WO2017119767A1 - Composition for inhibiting anticancer drug resistance containing rare ginsenoside csh1 (rg6) as active ingredient - Google Patents

Composition for inhibiting anticancer drug resistance containing rare ginsenoside csh1 (rg6) as active ingredient Download PDF

Info

Publication number
WO2017119767A1
WO2017119767A1 PCT/KR2017/000198 KR2017000198W WO2017119767A1 WO 2017119767 A1 WO2017119767 A1 WO 2017119767A1 KR 2017000198 W KR2017000198 W KR 2017000198W WO 2017119767 A1 WO2017119767 A1 WO 2017119767A1
Authority
WO
WIPO (PCT)
Prior art keywords
csh1
taxol
drug resistance
cells
cancer
Prior art date
Application number
PCT/KR2017/000198
Other languages
French (fr)
Korean (ko)
Inventor
박범준
송규용
조수현
이지현
Original Assignee
부산대학교 산학협력단
충남대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020160002619A external-priority patent/KR101732876B1/en
Application filed by 부산대학교 산학협력단, 충남대학교 산학협력단 filed Critical 부산대학교 산학협력단
Publication of WO2017119767A1 publication Critical patent/WO2017119767A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23LFOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
    • A23L33/00Modifying nutritive qualities of foods; Dietetic products; Preparation or treatment thereof
    • A23L33/10Modifying nutritive qualities of foods; Dietetic products; Preparation or treatment thereof using additives
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23LFOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
    • A23L33/00Modifying nutritive qualities of foods; Dietetic products; Preparation or treatment thereof
    • A23L33/10Modifying nutritive qualities of foods; Dietetic products; Preparation or treatment thereof using additives
    • A23L33/105Plant extracts, their artificial duplicates or their derivatives
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/56Compounds containing cyclopenta[a]hydrophenanthrene ring systems; Derivatives thereof, e.g. steroids
    • A61K31/57Compounds containing cyclopenta[a]hydrophenanthrene ring systems; Derivatives thereof, e.g. steroids substituted in position 17 beta by a chain of two carbon atoms, e.g. pregnane or progesterone
    • A61K31/573Compounds containing cyclopenta[a]hydrophenanthrene ring systems; Derivatives thereof, e.g. steroids substituted in position 17 beta by a chain of two carbon atoms, e.g. pregnane or progesterone substituted in position 21, e.g. cortisone, dexamethasone, prednisone or aldosterone
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/70Carbohydrates; Sugars; Derivatives thereof
    • A61K31/7028Compounds having saccharide radicals attached to non-saccharide compounds by glycosidic linkages
    • A61K31/7034Compounds having saccharide radicals attached to non-saccharide compounds by glycosidic linkages attached to a carbocyclic compound, e.g. phloridzin
    • A61K31/704Compounds having saccharide radicals attached to non-saccharide compounds by glycosidic linkages attached to a carbocyclic compound, e.g. phloridzin attached to a condensed carbocyclic ring system, e.g. sennosides, thiocolchicosides, escin, daunorubicin
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/30Macromolecular organic or inorganic compounds, e.g. inorganic polyphosphates
    • A61K47/36Polysaccharides; Derivatives thereof, e.g. gums, starch, alginate, dextrin, hyaluronic acid, chitosan, inulin, agar or pectin
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/20Pills, tablets, discs, rods
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/48Preparations in capsules, e.g. of gelatin, of chocolate

Definitions

  • the present invention relates to a composition for inhibiting anticancer drug resistance, containing the rare ginsenoside CSH1 (Rg6) as an active ingredient.
  • Renal cell carcinoma is a human malignant tumor of the kidney near the adrenal gland.
  • kidney cancer is known to develop for a variety of reasons, such as aging and smoking, stress is also a major cause. Serum cortisol levels are increased in kidney cancer patients. In this regard, the effect of stress hormone suppression on the immune system is generally known, but this is not enough to account for stress-induced cancer.
  • Several epidemiological analyzes have shown that stress can increase the incidence of several types of human cancer, including colorectal and lung cancer.
  • Panax Ginseng has long been used to treat many types of human diseases, including cancer and kidney dysfunction. Recently, isolated ginsenoisdes have been reported to be effective in the immune system. However, the mechanism of molecular biological action of ginsenosides on human cancers has not been identified to date. Therefore, it is very meaningful to elucidate the mechanism and effect of ginsenosides on human cancer.
  • the present invention provides a pharmaceutical composition for inhibiting anticancer drug resistance or a pharmaceutical composition for preventing or treating cancer, containing the rare ginsenoside CSH1 (Rg6) as an active ingredient.
  • the present invention is to provide a food composition for inhibiting anticancer drug resistance containing rare ginsenoside CSH1 (Rg6) as an active ingredient.
  • the present invention provides a pharmaceutical composition for inhibiting cancer drug resistance containing rare ginsenoside CSH1 (Rg6) as an active ingredient.
  • the present invention also provides a pharmaceutical composition for preventing or treating cancer containing the rare ginsenoside CSH1 (Rg6) as an active ingredient.
  • the present invention also provides a food composition for inhibiting anticancer drug resistance, containing the rare ginsenoside CSH1 (Rg6) as an active ingredient.
  • the present invention relates to a food composition for inhibiting anticancer drug resistance containing rare ginsenoside CSH1 (Rg6) as an active ingredient, wherein CSH1 (Rg6) promotes the binding of BRCA1 and Rad51 and expresses stress hormone-induced ⁇ -tubulin expression. It was confirmed that the effect of inhibiting the resistance to Taxol in cancer cells. Therefore, the CSH1 (Rg6) is expected to be usefully used in drugs, anticancer drugs or foods that inhibit anticancer drug resistance in anticancer treatment.
  • CSH1 (Rg6) rare ginsenoside CSH1 (Rg6) as an active ingredient, wherein CSH1 (Rg6) promotes the binding of BRCA1 and Rad51 and expresses stress hormone-induced ⁇ -tubulin expression. It was confirmed that the effect of inhibiting the resistance to Taxol in cancer cells. Therefore, the CSH1 (Rg6) is expected to be usefully used in drugs, anticancer drugs or foods that inhibit anticancer drug resistance in anticancer treatment.
  • GR 2 shows that stress hormones increase MTOC through the Glucocorticoid Receptor (GR).
  • Cortisol clearly induced ⁇ -tubulin in several cell lines. Each cell was treated for 72 hours with the indicated dose of cortisol. Western blots were performed to measure ⁇ -tubulin expression. Actin was used as a loading control.
  • GHs induce ⁇ -tubulin independently of FST. A498 (VHL deficient cell line) was incubated with cortisone (5 ⁇ M) and cortisol (5 ⁇ M) for 24 hours with or without FST (3 ⁇ M). BRCA1 expression was increased by FST but did not affect the reduction of BRCA1 expression by GH.
  • p53 expression was not altered by FST or GH. Actin was used as a loading control.
  • the number of MTOCs was increased by cortisone treatment (5 ⁇ M) in VHL-intact C2V cells. About 50 cells were counted for each condition to determine the average MTOC number and plotted. Cells were stained with anti- ⁇ -tubulin-antibody (red) to detect MTOC and DAPI (blue) to detect DNA.
  • GR and cortisone can induce MTOC amplification. After GR transfection or cortisone (5 ⁇ M) treatment, HEK293 cells were stained with anti- ⁇ -tubulin-antibody (red) and DAPI (blue).
  • (f) shows the additional effect of GH and GR on MTOC amplification. About 50 cells were counted for each condition to determine the MTOC number.
  • (g) In VHL-positive C2V cells, the overexpressed GR showed Taxol resistance. GR was transfected into C2V cells and treated with Taxol (3 ⁇ M). After 72 hours, cell viability was measured by MTT assay.
  • (h) GR blocks Rad51-mediated Taxol-sensitivity. In VHL-deficient A498, re-sensitivity to Taxol via Rad51 overexpression was lost by GR overexpression. A498 cells were transfected with GR and / or Rad51 and incubated with Taxol for 72 hours. Cell viability was measured by MTT assay.
  • GR inhibition blocks MTOC amplification (a and b) GR antagonist Progesterone (PGT) blocked MTOC in ACHN cells. PGT (5 ⁇ ) treated cells blocked MTOC amplification. About 80 cells were counted for each condition to confirm the mean MTOC number (b) and photographed (a). Cells were stained with anti- ⁇ -tubulin-antibody (red) to detect MTOC and DAPI (blue) to detect DNA. (c) PGT treatment inhibited stress hormone-induced ⁇ -tubulin induction. Western blot analysis was performed with the indicated antibodies. Actin was used as a loading control. (d) Ketoconazole (KCZ), another chemical antagonist of GR, also blocked stress hormone effects in ACHN cells.
  • PGT Progesterone
  • FIG. 5 shows the chemical structures of the rare ginsenosides CSH1 (RG6) and RG3, estrogen and cortisone.
  • Figure 6 shows the effect of rare ginsenosides on Taxol-induced cell death.
  • (a) shows the effect of several ginsenosides on Taxol-induced cell death. In C2 cells, only CSH1 (Rg6) shows Taxol sensitive effect. Ginsenosides (5 ⁇ M) and Taxol (3 ⁇ M) were treated respectively. After 72 hours, cell viability was measured by MTT assay.
  • PGT (5 ⁇ M), CSH1 (5 ⁇ M), cortisol (5 ⁇ M) and cortisone (5 ⁇ M) were treated for 72 hours.
  • CSH1 could block GR or cortisone induced MTOC amplification. About 50 cells were counted to confirm the mean MTOC number and photographed. GFP-labeled GR was transfected into HEK 293 cells. CSH1 (5 ⁇ M) and cortisone (5 ⁇ M) were treated. Cells were stained with anti- ⁇ -tubulin-antibody (red) and DAPI (blue).
  • Figure 7 shows the chemical structures of CSH1-related ginsenosides CSH2 to CSH4.
  • FIG. 8 shows that two normal human fibroblasts were cultured for one month with or without the addition of cortisol and CSH1 at low serum concentrations to confirm that continuous treatment of stress hormones could induce transformation. to be.
  • ERE-luciferase activity was measured by the ERE-luciferase vector and ER- ⁇ .
  • Similar results were obtained with MCF-7 cells.
  • CSH1 effectively inhibited ERE luciferase activity.
  • ERE-luciferase vectors were transfected into ER ⁇ -positive MCF7 cells and ER ⁇ -negative MDA-MB-468 cells. ERE-luciferase analysis was performed 4 hours after each compound treatment.
  • e In VHL-negative C2 cells, Taxol-induced cell death by CSH1 showed a concentration dependent sensitivity similar to FST.
  • FST FST
  • CSH1 5 ⁇ M
  • CSH3 5 ⁇ M
  • IF staining was performed.
  • Cells were stained with anti- ⁇ -tubulin-antibody (red) and DAPI (blue).
  • FIG. 10 is a schematic diagram showing that the GR pathway is activated in response to stress hormones, and MTOC amplification and chromosomal instability are induced under stress conditions. It is one of the estimated tumorigenic mechanisms for stress-induced cancer. However, unlike the ER- ⁇ pathway, GR is not regulated by VHL. CSH1, a rare ginsenoside, has a steroid-like backbone, which blocks GR as well as ER- ⁇ pathway-induced MTOC amplification and Taxol sensitivity. Therefore, it can be used as a cancer prevention strategy and anticancer drug.
  • the present inventors therefore focused on the tumor forming effects of stress hormones, in particular on MTOC amplification and anticancer drug resistance. Since several ginsenosides have stress hormone-related chemical structures, the effects of ginsenosides on MTOC amplification and Taxol resistance have been investigated and the present invention has been completed.
  • the present invention provides a pharmaceutical composition for inhibiting anticancer drug resistance, containing the rare ginsenoside CSH1 (Rg6) as an active ingredient.
  • the anticancer drug resistance may be induced by a stress hormone, but is not limited thereto.
  • the rare ginsenoside CSH1 (Rg6) inhibits ⁇ -tubulin expression induced by stress hormones, promotes binding of BRCA1 and Rad51, and amplifies the microtubule organizing center (MTOC). Can be suppressed.
  • the stress hormone may be Cortisone or Cortisol, but is not limited thereto.
  • the anticancer agent may be Taxol, but is not limited thereto.
  • the present invention also provides a pharmaceutical composition for preventing or treating cancer containing the rare ginsenoside CSH1 (Rg6) as an active ingredient.
  • the cancer may be cancer having anticancer drug resistance, but is not limited thereto.
  • the anticancer agent may be Taxol, but is not limited thereto.
  • the cancer may be kidney cancer, lung cancer, colon cancer or breast cancer, but is not limited thereto.
  • the pharmaceutical composition is any one selected from the group consisting of injections, granules, powders, tablets, pills, capsules, suppositories, gels, suspensions, emulsions, drops or solutions according to conventional methods
  • the pharmaceutical composition is a suitable carrier, excipient, disintegrant, sweetener, coating agent, swelling agent, lubricants, lubricants, flavoring agents, antioxidants, buffers, bacteriostatic agents commonly used in the manufacture of pharmaceutical compositions It may further comprise one or more additives selected from the group consisting of diluents, dispersants, surfactants, binders and lubricants.
  • the carriers, excipients and diluents are lactose, dextrose, sucrose, sorbitol, mannitol, xylitol, erythritol, maltitol, starch, acacia rubber, alginate, gelatin, calcium phosphate, calcium silicate, cellulose, methyl cellulose, microcrystalline Cellulose, polyvinyl pyrrolidone, water, methylhydroxybenzoate, propylhydroxybenzoate, talc, magnesium stearate and mineral oil can be used, and solid preparations for oral administration include tablets, pills, powders, granules, capsules.
  • solid preparations may be prepared by mixing at least one excipient such as starch, calcium carbonate, sucrose or lactose, gelatin and the like in the composition.
  • excipients such as starch, calcium carbonate, sucrose or lactose, gelatin and the like
  • lubricants such as magnesium styrate and talc may also be used.
  • Oral liquid preparations include suspensions, solvents, emulsions, syrups, and the like, and may include various excipients such as wetting agents, sweeteners, fragrances, and preservatives, in addition to commonly used simple diluents such as water and liquid paraffin.
  • Formulations for parenteral administration include sterile aqueous solutions, non-aqueous solvents, suspensions, emulsions, lyophilized preparations, suppositories, and the like.
  • non-aqueous solvent and suspending agent propylene glycol, polyethylene glycol, vegetable oil such as olive oil, injectable ester such as ethyl oleate and the like can be used.
  • Witsol, macrogol, tween 61, cacao butter, laurin butter, glycerogelatin and the like may be used as the base material of the suppository.
  • the pharmaceutical composition is intravenous, intraarterial, intraperitoneal, intramuscular, intraarterial, intraperitoneal, intrasternal, transdermal, nasal, inhaled, topical, rectal, oral, intraocular or intradermal Via the route can be administered to the subject in a conventional manner.
  • the preferred dosage of the pharmaceutical composition may vary depending on the condition and weight of the subject, the type and severity of the disease, the drug form, the route of administration, and the duration, and may be appropriately selected by those skilled in the art. According to one embodiment of the present invention, but not limited thereto, the daily dosage may be 0.01 to 200 mg / kg, specifically 0.1 to 200 mg / kg, more specifically 0.1 to 100 mg / kg. Administration may be administered once a day or divided into several times, thereby not limiting the scope of the invention.
  • the 'subject' may be a mammal including a human, but is not limited thereto.
  • the present invention provides a food composition for inhibiting anticancer drug resistance containing rare ginsenoside CSH1 (Rg6) as an active ingredient.
  • Rg6 rare ginsenoside CSH1
  • the anticancer drug resistance may be induced by a stress hormone, but is not limited thereto.
  • the rare ginsenoside CSH1 (Rg6) inhibits ⁇ -tubulin expression induced by stress hormones, promotes binding of BRCA1 and Rad51, and amplifies the microtubule organizing center (MTOC). Can be suppressed.
  • the stress hormone may be Cortisone or Cortisol, but is not limited thereto.
  • the anticancer agent may be Taxol, but is not limited thereto.
  • the present invention also provides a food composition for preventing or improving cancer containing rare ginsenoside CSH1 (Rg6) as an active ingredient.
  • Rg6 rare ginsenoside CSH1
  • the cancer may be cancer having anticancer drug resistance, but is not limited thereto.
  • the anticancer agent may be Taxol, but is not limited thereto.
  • the cancer may be kidney cancer, lung cancer, colon cancer or breast cancer, but is not limited thereto.
  • the food composition of the present invention is variously used as a food composition for inhibiting anticancer drug resistance, the food composition comprising the composition of the present invention as an active ingredient, various foods, for example, beverages, gum, tea, vitamin complex, It may be prepared in the form of powder, granules, tablets, capsules, sweets, rice cakes, bread and the like. Since the food composition of the present invention has little toxicity and side effects, it can be used with confidence even for long-term use for the purpose of prevention. When the composition of the present invention is included in a food composition, the amount may be added at a ratio of 0.1 to 100% of the total weight.
  • natural carbohydrates include monosaccharides such as glucose, disaccharides such as fructose, sucrose and the like, and common sugars such as polysaccharides, dextrins and cyclodextrins, and sugar alcohols such as xylitol, sorbitol, and erythritol. can do.
  • flavourant examples include natural flavourant (tautin, stevia extract (for example, rebaudioside A, glycyrrhizin, etc.) and synthetic flavoring agents (saccharin, aspartame, etc.).
  • the food composition is a variety of nutrients, vitamins, minerals (electrolytes), flavors such as synthetic flavors and natural flavors, colorants, pectic acid and salts thereof, alginic acid and salts thereof, organic acids, protective colloid thickeners, pH regulators Stabilizing agents, preservatives, glycerin, alcohols, carbonation agents used in carbonated beverages, etc. These components may be used independently or in combination
  • the ratio of such additives is not so critical, but 100 weight of the composition of the present invention. It is generally selected in the range of 0.1 to 100 parts by weight per part.
  • ACHN (VHL +) and A498 (VHL ⁇ ) cells were purchased from the Korean Cell Line Bank.
  • A549, HEK293, MCF-7 and MDA-MB-468 were purchased from the American Cell Line Bank (ATCC, Manassas, VA).
  • Other renal cancer cell lines (UMRC2; C2, UMRC2 / VHL; C2V) are described by Dr. Jung, YJ (Pusan University).
  • Human fibroblasts were purchased from Coriell Cell Repositories (New Jersey, USA).
  • ACHN, A498, HEK293, MCF-7 and MDA-MB-468 were maintained in liquid DMEM medium containing 10% FBS and 1% antibiotic in a 37 ° C. growth chamber.
  • HCT116 cell line Obtained from Vogelstein B (Johns Hopkins University). A549, HCT116 was maintained in RPMI-1640 with 10% FBS and antibiotics. Estrogen (250155), Fulvestrant (I4409), Taxol (T7402), Ketoconazole (UC280), Progesterone (P0130), Cortisone (C2755) and Cortisol; H4001 ) was purchased from Sigma (Missouri, USA). Antibodies against Actin (sc-1616), ER- ⁇ (sc-8002), GFP (sc-7392) and HA (sc-9996) were purchased from Santa Cruz (California, USA).
  • Anti- ⁇ -tubulin (T6557) was purchased from Sigma (Missouri, USA) and anti-glucocorticoid receptor (GR) Ab (12041) was purchased from Cell signaling (Massachusetts, USA). Rad51 (05-530), BRCA1 (07-434) were purchased from Milliopore (Darmstadt, Germany).
  • GFP-tagged GR (GR-GFP) and HA-tagged Rad51 (Rad51-HA) vectors were purchased from Addgene.
  • pVHL animal cell expression vector is Obtained from Jung, YJ (Pusan University).
  • Transfection for animal cell expression of the vectors was performed using a Jetpei transfection agent (Polyplus New York, USA). Briefly, the vector (1.5 ⁇ g) was mixed with 1.5 ⁇ l Jetpei reagent dissolved in 150 mM NaCl solution. The mixture was reacted at room temperature for 15 minutes. After the reaction, the mixture was added to the cells. After 3 hours, serum-free medium was replaced with medium containing 10% FBS.
  • Proteins were extracted from cells using RIPA buffer (50 mM Tris-Cl, pH 7.5, 150 mM NaCl, 1% NP-40, 0.1% SDS and 10% sodium deoxycholate). Samples were applied to SDS-PAGE and transferred to PVDF membrane. The blotted membrane was reacted with the primary antibody for 1 hour at 4 ° C., and HRP-conjugate species-matched secondary antibodies were reacted for 1 hour at room temperature. Peroxidase activity was detected through chemi-luminescence with an ECL kit (Intron, Seoul, Korea).
  • IP immunoprecipitation
  • Cells were placed in a cover glass and transfected with the indicated vectors or treated with the indicated compounds. After fixing for 30 minutes with Me-OH, cells were reacted with blocking buffer [PBS + anti-human-Ab (1: 500)] for 1 hour. After washing with PBS, cells were reacted for 4 hours with Anti- ⁇ -tubulin antibody (1: 100 to 200) dissolved in blocking buffer, and FITC-conjugated or Rhodamine-conjugated secondary antibody (1) dissolved in blocking buffer. : 500) for 2 hours. Nuclei were stained with DAPI. After rinsing with PBS, the cover glass was mounted in mounting solution (Vector Laboratories, Cambridgeshire, UK). Immunofluorescence signals were detected by fluorescence microscopy (Zeiss, Jena, Germany).
  • MTT assay To measure cell viability, cells were treated with the indicated compounds for 4 days.
  • Luciferase Luciferase
  • ERE-Luc vectors were transfected into cells for 24 hours and cells were treated with the indicated compounds. After washing with wash buffer (Promega, Wisconsin, USA), cells were lysed with lysis buffer (Promega, Wisconsin, USA). Luciferase activity was measured by a luminometer (MicroDigital, Gyeonggi-do, South Korea).
  • Cortisol a stress hormone and related hormones (cortisone and aldosterone), originated from cholesterol and exhibited a chemical structure similar to estrogen, so their biological effects on Taxol-induced cell death were tested. Although not aldosterone, cortisone and cortisol showed Taxol resistance in both RCC cell lines similar to estrogens (FIG. 1A). Their inhibitory effect was dose-dependent (FIG. 1B). Stress hormones can affect many types of tissues and cells. We have identified the effects of glucocorticoid hormones in lung and colorectal cancer cell lines, and cortisol and cortisone are Taxol-induced cells in a dose-dependent manner. Results similar to inhibiting death were obtained (FIG. 1C).
  • Cortisol and cortisone are glucocorticoid hormones, and their signaling is mediated by glucocorticoid receptors (GR), so we have identified the association of GR to MTOC amplification. Transfection with GR alone was able to increase MTOC numbers as well as cortisone treatment (FIGS. 2E and 2F). GR can also block Taxol-induced cell death (FIG. 2G). Thus, we identified the effect of GR on Rad51-mediated Taxol sensitivity. Previous studies have found that Rad51 overexpression can regain sensitivity in Taxol-resistant ER- ⁇ elevated cells and VHL deficient cell lines.
  • GR overexpression could reduce Rad51 to block Rad51-mediated Taxol re-sensitivity (FIGS. 2H and 2I).
  • GR overexpression and cortisone treatment reduced endogenous Rad51 expression (FIG. 2J).
  • GR expression did not change with VHL status.
  • VHL overexpression or knock down did not affect GR expression, and FST did not affect GR expression (FIG. 2K).
  • stress hormones induce MTOC amplification, and ⁇ -tubulin elevation is caused by GR through VHL independent mechanism.
  • PGT progesterone
  • KCZ ketoconazole
  • CSH1 showed a similar effect in A498 cells.
  • CSH2 to CSH4 FIG. 7
  • CSH1-related ginsenosides CSH2 to CSH4; FIG. 7
  • CSH1 and CSH3 have increased Taxol sensitivity similar to FST.
  • C2V taxol sensitive cell line
  • the present inventors confirmed the effect of CSH1 on ⁇ -tubulin induction by cortisol and cortisone.
  • CSH1 inhibited stress hormone-induced ⁇ -tubulin expression as well as MTOC amplification in human lung cancer cell line A549 (FIGS. 6B and 6C).
  • the present inventors confirmed the beneficial effect of CSH1 in human colon cancer cell line HCT116. The results indicate that CSH1 can inhibit MTOC amplification regardless of cancer cell type.
  • CSH1 inhibited GR expression and inhibited the reduction of Rad51 by GR-overexpression (FIG. 6D).
  • CSH1 promoted the interaction of BRCA1 and Rad51 and was able to overcome their binding broken by GR (FIG. 6E).
  • the inventors confirmed the number of MTOCs. As expected, the increase in MTOC by cortisone or GR overexpression was completely inhibited by CSH1 treatment (FIGS. 6F and 6G). Since CSH1 blocks MTOC amplification and inhibition of ⁇ -tubulin regulation, it is expected that the compound may be usefully used for cancer prevention.
  • Example 8> shows a similar effect to FST CSH1
  • CSH1 exhibits sensitivity to Taxol in C2 cells, thus confirming the possibility that CSH1 could replace FST.
  • estrogen-induced cell proliferation was observed. Similar to FST in ER- ⁇ positive MCF-7 cell line, CSH1 was able to block estrogen-induced cell proliferation (FIG. 9A). In addition, CSH1 was able to inhibit estrogen-induced- ⁇ -tubulin and ER- ⁇ (FIG. 9B). However, they did not alter basic Rad51 expression (FIG. 9B). In addition, ER- ⁇ -mediated transcriptional activity was reduced by CSH1 in exogenous ER- ⁇ transfected 293 cells (FIG. 9C).

