WO2017121125A1 - 链路校准的方法和装置、及射频馈入系统 - Google Patents

链路校准的方法和装置、及射频馈入系统 Download PDF

Info

Publication number
WO2017121125A1
WO2017121125A1 PCT/CN2016/097365 CN2016097365W WO2017121125A1 WO 2017121125 A1 WO2017121125 A1 WO 2017121125A1 CN 2016097365 W CN2016097365 W CN 2016097365W WO 2017121125 A1 WO2017121125 A1 WO 2017121125A1
Authority
WO
WIPO (PCT)
Prior art keywords
power
radio frequency
feed
link
link calibration
Prior art date
Application number
PCT/CN2016/097365
Other languages
English (en)
French (fr)
Inventor
梁彩云
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Publication of WO2017121125A1 publication Critical patent/WO2017121125A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/005Control of transmission; Equalising
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/02Arrangements for optimising operational condition
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W88/00Devices specially adapted for wireless communication networks, e.g. terminals, base stations or access point devices
    • H04W88/08Access point devices
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/70Reducing energy consumption in communication networks in wireless communication networks

Definitions

  • a base station plays a very important role as a relay between a wireless signal and a wired signal.
  • the base station can be divided into various forms according to the usage scenario.
  • distributed base stations are used as the coverage extension of large base stations.
  • the RF feed system can accurately output at the expected output power.
  • the output power of the RF feed system follows the input power to linearly change with the configured link gain.
  • the link gain can be obtained using the full user power fed into the RF feed system and the expected output power of the RF feed system. That is, in a wireless coverage application, if an accurate link gain is to be configured so that the RF feed system outputs according to the expected output power, the full user power fed by the RF feed system must be accurate.
  • a link calibration method for adjusting link gain of a radio frequency feed system including:
  • the obtained link calibration gain is a ratio of full user power to pre-output power
  • Link calibration is performed based on the link calibration gain.
  • acquiring the no-load input power of the radio frequency feeding system includes:
  • the feed power value of the RF feed system is set within the length of time, and the minimum value of the feed power value in the effective power input range of the RF feed system is obtained, and the minimum value of the feed power value is taken as the no-load input. power.
  • the wireless signal characteristics include: a wireless signal system, a wireless service feature, and a number of wireless carriers.
  • the full user power of the radio frequency feeding system is specifically:
  • the no-load back-off amount is obtained according to the characteristics of the wireless signal, and the product of the no-load input power and the no-load back-off amount is taken as the full user power; the no-load back-off amount is the ratio of the full user power to the no-load input power.
  • a link calibration device the link gain of a radio frequency feed system, comprising:
  • a full power calculation module configured to obtain a full user power of the RF feed system according to the no-load input power and the wireless signal characteristics of the RF feed system
  • a link gain calculation module connected to the full power calculation module, configured to obtain a link calibration gain according to the full user power and the pre-output power of the RF feed system;
  • a calibration module coupled to the link gain calculation module, configured to perform link calibration based on the link calibration gain.
  • the full power calculation module includes a configuration unit and a calculation unit
  • the configuration unit obtains the no-load back-off amount and the pre-output power of the remote unit according to the wireless signal feature configuration; the computing unit is connected to the configuration unit, and is configured to calculate the full user power according to the no-load back-off amount and the no-load input power.
  • the apparatus further includes a power collection module, wherein the power collection module is coupled to the RF feed system for acquiring the no-load input power of the RF feed system.
  • the power collection module includes a preset unit, an acquisition unit, and an iteration unit;
  • the preset unit is set to set an effective power input range of the RF feed system
  • the acquisition unit is connected to the RF feed system and configured to collect the feed power value of the RF feed system in real time;
  • the iterative unit is connected to the preset unit and the acquisition unit, and is set to periodically calculate the feed power value of the RF feed system within the set time length, and obtain the minimum value of the feed power value in the effective power input range of the RF feed system. Value, the minimum value of the fed power value is taken as the no-load input power.
  • a radio frequency feed system comprising the link calibration device described above.
  • a computer storage medium is further provided, and the computer storage medium may store an execution instruction for performing the implementation of the link calibration method in the above embodiment.
  • the above link calibration method obtains the link calibration gain by obtaining the full user power of the RF feed system and obtaining the link calibration gain according to the obtained full user power and the pre-output power of the RF feed system, thereby ensuring the link gain calibration.
  • the RF feed system can still output the pre-output power as expected, with the full user power input from the RF feed system and the expected error.
  • FIG. 1 is a flow chart of a link calibration method of a radio frequency feeding system according to an embodiment
  • FIG. 2 is a flow chart of obtaining the no-load input power of the radio frequency feeding system in step S100 shown in FIG. 1;
  • FIG. 3 is a block diagram of a link calibration device of a radio frequency feed system for calibrating a link gain of a radio frequency feed system in accordance with an embodiment.
