WO2017119638A1 - Real-time sleep disorder monitoring apparatus - Google Patents

Real-time sleep disorder monitoring apparatus Download PDF

Info

Publication number
WO2017119638A1
WO2017119638A1 PCT/KR2016/014979 KR2016014979W WO2017119638A1 WO 2017119638 A1 WO2017119638 A1 WO 2017119638A1 KR 2016014979 W KR2016014979 W KR 2016014979W WO 2017119638 A1 WO2017119638 A1 WO 2017119638A1
Authority
WO
WIPO (PCT)
Prior art keywords
unit
sensor
stimulus
signal
user
Prior art date
Application number
PCT/KR2016/014979
Other languages
French (fr)
Korean (ko)
Inventor
원용관
Original Assignee
전남대학교산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020160169182A external-priority patent/KR20170083483A/en
Application filed by 전남대학교산학협력단 filed Critical 전남대학교산학협력단
Publication of WO2017119638A1 publication Critical patent/WO2017119638A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/08Detecting, measuring or recording devices for evaluating the respiratory organs
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/103Detecting, measuring or recording devices for testing the shape, pattern, colour, size or movement of the body or parts thereof, for diagnostic purposes
    • A61B5/11Measuring movement of the entire body or parts thereof, e.g. head or hand tremor, mobility of a limb
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/145Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/24Detecting, measuring or recording bioelectric or biomagnetic signals of the body or parts thereof
    • A61B5/316Modalities, i.e. specific diagnostic methods
    • A61B5/318Heart-related electrical modalities, e.g. electrocardiography [ECG]
    • A61B5/332Portable devices specially adapted therefor
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/24Detecting, measuring or recording bioelectric or biomagnetic signals of the body or parts thereof
    • A61B5/316Modalities, i.e. specific diagnostic methods
    • A61B5/389Electromyography [EMG]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/24Detecting, measuring or recording bioelectric or biomagnetic signals of the body or parts thereof
    • A61B5/316Modalities, i.e. specific diagnostic methods
    • A61B5/398Electrooculography [EOG], e.g. detecting nystagmus; Electroretinography [ERG]

Definitions

  • the present invention relates to a real-time sleep disorder monitoring apparatus, and more particularly, to a real-time sleep disorder monitoring apparatus that can apply a sleep escape stimulation in case of emergency while real-time monitoring of the factors related to sleep disorders.
  • Sleep disorders include breathing disorders such as snoring and apnea, blood oxygen deficiency, heartbeat abnormalities, decreased blood flow, rapid eye movement (REM), teeth grinding, jaw clenching, muscle stiffness, It is caused by factors such as frequent torsion, which causes sleep quality and fatigue even after sufficient sleep time. If long-term symptoms persist, heart disease, lung disease, vascular disease, brain damage, Significantly increases the likelihood of dementia, rheumatoid arthritis, depression, loss of libido, sudden death and diabetes.
  • breathing disorders such as snoring and apnea, blood oxygen deficiency, heartbeat abnormalities, decreased blood flow, rapid eye movement (REM), teeth grinding, jaw clenching, muscle stiffness, It is caused by factors such as frequent torsion, which causes sleep quality and fatigue even after sufficient sleep time. If long-term symptoms persist, heart disease, lung disease, vascular disease, brain damage, Significantly increases the likelihood of dementia, rheumatoid arthritis, depression, loss of lib
  • Respiratory disturbances during sleep include snoring and apnea, and the air passages are narrowed due to relaxation of the throat and surrounding muscles, causing the snoring to inhale or exhale by vibrating the soft parts around when air flows through this area. Severe obstruction of the air passages can cause apnea, which makes breathing difficult.
  • Blood oxygen saturation represents the oxygen binding ratio of hemoglobin, and low oxygen saturation, low oxygen, causes serious problems in the central nervous system and cardiovascular system.
  • a respiratory disorder especially apnea
  • apnea is treated as an important factor in monitoring and determining sleep disorders along with respiratory analysis.
  • Heart beat abnormalities can lead to a decrease in the functioning of various organs due to poor blood supply to the body, and in particular, serious situations such as a heart attack can be directly related to death. Surveillance is absolutely necessary.
  • REM rapid eye movement
  • teething teething
  • jaw clenching muscle stiffness in the arms and lower limbs
  • overturning are also treated as sleep disturbance factors. Lose.
  • Conventional wearable heart rate monitoring device is a mainstream attachable electrocardiogram device that detects electrical signals related to cardiac activity, and can monitor the heart condition including heart rate in real time by analyzing the measured electrical signals, heart The measurement of only the beat rate can be obtained from the oxygen saturation measurement signal.
  • EMG measurement principles Other disturbance factors related to muscle activity in specific areas, such as eye movements, bruising, jaw clenching, and muscle stiffness, are measured and analyzed by EMG measurement principles. Can be measured and analyzed by the sensor.
  • the most common technology and apparatus for measuring sleep disorder-related factors are integrated with polysomnography (PSG), and comprehensively measure various factors related to sleep disorders.
  • PSG polysomnography
  • the device may be disturbed by the complicated measurement cable connected to the sleeper's body, which makes it difficult to diagnose the natural state.
  • a wireless sleep polygraph has been provided to overcome these drawbacks, but basically the sleep polygraph (PSG) has to be dealt with by a specialist, hospitalized and has a high cost.
  • PSG sleep polygraph
  • Patent Document 1 Korean Unexamined Patent Publication No. 10-2013-0140595
  • Patent Document 2 Korean Unexamined Patent Publication No. 10-2007-0048201
  • Patent Document 3 Korean Unexamined Patent Publication No. 10-2007-0084901
  • Patent Document 4 U.S. Patent US 7,559,903 B2
  • the present invention has been made to improve the above problems, eliminating the inconvenience of wearing, can also be used by non-professional, can diagnose sleep disorders without being hospitalized, performance deterioration according to the position and posture of the sleeper
  • the purpose of the present invention is to provide a band-type real-time sleep disorder monitoring device that can be worn on the neck that can deal with a crisis immediately.
  • the real-time sleep disorder monitoring device comprises a terminal body formed in a band form so as to be worn on the user's neck; A sensor unit for measuring biometric information including a breathing signal during sleep of a user wearing the terminal body; A stimulus generator for applying a stimulus to a user wearing the terminal body; A terminal control unit which analyzes the biometric information collected by the sensor unit and controls the stimulus generating unit so that a stimulus is applied to the user if the analysis result corresponds to a set stimulus application condition; and a biosignal, its analysis result and stimulus control information, etc. It comprises a terminal storage unit for storing.
  • a terminal communication unit for transmitting and receiving data with an external device provided separately from the terminal body; is provided.
  • the terminal controller may include: a signal processor configured to control preprocessing and storage of the biosignal collected by the sensor unit; an information analyzer configured to analyze the biosignal; and an analysis result of the biosignal and a setting condition of a user Sleep state analysis unit for determining whether the sleep disorder occurs; and Stimulation control unit for controlling the stimulation generating unit in accordance with the determination result of the sleep state analysis unit.
  • the external device may communicate with the terminal communication unit to receive biometric information and transmit stimulus control information; and a server storage unit to store biosignals, analysis results thereof, and stimulus control information. And a server control unit for generating stimulus control information when the analysis result corresponds to a set stimulus application condition, and an information display unit for producing and providing various types of processed information using data stored in the server storage unit.
  • the sensor unit, the stimulus generating unit, the terminal communication unit, the terminal control unit, the terminal storage unit and their detailed configuration functions are all mounted on the terminal body.
  • only the central control function of the sensor unit, the stimulus generating unit, the terminal communication unit, and the terminal control unit is mounted on the terminal body, and the signal processing unit, information analysis unit, sleep state analysis unit, and stimulation control unit of the terminal control unit
  • a storage function of the terminal storage unit is provided in an external device installed separately from the terminal body. That is, the biological information collected by the sensor unit mounted on the terminal body is transmitted to the external device through the terminal communication unit, stored and analyzed, and the stimulus generating unit generates the stimulus according to the stimulus control information received through the terminal communication unit.
  • the sensor unit is mounted on the inner surface of the main body worn on the user's neck, the breathing signal detection sensor for detecting the user's breathing signal is installed so as to face or contact the user's neck;
  • An oxygen saturation sensor for detecting oxygen saturation in the blood of the user wearing the main body;
  • Electrocardiogram sensor for detecting the electrical activity of the heart of the user wearing the body; preferably includes.
  • the oxygen saturation sensor is applied to be formed on the ear of the user.
  • the sensor unit the jaw muscle conduction sensor for detecting the activity of the user's jaw muscles, the eye conduction sensor for detecting the movement of the user's eye, the arm muscle conduction sensor for detecting the activity of the arm muscles, the activity of the lower extremity muscles At least one or more of the lower extremity EMG sensor, and a motion sensor for measuring body movements and posture information during sleep.
  • the stimulus generating unit may include at least one of an electrical stimulation unit applying an electrical stimulus, a vibration stimulating unit applying a vibration, and a warning sound unit generating a warning sound.
  • the information analysis unit analyzes the signal collected by the respiratory signal detection sensor to determine the respiratory state; and by analyzing the signal collected by the oxygen saturation sensor to calculate the blood oxygen saturation and heart rate Oxygen saturation signal analysis unit; and ECG signal analysis unit for determining the abnormality of the heart by analyzing the electrocardiogram signals collected by the ECG sensor; and the eye movement, bifurcation, this evil by analyzing the signals collected from the EMG sensors EMG signal analysis unit for extracting information on the stiffness of the bite, arm and leg muscles; and a motion signal analysis unit for extracting the motion and posture information of the body during sleep by analyzing the signals collected by the motion sensor .
  • the breathing signal analysis unit is provided with a breathing state classifier for discriminating the breathing signal of the user wearing the terminal body to any one of the normal breathing, snoring breathing, apnea
  • the breathing state classifier is the terminal body Average ratio values, which are relative ratios of average values of power spectrums calculated from each of a plurality of frequency subbands set in a frequency domain of a respiratory signal detected by a user wearing a, and extracted from each of the subbands
  • the type of breathing is determined on the basis of the standard deviation ratio values, which are the relative ratios of the standard deviation values of the calculated power spectrum.
  • the disadvantages such as the inconvenience of wearing by the many lines of the existing sleep polygraph (PSG) and the expensive cost according to the absolute involvement needs of professionals
  • real-time monitoring during sleep can induce immediate escape from emergency sleep disorders, which provides the advantage of preventing serious accidents.
  • the real-time sleep disorder monitoring device is mounted so that the respiratory signal sensor is in close proximity or contact with the neck, and the respiratory type is based on the relative ratio values of the mean values and standard deviation values of the power spectrum for the respiratory signal
  • FIG. 1 is a view showing a state in which a real-time sleep disorder monitoring device is mounted on a user, according to an embodiment of the present invention
  • FIG. 2 is a block diagram illustrating components of a sleep disorder monitoring device implemented as an example of FIG. 1 and an association therebetween.
  • FIG. 3 is a flowchart illustrating an implementation process of a respiratory state classifier mounted in the sleep state monitoring device of FIG. 1;
  • FIG. 4 is a flowchart illustrating a real-time respiratory state classification process by the respiratory state classifier obtained by the process illustrated in FIG. 3 and mounted on the respiratory signal signal analysis unit of the information analysis unit of FIG. 2;
  • FIG. 5 is a view illustrating a sleep state analyzer determining whether sleep disorder occurs in FIG. 2;
  • FIG. 6 is a block diagram showing the components of the sleep disorder monitoring apparatus implemented in real time according to another embodiment of the present invention and the connection therebetween.
  • terminal body 100 sensor unit
  • stimulation generating unit 210 terminal control unit
  • terminal storage unit 250 terminal communication unit
  • FIG. 1 is a view showing a state in which a real-time sleep disorder monitoring device is mounted on a user according to an embodiment of the present invention
  • Figure 2 shows the major components of the sleep disorder monitoring device of Figure 1 and the relationship between them It is a block diagram.
  • the real-time sleep disorder monitoring device 1 is the terminal body 10, the sensor unit 100, the terminal storage unit 220, the terminal control unit 210 and the stimulation generator It is composed of 180, it may further include a terminal communication unit 250.
  • the terminal body 10 is a band form that can be worn on the user's neck, and is provided with a fastening portion such as a loop or a Velcro tape at both ends so that the terminal body 10 can be adjusted in accordance with the length of the neck of the user to be closed in the form of a closed track.
  • the terminal body 10 is composed of some sensors of the sensor unit 100, the terminal storage unit 220, the terminal control unit 210 and the stimulus generating unit 180, the power supply battery (not shown) and operation A switch (not shown) capable of on / off operation is provided, and a terminal communication unit 250 may be further provided as necessary.
  • the sensor unit 100 is a breathing signal detection sensor 110, oxygen saturation sensor 120, electrocardiogram sensor 130, in order to measure a variety of biological signals including the breathing signal during sleep of the user wearing the terminal body 10,
  • the EMG sensor 140 and the motion sensor 150 are provided.
  • the respiratory signal detection sensor 110 is mounted on the inner surface of the terminal body 10 worn on the user's neck so as to face or contact the user's neck in proximity, and is a sensor that detects a sound signal due to the user's breath.
  • a piezoelectric sensor may be used to measure vibrations caused by sound.
  • the respiratory signal detection sensor 110 When the respiratory signal detection sensor 110 is mounted on the inner surface of the terminal body 10, the area for receiving a sound signal is limited to the neck area of the user, thereby significantly reducing the inflow of external noise, thereby improving the respiratory signal measurement efficiency.
  • the use of a unidirectional microphone makes the effect more obvious.
  • Oxygen saturation sensor 120 is a sensor for measuring the oxygen saturation in the blood of the user wearing the terminal body 10, two light emitting elements for emitting red light (for example 660nm) and infrared light (for example 940nm) and light
  • red light for example 660nm
  • infrared light for example 940nm
  • the oxygen saturation sensor 120 may be used to measure the heart rate, it is possible to obtain the heart rate by analyzing the periodicity of any one of the two signals collected by the oxygen saturation sensor 120.
  • ECG sensor 130 is a sensor for measuring the potential change occurring during the relaxation and contraction of the heart muscle of the user wearing the terminal body 10, the patch-type electrode that can be attached to the skin attached to the body and these terminal body ( 10), the number of electrodes used and the attachment location can be determined in consideration of the desired quality level for the ECG signal.
  • a plurality of ECG sensors 130 may be connected to one relay device for integrated control, and the relay device may be constructed to communicate wirelessly with the terminal body 10.