Abstract

The present invention relates to a pharmaceutical composition for inhibiting anticancer drug resistance which contains a rare ginsenoside CSH1 (Rg6) as an active ingredient. The CSH1 (Rg6) was found to promote the binding of BRCA1 and Rad51, inhibit the expression of stress hormone-induced γ-tubulin, and inhibit the resistance to taxol in cancer cells. Therefore, the CSH1 (Rg6) is expected to be useful for drugs for inhibiting resistance to anticancer drugs in anticancer therapy, or anticancer drugs or foods.

Description

희귀 진세노사이드 CSH1(Rg6)을 유효성분으로 함유하는 항암제 내성 억제용 조성물Anti-cancer drug resistance inhibiting composition containing rare ginsenoside CSH1 (Rg6) as an active ingredient
본 발명은 희귀 진세노사이드 CSH1(Rg6)을 유효성분으로 함유하는 항암제 내성 억제용 조성물에 관한 것이다.The present invention relates to a composition for inhibiting anticancer drug resistance, containing the rare ginsenoside CSH1 (Rg6) as an active ingredient.
흔하게 언급되는 가설과는 달리, 정신적 또는 신체적 스트레스가 실제로 암의 개시 또는 진행에 관련되어 있는지 명확히 밝혀져 있지 않다. 즉, 스트레스와 관련된 인간 암의 자세한 분자 기작은 명확하지 않다. 인간의 신체가 스트레스 조건에 직면하면, 뇌하수체 분비 부신피질 자극호르몬(Adrenocorticotropic hormone; ACTH)에 대한 반응으로 코르티솔(Cortisol) 및 에피네프린(Epinephrine)과 같은 스트레스 호르몬이 부신(adrenal gland)으로부터 방출된다. 코르티솔의 증가는 우울증, 면역체계의 감소 등과 같이 인간 신체에 여러 가지 해로운 반응을 일으킨다. 하지만, 상기 반응들이 암 개시에 직접적으로 연관되지는 않는다. Contrary to the commonly mentioned hypothesis, it is not clear whether mental or physical stress is actually involved in the onset or progression of cancer. In other words, the detailed molecular mechanisms of stress-related human cancers are not clear. When the human body is faced with a stress condition, stress hormones such as Cortisol and Epinephrine are released from the adrenal gland in response to pituitary gland secretive corticosteroid hormone (ACTH). An increase in cortisol causes several harmful reactions in the human body, such as depression and a decrease in the immune system. However, these reactions are not directly related to cancer initiation.
신장 암세포(Renal cell carcinoma; RCC)는 부신 근처에 있는 신장에 발생하는 인간 악성 종양이다. 비록 신장암은 노화 및 흡연과 같은 여러 가지 이유로 발병한다고 알려졌는데, 스트레스 또한 주요 발병 원인이다. 혈청 코르티솔 수준은 신장암 환자에게서 증가되어 있다. 이와 관련하여, 면역 시스템 상에서의 스트레스 호르몬 억제 효과가 일반적으로 알려졌지만, 이는 스트레스-유도된 암에 대한 설명으로는 충분하지 않다. 여러 전염병학적 분석 결과, 스트레스는 대장암 및 폐암을 포함하는 여러 종류의 인간 암 발생을 증가시킬 수 있는 것으로 나타났다. Renal cell carcinoma (RCC) is a human malignant tumor of the kidney near the adrenal gland. Although kidney cancer is known to develop for a variety of reasons, such as aging and smoking, stress is also a major cause. Serum cortisol levels are increased in kidney cancer patients. In this regard, the effect of stress hormone suppression on the immune system is generally known, but this is not enough to account for stress-induced cancer. Several epidemiological analyzes have shown that stress can increase the incidence of several types of human cancer, including colorectal and lung cancer.
이전 보고에 의하면, VHL(von Hippel-Lindau syndrome gene)-결핍 조건하에서, 상승된 에스트로겐 수용체-α(estrogen receptor; ER-α) 또는 에스트로겐의 처리는 미세소관 조직화 중심(microtubule organizing center; MTOC) 증폭을 통한 탁솔(Taxol) 내성을 제공하는 것으로 나타났다. VHL은 ER-α와 직접적으로 관련되어 있고, MTOC 증폭을 억제한다. VHL-결핍 조건하에서, 상승된 ER-α는 MTOC 증폭을 억제하는 BRCA1-Rad51 결합을 파괴한다. 타목시펜(tamoxifen) 또는 파슬로덱스(Faslodex)와 같은 ER-α 억제제에 의한 ER-α의 억제는 VHL-결핍 RCC 세포주에서 중심체 수를 회복시킬 수 있다. 또한, 스트레스 호르몬들은 스테로이드로부터 유래하고, 공통된 화학구조를 공유하기 때문에, 스트레스 호르몬이 MTOC 증폭 및 탁솔 내성을 촉진한다는 가설은 매우 합리적이다.Previous reports have shown that, under von Hippel-Lindau syndrome gene-deficient conditions, treatment of elevated estrogen receptor (ER-α) or estrogen may amplify the microtubule organizing center (MTOC). It has been shown to provide Taxol resistance through. VHL is directly related to ER-α and inhibits MTOC amplification. Under VHL-deficient conditions, elevated ER-α disrupts BRCA1-Rad51 binding, which inhibits MTOC amplification. Inhibition of ER-α by ER-α inhibitors such as tamoxifen or Faslodex can restore the number of centrosomes in VHL-deficient RCC cell lines. In addition, since stress hormones are derived from steroids and share a common chemical structure, the hypothesis that stress hormones promote MTOC amplification and Taxol resistance is very reasonable.
인삼(Panax Ginseng)은 오랫동안 암 및 신장 기능 장애를 포함하는 여러 종류의 인간 질병을 치료하기 위해 사용되어 왔다. 최근, 분리된 진세노사이드(ginsenoisdes)는 면역 시스템에 효과적인 것으로 보고되었다. 하지만, 인간 암에 대한 진세노사이드의 분자생물학적 작용 기작은 현재까지 밝혀지지 않았다. 따라서, 인간 암에 대한 진세노사이드의 작용 기작 및 효과를 밝히는 것은 매우 의미있는 일이다. Panax Ginseng has long been used to treat many types of human diseases, including cancer and kidney dysfunction. Recently, isolated ginsenoisdes have been reported to be effective in the immune system. However, the mechanism of molecular biological action of ginsenosides on human cancers has not been identified to date. Therefore, it is very meaningful to elucidate the mechanism and effect of ginsenosides on human cancer.
본 발명은 희귀 진세노사이드 CSH1(Rg6)을 유효성분으로 함유하는 항암제 내성 억제용 약학조성물 또는 암 예방 또는 치료용 약학조성물을 제공하는데 있다.The present invention provides a pharmaceutical composition for inhibiting anticancer drug resistance or a pharmaceutical composition for preventing or treating cancer, containing the rare ginsenoside CSH1 (Rg6) as an active ingredient.
또한, 본 발명은 희귀 진세노사이드 CSH1(Rg6)을 유효성분으로 함유하는 항암제 내성 억제용 식품조성물을 제공하는데 있다.In addition, the present invention is to provide a food composition for inhibiting anticancer drug resistance containing rare ginsenoside CSH1 (Rg6) as an active ingredient.
상기 목적을 달성하기 위해서, 본 발명은 희귀 진세노사이드 CSH1(Rg6)을 유효성분으로 함유하는 항암제 내성 억제용 약학조성물을 제공한다.In order to achieve the above object, the present invention provides a pharmaceutical composition for inhibiting cancer drug resistance containing rare ginsenoside CSH1 (Rg6) as an active ingredient.
또한, 본 발명은 희귀 진세노사이드 CSH1(Rg6)을 유효성분으로 함유하는 암 예방 또는 치료용 약학조성물을 제공한다.The present invention also provides a pharmaceutical composition for preventing or treating cancer containing the rare ginsenoside CSH1 (Rg6) as an active ingredient.
또한, 본 발명은 희귀 진세노사이드 CSH1(Rg6)을 유효성분으로 함유하는 항암제 내성 억제용 식품조성물을 제공한다. The present invention also provides a food composition for inhibiting anticancer drug resistance, containing the rare ginsenoside CSH1 (Rg6) as an active ingredient.
본 발명은 희귀 진세노사이드 CSH1(Rg6)을 유효성분으로 함유하는 항암제 내성 억제용 식품조성물에 관한 것으로서, CSH1(Rg6)은 BRCA1 및 Rad51의 결합을 촉진하고, 스트레스 호르몬-유도 γ-튜불린 발현을 억제하였으며, 암세포에서 탁솔에 대한 내성을 억제시키는 효과를 확인하였다. 따라서, 상기 CSH1(Rg6)은 항암 치료에 있어서 항암제 내성을 억제하는 약물, 항암 약물 또는 식품에 유용하게 활용될 수 있을 것으로 예상된다.The present invention relates to a food composition for inhibiting anticancer drug resistance containing rare ginsenoside CSH1 (Rg6) as an active ingredient, wherein CSH1 (Rg6) promotes the binding of BRCA1 and Rad51 and expresses stress hormone-induced γ-tubulin expression. It was confirmed that the effect of inhibiting the resistance to Taxol in cancer cells. Therefore, the CSH1 (Rg6) is expected to be usefully used in drugs, anticancer drugs or foods that inhibit anticancer drug resistance in anticancer treatment.
도 1은 스트레스 호르몬(Glucocoticoid hormone)이 탁솔 내성을 유도한다는 결과를 나타낸다. (a) 코르티손(Cortisone) 및 코르티솔(Cortisol)은 탁솔(Taxol; TAX)-유도 세포 사멸을 차단했으나, 알도스테론(aldosterone)은 차단하지 못하였다. 알도스테론(5μM), 코르티손(5μM), 코르티솔(5μM) 및 탁솔(3μM)을 VHL-양성 C2V 세포에 72시간 동안 처리하였다. 세포 생존능은 MTT 분석을 통해 측정하였다. (b) 코르티손은 에스트로겐과 유사하게 탁솔 내성을 나타낸다. ACHN 세포를 표시된 용량의 스테로이드 호르몬으로 72시간 동안 처리하였다. 세포 생존능은 MTT 분석을 통해 측정하였다. (c) 코르티손 및 코르티솔은 비-신장암 세포주에서도 탁솔-유도 세포 사멸을 차단하였다(폐암 세포주; A549, H1299, 대장암 세포주; HCT116, SW480). 알도스테론(5μM), 코르티손(5μM), 코르티솔(5μM) 및 탁솔(3μM)을 각 암세포에 72시간 동안 처리하였다. 세포 생존능은 MTT 분석을 통해 측정하였다. (d) 탁솔-유도 세포 사멸에 있어 코르티손의 특이적인 효과를 나타낸다. 탁솔과 달리, 코르티손은 아드리아마이신(Adriamycin; Adr) 및 에토포사이드(Etoposide; Etop)와 같은 DNA 손상 제제에 대한 내성을 나타내지는 않는다. 세포들은 표시된 화합물(탁솔 3μM; 코르티손 5μM; Adr 2㎍/ml; Etop 10μM)과 함께 72시간 동안 배양하였다. 세포 생존능은 MTT 분석을 통해 측정하였다. (e) 파슬로덱스(Faslodex; FST)를 통한 ER-α 억제가 글루코코티코이드 호르몬(Glucocorticoid Hormone; GH)-유도된 탁솔 내성을 차단하지 못한다는 결과를 나타낸다. ACHN 세포는 FST(3μM), 탁솔(3μM), 코르티손(5μM) 및 코르티솔(5μM)과 함께 72시간 동안 배양하였다. 세포 생존능은 MTT 분석을 통해 측정하였다.1 shows the result that stress hormone (Glucocoticoid hormone) induces Taxol resistance. (a) Cortisone and Cortisol blocked Taxol (TAX) -induced cell death, but did not block aldosterone. Aldosterone (5 μM), Cortisone (5 μM), Cortisol (5 μM) and Taxol (3 μM) were treated with VHL-positive C2V cells for 72 hours. Cell viability was measured by MTT assay. (b) Cortisone shows Taxol resistance similar to estrogens. ACHN cells were treated for 72 hours with indicated doses of steroid hormones. Cell viability was measured by MTT assay. (c) Cortisone and cortisol blocked Taxol-induced cell death even in non-renal cancer cell lines (lung cancer cell lines; A549, H1299, colorectal cancer cell lines; HCT116, SW480). Aldosterone (5 μM), Cortisone (5 μM), Cortisol (5 μM) and Taxol (3 μM) were treated with each cancer cell for 72 hours. Cell viability was measured by MTT assay. (d) show the specific effect of cortisone on Taxol-induced cell death. Unlike Taxol, cortisone does not show resistance to DNA damaging agents such as Adriamycin (Adr) and Etoposide (Etop). Cells were incubated for 72 hours with the indicated compounds (taxol 3 μM; cortisone 5 μM; Adr 2 μg / ml; Etop 10 μM). Cell viability was measured by MTT assay. (e) ER-α inhibition through Faslodex (FST) does not block Glucocorticoid Hormone (GH) -induced Taxol resistance. ACHN cells were incubated for 72 hours with FST (3 μM), Taxol (3 μM), Cortisone (5 μM) and Cortisol (5 μM). Cell viability was measured by MTT assay.
도 2는 스트레스 호르몬이 글루코코르티코이드 수용체(Glucocorticoid Receptor; GR)를 통해 MTOC를 증가시킨다는 것을 나타낸다. (a) 코르티솔은 여러 세포주에서 γ-튜불린을 분명히 유도시켰다. 각 세포를 표시된 용량의 코르티솔로 72시간 동안 처리하였다. γ-튜불린 발현을 측정하기 위해 웨스턴 블랏을 수행하였다. 액틴(Actin)은 로딩(loading) 대조군으로 사용하였다. (b) GHs은 FST와 무관하게 γ-튜불린을 유도한다. A498 (VHL 결핍 세포주)은 FST(3μM) 유무에 따라 코르티손(5μM) 및 코르티솔(5μM)과 함께 24시간 동안 배양하였다. BRCA1 발현은 FST에 의해 증가하였으나, GH에 의한 BRCA1 발현 감소에는 영향을 미치지 않았다. 또한, p53 발현은 FST 또는 GH에 의해 변하지 않았다. 액틴(Actin)은 로딩(loading) 대조군으로 사용하였다. (c 및 d) VHL-손상되지 않은 C2V 세포에서 코르티손 처리(5μM)에 의해 MTOC의 수가 증가하였다. 평균 MTOC 수를 확인하기 위해서 각 조건마다 약 50개의 세포를 계수하였고, 그래프로 나타냈다. MTOC를 검출하기 위해서 세포들을 항-γ-튜불린-항체(붉은색)로 염색하였고, DNA를 검출하기 위해 DAPI (파란색)로 염색하였다. (e) GR 및 코르티손이 MTOC 증폭을 유도할 수 있다는 것을 나타낸다. GR 형질감염 또는 코르티손(5μM) 처리 후, HEK293 세포를 항-γ-튜불린-항체(붉은색) 및 DAPI (파란색)로 염색하였다. (f) MTOC 증폭에 있어, GH 및 GR의 부가적인 효과를 나타낸다. MTOC 수를 측정하기 위해서 각 조건마다 약 50개의 세포를 계수하였다. (g) VHL-양성 C2V 세포에 있어서, 과발현된 GR은 탁솔에 대한 내성을 나타냈다. GR은 C2V 세포에 형질감염시켰고, 탁솔(3μM)을 처리하였다. 72시간 후, 세포 생존능은 MTT 분석을 통해 측정하였다. (h) GR은 Rad51-매개 탁솔-민감성을 차단한다. VHL-결핍 A498에서, Rad51 과발현을 통한 탁솔에 대한 재-민감성은 GR 과발현에 의해 사라졌다. A498 세포는 GR 및/또는 Rad51로 형질감염시켰고, 72시간 동안 탁솔과 함께 배양하였다. 세포 생존능은 MTT 분석을 통해 측정하였다. (i) GR은 Rad51-유도 γ-튜불린 감소를 회복시켰다. 또한, GR 과발현을 통해 Rad51은 명확하게 감소하였다. GFP-표지된 GR 및 HA-표지된 Rad51는 HEK 293 세포에 형질감염시켰다. 72시간 후, 단백질 수준은 항-GFP 및 HA 항체로 검출하였다. (j) GR-형질감염된 HEK 293 세포에서 코르티손 처리에 의한 Rad51 감소를 명백히 확인하였다. GFP-표지된 GR은 HEK 293 세포로 형질감염시켰고, 코르티손(5μM)를 처리하였다. 72시간 후, 웨스턴 블랏을 수행하였다. (k) GR 발현은 VHL에 의해 변하지 않았다. GFP-표지된 GR 및 HA-표지된 VHL은 HEK 293 세포에 형질감염시켰고, 코르티손(5μM)를 처리하였다. 72시간 후, 웨스턴 블랏을 수행하였다. 액틴(Actin)은 로딩(loading) 대조군으로 사용하였다. 2 shows that stress hormones increase MTOC through the Glucocorticoid Receptor (GR). (a) Cortisol clearly induced γ-tubulin in several cell lines. Each cell was treated for 72 hours with the indicated dose of cortisol. Western blots were performed to measure γ-tubulin expression. Actin was used as a loading control. (b) GHs induce γ-tubulin independently of FST. A498 (VHL deficient cell line) was incubated with cortisone (5 μM) and cortisol (5 μM) for 24 hours with or without FST (3 μM). BRCA1 expression was increased by FST but did not affect the reduction of BRCA1 expression by GH. In addition, p53 expression was not altered by FST or GH. Actin was used as a loading control. (c and d) The number of MTOCs was increased by cortisone treatment (5 μM) in VHL-intact C2V cells. About 50 cells were counted for each condition to determine the average MTOC number and plotted. Cells were stained with anti-γ-tubulin-antibody (red) to detect MTOC and DAPI (blue) to detect DNA. (e) GR and cortisone can induce MTOC amplification. After GR transfection or cortisone (5 μM) treatment, HEK293 cells were stained with anti-γ-tubulin-antibody (red) and DAPI (blue). (f) shows the additional effect of GH and GR on MTOC amplification. About 50 cells were counted for each condition to determine the MTOC number. (g) In VHL-positive C2V cells, the overexpressed GR showed Taxol resistance. GR was transfected into C2V cells and treated with Taxol (3 μM). After 72 hours, cell viability was measured by MTT assay. (h) GR blocks Rad51-mediated Taxol-sensitivity. In VHL-deficient A498, re-sensitivity to Taxol via Rad51 overexpression was lost by GR overexpression. A498 cells were transfected with GR and / or Rad51 and incubated with Taxol for 72 hours. Cell viability was measured by MTT assay. (i) GR restored Rad51-induced γ-tubulin reduction. In addition, GR overexpression clearly reduced Rad51. GFP-labeled GR and HA-labeled Rad51 were transfected into HEK 293 cells. After 72 hours, protein levels were detected with anti-GFP and HA antibodies. (j) Clearly confirmed Rad51 reduction by cortisone treatment in GR-transfected HEK 293 cells. GFP-labeled GR was transfected with HEK 293 cells and treated with cortisone (5 μM). After 72 hours, Western blots were performed. (k) GR expression was not altered by VHL. GFP-labeled GR and HA-labeled VHL were transfected into HEK 293 cells and treated with cortisone (5 μM). After 72 hours, Western blots were performed. Actin was used as a loading control.
