituted and unsubstituted imidazoles.
  • Raw Material 220 includes substituted benzenes.
  • Raw Material 220 can include bihalobenzenes and haloalkyl-bihalobenzenes.
  • Intermediate 230 is then transformed to Intermediate 240 in the presence of R 1 -X in suitable solvent (s) with the optional application of heat [from 25 to 250°C] .
  • X is a halogen atom.
  • Intermediate 240 By reacting Intermediate 240 with platinum salt in suitable solvent (s) with the optional application of heat, Intermediate 250 can be obtained, as shown by Fig. 1D.
  • the halide bonded to the platinum center can be exchanged to cyanide group by reacting with suitable cyanide salt in a suitable solvent, to obtain Intermediate 260, Fig. 1E.
  • a Complex with Structure I can be prepared by reacting Intermediate 260 with a boron containing compound.
  • Raw Material 211 (2.5 ml, 21 mmol) , Raw Material 221 (3.5 g, 52 mmol) , K 2 CO 3 (7.2 g, 52 mmol) and CuO (0.4 g, 5.2 mmol) were mixed and dissolved in DMSO (20 ml) . The solution was heated at 150 °C for 48 hours. The reaction was cooled, and the DMSO was distilled at low-pressure, yielding an off-white solid.
  • Raw Material 212 (1.50 ml, 9.62 mmol) , Raw Material 221 (1.64 g, 24 mmol) , CuO (0.23 g, 2.89 mmol) , potassium carbonate (3.34 g, 24 mmol) , and DMSO (20 ml) were mixed and stirred at 150 °C for two days.
  • the reaction was cooled to room temperature and dichloromethane (150 ml) was added.
  • the mixture was filtered through basic activated alumina, and the filter was washed with DCM/MeOH (20 ml/2 ml) , giving an amber solution, which was concentrated to dryness to afford a beige residue.
  • Cold ethyl acetate was added and a white solid was obtained.
  • Fig. 11 illustrates a perspective view of Emitter 1016.
  • Fig. 12 illustrates a perspective view of Emitter 1017.
  • an OLED is fabricated using the following materials: PEDOT: PSS [poly (3, 4-ethylenedioxythiophene) : poly (styrene sulfonic acid) ] (Clevios P AI 4083) that was purchased from Heraeus, and PYD2, DPEPO and TPBi purchased from Luminescence Technology Corp. Each of these materials was used without modification. All Pt (II) emitters were purified bygradient sublimation before use.
  • the substrate is first cleaned.
  • glass slides with pre-patterned ITO electrodes used as substrates of OLEDs were cleaned in an ultrasonic bath of Decon 90 detergent and deionized water, rinsed with deionized water, and then cleaned in sequential ultrasonic baths of deionized water, acetone, and isopropanol, and subsequently dried in an oven for 1 hour.
  • the OLED can be fabricated and characterized.
  • the OLED includes one or more emissive layers.
  • PEDOT: PSS were spin-coated onto the cleaned ITO-coated glass substrate and baked at 120°C for 20 minutes to remove the residual water solvent in a clean room.
  • blends of PYD2: Pt (II) complex were spin-coated from chlorobenzene atop the PEDOT: PSS layer inside a N 2 -filled glove box.
  • the thickness for all EMLs was approximately 60 nm.
  • all devices were annealed at 110°C for 10 min inside the glove box and subsequently transferred into a Kurt J. Lesker SPECTROS vacuum deposition system without exposing to air.
  • DPEPO (10 nm) , TPBi (40 nm) , LiF (1.2 nm) , and Al (150 nm) were deposited in sequence by thermal evaporation at a pressure of 10 -8 mbar.
  • Electroluminescence (EL) spectra were recorded by an Ocean Optics Maya 2000 pro spectrometer.
  • CIE coordination, and CRI were measured by a Photo Research Inc PR-655.
  • Voltage-current characteristics were measured by a Keithley 2400 source-meter measurement unit. All devices were characterized at room temperature without encapsulation.
  • Example 314 Key performance of OLEDs fabricated from Emitter 1016, Emitter 1017, Emitter 1018 and a model complex for comparison.
  • Fig. 13 provides a graphical representation of the comparison of solution PL and EL spectra of the model complex.
  • Figs. 14-16 provide graphical representations of the comparison of solution PL and EL spectra of Emitter 1016, Emitter 1017, and Emitter 1018, respectively.
  • the device efficiencies of devices 403–408 are much higher than the device fabricated by model complex.
  • the modified device structure is: ITO/NPB (30 nm) /mCP (10 nm) /BOCP: Emitter 1017 (30 nm) /PhOXD (40 nm) /LiF (1.2 nm) /Al (150 nm) . All layers in this device are fabricated by vacuum deposition.
  • a figure or a parameter from one range may be combined with another figure or a parameter from a different range for the same characteristic to generate a numerical range.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Optics & Photonics (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

Described herein are compounds that are platinum emitters and, more particularly compounds that are platinum emitters of blue light and their applications in blue emitting organic light-emitting diodes (OLED). Also disclosed herein are devices that comprise the platinum emitters and methods of making and using the platinum emitters.