  • EMG sensor 140 is a device for measuring the electrical physiological changes generated in the muscle fiber membrane by attaching an electrode to the skin, non-invasive method, EMG signal is used to measure and analyze the activity of the muscle, in the present invention the movement of the tongue , EMG sensor 141 attached to detect the activity of muscles around the jaw to monitor teeth grinding and clenching, and eye conduction attached to the muscles around the eyes to monitor eye movement.
  • a sensor 142, an arm muscle conduction sensor 143 for monitoring the activity of the arm muscles, and a lower leg muscle conduction sensor 144 for monitoring the activity of the lower extremity muscle are applied.
  • the method of measuring the EMG sensors 140 used is basically the same, but the number of sensors to be applied for each measurement part, the characteristics of the applied electricity, the signal analysis method, and the like are different.
  • the lower extremity EMG sensor 144 is preferably connected to the terminal body 10 wirelessly, the arm muscle conduction sensor 143 also wirelessly with the terminal body 10 Of course, it can be built to be connected.
  • the motion sensor 150 collects body motion information during sleep, and is provided in the terminal body 10.
  • a gyro sensor and an acceleration sensor may be applied.
  • the signal collected by the motion sensor 150 is used to extract the information of the wearer's back and sleeping posture during sleep.
  • the stimulus generating unit 180 applies a stimulus capable of inducing a posture change or escaping from the surface to the user wearing the terminal body 10, the electrical stimulating unit 182 for applying an electrical stimulus, and applying vibration to the user. At least one of the vibration stimulator 184 and the sound stimulator 186 for generating sound.
  • the type and intensity of the applied magnetic poles are preferably constructed to be determined by the magnetic pole control unit 219 of the terminal controller 210.
  • the stimulus generating unit 180 may be separated from the terminal body 10 and attached to the user's body, and may be connected to the terminal control unit 210 by wire or wirelessly.
  • the terminal storage unit 220 is a device that stores all the information to be recorded, including the biometric information collected from the sensor unit 100, the terminal storage device 230 such as the terminal body 10 built-in or removable memory card 230 It is desirable to construct a structure that applies).
  • the terminal controller 210 is mounted on the terminal body 10 as a central control device for controlling the cooperative operation of the functions performed by the components of the present invention, and preprocessing the bio-signal collected by the sensor unit 100. And a signal processor 211 for controlling the storage; and an information analyzer 212 for analyzing the biological signal; and a sleep state analyzer for determining whether a sleep disorder occurs by comprehensively analyzing the analysis result and the user's setting condition ( And a stimulus controller 219 for controlling the stimulus generator 180 according to the judgment of the sleep state analyzer 218.
  • the signal processor 211 performs preprocessing such as noise reduction and normalization on the signals collected by the sensor unit 100 and stores the signals in the terminal storage device 230 of the terminal storage unit 220.
  • the information analysis unit 212 is a respiratory signal analysis unit 213 for determining the respiratory state by analyzing the signals collected by the respiratory signal detection sensor 110; and by analyzing the signals collected by the oxygen saturation sensor 120 Oxygen saturation signal analysis unit 214 for calculating blood oxygen saturation and heart rate; and ECG signal analysis unit 215 for determining the abnormality of the heart by analyzing ECG signals collected by ECG sensor 140; and EMG sensor EMG signal analysis unit 216 for analyzing the signals collected from the 140 to extract information about eye movements, limbs, teeth cleavage, stiffness of the arm and leg muscles; and collected by the motion sensor 150 And a motion signal analyzer 217 for analyzing the signal and extracting body motion and posture information during sleep.
  • the respiratory signal analysis unit 213 includes a respiratory state classifier 213a that determines the respiratory state as one of normal breathing, snoring breathing, and apnea, and provides an apnea-hypopnea index (AHI). Calculate and determine if respiratory disorders occur.
  • a respiratory state classifier 213a that determines the respiratory state as one of normal breathing, snoring breathing, and apnea, and provides an apnea-hypopnea index (AHI). Calculate and determine if respiratory disorders occur.
  • the respiratory state classifier 213a includes an average ratio value that is a relative ratio of average values of power spectrums calculated from each of a plurality of frequency subbands of a respiratory signal detected from a user wearing the terminal body 10, and The type of breath is determined based on the standard deviation ratio values, which are the relative proportions of the standard deviation values of the power spectrum calculated from each of the stations.
  • the respiratory state classifier 213a is implemented by software in advance by a separate and independent process as shown in FIG. 3, and the implemented respiratory state classifier 213a is the respiratory signal analysis unit 213 of the terminal controller 210. ) Is used to classify a user's respiratory state and determine a breathing disorder in real time by a process as illustrated in FIG. 4.
  • the breathing signal detection sensor 110 of the terminal body 10 of the sleep disorder monitoring device 1 collects the breathing signal during sleep from the unspecified majority, and breathing for each breathing period by the auditory examination of the person
  • the type normal breath, Cocoy, apnea
  • S10 the database
  • the calculating step (S130) is the average calculation step (S133) for obtaining the average value of the power spectrum of each subband, and the average ratio calculation step (S133) for obtaining the relative ratios between the N average values obtained in the average calculation step (S131). ).
  • the calculation step (S130) is a standard deviation calculation step (S135) for obtaining the standard deviation value of each power spectrum for the same subbands, and between the N standard deviation values obtained in the standard deviation calculation step (S135) A standard deviation ratio calculation step (S137) of calculating relative ratios is performed.
  • the first subband 50 to 240 Hz, the second subband 400 to 680 Hz, the third subband 800 to 960 Hz, and the fourth subband 1200 to 1600 Hz (N 4)
  • the number and frequency range of the subbands applied for respiratory signal type determination in the respiratory state classifier 213a are not limited to the examples, and the sampling rate and the accuracy of the discrimination applied to the digitization process of the signal are illustrated. This may vary depending on how the subbands contain a large amount of information for improvement.
  • the respiratory state classifier 213a that can be applied to the present invention may be any of the classifiers commonly known in mathematics, statistics, or artificial intelligence (eg, crystal trees, regression, Bayesian classifiers, fuzzy, neural networks, etc.). Although it is not specified here, a difference in the accuracy of the learning method and the discrimination may occur according to the selected classifier.
  • the respiratory state classifier 213a which is implemented in software through such a learning process and mounted on the terminal control unit 210 as an application program, is based on the respiratory type based on the relative ratio values of the average values of the power spectrum and the standard deviation values for the respiratory signals. By classifying, we can obtain the results of respiratory state determination that is independent of the change in the intensity of the respiratory signal and is resistant to noise.
  • the respiratory state classifier 213a implemented through the learning process shown in FIG. 3 is mounted on the respiratory signal analysis unit 213 of the terminal control unit 210 and is in real time according to the process illustrated in FIG. 4.
  • Snoring, or apnea this process is similar to the classifier implementation process of Figure 3 but the breathing signal obtained in real time from the user wearing the terminal body 10 instead of the breathing signal stored in the database (S10) signal input
  • It is provided in step S110, in the respiratory state classifier step (S240) is determined by the respiratory state classifier 213a to determine the type of breathing.
  • intermediate processes such as the signal input step S110, the Fourier transform step S120, and the calculation step S130 are the same as those in FIG. 3.
  • This real-time breathing state classification process is carried out for the time pieces continuously input, the breathing signal analysis unit 213 performs the breathing state determination step (S310) shown in Figure 5 based on the respiratory state information accumulated for a certain time Analyzing whether a respiratory disorder occurs for a certain time duration (for example, 10 seconds), and performing the AHI calculation step (E100) to calculate the apnea and low respiratory index (AHI).
  • S310 breathing state determination step
  • E100 AHI calculation step
  • the determination of whether apnea is generated by the respiratory state determination step (S310) and the calculation of apnea and low respiratory index (AHI) by the AHI calculation step (E100) is performed by a professional institution (eg, ACP, American College of Physicians or It is preferable to follow the standards recognized by AASM (American Academy of Sleep Medicine). For example, if apnea is maintained for 10 seconds or more, it is determined that apnea occurs and the number of apneas generated during an hour is defined as an AHI value.
  • a professional institution eg, ACP, American College of Physicians or It is preferable to follow the standards recognized by AASM (American Academy of Sleep Medicine). For example, if apnea is maintained for 10 seconds or more, it is determined that apnea occurs and the number of apneas generated during an hour is defined as an AHI value.
  • the terminal control unit 210 is a sleep state and sleep disorder by the sleep state analysis unit 218 by using the analysis results of the biometric information collected from the remaining sensors of the sensor unit 100 as well as the breathing state determination information. It is constructed to judge the occurrence.
  • the oxygen saturation signal analysis unit 214 analyzes the signal measured by the oxygen saturation sensor 120 to calculate blood oxygen saturation and heart rate.
  • the signal collected by the oxygen saturation sensor 120 represents the light absorption of two different wavelengths (red light and infrared light) obtained by passing or reflecting blood of the body, and the ratio of the pulsating component obtained from the two light absorption
  • red light is more absorbed by deoxygenated hemoglobin (Hb), which is not bound to oxygen
  • infrared light is more absorbed by oxygenated hemoglobin (HbO2), which is bound to oxygen. Calculate oxygen saturation in the blood according to Equation 1 below using the absorbance.
  • the oxygen saturation signal analysis unit 214 calculates a heart rate value by detecting the periodicity of any one of the two light absorption signals, and the number of times the oxygen saturation in blood per hour is lowered to 3% or less of the reference value. It may be configured to perform the ODI calculation step (E200) for calculating the oxygen desaturation index (ODI, defined as).
  • the electrocardiogram signal analysis unit 215 may be constructed to detect cardiac diseases such as myocardial disease, reflux disease, arrhythmia, etc. by analyzing and interpreting the electrocardiogram signal collected from the electrocardiogram sensor 130.
  • cardiac diseases such as myocardial disease, reflux disease, arrhythmia, etc.
  • the waveforms between the P, Q, R, S, and T points of the ECG which are widely known, they may be implemented to detect an emergency symptom and a heart disease.
  • the heart rate may be calculated using the periodicity of the waveform.
  • the EMG signal analyzing unit 216 analyzes and acquires signals obtained from the jaw EMG sensor 141, the ocular conductivity sensor 142, the EMG sensor 143, and the EMG sensor 144 constituting the EMG sensor 140. It may be configured to be interpreted, and may be embodied by an analysis and interpretation method of EMG for each site, which is not specific to the present invention but is generally known.
  • the motion signal analysis unit 217 extracts information about the body's overturning and posture during sleep based on the signals collected from the motion sensor 150.
  • a method of analyzing and interpreting the motion signal is not specified, but may be implemented by a conventionally known method according to the attachment position and the purpose of the motion sensor 150.
  • the sleep state analysis unit 218 comprehensively analyzes the results collected by the various sensors of the sensor unit 100 and analyzed for each signal by the information analyzer 212 to determine whether a sleep disorder occurs and a sleep stage. Can be constructed to This integrated decision is based on recognized standard criteria, but the criteria may be adjusted according to the choice of the implementer and the user.
  • the sleep state analyzer 218 analyzes the oxygen saturation signal signal from the breathing signal analyzer 213 for information on a respiratory state, a respiratory disorder, and AHI for a predetermined time duration (for example, 10 seconds).
  • the sleep state analyzer 218 determines whether or not the sleep disorder occurs and the type of the disorder based on a criterion generally applied by the input information or a criterion set by the operator or the user.
  • the stimulus controller 219 may include the electrical stimulator 182 and the vibration stimulator 184. And stimulus control information (stimulus applied, stimulus type, stimulus intensity) so that at least one of the sound stimulators 186 can be operated.
  • the stimulus application condition may be set in various rules according to the type and emergency of sleep disorders, and the type and intensity of stimuli applied according to each condition may be applied differently.
  • the vibration stimulation unit 184 is operated to apply a one-step vibration suitable for the degree of inducing posture change while maintaining the sleeping state.
  • the electrical stimulation unit 182 may be operated to apply the fine electrical stimulation.
  • a vibratory stimulus of considerable intensity is applied by the vibratory stimulator 184, and nonetheless the sleep disorder is eliminated within a certain time. If not, the electrical stimulation unit 182 is driven to apply a significant level of electrical stimulation that can escape from the water surface.
  • the sound stimulator 186 is driven to generate a strong sound having a perceivable intensity.
  • pre-establish a list of scores for each type of disability and level of disability that may occur add the scores of disabilities generated at a specific time to assess risk levels, and determine whether they are irritating according to the level.
  • a stimulus control unit 219 to determine the type of stimulus and the intensity of the stimulus.
  • the stimulus applying condition set in the stimulus control unit 219 may be set in various manners other than the exemplary condition described above.
  • the information related to the generation of the stimulus may be stored in the terminal storage unit 220 may be used for history management.
  • the terminal communication unit 250 is a device selectively mounted on the terminal body 10 and provides a communication means for transmitting and receiving data with the outside of the terminal body 10.
  • the terminal body 10 with the capacity of the same battery in a manner that is constructed to mitigate the computational processing burden of the terminal body 110 required for the processing and analysis of the biological signal and the sleep state analysis.
  • the long operation time of, the configuration of the terminal body 10 is very simplified, and the analysis speed is provided with the advantage of being very high.
  • An example thereof will be described with reference to FIG. 6. Elements that perform the same function as in the drawings of the foregoing embodiment are denoted by the same reference numerals.
  • terminal controller 210 of the terminal body 10 shown in FIG. 2 are mounted as the same function in the server controller 320 of the external device 300, and the terminal controller 210 is included. Performs only a central control function for the cooperative operation of the components of the terminal body (10).
  • the terminal storage device 230 shown in FIG. 2 may not be included in the terminal body 10.
  • the external device 300 is a server communication unit 310 for performing a wired or wireless communication with the terminal communication unit 250 of the terminal body 10; and the linked operation of the functions performed by the components of the external device 300
  • the server controller 320 performs the same analysis and calculation functions of the central controller device and the terminal controller 210 to control the control unit; and all information to be recorded, including biometric information collected from the sensor unit 100. It includes a server storage unit 330 to be stored; and an information display unit 340 for providing a means of viewing and reporting the stored information.
  • the signals collected by the sensor unit 100 are transmitted to the server communication unit 310 through the terminal communication unit 250, stored in the server storage unit 330, and analyzed by the server control unit 320.
  • the signal analysis function performed by the server controller 320 is the same as the function of the terminal controller 210.
  • the stimulus control information finally obtained by the stimulus control unit 219 of the server control unit 320 is transmitted to the terminal body 10 through the server communication unit 310 and a stimulus is applied by the stimulus generating unit 180.