도 3은 GR 억제가 MTOC 증폭을 차단시킨다는 것을 나타낸다. (a 및 b) ACHN 세포에서 GR 길항제 프로게스테론(Progesterone; PGT)은 MTOC를 차단시켰다. PGT(5μM) 처리된 세포는 MTOC 증폭을 차단시켰다. 평균 MTOC 수를 확인하기 위해서 각 조건마다 약 80개의 세포를 계수하였고(b), 사진으로 나타냈다(a). MTOC를 검출하기 위해서 세포들을 항-γ-튜불린-항체(붉은색)로 염색하였고, DNA를 검출하기 위해 DAPI (파란색)로 염색하였다. (c) PGT 처리는 스트레스 호르몬-유도 γ-튜불린 유도를 억제하였다. 표시된 항체로 웨스턴 블랏 분석을 수행하였다. 액틴(Actin)은 로딩(loading) 대조군으로 사용하였다. (d) GR의 다른 화학적 길항제인 케토코나졸(Ketoconazole; KCZ) 또한, ACHN 세포에서 스트레스 호르몬 효과를 차단하였다. PGT(5μM) 및 KCZ(5μM)로 72시간 동안 처리하였다. 각 단백질 발현은 웨스턴 블랏으로 측정하였다. 액틴(Actin)은 로딩(loading) 대조군으로 사용하였다. (e) GR 길항제는 코르티솔 유도 탁솔-내성을 극복하였다. ACHN 세포에서 코르티솔(5μM) 및 탁솔(3μM)을 72시간 동안 처리하였다. PGT(5μM) 및 KCZ(5μM)은 동일한 시간 동안 처리하였다. 세포 생존능은 MTT 분석을 통해 측정하였다. 3 shows that GR inhibition blocks MTOC amplification. (a and b) GR antagonist Progesterone (PGT) blocked MTOC in ACHN cells. PGT (5 μΜ) treated cells blocked MTOC amplification. About 80 cells were counted for each condition to confirm the mean MTOC number (b) and photographed (a). Cells were stained with anti-γ-tubulin-antibody (red) to detect MTOC and DAPI (blue) to detect DNA. (c) PGT treatment inhibited stress hormone-induced γ-tubulin induction. Western blot analysis was performed with the indicated antibodies. Actin was used as a loading control. (d) Ketoconazole (KCZ), another chemical antagonist of GR, also blocked stress hormone effects in ACHN cells. Treatment with PGT (5 μM) and KCZ (5 μM) for 72 hours. Each protein expression was measured by Western blot. Actin was used as a loading control. (e) GR antagonists overcome cortisol induced Taxol-tolerance. Cortisol (5 μM) and Taxol (3 μM) were treated for 72 hours in ACHN cells. PGT (5 μM) and KCZ (5 μM) were treated for the same time. Cell viability was measured by MTT assay.
도 4는 GR이 Rad51과 결합하고, Rad51-BRCA1 상호작용을 파괴한다는 것을 나타낸다. (a) VHL-양성 ACHN 세포에서 코르티손(5μM) 및 코르티솔(5μM)은 Rad51-BRCA1 결합 상호작용을 파괴하지만, VHL-음성 A498 세포에서는 약한 효과를 나타냈다. 결합 분석을 위해서, 항-Rad51 항체에 의한 면역침전(immunoprecipitation; IP) 분석을 수행하였다. (a) VHL-손상되지 않은 ACHN 세포에서, Rad51-BRCA1 결합은 코르티손 처리에 의해 감소하였다. 항-BRCA1 항체는 IP 분석에 사용되었다. (c) GR은 오직 Rad51에만 결합하였고, BRCA1에는 결합하지 않았다. (d) GR-Rad51의 결합은 외인성(exogenous) 단백질에 의해 확인되었다. HEK293 세포에서, GFP-표지된 GR 및 HA-표지된 Rad51은 과발현되었고, 상기 세포들의 용해물(lysates)을 IP 분석에 사용하였다. (e) Rad51-GR의 결합 증가는 코르티손(5μM) 처리에 의해 검출되었다. IP 분석은 항-GR 항체로 수행하였다. (f) VHL-음성 C2 세포에서, FST에 의해 유도된 탁솔 민감성은 GR 과발현을 통해 차단되었다. (g) 탁솔 민감성을 갖는 VHL-손상되지 않은 C2V 세포에 있어서, 코르티손 유도 탁솔 내성은 ER-α 억제에 영향을 받지 않았다. GR 과발현을 위한 형질감염 후, 탁솔(3μM) 및 FST(3μM)를 처리하였다. 72시간 후, 세포 생존능을 측정하기 위해 MTT 분석을 수행하였다. 4 shows that GR binds to Rad51 and disrupts Rad51-BRCA1 interaction. (a) Cortisone (5 μM) and cortisol (5 μM) in VHL-positive ACHN cells disrupted Rad51-BRCA1 binding interactions, but had a weak effect in VHL-negative A498 cells. For binding assays, immunoprecipitation (IP) analysis with anti-Rad51 antibodies was performed. (a) In VHL-intact ACHN cells, Rad51-BRCA1 binding was reduced by cortisone treatment. Anti-BRCA1 antibodies were used for IP analysis. (c) GR only bound Rad51, but not BRCA1. (d) Binding of GR-Rad51 was confirmed by exogenous protein. In HEK293 cells, GFP-labeled GR and HA-labeled Rad51 were overexpressed and lysates of the cells were used for IP analysis. (e) Increased binding of Rad51-GR was detected by cortisone (5 μM) treatment. IP analysis was performed with anti-GR antibodies. (f) In VHL-negative C2 cells, Taxol sensitivity induced by FST was blocked via GR overexpression. (g) For VHL-intact C2V cells with Taxol sensitivity, cortisone induced Taxol resistance was not affected by ER-α inhibition. After transfection for GR overexpression, Taxol (3 μM) and FST (3 μM) were treated. After 72 hours, MTT assay was performed to measure cell viability.
도 5는 희귀 진세노사이드 CSH1 (RG6)과 RG3, 에스트로겐 및 코르티손의 화학 구조를 나타낸다.5 shows the chemical structures of the rare ginsenosides CSH1 (RG6) and RG3, estrogen and cortisone.
도 6은 탁솔-유도 세포 사멸에 있어, 희귀 진세노사이드의 효과를 나타낸다. (a) 탁솔-유도 세포 사멸에 있어 여러 진세노사이드의 효과를 나타낸다. C2 세포에 있어서, CSH1 (Rg6) 만이 탁솔 민감성 효과를 나타낸다. 각각 진세노사이드(5μM) 및 탁솔(3μM)을 처리하였다. 72시간 후, 세포 생존능은 MTT 분석을 통해 측정하였다. (b 및 c) 폐암세포주 A549에서 PGT 및 CSH1는 스트레스 호르몬-유도 γ-튜불린 발현을 억제하였다. PGT(5μM), CSH1(5μM), 코르티솔(5μM) 및 코르티손(5μM)을 72시간 동안 처리하였다. γ-튜불린 발현을 측정하기 위해서 웨스턴 블랏을 수행하였다. 액틴(Actin)은 로딩(loading) 대조군으로 사용하였다. 세포를 항-γ-튜불린-항체(붉은색) 및 DAPI (파란색)로 염색하였다. (d) GR 발현은 CSH1에 의해 억제되었다. GR 유도된 Rad51 발현 억제는 CSH1 처리에 의해 회복되었다. (e) CSH1은 BRCA1 및 Rad51의 상호작용을 촉진시켰고, GR에 의해 파괴된 결합을 회복시켰다. HEK293 세포에서 MYC-표지된 BRCA1, HA-표지된 Rad51 및 GFP-표지된 GR은 과발현되었고, 세포 용해물은 결합 분석을 위한 IP 분석에 사용되었다. IP 분석은 항-MYC 항체에 의해 수행되었다. (f 및 g) CSH1은 GR 또는 코르티손 유도된 MTOC 증폭을 차단할 수 있었다. 평균 MTOC 수를 확인하기 위해서 약 50개의 세포를 계수하였고, 사진으로 나타냈다. GFP-표지된 GR은 HEK 293 세포에 형질감염시켰다. CSH1(5μM) 및 코르티손(5μM)을 처리하였다. 세포를 항-γ-튜불린-항체(붉은색) 및 DAPI (파란색)로 염색하였다.Figure 6 shows the effect of rare ginsenosides on Taxol-induced cell death. (a) shows the effect of several ginsenosides on Taxol-induced cell death. In C2 cells, only CSH1 (Rg6) shows Taxol sensitive effect. Ginsenosides (5 μM) and Taxol (3 μM) were treated respectively. After 72 hours, cell viability was measured by MTT assay. (b and c) PGT and CSH1 inhibited stress hormone-induced γ-tubulin expression in lung cancer cell line A549. PGT (5 μM), CSH1 (5 μM), cortisol (5 μM) and cortisone (5 μM) were treated for 72 hours. Western blots were performed to measure γ-tubulin expression. Actin was used as a loading control. Cells were stained with anti-γ-tubulin-antibody (red) and DAPI (blue). (d) GR expression was inhibited by CSH1. GR-induced Rad51 expression inhibition was restored by CSH1 treatment. (e) CSH1 promoted the interaction of BRCA1 and Rad51 and restored binding broken by GR. MYC-labeled BRCA1, HA-labeled Rad51 and GFP-labeled GR were overexpressed in HEK293 cells and cell lysates were used for IP analysis for binding assays. IP analysis was performed with anti-MYC antibodies. (f and g) CSH1 could block GR or cortisone induced MTOC amplification. About 50 cells were counted to confirm the mean MTOC number and photographed. GFP-labeled GR was transfected into HEK 293 cells. CSH1 (5 μM) and cortisone (5 μM) were treated. Cells were stained with anti-γ-tubulin-antibody (red) and DAPI (blue).
도 7은 CSH1-관련된 진세노사이드인 CSH2 내지 CSH4의 화학구조를 나타낸다.Figure 7 shows the chemical structures of CSH1-related ginsenosides CSH2 to CSH4.
도 8은 스트레스 호르몬의 연속적인 처리가 형질전환(transformation)을 유도할 수 있는지 확인하기 위해서, 2 종류의 정상 인간 섬유아세포를 낮은 혈청 농도하에서 코르티솔 및 CSH1의 첨가 유무에 따라 1달 동안 배양한 결과이다.FIG. 8 shows that two normal human fibroblasts were cultured for one month with or without the addition of cortisol and CSH1 at low serum concentrations to confirm that continuous treatment of stress hormones could induce transformation. to be.
도 9는 FST와 유사한 효과를 보이는 CSH1에 대한 결과이다. (a) 에스트로겐-유도된 세포 증식에 있어 CSH1의 억제효과를 나타낸다. ER-α 양성 MCF-7 세포의 증식은 에스트로겐-처리에 의해 용량-의존적으로 증가되었다. FST와 유사하게, CSH1은 MCF-7에 있어서 에스트로겐 유도된 증식을 억제하였다. 화합물은 표시된 대로 처리하였다. 72시간 후, 세포 생존능을 측정하기 위해 MTT 분석을 수행하였다. (b) FST에 의한 γ-튜불린 발현 억제는 MCF-7 세포에서만 나타났지만, CSH1은 MCF-7 및 MDA-MB-468 세포 모두에서 γ-튜불린을 감소시켰다. (c) ER-α 형질감염된 HEK293 세포에서, ER-α 매개 전사 활성은 CSH1 및 CSH3에 의해 감소되었다. ERE-루시퍼라제 활성을 측정하기 위해서, ERE-루시퍼라제 벡터 및 ER-α는 HEK 293 세포에 동시 형질감염되었다. (d) MCF-7 세포에서도 유사한 결과를 얻을 수 있었다. FST와 마찬가지로, CSH1은 ERE 루시퍼라제 활성을 효과적으로 억제하였다. ERE-루시퍼라제 벡터는 ERα-양성 MCF7 세포 및 ERα-음성 MDA-MB-468 세포에 형질감염되었다. ERE-루시퍼라제 분석은 각 화합물 처리 4시간 후에 수행하였다. (e) VHL-음성 C2 세포에서, CSH1에 의한 탁솔-유도된 세포 사멸은 FST와 유사하게 농도 의존적으로 민감성을 나타냈다. (f) 웨스턴 블랏 분석 결과, CSH1의 처리에 의해 γ-튜불린 및 ER-α의 발현은 감소되었으나, Rad51 발현은 증가되었다. (g) CSH1에 의해 ER-α의 발현은 억제되었다. ER-α는 VHL-양성 ACHN 세포에 형질감염시켰다. 형질감염 후, CSH1 (5μM)을 처리하였다. 72시간 후, 웨스턴 블랏을 수행하였다. (h 및 i) VHL-음성 C2 세포에서, FST와 비슷하게 희귀 진세노사이드들에 의해 MTOC 증폭이 억제되었다. 평균 MTOC 수를 확인하기 위해서 각 표시된 조건마다 약 50개의 세포를 계수하였고, 사진으로 나타냈다. FST (5μM), CSH1 (5μM) 및 CSH3 (5μM)을 VHL-음성 C2 세포에 처리하였다. 72시간 후, IF 염색을 수행하였다. 세포를 항-γ-튜불린-항체(붉은색) 및 DAPI (파란색)로 염색하였다. 9 is the result for CSH1 showing a similar effect to FST. (a) shows inhibitory effect of CSH1 on estrogen-induced cell proliferation. Proliferation of ER-α positive MCF-7 cells was dose-dependently increased by estrogen-treatment. Similar to FST, CSH1 inhibited estrogen induced proliferation in MCF-7. Compounds were treated as indicated. After 72 hours, MTT assay was performed to measure cell viability. (b) Inhibition of γ-tubulin expression by FST was seen only in MCF-7 cells, but CSH1 reduced γ-tubulin in both MCF-7 and MDA-MB-468 cells. (c) In ER-α transfected HEK293 cells, ER-α mediated transcriptional activity was reduced by CSH1 and CSH3. To measure ERE-luciferase activity, the ERE-luciferase vector and ER-α were cotransfected into HEK 293 cells. (d) Similar results were obtained with MCF-7 cells. Like FST, CSH1 effectively inhibited ERE luciferase activity. ERE-luciferase vectors were transfected into ERα-positive MCF7 cells and ERα-negative MDA-MB-468 cells. ERE-luciferase analysis was performed 4 hours after each compound treatment. (e) In VHL-negative C2 cells, Taxol-induced cell death by CSH1 showed a concentration dependent sensitivity similar to FST. (f) As a result of Western blot analysis, expression of γ-tubulin and ER-α was decreased by the treatment of CSH1, but Rad51 expression was increased. (g) Expression of ER-α was inhibited by CSH1. ER-α was transfected into VHL-positive ACHN cells. After transfection, CSH1 (5 μM) was treated. After 72 hours, Western blots were performed. (h and i) In VHL-negative C2 cells, MTOC amplification was inhibited by rare ginsenosides similar to FST. About 50 cells were counted for each indicated condition to confirm the mean MTOC number and photographed. FST (5 μM), CSH1 (5 μM) and CSH3 (5 μM) were treated to VHL-negative C2 cells. After 72 hours, IF staining was performed. Cells were stained with anti-γ-tubulin-antibody (red) and DAPI (blue).
도 10은 스트레스 조건하에서, 스트레스 호르몬에 대응하여 GR 경로가 활성화되고, MTOC 증폭 및 염색체 불안정성이 유도되는 것을 나타내는 모식도이다. 스트레스-유도 암에 대해 추정되는 종양 형성 기작 중 하나이다. 하지만, ER-α 경로와 달리, GR은 VHL에 의해 조절되지 않는다. 희귀 진세노사이드인 CSH1은 스테로이드-유사 백본을 가지고 있으므로, ER-α 경로-유도 MTOC 증폭 및 탁솔 민감성 뿐만 아니라 GR도 차단시킨다. 이에, 암 예방 전략 및 항암 약물로도 사용될 수 있다.10 is a schematic diagram showing that the GR pathway is activated in response to stress hormones, and MTOC amplification and chromosomal instability are induced under stress conditions. It is one of the estimated tumorigenic mechanisms for stress-induced cancer. However, unlike the ER-α pathway, GR is not regulated by VHL. CSH1, a rare ginsenoside, has a steroid-like backbone, which blocks GR as well as ER-α pathway-induced MTOC amplification and Taxol sensitivity. Therefore, it can be used as a cancer prevention strategy and anticancer drug.
이에, 본 발명자들은 스트레스 호르몬의 종양 형성 효과, 특히 MTOC 증폭 및 항암제 내성에 대해 초점을 맞추었다. 여러 진세노사이드들이 스트레스 호르몬-관련 화학 구조를 가지고 있으므로, MTOC 증폭 및 탁솔 내성에 대한 진세노사이드의 효과를 조사하고 본 발명을 완성하였다.The present inventors therefore focused on the tumor forming effects of stress hormones, in particular on MTOC amplification and anticancer drug resistance. Since several ginsenosides have stress hormone-related chemical structures, the effects of ginsenosides on MTOC amplification and Taxol resistance have been investigated and the present invention has been completed.