Description

PLATINUM COMPLEXES FOR BLUE OLED APPLICATION
RELATED APPLICATIONS
This application claims the benefit of U.S. provisional application serial number 62/279,042, filed January 15, 2016, which is hereby incorporated by reference in its entirety.
INTRODUCTION
Described herein are compounds that are platinum emitters and, more particularly compounds that are platinum emitters of blue light and their applications in blue emitting organic light-emitting diodes (OLED) . Also disclosed herein are devices that comprise the platinum emitters and methods of making and using the platinum emitters.
BACKGROUND
As phosphorescent platinum (II) complexes can be thermally stable and have high emission quantum efficiency, they are potential dopant materials for OLED application. However, due to square planar geometry, platinum (II) complexes have a high self-aggregation tendency, which results in a red-shift in emission λmax; excimer emission; and low device efficiency.
Considerable effort has been made to deal with this issue; bulky groups such as tert-butyl group (s) and non-planar phenyl group (s) have been added to the platinum (II) complexes. Nevertheless, most of them are not successful. In 2010, Che added tert-butyl group (s) in red-emitting platinum (II) material. [Chem. Eur. J. 2010, 16, 233-247] However, close intermolecular stacking π-π interactions were still observed in the X-Ray crystal structure which means the problem cannot be resolved. In the same year, Huo reported a class of platinum (II) materials containing a non-planar phenyl ring, however excimer emission appears in doping concentration more than 4 wt. %and severe triplet-triplet annihilation was observed even in a device with a mix host, which means this approach cannot resolve the problem [Inorg. Chem. 2010, 49, 5107–5119] . In 2013, Xie prepared new emitters containing two non-planar spiro-structures. [Chem. Commun. 2012, 48, 3854-3856] However, the devices fabricated by this emitter show serious efficiency roll-off of greater than 50%which indicates adding non-planar group (s) may be able to reduce self-aggregation. In the same year, Che combined the two approaches  and used a new, robust (O^N^C^N) ligand system to prepare new platinum (II) materials. In which, one of the emitters shows a wide doping window and slow efficiency roll-off [Chem. Commun. 2013, 49, 1497-1499] . However, the maximum current efficiency of the device can only achieve 66.7 cd/A, even the emission quantum efficiency of the device is 90%. If the self-aggregation effect is resolved, approximately, or even greater than 100 cd/A can be obtained with this emission quantum efficiency. In 2014, Che constructed a new ligand structure containing a spiro linkage in the ligand which resolved the self-aggregation problem; a green device with power efficiency up to 126 lm/W has been fabricated. [Chem. Sci. 2014, 4819-4830] These examples show that no universal approach can be used in all platinum (II) complexes. A method that works in system A may cause bigger problems in system B.
Furthermore, the systems mentioned above are not suitable for developing blue emitting platinum (II) complexes. Those ligand systems are complicated and have long π-conjugation, such as tetradentate ligands. The emission λmax of the complexes developed by these approaches are larger than 500 nm and thus no blue emitter can be prepared.
For blue emitting platinum (II) complexes, Thompson reported a platinum complex which showed blue emission in dilute solution in 2002 [New J. Chem. 2002, 26, 1171-1178] . Due to strong excimer emission, instead of blue OLED, only single emitter white OLED can be fabricated. In 2009, Bhansali developed Pt (ptp) 2 which showed blue emission in dilute solution, but because excimers appear at 2.5%dopant concentration, only yellow to orange OLED can be fabricated in a reasonable doping concentration (greater than or equal to 5%by weight) [Appl. Phys. Lett. 2009, 95, 233304] . In 2012, Li reported Pt-16 which was fabricated into blue OLED [Organ. Electron. 2012, 1430-1435] . However, it was later proved that, due to excimer emission, blue emission cannot be maintained using these approaches when the doping concentration was increased to more than 2% by weight, meaning that only white OLED can be obtained. [Adv. Mater. 2013, 25, 2573-2576] .
Besides excimer emission, changing the chemical structure of the complexes also results in a red-shift in monomer emission which is not good for blue emitting material development. For example, changing the auxiliary ligand of (tridendate ligand) Pt (auxiliary ligand) type complexes from halide [Inorg. Chem. 1999, 38, 4046-4055] to  -C≡C-R [J. Am. Chem. Soc. 2004, 126, 4958-4971] proved largely red-shift emission λmax (up to 65 nm red-shift was observed) . Therefore, consideration of fixing the excimer emission issue in this way is avoided.
SUMMARY
The compounds and techniques described herein provide an approach to developing blue emitting platinum (II) which minimizes the red-shift in emission λmax attributed to excimer emission when an excimer suppression group (ESG) is added. An excimer suppression group is a group whose characteristics are designed to minimize the appearance of, or compensate for, excimer molecule formation in dopant materials for OLED application. In certain embodiments, excimer emission can be completely suppressed in OLED with an ESG. Excimer suppression is valuable in fabricating blue light emitting OLED as blue light emission is particularly sensitive to the increase in wavelength toward the red spectrum caused by excimer emission. Further, with excimer formation being suppressed, blue OLED with dopant concentration larger than 5%can be fabricated and an improved device efficiency can be achieved.
In one aspect, the compounds and techniques described herein include blue platinum (II) emitters for use in OLED that have improved device efficiency and minimized excimer effects.
In one or more embodiments described herein, blue OLED are fabricated with dopant concentration larger than 5%. In certain embodiments, the emitters described herein implement dopant concentrations of 5-6%, 6-7%, 7-8%, 8-9%, 9-10%, 10-11%, 11-12%, 12-13%, 13-14%, or 14-15%by weight or in the range of 5-30%by weight.
The compounds and techniques herein are directed toward producing blue OLED at emission λmax not larger than 500 nm. In certain embodiments, the blue light emitted has a wavelength between 440 nm and 500 nm, 460 nm and 480 nm, 465 nm and 475 nm, or 475 nm. In other embodiments, the blue light emitted has a wavelength between 440-450 nm, 450-460 nm, 460-470 nm, 470-480 nm, 480-490 nm, or 490nm-500nm. The blue light emitted can also be measured according to the International Commission on Illumination (CIE) x, y coordinate system. In certain embodiments, the CIE x-coordinate has a value<0.20 or in the range of 0.02-0.4. In certain embodiments, the CIE y-coordinate has a value<0.35 or in the range of 0.05-0.7.  In one aspect, the platinum (II) emitters described herein minimize red-shift of λmax. An ESG can be selected to minimize red-shift effects (compared to non-ESG, non-halogen group) . In certain embodiments, the selected ESG produces a red-shift of less than or equal to 10 nm, 9 nm, 8 nm, 7 nm, 6 nm, 5 nm, 4 nm, 3 nm, 2 nm, 1nm, or 0 nm relative to those emitters with a halogen in place of the ESG.
In another aspect, the OLED emitters provided herein produce no excimer emission in an electroluminescence (EL) spectrum. In a further aspect, the OLED emitter produces an EL spectrum having no new emission shoulder as compared to a solution PL spectrum produced by the OLED emitter. The ‘’ emission shoulder” in EL spectrum means an emission band resulting from excimer emission.
In another aspect, the OLED emitters provided herein show short emission lifetime. In certain embodiments, the OLED emitter shows an emission lifetime of less than 10μs, 9μs 8μs, 7μs, 6μs, 5μs, 4μs, 3μs, 2μs or 1μs.
Described herein are novel platinum (II) emitters having the chemical structure of Structure I as in Fig. 1F, and their applications in an organic light-emitting diode (OLED) . In one or more embodiments, the platinum (II) -based compounds of Structure I are shown as follows:
Figure PCTCN2017071047-appb-000001
in which R1–R6 are independently hydrogen, halogen, hydroxyl, an unsubstituted alkyl, a substituted alkyl, cycloalkyl, an unsubstituted aryl, a substituted aryl, acyl, alkoxy, acyloxy, amino, nitro, acylamino, aralkyl, cyano, carboxyl, thio, styryl, aminocarbonyl, carbamoyl, aryloxycarbonyl, phenoxycarbonyl, or an alkoxycarbonyl group. Each pair of adjacent R groups of R1–R6 can independently form 5–8 member ring (s) with 2 or 4 carbon atoms in the phenyl ring (s) as shown in Structure I. ESG is an excimer suppression group which  prevents red-shifting of the monomer emission of the [Pt (II) C (NHC) ^C^C (NHC) ] emission core and suppresses excimer emission in OLED.
This disclosure also provides devices fabricated from the platinum (II) emitters of Structure I. Advantageously, the devices of the invention exhibit high efficiency. Blue emission can be obtained in this material system as the high energy emission from the [Pt (II) C (NHC) ^C^C (NHC) ] emission core is maintained and excimer emission is suppressed.
