WO2017121116A1 - 一种翼升力垂直起降发动机 - Google Patents

一种翼升力垂直起降发动机 Download PDF

Info

Publication number
WO2017121116A1
WO2017121116A1 PCT/CN2016/095928 CN2016095928W WO2017121116A1 WO 2017121116 A1 WO2017121116 A1 WO 2017121116A1 CN 2016095928 W CN2016095928 W CN 2016095928W WO 2017121116 A1 WO2017121116 A1 WO 2017121116A1
Authority
WO
WIPO (PCT)
Prior art keywords
engine
wing
wing lift
lift plate
landing
Prior art date
Application number
PCT/CN2016/095928
Other languages
English (en)
French (fr)
Inventor
王佐良
Original Assignee
王佐良
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 王佐良 filed Critical 王佐良
Publication of WO2017121116A1 publication Critical patent/WO2017121116A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64DEQUIPMENT FOR FITTING IN OR TO AIRCRAFT; FLIGHT SUITS; PARACHUTES; ARRANGEMENTS OR MOUNTING OF POWER PLANTS OR PROPULSION TRANSMISSIONS IN AIRCRAFT
    • B64D27/00Arrangement or mounting of power plant in aircraft; Aircraft characterised thereby
    • B64D27/02Aircraft characterised by the type or position of power plant
    • B64D27/16Aircraft characterised by the type or position of power plant of jet type
    • B64D27/18Aircraft characterised by the type or position of power plant of jet type within or attached to wing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C29/00Aircraft capable of landing or taking-off vertically, e.g. vertical take-off and landing [VTOL] aircraft

