WO2017119790A1 - Method for manufacturing lightweight composite material comprising stainless steel and aluminium or alloys thereof, and lightweight composite material prepared by same - Google Patents

Method for manufacturing lightweight composite material comprising stainless steel and aluminium or alloys thereof, and lightweight composite material prepared by same Download PDF

Info

Publication number
WO2017119790A1
WO2017119790A1 PCT/KR2017/000236 KR2017000236W WO2017119790A1 WO 2017119790 A1 WO2017119790 A1 WO 2017119790A1 KR 2017000236 W KR2017000236 W KR 2017000236W WO 2017119790 A1 WO2017119790 A1 WO 2017119790A1
Authority
WO
WIPO (PCT)
Prior art keywords
powder
composite material
stainless steel
aluminum
milling
Prior art date
Application number
PCT/KR2017/000236
Other languages
French (fr)
Korean (ko)
Inventor
권한상
Original Assignee
(주)부경대학교 기술지주회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by (주)부경대학교 기술지주회사 filed Critical (주)부경대학교 기술지주회사
Publication of WO2017119790A1 publication Critical patent/WO2017119790A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/10Sintering only
    • B22F3/105Sintering only by using electric current other than for infrared radiant energy, laser radiation or plasma ; by ultrasonic bonding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F7/00Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/02Making metallic powder or suspensions thereof using physical processes
    • B22F9/04Making metallic powder or suspensions thereof using physical processes starting from solid material, e.g. by crushing, grinding or milling

Definitions

  • the present invention relates to a method for producing a lightweight composite material, including stainless steel and aluminum or an alloy thereof, having improved corrosion resistance and workability, and a lightweight composite material produced thereby.
  • alloys have been utilized in various industrial fields such as structures, vehicles, and electronic devices, and in particular, alloys used for manufacturing various parts applicable to the above-described industrial fields have been required to have very high strength and light weight.
  • stainless steel alloy is a steel alloy containing at least 10% by weight of chromium (Cr), which is widely used in structures and components requiring excellent corrosion resistance and good mechanical properties, but relatively expensive and heavy. It is difficult to process.
  • Cr chromium
  • aluminum alloy is an alloy in which aluminum (Al) is added with a metal such as copper (Cu) or magnesium (Mg), which is lighter than steel, has excellent workability and corrosion resistance, and has excellent specific rigidity. Although used as a structure of the device, there is a disadvantage that the mechanical strength is poor.
  • the present invention has been made to solve the problems of the prior art as described above, to provide a technical content of a method for producing a lightweight composite material having excellent corrosion resistance and processability, including stainless steel and aluminum or alloys thereof. .
  • the present invention comprises the steps of (a) manufacturing a mixed powder by milling stainless steel powder (stainless steel) powder and aluminum powder or aluminum alloy alloy powder; And (b) spark plasma sintering (SPS) of the mixed powder prepared in step (a) to provide a method for producing a lightweight stainless steel-aluminum alloy composite material.
  • SPS spark plasma sintering
  • the stainless steel is at least one selected from the group consisting of austenitic, ferrite, martensite, precipitation hardening martensite, and duplex systems. It is characterized by.
  • the stainless steel is characterized in that it comprises 10 to 25% by weight of chromium (Cr), 5 to 20% by weight of nickel (Ni) and 0.01 to 1% by weight of carbon (C).
  • the stainless steel is characterized in that it further comprises at least one element selected from copper (Cu), molybdenum (Mo) and manganese (Mn).
  • the aluminum alloy is pure aluminum alloy (1000 series), Al-Mn-based, Al-Si-based, Al-Cu-based, Al-Mg-based, Al-Mg-Si-based, Al-Zn-Mg-based, Al It is characterized in that it is one kind selected from the group consisting of -Cu-based and Al-Si-Cu-Mg-based.
  • the mixed powder is characterized in that it comprises the stainless steel powder and the aluminum powder in a volume ratio of 4: 1 to 1: 1.
  • step (a) is characterized in that it is carried out by ball milling, planetary milling or attrition milling.
  • step (a) is characterized in that it is carried out by ball milling for 6 to 24 hours at 100 to 500 rpm.
  • the average particle diameter of the stainless steel powder and the aluminum alloy powder is characterized in that 1 to 1,000 ⁇ m.
  • step (b) is characterized in that it is carried out for 1 to 20 minutes at a temperature of 500 to 650 °C and a pressure of 400 to 800 MPa.
  • the present invention also provides a lightweight composite material produced by the method described above.
  • the light weight composite material is characterized by a specific gravity of 5.0 to 7.0.
  • the composite material is characterized in that the Vickers hardness (Hardness Vickers, HV) is 300 to 500.
  • the starting material is made of stainless steel powder and aluminum powder or aluminum alloy powder using a spark plasma sintering process in the compounding step without changing the composition.
  • a composite material having excellent physical properties including all the advantages (lightness and excellent corrosion resistance / processability / mechanical properties) of each starting raw material can be produced.
  • the spark plasma sintering process is used for compounding the raw material powder, it is possible to economically and easily manufacture a composite material having excellent physical properties optimized for the application of the composite material by controlling the mixing weight ratio of the stainless steel powder and the aluminum alloy powder. Can be.
  • FIG. 1 is a process chart showing each step of the method for manufacturing a lightweight composite material according to the present invention.
  • FIG. 2 is a conceptual diagram schematically showing a spark plasma sintering apparatus according to an example of the present invention.
  • FIG. 3 is a conceptual diagram schematically showing a spark plasma sintering process according to the present invention.
  • Example 5 is an XRD pattern analysis result of the mixed powder and the composite material of Example 5.
  • FIG. 6 is an SEM image of (a) stainless steel powder, (b) aluminum powder and (c) composite material of Example 5.
  • FIG. 6 is an SEM image of (a) stainless steel powder, (b) aluminum powder and (c) composite material of Example 5.
  • Embodiments according to the concept of the present invention can be variously modified and can have various forms, and specific embodiments will be illustrated in the drawings and described in detail in the present specification or application. However, this is not intended to limit the embodiments in accordance with the concept of the present invention to a particular disclosed form, it should be understood to include all changes, equivalents, and substitutes included in the spirit and scope of the present invention.
  • the present invention is a method for producing a composite material excellent in corrosion resistance and workability by compounding the stainless steel powder and aluminum or aluminum alloy powder through a spark plasma sintering (SPS), as shown in FIG. Similarly, (a) milling stainless steel powder and aluminum powder or aluminum alloy powder to prepare a mixed powder; And (b) spark plasma sintering (SPS) the mixed powder prepared in step (a).
  • SPS spark plasma sintering
  • Step (a) is a step of manufacturing a mixed powder by milling stainless steel powder and aluminum powder or aluminum alloy powder.
  • the stainless steel powder may be a commonly used stainless steel, such as stainless steel, such as austenitic, such as SUS 304 or SUS 316, ferrite, such as SUS 430 or SUS 436, SUS 403, etc. Martensitic (martensite), precipitation hardening martensite such as SUS 630 or SUS 631, duplex stainless steel such as SUS 2507, SUS 2205 or SUS 2304 is a typical example, More preferably, SUS 316 can be used.
  • austenitic such as SUS 304 or SUS 316
  • ferrite such as SUS 430 or SUS 436, SUS 403, etc.
  • Martensitic martensite
  • precipitation hardening martensite such as SUS 630 or SUS 631
  • duplex stainless steel such as SUS 2507, SUS 2205 or SUS 2304 is a typical example, More preferably, SUS 316 can be used.
  • the stainless steel may be used that includes 10 to 25% by weight of chromium (Cr), 5 to 20% by weight of nickel (Ni) and 0.01 to 1% by weight of carbon (C) relative to the total weight,
  • Cr chromium
  • Ni nickel
  • C carbon
  • One stainless steel may further include elements such as copper (Cu), molybdenum (Mo) or manganese (Mn).
  • the stainless steel powder is preferably used having an average particle diameter of 0.1 to 1,000 ⁇ m, which may cause excessive alloying with the aluminum powder or aluminum alloy powder when the average particle diameter is less than 0.1 ⁇ m, This is because if the average particle diameter exceeds 1,000 ⁇ m, the porosity is too high to cause complexation with aluminum powder or aluminum alloy powder. More preferably, the stainless steel powder may have an average particle diameter of 100 ⁇ m or less.