The present invention comprises the following embodiments:
1. An OLED emitter having a chemical structure of Structure I:
Figure PCTCN2017071047-appb-000002
wherein R1–R6 are independently hydrogen, halogen, hydroxyl, an unsubstituted alkyl, a substituted alkyl, cycloalkyl, an unsubstituted aryl, a substituted aryl, acyl, alkoxy, acyloxy, amino, nitro, acylamino, aralkyl, cyano, carboxyl, thio, styryl, aminocarbonyl, carbamoyl, aryloxycarbonyl, phenoxycarbonyl, or an alkoxycarbonyl group. Each pair of adjacent R groups of R1–R6 can be independently form 5–8 member ring (s) with other carbon and/or nitrogen atoms; ESG is an excimer emission suppression group, preferably said OLED emitter is a blue organic light-emitting diode (OLED) emitter, and
wherein the emitter has an emission wavelength between 440 nm and 500 nm.
2. The OLED emitter of any one of the above embodiments, wherein R1–R6 is independently selected from hydrogen, halogen, hydroxyl, an unsubstituted alkyl containing from 1 to 10 carbon atoms, a substituted alkyl containing from 1 to 20 carbon atoms, cycloalkyl containing from 4 to 20 carbon atoms, an unsubstituted aryl containing from 6 to 20 carbon atoms, a substituted aryl containing from 6 to 20 carbon atoms, acyl containing from 1 to 20 carbon atoms, alkoxy containing from 1 to 20 carbon atoms, acyloxy containing from 1 to 20 carbon atoms, amino, nitro, acylamino containing from 1  to 20 carbon atoms, aralkyl containing from 1 to 20 carbon atoms, cyano, carboxyl containing from 1 to 20 carbon atoms, thiol, styryl, aminocarbonyl containing from 1 to 20 carbon atoms, carbamoyl containing from 1 to 20 carbon atoms, aryloxycarbonyl containing from 1 to 20 carbon atoms, phenoxycarbonyl containing from 1 to 20 carbon atoms, or an alkoxycarbonyl group containing from 1 to 20 carbon atoms.
3. The OLED emitter of any one of the above embodiments, wherein the ESG group is 
Figure PCTCN2017071047-appb-000003
 and R7–R9 are independently an unsubstituted alkyl, a substituted alkyl, cycloalkyl, an unsubstituted aryl, a substituted aryl, acyl, alkoxy, acyloxy or amino group.
4. The OLED emitter of any one of the above embodiments, wherein ESG is:
Figure PCTCN2017071047-appb-000004
 and n is an integer.
5. The OLED emitter of any one of the above embodiments, wherein ESG is:
Figure PCTCN2017071047-appb-000005
 and R10–R24 are independently hydrogen, halogen, hydroxyl, an unsubstituted alkyl, a substituted alkyl, cycloalkyl, an unsubstituted aryl, a substituted aryl, acyl, alkoxy, acyloxy, amino, nitro, acylamino, aralkyl, cyano, carboxyl, thio, styryl, aminocarbonyl, carbamoyl, aryloxycarbonyl, phenoxycarbonyl, or an alkoxycarbonyl group.
6. The OLED emitter of any one of the above embodiments, wherein ESG is:
Figure PCTCN2017071047-appb-000006
 R10–R19 are independently hydrogen, halogen, hydroxyl, an unsubstituted alkyl, a substituted alkyl, cycloalkyl, an unsubstituted aryl, a substituted aryl, acyl, alkoxy, acyloxy, amino, nitro, acylamino, aralkyl, cyano, carboxyl, thio, styryl, aminocarbonyl, carbamoyl, aryloxycarbonyl, phenoxycarbonyl, or an alkoxycarbonyl group; and n is an integer.
7. The OLED emitter of any one of the above embodiments, wherein ESG is:
Figure PCTCN2017071047-appb-000007
 R10–R14 are independently hydrogen, halogen, hydroxyl, an unsubstituted alkyl, a substituted alkyl, cycloalkyl, an unsubstituted aryl, a substituted aryl, acyl, alkoxy, acyloxy, amino, nitro, acylamino, aralkyl, cyano, carboxyl, thio, styryl, aminocarbonyl, carbamoyl, aryloxycarbonyl, phenoxycarbonyl, or an alkoxycarbonyl group; and n is an integer.
8. The OLED emitter of any one of the above embodiments, wherein the ESG is selected to produce an λmax emission having a red-shift of less than 10 nm as compared with an OLED emitter having a halogen in place of the ESG.
9. The OLED emitter of any one of the above embodiments, wherein the OLED emitter produces no excimer emission in an EL spectrum.
10. The OLED emitter of any one of the above embodiments, wherein the OLED  emitter produces an EL spectrum having no new emission shoulder as compared to a solution PL spectrum produced by the OLED emitter (In other word, the OLED emitter produces an EL spectrum similar to that of the solution PL spectrum with no excimer emission) .
11. The OLED emitter of any one of the above embodiments, wherein the OLED emitter produces a blue emission having a CIE chromaticity x-coordinate of less than 0.20.
12. The OLED emitter of any one of the above embodiments, wherein the OLED emitter produces a blue emission having a CIE chromaticity y-component of less than 0.35.
13. The OLED emitter of any one of the above embodiments, wherein the OLED emitter produces a blue emission having an emission λmax of less than 500 nm in a solution.
14. The OLED emitter of any one of the above embodiments, wherein the OLED emitter shows emission lifetime of less than 10μs.
15. The OLED emitter of any one of the above embodiments, wherein the OLED emitter is selected from the following emitters having chemical structures of:
Figure PCTCN2017071047-appb-000008
Figure PCTCN2017071047-appb-000009
Figure PCTCN2017071047-appb-000010
16. A light-emitting device comprising at least one OLED emitter (s) in any one of the above embodiments as the emitting material (s) or comprising:
at least one OLED emitter as an emitting material,
wherein the OLED emitter has a chemical structure according to Structure I:
Figure PCTCN2017071047-appb-000011
and wherein
R1–R6 are independently selected from hydrogen, halogen, hydroxyl, an unsubstituted alkyl, a substituted alkyl, cycloalkyl, an unsubstituted aryl, a substituted aryl, acyl, alkoxy, acyloxy, amino, nitro, acylamino, aralkyl, cyano, carboxyl, thio, styryl, aminocarbonyl, carbamoyl, aryloxycarbonyl, phenoxycarbonyl, or an alkoxycarbonyl group;
each pair of adjacent R groups of R1–R6 forms 5–8 member ring (s) with other carbon or nitrogen atoms;
ESG is an excimer emission suppression group; and
wherein the emitter has an emission wavelength maximum between 440 nm and 500 nm.
17. The light-emitting device of any one of the above embodiments, wherein the light-emitting device is an organic light-emitting diode (OLED) .
18. The device of any one of the above embodiments, wherein the device is fabricated by vacuum deposition.
19. The device of any one of the above embodiments, wherein the device is fabricated by solution processes.
20. The device of any one of the above embodiments, wherein the dopant concentration is greater than 5 percent by weight.
21. The device of any one of the above embodiments, wherein the device contains an emissive layer.
22. The device of any one of the above embodiments, wherein the device contains more than one emissive layers.
23. A method of making the OLED emitter of any of the above embodiments, comprising the steps of:
(i) : reacting, in the presence of CuO and a metal carbonate in a first solvent, afirst raw material having a structure of 
Figure PCTCN2017071047-appb-000012
 with a second raw material having a structure of 
Figure PCTCN2017071047-appb-000013
 wherein X is a halogen atom, to produce a first intermediate having a structure of 
Figure PCTCN2017071047-appb-000014
(ii) : reacting, in a second solvent, the first intermediate in the presence of R1-X to  produce a second intermediate having a structure of 
Figure PCTCN2017071047-appb-000015
(iii) : reacting, in a third solvent, the second intermediate with a platinum salt, to produce a third intermediate having a structure of 
Figure PCTCN2017071047-appb-000016
(iv) : reacting, in a fourth solvent, the third intermediate with a cyanide salt to produce a fourth intermediate, and
(v) : reacting the fourth intermediate with a compound containing boron to produce the OLED emitter of any of the above embodiments, , wherein R1–R6 are as defined in any one of the above embodiments.
24. The method of any one of the above embodiments, wherein the first, second, third, and fourth solvents are the same.
25. The method of any one of the above embodiments, wherein the first, second, third, and fourth solvents are different.
26. The method of any one of the above embodiments, wherein the reacting steps are performed in the presence of heat.
27. The method of any one of the above embodiments, wherein the first raw material is a substituted imidazole.
28. The method of any one of the above embodiments, wherein the first raw material is an unsubstituted imidazole.
29. The method of any one of the above embodiments, wherein the second raw  material is a substituted benzene.
30. The method of any one of the above embodiments, wherein the first, second, third, and fourth solvents are selected from: water, dimethylsulphoxide, MeOH, EtOH, THF, DCM, toluene, ethyl acetate, diethyl ether, acetonitrile, methylacetamide, dimethylacetamide, dimethylformamide, N-methylpyrrolidone, N-cyclo-hexylpyrrolidone, terpeniol, dimethylformamide, N-methylpyrrolidone, N, N-dimethylacetamide, dimethylformamide, N-methylpyrrolidone, N, N-dimethylacetamide, acetone, dioxane, chloroform, alkylated benzenes, halogenated benzenes, methyl ethyl ketone, cyclohexanone, ethyl benzoate, ethylene carbonate, propylene carbonate, 1, 2-dimethoxy ethane, tetrahydropyran, anisole, xylene, toluene, benzene, tetralin, indane, dichlorobenzene, cyclohexane, γ-butyrolactone, hexane, pentane, petroleum ether or a mixture ofthereof.