Definitions

  • the invention relates to a wing lift vertical take-off and landing engine, which is an engine which uses a gas generated by a fan to directly blow a wing lift plate to obtain a lift, and is mainly used for vertical take-off and landing of an aircraft, and belongs to the technical field of aeroengine design and manufacture. .
  • the present invention proposes an innovative thinking: designing a circular wing, or a plurality of straight wings arranged in a circular shape, and then a fan to create a wind field that is blown from the center to the periphery, such that one is a The fan can make such a wind field, and the circular wing has a sufficient length, so that sufficient lift can be obtained.
  • the circular wing is perpendicular to the direction of the lift, there is a huge resistance.
  • Such an engine is mainly suitable for the vertical take-off and landing of the aircraft.
  • the existing jet engines that can provide vertical lift use the principle of force and reaction force to provide lift to the aircraft through the downward jet, and the lift efficiency is not high enough.
  • the present invention intends to utilize the Bernoulli principle to allow the engine to obtain additional vertical lift.
  • the invention utilizes the Bernoulli principle, conceives a design that integrates the wing and the engine, and proposes an engine design idea that the airflow generated by the fan is directly blown to the wing lift plate to obtain lift, so that the aircraft can be vertically aligned.
  • the lift of takeoff and landing The engine consists of a fan and a circular wing lift plate.
  • the profile of the wing lift plate conforms to the Bernoulli principle of the lift wing feature, and the wing lift plate is either a 360-degree circular structure or an overall A plurality of independent straight wings are arranged in a 360-degree circular arrangement, and the fan blows the air from the center to the surroundings by itself, or blows the air from the center to the periphery under the guidance of the deflector, and blows the air to the wing lift plate to generate Uplifting force.
  • the circular wing lift plate is designed on the outer side of the outer duct of the turbofan engine. On the inner side of the outer duct, a circular ring setting can be installed to make the outer duct airflow 90 degrees.
  • the wing lift plate can be rotated 90 degrees downward; after the wing lift plate is rotated 90 degrees downward, the flight attitude of the aircraft can be controlled by adjusting the rotation angle of the partial wing lift plate, such as steering , climb, dive or slow down.
  • the invention proposes the idea of designing a circular wing lift plate for a turbofan engine.
  • the fan blows air from the center to the periphery and blows to the wing lift plate. Since the wing lift plate is designed according to the Bernoulli principle, the wing structure is designed. The same, so that the extra lift generated by the direct jet of the engine can be obtained, so that the aircraft with vertical take-off and landing requirements can provide more powerful lift during take-off and landing.
  • Figure 1 is a schematic cross-sectional view of the engine principle of the present invention
  • Figure 2 is a schematic cross-sectional view showing one of the engine states of the present invention
  • Figure 3 is a schematic cross-sectional view showing the second state of the engine of the present invention.
  • 1 is a fan
  • 2 is a wing lift plate
  • 3 is a turbofan engine
  • 4 is an outer duct
  • 5 is a deflector.
  • the present invention provides only one embodiment, and its specific structure is shown in FIG.
  • 1 is a schematic cross-sectional view of the engine principle of the present invention, wherein 1 is a fan and 2 is a wing lift plate, and the fan 1 is designed to be a fan that can be blown from the center to the periphery, on the periphery of the fan 1,
  • the 360-degree circular-winged wing lift plate 2, the cross-sectional structure of the wing lift plate 2 conforms to the Bernoulli principle of the lift wing feature, and the fan 1 blows air from the center to the periphery, blowing toward the wing lift plate 2, generating upward lift. .
  • FIG. 2 is a schematic cross-sectional view showing one of the engine states of the present invention, and is a schematic cross-sectional view of the principle shown in FIG. 1 applied to a turbofan engine.
  • 3 is a turbofan engine
  • 4 is an outer duct
  • 5 is a deflector.
  • the inner side of the 4th is provided with a deflector 5 which is arranged to make the outer ducted airflow 90 degrees, and also has a 360-degree circular arrangement on the inner wall of the outer duct 4, and the deflector 5 will be inside the outer duct 4
  • the airflow is blown from the center of the engine to the periphery perpendicular to the axial direction of the engine, and is blown toward the wing lift plate 2.
  • the deflector 5 can also be designed with a valve structure, and the valve is opened when necessary, and the airflow in the outer duct 4 passes through the valve.
  • the wing lift plate is blown out, the valve is closed when not needed, and the air flow is directly discharged from the outer duct spout.
  • the valve technology is a well-known technical solution in the field of aero engines, and is not shown in the drawings. Since the wing lift plate 2 is designed according to the Bernoulli principle, it is the same as the wing structure, so that the extra lift generated by the direct jet of the engine can be obtained, so that the aircraft with vertical take-off and landing requirements can provide more during take-off and landing. For a strong lift.
  • the wing lift plate 2 can be an integral 360-degree circular structure.
  • the overall ring structure can be adopted, and the installation can be changed or Adjusting the wing of the airfoil to adjust the flight direction and flight attitude of the flying saucer or the airborne carrier;
  • the wing lift plate 2 may also be composed of a number of independent straight wings arranged in a 360-degree circular arrangement, such as the aircraft completing the vertical takeoff After that, you need to change from vertical to high speed.
  • the engine is also changed to the horizontal state with the aircraft.
  • a plurality of independent straight wings are arranged in a 360-degree circular arrangement to form a wing lift plate 2, which can be rotated by 90 degrees, with the smallest face facing the air, Reduce the resistance (see Figure 3).
  • FIG. 3 is a schematic cross-sectional view showing the second state of the engine of the present invention, which is a schematic cross-sectional view of the deflector 5 or the valve being closed and the engine being converted into a conventional turbofan engine.
  • the baffle 5 is mounted on the outer wall of the outer duct and can be rotated with one end as an axis. When the engine is required to provide the wing lift, the baffle 5 is at one end.
  • a plurality of independent straight wings are used.
  • the wing lift plate 2 which is formed in a 360-degree circular arrangement, can be rotated downward by 90 degrees. According to the flight principle, when the wing lift plate is rotated 90 degrees downward, the angle of rotation of the partial wing lift plate can be adjusted to control the aircraft. Flight attitude, such as steering, climbing, dive or slowing down.
  • the invention contemplates a design integrating the wing and the engine, and proposes an engine design idea that the airflow generated by the fan is directly blown to the wing lift plate to obtain lift, which is scientific based on the Bernoulli principle. Principle support.
  • the proposed scheme and design structure are reliable, the technology maturity is high, and the implementation is good.