본 발명은 희귀 진세노사이드 CSH1(Rg6)을 유효성분으로 함유하는 항암제 내성 억제용 약학조성물을 제공한다.The present invention provides a pharmaceutical composition for inhibiting anticancer drug resistance, containing the rare ginsenoside CSH1 (Rg6) as an active ingredient.
상세하게는, 상기 항암제 내성은 스트레스 호르몬에 의해 유도될 수 있으나, 이에 제한되는 것은 아니다.In detail, the anticancer drug resistance may be induced by a stress hormone, but is not limited thereto.
상세하게는, 상기 희귀 진세노사이드 CSH1(Rg6)은 스트레스 호르몬에 의해 유도되는 γ-튜불린 발현을 억제하고, BRCA1 및 Rad51의 결합을 촉진하며, 미세소관 조직화 중심(microtubule organizing center; MTOC) 증폭을 억제할 수 있다.Specifically, the rare ginsenoside CSH1 (Rg6) inhibits γ-tubulin expression induced by stress hormones, promotes binding of BRCA1 and Rad51, and amplifies the microtubule organizing center (MTOC). Can be suppressed.
바람직하게는, 상기 스트레스 호르몬은 코르티손(Cortisone) 또는 코르티솔(Cortisol)일 수 있으나, 이에 제한되는 것은 아니다.Preferably, the stress hormone may be Cortisone or Cortisol, but is not limited thereto.
바람직하게는, 상기 항암제는 탁솔(Taxol)일 수 있으나, 이에 제한되는 것은 아니다.Preferably, the anticancer agent may be Taxol, but is not limited thereto.
또한, 본 발명은 희귀 진세노사이드 CSH1(Rg6)을 유효성분으로 함유하는 암 예방 또는 치료용 약학조성물을 제공한다.The present invention also provides a pharmaceutical composition for preventing or treating cancer containing the rare ginsenoside CSH1 (Rg6) as an active ingredient.
바람직하게는, 상기 암은 항암제 내성을 가진 암일 수 있으나, 이에 제한되는 것은 아니다.Preferably, the cancer may be cancer having anticancer drug resistance, but is not limited thereto.
바람직하게는, 상기 항암제는 탁솔(Taxol)일 수 있으나, 이에 제한되는 것은 아니다.Preferably, the anticancer agent may be Taxol, but is not limited thereto.
바람직하게는, 상기 암은 신장암, 폐암, 대장암 또는 유방암일 수 있으나, 이에 제한되는 것은 아니다.Preferably, the cancer may be kidney cancer, lung cancer, colon cancer or breast cancer, but is not limited thereto.
본 발명의 한 구체예에서, 상기 약학조성물은 통상적인 방법에 따라 주사제, 과립제, 산제, 정제, 환제, 캡슐제, 좌제, 겔, 현탁제, 유제, 점적제 또는 액제로 이루어진 군에서 선택된 어느 하나의 제형을 사용할 수 있다. In one embodiment of the invention, the pharmaceutical composition is any one selected from the group consisting of injections, granules, powders, tablets, pills, capsules, suppositories, gels, suspensions, emulsions, drops or solutions according to conventional methods Formulations of
본 발명의 다른 구체예에서, 상기 약학조성물은 약학조성물의 제조에 통상적으로 사용하는 적절한 담체, 부형제, 붕해제, 감미제, 피복제, 팽창제, 윤활제, 활택제, 향미제, 항산화제, 완충액, 정균제, 희석제, 분산제, 계면활성제, 결합제 및 윤활제로 이루어진 군에서 선택되는 하나 이상의 첨가제를 추가로 포함할 수 있다.In another embodiment of the present invention, the pharmaceutical composition is a suitable carrier, excipient, disintegrant, sweetener, coating agent, swelling agent, lubricants, lubricants, flavoring agents, antioxidants, buffers, bacteriostatic agents commonly used in the manufacture of pharmaceutical compositions It may further comprise one or more additives selected from the group consisting of diluents, dispersants, surfactants, binders and lubricants.
구체적으로 담체, 부형제 및 희석제는 락토즈, 덱스트로즈, 수크로스, 솔비톨, 만니톨, 자일리톨, 에리스리톨, 말티톨, 전분, 아카시아 고무, 알지네이트, 젤라틴, 칼슘 포스페이트, 칼슘 실리케이트, 셀룰로즈, 메틸 셀룰로즈, 미정질 셀룰로스, 폴리비닐 피롤리돈, 물, 메틸히드록시벤조에이트, 프로필히드록시벤조에이트, 탈크, 마그네슘 스테아레이트 및 광물유를 사용할 수 있으며, 경구투여를 위한 고형제제에는 정제, 환제, 산제, 과립제, 캡슐제 등이 포함되며, 이러한 고형제제는 상기 조성물에 적어도 하나 이상의 부형제, 예를 들면, 전분, 칼슘카보네이트, 수크로스 또는 락토오스, 젤라틴 등을 섞어 조제할 수 있다. 또한 단순한 부형제 이외에 마그네슘 스티레이트, 탈크 같은 윤활제들도 사용할 수 있다. 경구를 위한 액상제제로는 현탁제, 내용액제, 유제, 시럽제 등이 있으며 흔히 사용되는 단순 희석제인 물, 리퀴드 파라핀 이외에 여러 가지 부형제, 예를 들면 습윤제, 감미제, 방향제, 보존제 등이 포함될 수 있다. 비경구 투여를 위한 제제에는 멸균된 수용액, 비수성용제, 현탁제, 유제, 동결건조제제, 좌제 등이 포함된다. 비수성용제, 현탁제로는 프로필렌글리콜, 폴리에틸렌 글리콜, 올리브 오일과 같은 식물성 기름, 에틸올레이트와 같은 주사 가능한 에스테르 등이 사용될 수 있다. 좌제의 기재로는 위텝솔(witepsol), 마크로골, 트윈(tween) 61, 카카오지, 라우린지, 글리세로제라틴 등이 사용될 수 있다.Specifically, the carriers, excipients and diluents are lactose, dextrose, sucrose, sorbitol, mannitol, xylitol, erythritol, maltitol, starch, acacia rubber, alginate, gelatin, calcium phosphate, calcium silicate, cellulose, methyl cellulose, microcrystalline Cellulose, polyvinyl pyrrolidone, water, methylhydroxybenzoate, propylhydroxybenzoate, talc, magnesium stearate and mineral oil can be used, and solid preparations for oral administration include tablets, pills, powders, granules, capsules. And the like, and such solid preparations may be prepared by mixing at least one excipient such as starch, calcium carbonate, sucrose or lactose, gelatin and the like in the composition. In addition to simple excipients, lubricants such as magnesium styrate and talc may also be used. Oral liquid preparations include suspensions, solvents, emulsions, syrups, and the like, and may include various excipients such as wetting agents, sweeteners, fragrances, and preservatives, in addition to commonly used simple diluents such as water and liquid paraffin. Formulations for parenteral administration include sterile aqueous solutions, non-aqueous solvents, suspensions, emulsions, lyophilized preparations, suppositories, and the like. As the non-aqueous solvent and suspending agent, propylene glycol, polyethylene glycol, vegetable oil such as olive oil, injectable ester such as ethyl oleate and the like can be used. Witsol, macrogol, tween 61, cacao butter, laurin butter, glycerogelatin and the like may be used as the base material of the suppository.
본 발명의 일실시예에 따르면 상기 약학 조성물은 정맥내, 동맥내, 복강내, 근육내, 동맥내, 복강내, 흉골내, 경피, 비측내, 흡입, 국소, 직장, 경구, 안구내 또는 피내 경로를 통해 통상적인 방식으로 대상체로 투여할 수 있다. According to one embodiment of the invention the pharmaceutical composition is intravenous, intraarterial, intraperitoneal, intramuscular, intraarterial, intraperitoneal, intrasternal, transdermal, nasal, inhaled, topical, rectal, oral, intraocular or intradermal Via the route can be administered to the subject in a conventional manner.
상기 약학조성물의 바람직한 투여량은 대상체의 상태 및 체중, 질환의 종류 및 정도, 약물 형태, 투여경로 및 기간에 따라 달라질 수 있으며 당업자에 의해 적절하게 선택될 수 있다. 본 발명의 일실시예에 따르면 이에 제한되는 것은 아니지만 1일 투여량이 0.01 내지 200 mg/kg, 구체적으로는 0.1 내지 200 mg/kg, 보다 구체적으로는 0.1 내지 100 mg/kg 일 수 있다. 투여는 하루에 한 번 투여할 수도 있고 수회로 나누어 투여할 수도 있으며, 이에 의해 본 발명의 범위가 제한되는 것은 아니다. The preferred dosage of the pharmaceutical composition may vary depending on the condition and weight of the subject, the type and severity of the disease, the drug form, the route of administration, and the duration, and may be appropriately selected by those skilled in the art. According to one embodiment of the present invention, but not limited thereto, the daily dosage may be 0.01 to 200 mg / kg, specifically 0.1 to 200 mg / kg, more specifically 0.1 to 100 mg / kg. Administration may be administered once a day or divided into several times, thereby not limiting the scope of the invention.
본 발명에 있어서, 상기 '대상체'는 인간을 포함하는 포유동물일 수 있으나, 이들 예에 한정되는 것은 아니다.In the present invention, the 'subject' may be a mammal including a human, but is not limited thereto.
본 발명은 희귀 진세노사이드 CSH1(Rg6)을 유효성분으로 함유하는 항암제 내성 억제용 식품조성물을 제공한다.The present invention provides a food composition for inhibiting anticancer drug resistance containing rare ginsenoside CSH1 (Rg6) as an active ingredient.
상세하게는, 상기 항암제 내성은 스트레스 호르몬에 의해 유도될 수 있으나, 이에 제한되는 것은 아니다.In detail, the anticancer drug resistance may be induced by a stress hormone, but is not limited thereto.
상세하게는, 상기 희귀 진세노사이드 CSH1(Rg6)은 스트레스 호르몬에 의해 유도되는 γ-튜불린 발현을 억제하고, BRCA1 및 Rad51의 결합을 촉진하며, 미세소관 조직화 중심(microtubule organizing center; MTOC) 증폭을 억제할 수 있다.Specifically, the rare ginsenoside CSH1 (Rg6) inhibits γ-tubulin expression induced by stress hormones, promotes binding of BRCA1 and Rad51, and amplifies the microtubule organizing center (MTOC). Can be suppressed.
바람직하게는, 상기 스트레스 호르몬은 코르티손(Cortisone) 또는 코르티솔(Cortisol)일 수 있으나, 이에 제한되는 것은 아니다.Preferably, the stress hormone may be Cortisone or Cortisol, but is not limited thereto.
바람직하게는, 상기 항암제는 탁솔(Taxol)일 수 있으나, 이에 제한되는 것은 아니다.Preferably, the anticancer agent may be Taxol, but is not limited thereto.
또한, 본 발명은 희귀 진세노사이드 CSH1(Rg6)을 유효성분으로 함유하는 암 예방 또는 개선용 식품조성물을 제공한다.The present invention also provides a food composition for preventing or improving cancer containing rare ginsenoside CSH1 (Rg6) as an active ingredient.
바람직하게는, 상기 암은 항암제 내성을 가진 암일 수 있으나, 이에 제한되는 것은 아니다.Preferably, the cancer may be cancer having anticancer drug resistance, but is not limited thereto.
바람직하게는, 상기 항암제는 탁솔(Taxol)일 수 있으나, 이에 제한되는 것은 아니다.Preferably, the anticancer agent may be Taxol, but is not limited thereto.
바람직하게는, 상기 암은 신장암, 폐암, 대장암 또는 유방암일 수 있으나, 이에 제한되는 것은 아니다.Preferably, the cancer may be kidney cancer, lung cancer, colon cancer or breast cancer, but is not limited thereto.
본 발명의 식품조성물이란, 항암제 내성 억제를 위한 식품조성물로 다양하게 이용되는 것으로서, 본 발명의 조성물을 유효성분으로 포함하는 식품조성물은 각종 식품류, 예를 들어, 음료, 껌, 차, 비타민 복합제, 분말, 과립, 정제, 캡슐, 과자, 떡, 빵 등의 형태로 제조될 수 있다. 본 발명의 식품조성물은 독성 및 부작용이 거의 없으므로 예방 목적으로 장기간 복용 시에도 안심하고 사용할 수 있다. 본 발명의 조성물이 식품 조성물에 포함될 때 그 양은 전체 중량의 0.1 내지 100%의 비율로 첨가할 수 있다. 여기서, 상기 식품조성물이 음료 형태로 제조되는 경우 지시된 비율로 상기 식품조성물을 함유하는 것 외에 특별한 제한점은 없으며 통상의 음료와 같이 여러가지 향미제 또는 천연탄수화물 등을 추가 성분으로서 함유할 수 있다. 즉, 천연탄수화물로서 포도당 등의 모노사카라이드, 과당 등의 디사카라이드, 슈크로스 등의 및 폴리사카라이드, 덱스트린, 시클로덱스트린 등과 같은 통상적인 당 및 자일리톨, 소르비톨, 에리트리톨 등의 당알콜 등을 포함할 수 있다. 상기 향미제로서는 천연 향미제(타우마틴, 스테비아 추출물(예를 들어 레바우디오시드 A, 글리시르히진등) 및 합성 향미제(사카린, 아스파르탐 등) 등을 들 수 있다. 그 외 본 발명의 식품조성물은 여러 가지 영양제, 비타민, 광물(전해질), 합성풍미제 및 천연풍미제 등의 풍미제, 착색제, 펙트산 및 그의 염, 알긴산 및 그의 염, 유기산, 보호성 콜로이드 증점제, pH 조절제, 안정화제, 방부제, 글리세린, 알콜, 탄산음료에 사용되는 탄산화제 등을 함유할 수 있다. 이러한 성분은 독립적으로 또는 조합하여 사용할 수 있다. 이러한 첨가제의 비율은 그렇게 중요하진 않지만 본 발명의 조성물 100 중량부 당 0.1 내지 100 중량부의 범위에서 선택되는 것이 일반적이다. The food composition of the present invention is variously used as a food composition for inhibiting anticancer drug resistance, the food composition comprising the composition of the present invention as an active ingredient, various foods, for example, beverages, gum, tea, vitamin complex, It may be prepared in the form of powder, granules, tablets, capsules, sweets, rice cakes, bread and the like. Since the food composition of the present invention has little toxicity and side effects, it can be used with confidence even for long-term use for the purpose of prevention. When the composition of the present invention is included in a food composition, the amount may be added at a ratio of 0.1 to 100% of the total weight. Herein, when the food composition is prepared in the form of a beverage, there is no particular limitation other than the food composition in the proportion indicated, and may include various flavors or natural carbohydrates as additional ingredients, such as ordinary drinks. That is, natural carbohydrates include monosaccharides such as glucose, disaccharides such as fructose, sucrose and the like, and common sugars such as polysaccharides, dextrins and cyclodextrins, and sugar alcohols such as xylitol, sorbitol, and erythritol. can do. Examples of the flavourant include natural flavourant (tautin, stevia extract (for example, rebaudioside A, glycyrrhizin, etc.) and synthetic flavoring agents (saccharin, aspartame, etc.). The food composition is a variety of nutrients, vitamins, minerals (electrolytes), flavors such as synthetic flavors and natural flavors, colorants, pectic acid and salts thereof, alginic acid and salts thereof, organic acids, protective colloid thickeners, pH regulators Stabilizing agents, preservatives, glycerin, alcohols, carbonation agents used in carbonated beverages, etc. These components may be used independently or in combination The ratio of such additives is not so critical, but 100 weight of the composition of the present invention. It is generally selected in the range of 0.1 to 100 parts by weight per part.
이하, 본 발명의 이해를 돕기 위하여 실시예를 들어 상세하게 설명하기로 한다. 다만 하기의 실시예는 본 발명의 내용을 예시하는 것일 뿐 본 발명의 범위가 하기 실시예에 한정되는 것은 아니다. 본 발명의 실시예는 당업계에서 평균적인 지식을 가진 자에게 본 발명을 보다 완전하게 설명하기 위해 제공되는 것이다.Hereinafter, examples will be described in detail to help understand the present invention. However, the following examples are merely to illustrate the content of the present invention is not limited to the scope of the present invention. The embodiments of the present invention are provided to more completely explain the present invention to those skilled in the art.
<실험예>Experimental Example
하기의 실험예들은 본 발명에 따른 각각의 실시예에 공통적으로 적용되는 실험예를 제공하기 위한 것이다. The following experimental examples are intended to provide experimental examples that are commonly applied to each embodiment according to the present invention.
1. 세포주 및 시약1. Cell Lines and Reagents