31. The method of any one of the above embodiments, wherein the metal of the metal carbonate is selected from Li, Cs, Na, K, Ca, Mg, Ba, and Ra.
BRIEF DESCRIPTION OF THE DRAWING FIGURES
The invention is illustrated in the figures of the accompanying drawings which are meant to be exemplary and not limiting, in which like references are intended to refer to like or corresponding parts, and in which:
Figs. 1A-F present a synthetic route for fabricating a complex having chemical structure of Structure I according to one or more embodiments of the present invention;
Fig. 2 presents an exemplary 1H NMR spectrum of Intermediate 261 according to one or more embodiments ofthe present invention;
Fig. 3 presents an exemplary 1H NMR spectrum of Emitter 1016 according to one or more embodiments of the present invention;
Fig. 4 presents an exemplary H-H COSY NMR spectrum of Emitter 1016 according to one or more embodiments of the present invention;
Fig. 5 presents an exemplary NOESY-2D NMR spectrum of Emitter 1016 according to one or more embodiments of the present invention;
Fig. 6 presents an exemplary 1H NMR spectrum of Emitter 1017 according to one or more embodiments of the present invention;
Fig. 7 presents an exemplary 19F NMR spectrum of Emitter 1017 according to one or more embodiments of the present invention;
Fig. 8 presents an exemplary 13C NMR spectrum of Emitter 1017 according to one or more embodiments of the present invention;
Fig. 9 presents an exemplary H-H COSY NMR spectrum of Emitter 1017 according to one or more embodiments of the present invention;
Fig. 10 presents an exemplary NOESY-2D NMR spectrum of Emitter 1017 according to one or more embodiments of the present invention;
Fig. 11 presents a perspective view of Emitter 1016 according to one or more embodiments of the present invention;
Fig. 12 presents a perspective view of Emitter 1017 according to one or more embodiments of the present invention;
Fig. 13 presents a graphical illustration of a solution PL and electroluminescence (EL) spectra of a model complex according to one or more embodiments of the present invention;
Fig. 14 presents a graphical illustration of a solution PL and EL spectra of Emitter 1016 according to one or more embodiments of the present invention;
Fig. 15 presents a graphical illustration of a solution PL and EL spectra of Emitter 1017 according to one or more embodiments of the present invention; and
Fig. 16 presents a graphical illustration of a solution PL and EL spectra of Emitter 1018 according to one or more embodiments of the present invention.
DETAILED DESCRIPTION
Definitions
To facilitate the understanding of the subject matter disclosed herein, a number ofterms, abbreviations or other shorthand as used herein are defined below. Any term, abbreviation or shorthand not defined is understood to have the ordinary meaning used by a skilled artisan contemporaneous with the submission of this application.
“Amino” refers to a primary, secondary, or tertiary amine which may be optionally substituted. Specifically included are secondary or tertiary amine nitrogen atoms which are members of a heterocyclic ring. Also specifically included, for example, are secondary or tertiary amino groups substituted by an acyl moiety. Some non-limiting examples of an amino group include–NR’ R” in which each of R’ and R” is independently H, alkyl, aryl, aralkyl, alkaryl, cycloalkyl, acyl, heteroalkyl, heteroaryl or heterocycyl.
“Alkyl” refers to a fully saturated acyclic monovalent radical containing carbon and  hydrogen, and which may be branched or a straight chain. Examples of alkyl groups include, but are not limited to, alkyl having 1-20 carbon atoms, 2-10 carbon atoms, or 4-6 carbon atoms, methyl, ethyl, n-propyl, isopropyl, n-butyl, t-butyl, n-heptyl, n-hexyl, n-octyl, and n-decyl.
“Alkylamino” means a radical-NHR or–NR2 where each R is independently an alkyl group. Representative examples of alkylamino groups include, but are not limited to, methylamino, (1-methylethyl) amino, methylamino, dimethylamino, methylethylamino, and di (1-methyethyl) amino.
The term “hydroxyalkyl” means an alkyl radical as defined herein, substituted with one or more, preferably one, two or three hydroxy groups. Representative examples of hydroxyalkyl include, but are not limited to, hydroxymethyl, 2-hydroxyethyl, 2-hydroxypropyl, 3-hydroxypropyl, 1- (hydroxymethyl) -2-methylpropyl, 2-hydroxybutyl, 3-hydroxybutyl, 4-hydroxybutyl, 2, 3-dihydroxypropyl, 2-hydroxy-1-hydroxymethylethyl, 2, 3-dihydroxybutyl, 3, 4-dihydroxybutyl and 2- (hydroxymethyl) -3-hydroxy-propyl, preferably 2-hydroxyethyl, 2, 3-dihydroxypropyl, and 1- (hydroxymethyl) 2-hydroxyethyl. The term “alkoxy, ” as used herein, refers the radical–ORx. Exemplary alkoxy groups include, but are not limited to, methoxy, ethoxy, and propoxy.
“Aromatic” or “aromatic group” refers to aryl or heteroaryl.
“Aryl” refers to optionally substituted carbocyclic aromatic groups. In some embodiments, the aryl group includes phenyl, biphenyl, naphthyl, substituted phenyl, substituted biphenyl or substituted naphthyl. In other embodiments, the aryl group is phenyl or substituted phenyl.
“Aralkyl” refers to an alkyl group which is substituted with an aryl group. Some non-limiting examples of aralkyl include benzyl and phenethyl.
“Acyl” refers to a monovalent group of the formula-C (=O) H, -C (=O) -alkyl, -C (=O) -aryl, -C (=O) -aralkyl, or -C (=O) -alkaryl.
“Halogen” refers to fluorine, chlorine, bromine and iodine.
“Styryl” refers to a univalent radical C6H5-CH=CH-derived from styrene.
“Substituted” as used herein to describe a compound or chemical moiety refers to that at least one hydrogen atom of that compound or chemical moiety is replaced with a second chemical moiety. Non-limiting examples of substituents are those found in the exemplary compounds and embodiments disclosed herein, as well as halogen; alkyl; heteroalkyl; alkenyl; alkynyl; aryl; heteroaryl; hydroxy; alkoxyl; amino; nitro; thiol; thioether; imine; cyano; amido; phosphonato; phosphine; carboxyl; thiocarbonyl; sulfonyl; sulfonamide; ketone; aldehyde; ester; oxo; haloalkyl (e.g., trifluoromethyl) ; carbocyclic cycloalkyl, which can be monocyclic or fused or non-fused polycyclic (e.g., cyclopropyl, cyclobutyl, cyclopentyl or cyclohexyl) or a heterocycloalkyl, which can be monocyclic or fused or non-fused polycyclic (e.g., pyrrolidinyl, piperidinyl, piperazinyl, morpholinyl or thiazinyl) ; carbocyclic or heterocyclic, monocyclic or fused or non-fused polycyclic aryl (e.g., phenyl, naphthyl, pyrrolyl, indolyl, furanyl, thiophenyl, imidazolyl, oxazolyl, isoxazolyl, thiazolyl, triazolyl, tetrazolyl, pyrazolyl, pyridinyl, quinolinyl, isoquinolinyl, acridinyl, pyrazinyl, pyridazinyl, pyrimidinyl, benzimidazolyl, benzothiophenyl or benzofuranyl) ; amino (primary, secondary or tertiary) ; o-lower alkyl; o-aryl, aryl; aryl-lower alkyl; -CO2CH3; -CONH2; -OCH2CONH2; -NH2; -SO2NH2; -OCHF2; -CF3; OCF3; –NH (alkyl) ; –N (alkyl) 2; –NH (aryl) ; –N (alkyl) (aryl) ; –N (aryl) 2; –CHO; –CO (alkyl) ; -CO (aryl) ; -CO2 (alkyl) ; and–CO2 (aryl) ; and such moieties can also be optionally substituted by a fused-ring structure or bridge, for example -OCH2O-. These substituents can optionally be further substituted with a substituent selected from such groups. All chemical groups disclosed herein can be substituted, unless it is specified otherwise. For example, “substituted” alkyl, alkenyl, alkynyl, aryl, hydrocarbyl or heterocyclo moieties described herein are moieties which are substituted with a hydrocarbyl moiety, a substituted hydrocarbyl moiety, a heteroatom, or a heterocyclo. Further, substituents may include moieties in which a carbon atom is substituted with a heteroatom such as nitrogen, oxygen, silicon, phosphorus, boron, sulfur, or a halogen atom. These substituents may include halogen, heterocyclo, alkoxy, alkenoxy, alkynoxy, aryloxy, hydroxy, protected hydroxy, keto, acyl, acyloxy, nitro, amino, amido, cyano, thiol, ketals, acetals, esters and ethers.
Platinum (II) emitters
In one aspect, the present invention provides platinum (II) emitters. In one or more  embodiments, an organometallic emitter represented by Structure I is provided, as illustrated below. The platinum center in Structure I is in+2 oxidation state and has a square planar geometry. The coordination sites of the platinum center are occupied by a tridentate ligand and an excimer emission suppression group (ESG) . The tridentate ligand featuring 5-5 fused membered rings coordinates to the platinum center through a metal-carbon (NHC) bond, a metal-carbon (deprotonated carbon) bond and a metal-carbon (NHC) bond. The ESG is coordinated with the platinum center through a metal-carbon (cyanide) bond.
In one or more embodiments, the platinum (II) emitters have the chemical structures of Structure I:
Figure PCTCN2017071047-appb-000017
in which R1–R6 are independently hydrogen, halogen, hydroxyl, an unsubstituted alkyl, asubstituted alkyl, cycloalkyl, an unsubstituted aryl, a substituted aryl, acyl, alkoxy, acyloxy, amino, nitro, acylamino, aralkyl, cyano, carboxyl, thio, styryl, aminocarbonyl, carbamoyl, aryloxycarbonyl, phenoxycarbonyl, or an alkoxycarbonyl group. Each pair of adjacent R groups of R1–R6 can be independently form 5–8 member ring (s) with 2 or 4 carbon atoms in the phenyl ring (s) showed in Structure I and wherein ESG is an excimer emission suppression group.