Abstract

一种翼升力垂直起降发动机,由风扇(1)、圆环形翼升力板(2)组成,风扇(1)制造出由中心向四周吹出气流,流向翼升力板(2),产生向上的升力,发动机获得翼升力板提供的升力。

Description

一种翼升力垂直起降发动机 技术领域
本发明涉及一种翼升力垂直起降发动机,它是一种利用风扇产生的气流直接吹向翼升力板,从而获得升力的发动机,主要用于飞行器的垂直起降,属航空发动机设计制造技术领域。
背景技术
飞机能够飞上天空运用的是伯努利原理。即:在水流或气流里,如果速度小,压强就大,如果速度大,压强就小。现有飞机是利用发动机推动整个飞机高速前进,让高速前进的机翼在静止的空气中滑过,利用伯努利原理产生升力。我们试想,如果有足够多的风扇,能够制造出一个足够大的风场,让高速气流流向静止的机翼,根据伯努利原理,显然也是可以获得升力的,但要为长长的机翼提供这样一个风场显然是不现实的,即使有了足够多的风扇获得了这样的风场,显然也是得不偿失,没有实用性和可行性。
那我们是不是真的就无法设计出一种利用风扇产生的气流直接吹向翼升力板,从而获得升力的发动机吗?传统的思维是:机翼是直的,要获得足够的升力,必须要有足够的长度(翼展),因此,我们难以以一个合理、可行的设计,在这样一个长长的机翼前侧制造出一个与翼展长度相同的扁 平风场。本发明拟提出一种创新的思维:设计一个圆环形机翼,或者由多个直机翼成圆环形排列,再由风扇制造一个由中心向四周吹出的风场,这样,一是一个风扇就可以制造出这样的风场,二是圆环形的机翼也有了足够的长度,因而也就可以获得足够的升力。但由于圆环形机翼与升力方向垂直,因而会有巨大的阻力,这样的发动机主要适用于飞行器的垂直起降。
技术问题
现有的可以提供垂直升力的喷气式发动机都是利用作用力与反作用力原理,通过向下喷气为飞行器提供升力,升力效率不够高。本发明拟利用伯努利原理,让发动机可以获得额外的垂直升力。
技术解决方案
本发明利用伯努利原理,构想了一种将机翼和发动机融合为一体的设计,提出了利用风扇产生的气流直接吹向翼升力板以获得升力的发动机设计思路,从而让飞行器获得可以垂直起降的升力。技术解决方案:该发动机由风扇、圆环形翼升力板组成,翼升力板的剖面结构符合伯努利原理的升力翼特征,翼升力板或为一个整体的360度圆环结构,或为由数块独立的直翼成360度圆环形排列组成,风扇或由自身将空气由中心向四周吹出,或在导流板的引导下将空气由中心向四周吹出,吹向翼升力板,产生向上的升力。将上述设计思路应用于涡扇发动机,将圆环形翼升力板设计在涡扇发动机的外涵道外侧,在外涵道内侧,加装可以使外涵道气流90度转向的成圆环形设置的导流板或气门,导流板或气门将外涵道内的气流以发动 机为中心向垂直于发动机轴向的四周吹出,吹向翼升力板,发动机获得翼升力板提供的升力,当飞行器完成起飞,高速飞行时,导流板或气门关闭,发动机转换为普通涡扇发动机,此时,为减小飞行阻力,翼升力板可以向下90度转动;翼升力板向下90度转动后,可通过调节部分翼升力板的转动角度,控制飞行器的飞行姿态,如转向、爬升、俯冲或减速。
有益效果
本发明提出了为涡扇发动机设计圆环形翼升力板的思路,风扇将空气由中心向四周吹出,吹向翼升力板,由于翼升力板是按照伯努利原理设计的,与机翼结构相同,因而可以获得有别于发动机直接喷气而产生的额外升力,从而为有垂直起降要求的飞行器在起降时提供更为强劲的升力。