  • the server storage unit 330 stores in the server storage device 335 all information to be recorded, including the biosignal and its analysis information, sleep disorder occurrence, and stimulus control information.
  • the information display unit 340 is built to provide reports and historical information including graphs, tables, and numerical values using data from the server storage unit 330, and these reports and historical information may be used to receive expert analysis. Can be.
  • the real-time sleep disorder monitoring device 1 it is possible to induce immediate escape from an emergency sleep disorder through the convenience of wearing, and real-time monitoring during sleep provides an advantage of preventing a serious accident.
  • the real-time sleep disorder monitoring device 1 is equipped with a breathing signal detection sensor 110 to be in close contact or contact with the neck inside the band-type terminal body 10 to be worn on the neck to prevent external noise inflow
  • a breathing signal detection sensor 110 to be in close contact or contact with the neck inside the band-type terminal body 10 to be worn on the neck to prevent external noise inflow
  • the present invention functions the terminal control unit 210 or the server control unit 320, the computer program for determining whether the breathing signal detected by the breathing signal detection sensor 110 is normal breathing, snoring breathing or apnea Can provide more.
  • the computer program may further include average ratio values, which are relative ratios of average values of power spectrums calculated from each of a plurality of frequency subbands set in the frequency domain, and power spectrums calculated from each of the frequency subbands.
  • the type of breath is determined on the basis of the standard deviation ratio values, which are the relative proportions of the standard deviation values of.
  • the computer program may be stored and provided in a separate recording medium, and the recording medium may be those specially designed and configured for the present invention or be known and available to those skilled in the computer software field. .
  • the recording medium may be magnetic media such as hard disks, floppy disks and magnetic tape, optical recording media such as CDs and DVDs, magnetic-optical recording media capable of both magnetic and optical recording, ROM, RAM, flash memory.
  • Etc. may be a hardware device specifically configured to store and execute program instructions, alone or in combination.
  • the computer program may be a program consisting of program instructions, local data files, local data structures, and the like, alone or in combination, and may be executed by a computer using an interpreter as well as machine code such as produced by a compiler. It can be a program written in high-level language code.
  • the present invention may further provide a computer device in which the computer program is stored to determine the type of breathing.
  • the computer device is a computer device of a broad scope including not only a general personal computer but also an embedded system and a smart device.
  • the present invention may further provide a server computer device having a storage medium in which the computer program is stored and a communication medium capable of transmitting the computer program stored in the storage medium to a client computer device via a communication network.
  • the client computer device may download the computer program from the server computer device and perform a breath type determination.
  • the real-time sleep disorder detection apparatus of the present invention can be utilized in the medical field because the user can immediately escape from the sleep disorder in the event of an emergency while seriously monitoring the factors associated with the sleep disorder to perform serious accident prevention.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Surgery (AREA)
  • General Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Medical Informatics (AREA)
  • Molecular Biology (AREA)
  • Biophysics (AREA)
  • Animal Behavior & Ethology (AREA)
  • Pathology (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Physiology (AREA)
  • Pulmonology (AREA)
  • Ophthalmology & Optometry (AREA)
  • Cardiology (AREA)
  • Optics & Photonics (AREA)
  • Dentistry (AREA)
  • Oral & Maxillofacial Surgery (AREA)
  • Measurement Of The Respiration, Hearing Ability, Form, And Blood Characteristics Of Living Organisms (AREA)

Abstract

The present invention relates to a real-time sleep disorder monitoring apparatus comprising: a main terminal body formed in a band form so as to be worn around the neck of a user; a sensor unit for detecting biometric data including breathing signals while the user wearing the main terminal body sleeps; a stimulus generation unit capable of applying a stimulus to the user wearing the main terminal body; and a terminal control unit for controlling the stimulus generation unit such that the stimulus is applied to the user if the biometric data detected by the sensor unit corresponds to a set stimulus application condition. Configured as such, the real-time sleep disorder monitoring apparatus, which is worn around the neck, can overcome disadvantages such as wearing inconvenience, which is caused by the many wires conventional polysomnography (PSG) devices have, and high costs resulting from the required absolute involvement of an expert, can particularly induce immediate escape from a critical sleep disorder through real-time monitoring during sleep, and thus provides the advantage of preventing a serious accident.

Description

실시간 수면장애 감시 장치Real-time sleep disorder monitoring device
본 발명은 실시간 수면장애 감시 장치에 관한 것으로서, 상세하게는 수면장애와 관련되는 요소들을 실시간 감시하면서 위급상황 시 수면탈피용 자극을 인가할 수 있는 실시간 수면장애 감시 장치에 관한 것이다.The present invention relates to a real-time sleep disorder monitoring apparatus, and more particularly, to a real-time sleep disorder monitoring apparatus that can apply a sleep escape stimulation in case of emergency while real-time monitoring of the factors related to sleep disorders.
수면장애는 코골이 및 무호흡과 같은 호흡 장애, 혈중 산소 결핍, 심장박동 이상, 혈류량 저하, 급속안구운동(REM, rapid eye movement), 이갈이(teeth grinding), 턱 악물기(clenching), 근육 경직, 잦은 뒤척임 등의 요인에 의해 발생되는 현상으로, 수면의 질을 떨어뜨려 충분한 수면 시간에도 불구하고 심한 졸음과 피로감을 야기하며, 장기간 증상이 계속될 경우 심장질환, 폐질환, 혈관질환, 뇌손상, 치매, 류마티스 관절염, 우울증, 성욕감퇴, 돌연사 및 당뇨병 등의 유발 가능성을 현격히 증가시키게 된다.Sleep disorders include breathing disorders such as snoring and apnea, blood oxygen deficiency, heartbeat abnormalities, decreased blood flow, rapid eye movement (REM), teeth grinding, jaw clenching, muscle stiffness, It is caused by factors such as frequent torsion, which causes sleep quality and fatigue even after sufficient sleep time.If long-term symptoms persist, heart disease, lung disease, vascular disease, brain damage, Significantly increases the likelihood of dementia, rheumatoid arthritis, depression, loss of libido, sudden death and diabetes.
수면 중의 호흡장애는 코골이와 무호흡이 있으며, 목젖과 주변 근육이 이완되어 공기 통로가 좁아짐으로 인해 공기가 이 부위를 흘러갈 때 주변의 부드러운 부분들을 진동시켜 들숨 또는 날숨에서 코골이가 발생되고, 공기 통로의 폐쇄 정도가 심하면 들숨이 어려워지는 무호흡증이 발생하게 된다.Respiratory disturbances during sleep include snoring and apnea, and the air passages are narrowed due to relaxation of the throat and surrounding muscles, causing the snoring to inhale or exhale by vibrating the soft parts around when air flows through this area. Severe obstruction of the air passages can cause apnea, which makes breathing difficult.
혈중 산소포화도(SpO2)는 헤모글로빈의 산소결합비율을 나타내는 것으로 산소포화도가 낮은 저산소증은 중추신경계 및 심혈관계에 심각한 문제를 발생시킨다. 특히, 수면 중의 저산소증 발생의 주요 원인 중의 하나가 호흡장애(특히 무호흡)이므로 호흡 분석과 함께 수면장애 감시 및 판정의 중요한 인자로 취급된다.Blood oxygen saturation (SpO 2 ) represents the oxygen binding ratio of hemoglobin, and low oxygen saturation, low oxygen, causes serious problems in the central nervous system and cardiovascular system. In particular, one of the main causes of hypoxia during sleep is a respiratory disorder (especially apnea), which is treated as an important factor in monitoring and determining sleep disorders along with respiratory analysis.
심장박동(Heart beat)의 이상은 체내 혈액 공급이 원활하게 이루어지지 않아 각종 장기의 기능 저하를 야기할 수 있으며, 특히 심장 마비와 같은 심각한 상황발생은 죽음과 직결될 수 있기에 심장에 대한 수면 중 실시간 감시가 절대적으로 필요하다.Heart beat abnormalities can lead to a decrease in the functioning of various organs due to poor blood supply to the body, and in particular, serious situations such as a heart attack can be directly related to death. Surveillance is absolutely necessary.
비록 수면 중에 심각한 상황을 야기하지는 않지만, 기타 수면장애 요소인 급속안구운동(REM), 이갈이, 턱 악물기, 팔 및 하지의 근육 경직, 잦은 뒤척임 등 역시 수면의 품질을 떨어뜨리는 수면장애 요소로 다루어진다.Although it does not cause a serious situation during sleep, other sleep disorders, such as rapid eye movement (REM), teething, jaw clenching, muscle stiffness in the arms and lower limbs, and frequent overturning are also treated as sleep disturbance factors. Lose.
종래 휴대형 또는 착용형 수면 호흡 감시 장치로는 침대, 베개, 인형 등의 모양으로 다양하게 제시되었으며, 스마트폰을 이용한 호흡상태 감시기능도 제시되고 있으나, 소리 정보에 기반하여 분석이 이루어지는 호흡상태 감시장치의 특성 상 장치의 위치 및 수면자의 자세 변화에 따라 감시 성능의 차이가 크게 발생하는 문제점이 있다.Conventionally, portable or wearable sleep respiratory monitoring devices have been presented in various shapes such as beds, pillows, dolls, and the like, and a respiratory state monitoring function using a smart phone is also presented, but a respiratory state monitoring device is analyzed based on sound information. Due to the nature of the device and the position of the sleeper, there is a problem that a large difference in surveillance performance occurs.
종래 착용형 산소포화도(SpO2) 검사 장치는 가시광선 및 적외선 파장을 이용하여 측정하는데 주로 손가락 끝에 착용하는 형태로 제공되고 있으며, 최근 들어서는 스마트폰 또는 스마트 워치에 탑재된 기능으로 제공되고 있으나 수면 중 착용 목적으로는 부적합한 형태로써 응급 상황에 실시간으로 대처가 곤란하다.Conventional wearable oxygen saturation (SpO 2 ) inspection device is measured by using the visible and infrared wavelengths are mainly provided in the form worn on the fingertips, and recently has been provided as a function mounted on a smart phone or smart watch, but during sleep It is not suitable for the purpose of wearing, it is difficult to cope with the emergency situation in real time.
종래 착용형 심장박동 감시장치는 심장 활동과 관련된 전기적 신호를 감지하는 부착형 심전도 기기가 주류를 이루고 있으며, 측정된 전기적 신호를 분석하여 심장박동 수를 포함한 심장 상태를 실시간으로 감시할 수 있으며, 심장박동 수만의 측정은 산소포화도 측정 신호로부터 구할 수 있다.Conventional wearable heart rate monitoring device is a mainstream attachable electrocardiogram device that detects electrical signals related to cardiac activity, and can monitor the heart condition including heart rate in real time by analyzing the measured electrical signals, heart The measurement of only the beat rate can be obtained from the oxygen saturation measurement signal.
기타 안구 움직임, 이갈이, 턱 악물기, 근육 경직과 같은 특정 부위의 근육의 활동성과 관련되는 수면장애 요소들은 근전도(EMG) 측정 원리에 의해 측정되고 분석되며, 뒤척임 및 자세는 움직임을 감지할 수 있는 센서에 의하여 측정되고 분석 될 수 있다.Other disturbance factors related to muscle activity in specific areas, such as eye movements, bruising, jaw clenching, and muscle stiffness, are measured and analyzed by EMG measurement principles. Can be measured and analyzed by the sensor.
수면장애 관련 요소들을 측정하기 위한 종래의 가장 일반적인 기술 및 장치는 수면다원검사기(PSG: Polysomnography)로 집대성 되어 있으며, 수면장애와 관련되는 다양한 요소들을 종합적으로 측정할 수 있다. 그러나, 이 장치는 복잡한 측정용 케이블을 수면자의 신체에 연결하게 됨으로써 오히려 수면에 방해가 될 수 있어 자연스러운 상태의 진단이 곤란할 수 있다.The most common technology and apparatus for measuring sleep disorder-related factors are integrated with polysomnography (PSG), and comprehensively measure various factors related to sleep disorders. However, the device may be disturbed by the complicated measurement cable connected to the sleeper's body, which makes it difficult to diagnose the natural state.
이러한 단점을 극복하기 위하여 최근 들어 무선형 수면다원검사기(PSG)가 제공되고 있으나, 기본적으로 수면다원검사기(PSG)는 전문가에 의해 다루어져야 하고 병원에 입원을 하여야 하며 비용이 높은 단점이 있다. 또한, 수면 중에는 기초 자료만을 수집 및 저장하고 추후에 전문가에 의해 분석되기 때문에 일회성 진단에 불과하여, 수면 중 실시간으로 수면장애를 감시 및 판정할 수 없어 수면 중 위급 상태에 대처할 수 없는 단점이 있다.Recently, a wireless sleep polygraph (PSG) has been provided to overcome these drawbacks, but basically the sleep polygraph (PSG) has to be dealt with by a specialist, hospitalized and has a high cost. In addition, since only basic data is collected and stored during sleep and later analyzed by an expert, it is only a one-time diagnosis, and there is a disadvantage in that it is not possible to monitor and determine a sleep disorder in real time during sleep, and thus cannot cope with an emergency during sleep.
따라서, 수면 중 착용의 불편함을 해소하고, 비전문가도 쉽게 사용이 가능하며, 병원에 입원하지 않고 진단이 가능하고, 수면 중 장애로 인한 위급 상황이 발생 시 즉시 대처가 가능한 정확하고 효과적인 수면장애 감시를 위한 장치 및 방법의 필요성이 대두되고 있다.This eliminates the inconvenience of wearing during sleep, makes it easy for non-professionals to use, diagnoses without being admitted to the hospital, and provides accurate and effective monitoring of sleep disorders that can be dealt with immediately in case of emergencies due to disorders during sleep. There is a need for an apparatus and method for the same.
[선행기술문헌][Preceding technical literature]
(특허문헌 1) 한국 공개특허공보 제10-2013-0140595호(Patent Document 1) Korean Unexamined Patent Publication No. 10-2013-0140595
(특허문헌 2) 한국 공개특허공보 제10-2007-0048201호(Patent Document 2) Korean Unexamined Patent Publication No. 10-2007-0048201
(특허문헌 3) 한국 공개특허공보 제10-2007-0084901호(Patent Document 3) Korean Unexamined Patent Publication No. 10-2007-0084901
(특허문헌 4) U.S. Patent US 7,559,903 B2(Patent Document 4) U.S. Patent US 7,559,903 B2
본 발명은 상기와 같은 문제점을 개선하기 위하여 창안된 것으로서, 착용상의 불편함을 제거하고, 비전문가도 사용 가능하며, 병원에 입원하지 않고도 수면장애 진단이 가능하고, 수면자의 위치 및 자세에 따른 성능 저하가 없으며, 수면장애 발생 즉시 위기 대처가 가능한 목에 착용할 수 있는 밴드형태의 실시간 수면장애 감시장치를 제공하는데 그 목적이 있다.The present invention has been made to improve the above problems, eliminating the inconvenience of wearing, can also be used by non-professional, can diagnose sleep disorders without being hospitalized, performance deterioration according to the position and posture of the sleeper The purpose of the present invention is to provide a band-type real-time sleep disorder monitoring device that can be worn on the neck that can deal with a crisis immediately.