  • the aluminum alloy powder may be a known plastic alloy (wrought alloy) or cast alloy (cast alloy) without limitation, such aluminum alloy powder, 1000 series pure aluminum alloy-based, 3003, 3004 or Al-Mn such as 3014, Al-Si such as 4032 or 4043, Al-Cu such as 2017 or 2024 known as duralumin, Al-Mg such as 5052 or 5083, 6061-T6, 6063 or 6N01, etc.
  • groups such as Al-Mg-Si type
  • the aluminum powder or aluminum alloy powder is preferably used having an average particle diameter of 0.1 to 1,000 ⁇ m, which may cause excessive alloying (alloying) with stainless steel powder when the average particle diameter is less than 0.1 ⁇ m, If the average particle diameter exceeds 1,000 ⁇ m because the porosity is too high, it is difficult to induce complexation with the stainless steel powder. More preferably, the aluminum powder or aluminum alloy powder may be used having an average particle diameter of 75 ⁇ m or less.
  • the milling method for grinding and mixing the stainless steel powder and aluminum powder or aluminum alloy powder in the present step the raw material powder is uniformly ground and mixed, the composite material through a spark plasma sintering process in the step described later As long as it can form a specific method is not particularly limited.
  • the step may be performed through a process of mechanically mixing through milling using ball milling, planetary milling, or attrition milling.
  • the starting material in order to prepare the starting material by performing the process through a ball milling method, it may be configured to be performed for 6 to 24 hours at 100 to 500 rpm to prepare a powder mixed and mixed to a uniform size And, more preferably, it can be configured to be performed for 10 to 14 hours at 200 rpm.
  • the mixed powder is configured to contain the stainless steel powder and the aluminum powder in a volume ratio of 4: 1 to 1: 1, respectively, so that the specific gravity, elongation, and tensile strength of the composite material is finally obtained. Physical properties such as strength and hardness can be controlled differently.
  • the step (b) is a step of producing a sintered body by spark plasma sintering (SPS) the mixed powder.
  • SPS spark plasma sintering
  • Spark plasma sintering which is used for complexing the stainless steel powder and the aluminum powder in this step, is a method of sintering by applying a direct current pulse current in a direction parallel to the pressing direction while pressing the powder or plate in one axis. It is a sintering method that applies pressure, low voltage and large current to a plate, and applies high energy of plasma generated by a spark generated at this time to electric field diffusion and thermal diffusion. Since the discharge plasma sintering has a sintering temperature of about 200 to 500 ° C. lower than that of a conventional method of manufacturing a composite material using a casting method, and sintering can be completed in a short time including a temperature raising and holding time, power consumption is greatly reduced. It is easy to handle, and the operating cost is low.
  • the production time is short by producing a composite material by sintering the starting material in the powder through spark plasma sintering, it is possible to manufacture a high-density composite material is equivalent to stainless steel In addition to having a high level of mechanical strength and corrosion resistance, there is an effect of producing a lightweight composite material having excellent workability.
  • the spark plasma sintering process may be performed using a spark plasma sintering apparatus including, for example, a vacuum chamber, a die assembly, a high current supply device, a pressurization device, a vacuum device, various control and measurement devices ( 2).
  • a spark plasma sintering apparatus including, for example, a vacuum chamber, a die assembly, a high current supply device, a pressurization device, a vacuum device, various control and measurement devices ( 2).
  • spark plasma sintering apparatus when the spark plasma sintering process is performed for 1 to 20 minutes by applying a pressure of 400 to 800 MPa at a temperature below the melting point of aluminum, for example, 500 to 650 ° C., the mixing Along with the powder, a pulse current is supplied, whereby stainless steel powder and aluminum contained in the mixed powder by joule heat formed in the mixed powder by a spark plasma discharge phenomenon occurring in a short time. Alloy powder may be combined to form a dense composite material (see FIG. 3).
  • this step may be configured to perform a spark plasma sintering process for 5 to 10 minutes by applying a pressure of 500 to 800 MPa at a temperature of 550 to 600 °C to form a composite material.
  • the range of the interface product is very small and the range of composition change is extremely limited because the temperature and time for the mutual diffusion of the component elements in stainless steel and aluminum or aluminum alloy are not sufficient. There is an effect that can maintain the intrinsic properties of the alloy.
  • the manufacturing method of the light weight composite material according to the present invention by using the spark plasma sintering process in the compounding step by rapidly densifying and compounding the starting material stainless steel powder and aluminum powder or aluminum alloy powder without changing the composition, It is possible to produce a stainless steel-aluminum alloy composite material having excellent properties including all the advantages (light weight and excellent corrosion resistance / processability / mechanical properties).
  • a lightweight composite material prepared by spark plasma sintering of a mixed powder obtained by mixing SUS 316 stainless steel with pure aluminum powder at a maximum volume of 50% by volume at a temperature of 600 ° C. and a pressure of 500 MPa for 10 minutes Vickers hardness ( Hardness Vickers (HV) is 375.4, and lightweight composites made by spark plasma sintering for 10 minutes under a temperature of 600 ° C. and a pressure of 800 MPa have a good mechanical strength of Vickers hardness of 475.9 and specific gravity up to 35%.
  • Phosphorus lightweight material can be used in various fields.
  • the method of manufacturing a light weight composite material according to the present invention uses a spark plasma sintering process for compounding the raw material powder, it is possible to apply the composite material to the application field of the composite material by controlling the mixing ratio of the stainless steel powder and the aluminum powder or the aluminum alloy powder. It is possible to economically and easily manufacture composite materials with optimized excellent properties.
  • Step 1 A mixed powder comprising a stainless alloy (SUS 316) powder having an average particle diameter of 100 ⁇ m or less and an aluminum alloy (Al 1000) powder having an average particle diameter of 75 ⁇ m or less in a content shown in Table 1 below at a speed of 200 rpm for 12 hours. Ball milling during milling and stirring.
  • SUS 316 stainless alloy
  • Al 1000 aluminum alloy
  • Step 2 The composite powder prepared in Step 1 was spark plasma sintered (SPS) under the conditions shown in Table 1 to prepare a composite material.
  • SPS spark plasma sintered
  • Step 1 A powder comprising stainless steel powder (SUS 316) having an average particle diameter of 100 ⁇ m or less and / or aluminum alloy powder (Al 1000) having an average particle diameter of 75 ⁇ m or less in a content shown in Table 2 below at a speed of 200 rpm. Ball milled for hours to grind and stir.
  • SUS 316 stainless steel powder
  • Al 1000 aluminum alloy powder
  • Step 2 The powder prepared in Step 1 was spark plasma sintered under the conditions described in Table 2 to prepare a composite material.
  • Specimens were prepared using the composite materials prepared by the methods according to Examples 1 to 5 and Comparative Examples 1 to 10, and the density (density, Ds) of each specimen was prepared using the Archimedes theory. The relative density was calculated, and the hardness of the specimen was measured using a Vickers hardness tester. The results are shown in Tables 1 and 2.
  • the relative density increases as the sintering pressure and the holding time increase, and the Vickers hardness is superior to the composite material manufactured by sintering at 600 ° C. Relative density and Vickers hardness increased with increasing volume percent by weight of.
  • the composite material prepared by the method according to Examples 4 and 5 shows the best properties of relative density and Vickers hardness, prepared by sintering for 10 minutes under the temperature of 600 °C and 800 MPa pressure
  • Vickers hardness was 475.9 and the relative density was 99.94%, indicating that the mechanical strength was excellent.
  • Example 4 is an XRD analysis result of the mixed powder (SUS 316 + Al) before the SPS process and the composite material obtained after the SPS process in Example 5.
  • the composite material was obtained by using the SPS as a starting material of stainless steel and aluminum without changing the phase of the SPS process. It can be confirmed that it is included as it is after a process.
  • the composite material prepared in Example 5 can be confirmed that the aluminum powder particles having a relatively small particle size has a complex form on the surface of the stainless steel powder having a relatively large particle size through the SPS process. have.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Composite Materials (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Powder Metallurgy (AREA)