附图说明
图1是本发明发动机原理的剖面示意图
图2是本发明发动机状态之一的剖面示意图
图3是本发明发动机状态之二的剖面示意图
图中,1是风扇、2是翼升力板、3是涡扇发动机、4是外涵道、5是导流板
本发明的最佳实施方式
本发明仅提供了一种实施方式,其具体结构见附图2。
本发明的实施方式
对照附图1,图1是本发明发动机原理的剖面示意图,图中,1是风扇、2是翼升力板,风扇1设计的是可以由中心向四周吹风的风扇,在风扇1的外围,是成360度的圆环形翼升力板2,翼升力板2的剖面结构符合伯努利原理的升力翼特征,风扇1将空气由中心向四周吹出,吹向翼升力板2,产生向上的升力。
对照附图2,图2是本发明发动机状态之一的剖面示意图,是图1所示的原理应用于涡扇发动机的剖面示意图。图中3是涡扇发动机、4是外涵道、5是导流板,在涡扇发动机3的外涵道4外侧,有成360度圆环形排列设置的翼升力板2,在外涵道4的内侧,加装有可以使外涵道气流90度转向的,同样在外涵道4的内壁一周成360度圆环形排列设置的导流板5,导流板5将外涵道4内的气流由发动机中心向垂直于发动机轴向的四周吹出,吹向翼升力板2,当然,导流板5也可以采用气门结构设计,需要时气门打开,外涵道4内的气流通过气门,向翼升力板吹出,不需要时关闭气门,气流直接从外涵道喷口排出,气门技术在航空发动机领域是公知的技术解决方案,附图中不作体现。由于翼升力板2是按照伯努利原理设计的,与机翼结构相同,因而可以获得有别于发动机直接喷气而产生的额外升力,从而为有垂直起降要求的飞行器在起降时提供更为强劲的升力。
根据飞行器的设计需要,翼升力板2既可以是一个整体的360度圆环结构,比如在设计飞碟结构的飞行器或空天母舰时,就可以采用整体的圆环结构,通过加装可以改变或调节翼面的附翼,来调节飞碟或空天母舰的飞行方向和飞行姿态;翼升力板2也可以是由数块独立的直翼成360度圆环形排列组成,比如飞行器在完成垂直起飞后,需要由垂直状态改为高速 平飞状态,发动机也随飞行器改为水平状态,这时候由数块独立的直翼成360度圆环形排列组成翼升力板2就可以进行90度转动,以最小的面迎着空气,以减小阻力(见附图3)。
对照附图3,图3是本发明发动机状态之二的剖面示意图,是导流板5或气门关闭,发动机转换为普通涡扇发动机时的剖面示意图。从图2、图3中的导流板5可以看出,该导流板5安装在外涵道的外壁上,可以以一端为轴转动,当需要发动机提供翼升力时,导流板5以一端为轴转动,使另一端靠向外涵道4的内壁,从而将外涵道4内的气流引导向垂直于发动机轴向的四周吹出,吹向翼升力板2,发动机获得翼升力板2提供的升力,当飞行器完成起飞,高速飞行时,导流板5收回至外涵道4的外壁,外涵道4内的气流直接从喷口排出,发动机转换为普通涡扇发动机。
对照附图3还可以看出,当飞行器完成起飞,导流板5或气门关闭后,为减小飞行器高速飞行时翼升力板2带来的过大的飞行阻力,由数块独立的直翼成360度圆环形排列组成的翼升力板2可以向下90度转动,根据飞行原理可知,当翼升力板向下90度转动后,可通过调节部分翼升力板的转动角度,控制飞行器的飞行姿态,如转向、爬升、俯冲或减速。
工业实用性
本发明构想了一种将机翼和发动机融合为一体的设计,提出了利用风扇产生的气流直接吹向翼升力板以获得升力的发动机设计思路,该思路依据于伯努利原理,具有科学的原理支撑。提出的方案及设计结构可靠、技术成熟度高,具有较好的可实施性。