  • the link calibration method provided by the embodiment of the present invention can be applied to an RF feed system in which the pre-output power is affected by the actual input power of the RF feed system, and the actual input power cannot be accurately determined.
  • a radio frequency feed system in a repeater system or a radio frequency fed digital distribution system when a user accesses a base station, on the one hand, the radio frequency feed system configures a pre-output power that satisfies a user's demand according to the characteristics of the accessed wireless signal. .
  • the RF feed system feeds the wireless signal that meets the user's needs through the RF signal source.
  • the actual power of the wireless signal fed into the RF feed system through the RF signal source and the pre-output power of the RF feed system configured according to the received wireless signal characteristics are linear with a set link gain. Variety.
  • the wireless signal has a loss from the RF signal source to the RF feed system, and the loss will cause a certain error between the wireless signal power of the actual input RF feed system and the actual power of the input RF feed system under ideal conditions.
  • the error will cause a certain error between the actual output power of the RF feed system and the pre-output power obtained by the configuration, and the direct measurement procedure of the error is cumbersome and the accuracy is not high.
  • a unit for receiving a signal input from a radio frequency signal source by a radio frequency feeding system is defined as an access unit, and the radio frequency is fed into the system.
  • the unit that transmits the signal is defined as the remote unit. It can be understood that, in practice, the receiving and transmitting of the RF feeding system may be integrated according to the specific use, or may be connected and transmitted through a transmission cable such as an optical fiber, a network cable, or an optical composite cable.
  • this embodiment provides a flowchart of a link gain calibration method. Specifically, the following steps S110 to S130 are included.
  • Step S110 Obtain the full user power of the RF feed system according to the no-load input power and the wireless signal characteristics of the RF feed system.
  • the no-load input power refers to the power fed by the RF feed system when no user accesses, and the feed signal is generally used to maintain the connection between the RF feed system and its coverage area.
  • no user signal is fed, no carrier modulation is needed, and the input power of the access unit of the RF feed system is the smallest, and the power value can be accurately measured.
  • Full user power refers to the power value that the access unit of the RF feed system needs to input to meet the user's needs when there is user access.
  • the access unit of the radio frequency feeding system needs to input the power value as the full user power value. Under normal circumstances, because the users accessing the base station and the services required by the users cannot be accurately measured, the full user power is difficult to directly measure.
  • the power fed by the access unit of the RF feed system is between the no-load input power and the full user power.
  • Wireless signal characteristics may include wireless signal formats, wireless service features, and number of carriers.
  • the wireless signal system includes: LTE, CDMA, WIMAX, TD-SCDMA, UMTS, and GSM
  • the wireless service features include 2G, 3G, 4G, and the like. That is, the method of the present embodiment can be applied to a radio frequency feeding system using the above wireless signal system or the above wireless service features.
  • acquiring the no-load input power of the RF feed system access unit includes: acquiring the feed power value of the access unit in real time.
  • the obtained feed power value may be a user-free power value or a user power value, and specifically refers to a power value that can satisfy all the current users of the access. Since the accessed users and the user's service requirements change in real time, it is necessary to obtain the feed power value of the access unit in real time. When there is no user, the power value is the smallest. Therefore, the minimum power value that occurs during a period of time can be counted as the no-load input power.
  • the no-load back-off amount is the ratio of the full user power to the no-load input power.
  • the RF feed system when the no-load input power of the RF feed system access unit is known, the RF feed system directly configures the no-load back-off amount according to the characteristics of the wireless signal, and inputs the no-load back-off amount and the no-load input. Power as full user power.
  • Step S120 Acquire a link calibration gain according to the full user power and the pre-output power of the RF feed system.
  • the pre-output power of the RF feed system refers to the output power that can meet the requirements of all wireless services of the access user.
  • the pre-output power values of the RF feed system are different according to the characteristics of the specific access wireless signals.
  • the ratio of the pre-output power of the RF feed system to the full user power of the RF feed system is used as the link calibration gain.
  • Step S130 Perform link calibration according to the link calibration gain. Specifically, the feed power of the RF feed system access unit is calibrated according to the link calibration gain.
  • the link calibration method of the present invention obtains the link calibration gain by obtaining the full user power of the RF feed system and obtaining the link calibration gain according to the obtained full user power and the pre-output power of the RF feed system.
  • the gain calibration ensures that the RF feed system can still output the pre-output power as expected without any error in the expected full input power of the RF feed system.
  • the link calibration method of the present invention. 2 is a flow chart of obtaining the no-load input power of the radio frequency feeding system in step S110 shown in FIG. 1. As can be seen from FIG. 3, it specifically includes steps S111 to S114.
  • Step S111 It is judged whether the feed power is within the range of ⁇ Pmin, Pmax ⁇ .