In one or more embodiments, the ESG group is 
Figure PCTCN2017071047-appb-000018
 in which R7–R9 are independently an unsubstituted alkyl, a substituted alkyl, cycloalkyl, an unsubstituted aryl, a substituted aryl, acyl, alkoxy, acyloxy or amino group.
In one or more embodiments, R1–R6 is independently hydrogen, halogen, hydroxyl, an unsubstituted alkyl containing from 1 to 20 carbon atoms, a substituted alkyl containing  from 1 to 20 carbon atoms, cycloalkyl containing from 4 to 20 carbon atoms, an unsubstituted aryl containing from 6 to 20 carbon atoms, a substituted aryl containing from 6 to 20 carbon atoms, acyl containing from 1 to 20 carbon atoms, alkoxy containing from 1 to 20 carbon atoms, acyloxy containing from 1 to 20 carbon atoms, amino, nitro, acylamino containing from 1 to 20 carbon atoms, aralkyl containing from 1 to 20 carbon atoms, cyano, carboxyl containing from 1 to 20 carbon atoms, thiol, styryl, aminocarbonyl containing from 1 to 20 carbon atoms, carbamoyl containing from 1 to 20 carbon atoms, aryloxycarbonyl containing from 1 to 20 carbon atoms, phenoxycarbonyl containing from 1 to 20 carbon atoms, or an alkoxycarbonyl group containing from 1 to 20 carbon atoms.
In certain embodiments, R1 is C4H9 or C6H13. In certain embodiments, R2 is H, F, or CH3. In certain embodiments, R3 is H, F or CH3. In certain embodiments, R4 is H, F, or CH3. In certain embodiments, R5 is H, F, CH3, or CF3. In certain embodiments, R6 is H, F, or CH3.
In one or more embodiments, ESG is:
Figure PCTCN2017071047-appb-000019
in which n is an integer. In certain embodiments, n is an integer having a value of 1-3, 3-6, 6-8, 8-10, 10-15 or 15-20.
In one or more embodiments, ESG is:
Figure PCTCN2017071047-appb-000020
in which R10–R24 are independently hydrogen, halogen, hydroxyl, an unsubstituted alkyl, a substituted alkyl, cycloalkyl, an unsubstituted aryl, a substituted aryl, acyl, alkoxy, acyloxy, amino, nitro, acylamino, aralkyl, cyano, carboxyl, thio, styryl, aminocarbonyl,  carbamoyl, aryloxycarbonyl, phenoxycarbonyl, or an alkoxycarbonyl group.
In one or more embodiments, ESG is:
Figure PCTCN2017071047-appb-000021
in which R10–R19 are independently hydrogen, halogen, hydroxyl, an unsubstituted alkyl, a substituted alkyl, cycloalkyl, an unsubstituted aryl, a substituted aryl, acyl, alkoxy, acyloxy, amino, nitro, acylamino, aralkyl, cyano, carboxyl, thio, styryl, aminocarbonyl, carbamoyl, aryloxycarbonyl, phenoxycarbonyl, or an alkoxycarbonyl group; and n is an integer. In certain embodiments, n is an integer having a value of 1-3, 3-6, 6-8, 8-10, 10-15 or 15-20.
In one or more embodiments, ESG is:
Figure PCTCN2017071047-appb-000022
in which R10–R14 are independently hydrogen, halogen, hydroxyl, an unsubstituted alkyl, a substituted alkyl, cycloalkyl, an unsubstituted aryl, a substituted aryl, acyl, alkoxy, acyloxy, amino, nitro, acylamino, aralkyl, cyano, carboxyl, thio, styryl, aminocarbonyl, carbamoyl, aryloxycarbonyl, phenoxycarbonyl, or an alkoxycarbonyl group; and n is an integer. In certain embodiments, n is an integer having a value of 1-15, 1-3, 3-6, 6-8, 8-10, 10-15 or 15-20.
In certain embodiments, the ESG is B (C4H93, B (C6H133, BPh3 or B (C6F53.
Certain specific, non-limiting examples for the platinum (II) emitters with Structure I are shown as follows:
Figure PCTCN2017071047-appb-000023
Figure PCTCN2017071047-appb-000024
Preparation of platinum (II) emitter
In one or more embodiments, the platinum (II) emitter with chemical structure of Structure I can be prepared by a series of reactions depicted in Figs 1A-F. In some embodiments, the solvents used in each step are the same. In other embodiments, the solvents used in each step are different. The solvent used in the present invention is selected from: water, dimethylsulphoxide (DMSO) , MeOH, EtOH, THF, DCM, toluene, ethyl acetate, diethyl ether, acetonitrile, methylacetamide, dimethylacetamide, dimethylformamide, N-methylpyrrolidone, N-cyclo-hexylpyrrolidone, terpeniol, dimethylformamide (DMF) , N-methylpyrrolidone (NMP) , N, N-dimethylacetamide (DMAc) , dimethylformamide (DMF) , N-methylpyrrolidone (NMP) , N, N-dimethylacetamide (DMAc) , acetone, dioxane, chloroform, alkylated benzenes, halogenated benzenes, methyl ethyl ketone, cyclohexanone, ethyl benzoate, ethylene carbonate, propylene carbonate, 1, 2-dimethoxy ethane, tetrahydropyran, anisole, xylene, toluene, benzene, tetralin, indane, dichlorobenzene, cyclohexane, γ-butyrolactone, chlorobenzene, hexane, pentane, petroleum ether (PE) or a mixture of thereof.
As shown in Figs. 1A-B, Raw Material 210 reacts with Raw Material 220 to form Intermediate 230 in the presence of CuO and a metal carbonate in suitable solvent (s) . In certain embodiments, Raw Material 210 includes substituted and unsubstituted imidazoles. In certain embodiments, Raw Material 220 includes substituted benzenes. For example, Raw Material 220 can include bihalobenzenes and haloalkyl-bihalobenzenes.
As shown in Fig. 1C, Intermediate 230 is then transformed to Intermediate 240 in the presence of R1-X in suitable solvent (s) with the optional application of heat [from 25 to 250℃] .. X is a halogen atom. By reacting Intermediate 240 with platinum salt in suitable solvent (s) with the optional application of heat, Intermediate 250 can be obtained, as shown by Fig. 1D. The halide bonded to the platinum center can be exchanged to cyanide group by reacting with suitable cyanide salt in a suitable solvent, to obtain Intermediate 260, Fig. 1E. Finally, as illustrated by Fig. 1F, a Complex with Structure I can be prepared by reacting Intermediate 260 with a boron containing compound.
Examples
Following are examples that illustrate embodiments for practicing the invention. These examples should not be construed as limiting. All percentages are by weight and all solvent mixture proportions are by volume unless otherwise noted.
Example 301-Synthesis of Intermediate 231
Figure PCTCN2017071047-appb-000025
Raw Material 211 (2.5 ml, 21 mmol) , Raw Material 221 (3.5 g, 52 mmol) , K2CO3 (7.2 g, 52 mmol) and CuO (0.4 g, 5.2 mmol) were mixed and dissolved in DMSO (20 ml) . The solution was heated at 150 ℃ for 48 hours. The reaction was cooled, and the DMSO was distilled at low-pressure, yielding an off-white solid. Chromatography on silica gel (25: 1) eluting with CH2Cl2/MeOH (10: 1) gave a white solid (3.3 g, 77%) 1H NMR (400 MHz, CDCl3) : δ=7.91 (s, 2H) , 7.60 (t, J=8.0 Hz, 2H) , 7.36-7.47 (m, 3H) , 7.32 (s, 2H) , 7.23 (s, 2H) .
Example 302-Synthesis of Intermediate 232
Figure PCTCN2017071047-appb-000026
Raw Material 212 (1.50 ml, 9.62 mmol) , Raw Material 221 (1.64 g, 24 mmol) , CuO (0.23 g, 2.89 mmol) , potassium carbonate (3.34 g, 24 mmol) , and DMSO (20 ml) were mixed and stirred at 150 ℃ for two days. The reaction was cooled to room temperature and dichloromethane (150 ml) was added. The mixture was filtered through basic activated alumina, and the filter was washed with DCM/MeOH (20 ml/2 ml) , giving an amber solution, which was concentrated to dryness to afford a beige residue. Cold ethyl acetate was added and a white solid was obtained. 1H NMR (400 MHz, CDCl3) : δ=7.96 (s, 2H) , 7.65 (s, 2H) , 7.63 (s, 1H) , 7.37 (s, 2H) , 7.29 (s, 2H) .
Example 303-Synthesis of Intermediate 241
Figure PCTCN2017071047-appb-000027
The suspension of Intermediate 231 (4.3 g, 20.5 mmol) and 1-bromobutane (8.4 g, 61.3 mmol) in toluene was refluxed at 150 ℃ for 48 hours. The solid stuck to the bottom of the flask. Solvent was poured out and the solid was washed by THF in order to wash out the viscous elements. The result was to obtain a white solid. Yield: 9.5g, 18 mmol; 88%. 1H NMR (400 MHz, CD3CN) : δ=10.84 (s, 2H) , 8.79 (s, 1H) , 8.36 (d, 2H) , 7.94 (d, J =7.68 Hz, 2H) , 7.84 (t, J=7.20 Hz, 1H) , 7.65 (s, 2H) , 4.31 (t, J=7.20 Hz, 2H) , 1.99 (quint, J =7.52 Hz, 4H) , 1.40 (sext, J=7.56 Hz, 4H) , 0.98 (t, J=7.28 Hz, 6H) .
Example 304-Synthesis of Intermediate 242
Figure PCTCN2017071047-appb-000028
The suspension of Intermediate 232 (1.5 g, 5.4 mmol) and 1-bromobutane (2.94 g, 21.4 mmol) in acetonitrile was refluxed at 150 ℃ for 48 hours. The yellow solution was filtered through Celite and concentrated. Diethyl ether was added into concentrated acetonitrile solution and a white solid was obtained. Yield: 2.7 g, 4.9 mmol; 90.6%. 1H NMR (400 MHz, CD3CN) : δ=10.94 (s, 2H) , 9.14 (s, 1H) , 8.43 (s, 2H) , 8.26 (s, 2H) , 7.67 (s, 2H) , 4.32 (t, J=7.24 Hz, 4H) , 1.94 (quint, J=7.44 Hz, 4H) , 1.47 (sext, J=7.48 Hz, 4H) , 0.98 (t, J=7.36 Hz, 6H) .
Example 305-Synthesis of Intermediate 251
Figure PCTCN2017071047-appb-000029
Intermediate 241 (200 mg, 0.4 mmol) , tetrakis (dimethylamino) zirconium (200 mg, 1.5 mmol) and CH2Cl2 (~5.0 ml) were combined. The mixture was stirred for 1 hour at room temperature to give a red solution. Pt (COD) Cl2 (155 mg, 0.4 mmol) was added, and the mixture was stirred at room temperature overnight. The mixture was permitted to settle. Yellow solid was observed at the bottom ofthe flask. The red solution was removed and the yellow solid was dissolved in 50 ml dichloromethane and filtered through Celite. The filtration was concentrated and precipitated by adding diethyl ether. Yield: 100mg, 0.18mmol; 45%. 1H NMR (400 MHz, CDCl3) : δ=7.34 (d, 2H) , 7.12 (t, J=8.04 Hz, 1H) , 6.97 (d, 2H) , 6.88 (d, J=7.88 Hz, 2H) , 4.72 (t, J=7.24 Hz) , 1.89 (quint, J=7.4 Hz, 4H) , 1.47 (sext, J=7.72 Hz, 4H) , 0.96 (t, J=7.32 Hz, 6H) .