Claims (4)

  1. 一种翼升力垂直起降发动机,其特征是:该发动机由风扇(1)、圆环形翼升力板(2)组成,翼升力板(2)的剖面结构符合伯努利原理的升力翼特征,翼升力板(2)或为一个整体的360度圆环结构,或为由数块独立的直翼成360度圆环形排列组成,风扇(1)或由自身将空气由中心向四周吹出,或在导流板(5)的引导下将空气由中心向四周吹出,吹向翼升力板(2),产生向上的升力。
  2. 根据权利要求1所述的一种翼升力垂直起降发动机,其特征是:所述的翼升力板(2)在涡扇发动机(3)的外涵道(4)外侧,在外涵道(4)内侧,加装有可以使外涵道气流90度转向的成圆环形设置的导流板(5)或气门,导流板(5)或气门将外涵道(4)内的气流由发动机中心向垂直于发动机轴向的四周吹出,吹向翼升力板(2),发动机获得翼升力板(2)提供的升力,当飞行器完成起飞,高速飞行时,导流板(5)或气门关闭,发动机转换为普通涡扇发动机。
  3. 根据权利要求2所述的一种翼升力垂直起降发动机,其特征是:所述的导流板(5)收回至外涵道(4)的外壁时,为减小飞行阻力,翼升力板(2)向下90度转动。
  4. 根据权利要求3所述的一种翼升力垂直起降发动机,其特征是:所述的翼升力板(2)向下90度转动后,可通过调整部分翼升力板(2)的转动角度,控制飞行器的飞行姿态,如转向、爬升、俯冲或减速。
PCT/CN2016/095928 2016-01-14 2016-08-18 一种翼升力垂直起降发动机 WO2017121116A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610029610.3 2016-01-14
CN201610029610.3A CN106965940A (zh) 2016-01-14 2016-01-14 一种翼升力垂直起降发动机

Publications (1)

Publication Number Publication Date
WO2017121116A1 true WO2017121116A1 (zh) 2017-07-20

Family

ID=59310704

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/095928 WO2017121116A1 (zh) 2016-01-14 2016-08-18 一种翼升力垂直起降发动机

Country Status (2)

Country Link
CN (1) CN106965940A (zh)
WO (1) WO2017121116A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113998126A (zh) * 2021-12-03 2022-02-01 江西洪都航空工业集团有限责任公司 一种折叠无人机用活塞发动机风冷装置

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114906316A (zh) * 2022-04-15 2022-08-16 西华大学 超声速吹气环量后缘装置和飞行器

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB877766A (en) * 1957-08-28 1961-09-20 Bertin & Cie Improvements in jet augmenters
CN101693469A (zh) * 2009-05-05 2010-04-14 徐林波 一种飞行器
CN102085911A (zh) * 2010-12-29 2011-06-08 董树功 新理念飞行及飞行器
CN103921931A (zh) * 2014-04-28 2014-07-16 龙川 涵道机翼系统以及运用该系统的飞行器
CN104787329A (zh) * 2013-07-26 2015-07-22 哈尔滨工程大学 一种具有固定翼的垂直起落装置的升力单体
US20150274291A1 (en) * 2012-06-11 2015-10-01 James W. Vetter Multi-orientation, advanced vertical agility, variable-environment vehicle
CN105799927A (zh) * 2016-03-17 2016-07-27 高大勇 一种涵道环固定翼直升机