Abstract

The present invention provides a method for manufacturing a lightweight stainless steel-aluminum alloy composite material, the method comprising the steps of: (a) manufacturing a mixture powder by milling stainless steel powder and aluminum powder; and (b) performing spark plasma sintering (SPS) on the mixture powder prepared in step (a). According to the present invention, the method for manufacturing a lightweight stainless steel-aluminum composite material quickly densifies and complexes the stainless steel powder and the aluminum alloy powder, which are starting materials, without changing the composition thereof by using an SPS process in a complexation step, thereby enabling the composite material having excellent material properties including all of the original advantages (lightweight properties and excellent corrosion resistance/workability/mechanical properties) of each starting raw material to be manufactured. In addition, since the SPS process is used for the complexation of raw material powder, the composite material having excellent material properties, optimized in an application field of the composite material, can be economically and easily manufactured through the control of a mixing weight ratio of the stainless steel powder and the aluminum powder, and the like.

Description

스테인레스 스틸과 알루미늄 또는 그 합금을 포함하는 경량 복합재료의 제조방법 및 이에 의해 제조된 경량 복합재료Method for producing lightweight composite material comprising stainless steel and aluminum or alloys thereof and lightweight composite material produced thereby
본 발명은 스테인레스 스틸과 알루미늄 또는 그 합금을 포함하여 내부식성 및 가공성이 향상된 경량 복합재료의 제조방법 및 이에 의해 제조된 경량 복합재료에 관한 것이다.The present invention relates to a method for producing a lightweight composite material, including stainless steel and aluminum or an alloy thereof, having improved corrosion resistance and workability, and a lightweight composite material produced thereby.
최근 들어, 합금은 구조물, 운송수단 또는 전자기기 등의 다양한 산업분야에 활용되고 있으며, 특히, 상기한 산업 분야에 활용가능한 각종 부품 제조에 활용되는 합금은 특성상 매우 높은 강도와 경량화가 요구되고 있다.In recent years, alloys have been utilized in various industrial fields such as structures, vehicles, and electronic devices, and in particular, alloys used for manufacturing various parts applicable to the above-described industrial fields have been required to have very high strength and light weight.
일례로, 스테인레스 스틸 합금은 최소 10 중량% 이상의 크롬(Cr)을 포함하는 강철합금으로, 내부식성이 뛰어나고 기계적 물성이 좋아 부식에 대한 저항이 필요한 구조물 및 부품등에 널리 사용되고 있지만 비교적 가격이 비싸고 무거우며 가공이 어려운 단점이 있다. For example, stainless steel alloy is a steel alloy containing at least 10% by weight of chromium (Cr), which is widely used in structures and components requiring excellent corrosion resistance and good mechanical properties, but relatively expensive and heavy. It is difficult to process.
또한, 알루미늄 합금은 알루미늄(Al)에 구리(Cu) 또는 마그네슘(Mg) 등의 금속을 첨가한 합금으로 철강보다 경량이고 가공성과 내식성이 우수하며, 뛰어난 비강성을 지니고 있어 차량 선박 항공기 등의 수송기기의 구조체로 활용되고 있으나, 기계적 강도가 떨어진다는 단점이 있다.In addition, aluminum alloy is an alloy in which aluminum (Al) is added with a metal such as copper (Cu) or magnesium (Mg), which is lighter than steel, has excellent workability and corrosion resistance, and has excellent specific rigidity. Although used as a structure of the device, there is a disadvantage that the mechanical strength is poor.
따라서, 상기 스테인레스 스틸 합금 및 알루미늄 합금 소재의 복합화를 통해 각 소재의 장점을 살릴 경우, 우수한 기계적 강도, 내식성 및 경량성을 동시에 가지는 복합 소재로서 응용 분야에 최적화된 재료의 공급이 가능해 원가절감 및 성능향상이 가능할 것으로 예상된다.Therefore, when utilizing the advantages of each material through the combination of the stainless steel alloy and aluminum alloy material, it is possible to supply the material optimized for the application field as a composite material having excellent mechanical strength, corrosion resistance and light weight at the same time, cost reduction and performance Improvements are expected.
상기와 같은 스테인레스 스틸 합금-알루미늄 합금 복합 소재를 제조하기 위한 방법으로, 합금화를 위한 대표적인 가공 방법인 주조(casting)를 고려할 수 있다.As a method for manufacturing the stainless steel alloy-aluminum alloy composite material as described above, casting which is a typical processing method for alloying may be considered.
하지만, 주조에 의해 복합재료를 제조할 경우, 양 재료의 극단적인 용융점 차이(스테인레스 스틸: 약 1,550 ℃, 알루미늄 합금: 약 660 ℃)로 인해, 주조 과정 중에 알루미늄의 발화에 의한 연소, FeAl 또는 FeAl3 등의 바람직하지 않은 금속간 화합물의 발생 등의 문제가 있어 현재로서는 우수한 물성을 가지는 스테인레스 스틸 합금-알루미늄 합금 복합 소재를 제조함에 있어서 큰 어려움이 있다.However, when manufacturing the composite material by casting, due to the extreme melting point difference (stainless steel: about 1,550 ℃, aluminum alloy: about 660 ℃) of the two materials, combustion due to the ignition of aluminum during the casting process, FeAl or FeAl There are problems such as the occurrence of undesirable intermetallic compounds such as 3, and at present there is a great difficulty in producing a stainless steel alloy-aluminum alloy composite material having excellent physical properties.
따라서, 상기한 문제점을 극복하고 우수한 기계적 강도, 내식성 및 경량성을 동시에 가지는 스테인레스 스틸 합금-알루미늄 합금 복합재료 제조방법에 대한 기술 개발이 필요하다.Therefore, there is a need for technology development of a method for manufacturing a stainless steel alloy-aluminum alloy composite material which overcomes the above problems and simultaneously has excellent mechanical strength, corrosion resistance and lightness.
본 발명은 상기한 바와 같은 종래기술의 문제점을 해결하기 위해 안출된 것으로, 스테인레스 스틸과 알루미늄 또는 그 합금을 포함하여 내식성과 가공성이 우수한 경량 복합재료를 제조하는 방법에 관한 기술 내용을 제공하고자 하는 것이다.The present invention has been made to solve the problems of the prior art as described above, to provide a technical content of a method for producing a lightweight composite material having excellent corrosion resistance and processability, including stainless steel and aluminum or alloys thereof. .
상기한 바와 같은 기술적 과제를 달성하기 위해서 본 발명은, (a) 스테인레스 스틸(stainless steel) 분말과 알루미늄 분말 또는 알루미늄(aluminium alloy) 합금 분말을 밀링하여 혼합분말을 제조하는 단계; 및 (b) 상기 단계 (a)에서 제조한 혼합분말을 스파크 플라즈마 소결(spark plasma sintering, SPS)하는 단계를 포함하는 경량 스테인레스 스틸-알루미늄 합금 복합재료의 제조방법을 제공한다.In order to achieve the above technical problem, the present invention comprises the steps of (a) manufacturing a mixed powder by milling stainless steel powder (stainless steel) powder and aluminum powder or aluminum alloy alloy powder; And (b) spark plasma sintering (SPS) of the mixed powder prepared in step (a) to provide a method for producing a lightweight stainless steel-aluminum alloy composite material.
또한, 상기 스테인레스 스틸은 오스테나이트(austenite)계, 페라이트(ferrite)계, 마르텐사이트(martensite)계, 석출 경화 마르텐사이트(precipitation hardening martensite)계 및 듀플렉스(duplex)계로 이루어진 군으로부터 선택되는 1종 이상인 것을 특징으로 한다.In addition, the stainless steel is at least one selected from the group consisting of austenitic, ferrite, martensite, precipitation hardening martensite, and duplex systems. It is characterized by.
또한, 상기 스테인레스 스틸은 총 중량 대비 10 내지 25 중량%의 크롬(Cr), 5 내지 20 중량%의 니켈(Ni) 및 0.01 내지 1 중량%의 탄소(C)를 포함하는 것을 특징으로 한다.In addition, the stainless steel is characterized in that it comprises 10 to 25% by weight of chromium (Cr), 5 to 20% by weight of nickel (Ni) and 0.01 to 1% by weight of carbon (C).
또한, 상기 스테인레스 스틸은 구리(Cu), 몰리브덴(Mo) 및 망간(Mn)으로부터 선택되는 1종 이상의 원소를 더 포함하는 것을 특징으로 한다.In addition, the stainless steel is characterized in that it further comprises at least one element selected from copper (Cu), molybdenum (Mo) and manganese (Mn).
또한, 상기 알루미늄 합금은 순수 알루미늄 합금계(1000계열), Al-Mn계, Al-Si계, Al-Cu계, Al-Mg계, Al-Mg-Si계, Al-Zn-Mg계, Al-Cu계 및 Al-Si-Cu-Mg계로 이루어진 군으로부터 선택되는 1종인 것을 특징으로 한다.In addition, the aluminum alloy is pure aluminum alloy (1000 series), Al-Mn-based, Al-Si-based, Al-Cu-based, Al-Mg-based, Al-Mg-Si-based, Al-Zn-Mg-based, Al It is characterized in that it is one kind selected from the group consisting of -Cu-based and Al-Si-Cu-Mg-based.
또한, 상기 혼합분말은 상기 스테인레스 스틸 분말 및 상기 알루미늄 분말을 4 : 1 내지 1 : 1의 체적비로 포함하는 것을 특징으로 한다.In addition, the mixed powder is characterized in that it comprises the stainless steel powder and the aluminum powder in a volume ratio of 4: 1 to 1: 1.
또한, 상기 단계 (a)는 볼 밀링(ball milling), 유성 밀링(planetary milling) 또는 어트리션 밀링(attrition milling)에 의해 수행되는 것을 특징으로 한다.In addition, the step (a) is characterized in that it is carried out by ball milling, planetary milling or attrition milling.
또한, 상기 단계 (a)는 100 내지 500 rpm으로 6 내지 24 시간 동안 볼 밀링에 의해 수행되는 것을 특징으로 한다.In addition, the step (a) is characterized in that it is carried out by ball milling for 6 to 24 hours at 100 to 500 rpm.