  • ⁇ Pmin, Pmax ⁇ is defined as an access unit of the radio frequency feeding system that allows a feed power range.
  • Pmin is the minimum power that the access unit is allowed to feed
  • Pmax is the maximum power that the access unit is allowed to feed.
  • step S112 and step S113 are sequentially performed, and when the feed power is not within the range of ⁇ Pmin, Pmax ⁇ , step S111 is repeatedly executed.
  • Step S112 Calculate the absolute value Pa of the difference between the last saved feed power and the current feed power.
  • Step S113 It is judged whether the absolute value Pa of the power difference value obtained in S112 is smaller than the anti-shake threshold.
  • the anti-shake threshold is the minimum error value of the predefined RF feed system.
  • step S114 When the absolute value Pa of the difference between the last saved feed power and the current feed power difference is less than the anti-shake threshold, step S114 is performed, when the absolute value of the difference between the last saved feed power and the current feed power difference is Pa. When it is greater than or equal to the anti-shake threshold, step S111 is repeatedly performed.
  • Step S114 Update the last saved feed power and save the current feed power.
  • the current feed power saved is the no-load input power.
  • the link calibration apparatus 20 of the present invention includes a full power calculation module 201, a link gain calculation module 202, a power acquisition module 203, and a calibration module 204.
  • the RF feed system 22 includes an access unit 200 and a remote unit 205, and the access unit 200 and the remote unit 205 are connected by a radio frequency transmission line.
  • the full power calculation module 201 includes a configuration unit 211 and a calculation unit 212.
  • the configuration unit 211 is connected to the access unit 200 and configured to obtain a no-load back-off amount and a pre-output power of the remote unit 205 according to the wireless signal feature configuration.
  • the calculating unit 212 is connected to the configuration unit 211 and configured to calculate the full user power of the access unit 200 according to the no-load input power and the no-load back-off amount.
  • the link gain calculation module 202 includes an acquisition unit 221, a preset unit 222, and an iteration unit 223.
  • the collecting unit 221 is connected to the access unit 200 and configured to collect the feed power value of the access unit 200 in real time.
  • the preset unit 222 is configured to set an effective power input range of the RF feed system.
  • the iteration unit 223 is connected to the preset unit 222 and the collection unit 221, and is configured to periodically calculate the feed power value of the access unit 200 in the set time length, and obtain the feed in the effective power input range of the RF feed system through an iterative algorithm.
  • the minimum value of the power input value is the minimum value of the feed power value as the no-load input power.
  • the power collection module 203 is connected to the full power calculation module 201 and the link gain calculation module 202, and is configured to obtain a link calibration gain according to the full user power and the pre-output power.
  • the calibration module 204 is linked to both the power acquisition module 203 and the RF feed system and is configured to perform link calibration based on the link calibration gain.
  • the GSM6 carrier is fed in radio via the access unit 200 and output through the remote unit 205.
  • the wireless signal is characterized by wireless standard GSM and wireless carrier number 6.
  • the collecting unit 212 obtains the power value fed by the access unit 200 in real time, and the iterative unit 223 obtains the no-load input power of the access unit 200 through an iterative algorithm.
  • the calculating unit 212 calculates the full user power of the access unit 200 according to the no-load input power and the no-load back-off amount.
  • the power collection module 203 acquires the link calibration gain according to the full user power of the access unit 200 and the pre-output power of the remote unit 205.
  • the calibration module 204 automatically calibrates the link gain based on the link calibration gain to meet the pre-output requirements of the remote unit 205.
  • the wireless signal characteristics include: a wireless signal system, a wireless service feature, and a number of wireless carriers.
  • the accuracy of the device for actually feeding power to the access unit 200 is not high, and the device can be used as long as the actual input power of the access unit 200 is within the power range set by the RF feed system.
  • the remote unit 205 is guaranteed to output as expected.
  • the system gain configured by the configuration unit 211 is 40 dB
  • the pre-output power of the remote unit 205 is 20 dBm.
  • the full user power input by the access unit 200 is required to be -20 dBm to meet the pre-output requirement of the remote unit 205.
  • the loss of the radio frequency signal from the radio frequency signal source to the access unit 200 causes the full user power of the actual access access unit 200 to be -22 dBm
  • the actual output power of the remote unit 205 corresponds to 18 dBm, which exists between the pre-output power and the pre-output power.
  • the 2dBm error does not meet the expected output requirements.
  • the GSM system in the field of wireless communication is taken as an example to illustrate the application of the automatic gain calibration device of the RF feed system. It can be understood that the device is applicable to all systems of wireless communication systems, such as LTE, CDMA, WIMAX, TD-SCDMA, UMTS, GSM, etc., and the algorithm is simple and reliable.
  • the foregoing technical solution of the embodiment of the present invention can be applied to the link calibration process, obtaining the full user power of the radio frequency feeding system, and obtaining the link calibration gain according to the obtained full user power and the pre-output power of the radio frequency feeding system.
  • the link gain calibration is performed to ensure that the RF feed system can still output the pre-output power as expected without any error in the expected full input power of the RF feed system.