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5170963A (en) * 1991-09-24 1992-12-15 August H. Beck Foundation Company VTOL aircraft
BR9501643A (pt) * 1995-05-02 1997-09-16 Dos Santos Randus Ferreira Helistato
PE20020327A1 (es) * 2000-09-19 2002-07-03 Peralta Americo Salas Vehiculo volador de sustentacion inversa
CN1907807A (zh) * 2006-08-09 2007-02-07 黄革雄 一种固定机翼飞行器垂直起降的方法及飞行器
CN104129500A (zh) * 2014-07-02 2014-11-05 张力 一种固定翼式垂直起降飞行方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB877766A (en) * 1957-08-28 1961-09-20 Bertin & Cie Improvements in jet augmenters
CN101693469A (zh) * 2009-05-05 2010-04-14 徐林波 一种飞行器
CN102085911A (zh) * 2010-12-29 2011-06-08 董树功 新理念飞行及飞行器
US20150274291A1 (en) * 2012-06-11 2015-10-01 James W. Vetter Multi-orientation, advanced vertical agility, variable-environment vehicle
CN104787329A (zh) * 2013-07-26 2015-07-22 哈尔滨工程大学 一种具有固定翼的垂直起落装置的升力单体
CN103921931A (zh) * 2014-04-28 2014-07-16 龙川 涵道机翼系统以及运用该系统的飞行器
CN105799927A (zh) * 2016-03-17 2016-07-27 高大勇 一种涵道环固定翼直升机

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113998126A (zh) * 2021-12-03 2022-02-01 江西洪都航空工业集团有限责任公司 一种折叠无人机用活塞发动机风冷装置
CN113998126B (zh) * 2021-12-03 2023-10-20 江西洪都航空工业集团有限责任公司 一种折叠无人机用活塞发动机风冷装置

Also Published As

Publication number Publication date
CN106965940A (zh) 2017-07-21

Similar Documents

Publication Publication Date Title
US8020804B2 (en) Ground effect vanes arrangement
CN105314096B (zh) 独立气源供气的无舵面飞行器
US8821123B2 (en) Double-ducted fan
US9694907B2 (en) Lift-generating device having axial fan(s), and heavier-than-air aircraft fitted with such a device
CN105173061B (zh) 一种超音速飞机布局的飞机
CN106628120B (zh) 一种高效气动涵道体
CN103935517A (zh) 飞行器
EP3263454A1 (en) Vtol aircraft with a thrust-to-weight ratio smaller than 0.1
AU2015203190A1 (en) A system for controlled vertical movement of an aircraft
WO2017121116A1 (zh) 一种翼升力垂直起降发动机
WO2011041991A2 (en) Aircraft using ducted fan for lift
CN205186510U (zh) 独立气源供气的无舵面飞行器
CN103057703A (zh) 具有羽翼翼形的双旋翼共轴直升机
CN104875875A (zh) 一种气羽翼式气流定向载重运输飞行器
US9849975B2 (en) Deflection cone in a reaction drive helicopter
RU2212358C1 (ru) Летательный аппарат
RU2435707C2 (ru) Летательный аппарат вертикального взлета и посадки
CN206107556U (zh) 一种高速类碟形飞行器
CN114906316A (zh) 超声速吹气环量后缘装置和飞行器
RU180623U1 (ru) Самолет вертикального взлета и посадки
RU2491206C2 (ru) Способ и устройство создания подъемной силы для летательного аппарата с вертикальным взлетом и посадкой
RU2612036C1 (ru) Модуль летательного аппарата, создающий подъемную силу
WO2010050839A1 (ru) Летательный аппарат вертикального взлета и посадки
DE112015005153T5 (de) Ein verbessertes Luftschiff
RU2621780C1 (ru) Летательный аппарат, создающий подъемную силу

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16884670

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16884670

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 16884670

Country of ref document: EP

Kind code of ref document: A1