또한, 상기 스테인레스 스틸 분말 및 상기 알루미늄 합금 분말의 평균입경은 1 내지 1,000 ㎛인 것을 특징으로 한다.In addition, the average particle diameter of the stainless steel powder and the aluminum alloy powder is characterized in that 1 to 1,000 ㎛.
또한, 상기 단계 (b)는 500 내지 650 ℃의 온도 및 400 내지 800 MPa의 압력 하에서 1 내지 20 분 동안 수행되는 것을 특징으로 한다.In addition, the step (b) is characterized in that it is carried out for 1 to 20 minutes at a temperature of 500 to 650 ℃ and a pressure of 400 to 800 MPa.
또한, 본 발명은 상기에 기재된 방법에 의해 제조된 경량 복합재료를 제공한다.The present invention also provides a lightweight composite material produced by the method described above.
또한, 상기 경량 복합재료는 비중이 5.0 내지 7.0인 것을 특징으로 한다.In addition, the light weight composite material is characterized by a specific gravity of 5.0 to 7.0.
또한, 상기 복합재료는 비커스 경도(Hardness Vickers, HV)가 300 내지 500인 것을 특징으로 한다. In addition, the composite material is characterized in that the Vickers hardness (Hardness Vickers, HV) is 300 to 500.
본 발명에 따른 스테인레스 스틸과 알루미늄 또는 그 합금을 포함하는 경량 복합재료의 제조방법에 의하면, 복합화 단계에서 스파크 플라즈마 소결 공정을 이용해 출발 물질인 스테인레스 스틸 분말과, 알루미늄 분말 또는 알루미늄 합금 분말을 조성 변화 없이 급속하게 치밀화 및 복합화시킴으로써, 각 출발 원료 소재가 가지는 장점(경량성 및 우수한 내식성/가공성/기계적 특성)을 그대로 전부 포함하는 우수한 물성의 복합재료를 제조할 수 있다.According to the method for producing a lightweight composite material including stainless steel and aluminum or an alloy thereof according to the present invention, the starting material is made of stainless steel powder and aluminum powder or aluminum alloy powder using a spark plasma sintering process in the compounding step without changing the composition. By rapidly densifying and complexing, a composite material having excellent physical properties including all the advantages (lightness and excellent corrosion resistance / processability / mechanical properties) of each starting raw material can be produced.
또한, 원료 분말의 복합화를 위해 스파크 플라즈마 소결 공정을 사용하기 때문에, 스테인레스 스틸 분말 및 알루미늄 합금 분말의 혼합 중량비 제어 등을 통해 복합재료의 응용 분야에 최적화된 우수한 물성의 복합재료를 경제적으로 손쉽게 제조할 수 있다.In addition, since the spark plasma sintering process is used for compounding the raw material powder, it is possible to economically and easily manufacture a composite material having excellent physical properties optimized for the application of the composite material by controlling the mixing weight ratio of the stainless steel powder and the aluminum alloy powder. Can be.
도 1은 본 발명에 따른 경량 복합재료 제조방법의 각 단계를 나타낸 공정도이다.1 is a process chart showing each step of the method for manufacturing a lightweight composite material according to the present invention.
도 2는 본 발명의 일례에 따른 스파크 플라즈마 소결 장치를 모식적으로 나타낸 개념도이다.2 is a conceptual diagram schematically showing a spark plasma sintering apparatus according to an example of the present invention.
도 3은 본 발명에 따른 스파크 플라즈마 소결 공정를 모식적으로 나타낸 개념도이다.3 is a conceptual diagram schematically showing a spark plasma sintering process according to the present invention.
도 4는 실시예 5의 (a) 스테인레스 스틸 분말 및 (b) 알루미늄 분말의 XRD 패턴 분석 결과이다.4 is an XRD pattern analysis result of (a) stainless steel powder and (b) aluminum powder of Example 5.
도 5는 실시예 5의 혼합분말 및 복합재료의 XRD 패턴 분석 결과이다.5 is an XRD pattern analysis result of the mixed powder and the composite material of Example 5.
도 6은 실시예 5의 (a) 스테인레스 스틸 분말, (b) 알루미늄 분말 및 (c) 복합재료의 SEM 이미지이다.6 is an SEM image of (a) stainless steel powder, (b) aluminum powder and (c) composite material of Example 5. FIG.
본 발명을 설명함에 있어서 관련된 공지 기능 또는 구성에 대한 구체적인 설명이 본 발명의 요지를 불필요하게 흐릴 수 있다고 판단되는 경우에는 그 상세한 설명을 생략할 것이다.In describing the present invention, when it is determined that detailed descriptions of related known functions or configurations may unnecessarily obscure the gist of the present invention, the detailed description thereof will be omitted.
본 발명의 개념에 따른 실시예는 다양한 변경을 가할 수 있고 여러 가지 형태를 가질 수 있으므로 특정 실시예들을 도면에 예시하고 본 명세서 또는 출원에 상세하게 설명하고자 한다. 그러나 이는 본 발명의 개념에 따른 실시예를 특정한 개시 형태에 대해 한정하려는 것이 아니며, 본 발명의 사상 및 기술 범위에 포함되는 모든 변경, 균등물 내지 대체물을 포함하는 것으로 이해되어야 한다.Embodiments according to the concept of the present invention can be variously modified and can have various forms, and specific embodiments will be illustrated in the drawings and described in detail in the present specification or application. However, this is not intended to limit the embodiments in accordance with the concept of the present invention to a particular disclosed form, it should be understood to include all changes, equivalents, and substitutes included in the spirit and scope of the present invention.
본 명세서에서 사용한 용어는 단지 특정한 실시예를 설명하기 위해 사용된 것으로, 본 발명을 한정하려는 의도가 아니다. 단수의 표현은 문맥상 명백하게 다르게 뜻하지 않는 한, 복수의 표현을 포함한다. 본 명세서에서, "포함하다" 또는 "가지다" 등의 용어는 설시된 특징, 숫자, 단계, 동작, 구성요소, 부분품 또는 이들을 조합한 것이 존재함을 지정하려는 것이지, 하나 또는 그 이상의 다른 특징들이나 숫자, 단계, 동작, 구성요소, 부분품 또는 이들을 조합한 것들의 존재 또는 부가 가능성을 미리 배제하지 않는 것으로 이해되어야 한다.The terminology used herein is for the purpose of describing particular embodiments only and is not intended to be limiting of the invention. Singular expressions include plural expressions unless the context clearly indicates otherwise. As used herein, the terms "comprise" or "having" are intended to indicate that there is a feature, number, step, action, component, part, or combination thereof that is described, and that one or more other features or numbers are present. It should be understood that it does not exclude in advance the possibility of the presence or addition of steps, actions, components, parts or combinations thereof.
이하, 본 발명을 상세하게 설명한다.EMBODIMENT OF THE INVENTION Hereinafter, this invention is demonstrated in detail.
본 발명은, 스테인레스 스틸 분말과 알루미늄 또는 알루미늄 합금 분말을 스파크 플라즈마 소결 공정(spark plasma sintering, SPS)을 통해 복합화시켜 내식성과 가공성이 우수한 복합재료를 제조할 수 있는 방법으로서, 도 1에 도시된 바와 같이, (a) 스테인레스 스틸(stainless steel) 분말과 알루미늄 분말 또는 알루미늄 합금(aluminium alloy) 분말을 밀링하여 혼합분말을 제조하는 단계; 및 (b) 상기 단계 (a)에서 제조한 혼합분말을 스파크 플라즈마 소결(spark plasma sintering, SPS)하는 단계를 포함한다.The present invention is a method for producing a composite material excellent in corrosion resistance and workability by compounding the stainless steel powder and aluminum or aluminum alloy powder through a spark plasma sintering (SPS), as shown in FIG. Similarly, (a) milling stainless steel powder and aluminum powder or aluminum alloy powder to prepare a mixed powder; And (b) spark plasma sintering (SPS) the mixed powder prepared in step (a).
상기 단계 (a)는, 스테인레스 스틸(stainless steel) 분말과 알루미늄 분말 또는 알루미늄 합금 분말을 밀링하여 혼합분말을 제조하는 단계이다.Step (a) is a step of manufacturing a mixed powder by milling stainless steel powder and aluminum powder or aluminum alloy powder.
상기 스테인레스 스틸 분말은 통상적으로 사용되는 스테인레스 스틸을 사용할 수 있으며, 이러한 스테인레스 스틸로서 SUS 304 또는 SUS 316 등의 오스테나이트(austenite)계, SUS 430 또는 SUS 436 등의 페라이트(ferrite)계, SUS 403 등의 마르텐사이트(martensite)계, SUS 630 또는 SUS 631 등의 석출 경화 마르텐사이트(precipitation hardening martensite)계, SUS 2507, SUS 2205 또는 SUS 2304 등의 듀플렉스(duplex)계 스테인레스 스틸을 대표적인 예로 들 수 있고, 보다 바람직하게는 SUS 316을 사용할 수 있다.The stainless steel powder may be a commonly used stainless steel, such as stainless steel, such as austenitic, such as SUS 304 or SUS 316, ferrite, such as SUS 430 or SUS 436, SUS 403, etc. Martensitic (martensite), precipitation hardening martensite such as SUS 630 or SUS 631, duplex stainless steel such as SUS 2507, SUS 2205 or SUS 2304 is a typical example, More preferably, SUS 316 can be used.
또한, 상기 스테인레스 스틸은 총 중량 대비 10 내지 25 중량%의 크롬(Cr), 5 내지 20 중량%의 니켈(Ni) 및 0.01 내지 1 중량%의 탄소(C)를 포함하는 것을 사용할 수 있으며, 상기한 스테인레스 스틸은 구리(Cu), 몰리브덴(Mo) 또는 망간(Mn) 등의 원소를 더 포함할 수 있다. In addition, the stainless steel may be used that includes 10 to 25% by weight of chromium (Cr), 5 to 20% by weight of nickel (Ni) and 0.01 to 1% by weight of carbon (C) relative to the total weight, One stainless steel may further include elements such as copper (Cu), molybdenum (Mo) or manganese (Mn).
아울러, 상기 스테인레스 스틸 분말은 평균입경이 0.1 내지 1,000 ㎛인 것을 사용하는 것이 바람직한데, 이는 평균입경이 0.1 ㎛ 미만일 경우에는 알루미늄 분말 또는 알루미늄 합금 분말과의 과도한 합금화(alloying)가 야기될 수 있으며, 평균입경이 1,000 ㎛를 초과할 경우에는 기공률이 너무 높아져 알루미늄 분말 또는 알루미늄 합금 분말과의 복합화가 유도되기 힘든 문제점이 있기 때문이다. 보다 바람직하게는 상기 스테인레스 스틸 분말은 평균입경이 100 ㎛이하인 것을 사용할 수 있다.In addition, the stainless steel powder is preferably used having an average particle diameter of 0.1 to 1,000 ㎛, which may cause excessive alloying with the aluminum powder or aluminum alloy powder when the average particle diameter is less than 0.1 ㎛, This is because if the average particle diameter exceeds 1,000 μm, the porosity is too high to cause complexation with aluminum powder or aluminum alloy powder. More preferably, the stainless steel powder may have an average particle diameter of 100 μm or less.