Example 306-Synthesis of Intermediate 252
Figure PCTCN2017071047-appb-000030
Intermediate 242, tetrakis (dimethylamino) zirconium and CH2Cl2 were combined. The mixture was stirred for 1 hour at room temperature to give a red solution. Pt (COD) Cl2 was added, and the mixture was stirred at room temperature overnight. The mixture was permitted to settle. A solid was observed at the bottom of the flask. The solution was removed and the solid was dissolved in dichloromethane and filtered through Celite.  The filtration was concentrated and precipitated by adding diethyl ether. 1H NMR (400 MHz, CDCl3) : δ=7.41 (s, 2H) , 7.13 (t, J=8.32 Hz, 2H) , 7.03 (s, 2H) , 4.80 (t, J=7.36 Hz, 4H) , 1.90 (quint, J=7.48 Hz, 4H) , 1.43-1.53 (m, 4H) , 0.97 (t, J=7.36 Hz, 6H) .
Example 307-Synthesis of Intermediate 261
Figure PCTCN2017071047-appb-000031
The mixture of Intermediate 251 (100 mg, 0.167mmol) and silver cyanide (24.7 mg, 0.184 mmol) was stirred overnight in dichloromethane. AgBr was removed through Celite, and the filtrate was collected. After removing the solvent by vacuum, a greenish yellow solid was obtained, which yielded 60 mg, 66%. 1H NMR (400 MHz, CDCl3) : δ7.36 (d, 2H) , 7.15 (t, 1H) , 7.13-6.91 (m, 4H) , 4.59 (t, 4H) , 1.93 (m, 4H) , 1.52 (m, 4H) , 0.97 (t, 6H) . The 1H NMR spectrum of Intermediate 261 is illustrated as Fig. 2.
Example 308–Synthesis of Emitter 1016
Figure PCTCN2017071047-appb-000032
2 ml of hydrochloric acid (3.0 M) was added in a dropwise manner to a stirred suspension of Intermediate 261 (50 mg, 0.092 mmol) in 20 ml mixed solvent of water and methanol (1: 1) . After 30 minutes, NaBPh4 (65 mg, 0.190 mmol) was added. The resulting solution was stirred overnight at room temperature, during which a light yellow solid gradually precipitated. The precipitate was then collected by filtration and washed with water and methanol. Further purification was achieved by recrystallization from the slow diffusion of diethyl ether into concentrated dichloromethane solution of the complexes. This produced a yield of 60 mg, 0.076 mmol; 82%. 1H NMR (500 MHz, CDCl3) : δ=7.45 (d, J=6.8 Hz, 6H) , 7.32 (s, 2H) , 7.18 (t, J=7.4 Hz, 6H) , 7.14-7.08 (m, 4H) , 6.93-6.79 (m, 4H) , 4.09 (t, J=6.2 Hz, 4H) , 1.42-1.31 (m, 4H) , 0.97 (sext, J=7.3 Hz, 4H) , 0.67 (t, J=7.3 Hz, 6H) . 13C {1H} NMR (150 MHz, CDCl3, 25℃, TMS) : δ=13.6, 19.1, 32.6,  51.2, 107.8, 115.8, 119.5, 124.2, 126.2, 126.5, 133.9, 140.1, 143.6, 154.1, 169.5 ppm. The 1H, H-H COSY and NOESY-2D NMR spectra of Emitter 1016 are illustrated by Figs. 3–5, respectively.
Example 309–Synthesis of Emitter 1017
Figure PCTCN2017071047-appb-000033
The mixture of Intermediate 261 (58 mg, 0.107 mmol) and B (C6F63 (60 mg, 0.117 mmol) was pump-filled three times in a flask. Dry dichloromethane was added into the flask. The solution was stirred overnight at room temperature under argon. A yellow solid was obtained after the solvent was removed by vacuum, which yielded 100 mg, 88.5%. 1H NMR (500 MHz, CDCl3) : δ7.36 (s, 2H) , 7.12 (t, J=7.8 Hz, 1H) , 6.96 (s, 2H) , 6.93-6.86 (m,2H) , 4.13 (t, J=6.6 Hz, 4H) , 1.55-1.45 (m, 4H) , 1.02 (sext, J=7.6 Hz, 4H) , 0.79 (t, J= 7.3 Hz, 6H) . 13C {1H} NMR (126 MHz, CDCl3, 25℃, TMS) : δ=13.4, 19.2, 32.8, 50.8, 108.0, 116.1, 119.9, 120.0, 126.7, 137.0 (d, 1JCF=260 Hz) , 139.63 (d, 1JCF=250 Hz) , 148.06 (d, 1JCF=242 Hz) , 142.8, 146.2, 146.3, 169.0 ppm. The 1H, 13C, 19F, H-H COSY and NOESY-2D NMR spectra are illustrated by Figs. 6–10, respectively.
Example 310–Synthesis of Emitter 1018
Figure PCTCN2017071047-appb-000034
The mixture of Intermediate 262 and B (C6F63 was pump-filled three times in a flask. Dry dichloromethane was added into the flask. The solution was stirred overnight at room  temperature under argon. A solid was obtained after solvent was removed byvacuum. 1H NMR (400 MHz, CDCl3) : δ=7.45 (s, 2H) , 7.45 (t, J=5.36 Hz, 2H) , 7.04 (s, 2H) , 4.18 (t, J= 6.36 Hz, 4H) , 1.54 (quint, J=6.80 Hz) , 1.04 (sext, J=7.68 Hz, 2H) , 0.79 (t, J=7.40 Hz, 6H) .
Example 311–X-Ray diffraction data of Emitter 1016 and Emitter 1017
Table 1. Selected bond lengths and angles for complexes
Figure PCTCN2017071047-appb-000035
Fig. 11 illustrates a perspective view of Emitter 1016. Fig. 12 illustrates a perspective view of Emitter 1017.
Table 2. Example 312–Photophysical data for Emitter 1016, Emitter 1017 and Emitter 1018
Figure PCTCN2017071047-appb-000036
Figure PCTCN2017071047-appb-000037
[a] Measured in degassed dichloromethane (2×10-5M) at 298 K unless specified. [b] Measured in dichloromethane at 1×10-3 M. [c] Emission quantum yieldsweredetermined using quininesulfate in degassed sulfuricacid asstandard (Φr=0.546) . [d] τ=roomtemperature lifetime. [e] Measured in PMMA with 5 wt. %complex [f] Measured in glassy solutions (MeOH/EtOH=1: 4) .
Example 313–OLED fabrication procedures
In this example, an OLED is fabricated using the following materials: PEDOT: PSS [poly (3, 4-ethylenedioxythiophene) : poly (styrene sulfonic acid) ] (Clevios P AI 4083) that was purchased from Heraeus, and PYD2, DPEPO and TPBi purchased from Luminescence Technology Corp. Each of these materials was used without modification. All Pt (II) emitters were purified bygradient sublimation before use.
In order to fabricate the OLED, the substrate is first cleaned. In this example, glass slides with pre-patterned ITO electrodes used as substrates of OLEDs were cleaned in an ultrasonic bath of Decon 90 detergent and deionized water, rinsed with deionized water, and then cleaned in sequential ultrasonic baths of deionized water, acetone, and isopropanol, and subsequently dried in an oven for 1 hour.
Thereafter, the OLED can be fabricated and characterized. In certain embodiments, the OLED includes one or more emissive layers. First, PEDOT: PSS were spin-coated onto the cleaned ITO-coated glass substrate and baked at 120℃ for 20 minutes to remove the residual water solvent in a clean room. Then, blends of PYD2: Pt (II) complex were spin-coated from chlorobenzene atop the PEDOT: PSS layer inside a N2-filled glove box. The thickness for all EMLs was approximately 60 nm. Afterwards, all devices were annealed at 110℃ for 10 min inside the glove box and subsequently transferred into a Kurt J. Lesker SPECTROS vacuum deposition system without exposing to air. Finally, DPEPO (10 nm) , TPBi (40 nm) , LiF (1.2 nm) , and Al (150 nm) were deposited in sequence by thermal evaporation at a pressure of 10-8 mbar. Electroluminescence (EL) spectra were recorded by an Ocean Optics Maya 2000 pro spectrometer. CIE coordination, and CRI were measured by a Photo Research Inc PR-655. Voltage-current characteristics were  measured by a Keithley 2400 source-meter measurement unit. All devices were characterized at room temperature without encapsulation. External quantum efficiency (EQE) and power efficiency were calculated by assuming a Lambertian distribution.
Table 3. Example 314–Key performance of OLEDs fabricated from Emitter 1016, Emitter 1017, Emitter 1018 and a model complex for comparison.
Figure PCTCN2017071047-appb-000038
Figure PCTCN2017071047-appb-000039
Fig. 13 provides a graphical representation of the comparison of solution PL and EL spectra of the model complex. Figs. 14-16 provide graphical representations of the comparison of solution PL and EL spectra of Emitter 1016, Emitter 1017, and Emitter 1018, respectively.
Like the cases in other [Pt (II) C (NHC) ^C^C (NHC) ] complexes, excimer emission arises in devices 401 and 402, which make the emission color red-shifted.
However, when the ESG is added, the EL spectra of devices 403-408 are at the same range of the corresponding PL spectra. Excimer emission is successfully suppressed. Therefore, blue OLED can be obtained with this system.
Besides the emission color, the device efficiencies of devices 403–408 are much higher than the device fabricated by model complex.
Example 315–OLED performance for Emitter 1017 with modified device structure
The modified device structure is: ITO/NPB (30 nm) /mCP (10 nm) /BOCP: Emitter 1017 (30 nm) /PhOXD (40 nm) /LiF (1.2 nm) /Al (150 nm) . All layers in this device are fabricated by vacuum deposition.
Concentration (wt%) Max. CE (cdA-1) Max. EQE (%) CIE (x, y)
3 20.70 13.04 0.15, 0.21
8 27.54 16.58 0.15, 0.22
15 13.86 7.88 0.16, 0.23
With respect to any figure or numerical range for a given characteristic, a figure or a parameter from one range may be combined with another figure or a parameter from a different range for the same characteristic to generate a numerical range.
Other than in the operating examples, or where otherwise indicated, all numbers, values and/or expressions referring to quantities of ingredients, reaction conditions, etc., used in the application text are to be understood as modified in all instances by the term "about. "
While the invention has been explained in relation to certain embodiments, it is to be understood that various modifications thereof will become apparent to those skilled in the art upon reading the specification. Therefore, it is to be understood that the invention disclosed herein is intended to cover such modifications as fall within the claimed scope.