Abstract

本发明涉及链路校准的方法和装置、及射频馈入系统。一种链路校准方法,包括:获取射频馈入系统的满用户功率;根据满用户功率和射频馈入系统的预输出功率获取链路校准增益;根据链路校准增益进行链路校准。从而保证了在射频馈入系统的满用户功率与预期存在一定误差的情况下,射频馈入系统仍能按预期准确输出预输出功率。

Description

链路校准的方法和装置、及射频馈入系统 技术领域
本发明涉及无线通信领域,特别是涉及一种链路校准的方法和装置、及射频馈入系统。
背景技术
在无线通信系统中,基站作为无线信号和有线信号之间的中继,有着非常重要的作用。基站根据使用场景可以分为多种形式。其中,为了适应室内或不方便安装大型基站的环境,采用分布式基站,作为大型基站的覆盖延伸。
而传统直放站系统或射频馈入数字分布系统作为基站网络覆盖的重要延伸,具有组网灵活,成本低廉,覆盖灵活等特点,可用于2G、3G、4G无线通信信号深度覆盖以及固网宽带信号接入。文中约定,将通过射频信号馈入,经过一定的链路处理,再通过射频前端发射出去的系统,统称为射频馈入系统。
目前,射频馈入系统作为一种基于光纤、网线承载无线信号传输和分布的室内外覆盖系统,主要通过网管配置链路增益。
通常地,在射频馈入系统馈入信号功率确定的情况下,射频馈入系统可按照预期的输出功率准确输出。在射频馈入信号功率值变化时,射频馈入系统的输出功率则跟随输入功率以配置好的链路增益呈线性变化。一般地,可以使用馈入射频馈入系统的满用户功率和射频馈入系统预期的输出功率来获得链路增益。即在无线覆盖应用中,若要想配置准确的链路增益,使射频馈入系统按照预期的输出功率输出,则要求射频馈入系统馈入的满用户功率必须准确。
而在实际工程应用中,从射频信号源到射频馈入系统馈入端口,总路径损耗准确测量成本高,可操作性差,射频馈入系统馈入的满用户功率与预期存在一定的误差。该误差直接累加在射频馈入系统的输出功率中,若按照预期的输出功率来配置链路增益,将会导致射频馈入系统的实际输出功率与预期的输出功率存在一定误差。
发明内容
基于此,有必要针对射频馈入系统的实际输出功率与预期的输出功率存在一定误差的问题,提供一种链路校准的方法和装置、及射频馈入系统。
一种链路校准方法,用于调节射频馈入系统的链路增益,包括:
根据射频馈入系统的空载输入功率和无线信号特征获得接入单元的满用户功率;
根据满用户功率和射频馈入系统的预输出功率获取链路校准增益;获取的链路校准增益为满用户功率与预输出功率的比值;
根据链路校准增益进行链路校准。
在其中一个实施例中,获取射频馈入系统的空载输入功率,具体包括:
设定射频馈入系统有效功率输入范围;
实时采集射频馈入系统的馈入功率值;
周期性统计设定时间长度内射频馈入系统的馈入功率值,并获取射频馈入系统有效功率输入范围内的馈入功率值的最小值,将馈入功率值的最小值作为空载输入功率。
在其中一个实施例中,无线信号特征包括:无线信号制式、无线业务特征及无线载波数量。
在其中一个实施例中,获取射频馈入系统的满用户功率具体为:
根据无线信号特征得到空载回退量,并将空载输入功率与空载回退量的积作为满用户功率;空载回退量为满用户功率和空载输入功率的比值。
一种链路校准装置,射频馈入系统的链路增益,包括:
满功率计算模块,设置为根据射频馈入系统的空载输入功率和无线信号特征获得射频馈入系统的满用户功率;
链路增益计算模块,与满功率计算模块连接,设置为根据满用户功率和射频馈入系统的预输出功率获取链路校准增益;
校准模块,与链路增益计算模块连接,设置为根据链路校准增益进行链路校准。
在其中一个实施例中,满功率计算模块包括配置单元及计算单元;
配置单元根据无线信号特征配置得到空载回退量、及远端单元的预输出功率;计算单元与配置单元连接,设置为根据空载回退量及空载输入功率计算出满用户功率。
在其中一个实施例中,装置还包括功率采集模块,其中,功率采集模块与射频馈入系统连接,用于获取射频馈入系统的空载输入功率。
在其中一个实施例中,功率采集模块包括预设单元、采集单元、及迭代单元;
预设单元设置为设定射频馈入系统有效功率输入范围;
采集单元与射频馈入系统连接,设置为实时采集射频馈入系统的馈入功率值;
迭代单元与预设单元及采集单元均连接,设置为周期性统计设定时间长度内射频馈入系统的馈入功率值,并获取射频馈入系统有效功率输入范围内的馈入功率值的最小值,将馈入功率值的最小值作为空载输入功率。
一种射频馈入系统,包括上述的链路校准装置。
在本发明实施例中,还提供了一种计算机存储介质,该计算机存储介质可以存储有执行指令,该执行指令用于执行上述实施例中的链路校准方法的实现。
上述一种链路校准方法,通过获取射频馈入系统的满用户功率,并根据获取的满用户功率与射频馈入系统的预输出功率获得链路校准增益,进行链路增益校准,保证了在射频馈入系统输入的满用户功率与预期存在一定误差的情况下,射频馈入系统仍能按预期准确的输出预输出功率。
附图说明
图1为一实施例的射频馈入系统的链路校准方法流程图;
图2为图1所示步骤S100中获取射频馈入系统空载输入功率的流程图;
图3为一实施例的射频馈入系统的链路校准装置校准射频馈入系统链路增益的框图。