또한, 상기 알루미늄 합금 분말은 공지의 소성가공용 합금(wrought alloy) 또는 주조용 합금(cast alloy)을 제한 없이 사용할 수 있으며, 이러한 알루미늄 합금 분말로는, 1000 계열의 순수 알루미늄 합금계, 3003, 3004 또는 3014 등의 Al-Mn계, 4032 또는 4043 등의 Al-Si계, 두랄루민으로 알려진 2017 또는 2024 등의 Al-Cu계, 5052 또는 5083 등의 Al-Mg계, 6061-T6, 6063 또는 6N01 등의 Al-Mg-Si계, 7N01 등의 Al-Zn-Mg계와 7075 등의 Al-Si-Cu-Mg계 알루미늄 합금 등을 대표적인 예로 들 수 있다.In addition, the aluminum alloy powder may be a known plastic alloy (wrought alloy) or cast alloy (cast alloy) without limitation, such aluminum alloy powder, 1000 series pure aluminum alloy-based, 3003, 3004 or Al-Mn such as 3014, Al-Si such as 4032 or 4043, Al-Cu such as 2017 or 2024 known as duralumin, Al-Mg such as 5052 or 5083, 6061-T6, 6063 or 6N01, etc. Al-Zg-Mg type | system | groups, such as Al-Mg-Si type | system | group, 7N01, and Al-Si-Cu-Mg type aluminum alloys, such as 7075, etc. are mentioned as a typical example.
아울러, 상기 알루미늄 분말 또는 알루미늄 합금 분말은 평균입경이 0.1 내지 1,000 ㎛인 것을 사용하는 것이 바람직한데, 이는 평균입경이 0.1 ㎛ 미만일 경우에는 스테인레스 스틸 분말과의 과도한 합금화(alloying)가 야기될 수 있으며, 평균입경이 1,000 ㎛를 초과할 경우에는 기공률이 너무 높아져 스테인레스 스틸 분말과의 복합화가 유도되기 힘든 문제점이 있기 때문이다. 보다 바람직하게는 상기 알루미늄 분말 또는 알루미늄 합금 분말은 평균입경이 75 ㎛이하인 것을 사용할 수 있다.In addition, the aluminum powder or aluminum alloy powder is preferably used having an average particle diameter of 0.1 to 1,000 ㎛, which may cause excessive alloying (alloying) with stainless steel powder when the average particle diameter is less than 0.1 ㎛, If the average particle diameter exceeds 1,000 ㎛ because the porosity is too high, it is difficult to induce complexation with the stainless steel powder. More preferably, the aluminum powder or aluminum alloy powder may be used having an average particle diameter of 75 ㎛ or less.
한편, 본 단계에서 스테인레스 스틸 분말과 알루미늄 분말 또는 알루미늄 합금 분말을 분쇄 및 혼합하기 위한 밀링(milling) 방법은, 상기 원료 분말들이 균일하게 분쇄 및 혼합되어 후술할 단계에서 스파크 플라즈마 소결 공정을 통해 복합 재료를 형성할 수 있기만 하면 그 구체적인 방법이 특별히 제한되지 않는다.On the other hand, the milling method for grinding and mixing the stainless steel powder and aluminum powder or aluminum alloy powder in the present step, the raw material powder is uniformly ground and mixed, the composite material through a spark plasma sintering process in the step described later As long as it can form a specific method is not particularly limited.
예를 들어, 본 단계는 볼 밀링(ball milling), 유성 밀링(planetary milling) 또는 어트리션 밀링(attrition milling) 등을 이용한 밀링(milling)을 통해 기계적으로 혼합하는 공정을 통해 수행될 수 있다.For example, the step may be performed through a process of mechanically mixing through milling using ball milling, planetary milling, or attrition milling.
일례로, 볼 밀링 방법을 통해 상기 공정을 수행하여 출발 물질을 제조하기 위해서는, 100 내지 500 rpm으로 6 내지 24 시간 동안 수행되도록 구성하여 균일한 크기로 분쇄 및 혼합된 혼합분말을 제조하도록 구성할 수 있으며, 보다 바람직하게는 200 rpm으로 10 내지 14시간 동안 수행되도록 구성할 수 있다.For example, in order to prepare the starting material by performing the process through a ball milling method, it may be configured to be performed for 6 to 24 hours at 100 to 500 rpm to prepare a powder mixed and mixed to a uniform size And, more preferably, it can be configured to be performed for 10 to 14 hours at 200 rpm.
본 단계에서는 상기 혼합분말은 상기 스테인레스 스틸 분말 및 상기 알루미늄 분말을 각각 4 : 1 내지 1 : 1의 체적비로 포함하도록 구성하여, 최종적으로 얻어지는 복합재료의 응용 분야에 따라 비중, 연신율(elongation), 인장 강도(tensile strength), 경도(hardness) 등의 물성을 달리 제어할 수 있다.In this step, the mixed powder is configured to contain the stainless steel powder and the aluminum powder in a volume ratio of 4: 1 to 1: 1, respectively, so that the specific gravity, elongation, and tensile strength of the composite material is finally obtained. Physical properties such as strength and hardness can be controlled differently.
상기 단계 (b)는 상기 혼합분말을 스파크 플라즈마 소결(spark plasma sintering, SPS)하여 소결체를 제조하는 단계이다.The step (b) is a step of producing a sintered body by spark plasma sintering (SPS) the mixed powder.
본 단계에서 스테인레스 스틸 분말 및 상기 알루미늄 분말의 복합화를 위해 사용되는 스파크 플라즈마 소결은, 분말이나 판재를 1축으로 가압하면서 가압방향과 평행한 방향으로 직류펄스 전류를 인가하여 소결하는 방법으로서, 분말이나 판재에 압력과 저전압 및 대전류를 투입하고 이때 발생하는 스파크에 의해 순식간에 발생하는 플라즈마의 고에너지를 전계확산, 열확산 등에 응용하는 소결 방법이다. 이러한 방전 플라즈마 소결은 종래 주조법을 이용한 복합재료의 제조방법에 비해서, 소결 온도가 200 내지 500 ℃ 정도 더 낮고, 승온 및 유지시간을 포함하여 단시간에 소결을 완료할 수 있기 때문에, 전력소비를 크게 감소시킬 수 있으며, 취급이 간편하고, 운영비용이 저렴하다.Spark plasma sintering, which is used for complexing the stainless steel powder and the aluminum powder in this step, is a method of sintering by applying a direct current pulse current in a direction parallel to the pressing direction while pressing the powder or plate in one axis. It is a sintering method that applies pressure, low voltage and large current to a plate, and applies high energy of plasma generated by a spark generated at this time to electric field diffusion and thermal diffusion. Since the discharge plasma sintering has a sintering temperature of about 200 to 500 ° C. lower than that of a conventional method of manufacturing a composite material using a casting method, and sintering can be completed in a short time including a temperature raising and holding time, power consumption is greatly reduced. It is easy to handle, and the operating cost is low.
본 발명에서는 종래 주조법을 이용한 이종 합금의 복합화 공정과는 달리, 분말 상의 출발물질을 스파크 플라즈마 소결을 통해 소결하여 복합재료를 제조함으로써 제조시간이 짧으며, 고밀도 복합재료의 제조가 가능해 스테인레스 스틸과 동등한 수준의 기계적 강도 및 내식성을 가질 뿐만 아니라, 가공성이 우수한 경량의 복합재료를 제조할 수 있는 효과가 있다.In the present invention, unlike the conventional compounding process of a heterogeneous alloy using the casting method, the production time is short by producing a composite material by sintering the starting material in the powder through spark plasma sintering, it is possible to manufacture a high-density composite material is equivalent to stainless steel In addition to having a high level of mechanical strength and corrosion resistance, there is an effect of producing a lightweight composite material having excellent workability.
상기 스파크 플라즈마 소결 공정은, 예를 들어, 진공 챔버(chamber), 다이 어셈블리, 고전류 공급 장치, 가압 장치, 진공 장치, 각종 제어 및 측정 장치를 포함하는 스파크 플라즈마 소결 장치를 사용하여 수행될 수 있다(도 2 참조).The spark plasma sintering process may be performed using a spark plasma sintering apparatus including, for example, a vacuum chamber, a die assembly, a high current supply device, a pressurization device, a vacuum device, various control and measurement devices ( 2).
상기한 스파크 플라즈마 소결 장치를 이용하여, 알루미늄의 융점 이하의 온도, 예를 들면 500 내지 650 ℃의 온도에서 400 내지 800 MPa의 압력을 가해 1 내지 20 분 동안 스파크 플라즈마 소결 공정을 수행하면, 상기 혼합분말을 따라, 펄스 전류(pulse current)가 공급되고, 이에 의해 단시간에 발생하는 스파크 플라즈마 방전 현상에 의해 상기 혼합분말에 형성되는 줄열(joule heat)에 의해 상기 혼합분말에 포함된 스테인레스 스틸 분말 및 알루미늄 합금 분말이 복합화되어 치밀한 복합재료를 형성할 수 있다(도 3 참조). Using the spark plasma sintering apparatus described above, when the spark plasma sintering process is performed for 1 to 20 minutes by applying a pressure of 400 to 800 MPa at a temperature below the melting point of aluminum, for example, 500 to 650 ° C., the mixing Along with the powder, a pulse current is supplied, whereby stainless steel powder and aluminum contained in the mixed powder by joule heat formed in the mixed powder by a spark plasma discharge phenomenon occurring in a short time. Alloy powder may be combined to form a dense composite material (see FIG. 3).
보다 바람직하게는, 본 단계에서는 550 내지 600 ℃의 온도에서 500 내지 800 MPa의 압력을 가해 5 내지 10 분 동안 스파크 플라즈마 소결 공정을 수행하도록 구성하여 복합재료를 형성할 수 있다. More preferably, in this step may be configured to perform a spark plasma sintering process for 5 to 10 minutes by applying a pressure of 500 to 800 MPa at a temperature of 550 to 600 ℃ to form a composite material.
상기와 같이 스파크 플라즈마 소결을 이용하면, 스테인레스 스틸과 알루미늄 또는 알루미늄 합금내 성분 원소의 상호 확산이 일어날만한 온도 및 시간이 충분하지 않기 때문에 계면 생성물의 범위가 매우 작고, 조성 변화의 범위가 극히 제한되어 합금 고유의 특성을 유지할 수 있는 효과가 있다.With the spark plasma sintering as described above, the range of the interface product is very small and the range of composition change is extremely limited because the temperature and time for the mutual diffusion of the component elements in stainless steel and aluminum or aluminum alloy are not sufficient. There is an effect that can maintain the intrinsic properties of the alloy.
또한, 상기와 같은 스파크 플라즈마 소결 공정을 이용하면, 기존의 합성온도보다 낮은 온도 및 짧은 시간 내에 복합재료의 제조가 가능해 제조원가를 절감할 수 있다.In addition, by using the spark plasma sintering process as described above, it is possible to manufacture the composite material within a short time and a temperature lower than the existing synthesis temperature it is possible to reduce the manufacturing cost.