Claims (7)

  1. OLED emitter having a chemical structure according to Structure I:
    Figure PCTCN2017071047-appb-100001
    wherein
    R1–R6 are independently selected from hydrogen, halogen, hydroxyl, an unsubstituted alkyl, a substituted alkyl, cycloalkyl, an unsubstituted aryl, a substituted aryl, acyl, alkoxy, acyloxy, amino, nitro, acylamino, aralkyl, cyano, carboxyl, thio, styryl, aminocarbonyl, carbamoyl, aryloxycarbonyl, phenoxycarbonyl, or an alkoxycarbonyl group;
    each pair of adjacent R groups of R1–R6 forms 5–8 member ring (s) with other carbon and/or nitrogen atoms;
    ESG is an excimer emission suppression group.
  2. The OLED emitter of claim 1, wherein the emitter is blue organic light-emitting diode and has an emission wavelength between 440 nm and 500 nm; and/or
    wherein R1–R6 is independently selected from hydrogen, halogen, hydroxyl, an unsubstituted alkyl containing from 1 to 20 carbon atoms, a substituted alkyl containing from 1 to 20 carbon atoms, cycloalkyl containing from 4 to 20 carbon atoms, an unsubstituted aryl containing from 6 to 20 carbon atoms, a substituted aryl containing from 6 to 20 carbon atoms, acyl containing from 1 to 20 carbon atoms, alkoxy containing from 1 to 20 carbon atoms, acyloxy containing from 1 to 20 carbon atoms, amino, nitro, acylamino containing from 1 to 20 carbon atoms, aralkyl containing from 1 to 20 carbon atoms, cyano, carboxyl containing from 1 to 20 carbon atoms, thiol, styryl, aminocarbonyl containing from 1 to 20 carbon atoms, carbamoyl containing from 1 to 20 carbon atoms, aryloxycarbonyl containing from 1 to 20 carbon atoms, phenoxycarbonyl  containing from 1 to 20 carbon atoms, or an alkoxycarbonyl group containing from 1 to 20 carbon atoms; and/or
    wherein the ESG group is
    Figure PCTCN2017071047-appb-100002
    and R7–R9 are independently an unsubstituted alkyl, a substituted alkyl, cycloalkyl, an unsubstituted aryl, a substituted aryl, acyl, alkoxy, acyloxy or amino group; and/or
    wherein ESG is:
    Figure PCTCN2017071047-appb-100003
    and n is an integer; and/or
    wherein ESG is:
    Figure PCTCN2017071047-appb-100004
    and R10–R24 are independently hydrogen, halogen, hydroxyl, an unsubstituted alkyl, a substituted alkyl, cycloalkyl, an unsubstituted aryl, a substituted aryl, acyl, alkoxy, acyloxy, amino, nitro, acylamino, aralkyl, cyano, carboxyl, thio, styryl, aminocarbonyl, carbamoyl, aryloxycarbonyl, phenoxycarbonyl, or an alkoxycarbonyl group; and/or
    wherein ESG is:
    Figure PCTCN2017071047-appb-100005
    R10–R19 are independently hydrogen, halogen, hydroxyl, an unsubstituted alkyl, a substituted alkyl, cycloalkyl, an unsubstituted aryl, a substituted aryl, acyl, alkoxy, acyloxy, amino, nitro, acylamino, aralkyl, cyano, carboxyl, thio, styryl, aminocarbonyl, carbamoyl, aryloxycarbonyl, phenoxycarbonyl, or an alkoxycarbonyl group; and n is an integer; and/or
    wherein ESG is:
    Figure PCTCN2017071047-appb-100006
    R10–R14 are independently hydrogen, halogen, hydroxyl, an unsubstituted alkyl, a substituted alkyl, cycloalkyl, an unsubstituted aryl, a substituted aryl, acyl, alkoxy, acyloxy, amino, nitro, acylamino, aralkyl, cyano, carboxyl, thio, styryl, aminocarbonyl, carbamoyl, aryloxycarbonyl, phenoxycarbonyl, or an alkoxycarbonyl group; and n is an integer; and/or
    wherein the ESG is selected to produce an λmax emission having a red-shift of less than 10 nm as compared with an OLED emitter having a halogen in place of the ESG; and/or
    wherein the OLED emitter produces no excimer emission in an EL spectrum; and/or
    wherein the OLED emitter produces an EL spectrum having no new emission shoulder as compared to a solution PL spectrum produced by the OLED emitter; and/or
    wherein the OLED emitter produces a blue emission having a CIE chromaticity x-coordinate of less than 0.20; and/or
    wherein the OLED emitter produces a blue emission having a CIE chromaticity  y-component of less than 0.35; and/or
    wherein the OLED emitter produces a blue emission having an emission λmax of less than 500 nm in a solution; and/or
    wherein the OLED emitter shows emission lifetime of less than 10μs.
  3. The OLED emitter of claim 1, wherein the OLED emitter is selected from the following emitters having chemical structures of:
    Figure PCTCN2017071047-appb-100007
    Figure PCTCN2017071047-appb-100008
  4. A light-emitting device, comprising at least one OLED emitter (s) in any one of claims 1 to 3 as the emitting material (s) .
  5. The light-emitting device of claim 4, wherein the light-emitting device is an organic light-emitting diode (OLED) ; and/or
    wherein the device is fabricated by vacuum deposition; and/or
    wherein the device is fabricated by solution processes; and/or
    wherein the dopant concentration is greater than 5 percent by weight; and/or
    wherein the device contains an emissive layer comprising at least one host material and one dopant material; and/or
    wherein the device contains more than one emissive layers and each emissive layer comprises at least one host material and one dopant material.
  6. A method of making the OLED emitter of any one of claims 1-3, comprising the steps of:
    (i) : reacting, in the presence of CuO and a metal carbonate in a first solvent, a first raw material having a structure of
    Figure PCTCN2017071047-appb-100009
    with a second raw material having a structure of
    Figure PCTCN2017071047-appb-100010
    wherein X is a halogen atom, to produce a first intermediate having a structure of
    Figure PCTCN2017071047-appb-100011
    (ii) : reacting, in a second solvent, the first intermediate in the presence of R1-X to  produce a second intermediate having a structure of
    Figure PCTCN2017071047-appb-100012
    (iii) : reacting, in a third solvent, the second intermediate with a platinum salt, to produce a third intermediate having a structure of
    Figure PCTCN2017071047-appb-100013
    (iv) : reacting, in a fourth solvent, the third intermediate with a cyanide salt to produce a fourth intermediate, and
    (v) : reacting the fourth intermediate with a compound containing boron to produce the OLED emitter of any one of claims 1-3,
    wherein R1–R6 are as defined in any one of claims 1-3.
  7. The method of claim 6, wherein the first, second, third, and fourth solvents are the same; and/or
    wherein the first, second, third, and fourth solvents are different; and/or
    wherein the first, second, third, and fourth solvents are selected from: water, dimethylsulphoxide, MeOH, EtOH, THF, DCM, toluene, ethyl acetate, diethyl ether, acetonitrile, methylacetamide, dimethylacetamide, dimethylformamide, N-methylpyrrolidone, N-cyclo-hexylpyrrolidone, terpeniol, dimethylformamide, N-methylpyrrolidone, N, N-dimethylacetamide, dimethylformamide, N-methylpyrrolidone, N, N-dimethylacetamide, acetone, dioxane, chloroform, alkylated benzenes, halogenated benzenes, methyl ethyl ketone, cyclohexanone, ethyl benzoate, ethylene carbonate, propylene carbonate, 1, 2-dimethoxy ethane, tetrahydropyran, anisole, xylene, toluene, benzene, tetralin, indane, dichlorobenzene, cyclohexane, γ-butyrolactone, hexane, pentane, petroleum ether or a mixture of thereof; and/or
    wherein the metal of the metal carbonate is selected from Li, Cs, Na, K, Ca, Mg, Ba, and Ra; and/or
    wherein the reacting steps are performed in the presence of heat; and/or
    wherein the first raw material is a substituted imidazole; and/or
    wherein the first raw material is an unsubstituted imidazole; and/or
    wherein the second raw material is a substituted benzene.
PCT/CN2017/071047 2016-01-15 2017-01-13 Platinum complexes for blue oled application WO2017121367A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
KR1020187022813A KR102213183B1 (en) 2016-01-15 2017-01-13 Platinum complex for blue OLED application
JP2018536790A JP2019509621A (en) 2016-01-15 2017-01-13 Platinum complexes for blue OLED applications
EP17738180.3A EP3402861A4 (en) 2016-01-15 2017-01-13 Platinum complexes for blue oled application
CN201780006737.6A CN108699435B (en) 2016-01-15 2017-01-13 Platinum complexes for blue OLED applications