상기의 목적을 달성하기 위하여 본 발명에 따른 실시간 수면장애 감시장치는 사용자의 목에 착용할 수 있도록 밴드 형태로 형성된 단말본체와; 상기 단말본체를 착용한 사용자의 수면 중 호흡신호를 포함한 생체정보를 측정하는 센서부와; 상기 단말본체를 착용한 사용자에게 자극을 인가하는 자극발생부와; 상기 센서부에 의해 수집된 생체정보를 분석하고 그 분석결과가 설정된 자극인가조건에 해당하면 사용자에게 자극이 인가되도록 상기 자극발생부를 제어하는 단말제어부;와 생체신호 및 이의 분석결과와 자극제어정보 등을 저장하기 위한 단말저장부;를 구비한다.In order to achieve the above object, the real-time sleep disorder monitoring device according to the present invention comprises a terminal body formed in a band form so as to be worn on the user's neck; A sensor unit for measuring biometric information including a breathing signal during sleep of a user wearing the terminal body; A stimulus generator for applying a stimulus to a user wearing the terminal body; A terminal control unit which analyzes the biometric information collected by the sensor unit and controls the stimulus generating unit so that a stimulus is applied to the user if the analysis result corresponds to a set stimulus application condition; and a biosignal, its analysis result and stimulus control information, etc. It comprises a terminal storage unit for storing.
또한, 단말본체와 별도로 구비된 외부장치와 데이터를 송수신하기 위한 단말통신부;를 구비한다.In addition, a terminal communication unit for transmitting and receiving data with an external device provided separately from the terminal body; is provided.
상기 단말제어부는 상기 센서부에 의해 수집된 생체신호의 전처리 및 저장을 제어하는 신호처리부;와 상기 생체신호를 분석하는 정보분석부;와 상기 생체신호의 분석 결과 및 사용자의 설정 조건을 종합적으로 분석하여 수면장애 발생여부를 판단하는 수면상태분석부;와 상기 수면상태분석부의 판단결과에 따라 상기 자극발생부를 제어하는 자극제어부;를 구비한다.The terminal controller may include: a signal processor configured to control preprocessing and storage of the biosignal collected by the sensor unit; an information analyzer configured to analyze the biosignal; and an analysis result of the biosignal and a setting condition of a user Sleep state analysis unit for determining whether the sleep disorder occurs; and Stimulation control unit for controlling the stimulation generating unit in accordance with the determination result of the sleep state analysis unit.
상기 외부장치는 상기 단말통신부와 통신을 수행하여 생체정보를 수신하고 자극제어정보를 송신하는 서버통신부;와 생체신호 및 이의 분석결과와 자극제어정보 등을 저장하기 위한 서버저장부;와 생체정보를 분석하고 그 분석결과가 설정된 자극인가조건에 해당하면 자극제어정보를 발생시키는 서버제어부;와 서버저장부에 저장된 자료를 이용하여 다양한 형태의 가공된 정보를 생산 및 제공하는 정보표시부;를 구비한다. The external device may communicate with the terminal communication unit to receive biometric information and transmit stimulus control information; and a server storage unit to store biosignals, analysis results thereof, and stimulus control information. And a server control unit for generating stimulus control information when the analysis result corresponds to a set stimulus application condition, and an information display unit for producing and providing various types of processed information using data stored in the server storage unit.
본 발명의 실시 일례에 따르면, 센서부, 자극발생부, 단말통신부, 단말제어부, 단말저장부 및 이들의 세부 구성 기능들이 모두 단말본체에 장착된다.According to an embodiment of the present invention, the sensor unit, the stimulus generating unit, the terminal communication unit, the terminal control unit, the terminal storage unit and their detailed configuration functions are all mounted on the terminal body.
본 발명의 또 다른 실시 예에 따르면, 센서부, 자극발생부, 단말통신부와 단말제어부의 중앙제어 기능만을 단말본체에 장착하고, 단말제어부의 신호처리부와 정보분석부와 수면상태분석부와 자극제어부 및 단말저장부의 저장 기능은 단말본체와 분리되어 설치된 외부장치에 구비된다. 즉, 단말본체에 장착된 센서부에 의해 수집된 생체정보는 단말통신부를 통해 외부장치로 전송되어 저장 및 분석되고, 단말통신부를 통해 수신된 자극제어정보에 따라 자극발생부가 자극을 발생 시킨다.According to another embodiment of the present invention, only the central control function of the sensor unit, the stimulus generating unit, the terminal communication unit, and the terminal control unit is mounted on the terminal body, and the signal processing unit, information analysis unit, sleep state analysis unit, and stimulation control unit of the terminal control unit And a storage function of the terminal storage unit is provided in an external device installed separately from the terminal body. That is, the biological information collected by the sensor unit mounted on the terminal body is transmitted to the external device through the terminal communication unit, stored and analyzed, and the stimulus generating unit generates the stimulus according to the stimulus control information received through the terminal communication unit.
상기 센서부는 사용자의 목에 착용되는 상기 본체의 내측면에 사용자의 목에 근접 대향 또는 접촉되도록 장착되어 사용자의 호흡신호를 검출하는 호흡신호감지센서와; 상기 본체를 착용한 사용자의 혈중 산소포화도를 검출하는 산소포화도센서와; 상기 본체를 착용한 사용자의 심장의 전기적 활동을 검출하는 심전도센서;를 포함것이 바람직하다.The sensor unit is mounted on the inner surface of the main body worn on the user's neck, the breathing signal detection sensor for detecting the user's breathing signal is installed so as to face or contact the user's neck; An oxygen saturation sensor for detecting oxygen saturation in the blood of the user wearing the main body; Electrocardiogram sensor for detecting the electrical activity of the heart of the user wearing the body; preferably includes.
더욱 바람직하게는 상기 산소포화도센서는 사용자의 귓볼에 착용할 수 있게 형성된 것을 적용한다.More preferably, the oxygen saturation sensor is applied to be formed on the ear of the user.
또한, 상기 센서부는 사용자의 턱 근육의 활성을 감지하는 턱근전도센서와, 사용자의 안구의 움직임을 감지하는 안구전도센서와, 팔근육의 활동을 감지하는 팔근전도센서와, 하지근육의 활동을 감지하는 하지근전도센서와, 수면 중의 신체 움직임과 자세정보를 측정하기 위한 움직임센서 중 적어도 하나 이상을 더 포함할 수 있다.In addition, the sensor unit, the jaw muscle conduction sensor for detecting the activity of the user's jaw muscles, the eye conduction sensor for detecting the movement of the user's eye, the arm muscle conduction sensor for detecting the activity of the arm muscles, the activity of the lower extremity muscles At least one or more of the lower extremity EMG sensor, and a motion sensor for measuring body movements and posture information during sleep.
또한, 상기 자극발생부는 전기적 자극을 인가하는 전기자극부와, 진동을 인가하는 진동자극부와, 경고음을 발생하는 경고음부 중 적어도 하나를 포함한다.The stimulus generating unit may include at least one of an electrical stimulation unit applying an electrical stimulus, a vibration stimulating unit applying a vibration, and a warning sound unit generating a warning sound.
또한, 상기 정보분석부는 상기 호흡신호감지센서에 의해 수집된 신호를 분석하여 호흡상태를 판정하는 호흡신호분석부;와 상기 산소포화도센서에 의해 수집된 신호를 분석하여 혈중 산소포화도 및 심박수를 계산하는 산소포화도신호분석부;와 상기 심전도센서에 의해 수집된 심전도 신호를 분석하여 심장의 이상 여부를 판정하는 심전도신호분석부;와 상기 근전도센서들로부터 수집된 신호를 분석하여 안구 움직임, 이갈이, 이 악물기, 팔 및 다리 근육의 경직에 대한 정보를 추출하는 근전도신호분석부;와 상기 움직임센서에 의해 수집된 신호를 분석하여 수면 중의 신체의 움직임 및 자세 정보를 추출하는 움직임신호분석부;를 구비한다.In addition, the information analysis unit analyzes the signal collected by the respiratory signal detection sensor to determine the respiratory state; and by analyzing the signal collected by the oxygen saturation sensor to calculate the blood oxygen saturation and heart rate Oxygen saturation signal analysis unit; and ECG signal analysis unit for determining the abnormality of the heart by analyzing the electrocardiogram signals collected by the ECG sensor; and the eye movement, bifurcation, this evil by analyzing the signals collected from the EMG sensors EMG signal analysis unit for extracting information on the stiffness of the bite, arm and leg muscles; and a motion signal analysis unit for extracting the motion and posture information of the body during sleep by analyzing the signals collected by the motion sensor .
또한, 상기 호흡신호분석부는 상기 단말본체를 착용한 사용자의 호흡신호를 정상호흡, 코골이 호흡, 무호흡 중 어느 하나의 호흡종류로 판별하는 호흡상태 분류기가 마련되어 있고, 상기 호흡상태 분류기는 상기 단말본체를 착용한 사용자로부터 검출된 호흡신호의 주파수영역에서 설정된 복수개의 주파수 부대역(frequency subband)들 각각으로부터 계산된 파워스펙트럼의 평균값의 상대적 비율인 평균비율값들과, 상기 부대역들 각각으로부터 추출된 계산된 파워스펙트럼의 표준편차값의 상대적 비율인 표준편차비율값들을 근거로 하여 호흡종류를 판별한다.In addition, the breathing signal analysis unit is provided with a breathing state classifier for discriminating the breathing signal of the user wearing the terminal body to any one of the normal breathing, snoring breathing, apnea, the breathing state classifier is the terminal body Average ratio values, which are relative ratios of average values of power spectrums calculated from each of a plurality of frequency subbands set in a frequency domain of a respiratory signal detected by a user wearing a, and extracted from each of the subbands The type of breathing is determined on the basis of the standard deviation ratio values, which are the relative ratios of the standard deviation values of the calculated power spectrum.
본 발명에 따른 목에 착용하는 실시간 수면장애 감시장치에 의하면, 기존의 수면다원검사장치(PSG)가 가진 많은 선에 의한 착용상의 불편함 및 전문가의 절대적 관여 요구에 따른 고가의 비용과 같은 단점을 해소할 수 있으며, 특히 수면 중의 실시간 감시를 통해 위급한 수면장애로부터 즉각적인 탈피를 유도할 수 있어 심각한 사고를 예방할 수 있는 장점을 제공한다.According to the real-time sleep disorder monitoring device worn on the neck according to the present invention, the disadvantages such as the inconvenience of wearing by the many lines of the existing sleep polygraph (PSG) and the expensive cost according to the absolute involvement needs of professionals In particular, real-time monitoring during sleep can induce immediate escape from emergency sleep disorders, which provides the advantage of preventing serious accidents.
또한, 본 발명에 따른 실시간 수면장애 감시장치는 호흡신호감지센서가 목에 근접 대향 또는 접촉되도록 장착되고, 호흡신호에 대한 파워스펙트럼의 평균값들과 표준편차값들의 상대적 비율값들을 기반으로 호흡종류를 분류하는 호흡상태 분류기를 적용함으로써 호흡신호(소리)의 강도 변화에 독립적이고 잡음에 강한 호흡상태 판정 결과를 얻을 수 있다.In addition, the real-time sleep disorder monitoring device according to the present invention is mounted so that the respiratory signal sensor is in close proximity or contact with the neck, and the respiratory type is based on the relative ratio values of the mean values and standard deviation values of the power spectrum for the respiratory signal By applying the breathing classifier to classify, it is possible to obtain a breathing state determination result that is independent of the change in the intensity of the breathing signal (sound) and is resistant to noise.
도 1은 본 발명의 일 실시예에 따른 실시간 수면장애 감시장치가 사용자에 장착된 상태를 나타낸 도면이고,1 is a view showing a state in which a real-time sleep disorder monitoring device is mounted on a user, according to an embodiment of the present invention,
도 2는 도 1의 실시 일례로 구현된 수면장애 감시장치의 구성 요소들 및 이들 간의 연계를 나타낸 블록도이고,FIG. 2 is a block diagram illustrating components of a sleep disorder monitoring device implemented as an example of FIG. 1 and an association therebetween.
도 3은 도 1의 수면상태 감시장치에 탑재된 호흡상태 분류기의 구현 과정을 나타내 보인 흐름도이고,3 is a flowchart illustrating an implementation process of a respiratory state classifier mounted in the sleep state monitoring device of FIG. 1;
도 4는 도 3에 도시된 과정에 의하여 얻어져 도 2의 단말제어부의 정보분석부의 호흡신호신호분석부에 탑재된 호흡상태 분류기에 의한 실시간 호흡상태 분류과정을 나타낸 흐름도이고,4 is a flowchart illustrating a real-time respiratory state classification process by the respiratory state classifier obtained by the process illustrated in FIG. 3 and mounted on the respiratory signal signal analysis unit of the information analysis unit of FIG. 2;
도 5는 도 2의 수면장애 발생여부를 판정하는 수면상태분석부를 보인 도면이고,FIG. 5 is a view illustrating a sleep state analyzer determining whether sleep disorder occurs in FIG. 2;
도 6은 본 발명의 또 다른 실시예를 따른 실시간으로 구현된 수면장애 감시장치의 구성 요소들 및 이들 간의 연계를 나타낸 블록도이다.6 is a block diagram showing the components of the sleep disorder monitoring apparatus implemented in real time according to another embodiment of the present invention and the connection therebetween.
[부호의 설명][Description of the code]
10: 단말본체 100: 센서부10: terminal body 100: sensor unit
180: 자극발생부 210: 단말제어부180: stimulation generating unit 210: terminal control unit
230: 단말저장부 250: 단말통신부230: terminal storage unit 250: terminal communication unit
300: 외부장치300: external device
이하, 첨부된 도면을 참조하면서 본 발명의 바람직한 실시 예에 따른 실시간 수면장애 감시장치를 더욱 상세하게 설명한다.Hereinafter, a real-time sleep disorder monitoring apparatus according to a preferred embodiment of the present invention with reference to the accompanying drawings will be described in more detail.