본 발명에 따른 경량 복합재료의 제조방법에 의하면, 복합화 단계에서 스파크 플라즈마 소결 공정을 이용해 출발 물질인 스테인레스 스틸 분말과 알루미늄 분말 또는 알루미늄 합금 분말을 조성 변화 없이 급속하게 치밀화 및 복합화시킴으로써, 각 출발 원료 소재가 가지는 장점(경량성 및 우수한 내식성/가공성/기계적 특성)을 그대로 전부 포함하는 우수한 물성의 스테인레스 스틸-알루미늄 합금 복합재료를 제조할 수 있다.According to the manufacturing method of the light weight composite material according to the present invention, by using the spark plasma sintering process in the compounding step by rapidly densifying and compounding the starting material stainless steel powder and aluminum powder or aluminum alloy powder without changing the composition, It is possible to produce a stainless steel-aluminum alloy composite material having excellent properties including all the advantages (light weight and excellent corrosion resistance / processability / mechanical properties).
특히, SUS 316 스테인레스 스틸을 최대 50 체적중량%로 순수 알루미늄 분말과 혼합한 혼합분말을 600 ℃의 온도 및 500 MPa의 압력하에서 10분 동안 스파크 플라즈마 소결하여 제조한 경량 복합재료의 경우, 비커스 경도(Hardness Vickers, HV)가 375.4이고, 600 ℃의 온도 및 800 MPa의 압력하에서 10분 동안 스파크 플라즈마 소결하여 제조한 경량 복합재료의 경우, 비커스 경도가 475.9로 우수한 기계적 강도를 가지며, 비중은 최대 35%인 경량 소재로서 다양한 분야에 사용될 수 있다.Particularly, in the case of a lightweight composite material prepared by spark plasma sintering of a mixed powder obtained by mixing SUS 316 stainless steel with pure aluminum powder at a maximum volume of 50% by volume at a temperature of 600 ° C. and a pressure of 500 MPa for 10 minutes, Vickers hardness ( Hardness Vickers (HV) is 375.4, and lightweight composites made by spark plasma sintering for 10 minutes under a temperature of 600 ° C. and a pressure of 800 MPa have a good mechanical strength of Vickers hardness of 475.9 and specific gravity up to 35%. Phosphorus lightweight material can be used in various fields.
또한, 본 발명에 따른 경량 복합재료의 제조방법은 원료 분말의 복합화를 위해 스파크 플라즈마 소결 공정을 사용하기 때문에, 스테인레스 스틸 분말과 알루미늄 분말 또는 알루미늄 합금 분말의 혼합비 제어 등을 통해 복합재료의 응용 분야에 최적화된 우수한 물성의 복합재료를 경제적으로 손쉽게 제조할 수 있다.In addition, since the method of manufacturing a light weight composite material according to the present invention uses a spark plasma sintering process for compounding the raw material powder, it is possible to apply the composite material to the application field of the composite material by controlling the mixing ratio of the stainless steel powder and the aluminum powder or the aluminum alloy powder. It is possible to economically and easily manufacture composite materials with optimized excellent properties.
이하, 본 발명을 실시예를 들어 더욱 상세히 설명하도록 한다.Hereinafter, the present invention will be described in more detail with reference to Examples.
제시된 실시예는 본 발명의 구체적인 예시일 뿐이며, 본 발명의 범위를 제한하기 위한 것은 아니다.The examples presented are merely illustrative of the invention and are not intended to limit the scope of the invention.
<< 실시예Example 1 내지 5> 1 to 5>
단계 1 : 평균입경이 100 ㎛이하인 스테인레스 합금(SUS 316) 분말 및 평균입경이 75 ㎛이하인 알루미늄 합금(Al 1000) 분말을 하기 표 1에 기재된 함량으로 포함하는 혼합분말을 200 rpm의 속도로 12 시간 동안 볼밀링하여 분쇄 및 교반하였다.Step 1: A mixed powder comprising a stainless alloy (SUS 316) powder having an average particle diameter of 100 μm or less and an aluminum alloy (Al 1000) powder having an average particle diameter of 75 μm or less in a content shown in Table 1 below at a speed of 200 rpm for 12 hours. Ball milling during milling and stirring.
단계 2 : 단계 1에서 제조한 혼합분말을 하기 표 1에 기재된 조건으로 스파크 플라즈마 소결(SPS)하여 복합재료를 제조하였다.Step 2: The composite powder prepared in Step 1 was spark plasma sintered (SPS) under the conditions shown in Table 1 to prepare a composite material.
Figure PCTKR2017000236-appb-T000001
Figure PCTKR2017000236-appb-T000001
<< 비교예Comparative example 1 내지  1 to 비교예Comparative example 10> 10>
단계 1 : 평균입경이 100 ㎛이하인 스테인레스 합금(SUS 316) 분말 및/또는 평균입경이 75 ㎛이하인 알루미늄 합금(Al 1000) 분말을 하기 표 2에 기재된 함량으로 포함하는 분말을 200 rpm의 속도로 12 시간 동안 볼밀링하여 분쇄 및 교반하였다.Step 1: A powder comprising stainless steel powder (SUS 316) having an average particle diameter of 100 µm or less and / or aluminum alloy powder (Al 1000) having an average particle diameter of 75 µm or less in a content shown in Table 2 below at a speed of 200 rpm. Ball milled for hours to grind and stir.
단계 2 : 단계 1에서 제조한 분말을 하기 표 2에 기재된 조건으로 스파크 플라즈마 소결하여 복합재료를 제조하였다.Step 2: The powder prepared in Step 1 was spark plasma sintered under the conditions described in Table 2 to prepare a composite material.
Figure PCTKR2017000236-appb-T000002
Figure PCTKR2017000236-appb-T000002
<실험예 1> 복합재료의 기계적 특성 분석 Experimental Example 1 Analysis of Mechanical Properties of Composite Materials
실시예 1 내지 5 및 비교예 1 내지 10에 따른 방법에 의해 제조한 복합재료를 이용하여 시편을 제조하였으며, 제조한 각각의 시편의 밀도(density, Ds)를 아르키메데스 원리(Archimedes theory)를 이용하여 측정하였고, 상대밀도(relative density)를 산출하고, 또한, 상기 시편의 경도를 비커스 경도계로 측정하여 그 결과를 표 1 및 표 2에 나타내었다. Specimens were prepared using the composite materials prepared by the methods according to Examples 1 to 5 and Comparative Examples 1 to 10, and the density (density, Ds) of each specimen was prepared using the Archimedes theory. The relative density was calculated, and the hardness of the specimen was measured using a Vickers hardness tester. The results are shown in Tables 1 and 2.
표 1 및 표 2에 나타난 바와 같이, 소결 압력 및 유지 시간이 증가할수록 상대밀도가 증가하는 경향을 보이며, 600 ℃에서 소결하여 제조한 복합재료의 경우, 비커스 경도가 더욱 우수한데, 스테인레스 스틸 합금 분말의 체적중량%가 증가할수록 상대밀도 및 비커스 경도가 높아지는 양상을 보였다.As shown in Table 1 and Table 2, the relative density increases as the sintering pressure and the holding time increase, and the Vickers hardness is superior to the composite material manufactured by sintering at 600 ° C. Relative density and Vickers hardness increased with increasing volume percent by weight of.
특히, 실시예 4 및 실시예 5에 따른 방법에 의해 제조된 복합재료의 경우, 상대밀도 및 비커스 경도가 가장 우수한 특성을 보이는데, 600 ℃의 온도 및 800 MPa의 압력하에서 10분 동안 소결하여 제조한 실시예 5의 복합재료의 경우, 비커스 경도가 475.9, 상대밀도가 99.94%로 나타나 기계적 강도가 우수한 것을 확인할 수 있었다.In particular, the composite material prepared by the method according to Examples 4 and 5 shows the best properties of relative density and Vickers hardness, prepared by sintering for 10 minutes under the temperature of 600 ℃ and 800 MPa pressure In the case of the composite material of Example 5, Vickers hardness was 475.9 and the relative density was 99.94%, indicating that the mechanical strength was excellent.
<실험예 2> 복합재료의 결정학적 특성 분석 Experimental Example 2 Crystallographic Characteristic Analysis of Composite Materials
도 4는 실시예 5에 있어서 SPS 공정 수행 전의 혼합분말(SUS 316 + Al) 및 SPS 공정 수행 후 얻어진 복합재료에 대한 XRD 분석 결과이다.4 is an XRD analysis result of the mixed powder (SUS 316 + Al) before the SPS process and the composite material obtained after the SPS process in Example 5.
도 4에 따르면, SPS 공정 온도가 알루미늄의 융점에 가까워 복합재료에 포함된 알루미늄의 결정성이 다소 낮아지긴 했지만, 해당 복합재료는 SPS 공정 수행에 따른 상변화 없이 출발 물질인 스테인레스 스틸 및 알루미늄을 SPS 공정 후에도 그대로 포함하고 있음을 확인할 수 있다.According to FIG. 4, although the crystallinity of the aluminum included in the composite material was somewhat lowered because the SPS process temperature was close to the melting point of aluminum, the composite material was obtained by using the SPS as a starting material of stainless steel and aluminum without changing the phase of the SPS process. It can be confirmed that it is included as it is after a process.
즉, SPS 공정을 통해 얻어진 복합재료에서 스테인레스 스틸 및 알루미늄의 합금화가 진행되지 않고 복합화가 유도되었음을 확인할 수 있다.That is, it can be confirmed that in the composite material obtained through the SPS process, the alloying of stainless steel and aluminum did not proceed and the complexing was induced.
<실험예 3> 복합재료의 미세구조 분석 Experimental Example 3 Microstructure Analysis of Composite Materials
도 5는 각각 복합재료 제조에 사용된 (a) 스테인레스 스틸 분말, (b) 알루미늄 분말, 및 (c) 실시예 5에서 제조된 복합재료에 대한 SEM 이미지이다.5 are SEM images of (a) stainless steel powder, (b) aluminum powder, and (c) the composite material prepared in Example 5, respectively, used in the preparation of the composite material.
도 5(c)에 따르면, 실시예 5에서 제조된 복합재료는 상대적으로 작은 입도를 가지는 알루미늄 분말 입자가 상대적으로 큰 입도를 가지는 스테인레스 스틸 분말 표면에 SPS 공정을 통해 복합화된 형태를 가짐을 확인할 수 있다.According to Figure 5 (c), the composite material prepared in Example 5 can be confirmed that the aluminum powder particles having a relatively small particle size has a complex form on the surface of the stainless steel powder having a relatively large particle size through the SPS process. have.