具体实施方式
本发明实施例提供的链路校准方法,可应用于预输出功率受射频馈入系统实际输入功率影响,且实际输入功率无法准确测定的射频馈入系统。例如,直放站系统或射频馈入数字分布系统中的射频馈入系统,当有用户接入基站时,一方面,射频馈入系统根据接入的无线信号特征配置满足用户需求的预输出功率。另一方面,射频馈入系统通过射频信号源馈入满足用户需求的无线信号。
在理想状况下,通过射频信号源馈入射频馈入系统的无线信号的实际功率和射频馈入系统根据接收的无线信号特征配置得到的预输出功率之间以设定好的链路增益呈线性变化。但是,在实际中,无线信号从射频信号源到射频馈入系统具有损耗,该损耗将导致实际输入射频馈入系统的无线信号功率与理想状态下输入射频馈入系统的实际功率存在一定的误差,该误差将导致射频馈入系统实际输出的功率与配置得到的预输出功率存在一定的误差,且该误差直接测量程序繁琐,准确率不高。
为了更进一步准确地描述本发明的链路校准方法和装置,在本发明的具体实施例中,将射频馈入系统接收射频信号源馈入信号的单元定义为接入单元,将射频馈入系统发射信号的单元定义为远端单元。可以理解地,实际中,根据具体使用的不同,射频馈入系统的接收及发射可以是一体的,也可以是通过光纤,网线,光电复合缆等传输线缆将接收和发射连接的。
如图1所示,本实施例提供了一种链路增益校准方法流程图。具体包括下述步骤S110至S130。
步骤S110:根据射频馈入系统的空载输入功率和无线信号特征获得射频馈入系统的满用户功率。
其中,空载输入功率是指无用户接入时射频馈入系统馈入信号的功率,此时馈入信号一般用来使射频馈入系统与其覆盖区域之间保持连接。当没有用户信号馈入时,不需要使用载波进行调制,射频馈入系统的接入单元的输入功率最小,且该功率值可以准确测量得到。
满用户功率是指在有用户接入时,射频馈入系统的接入单元需要输入的满足用户需求的功率值。以基站中的射频馈入系统为例,在基站的覆盖区中,所有用户同时发送业务至基站时,射频馈入系统的接入单元需要输入的功率值为满用户功率值。正常情况下,由于接入基站的用户及用户需要的业务无法准确测量,所以满用户功率很难直接测量得到。
可以理解地,在正常工作的情况下,射频馈入系统的接入单元馈入的功率介于空载输入功率和满用户功率之间。
无线信号特征可以包括无线信号制式、无线业务特征以及载波数量。
本实施例中,无线信号制式包括:LTE、CDMA、WIMAX、TD-SCDMA、UMTS以及GSM等,无线业务特征包括2G、3G、4G等。也即,本实施例的方法可以适用于采用上述无线信号制式或上述无线业务特征的射频馈入系统中。
本实施例中,首先需要获取射频馈入系统接入单元的空载输入功率,再根据空载输入功率和无线信号特征获得射频馈入系统接入单元的满用户功率。
具体地,获取射频馈入系统接入单元的空载输入功率包括:实时获取接入单元的馈入功率值。其中,获取的馈入功率值可能是无用户功率值,也可能是有用户功率值,其具体是指能满足接入的当前用户所有需求的功率值。由于接入的用户及用户的业务需求实时变化,所以需要实时获取接入单元的馈入功率值。当无用户时,功率值是最小的。因此,可以统计一段时间内出现的最小功率值,将其作为空载输入功率。
当有用户接入时,射频馈入系统根据接入的无线信号特征得到空载回退量。例如,当接入的无线信号为GSM6时,由于GSM制式的无线信号的特殊性,可以直接根据其载波数量为6得到空载回退量。且得到的空载回退量为Gback=10*log10(6)=7.8dB,并将空载输入功率与空载回退量的积作为满用户功率。其中,空载回退量为满用户功率和空载输入功率的比值。
在有些实施例中,射频馈入系统接入单元的空载输入功率已知时,射频馈入系统直接根据无线信号特征配置出空载回退量,并将空载回退量和空载输入功率作为满用户功率。
步骤S120:根据满用户功率和射频馈入系统的预输出功率获取链路校准增益。
其中,射频馈入系统的预输出功率指的是能够满足接入用户的所有无线业务需求的输出功率。根据具体接入无线信号特征的不同,射频馈入系统的预输出功率值对应不同。
将射频馈入系统的预输出功率与射频馈入系统的满用户功率的比值作为链路校准增益。
步骤S130:根据链路校准增益进行链路校准。具体地,根据链路校准增益对射频馈入系统接入单元的馈入功率进行校准。
由上述实施例可知,本发明的链路校准方法,通过获取射频馈入系统的满用户功率,并根据获取的满用户功率与射频馈入系统的预输出功率获得链路校准增益,进行链路增益校准,保证了在射频馈入系统输入的满用户功率与预期存在一定误差的情况下,射频馈入系统仍能按预期准确的输出预输出功率。
进一步地,在实际应用中,当射频馈入系统需要输出满足一定条件的预输出功率,且该预输出功率与射频馈入系统输入的满用户功率之间存在一定的线性关系时,都可采用本发明的链路校准方法。图2为图1所示步骤S110中获取射频馈入系统空载输入功率的流程图。由图3可知,其具体包括步骤S111至S114。
步骤S111:判断馈入功率是否在{Pmin,Pmax}范围内。
本实施例中,{Pmin,Pmax}定义为射频馈入系统的接入单元允许馈入功率范围。其中,Pmin,为接入单元允许馈入的最小功率,Pmax为接入单元允许馈入的最大功率。