ACHN (VHL+) 및 A498 (VHL-) 세포는 한국 세포주 은행으로부터 구입하였다. A549, HEK293, MCF-7 및 MDA-MB-468은 미국 세포주 은행(ATCC, Manassas, VA)으로부터 구입하였다. 다른 신장암 세포주(UMRC2; C2, UMRC2/VHL; C2V)는 Dr. Jung, YJ(부산대학교)로부터 제공받았다. 인간 섬유아세포는 Coriell Cell Repositories (New Jersey, USA)로부터 구입하였다. ACHN, A498, HEK293, MCF-7 및 MDA-MB-468은 37℃ 성장 챔버에서 10% FBS 및 1% 항생제가 포함된 액체 DMEM 배지로 유지시켰다. HCT116 세포주는 Dr. Vogelstein B (Johns Hopkins University)로부터 얻었다. A549, HCT116은 10% FBS 및 항생제가 포함된 RPMI-1640에서 유지되었다. 에스트로겐(Estrogen; 250155), 풀베스트란트(Fulvestrant; I4409), 탁솔(Taxol; T7402), 케토코나졸(Ketoconazole; UC280), 프로게스테론(Progesterone; P0130), 코르티손(Cortisone; C2755) 및 코르티솔(Cortisol; H4001)은 Sigma (Missouri, USA)에서 구입하였다. Actin (sc-1616), ER-α (sc-8002), GFP (sc-7392) 및 HA (sc-9996)에 대한 항체는 Santa Cruz (California, USA)에서 구입하였다. Anti-γ-tubulin (T6557)은 Sigma (Missouri, USA)로부터 구입하였고, anti-glucocorticoid receptor (GR) Ab (12041)는 Cell signaling (Massachusetts, USA)로부터 구입하였다. Rad51 (05-530), BRCA1 (07-434)은 Milliopore (Darmstadt, Germany)로부터 구입하였다. ACHN (VHL +) and A498 (VHL−) cells were purchased from the Korean Cell Line Bank. A549, HEK293, MCF-7 and MDA-MB-468 were purchased from the American Cell Line Bank (ATCC, Manassas, VA). Other renal cancer cell lines (UMRC2; C2, UMRC2 / VHL; C2V) are described by Dr. Jung, YJ (Pusan University). Human fibroblasts were purchased from Coriell Cell Repositories (New Jersey, USA). ACHN, A498, HEK293, MCF-7 and MDA-MB-468 were maintained in liquid DMEM medium containing 10% FBS and 1% antibiotic in a 37 ° C. growth chamber. HCT116 cell line Obtained from Vogelstein B (Johns Hopkins University). A549, HCT116 was maintained in RPMI-1640 with 10% FBS and antibiotics. Estrogen (250155), Fulvestrant (I4409), Taxol (T7402), Ketoconazole (UC280), Progesterone (P0130), Cortisone (C2755) and Cortisol; H4001 ) Was purchased from Sigma (Missouri, USA). Antibodies against Actin (sc-1616), ER-α (sc-8002), GFP (sc-7392) and HA (sc-9996) were purchased from Santa Cruz (California, USA). Anti-γ-tubulin (T6557) was purchased from Sigma (Missouri, USA) and anti-glucocorticoid receptor (GR) Ab (12041) was purchased from Cell signaling (Massachusetts, USA). Rad51 (05-530), BRCA1 (07-434) were purchased from Milliopore (Darmstadt, Germany).
2. 벡터 및 형질감염2. Vector and Transfection
GFP-tagged GR (GR-GFP) 및 HA-tagged Rad51 (Rad51-HA) 벡터는 Addgene으로부터 구입하였다. Myc-tagged wild type BRCA1 (BRCA1-Myc)는 Dr. Livingston, DM (Harvard Medical School)로부터 얻었다. pVHL 동물세포 발현 벡터는 Dr. Jung, YJ (부산대학교)로부터 얻었다. 상기 벡터들의 동물세포 발현을 위한 형질감염(Transfection)은 Jetpei transfection agent (Polyplus New York, USA)를 사용하여 수행하였다. 간단히 설명하면, 상기 벡터(1.5 ㎍)는 150 mM NaCl 용액에 녹인 1.5㎕ Jetpei reagent와 혼합하였다. 상기 혼합물은 상온에서 15분 동안 반응시켰다. 상기 반응 후, 혼합물을 세포에 첨가하였다. 3시간 후, 무-혈청 배지는 10% FBS가 포함된 배지로 교체하였다.GFP-tagged GR (GR-GFP) and HA-tagged Rad51 (Rad51-HA) vectors were purchased from Addgene. Myc-tagged wild type BRCA1 (BRCA1-Myc) Obtained from Livingston, DM (Harvard Medical School). pVHL animal cell expression vector is Obtained from Jung, YJ (Pusan University). Transfection for animal cell expression of the vectors was performed using a Jetpei transfection agent (Polyplus New York, USA). Briefly, the vector (1.5 μg) was mixed with 1.5 μl Jetpei reagent dissolved in 150 mM NaCl solution. The mixture was reacted at room temperature for 15 minutes. After the reaction, the mixture was added to the cells. After 3 hours, serum-free medium was replaced with medium containing 10% FBS.
3. 3. 웨스턴Weston 블랏Blot 분석 및 단백질 상호작용 연구 Assays and Protein Interaction Studies
단백질은 RIPA 완충액 (50 mM Tris-Cl, pH 7.5, 150 mM NaCl, 1% NP-40, 0.1% SDS 및 10% sodium deoxycholate)을 사용하여 세포로부터 추출하였다. 샘플들을 SDS-PAGE에 적용하였고, PVDF 멤브레인으로 옮겼다. 블랏된 멤브레인을 4℃에서 1시간 동안 1차 항체로 반응시켰고, HRP-conjugate species-matched secondary antibodies를 상온에서 1시간 동안 반응시켰다. 퍼옥시다제 활성은 ECL kit (Intron, Seoul, Korea)으로 화학적 발광(chemi-luminescence)을 통해 검출하였다. 면역침전(immunoprecipitation; IP) 분석을 위해, 우선 전체 세포 용해물을 적절한 항체로 4℃에서 4시간 동안 반응시킨 후, protein A/G agarose beads (Invitrogen, California, USA)로 4℃에서 2시간 동안 반응시켰다. 원심분리하고 RIPA로 씻어낸 후, 침전된 면역-복합체를 SDS-PAGE 및 웨스턴 블랏 분석에 적용하였다. Proteins were extracted from cells using RIPA buffer (50 mM Tris-Cl, pH 7.5, 150 mM NaCl, 1% NP-40, 0.1% SDS and 10% sodium deoxycholate). Samples were applied to SDS-PAGE and transferred to PVDF membrane. The blotted membrane was reacted with the primary antibody for 1 hour at 4 ° C., and HRP-conjugate species-matched secondary antibodies were reacted for 1 hour at room temperature. Peroxidase activity was detected through chemi-luminescence with an ECL kit (Intron, Seoul, Korea). For immunoprecipitation (IP) analysis, first whole cell lysates were reacted with appropriate antibody for 4 hours at 4 ° C, followed by protein A / G agarose beads (Invitrogen, California, USA) for 2 hours at 4 ° C. Reacted. After centrifugation and washing with RIPA, the precipitated immuno-complex was subjected to SDS-PAGE and Western blot analysis.
4. 4. 면역형광Immunofluorescence 염색 dyeing
세포들을 커버 글라스에 놓고, 표시된 벡터로 형질감염시키거나, 표시된 화합물로 처리하였다. Me-OH로 30분 동안 고정시킨 후, 세포들을 차단 완충액[PBS + anti-human-Ab (1:500)]으로 1시간 동안 반응시켰다. PBS로 씻어낸 후, 세포들을 차단 완충액에 녹인 Anti-γ-tubulin 항체(1: 100 내지 200)로 4시간 동안 반응시켰고, 차단 완충액에 녹인 FITC-접합된 또는 Rhodamine-접합된 2차 항체(1: 500)로 2시간 동안 반응시켰다. 핵은 DAPI로 염색하였다. PBS로 씻어낸 후, 커버 글라스를 마운팅 용액(Vector Laboratories, Cambridgeshire, UK)에 마운팅하였다. 면역형광 신호는 형광현미경(Zeiss, Jena, Germany)을 통하여 검출하였다.Cells were placed in a cover glass and transfected with the indicated vectors or treated with the indicated compounds. After fixing for 30 minutes with Me-OH, cells were reacted with blocking buffer [PBS + anti-human-Ab (1: 500)] for 1 hour. After washing with PBS, cells were reacted for 4 hours with Anti-γ-tubulin antibody (1: 100 to 200) dissolved in blocking buffer, and FITC-conjugated or Rhodamine-conjugated secondary antibody (1) dissolved in blocking buffer. : 500) for 2 hours. Nuclei were stained with DAPI. After rinsing with PBS, the cover glass was mounted in mounting solution (Vector Laboratories, Cambridgeshire, UK). Immunofluorescence signals were detected by fluorescence microscopy (Zeiss, Jena, Germany).
5. 5. MTTMTT 분석 analysis
세포 생존능을 측정하기 위해서, 세포들은 표시된 화합물로 4일 동안 처리하였다. MTT 분석을 위해, 세포들을 0.5 mg/ml MTT 용액 (Calbiochem, Darmstadt, Germany)으로 37℃에서 4시간 동안 반응시켰다. 잔여 용액을 제거한 후, 침전물을 200㎕ DMSO에 녹였고, 540 nm 흡광도에서 측정하여 정량하였다.To measure cell viability, cells were treated with the indicated compounds for 4 days. For MTT assay, cells were reacted with 0.5 mg / ml MTT solution (Calbiochem, Darmstadt, Germany) at 37 ° C. for 4 hours. After removal of the remaining solution, the precipitate was dissolved in 200 μl DMSO and quantified by measuring at 540 nm absorbance.
6. 6. 루시퍼라제Luciferase (( LuciferaseLuciferase ) 분석) analysis
ER-α 프로모터 활성을 측정하기 위해서, ERE-Luc 벡터를 세포에 24시간 동안 형질감염시켰고, 세포들을 표시된 화합물로 처리하였다. 세척 완충액 (Promega, Wisconsin, USA)으로 씻어낸 후, 세포들을 용해 완충액 (Promega, Wisconsin, USA)으로 용해시켰다. 루시퍼라제 활성은 luminometer (MicroDigital, Gyeonggi-do, South Korea)로 측정하였다. To measure ER-α promoter activity, ERE-Luc vectors were transfected into cells for 24 hours and cells were treated with the indicated compounds. After washing with wash buffer (Promega, Wisconsin, USA), cells were lysed with lysis buffer (Promega, Wisconsin, USA). Luciferase activity was measured by a luminometer (MicroDigital, Gyeonggi-do, South Korea).
7. 통계 분석7. Statistical Analysis
모든 결과는 평균 + s.e.m.으로 표시하였고, 적어도 그룹당 n=4으로 수행하였다. 통계적 유의성을 얻기 위해서, Student's t-test를 수행하였다.All results were expressed as mean + s.e.m., with at least n = 4 per group. To obtain statistical significance, Student's t-test was performed.
<< 실시예Example 1>  1> 탁솔Taxol 내성을 유발하는 스트레스 호르몬 Stress hormones that cause resistance
스트레스 호르몬인 코르티솔(cortisol) 및 이와 관련된 호르몬들(코르티손 및 알도스테론)은 콜레스테롤로부터 유래하였고, 에스트로겐과 유사한 화학구조를 나타내기 때문에, 탁솔-유도 세포 사멸에 있어서 이들의 생물학적 효과를 시험하였다. 알도스테론은 아니지만, 코르티손 및 코르티솔은 에스트로겐과 유사하게 두 종류의 RCC 세포주에 있어서 탁솔 내성을 나타냈다(도 1a). 이들의 억제 효과는 용량-의존적으로 나타났다(도 1b). 스트레스 호르몬은 여러 종류의 조직 및 세포에 영향을 미칠 수 있는데, 본 발명자들은 폐암 및 대장암 세포주에서 글루코코르티코이드(glucocorticoid) 호르몬들의 효과를 확인하였고, 코르티솔 및 코르티손이 용량-의존적 방법으로 탁솔-유도 세포 사멸을 억제하는 것과 유사한 결과를 얻었다(도 1c). 상기 세포주에서, 알도스테론은 고용량에서도 탁솔-민감성이 바뀌지 않았다. 다음으로, 본 발명자들은 다른 종류의 항암제에 대한 코르티손 및 코르티솔의 효과를 확인하였다. 에스트로겐과 유사하게, 코르티솔 및 코르티손은 아드리아마이신(Adriamycin) 또는 에토포사이드(etoposide)에 대한 민감성이 바뀌지 않았다(도 1d). 코르티솔/코르티손-유도 탁솔 내성은 ER-α/Est 신호전달 기작에 의해 획득된다고 알려졌으므로, 본 발명자들은 ER-α 억제제인 풀베스트란트(Fulvestrant; FST)를 처리하였고, 탁솔-민감성을 측정하였다. 하지만, FST는 코르티손/코르티솔-유도 탁솔 내성을 차단하지 못했고, 이는 탁솔-유도된 세포 사멸에 대한 상기 호르몬들의 효과가 ER-α 독립적인 기작에 의해 일어난다는 것을 나타낸다(도 1e).Cortisol, a stress hormone and related hormones (cortisone and aldosterone), originated from cholesterol and exhibited a chemical structure similar to estrogen, so their biological effects on Taxol-induced cell death were tested. Although not aldosterone, cortisone and cortisol showed Taxol resistance in both RCC cell lines similar to estrogens (FIG. 1A). Their inhibitory effect was dose-dependent (FIG. 1B). Stress hormones can affect many types of tissues and cells. We have identified the effects of glucocorticoid hormones in lung and colorectal cancer cell lines, and cortisol and cortisone are Taxol-induced cells in a dose-dependent manner. Results similar to inhibiting death were obtained (FIG. 1C). In this cell line, aldosterone did not change Taxol-sensitivity even at high doses. Next, the inventors confirmed the effects of cortisone and cortisol on other types of anticancer agents. Similar to estrogens, cortisol and cortisone did not change their sensitivity to Adriamycin or etoposide (FIG. 1D). Since cortisol / cortisone-induced taxol resistance is known to be obtained by the ER-α / Est signaling mechanism, we treated the ER-α inhibitor Fulvestrant (FST) and measured Taxol-sensitivity. . However, FST did not block cortisone / cortisol-induced Taxol resistance, indicating that the effects of these hormones on Taxol-induced cell death are caused by ER-α independent mechanisms (FIG. 1E).
<< 실시예Example 2>  2> MTOCMTOC 증폭을 촉진하는 스트레스 호르몬 Stress hormones that promote amplification
γ-튜불린(γ-tubulin)의 상승 발현이 탁솔-유도된 세포 사멸을 극복할 수 있으므로, 본 발명자들은 우선 γ-튜불린 발현을 측정하였다. 예상대로, 코르티솔/코르티손은 모든 시험 세포주에서 γ-튜불린을 확실히 유도하였고(도 2a), FST는 γ-튜불린 유도를 차단하지 못했다(도 2b). 또한, 상기 실험에서 본 발명자들은 코르티솔 및 코르티손에 대한 반응에 있어 BRCA1이 감소하는 것을 확인하였다(도 2b). 실제로, BRCA1의 감소는 Est-매개 γ-튜불린 유도된 조건에서 확인되어 왔다. 하지만, ER-α 음성 세포주에서 코르티손은 γ-튜불린을 유도할 수 있었다. 또한, 상기 호르몬은 MTOC 증폭을 촉진할 수 있었다. 실제로, 코르티손-처리는 유사분열성(mitotic) MTOC의 평균 수를 2에서 3으로 증가시킬 수 있었다(도 2c 및 도 2d). Since synergistic expression of γ-tubulin can overcome Taxol-induced cell death, we first measured γ-tubulin expression. As expected, cortisol / cortisone certainly induced γ-tubulin in all test cell lines (FIG. 2A) and FST did not block γ-tubulin induction (FIG. 2B). In addition, in the above experiments, the inventors found that BRCA1 was decreased in response to cortisol and cortisone (FIG. 2B). Indeed, a decrease in BRCA1 has been identified in Est-mediated γ-tubulin induced conditions. However, cortisone could induce γ-tubulin in ER-α negative cell lines. In addition, the hormone could promote MTOC amplification. Indeed, cortisone-treatment could increase the average number of mitotic MTOCs from 2 to 3 (FIGS. 2C and 2D).
<< 실시예Example 3>  3> MTOCMTOC 증폭을 촉진할 수 있는 글루코코르티코이드 수용체 Glucocorticoid Receptors May Promote Amplification
코르티솔 및 코르티손은 글루코코르티코이드 호르몬이고, 이들의 신호전달은 글루코코르티코이드 수용체(glucocorticoid receptor; GR)에 의해 매개되므로, 본 발명자들은 MTOC 증폭에 대한 GR의 연관성을 확인하였다. GR 단독으로 형질감염시키면, 코르티손 처리와 마찬가지로 MTOC 수를 증가시킬 수 있었다(도 2e 및 도 2f). 또한, GR은 탁솔-유도된 세포 사멸을 차단할 수 있다(도 2g). 이에, 본 발명자들은 Rad51-매개 탁솔 민감성에 대한 GR의 효과를 확인하였다. 이전 연구를 통해, Rad51 과발현이 탁솔-내성 ER-α 상승된 세포 및 VHL 결핍 세포주에서 민감성을 다시 회복할 수 있다는 것을 알아냈다. 흥미롭게도, GR 과발현은 Rad51을 감소시켜 Rad51-매개 탁솔 재-민감성을 차단할 수 있었다(도 2h 및 2i). 실제로, GR 과발현 및 코르티손 처리는 내재성 Rad51 발현을 감소시켰다(도 2j). 하지만, ER-α와는 달리, GR 발현은 VHL 상태에 따라 바뀌지는 않았다. VHL 과발현 또는 녹다운(knock down)은 GR 발현에 영향을 미치지는 않았고, FST도 GR 발현에 영향을 미치지 않았다(도 2k). 상기 결과는 스트레스 호르몬이 MTOC 증폭을 유도하고, γ-튜불린 상승은 VHL 독립적 기작을 통해 GR에 의해 일어난다는 것을 나타낸다. Cortisol and cortisone are glucocorticoid hormones, and their signaling is mediated by glucocorticoid receptors (GR), so we have identified the association of GR to MTOC amplification. Transfection with GR alone was able to increase MTOC numbers as well as cortisone treatment (FIGS. 2E and 2F). GR can also block Taxol-induced cell death (FIG. 2G). Thus, we identified the effect of GR on Rad51-mediated Taxol sensitivity. Previous studies have found that Rad51 overexpression can regain sensitivity in Taxol-resistant ER-α elevated cells and VHL deficient cell lines. Interestingly, GR overexpression could reduce Rad51 to block Rad51-mediated Taxol re-sensitivity (FIGS. 2H and 2I). Indeed, GR overexpression and cortisone treatment reduced endogenous Rad51 expression (FIG. 2J). However, unlike ER-α, GR expression did not change with VHL status. VHL overexpression or knock down did not affect GR expression, and FST did not affect GR expression (FIG. 2K). The results indicate that stress hormones induce MTOC amplification, and γ-tubulin elevation is caused by GR through VHL independent mechanism.