Claims (13)

  1. (a) 스테인레스 스틸(stainless steel) 분말과 알루미늄 분말 또는 알루미늄(aluminium alloy) 합금 분말을 밀링하여 혼합분말을 제조하는 단계; 및(a) milling stainless steel powder and aluminum powder or aluminum alloy alloy powder to prepare a mixed powder; And
    (b) 상기 단계 (a)에서 제조한 혼합분말을 스파크 플라즈마 소결(spark plasma sintering, SPS)하는 단계를 포함하는 경량 복합재료의 제조방법.(b) Spark plasma sintering (SPS) of the mixed powder prepared in step (a).
  2. 제1항에 있어서,The method of claim 1,
    상기 스테인레스 스틸은 오스테나이트(austenite)계, 페라이트(ferrite)계, 마르텐사이트(martensite)계, 석출 경화 마르텐사이트(precipitation hardening martensite)계 및 듀플렉스(duplex)계로 이루어진 군으로부터 선택되는 1종 이상인 것을 특징으로 하는 경량 복합재료의 제조방법.The stainless steel is at least one member selected from the group consisting of austenitic, ferrite, martensite, precipitation hardening martensite, and duplex systems. Method for producing a lightweight composite material.
  3. 제1항에 있어서,The method of claim 1,
    상기 스테인레스 스틸은 총 중량 대비 10 내지 25 중량%의 크롬(Cr), 5 내지 20 중량%의 니켈(Ni) 및 0.01 내지 1 중량%의 탄소(C)를 포함하는 것을 특징으로 하는 경량 복합재료의 제조방법.The stainless steel of the light weight composite material, characterized in that containing 10 to 25% by weight of chromium (Cr), 5 to 20% by weight of nickel (Ni) and 0.01 to 1% by weight of carbon (C) Manufacturing method.
  4. 제3항에 있어서,The method of claim 3,
    상기 스테인레스 스틸은 구리(Cu), 몰리브덴(Mo) 및 망간(Mn)으로부터 선택되는 1종 이상의 원소를 더 포함하는 것을 특징으로 하는 경량 복합재료의 제조방법.The stainless steel further comprises at least one element selected from copper (Cu), molybdenum (Mo) and manganese (Mn).
  5. 제1항에 있어서,The method of claim 1,
    상기 알루미늄 합금은 순수 알루미늄 합금계(1000계열), Al-Mn계, Al-Si계, Al-Cu계, Al-Mg계, Al-Mg-Si계, Al-Zn-Mg계, Al-Cu계 및 Al-Si-Cu-Mg계로 이루어진 군으로부터 선택되는 1종인 것을 특징으로 하는 경량 복합재료의 제조방법.The aluminum alloy is pure aluminum alloy (1000 series), Al-Mn, Al-Si, Al-Cu, Al-Mg, Al-Mg-Si, Al-Zn-Mg, Al-Cu A method for producing a lightweight composite material, characterized in that one kind selected from the group consisting of a group and an Al-Si-Cu-Mg system.
  6. 제1항에 있어서,The method of claim 1,
    상기 혼합분말은 상기 스테인레스 스틸 분말 및 상기 알루미늄 분말을 4 : 1 내지 1 : 1의 체적비로 포함하는 것을 특징으로 하는 경량 복합재료의 제조방법.The mixed powder comprises the stainless steel powder and the aluminum powder in a volume ratio of 4: 1 to 1: 1.
  7. 제1항에 있어서,The method of claim 1,
    상기 단계 (a)는 볼 밀링(ball milling), 유성 밀링(planetary milling) 또는 어트리션 밀링(attrition milling)에 의해 수행되는 것을 특징으로 하는 경량 복합재료의 제조방법.Step (a) is a method for producing a lightweight composite material, characterized in that performed by ball milling (plane milling), planetary milling (planetary milling) or attrition milling (attrition milling).
  8. 제7항에 있어서,The method of claim 7, wherein
    상기 단계 (a)는 100 내지 500 rpm으로 6 내지 24 시간 동안 볼 밀링에 의해 수행되는 것을 특징으로 하는 경량 복합재료의 제조방법.The step (a) is a method for producing a lightweight composite material, characterized in that carried out by ball milling for 6 to 24 hours at 100 to 500 rpm.
  9. 제1항에 있어서,The method of claim 1,
    상기 스테인레스 스틸 분말, 상기 알루미늄 분말 및 상기 알루미늄 합금 분말의 평균입경은 1 내지 1,000 ㎛인 것을 특징으로 하는 경량 복합재료의 제조방법.The stainless steel powder, the aluminum powder and the aluminum alloy powder has an average particle diameter of 1 to 1,000 ㎛ manufacturing method of light weight composite material.
  10. 제1항에 있어서,The method of claim 1,
    상기 단계 (b)는 500 내지 650 ℃의 온도 및 400 내지 800 MPa의 압력하에서 1 내지 20 분 동안 수행되는 것을 특징으로 하는 경량 복합재료의 제조방법.The step (b) is a method for producing a lightweight composite material, characterized in that carried out for 1 to 20 minutes at a temperature of 500 to 650 ℃ and a pressure of 400 to 800 MPa.
  11. 제1항 내지 제10항 중 어느 한 항에 기재된 방법에 의해 제조된 경량 복합재료.A light weight composite material produced by the method according to any one of claims 1 to 10.
  12. 제11항에 있어서,The method of claim 11,
    비중이 5.0 내지 7.0인 것을 특징으로 하는 경량 복합재료.Light weight composite material, characterized by a specific gravity of 5.0 to 7.0.
  13. 제11항에 있어서,The method of claim 11,
    비커스 경도(Hardness Vickers, HV)가 300 내지 500인 것을 특징으로 하는 경량 복합재료.Lightweight composite material, characterized in that Vickers hardness (Hardness Vickers, HV) is 300 to 500.
PCT/KR2017/000236 2016-01-08 2017-01-06 Method for manufacturing lightweight composite material comprising stainless steel and aluminium or alloys thereof, and lightweight composite material prepared by same WO2017119790A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020160002634A KR101773603B1 (en) 2016-01-08 2016-01-08 Method for preparing light weight composite material comprising stainless steel and aluminum or its alloy and light weight composite material prepared thereby
KR10-2016-0002634 2016-01-08