当馈入功率在{Pmin,Pmax}范围内时,依次执行步骤S112及步骤S113,当馈入功率不在{Pmin,Pmax}范围内,重复执行步骤S111。
步骤S112:计算上次保存的馈入功率与当前的馈入功率差值的绝对值Pa。
步骤S113:判断S112所得的功率差值的绝对值Pa是否小于防抖门限。
本实施例中,防抖门限为预定义的射频馈入系统的最小误差值。
当上次保存的馈入功率与当前的馈入功率差值的绝对值Pa小于防抖门限时,执行步骤S114,当上次保存的馈入功率与当前的馈入功率差值的绝对值Pa大于或等于防抖门限时,重复执行步骤S111。
步骤S114:更新上次保存的馈入功率,保存当前的馈入功率。其中,保存的当前馈入功率为空载输入功率。
如图3所示,为一实施例的链路校准装置校准射频馈入系统链路增益的框图。由图3可知,本发明的链路校准装置20包括:满功率计算模块201,链路增益计算模块202,功率采集模块203,校准模块204。
射频馈入系统22包括:接入单元200和远端单元205,且接入单元200和远端单元205之间通过射频传输线连接。
其中,满功率计算模块201包括配置单元211和计算单元212。配置单元211与接入单元200连接,设置为根据无线信号特征配置得到空载回退量及远端单元205的预输出功率。计算单元212与配置单元211连接,设置为根据空载输入功率和空载回退量计算得到接入单元200的满用户功率。
在本实施例中,链路增益计算模块202包括采集单元221、预设单元222、及迭代单元223。
其中,采集单元221与接入单元200连接,设置为实时采集接入单元200的馈入功率值。
预设单元222设置为设定射频馈入系统有效功率输入范围。
迭代单元223与预设单元222及采集单元221均连接,设置为周期性统计设定时间长度内接入单元200的馈入功率值,通过迭代算法获取射频馈入系统有效功率输入范围内的馈入功率值的最小值,将馈入功率值的最小值作为空载输入功率。
功率采集模块203与满功率计算模块201及链路增益计算模块202均连接,设置为根据满用户功率和预输出功率获取链路校准增益。
校准模块204与功率采集模块203及射频馈入系统均链接,设置为根据链路校准增益进行链路校准。
具体地,在一实施例中,假设GSM6载波经由接入单元200射频馈入,通过远端单元205输出。则配置单元211根据无线信号特征配置得到远端单元205的预输出功率为100mW(20dBm),满用户满功率与空载功率的差值即空载回退量G_back=10*log10(6)=7.8dB。其中,无线信号特征为无线制式GSM和无线载波数量6。
在系统正常运行一段时间内,采集单元212通过实时获取接入单元200馈入的功率值,迭代单元223通过迭代算法获得接入单元200的空载输入功率。计算单元212根据空载输入功率和空载回退量计算得到接入单元200的满用户功率。功率采集模块203根据接入单元200的满用户功率和远端单元205的预输出功率获取链路校准增益。校准模块204根据链路校准增益自动校准链路增益,以满足远端单元205的预输出要求。在一些实施例中,无线信号特征包括:无线信号制式、无线业务特征及无线载波数量。
通过上述实施例可知,本装置对接入单元200实际馈入功率的准确度要求不高,只要满足接入单元200的实际输入功率在射频馈入系统设定的功率范围内,本装置均可以通过自动校准,保证远端单元205按照预期功率输出。
而在传统方案中,配置单元211配置的系统增益为40dB,远端单元205的预输出功率为20dBm。则要求接入单元200输入的满用户功率必须为-20dBm,才能满足远端单元205的预输出要求。若射频信号从射频信号源到接入单元200的损耗导致实际馈入接入单元200的满用户功率为-22dBm,则远端单元205的实际输出功率对应为18dBm,与预输出功率之间存在2dBm的误差,无法满足预期的输出要求。
本实施例以无线通信领域中GSM制式为例,说明了射频馈入系统自动增益校准装置的应用。可以理解地,本装置适用于无线通信系统所有制式,例如LTE,CDMA,WIMAX,TD-SCDMA,UMTS,GSM等,且算法简单可靠。
以上所述实施例的各技术特征可以进行任意的组合,为使描述简洁,未对上述实施例中的各个技术特征所有可能的组合都进行描述,然而,只要这些技术特征的组合不存在矛盾,都应当认为是本说明书记载的范围。
以上所述实施例仅表达了本发明的几种实施方式,其描述较为具体和详细,但并不能因 此而理解为对发明专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干变形和改进,这些都属于本发明的保护范围。因此,本发明专利的保护范围应以所附权利要求为准。
工业实用性
本发明实施例的上述技术方案,可以应用于链路校准过程中,通过获取射频馈入系统的满用户功率,并根据获取的满用户功率与射频馈入系统的预输出功率获得链路校准增益,进行链路增益校准,保证了在射频馈入系统输入的满用户功率与预期存在一定误差的情况下,射频馈入系统仍能按预期准确的输出预输出功率。