도 1은 본 발명의 일 실시예에 따른 실시간 수면장애 감시장치가 사용자에 장착된 상태를 나타내 보인 도면이고, 도 2는 도 1의 수면장애 감시장치의 주요 구성 요소들 및 이들 간의 연관 관계를 나타낸 블록도이다.1 is a view showing a state in which a real-time sleep disorder monitoring device is mounted on a user according to an embodiment of the present invention, Figure 2 shows the major components of the sleep disorder monitoring device of Figure 1 and the relationship between them It is a block diagram.
도 1 및 도 2를 참조하면, 본 발명에 따른 실시간 수면장애 감시장치(1)는 단말본체(10), 센서부(100), 단말저장부(220), 단말제어부(210) 및 자극발생부(180)로 구성되며, 단말통신부(250)를 더 구비할 수 있다.1 and 2, the real-time sleep disorder monitoring device 1 according to the present invention is the terminal body 10, the sensor unit 100, the terminal storage unit 220, the terminal control unit 210 and the stimulation generator It is composed of 180, it may further include a terminal communication unit 250.
단말본체(10)는 사용자의 목에 착용할 수 있는 밴드 형태이며, 사용자의 목둘레 길이에 맞게 조절하여 폐궤도 형태로 체결할 수 있도록 양단부에 고리 또는 벨크로 테이프 등과 같은 체결부가 구비되어 있다.The terminal body 10 is a band form that can be worn on the user's neck, and is provided with a fastening portion such as a loop or a Velcro tape at both ends so that the terminal body 10 can be adjusted in accordance with the length of the neck of the user to be closed in the form of a closed track.
단말본체(10)는 센서부(100)의 일부 센서들, 단말저장부(220), 단말제어부(210) 및 자극발생부(180)로 구성되며, 전원공급용 배터리(미도시) 및 가동을 온/오프 조작할 수 있는 스위치(미도시)가 마련되어 있으며, 필요에 따라서는 단말통신부(250)를 더 구비할 수도 있다.The terminal body 10 is composed of some sensors of the sensor unit 100, the terminal storage unit 220, the terminal control unit 210 and the stimulus generating unit 180, the power supply battery (not shown) and operation A switch (not shown) capable of on / off operation is provided, and a terminal communication unit 250 may be further provided as necessary.
센서부(100)는 단말본체(10)를 착용한 사용자의 수면 중 호흡신호를 포함한 다양한 생체신호를 측정하기 위하여 호흡신호감지센서(110), 산소포화도센서(120), 심전도센서(130), 근전도센서(140) 및 움직임 센서(150)를 구비한다.The sensor unit 100 is a breathing signal detection sensor 110, oxygen saturation sensor 120, electrocardiogram sensor 130, in order to measure a variety of biological signals including the breathing signal during sleep of the user wearing the terminal body 10, The EMG sensor 140 and the motion sensor 150 are provided.
호흡신호감지센서(110)는 사용자의 목에 착용되는 단말본체(10)의 내측면에 사용자의 목에 근접 대향 또는 접촉되도록 장착되어 사용자의 호흡에 의한 소리 신호를 감지하는 센서로써, 대표적으로 마이크로폰을 예로 들 수가 있으며 소리에 의한 진동을 측정할 수 있는 압전센서(piezoelectric sensor)를 적용할 수도 있다.The respiratory signal detection sensor 110 is mounted on the inner surface of the terminal body 10 worn on the user's neck so as to face or contact the user's neck in proximity, and is a sensor that detects a sound signal due to the user's breath. For example, a piezoelectric sensor may be used to measure vibrations caused by sound.
호흡신호감지센서(110)가 단말본체(10)의 내측면에 장착되면 소리신호를 수신하는 영역이 사용자의 목 영역으로 제한되어 외부 잡음의 유입을 현저히 저감시킬 수 있어 호흡신호 측정 효율을 높일 수 있으며, 특히 단방향 마이크로폰을 사용하면 그 효과는 더욱 분명해진다.When the respiratory signal detection sensor 110 is mounted on the inner surface of the terminal body 10, the area for receiving a sound signal is limited to the neck area of the user, thereby significantly reducing the inflow of external noise, thereby improving the respiratory signal measurement efficiency. In particular, the use of a unidirectional microphone makes the effect more obvious.
산소포화도센서(120)는 단말본체(10)를 착용한 사용자의 혈중 산소포화도를 측정하기 위한 센서로, 적색광(예로 660nm)과 적외광(예로 940nm)을 발광하는 2개의 발광소자와 빛을 감지하는 한 개의 수광소자로 구성되는데, 본 발명의 실시에서는 일반적으로 손가락 끝에 적용되는 산소포화도측정기(pulse oximetery)에 널리 사용되고 있는 것과 동일한 종류의 센서 및 동일한 측정 방법을 적용할 수 있으나, 목에 착용하는 밴드형 단말본체(10)와 거리적으로 가까운 귓볼에 부착할 수 있는 형태(접착형 또는 집게 형)의 것을 적용하는 것이 바람직하다. Oxygen saturation sensor 120 is a sensor for measuring the oxygen saturation in the blood of the user wearing the terminal body 10, two light emitting elements for emitting red light (for example 660nm) and infrared light (for example 940nm) and light In the embodiment of the present invention, the same type of sensor and the same measuring method as those widely used in pulse oximetery, which are generally applied to the fingertips, can be applied. It is preferable to apply a type (adhesive or tong type) that can be attached to the earlobe close to the band-type terminal body 10.
또한, 산소포화도센서(120)는 심장 박동수를 측정하는데도 사용될 수 있는데, 산소포화도센서(120)에서 수집된 두 개의 신호 중 어느 한 신호의 주기성을 분석하여 심장박동수를 얻을 수 있다.In addition, the oxygen saturation sensor 120 may be used to measure the heart rate, it is possible to obtain the heart rate by analyzing the periodicity of any one of the two signals collected by the oxygen saturation sensor 120.
심전도센서(130)는 단말본체(10)를 착용한 사용자의 심장 근육의 이완과 수축 과정에서 발생되는 전위변화를 측정하는 센서로, 피부에 부착이 가능한 패치형 전극을 신체에 부착하고 이들을 단말본체(10)에 연결하도록 구성하는데, 사용하는 전극의 숫자 및 부착 위치는 심전도 신호에 대한 원하는 품질 수준을 고려하여 결정할 수 있다. 이때, 착용의 편리성을 위하여 복수의 심전도센서(130)들을 통합 제어하는 하나의 중계장치에 연결하고, 중계장치가 단말본체(10)와 무선으로 통신하도록 구축될 수도 있다. ECG sensor 130 is a sensor for measuring the potential change occurring during the relaxation and contraction of the heart muscle of the user wearing the terminal body 10, the patch-type electrode that can be attached to the skin attached to the body and these terminal body ( 10), the number of electrodes used and the attachment location can be determined in consideration of the desired quality level for the ECG signal. In this case, for convenience of wearing, a plurality of ECG sensors 130 may be connected to one relay device for integrated control, and the relay device may be constructed to communicate wirelessly with the terminal body 10.
근전도센서(140)는 피부에 전극을 부착하여 비침습적 방법으로 근섬유막에서 발생되는 전기적 생리 변화를 측정하는 소자로, 근전도 신호는 근육의 활동을 측정 및 분석하는데 활용되며, 본 발명에서는 혀의 움직임, 이갈이(teeth grinding) 및 이 악물기(clenching)를 감시하기 위해 턱 주위 근육의 활성을 감지하도록 부착되는 턱근전도센서(141)와, 안구의 움직임을 감시하기 위하여 눈 주위 근육에 부착되는 안구전도센서(142)와, 팔 근육의 활동을 감시하기 위한 팔근전도센서(143)와, 하지 근육의 활동을 감시하기 위한 하지근전도센서(144)가 적용되어 있다. EMG sensor 140 is a device for measuring the electrical physiological changes generated in the muscle fiber membrane by attaching an electrode to the skin, non-invasive method, EMG signal is used to measure and analyze the activity of the muscle, in the present invention the movement of the tongue , EMG sensor 141 attached to detect the activity of muscles around the jaw to monitor teeth grinding and clenching, and eye conduction attached to the muscles around the eyes to monitor eye movement. A sensor 142, an arm muscle conduction sensor 143 for monitoring the activity of the arm muscles, and a lower leg muscle conduction sensor 144 for monitoring the activity of the lower extremity muscle are applied.
사용되는 근전도센서(140)들의 측정 방법은 기본적으로 동일하나 측정 부위 별로 적용하는 센서의 숫자, 인가하는 전기의 특성, 신호 분석 방법 등은 달라진다. 또한, 단말본체(10)와의 거리적 간격을 고려하여 하지근전도센서(144)는 무선으로 단말본체(10)와 연결하는 것이 바람직하며, 팔근전도센서(143)도 무선으로 단말본체(10)와 연결될 수 있게 구축될 수 있음은 물론이다.The method of measuring the EMG sensors 140 used is basically the same, but the number of sensors to be applied for each measurement part, the characteristics of the applied electricity, the signal analysis method, and the like are different. In addition, in consideration of the distance between the terminal body 10, the lower extremity EMG sensor 144 is preferably connected to the terminal body 10 wirelessly, the arm muscle conduction sensor 143 also wirelessly with the terminal body 10 Of course, it can be built to be connected.
움직임센서(150)는 수면 중 신체의 움직임 정보를 수집하기 위한 것으로 단말본체(10) 내에 구비되며 대표적인 예로는 자이로센서와 가속도센서가 적용될 수 있다.The motion sensor 150 collects body motion information during sleep, and is provided in the terminal body 10. As a representative example, a gyro sensor and an acceleration sensor may be applied.
움직임센서(150)에서 수집된 신호는 착용자의 수면 중 뒤척임과 수면 자세 정보를 추출하는데 사용된다.The signal collected by the motion sensor 150 is used to extract the information of the wearer's back and sleeping posture during sleep.
자극발생부(180)는 단말본체(10)를 착용한 사용자에게 자세 바꿈을 유도하거나 수면에서 탈피할 수 있는 자극을 인가하는데, 전기적 자극을 인가하는 전기자극부(182)와, 진동을 인가하는 진동자극부(184)와, 소리를 발생하는 소리자극부(186) 중 하나 이상으로 구성된다.The stimulus generating unit 180 applies a stimulus capable of inducing a posture change or escaping from the surface to the user wearing the terminal body 10, the electrical stimulating unit 182 for applying an electrical stimulus, and applying vibration to the user. At least one of the vibration stimulator 184 and the sound stimulator 186 for generating sound.
또한, 인가되는 자극의 종류 및 세기는 단말제어부(210)의 자극제어부(219)에 의해 결정될 수 있게 구축되는 것이 바람직하다.In addition, the type and intensity of the applied magnetic poles are preferably constructed to be determined by the magnetic pole control unit 219 of the terminal controller 210.
또한, 자극발생부(180)는 단말본체(10)와 분리되어 사용자의 신체에 부착될 수 있고 단말제어부(210)와 유선 또는 무선으로 연결될 수 있다.In addition, the stimulus generating unit 180 may be separated from the terminal body 10 and attached to the user's body, and may be connected to the terminal control unit 210 by wire or wirelessly.
단말저장부(220)는 센서부(100)로부터 수집된 생체정보를 포함한 기록대상이 되는 모든 정보가 저장되는 장치로, 단말본체(10) 내장형 또는 착탈이 가능한 메모리카드와 같은 단말저장장치(230)를 적용하는 구조로 구축되는 것이 바람직하다.The terminal storage unit 220 is a device that stores all the information to be recorded, including the biometric information collected from the sensor unit 100, the terminal storage device 230 such as the terminal body 10 built-in or removable memory card 230 It is desirable to construct a structure that applies).
단말제어부(210)는 본 발명의 구성 요소들에 의해 수행되는 기능들의 연계 동작을 제어하기 위한 중앙제어 장치로 단말본체(10)에 탑재되며, 센서부(100)에 의해 수집된 생체신호의 전처리 및 저장을 제어하는 신호처리부(211);와 생체신호를 분석하는 정보분석부(212);와 이의 분석 결과 및 사용자의 설정 조건을 종합적으로 분석하여 수면장애 발생여부를 판단하는 수면상태분석부(218);와 수면상태분석부(218)의 판단에 따라 자극발생부(180)를 제어하는 자극제어부(219);로 구성되어 있다.The terminal controller 210 is mounted on the terminal body 10 as a central control device for controlling the cooperative operation of the functions performed by the components of the present invention, and preprocessing the bio-signal collected by the sensor unit 100. And a signal processor 211 for controlling the storage; and an information analyzer 212 for analyzing the biological signal; and a sleep state analyzer for determining whether a sleep disorder occurs by comprehensively analyzing the analysis result and the user's setting condition ( And a stimulus controller 219 for controlling the stimulus generator 180 according to the judgment of the sleep state analyzer 218.
신호처리부(211)는 센서부(100)에 의해 수집된 신호에 대하여 잡음 제거, 정규화 등과 같은 전처리를 수행하여 단말저장부(220)의 단말저장장치(230)에 저장을 한다.The signal processor 211 performs preprocessing such as noise reduction and normalization on the signals collected by the sensor unit 100 and stores the signals in the terminal storage device 230 of the terminal storage unit 220.
정보분석부(212)는 호흡신호감지센서(110)에 의해 수집된 신호를 분석하여 호흡상태를 판정하는 호흡신호분석부(213);와 산소포화도센서(120)에 의해 수집된 신호를 분석하여 혈중 산소포화도 및 심박수를 계산하는 산소포화도신호분석부(214);와 심전도센서(140)에 의해 수집된 심전도 신호를 분석하여 심장의 이상 여부를 판정하는 심전도신호분석부(215);와 근전도센서(140)들로부터 수집된 신호를 분석하여 안구 움직임, 이갈이, 이 악물기, 팔 및 다리 근육의 경직 등에 대한 정보를 추출하는 근전도신호분석부(216);와 움직임센서(150)에 의해 수집된 신호를 분석하여 수면 중의 신체의 움직임 및 자세 정보를 추출하는 움직임신호분석부(217);를 구비한다. The information analysis unit 212 is a respiratory signal analysis unit 213 for determining the respiratory state by analyzing the signals collected by the respiratory signal detection sensor 110; and by analyzing the signals collected by the oxygen saturation sensor 120 Oxygen saturation signal analysis unit 214 for calculating blood oxygen saturation and heart rate; and ECG signal analysis unit 215 for determining the abnormality of the heart by analyzing ECG signals collected by ECG sensor 140; and EMG sensor EMG signal analysis unit 216 for analyzing the signals collected from the 140 to extract information about eye movements, limbs, teeth cleavage, stiffness of the arm and leg muscles; and collected by the motion sensor 150 And a motion signal analyzer 217 for analyzing the signal and extracting body motion and posture information during sleep.