<< 실시예Example 4> 스트레스 호르몬-매개  4> stress hormone-mediated MTOCMTOC 조절 억제에 있어  In control suppression GRGR 억제제의 선호 효과 Preferred Effects of Inhibitors
MTOC 증폭에 있어 GR의 연관성을 확인하기 위해서, 본 발명자들은 스트레스 호르몬-유도 MTOC 증폭에 있어서 프로게스테론(progesterone; PGT)의 효과를 시험하였다. PGT는 GR의 길항제(antagonist)로서 잘 알려져 있다. PGT의 처리는 γ-튜불린 유도 뿐만 아니라 스트레스 호르몬-유도 MTOC 증폭도 억제시켰다(도 3a, 도3b 및 도 3c). PGT 또한 호르몬이므로, 본 발명자들은 GR의 다른 화학적 길항제인 케토코나졸(ketoconazole; KCZ)을 사용하였다. PGT와 일관되게, KCZ 또한 γ-튜불린 유도 및 Rad51과 BRCA1 감소를 억제하였다(도 3d). 또한, 상기 억제제들은 코르티솔 유도된 탁솔-내성을 극복하였다(도 3e).To confirm the association of GR in MTOC amplification, we tested the effect of progesterone (PGT) on stress hormone-induced MTOC amplification. PGT is well known as an antagonist of GR. Treatment of PGT inhibited γ-tubulin induction as well as stress hormone-induced MTOC amplification (FIGS. 3A, 3B and 3C). Since PGT is also a hormone, we used ketoconazole (KCZ), another chemical antagonist of GR. Consistent with PGT, KCZ also inhibited γ-tubulin induction and a decrease in Rad51 and BRCA1 (FIG. 3D). In addition, the inhibitors overcome cortisol induced Taxol-resistant (FIG. 3E).
<< 실시예Example 5>  5> Rad51에On Rad51 결합하여  In combination BRCA1BRCA1 -- Rad51Rad51 결합을 파괴하는  Destroying bond GRGR
글루코코르티코이드 호르몬이 어떻게 MTOC 증폭을 촉진하는지 알아보기 위해서, Rad51-BRCA1 결합에 있어 상기 호르몬의 효과를 확인하였다. 실제로, VHL이 손상되지 않은 ACHN 세포에서 BRCA1-Rad51 사이의 결합은 글루코코르티코이드 호르몬에 의해 분명히 감소하였다(도 4a). 대신, VHL-결핍된 A498에서 상기 결합은 약하고, 글루코코르티코이드 호르몬에 의해 약간 감소하는 것으로 나타났다(도 4a). 코르티손에 의한 BRCA1-Rad51의 분리는 BRCA1 Ab를 사용한 IP 분석에 의해 확인되었다(도 4b). BRCA1 및 Rad51 중 하나는 GR의 결합 표적이다. BRCA1 및 Rad51 중 어느 것이 GR의 표적인지 확인하기 위해서, GR을 사용하여 IP 분석을 수행하였다. 상기 두 개의 단백질과 대등하게 관여하는 ER-α와 다르게, GR은 오직 Rad51에서만 결합 친화도를 나타냈다(도 4c). Rad51 및 GR 사이의 결합은 외인성 단백질에 의해 확인할 수 있었다(도 4d). 비록 Rad51 및 GR의 결합이 코르티손 없이도 검출되었으나 GH는 결합을 촉진시켰는데(도 4e), 이는 아마도 핵으로의 GR 전이 때문인 것으로 보인다. 상기 반응에 있어서 ER-α의 연관성을 제거하기 위해, FST-처리 조건 하에서 GR-유도 탁솔 내성을 측정하였다. VHL-결핍된 C2에서 FST가 탁솔 민감성을 나타내지만, GR은 FST-유도 민감성을 극복하는 것을 확인할 수 있다(도 4f). 또한, VHL이 손상되지 않은 C2V에서, FST는 GR-유도된 탁솔 내성을 차단하지 않는다(도 4g). 상기 결과는 GR/GH 신호전달이 ER-α 독립적인 기작을 통해 Rad51-BRCA1 결합을 파괴할 수 있다는 것을 나타낸다. To determine how the glucocorticoid hormone promotes MTOC amplification, the effect of the hormone on Rad51-BRCA1 binding was confirmed. Indeed, the binding between BRCA1-Rad51 in ACHN cells intact with VHL was clearly reduced by the glucocorticoid hormone (FIG. 4A). Instead, the binding in VHL-deficient A498 was weak and appeared to be slightly reduced by glucocorticoid hormones (FIG. 4A). Isolation of BRCA1-Rad51 by cortisone was confirmed by IP analysis using BRCA1 Ab (FIG. 4B). One of BRCA1 and Rad51 is the binding target of GR. To confirm which of BRCA1 and Rad51 was the target of GR, IP analysis was performed using GR. Unlike ER-α, which is equally involved in the two proteins, GR showed binding affinity only in Rad51 (FIG. 4C). Binding between Rad51 and GR was confirmed by exogenous protein (FIG. 4D). Although binding of Rad51 and GR was detected without cortisone, GH promoted binding (FIG. 4E), presumably due to GR transition to the nucleus. To eliminate the association of ER-α in the reaction, GR-induced taxol resistance was measured under FST-treatment conditions. While FST shows Taxol sensitivity in VHL-deficient C2, GR can be found to overcome FST-induced sensitivity (FIG. 4F). In addition, in C2V where VHL is intact, FST does not block GR-induced Taxol resistance (FIG. 4G). The results indicate that GR / GH signaling can disrupt Rad51-BRCA1 binding through an ER-α independent mechanism.
<< 실시예Example 6>  6> 탁솔Taxol -유도 세포 사멸에 민감성을 나타내는 희귀 진세노사이드(ginsenosides) Rare ginsenosides susceptible to induced cell death
본 발명자들은 스트레스 호르몬 신호전달에 대한 적절한 억제가 MTOC 조절 억제 뿐만 아니라 탁솔에 대한 민감성을 나타낼 수 있다는 것을 확인하였다(도 3). 이에, 본 발명자들은 스트레스 호르몬-GR 네트워크를 억제할 수 있는 후보 화합물을 검색하였다. 한의학에서, 인삼(Panax Ginseng)은 암 및 신장 질환에 사용되고 있다. 실제로, 몇몇 종류의 진세노사이드들, 특히 희귀 진세노사이드 CSH1 (RG6)은 에스트로겐 또는 코르티손과 매우 유사한 화학 구조를 가지고 있다(도 5). 따라서, 탁솔-유도 세포 사멸에 대한 Rg6의 효과를 다른 일반적인 진세노사이드들과 비교하여 시험하였다. 흥미롭게도, CSH1은 C2 세포에서 탁솔에 대한 민감성을 분명히 나타냈다. 하지만, 다른 일반적인 진세노사이드들은 명확한 효과를 나타내지 않았다(도 6a). 또한, A498 세포에서도 CSH1은 유사한 효과를 나타냈다. 이에 대한 좀 더 자세한 정보를 얻기 위해서, CSH1-관련된 진세노사이드(CSH2 내지 CSH4; 도 7)에 대한 효과를 확인하였다. ER-α 상승에 의해 탁솔에 내성을 나타내는 VHL-결핍된 C2 세포에서, CSH1 및 CSH3은 FST와 비슷하게 탁솔 민감성이 증가되었다. 하지만, C2V(탁솔 민감성 세포주)에서는 탁솔에 대한 추가적인 민감성을 나타내지는 않았다. 이에, 본 발명자들은 코르티솔 및 코르티손에 의한 γ-튜불린 유도에 있어서 CSH1의 효과를 확인하였다. PGT와 유사하게, CSH1는 인간 폐암 세포주 A549에서 MTOC 증폭 뿐만 아니라 스트레스 호르몬-유도 γ-튜불린 발현을 억제시켰다(도 6b 및 도 6c). 본 발명자들은 인간 대장암 세포주 HCT116에서도 CSH1의 유익한 효과를 확인하였다. 상기 결과는 CSH1이 암세포 타입와 무관하게 MTOC 증폭을 억제할 수 있다는 것을 나타낸다.We have found that adequate inhibition of stress hormone signaling may indicate sensitivity to Taxol as well as inhibition of MTOC regulation (FIG. 3). Thus, the present inventors searched for candidate compounds capable of inhibiting the stress hormone-GR network. In Chinese medicine, Panax Ginseng is used for cancer and kidney disease. Indeed, some types of ginsenosides, especially rare ginsenosides CSH1 (RG6), have a chemical structure very similar to estrogen or cortisone (FIG. 5). Therefore, the effect of Rg6 on Taxol-induced cell death was tested in comparison with other common ginsenosides. Interestingly, CSH1 clearly showed sensitivity to Taxol in C2 cells. However, other common ginsenosides did not show a clear effect (FIG. 6A). In addition, CSH1 showed a similar effect in A498 cells. To get more detailed information on this, the effects on CSH1-related ginsenosides (CSH2 to CSH4; FIG. 7) were identified. In VHL-deficient C2 cells that are resistant to Taxol by ER-α elevation, CSH1 and CSH3 have increased Taxol sensitivity similar to FST. However, C2V (taxol sensitive cell line) did not show additional sensitivity to Taxol. Thus, the present inventors confirmed the effect of CSH1 on γ-tubulin induction by cortisol and cortisone. Similar to PGT, CSH1 inhibited stress hormone-induced γ-tubulin expression as well as MTOC amplification in human lung cancer cell line A549 (FIGS. 6B and 6C). The present inventors confirmed the beneficial effect of CSH1 in human colon cancer cell line HCT116. The results indicate that CSH1 can inhibit MTOC amplification regardless of cancer cell type.
<< 실시예Example 7> 스트레스 호르몬-유도된 기능 이상을 차단하는  7> Blocking stress hormone-induced dysfunction CSH1CSH1
CSH1에 대한 좀 더 자세한 생물학적 효과를 확인하기 위해서, 본 발명자들은 Rad51 및 GR 발현에 있어 CSH1의 효과를 관측하였다. CSH1은 GR 발현을 억제하였고, GR-과발현에 의한 Rad51의 감소를 억제하였다(도 6d). 또한, CSH1은 BRCA1 및 Rad51의 상호작용을 촉진시켰고, GR에 의해 파괴되는 이들의 결합을 극복할 수 있었다(도 6e). 이러한 결과를 토대로, 본 발명자들은 MTOC의 수를 확인하였다. 예상대로, 코르티손 또는 GR 과발현에 의한 MTOC의 증가가 CSH1 처리에 의해 완전히 억제되었다(도 6f 및 도 6g). CSH1이 MTOC 증폭 및 γ-튜불린 조절 억제를 차단하므로, 상기 화합물이 암 예방에도 유용하게 사용될 수 있을 것으로 예상된다. 또한, 스트레스 호르몬의 연속적인 처리가 형질전환(transformation)을 유도할 수 있는지 확인하기 위해서, 2 종류의 정상 인간 섬유아세포를 낮은 혈청 농도하에서 코르티솔 및 CSH1의 첨가 유무에 따라 1달 동안 배양하였다. 1달 후, 세포들을 96 웰 플레이트에 접종시켰고, 혈청 없이 추가로 2주일 동안 배양하였다. 가혹한 조건 하에서, 정상 섬유아세포는 오직 2 웰에서만 살아남았다. 반면, 코르티솔-처리한 세포에서는 대부분 살아남았다(61/96 웰, 85/96 웰). 상기 조건에서 CSH1을 동시 처리하면 생존율은 크게 감소하였다(도 8). 상기 결과, 불리한 조건하에서 코르티솔은 세포 생존을 촉진할 수 있고, CSH1을 통해 GR 경로를 억제하면 스트레스-호르몬 유도로 인한 부적절한 세포 생존을 극복할 수 있다는 것을 나타낸다. To identify more detailed biological effects on CSH1, we observed the effect of CSH1 on Rad51 and GR expression. CSH1 inhibited GR expression and inhibited the reduction of Rad51 by GR-overexpression (FIG. 6D). In addition, CSH1 promoted the interaction of BRCA1 and Rad51 and was able to overcome their binding broken by GR (FIG. 6E). Based on these results, the inventors confirmed the number of MTOCs. As expected, the increase in MTOC by cortisone or GR overexpression was completely inhibited by CSH1 treatment (FIGS. 6F and 6G). Since CSH1 blocks MTOC amplification and inhibition of γ-tubulin regulation, it is expected that the compound may be usefully used for cancer prevention. In addition, two normal human fibroblasts were cultured for one month with or without the addition of cortisol and CSH1 at low serum concentrations to determine if continuous treatment of stress hormones could induce transformation. After one month, cells were seeded in 96 well plates and incubated for an additional two weeks without serum. Under severe conditions, normal fibroblasts survived only 2 wells. In contrast, most of them survived cortisol-treated cells (61/96 wells, 85/96 wells). Treatment with CSH1 under these conditions significantly reduced survival (FIG. 8). The results indicate that under adverse conditions cortisol can promote cell survival and that inhibition of the GR pathway through CSH1 can overcome inadequate cell survival due to stress-hormone induction.
<< 실시예Example 8> FST와 유사한 효과를 나타내는  8> shows a similar effect to FST CSH1CSH1
FST와 유사하게, CSH1은 C2 세포에서 탁솔에 대한 민감성을 나타내므로, CSH1이 FST를 대체할 수 있는 가능성이 있는지를 확인하였다. 우선, 에스트로겐-유도된 세포 증식을 관측하였다. ER-α 양성 MCF-7 세포주에서 FST와 유사하게, CSH1은 에스트로겐-유도된 세포 증식을 차단할 수 있었다(도 9a). 또한, CSH1은 에스트로겐-유도-γ-튜불린 및 ER-α를 억제시킬 수 있었다(도 9b). 하지만, 이들은 기본적인 Rad51 발현은 변화시키지 않았다(도 9b). 또한, 외인성 ER-α 형질감염된 293세포에서 ER-α-매개 전사 활성은 CSH1에 의해 감소하였다(도 9c). 또한, MCF-7에서도 CSH1에 의해 ERE-Luc 활성이 FST 만큼 강하게 감소하는 것을 확인하였다(도 9d). 상기 결과는 CSH1이 ER-α 억제제로서 작용할 수도 있다는 것을 나타낸다. 또한, 탁솔-민감성도 확인하였다. FST의 용량-의존성 민감성과 유사하게, CSH1도 C2 세포에서 용량에 따라 탁솔-유도 세포 사멸이 증가하였다(도 9e). 추가로, CSH1은 VHL-결핍 C2 세포에서 FST와 마찬가지로 Rad51 발현도 증가시켰다(도 9f). FST는 ER-α 발현을 억제할 수 있으므로, 이 부분도 또한 시험하였다. 외인성 ER-α는 CSH1에 의해 명확하게 감소되었는데(도 9g), 이는 CSH1이 FST와 매우 유사한 기능을 할 수 있다는 것을 나타낸다. 최종적으로, MTOC를 회복시킬 수 있는 FST와 비교하여 MTOC 증폭을 관측하였다. CSH3 뿐만 아니라 CSH1도 MTOC를 회복시켰다(도 9h 및 도 9i). 이러한 결과는 CSH3 뿐만 아니라 CSH1도 FST 대체 화합물의 하나로 사용될 수 있음을 나타낸다. Similar to FST, CSH1 exhibits sensitivity to Taxol in C2 cells, thus confirming the possibility that CSH1 could replace FST. First, estrogen-induced cell proliferation was observed. Similar to FST in ER-α positive MCF-7 cell line, CSH1 was able to block estrogen-induced cell proliferation (FIG. 9A). In addition, CSH1 was able to inhibit estrogen-induced-γ-tubulin and ER-α (FIG. 9B). However, they did not alter basic Rad51 expression (FIG. 9B). In addition, ER-α-mediated transcriptional activity was reduced by CSH1 in exogenous ER-α transfected 293 cells (FIG. 9C). In addition, it was confirmed that ERE-Luc activity was strongly reduced by FST by CSH1 in MCF-7 (FIG. 9D). The results indicate that CSH1 may act as an ER-α inhibitor. Taxol-sensitivity was also confirmed. Similar to the dose-dependent sensitivity of FST, CSH1 also increased Taxol-induced cell death with dose in C2 cells (FIG. 9E). In addition, CSH1 also increased Rad51 expression like FST in VHL-deficient C2 cells (FIG. 9F). FST can also inhibit ER-α expression, so this was also tested. Exogenous ER-α was clearly reduced by CSH1 (FIG. 9G), indicating that CSH1 can function very similar to FST. Finally, MTOC amplification was observed compared to FST capable of restoring MTOC. CSH1 as well as CSH3 recovered MTOC (FIGS. 9H and 9I). These results indicate that CSH1 as well as CSH3 can be used as one of the FST replacement compounds.
이상으로 본 발명 내용의 특정한 부분을 상세히 기술하였는 바, 당업계의 통상의 지식을 가진 자에게 있어서, 이러한 구체적 기술은 단지 바람직한 실시양태일 뿐이며, 이에 의해 본 발명의 범위가 제한되는 것이 아닌 점은 명백할 것이다. 따라서 본 발명의 실질적인 범위는 첨부된 청구항들과 그것들의 등가물에 의하여 정의된다고 할 것이다.Having described the specific part of the present invention in detail, it is obvious to those skilled in the art that such a specific description is only a preferred embodiment, thereby not limiting the scope of the present invention. something to do. Thus, the substantial scope of the present invention will be defined by the appended claims and their equivalents.