Publications (1)

Publication Number Publication Date
WO2017119790A1 true WO2017119790A1 (en) 2017-07-13

Family

ID=59273775

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2017/000236 WO2017119790A1 (en) 2016-01-08 2017-01-06 Method for manufacturing lightweight composite material comprising stainless steel and aluminium or alloys thereof, and lightweight composite material prepared by same

Country Status (2)

Country Link
KR (1) KR101773603B1 (en)
WO (1) WO2017119790A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110369709A (en) * 2019-08-28 2019-10-25 中南大学 A kind of magnesium/aluminium multilayer materials and preparation method thereof
CN112935263A (en) * 2021-02-07 2021-06-11 广东正德材料表面科技有限公司 Spherical nanocrystalline stainless steel powder and preparation method thereof
CN113042748A (en) * 2021-03-09 2021-06-29 中北大学 Method for preparing high-strength high-elongation Al-Cu-Mg alloy by SLM

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102151445B1 (en) * 2017-08-30 2020-09-03 가부시키가이샤 소딕 Additive manufacturing apparatus and method for manufacturing three dimensional object
KR101980591B1 (en) * 2018-04-19 2019-05-21 박동배 Stiffener of probe card for testing semi-conductor chip using joining of dissimilar metals and the manfacturing method thereof

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20110106923A (en) * 2009-01-12 2011-09-29 이 아이 듀폰 디 네모아 앤드 캄파니 Process for preparing znal target
KR20110134208A (en) * 2010-06-08 2011-12-14 금오공과대학교 산학협력단 Nitrided titanium-stainless metal complex, and preparation method of thereof
KR20140107977A (en) * 2013-02-28 2014-09-05 주식회사 어플라이드카본나노 Carbon nano complex die material and preparation method thereof
KR20150125733A (en) * 2012-09-27 2015-11-09 오또꿈뿌 오와이제이 Austenitic stainless steel
WO2015175726A1 (en) * 2014-05-13 2015-11-19 University Of Utah Research Foundation Production of substantially spherical metal powers

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4552719A (en) * 1980-12-03 1985-11-12 N.D.C. Co., Ltd. Method of sintering stainless steel powder

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20110106923A (en) * 2009-01-12 2011-09-29 이 아이 듀폰 디 네모아 앤드 캄파니 Process for preparing znal target
KR20110134208A (en) * 2010-06-08 2011-12-14 금오공과대학교 산학협력단 Nitrided titanium-stainless metal complex, and preparation method of thereof
KR20150125733A (en) * 2012-09-27 2015-11-09 오또꿈뿌 오와이제이 Austenitic stainless steel
KR20140107977A (en) * 2013-02-28 2014-09-05 주식회사 어플라이드카본나노 Carbon nano complex die material and preparation method thereof
WO2015175726A1 (en) * 2014-05-13 2015-11-19 University Of Utah Research Foundation Production of substantially spherical metal powers

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110369709A (en) * 2019-08-28 2019-10-25 中南大学 A kind of magnesium/aluminium multilayer materials and preparation method thereof
CN112935263A (en) * 2021-02-07 2021-06-11 广东正德材料表面科技有限公司 Spherical nanocrystalline stainless steel powder and preparation method thereof
CN113042748A (en) * 2021-03-09 2021-06-29 中北大学 Method for preparing high-strength high-elongation Al-Cu-Mg alloy by SLM

Also Published As

Publication number Publication date
KR101773603B1 (en) 2017-08-31
KR20170083318A (en) 2017-07-18

Similar Documents

Publication Publication Date Title
WO2017119790A1 (en) Method for manufacturing lightweight composite material comprising stainless steel and aluminium or alloys thereof, and lightweight composite material prepared by same
CN101319287B (en) High-strength cast aluminium alloy material
US20170120386A1 (en) Aluminum alloy products, and methods of making the same
CN100547100C (en) Contain the magnesium alloy of mishmetal, the wrought magnesium alloy of producing the method for the wrought magnesium alloy that contains mishmetal and producing thus
CN111057922B (en) Manganese-copper damping alloy powder based on SLM (selective laser melting) process and preparation method thereof
WO2006095999A1 (en) Mg alloys containing misch metal, manufacturing method of wrought mg alloys containing misch metal, and wrought mg alloys thereby
CN105441737A (en) High-strength high-corrosion-resistance cast aluminum alloy and gravity casting manufacturing method thereof
WO2021025531A1 (en) Aluminum alloy for 3d printing or additive manufacturing, 3d printing or additive manufacturing method using same, and aluminum alloy product or component manufactured by 3d printing or additive manufacturing
CN103343272B (en) A kind of antiflaming magnesium alloy and preparation method thereof adding calcium, cerium
WO2019055623A1 (en) Aluminum alloy products, and methods of making the same
CN103305729A (en) Method for preparing novel Al-Si-Mg-Cu-Sr alloy
CN104451304A (en) High-conductivity and high-shielding-effectiveness magnesium alloy and preparation method thereof
CN110760724A (en) Al-Mg with high Fe content prepared by selective laser melting2Si alloy and preparation method thereof
WO2021006602A1 (en) Method for preparing metal-polymer composite material with high heat dissipation and electrical insulation performance and composite material prepared thereby
CN114054745B (en) Aluminum alloy powder, preparation method and application thereof, and aluminum alloy member
CN114231800A (en) High-performance low-carbon aluminum alloy and preparation method thereof
KR20190080219A (en) Manufacturing composite material for marine cctv housing with excellent corrosion resistance and light weight and composite material for marine cctv housing manufactured thereby
CN107142403B (en) A kind of magnesium-based composite material of graphene and quasi-crystalline substance complex intensifying and preparation method thereof
Puspitasari et al. Mechanical and physical properties of aluminium-silicon (Al-Si) casting alloys reinforced by Zinc Oxide (ZnO)
CN109182865B (en) High-strength rare earth-magnesium alloy material and preparation method thereof
CN103305730A (en) Novel Al-Si-Mg-Cu-Sr cast alloy
CN113755727B (en) Heat-resistant aluminum-based composite material and preparation method thereof
WO2013015641A2 (en) Aluminum alloy including iron-manganese homogeneous solid solution and preparation method thereof
WO2022139629A1 (en) Powdered material with high heat conductivity
CN112921195A (en) Method for preparing high-strength wear-resistant cast aluminum-silicon alloy by using waste aluminum

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17736162

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17736162

Country of ref document: EP

Kind code of ref document: A1