호흡신호분석부(213)는 호흡신호를 정상호흡, 코골이 호흡, 무호흡 중 어느 하나로 호흡상태를 판별하는 호흡상태분류기(213a)를 구비하고, 무호흡저호흡지수(AHI, Apnea-Hypopnea Index)를 계산하며 호흡장애 발생여부를 판단한다.The respiratory signal analysis unit 213 includes a respiratory state classifier 213a that determines the respiratory state as one of normal breathing, snoring breathing, and apnea, and provides an apnea-hypopnea index (AHI). Calculate and determine if respiratory disorders occur.
호흡상태분류기(213a)는 단말본체(10)를 착용한 사용자로부터 검출된 호흡신호의 복수개의 주파수 부대역(subband)들 각각으로부터 계산된 파워스펙트럼의 평균값들의 상대적 비율인 평균비율값들과, 부대역들 각각으로부터 계산된 파워스펙트럼의 표준편차값들의 상대적 비율인 표준편차비율값들을 근거로 하여 호흡종류를 판별한다.The respiratory state classifier 213a includes an average ratio value that is a relative ratio of average values of power spectrums calculated from each of a plurality of frequency subbands of a respiratory signal detected from a user wearing the terminal body 10, and The type of breath is determined based on the standard deviation ratio values, which are the relative proportions of the standard deviation values of the power spectrum calculated from each of the stations.
여기서 호흡상태분류기(213a)는 도 3에 도시된 바와 같은 별도의 독립적인 과정에 의하여 미리 소프트웨어적으로 구현되고, 구현된 호흡상태분류기(213a)는 단말제어부(210)의 호흡신호분석부(213)에 탑재되어 도 4에 도식된 바와 같은 과정에 의해 실시간으로 사용자의 호흡상태 분류 및 호흡장애 판정에 이용된다.Here, the respiratory state classifier 213a is implemented by software in advance by a separate and independent process as shown in FIG. 3, and the implemented respiratory state classifier 213a is the respiratory signal analysis unit 213 of the terminal controller 210. ) Is used to classify a user's respiratory state and determine a breathing disorder in real time by a process as illustrated in FIG. 4.
이하 도 3을 참조하여 호흡상태분류기(213a)의 구현 과정을 설명한다.Hereinafter, an implementation process of the respiratory state classifier 213a will be described with reference to FIG. 3.
먼저, 수면장애 감시장치(1)의 단말본체(10)의 호흡신호감지센서(110)를 이용하여 불특정 다수들로부터 수면 중 호흡신호를 수집한 후 사람의 청각 검사에 의해 각 호흡 구간에 대해 호흡종류(정상호흡, 코콜이, 무호흡)를 색인(index)하여 데이터베이스(S10)에 저장한다.First, using the breathing signal detection sensor 110 of the terminal body 10 of the sleep disorder monitoring device 1 collects the breathing signal during sleep from the unspecified majority, and breathing for each breathing period by the auditory examination of the person The type (normal breath, Cocoy, apnea) is indexed and stored in the database (S10).
다음은 데이터베이스(S10)에 저장된 수많은 신호에서 분석대상이 되는 하나의 시간조각(time segment; Ti), 예를 들어 100ms 길이의 신호조각을 추출하여 호흡신호분석부(213)에 입력하는 신호입력단계(S110)와, 입력된 신호를 주파수 영역으로 변환하는 푸리에 변환 단계(S120)와, 푸리에 변환 결과로 얻어진 주파수 영역 신호의 N개(예를 들어, N=4)의 부대역(subband)들에 대하여 파워스펙트럼의 평균값들과 이들 간의 상대적 비율인 평균비율값들과, 파워스펙트럼의 표준편차들과 이들 간의 상대적 비율인 표준편차비율값들을 계산하는 계산단계(S130)와, 계산된 평균비율값들 및 표준편차비율값들을 입력으로 하여 색인(index)에 의해 이미 알고 있는 신호조각에 대한 호흡종류의 참값이 출력 되도록 학습과정을 반복하는 분류기 학습단계(S140)를 거쳐 호흡상태분류기(213a)가 구현된다.Next is a signal input for extracting one time segment (T i ) to be analyzed from a number of signals stored in the database (S10), for example, a signal piece of 100 ms length and inputting it to the respiratory signal analysis unit 213. Step S110, Fourier transform step S120 for converting the input signal to the frequency domain, and N subbands of the frequency domain signal obtained as a result of the Fourier transform (eg, N = 4). A calculation step (S130) of calculating average ratio values of the average values of the power spectrum and the relative ratios thereof, and standard deviation ratio values of the standard deviations of the power spectrum and the relative ratios thereof, and the calculated average ratio values Respiratory state classifier through the classifier learning step (S140) which repeats the learning process so that the true value of the respiratory type for a known signal fragment is output by indexing the values and the standard deviation ratio values. 213a is implemented.
여기서, 계산단계(S130)는 부대역 각각의 파워스펙트럼의 평균값을 구하는 평균계산단계(S131)와, 평균계산단계(S131)에서 구한 N개의 평균값들 사이의 상대적 비율들을 구하는 평균비율계산단계(S133)를 수행한다.Here, the calculating step (S130) is the average calculation step (S133) for obtaining the average value of the power spectrum of each subband, and the average ratio calculation step (S133) for obtaining the relative ratios between the N average values obtained in the average calculation step (S131). ).
또한, 계산단계(S130)는 동일한 부대역들에 대하여 각각의 파워스펙트럼의 표준편차값을 구하는 표준편차계산단계(S135)와, 표준편차계산단계(S135)에서 구한 N개의 표준편차값들 사이의 상대적 비율들을 구하는 표준편차비율계산단계(S137)를 수행한다.In addition, the calculation step (S130) is a standard deviation calculation step (S135) for obtaining the standard deviation value of each power spectrum for the same subbands, and between the N standard deviation values obtained in the standard deviation calculation step (S135) A standard deviation ratio calculation step (S137) of calculating relative ratios is performed.
일 예로서, 제1부대역 50~240Hz, 제2부대역 400~680Hz, 제3부대역 800~960Hz, 그리고 제4부대역 1200~1600Hz인 경우(N=4), 생성되는 평균비율값과 표준편차비율값 각각의 개수는 4C2=6에 의해 6개씩이 얻어진다. 따라서, 특정 시간조각(Ti)에서 구해진 총 12개의 비율값들이 입력되었을 때 색인(index)에 의해 미리 알고 있는 시간조각(Ti)의 참값(정상호흡, 코골이, 또는 무호흡)으로 정확하게 판정될 수 있도록 호흡상태분류기(213a)를 학습하는 과정을 수행한다.For example, when the first subband 50 to 240 Hz, the second subband 400 to 680 Hz, the third subband 800 to 960 Hz, and the fourth subband 1200 to 1600 Hz (N = 4), The number of standard deviation ratio values is 6 by 4 C 2 = 6. Therefore, accurately determine the true value (normal breathing, snoring or apnea) for a particular time slice (T i) is known in advance by the index (index) of time slices (T i) that when the total is 12 ratio values are input obtained from To perform the process of learning the respiratory state classifier 213a.
이러한 호흡상태분류기(213a)의 구현 과정이 무한히 많은 시간조각(Ti)들의 신호들에 의해 반복됨으로써 더욱 정확한 호흡상태분류기(213a)를 구현할 수 있다.This repetition by the signals of the respiratory status classifier implementation infinitely many times a piece of (213a) (T i) being to implement a more accurate respiratory status classifier (213a).
또한, 호흡상태분류기(213a)에서 호흡신호 종류 판별을 위해 적용되는 부대역의 수와 주파수 범위는 예시된 것으로 한정하는 것은 아니며, 신호의 디지털화 과정에 적용된 표본추출비(sampling rate) 및 판별의 정확도 향상을 위한 정보량이 많이 포함된 부대역의 선정 방법에 따라 달라질 수 있다.In addition, the number and frequency range of the subbands applied for respiratory signal type determination in the respiratory state classifier 213a are not limited to the examples, and the sampling rate and the accuracy of the discrimination applied to the digitization process of the signal are illustrated. This may vary depending on how the subbands contain a large amount of information for improvement.
또한, 본 발명에 적용될 수 있는 호흡상태분류기(213a)는 수학, 통계학, 또는 인공지능 영역에서 통상적으로 알려진 분류기(예를 들면, 결정나무, 회귀, 베이지안 분류기, 퍼지, 인공신경망 등) 중 어떤 것도 가능하며, 여기서는 특정하지 않으나, 다만 선택된 분류기에 따라 학습 방법 및 판별의 정확도 차이는 발생할 수 있다.In addition, the respiratory state classifier 213a that can be applied to the present invention may be any of the classifiers commonly known in mathematics, statistics, or artificial intelligence (eg, crystal trees, regression, Bayesian classifiers, fuzzy, neural networks, etc.). Although it is not specified here, a difference in the accuracy of the learning method and the discrimination may occur according to the selected classifier.
이러한 학습과정을 거쳐 소프트웨어적으로 구현되어 응용 프로그램으로서 단말제어부(210)에 탑재되는 호흡상태분류기(213a)는 호흡신호에 대한 파워스펙트럼의 평균값들과 표준편차값들의 상대적 비율값을 기반으로 호흡종류를 분류하므로 호흡신호의 강도 변화에 독립적이고 잡음에 강한 호흡상태 판정 결과를 얻을 수 있다.The respiratory state classifier 213a, which is implemented in software through such a learning process and mounted on the terminal control unit 210 as an application program, is based on the respiratory type based on the relative ratio values of the average values of the power spectrum and the standard deviation values for the respiratory signals. By classifying, we can obtain the results of respiratory state determination that is independent of the change in the intensity of the respiratory signal and is resistant to noise.
이하 도 4를 참조하여 도 3에 의해 구현된 호흡상태분류기(213a)를 적용하여 실시간으로 입력되는 호흡신호에 대한 호흡상태 분류 과정을 설명한다.Hereinafter, the respiratory state classification process for the respiratory signal input in real time by applying the respiratory state classifier 213a implemented by FIG. 3 will be described with reference to FIG. 4.
도 3에 나타낸 학습 과정을 거쳐 구현된 호흡상태분류기(213a)는 단말제어부(210)의 호흡신호분석부(213)에 탑재되어 도 4에 도식된 바와 같은 과정에 따라 실시간으로 호흡종류(정상, 코골이, 또는 무호흡)를 분류하는데, 이 과정은 도 3의 분류기 구현과정과 유사하나 데이터베이스(S10)에 저장된 호흡신호 대신 단말본체(10)를 착용한 사용자로부터 실시간으로 획득된 호흡신호가 신호입력단계(S110)에 제공되고, 호흡상태분류단계(S240)에서 호흡상태분류기(213a)에 의하여 호흡종류에 대한 판정이 이루어진다. 이때, 신호입력단계(S110), 푸리에 변환단계(S120) 및 계산단계(S130)와 같은 중간과정은 도 3에서의 과정과 동일하다.The respiratory state classifier 213a implemented through the learning process shown in FIG. 3 is mounted on the respiratory signal analysis unit 213 of the terminal control unit 210 and is in real time according to the process illustrated in FIG. 4. Snoring, or apnea), this process is similar to the classifier implementation process of Figure 3 but the breathing signal obtained in real time from the user wearing the terminal body 10 instead of the breathing signal stored in the database (S10) signal input It is provided in step S110, in the respiratory state classifier step (S240) is determined by the respiratory state classifier 213a to determine the type of breathing. In this case, intermediate processes such as the signal input step S110, the Fourier transform step S120, and the calculation step S130 are the same as those in FIG. 3.
이러한 실시간 호흡상태 분류과정은 계속 입력되는 시간조각에 대해 수행되고, 호흡신호분석부(213)는 도 5에 표시된 호흡상태 판정단계(S310)를 수행하여 일정 시간동안 누적된 호흡상태 정보를 기반으로 일정 시간구간(time duration; 예를 들어, 10초)에 대한 호흡장애 발생 여부를 분석하고, AHI 계산단계(E100)를 수행하여 무호흡 및 저호흡 지수(AHI)를 계산한다.This real-time breathing state classification process is carried out for the time pieces continuously input, the breathing signal analysis unit 213 performs the breathing state determination step (S310) shown in Figure 5 based on the respiratory state information accumulated for a certain time Analyzing whether a respiratory disorder occurs for a certain time duration (for example, 10 seconds), and performing the AHI calculation step (E100) to calculate the apnea and low respiratory index (AHI).
이때, 호흡상태 판정단계(S310)에 의한 무호흡호흡장애 발생 여부의 판정 및 AHI 계산단계(E100)에 의한 무호흡 및 저호흡 지수(AHI)의 계산은 전문 기관(예: ACP, American College of Physicians 또는 AASM, American Academy of Sleep Medicine)에 의해 공인된 기준을 따르는 것이 바람직한데, 일 예로 10초 이상 동안 무호흡 상태가 유지되면 무호흡 발생으로 판단하고 한 시간 동안 발생된 무호흡 횟수를 AHI 값으로 정의한다.At this time, the determination of whether apnea is generated by the respiratory state determination step (S310) and the calculation of apnea and low respiratory index (AHI) by the AHI calculation step (E100) is performed by a professional institution (eg, ACP, American College of Physicians or It is preferable to follow the standards recognized by AASM (American Academy of Sleep Medicine). For example, if apnea is maintained for 10 seconds or more, it is determined that apnea occurs and the number of apneas generated during an hour is defined as an AHI value.
한편, 단말제어부(210)는 호흡상태 판정 정보 뿐만아니라 센서부(100)의 나머지 센서들로부터 수집된 생체정보의 분석 결과를 종합적으로 이용하여 수면상태분석부(218)에 의해 수면상태 및 수면장애 발생여부를 판단하도록 구축된다.On the other hand, the terminal control unit 210 is a sleep state and sleep disorder by the sleep state analysis unit 218 by using the analysis results of the biometric information collected from the remaining sensors of the sensor unit 100 as well as the breathing state determination information. It is constructed to judge the occurrence.