Claims (9)

  1. 一种链路校准方法,用于调节射频馈入系统的链路增益,包括:
    根据所述射频馈入系统的空载输入功率和无线信号特征获得所述射频馈入系统的满用户功率;
    根据所述满用户功率和所述射频馈入系统的预输出功率获取链路校准增益;获取的所述链路校准增益为所述满用户功率与所述预输出功率的比值;
    根据所述链路校准增益进行链路校准。
  2. 根据权利要求1所述的链路校准方法,其中,获取所述射频馈入系统的空载输入功率,包括:
    设定所述射频馈入系统有效功率输入范围;
    实时采集所述射频馈入系统的馈入功率值;
    周期性统计设定时间长度内所述射频馈入系统的馈入功率值,并获取所述射频馈入系统有效功率输入范围内的所述馈入功率值的最小值,将所述馈入功率值的最小值作为所述空载输入功率。
  3. 根据权利要求1或2所述的链路校准方法,其中,所述无线信号特征包括:无线信号制式、无线业务特征及无线载波数量。
  4. 根据权利要求3所述的链路校准方法,其中,获取所述射频馈入系统的满用户功率具体为:
    根据所述无线信号特征得到空载回退量,并将所述空载输入功率与所述空载回退量的积作为满用户功率;所述空载回退量为所述满用户功率和所述空载输入功率的比值。
  5. 一种链路校准装置,射频馈入系统的链路增益,包括:
    满功率计算模块,设置为根据所述射频馈入系统的空载输入功率和无线信号特征获得所述射频馈入系统的满用户功率;
    链路增益计算模块,与所述满功率计算模块连接,设置为根据所述满用户功率和所述射频馈入系统的预输出功率获取链路校准增益;
    校准模块,与所述链路增益计算模块连接,设置为根据所述链路校准增益进行链路校准。
  6. 根据权利要求5所述的链路校准装置,其中,所述满功率计算模块包括配置单元及计算单元;
    所述配置单元根据所述无线信号特征配置得到空载回退量、及所述射频馈入系统的预输出功率;所述计算单元与所述配置单元连接,设置为根据所述空载回退量及所述空载输入功率计算出所述满用户功率。
  7. 根据权利要求6所述的链路校准装置,其中,所述装置还包括功率采集模块,所述功率采集模块与所述射频馈入系统连接,设置为获取所述射频馈入系统的空载输入功率。
  8. 根据权利要求7所述的链路校准装置,其中,所述功率采集模块包括预设单元、采集单元及迭代单元;
    所述预设单元设置为设定所述射频馈入系统有效功率输入范围;
    所述采集单元与所述射频馈入系统连接,设置为实时采集所述射频馈入系统的馈入功率值;
    所述迭代单元与所述预设单元及所述采集单元均连接,设置为周期性统计设定时间长度内所述射频馈入系统的馈入功率值,并获取所述射频馈入系统有效功率输入范围内的所述馈入功率值的最小值,将所述馈入功率值的最小值作为所述空载输入功率。
  9. 一种射频馈入系统,包括权利要求6-8任一项所述的链路校准装置。
PCT/CN2016/097365 2016-01-14 2016-08-30 链路校准的方法和装置、及射频馈入系统 WO2017121125A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610025711.3 2016-01-14
CN201610025711.3A CN106973395B (zh) 2016-01-14 2016-01-14 链路校准的方法和装置、及射频馈入系统

Publications (1)

Publication Number Publication Date
WO2017121125A1 true WO2017121125A1 (zh) 2017-07-20