Claims (14)

  1. 희귀 진세노사이드 CSH1(Rg6)을 유효성분으로 함유하는 항암제 내성 억제용 약학조성물.A pharmaceutical composition for inhibiting anticancer drug resistance, containing the rare ginsenoside CSH1 (Rg6) as an active ingredient.
  2. 제1항에 있어서, 상기 항암제 내성은 스트레스 호르몬에 의해 유도되는 것을 특징으로 하는 항암제 내성 억제용 약학조성물.The pharmaceutical composition for inhibiting anticancer drug resistance according to claim 1, wherein the anticancer drug resistance is induced by a stress hormone.
  3. 제1항에 있어서, 상기 희귀 진세노사이드 CSH1(Rg6)은 스트레스 호르몬에 의해 유도되는 γ-튜불린 발현을 억제하고, BRCA1 및 Rad51의 결합을 촉진하며, 미세소관 조직화 중심(microtubule organizing center; MTOC) 증폭을 억제하는 것을 특징으로 하는 항암제 내성 억제용 약학조성물.The method of claim 1, wherein the rare ginsenoside CSH1 (Rg6) inhibits γ-tubulin expression induced by stress hormones, promotes the binding of BRCA1 and Rad51, and microtubule organizing center (MTOC) A pharmaceutical composition for inhibiting anticancer drug resistance, characterized by inhibiting amplification.
  4. 제2항 또는 제3항에 있어서, 상기 스트레스 호르몬은 코르티손(Cortisone) 또는 코르티솔(Cortisol)인 것을 특징으로 하는 항암제 내성 억제용 약학조성물.The pharmaceutical composition for inhibiting anticancer drug resistance according to claim 2 or 3, wherein the stress hormone is cortisone or cortisol.
  5. 제1항에 있어서, 상기 항암제는 탁솔(Taxol)인 것을 특징으로 하는 항암제 내성 억제용 약학조성물.The pharmaceutical composition of claim 1, wherein the anticancer agent is Taxol.
  6. 희귀 진세노사이드 CSH1(Rg6)을 유효성분으로 함유하는 암 예방 또는 치료용 약학조성물.A pharmaceutical composition for preventing or treating cancer, containing the rare ginsenoside CSH1 (Rg6) as an active ingredient.
  7. 제6항에 있어서, 상기 암은 항암제 내성을 가진 암인 것을 특징으로 하는 암 예방 또는 치료용 약학조성물.7. The pharmaceutical composition for preventing or treating cancer according to claim 6, wherein the cancer is cancer having anticancer drug resistance.
  8. 제7항에 있어서, 상기 항암제는 탁솔(Taxol)인 것을 특징으로 하는 암 예방 또는 치료용 약학조성물.8. The pharmaceutical composition for preventing or treating cancer according to claim 7, wherein the anticancer agent is Taxol.
  9. 제6항에 있어서, 상기 암은 신장암, 폐암, 대장암 또는 유방암인 것을 특징으로 하는 암 예방 또는 치료용 약학조성물.The pharmaceutical composition for preventing or treating cancer according to claim 6, wherein the cancer is kidney cancer, lung cancer, colon cancer, or breast cancer.
  10. 희귀 진세노사이드 CSH1(Rg6)을 유효성분으로 함유하는 항암제 내성 억제용 식품조성물.A food composition for inhibiting anticancer drug resistance, containing the rare ginsenoside CSH1 (Rg6) as an active ingredient.
  11. 제10항에 있어서, 상기 항암제 내성은 스트레스 호르몬에 의해 유도되는 것을 특징으로 하는 항암제 내성 억제용 식품조성물.The food composition of claim 10, wherein the anticancer drug resistance is induced by a stress hormone.
  12. 제10항에 있어서, 상기 희귀 진세노사이드 CSH1(Rg6)은 스트레스 호르몬에 의해 유도되는 γ-튜불린 발현을 억제하고, BRCA1 및 Rad51의 결합을 촉진하며, 미세소관 조직화 중심(microtubule organizing center; MTOC) 증폭을 억제하는 것을 특징으로 하는 항암제 내성 억제용 식품조성물.The method of claim 10, wherein the rare ginsenoside CSH1 (Rg6) inhibits γ-tubulin expression induced by stress hormones, promotes binding of BRCA1 and Rad51, and microtubule organizing center (MTOC). A food composition for inhibiting anticancer drug resistance, characterized by inhibiting amplification.
  13. 제11항 또는 제12항에 있어서, 상기 스트레스 호르몬은 코르티손(Cortisone) 또는 코르티솔(Cortisol)인 것을 특징으로 하는 항암제 내성 억제용 식품조성물.The food composition of claim 11 or 12, wherein the stress hormone is cortisone or cortisol.
  14. 제10항에 있어서, 상기 항암제는 탁솔(Taxol)인 것을 특징으로 하는 항암제 내성 억제용 식품조성물.11. The anticancer drug resistance food composition of claim 10, wherein the anticancer agent is Taxol.
PCT/KR2017/000198 2016-01-08 2017-01-06 Composition for inhibiting anticancer drug resistance containing rare ginsenoside csh1 (rg6) as active ingredient WO2017119767A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR10-2016-0002619 2016-01-08
KR1020160002619A KR101732876B1 (en) 2016-01-08 2016-01-08 Pharmaceutical composition for inhibiting anticancer agents resistance comprising rare ginsenosides CSH1(Rg6)
KR20170001813 2017-01-05
KR10-2017-0001813 2017-01-05