산소포화도신호분석부(214)는 산소포화도센서(120)를 통해 측정된 신호를 분석하여 혈중 산소포화도 및 심장박동수의 계산을 수행한다. 산소포화도센서(120)를 통해 수집된 신호는 신체의 혈액을 통과 또는 반사되어 얻어진 서로 다른 두 파장(적색광 및 적외광)의 광흡수도를 나타내며, 두 개의 광흡수도로부터 얻어지는 맥동성분의 비율을 이용하여 비혈관적(Non-invasive) 방법으로 혈중 산소포화도를 구하는 방법이 일반적으로 적용된다. 더 상세하게는, 적색광은 산소와 결합하지 않은 헤모글로빈(Hb, deoxygenated hemoglobin)에 흡수도가 더 높고 적외광은 산소와 결합한 산화헤모글로빈(HbO2, oxygenated hemoglobin)에 흡수도가 더 높게 나타나는데, 이 두 개의 흡수도를 이용하여 아래의 수학식1에 따라 혈중 산소포화도를 계산한다.The oxygen saturation signal analysis unit 214 analyzes the signal measured by the oxygen saturation sensor 120 to calculate blood oxygen saturation and heart rate. The signal collected by the oxygen saturation sensor 120 represents the light absorption of two different wavelengths (red light and infrared light) obtained by passing or reflecting blood of the body, and the ratio of the pulsating component obtained from the two light absorption The method of obtaining oxygen saturation in blood by non-invasive method is generally applied. More specifically, red light is more absorbed by deoxygenated hemoglobin (Hb), which is not bound to oxygen, and infrared light is more absorbed by oxygenated hemoglobin (HbO2), which is bound to oxygen. Calculate oxygen saturation in the blood according to Equation 1 below using the absorbance.
Figure PCTKR2016014979-appb-M000001
Figure PCTKR2016014979-appb-M000001
또한, 산소포화도신호분석부(214)는 두 광흡수도 신호 중 어느 하나의 주기성을 검출하여 심장 박동수(heart rate) 값을 계산하며, 시간 당 혈중 산소포화도가 기준값의 3% 이하로 낮아지는 횟수로 정의되는 산소탈포화지수(ODI, oxygen desaturation index)를 계산하는 ODI계산단계(E200)를 수행하도록 구성할 수 있다.In addition, the oxygen saturation signal analysis unit 214 calculates a heart rate value by detecting the periodicity of any one of the two light absorption signals, and the number of times the oxygen saturation in blood per hour is lowered to 3% or less of the reference value. It may be configured to perform the ODI calculation step (E200) for calculating the oxygen desaturation index (ODI, defined as).
심전도신호분석부(215)는 심전도센서(130)로부터 수집된 심전도 신호를 분석 및 해석하여 심근질환, 심판막질환, 부정맥 등의 심장질환을 감지하도록 구축될 수 있는데, 본 발명에서는 구체적인 방법은 특정하지 않으나 통상적으로 널리 알려진 심전도의 P, Q, R, S, T 점들 사이의 파형에 대한 분석 및 해석 방법에 따라 위급 증상 및 심장 질환을 감지 할 수 있도록 구현될 수 있다. 또한, 파형의 주기성을 이용하여 심박수(heart rate)를 계산할 수도 있다.The electrocardiogram signal analysis unit 215 may be constructed to detect cardiac diseases such as myocardial disease, reflux disease, arrhythmia, etc. by analyzing and interpreting the electrocardiogram signal collected from the electrocardiogram sensor 130. However, according to an analysis and interpretation method of the waveforms between the P, Q, R, S, and T points of the ECG, which are widely known, they may be implemented to detect an emergency symptom and a heart disease. In addition, the heart rate may be calculated using the periodicity of the waveform.
근전도신호분석부(216)는 근전도센서(140)를 구성하는 턱근전도센서(141), 안구전도센서(142), 팔근전도센서(143) 및 하지근전도센서(144)로부터 획득된 신호들을 분석 및 해석할 수 있도록 구성될 수 있으며, 본 발명에서는 특정하지 않으나 통상적으로 널리 알려진 각 부위별 근전도의 분석 및 해석 방법으로 구현될 수 있다.The EMG signal analyzing unit 216 analyzes and acquires signals obtained from the jaw EMG sensor 141, the ocular conductivity sensor 142, the EMG sensor 143, and the EMG sensor 144 constituting the EMG sensor 140. It may be configured to be interpreted, and may be embodied by an analysis and interpretation method of EMG for each site, which is not specific to the present invention but is generally known.
움직임신호분석부(217)는 움직임센서(150)로부터 수집된 신호를 기반으로 수면 중 신체의 뒤척임 및 자세 등에 대한 정보를 추출한다. 본 발명에서는 움직임 신호에 대한 분석 및 해석 방법을 특정하지 않으나 움직임센서(150)의 부착 위치 및 목적에 따라 통상적으로 알려진 방법으로 구현될 수 있다.The motion signal analysis unit 217 extracts information about the body's overturning and posture during sleep based on the signals collected from the motion sensor 150. In the present invention, a method of analyzing and interpreting the motion signal is not specified, but may be implemented by a conventionally known method according to the attachment position and the purpose of the motion sensor 150.
수면상태분석부(218)는 센서부(100)의 각종 센서들에 의해 수집되고 정보분석부(212)에 의해 신호 별로 각각 분석된 결과를 종합적으로 통합 분석하여 수면장애 발생여부 및 수면단계를 판정하도록 구축될 수 있다. 이러한 통합 판정은 공인된 표준 기준을 따르는 것을 원칙으로 하나, 실시자 및 사용자의 선택에 따라 기준을 조정할 수도 있다.The sleep state analysis unit 218 comprehensively analyzes the results collected by the various sensors of the sensor unit 100 and analyzed for each signal by the information analyzer 212 to determine whether a sleep disorder occurs and a sleep stage. Can be constructed to This integrated decision is based on recognized standard criteria, but the criteria may be adjusted according to the choice of the implementer and the user.
이하 도 5를 참조하여 수면상태부석부(218)에 의한 수면장애 발생여부 및 수면단계 판정의 일례에 대하여 설명한다.Hereinafter, an example of a sleep disorder occurrence and a sleep stage determination by the sleep state stones 218 will be described with reference to FIG. 5.
수면상태분석부(218)는 호흡신호분석부(213)로부터 일정 시간구간(time duration; 예를 들어, 10초)에 대한 호흡상태, 호흡장애 발생 여부 및 AHI에 관한 정보;를 산소포화도신호분석부(214)로부터 실시간 산소포화도 값, 심박 수 및 ODI 정보;를 심전도신호분석부(215)로부터 심장 이상 징후 및 심박수에 대한 정보;를 근전도신호분석부(216)로부터 안구의 움직임 정보, 이갈이 및 악물기 정보, 팔 및 다리의 경직 등에 관한 정보;를 움직임신호분석부(150)로부터 신체의 뒤척임 및 자세 정보;를 입력받는다.The sleep state analyzer 218 analyzes the oxygen saturation signal signal from the breathing signal analyzer 213 for information on a respiratory state, a respiratory disorder, and AHI for a predetermined time duration (for example, 10 seconds). Real-time oxygen saturation value, heart rate and ODI information from the unit 214; information on heart abnormality signs and heart rate from the ECG signal analyzer 215; eye movement information, splitting, and the like from the EMG signal analyzer 216. Information about the clenching information, the rigidity of the arm and the leg, and the like; information about the body torsion and posture from the motion signal analyzer 150;
이어서, 수면상태부석부(218)는 입력된 정보를 이용하여 통상적으로 적용되는 기준 또는 실시자나 사용자에 의해 설정된 기준에 따라 수면장애 발생 여부 및 장애의 종류를 판정한다.Subsequently, the sleep state analyzer 218 determines whether or not the sleep disorder occurs and the type of the disorder based on a criterion generally applied by the input information or a criterion set by the operator or the user.
자극제어부(219)는 수면상태분석부(218)에서 판정된 결과가 실시자나 사용자에 의해 설정된 자극인가 조건에 해당하면 자극발생부(180)가 전기자극부(182), 진동자극부(184) 및 소리자극부(186) 중 하나 이상을 가동시킬 수 있도록 자극제어정보(자극인가 여부, 자극 종류, 자극 세기)를 생성한다. 자극인가 조건은 수면장애의 종류 및 위급성에 따라 다양한 규칙으로 설정될 수 있으며, 각 조건에 따라 인가되는 자극의 종류 및 강도는 다르게 적용할 수 있다.If the result determined by the sleep state analyzer 218 corresponds to the stimulus application condition set by the operator or the user, the stimulus controller 219 may include the electrical stimulator 182 and the vibration stimulator 184. And stimulus control information (stimulus applied, stimulus type, stimulus intensity) so that at least one of the sound stimulators 186 can be operated. The stimulus application condition may be set in various rules according to the type and emergency of sleep disorders, and the type and intensity of stimuli applied according to each condition may be applied differently.
자극인가의 일례를 들면, 판정 결과가 단순히 장시간 연속되는 코골이인 경우 수면상태는 유지되면서 자세바꿈을 유도하는 정도에 적합한 1단계 진동을 인가하도록 진동자극부(184)를 동작시킨다. 물론, 미세 전기자극을 인가하도록 전기자극부(182)를 가동할 수도 있다.As an example of application of the stimulus, when the determination result is simply snoring that continues for a long time, the vibration stimulation unit 184 is operated to apply a one-step vibration suitable for the degree of inducing posture change while maintaining the sleeping state. Of course, the electrical stimulation unit 182 may be operated to apply the fine electrical stimulation.
또 다른 자극인가 사례로, 무호흡이 10초 동안 유지되고 혈중 산소포화도가 85% 미만으로 판정되면 진동자극부(184)에 의해 상당한 강도의 진동자극을 인가하고, 그럼에도 불구하고 일정 시간 내에 수면장애가 제거되지 않으면 수면으로부터 탈피가 가능한 상당 수준의 전기적 자극을 인가하도록 전기자극부(182)를 구동시킨다.In another stimulus application example, if apnea is maintained for 10 seconds and blood oxygen saturation is determined to be less than 85%, a vibratory stimulus of considerable intensity is applied by the vibratory stimulator 184, and nonetheless the sleep disorder is eliminated within a certain time. If not, the electrical stimulation unit 182 is driven to apply a significant level of electrical stimulation that can escape from the water surface.
또 다른 사례로, 심장의 박동수 및 심전도 신호의 강도가 현저히 낮아진 상태로 판정되는 경우 주변 동거인이 인지 가능한 강도의 강한 소리를 발생하도록 소리자극부(186)를 구동시킨다.In another example, when it is determined that the heart rate and the intensity of the electrocardiogram signal are significantly lowered, the sound stimulator 186 is driven to generate a strong sound having a perceivable intensity.
또 다르게는, 발생될 수 있는 장애의 종류 및 장애의 수준에 대하여 각각 점수를 부여한 목록을 미리 구축하고, 특정 시간에 발생된 장애들의 점수를 합산하여 위험수준으로 평가하고 그 수준에 따라 자극인가 여부와 자극의 종류와 자극의 세기를 결정하도록 자극제어부(219)를 구축할 수 있다.Alternatively, pre-establish a list of scores for each type of disability and level of disability that may occur, add the scores of disabilities generated at a specific time to assess risk levels, and determine whether they are irritating according to the level. And a stimulus control unit 219 to determine the type of stimulus and the intensity of the stimulus.
자극제어부(219)에 설정되는 자극인가 조건은 앞서 설명된 예시 조건 이외의 다양한 방식으로 설정될 수 있음은 물론이다.The stimulus applying condition set in the stimulus control unit 219 may be set in various manners other than the exemplary condition described above.
또한, 자극 발생에 관련된 정보는 단말저장부(220)에 저장되어 이력관리에 활용될 수 있다.In addition, the information related to the generation of the stimulus may be stored in the terminal storage unit 220 may be used for history management.
단말통신부(250)는 단말본체(10)에 선택적으로 장착하는 장치로 단말본체(10) 외부와의 데이터 송수신을 위한 통신 수단을 제공한다.The terminal communication unit 250 is a device selectively mounted on the terminal body 10 and provides a communication means for transmitting and receiving data with the outside of the terminal body 10.
본 발명의 또 다른 실시 예로는, 생체신호의 처리 및 분석과 수면상태 분석에 요구되는 단말본체(110)의 연산처리부담을 완화시키도록 구축하는 방식으로, 동일한 배터리의 용량으로 단말본체(10)의 가동시간이 길어지고, 단말본체(10)의 구성이 매우 단순화되며, 분석속도가 매우 높아지는 장점이 제공된다. 그 예를 도 6을 참조하여 설명한다. 앞선 실시 예의 도면에서와 동일한 기능을 수행하는 요소는 동일한 참조 번호로 표기한다.In another embodiment of the present invention, the terminal body 10 with the capacity of the same battery in a manner that is constructed to mitigate the computational processing burden of the terminal body 110 required for the processing and analysis of the biological signal and the sleep state analysis. The long operation time of, the configuration of the terminal body 10 is very simplified, and the analysis speed is provided with the advantage of being very high. An example thereof will be described with reference to FIG. 6. Elements that perform the same function as in the drawings of the foregoing embodiment are denoted by the same reference numerals.
도 6을 참조하면, 도 2에 표시된 단말본체(10)의 단말제어부(210)의 분석 및 계산 기능들은 모두 외부장치(300)의 서버제어부(320)에 동일한 기능으로 탑재되고 단말제어부(210)는 단말본체(10)의 구성 요소들의 연계 동작을 위한 중앙제어 기능만을 수행한다. 또한, 도 2에서 표시된 단말저장장치(230)는 단말본체(10)에 포함되지 않을 수도 있다.Referring to FIG. 6, all of the analysis and calculation functions of the terminal controller 210 of the terminal body 10 shown in FIG. 2 are mounted as the same function in the server controller 320 of the external device 300, and the terminal controller 210 is included. Performs only a central control function for the cooperative operation of the components of the terminal body (10). In addition, the terminal storage device 230 shown in FIG. 2 may not be included in the terminal body 10.
외부장치(300)는 단말본체(10)의 단말통신부(250)와 유선 또는 무선으로 통신을 수행하는 서버통신부(310);와 외부장치(300)의 구성 요소들에 의해 수행되는 기능들의 연계 동작을 제어하기 위한 중앙제어 장치 역할 및 단말제어부(210)의 분석 및 계산 기능을 동일하게 수행하는 서버제어부(320);와 센서부(100)로부터 수집된 생체정보를 포함한 기록대상이 되는 모든 정보가 저장되는 서버저장부(330);와 저장된 정보의 열람 및 보고 수단을 제공하는 정보표시부(340);를 구비한다.The external device 300 is a server communication unit 310 for performing a wired or wireless communication with the terminal communication unit 250 of the terminal body 10; and the linked operation of the functions performed by the components of the external device 300 The server controller 320 performs the same analysis and calculation functions of the central controller device and the terminal controller 210 to control the control unit; and all information to be recorded, including biometric information collected from the sensor unit 100. It includes a server storage unit 330 to be stored; and an information display unit 340 for providing a means of viewing and reporting the stored information.