Family

ID=59310749

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/097365 WO2017121125A1 (zh) 2016-01-14 2016-08-30 链路校准的方法和装置、及射频馈入系统

Country Status (2)

Country Link
CN (1) CN106973395B (zh)
WO (1) WO2017121125A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115086988A (zh) * 2022-03-05 2022-09-20 广州市瀚云信息技术有限公司 一种5g变频系统的无源网络损耗校准方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101136675A (zh) * 2007-06-26 2008-03-05 中兴通讯股份有限公司 基于功率回退的功率定标方法和装置
CN101873617A (zh) * 2010-06-12 2010-10-27 华为终端有限公司 一种射频功率校准的方法、系统及移动终端
US20110064162A1 (en) * 2009-09-11 2011-03-17 Crestcom, Inc. Transmitting unit that reduces papr and method therefor
CN102387522A (zh) * 2010-08-31 2012-03-21 中兴通讯股份有限公司 射频拉远单元功率控制模型的修正方法及装置、检测设备
CN103634891A (zh) * 2012-08-28 2014-03-12 华为技术有限公司 一种信号传输方法及用户终端

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5576629A (en) * 1994-10-24 1996-11-19 Fourth State Technology, Inc. Plasma monitoring and control method and system
CN101813959B (zh) * 2009-02-25 2013-08-21 艾默生网络能源系统北美公司 一种功率因数校正电路的控制装置及控制方法
CN103887963B (zh) * 2014-02-26 2018-08-21 常州信息职业技术学院 临界导通全负载高功率因素校正电路

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101136675A (zh) * 2007-06-26 2008-03-05 中兴通讯股份有限公司 基于功率回退的功率定标方法和装置
US20110064162A1 (en) * 2009-09-11 2011-03-17 Crestcom, Inc. Transmitting unit that reduces papr and method therefor
CN101873617A (zh) * 2010-06-12 2010-10-27 华为终端有限公司 一种射频功率校准的方法、系统及移动终端
CN102387522A (zh) * 2010-08-31 2012-03-21 中兴通讯股份有限公司 射频拉远单元功率控制模型的修正方法及装置、检测设备
CN103634891A (zh) * 2012-08-28 2014-03-12 华为技术有限公司 一种信号传输方法及用户终端

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115086988A (zh) * 2022-03-05 2022-09-20 广州市瀚云信息技术有限公司 一种5g变频系统的无源网络损耗校准方法
CN115086988B (zh) * 2022-03-05 2024-02-20 广州市瀚云信息技术有限公司 一种5g变频系统的无源网络损耗校准方法

Also Published As

Publication number Publication date
CN106973395A (zh) 2017-07-21
CN106973395B (zh) 2021-04-20

Similar Documents

Publication Publication Date Title
US8654658B2 (en) Mobile communication system, base station controller, base station, mobile station, and base station radio parameter control method
CN101188463B (zh) 一种cdma接收机功率校准与实时校正实现方法
EP2944157B1 (en) System and method for calibration of a distributed amplifier system
KR101607179B1 (ko) 채널 품질 표시를 정정하는 방법 및 장치
WO2021023155A1 (zh) 增益补偿方法
CN104467986A (zh) 射频设备校准方法
WO2014161279A1 (zh) 终端内环功率控制的方法及系统
WO2017121125A1 (zh) 链路校准的方法和装置、及射频馈入系统
CN105634629A (zh) 一种移动通信射频信号放大设备的自激判定方法
CN103634890B (zh) Dpd功放产品功率定标方法和装置
CN105450183A (zh) 一种线性功率放大器的温度补偿方法及装置
CN112867042B (zh) 增益控制方法、装置、基站和存储介质
KR100781463B1 (ko) 기지국의 rf 보드 특성 변화를 감지하기 위한 방법 및시스템
CN100349485C (zh) 基站上行接收通道校正方法
CN103634889A (zh) 发射功率调整方法及装置
CN103929770A (zh) 校正待测装置以无线进行通信的方法
CN111224909A (zh) 一种频率补偿方法、装置、用户终端和存储介质
US20220338129A1 (en) Method and apparatus for reporting reference signal receiving power
CN101227211B (zh) 接收总宽带功率校准方法和装置
US20210014701A1 (en) System and method for optimizing signal path calibration
KR20040025196A (ko) Wcdma 시스템에서 통화품질 측정 장치 및 방법
CN117424657B (zh) 一种基站射频系统独立接收机通道连接性检测方法
KR102308079B1 (ko) RRH(Remote Radio Head)의 전압 정재파비(VSWR)를 고려한 단말 전력 제어 방법 및 그를 위한 장치 및 시스템
CN103139795B (zh) 增益因子上报方法和装置
KR20010062968A (ko) 코드분할다중접속 통신시스템에서 수신부의 잡음지수 측정장치 및 그 방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16884679

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16884679

Country of ref document: EP

Kind code of ref document: A1