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US201662279042P 2016-01-15 2016-01-15
US62/279,042 2016-01-15

Publications (1)

Publication Number Publication Date
WO2017121367A1 true WO2017121367A1 (en) 2017-07-20

Family

ID=59310832

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/071047 WO2017121367A1 (en) 2016-01-15 2017-01-13 Platinum complexes for blue oled application

Country Status (6)

Country Link
US (1) US10361382B2 (en)
EP (1) EP3402861A4 (en)
JP (1) JP2019509621A (en)
KR (1) KR102213183B1 (en)
CN (1) CN108699435B (en)
WO (1) WO2017121367A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102527229B1 (en) * 2017-05-10 2023-05-02 삼성디스플레이 주식회사 Organometallic compound and organic light emitting device comprising the same

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100314994A1 (en) * 2009-06-16 2010-12-16 Chi Ming Che Platinum (II) Isoqulinoline-Pyridine-Benzene Based Complexes, Methods for Making Same, and Organic Light-Emitting Diodes Including Such Complexes
US20110062858A1 (en) * 2006-07-28 2011-03-17 Novaled Ag Oxazole Triplet Emitters for OLED Applications
US20150105556A1 (en) * 2013-10-14 2015-04-16 Jian Li Platinum complexes and devices
WO2015149677A1 (en) * 2014-04-03 2015-10-08 Versitech Limited Platinum (ii) emitters for oled applications

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009086209A2 (en) * 2007-12-21 2009-07-09 Arizona Board Of Regents For And On Behalf Of Arizona State University Platinum(ii) di(2-pyrazolyl)benzene chloride analogs and uses
US9029804B2 (en) * 2009-10-19 2015-05-12 University Of Mississippi Air-stable, blue light emitting chemical compounds
US8673458B2 (en) * 2010-06-11 2014-03-18 Universal Display Corporation Delayed fluorescence OLED
US9655199B2 (en) * 2012-05-30 2017-05-16 Universal Display Corporation Four component phosphorescent OLED for cool white lighting application

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110062858A1 (en) * 2006-07-28 2011-03-17 Novaled Ag Oxazole Triplet Emitters for OLED Applications
US20100314994A1 (en) * 2009-06-16 2010-12-16 Chi Ming Che Platinum (II) Isoqulinoline-Pyridine-Benzene Based Complexes, Methods for Making Same, and Organic Light-Emitting Diodes Including Such Complexes
US20150105556A1 (en) * 2013-10-14 2015-04-16 Jian Li Platinum complexes and devices
WO2015149677A1 (en) * 2014-04-03 2015-10-08 Versitech Limited Platinum (ii) emitters for oled applications

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3402861A4 *

Also Published As

Publication number Publication date
EP3402861A4 (en) 2019-09-25
US10361382B2 (en) 2019-07-23
CN108699435B (en) 2021-06-29
JP2019509621A (en) 2019-04-04
KR20180100654A (en) 2018-09-11
KR102213183B1 (en) 2021-02-05
US20170207389A1 (en) 2017-07-20
CN108699435A (en) 2018-10-23
EP3402861A1 (en) 2018-11-21

Similar Documents

Publication Publication Date Title
US10998510B2 (en) Platinum (II) emitters for OLED applications
US10243154B2 (en) Platinum(II) complexes for OLED applications
JP6468723B2 (en) Donor-acceptor compound containing nitrogen-containing polycyclic aromatic as acceptor
TWI708777B (en) Pyrrolomethylene boron complex, color conversion composition, color conversion film, light source unit, display and lighting device
KR20170142944A (en) Organic electroluminescent materials and devices
WO2019195104A1 (en) Composition of matter for use in organic light-emitting diodes
JP2024510953A (en) Neutral iridium complex coordinated with biphenyl derivative, and its production method and use
CN116406414A (en) Heteroatom-containing compounds for organic electroluminescent devices
WO2017121367A1 (en) Platinum complexes for blue oled application
KR20240005791A (en) Nitrogen-containing heterocyclic compounds for organic electroluminescent devices
TW202241905A (en) Nitrogen compounds for organic electroluminescent devices
KR20230122094A (en) Indolo[3.2.1-JK]carbazole-6-carbonitrile derivatives as blue fluorescent emitters for use in OLEDs
KR20220154751A (en) Heterocyclic compounds for organic electroluminescent devices
WO2020088582A1 (en) Platinum (ii) schiff base complexes with increased emission quantum yield for red oled applications
KR20230122092A (en) Nitrogen-containing heteroaromatic compounds for organic electroluminescent devices
CN116323859A (en) Heterocyclic compounds for organic electroluminescent devices

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17738180

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2018536790

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20187022813

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 1020187022813

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 2017738180

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2017738180

Country of ref document: EP

Effective date: 20180816