Publications (1)

Publication Number Publication Date
WO2017119767A1 true WO2017119767A1 (en) 2017-07-13

Family

ID=59274001

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2017/000198 WO2017119767A1 (en) 2016-01-08 2017-01-06 Composition for inhibiting anticancer drug resistance containing rare ginsenoside csh1 (rg6) as active ingredient

Country Status (1)

Country Link
WO (1) WO2017119767A1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103230406A (en) * 2013-05-08 2013-08-07 江苏省中医药研究院 Application of ginsenoside Rg6 in preparation of drug for treating lymphoma
US20150297727A1 (en) * 2013-04-28 2015-10-22 Fujian South Pharmaceutical Co. Ltd. Saponin nano micelle, preparing method, application and pharmaceutical composition thereof

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150297727A1 (en) * 2013-04-28 2015-10-22 Fujian South Pharmaceutical Co. Ltd. Saponin nano micelle, preparing method, application and pharmaceutical composition thereof
CN103230406A (en) * 2013-05-08 2013-08-07 江苏省中医药研究院 Application of ginsenoside Rg6 in preparation of drug for treating lymphoma

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
CHEN ET AL: "Ginseng and anticancer drug combination to improve cancer chemotherapy: a critical review", EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE, vol. 2014, 30 April 2014 (2014-04-30), pages 1 - 13, XP055599568 *
CHO, J. H.: "Prevention effect of rare ginsenosides against stress-hormone induced MTOC amplification", ONCOTARGET, vol. 7, no. 23, 27 April 2016 (2016-04-27), pages 35144 - 35158, XP055599570 *
JANG, H. J.: "Anticarcinogenic effects of products of heat-processed ginsenoside Re, a major constituent of ginseng berry, on human gastric cancer cells", JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY, vol. 62, no. 13, 2014, pages 2830 - 2836, XP055599566 *

Similar Documents

Publication Publication Date Title
Kumar et al. Rottlerin induces autophagy and apoptosis in prostate cancer stem cells via PI3K/Akt/mTOR signaling pathway
Jeffery et al. Physiological effects of broccoli consumption
Zhu et al. Ginsenoside Rg1 attenuates the inflammatory response in DSS-induced mice colitis
Das et al. Withaferin A modulates the Spindle Assembly Checkpoint by degradation of Mad2–Cdc20 complex in colorectal cancer cell lines
Lee et al. Withaferin A sensitizes TRAIL-induced apoptosis through reactive oxygen species-mediated up-regulation of death receptor 5 and down-regulation of c-FLIP
Guo et al. GW4064 enhances the chemosensitivity of colorectal cancer to oxaliplatin by inducing pyroptosis
Rzeski et al. Betulin elicits anti‐cancer effects in tumour primary cultures and cell lines in vitro
Guo et al. Dendrobium candidum extract inhibits proliferation and induces apoptosis of liver cancer cells by inactivating Wnt/β-catenin signaling pathway
WO2013048158A2 (en) Novel usage for eupatilin
WO2020085642A1 (en) Pharmaceutical composition for preventing or treating cancer, containing n-1h-benzimidazol-2-yl-3-(1h-pyrrole-1-yl) benzamide as active ingredient
Mukherjee et al. Flavonol isolated from ethanolic leaf extract of Thuja occidentalis arrests the cell cycle at G2‐M and induces ROS‐independent apoptosis in A549 cells, targeting nuclear DNA
Shan et al. TCDD-induced antagonism of MEHP-mediated migration and invasion partly involves aryl hydrocarbon receptor in MCF7 breast cancer cells
WO2017078405A1 (en) Pharmaceutical composition for treatment of lung cancer comprising glucocorticoid-based compound
Chen et al. Effect and mechanisms of celastrol on the apoptosis of HOS osteosarcoma cells
Batnasan et al. 17-beta estradiol inhibits oxidative stress-induced accumulation of AIF into nucleolus and PARP1-dependent cell death via estrogen receptor alpha
Takakura et al. Rapid deconjugation of SN‑38 glucuronide and adsorption of released free SN‑38 by intestinal microorganisms in rat
Jin et al. Triptolidenol, isolated from Tripterygium wilfordii, disrupted NF-κB/COX-2 pathway by targeting ATP-binding sites of IKKβ in clear cell renal cell carcinoma
Xie et al. Pyrocatechol alleviates cisplatin-induced acute kidney injury by inhibiting ROS production
WO2017119767A1 (en) Composition for inhibiting anticancer drug resistance containing rare ginsenoside csh1 (rg6) as active ingredient
Cho et al. Prevention effect of rare ginsenosides against stress-hormone induced MTOC amplification
KR101732876B1 (en) Pharmaceutical composition for inhibiting anticancer agents resistance comprising rare ginsenosides CSH1(Rg6)
Jiang et al. Multifunctions of CRIF1 in cancers and mitochondrial dysfunction
WO2022186608A1 (en) Anticancer use of extract from stichopus japonicus gonads or compounds derived therefrom
KR101914099B1 (en) Food composition for inhibiting anticancer agents resistance and improving stress hormone related diseases comprising rare ginsenosides CSH1(Rg6)
Tsai et al. Taiwanin C elicits apoptosis in arecoline and 4‐nitroquinoline‐1‐oxide‐induced oral squamous cell carcinoma cells and hinders proliferation via epidermal growth factor receptor/PI3K suppression

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17736139

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17736139

Country of ref document: EP

Kind code of ref document: A1