센서부(100)에서 수집된 신호들은 단말통신부(250)를 통해 서버통신부(310)로 송신되어 서버저장부(330)에 저장되며 서버제어부(320)에 의해 분석된다. 이때, 서버제어부(320)에서 수행되는 신호분석 기능은 단말제어부(210)에서의 기능과 동일하다.The signals collected by the sensor unit 100 are transmitted to the server communication unit 310 through the terminal communication unit 250, stored in the server storage unit 330, and analyzed by the server control unit 320. In this case, the signal analysis function performed by the server controller 320 is the same as the function of the terminal controller 210.
서버제어부(320)의 자극제어부(219)에 의해 최종적으로 얻어진 자극제어정보는 서버통신부(310)를 통해 단말본체(10)로 전달되고 자극발생부(180)에 의해 자극이 인가된다.The stimulus control information finally obtained by the stimulus control unit 219 of the server control unit 320 is transmitted to the terminal body 10 through the server communication unit 310 and a stimulus is applied by the stimulus generating unit 180.
서버저장부(330)는 생체신호 및 이의 분석 정보, 수면장애 발생 및 자극제어정보를 포함한 기록대상이 되는 모든 정보를 서버저장장치(335)에 저장한다.The server storage unit 330 stores in the server storage device 335 all information to be recorded, including the biosignal and its analysis information, sleep disorder occurrence, and stimulus control information.
정보표시부(340)는 서버저장부(330)의 자료를 이용하여 그래프, 표, 수치 등을 포함한 보고서 및 이력정보를 제공할 수 있도록 구축되며, 이러한 보고서 및 이력정보는 전문가의 분석을 받는데 활용될 수 있다.The information display unit 340 is built to provide reports and historical information including graphs, tables, and numerical values using data from the server storage unit 330, and these reports and historical information may be used to receive expert analysis. Can be.
이상에서 설명된 실시간 수면장애 감시장치(1)에 의하면, 착용상의 편리함과, 수면 중의 실시간 감시를 통해 위급한 수면장애로부터 즉각적인 탈피를 유도할 수 있어 심각한 사고를 예방할 수 있는 장점을 제공한다.According to the real-time sleep disorder monitoring device 1 described above, it is possible to induce immediate escape from an emergency sleep disorder through the convenience of wearing, and real-time monitoring during sleep provides an advantage of preventing a serious accident.
또한, 본 발명에 따른 실시간 수면장애 감시장치(1)는 목에 착용되는 밴드형 단말본체(10)의 내측에 목에 근접 대향 또는 접촉되도록 호흡신호감지센서(110)를 장착하여 외부 잡음 유입을 최소화하였고, 호흡신호에 대한 파워스펙트럼의 평균값들과 표준편차값들의 상대적 비율값들을 기반으로 호흡종류를 분류함으로써 호흡신호의 강도 변화에 독립적이고 잡음에 강한 호흡상태 판정 결과를 얻을 수 있다.In addition, the real-time sleep disorder monitoring device 1 according to the present invention is equipped with a breathing signal detection sensor 110 to be in close contact or contact with the neck inside the band-type terminal body 10 to be worn on the neck to prevent external noise inflow By minimizing the classification of breaths based on the mean values of the power spectrum and the relative ratios of the standard deviations to the breathing signals, it is possible to obtain a breathing state determination result that is independent of changes in the intensity of the breathing signals and is resistant to noise.
또한, 본 발명은 상기 단말제어부(210) 또는 상기 서버제어부(320)를 기능시켜, 상기 호흡신호감지센서(110)에서 감지된 호흡신호가 정상호흡, 코골이 호흡 또는 무호흡인지 판별하는 컴퓨터 프로그램을 더 제공할 수 있다.In addition, the present invention functions the terminal control unit 210 or the server control unit 320, the computer program for determining whether the breathing signal detected by the breathing signal detection sensor 110 is normal breathing, snoring breathing or apnea Can provide more.
또한, 상기 컴퓨터 프로그램은 상기 호흡신호에 대하여 주파수영역에서 설정된 복수개의 주파수 부대역들 각각으로부터 계산된 파워스펙트럼의 평균값의 상대적 비율인 평균비율값들과, 상기 주파수 부대역들 각각으로부터 계산된 파워스펙트럼의 표준편차값의 상대적 비율인 표준편차비율값들을 근거로 하여 호흡종류를 판별한다.The computer program may further include average ratio values, which are relative ratios of average values of power spectrums calculated from each of a plurality of frequency subbands set in the frequency domain, and power spectrums calculated from each of the frequency subbands. The type of breath is determined on the basis of the standard deviation ratio values, which are the relative proportions of the standard deviation values of.
자세한 판별방법은 도 4의 설명에서 전술하였으므로 생략하기로 한다.Since the detailed determination method has been described above with reference to FIG. 4, it will be omitted.
또한, 상기 컴퓨터 프로그램은 별도의 기록매체에 저장되어 제공될 수 있으며, 상기 기록매체는 본 발명을 위하여 특별히 설계되어 구성된 것들이거나 컴퓨터 소프트웨어 분야에서 통상의 지식을 가진 자에게 공지되어 사용 가능한 것일 수 있다. In addition, the computer program may be stored and provided in a separate recording medium, and the recording medium may be those specially designed and configured for the present invention or be known and available to those skilled in the computer software field. .
예를 들면, 상기 기록매체는 하드 디스크, 플로피 디스크 및 자기 테이프와 같은 자기 매체, CD, DVD와 같은 광 기록 매체, 자기 및 광 기록을 겸할 수 있는 자기-광 기록 매체, 롬, 램, 플래시 메모리 등 단독 또는 조합에 의해 프로그램 명령을 저장하고 수행하도록 특별히 구성된 하드웨어 장치일 수 있다.For example, the recording medium may be magnetic media such as hard disks, floppy disks and magnetic tape, optical recording media such as CDs and DVDs, magnetic-optical recording media capable of both magnetic and optical recording, ROM, RAM, flash memory. Etc. may be a hardware device specifically configured to store and execute program instructions, alone or in combination.
또한, 상기 컴퓨터 프로그램은 프로그램 명령, 로컬 데이터 파일, 로컬 데이터 구조 등이 단독 또는 조합으로 구성된 프로그램일 수 있고, 컴파일러에 의해 만들어지는 것과 같은 기계어 코드뿐만 아니라, 인터프리터 등을 사용하여 컴퓨터에 의해 실행될 수 있는 고급 언어 코드로 짜여진 프로그램일 수 있다.In addition, the computer program may be a program consisting of program instructions, local data files, local data structures, and the like, alone or in combination, and may be executed by a computer using an interpreter as well as machine code such as produced by a compiler. It can be a program written in high-level language code.
또한, 본 발명은 상기 컴퓨터 프로그램이 저장되어 호흡종류를 판별하는 컴퓨터 장치를 더 제공할 수 있으며, 상기 컴퓨터 장치는 일반적인 퍼스널 컴퓨터뿐만 아니라 임베디드 시스템, 스마트 기기를 포함하는 광의의 컴퓨터 장치이다.The present invention may further provide a computer device in which the computer program is stored to determine the type of breathing. The computer device is a computer device of a broad scope including not only a general personal computer but also an embedded system and a smart device.
또한, 본 발명은 상기 컴퓨터 프로그램이 저장되는 저장 매체 및 상기 저장 매체에 저장된 컴퓨터 프로그램을 통신망을 통해 클라이언트 컴퓨터 장치로 전송할 수 있는 통신 매체를 갖는 서버 컴퓨터 장치를 더 제공할 수 있다.The present invention may further provide a server computer device having a storage medium in which the computer program is stored and a communication medium capable of transmitting the computer program stored in the storage medium to a client computer device via a communication network.
즉, 상기 클라이언트 컴퓨터 장치는 상기 서버 컴퓨터 장치로부터 상기 컴퓨터 프로그램을 다운로드받아 호흡종류 판별을 수행할 수 있다.That is, the client computer device may download the computer program from the server computer device and perform a breath type determination.
본 발명의 실시간 수면장애 감지 장치는 수면장애와 관련되는 요소들을 실시간 감시하면서 위급상황 시 사용자가 수면장애로부터 즉각적으로 탈피하여 심각한 사고 예방을 수행할 수 있으므로 의료분야에 활용이 가능하다.The real-time sleep disorder detection apparatus of the present invention can be utilized in the medical field because the user can immediately escape from the sleep disorder in the event of an emergency while seriously monitoring the factors associated with the sleep disorder to perform serious accident prevention.

Claims (14)

  1. 사용자의 목에 착용할 수 있도록 밴드 형태로 형성된 단말본체와;A terminal body formed in a band shape to be worn on a user's neck;
    상기 단말본체를 착용한 사용자의 수면 중 호흡신호를 포함한 생체정보를 측정하는 센서부와;A sensor unit for measuring biometric information including a breathing signal during sleep of a user wearing the terminal body;
    상기 단말본체를 착용한 사용자에게 자극을 인가하는 자극발생부와;A stimulus generator for applying a stimulus to a user wearing the terminal body;
    상기 센서부에 의해 수집된 생체정보가 설정된 자극인가 조건에 해당하면 사용자에게 자극이 인가되도록 상기 자극발생부를 제어하는 단말제어부;를 구비하는 것을 특징으로 하는 실시간 수면장애 감시장치.And a terminal controller configured to control the stimulus generator so that the stimulus is applied to the user when the biometric information collected by the sensor corresponds to a set stimulus application condition.
  2. 제1항에 있어서, 상기 단말제어부는The method of claim 1, wherein the terminal control unit
    상기 센서부로부터 수집된 생체정보를 분석하고, 분석결과가 설정된 자극인가조건에 해당하면 사용자에게 자극이 인가되도록 상기 자극발생부를 제어하도록 구성 되어 있고,Analyze the biological information collected from the sensor unit, and if the analysis result corresponds to the set stimulus application condition is configured to control the stimulus generating unit so that the stimulus is applied to the user,
    상기 센서부로부터 수집된 생체정보 및 이의 분석결과와 자극제어정보를 저장하는 단말저장부;를 더 구비하는 것을 특징으로 하는 실시간 수면장애 감시장치.And a terminal storage unit configured to store biometric information collected from the sensor unit, analysis results thereof, and stimulus control information.
  3. 제1항에 있어서, 상기 단말본체와 분리되어 구비된 외부장치로 상기 센서부로부터 수집된 생체정보를 송신하고, 상기 외부장치로부터 자극제어정보를 수신하는 단말통신부;를 더 구비하고,The apparatus of claim 1, further comprising a terminal communication unit configured to transmit biometric information collected from the sensor unit to an external device provided separately from the terminal body, and to receive stimulus control information from the external device.
    상기 외부장치는 The external device
    상기 단말통신부와 통신을 수행하여 생체정보를 수신하고 자극제어정보를 상기 단말통신부로 송신하는 서버통신부;와A server communication unit which communicates with the terminal communication unit to receive biometric information and transmits stimulus control information to the terminal communication unit; and
    상기 서버통신부를 통해 수신된 생체정보 및 이의 분석결과과 자극제어정보를 저장하기 위한 서버저장부;와A server storage unit for storing the biometric information received through the server communication unit, analysis results thereof, and stimulus control information; and
    상기 생체정보를 분석하고 그 분석결과가 설정된 자극인가조건에 해당하면 자극제어정보를 발생시키는 서버제어부;와A server controller which analyzes the biometric information and generates stimulus control information when the analysis result corresponds to a set stimulus application condition; and
    상기 서버저장부에 저장된 자료를 이용하여 설정된 형태의 가공된 정보를 생산 및 제공하는 정보표시부;를 구비하는 것을 특징으로 하는 실시간 수면장애 감시장치. And an information display unit for producing and providing processed information of a set type using the data stored in the server storage unit.
  4. 제2항 또는 제3항에 있어서, 상기 센서부는 According to claim 2 or 3, wherein the sensor unit
    사용자의 목에 착용되는 상기 단말본체의 내측면에 사용자의 목에 근접 대향 또는 접촉되도록 장착되어 사용자의 호흡신호를 검출하는 호흡신호감지센서와;A breathing signal detecting sensor mounted on an inner surface of the terminal body worn on the user's neck so as to face or contact the neck of the user and detecting a breathing signal of the user;
    상기 단말본체를 착용한 사용자의 혈중 산소포화도를 검출하는 산소포화도센서와;An oxygen saturation sensor for detecting oxygen saturation in the blood of the user wearing the terminal body;
    상기 단말본체를 착용한 사용자의 심장의 전기적 활동을 검출하는 심전도센서;를 포함하는 것을 특징으로 하는 실시간 수면장애 감시장치.Real-time sleep disorder monitoring device comprising a; electrocardiogram sensor for detecting the electrical activity of the heart of the user wearing the terminal body.
  5. 제4항에 있어서, 상기 산소포화도센서는 사용자의 귓볼에 착용할 수 있게 형성된 것을 특징으로 하는 실시간 수면장애 감시장치.The apparatus of claim 4, wherein the oxygen saturation sensor is formed to be worn on the ear of a user.
  6. 제4항에 있어서, 상기 센서부는 The method of claim 4, wherein the sensor unit
    사용자의 턱 하악부위 근육의 활성을 감지하는 턱근전도센서와, 사용자의 안구의 움직임을 감지하는 안구전도센서와, 팔근육의 활동을 감지하는 팔근전도센서와, 하지근육의 활동을 감지하는 하지근전도 센서와, 수면 중의 신체 움직임과 자세정보를 검출하는 움직임센서 중 적어도 하나 이상을 더 포함하는 것을 특징으로 하는 실시간 수면장애 감시장치.Jaw EMG sensor to detect the activity of the mandible lower jaw muscles, Eye conduction sensor to detect the movement of the user's eye, Arm EMG sensor to detect the activity of the arm muscles, Lower limb EMG to detect the activity of the lower extremity muscles And at least one or more of a sensor and a motion sensor for detecting body motion and posture information during sleep.
  7. 제1항에 있어서, 상기 자극발생부는The method of claim 1, wherein the stimulation generating unit
    전기적 자극을 인가하는 전기자극부와, 진동을 인가하는 진동자극부와, 소리를 발생하는 소리자극부 중 적어도 하나를 포함하는 것을 특징으로 하는 실시간 수면장애 감시장치.And an electrical stimulation unit for applying an electrical stimulus, a vibration stimulation unit for applying a vibration, and a sound stimulation unit for generating sound.
  8. 제6항에 있어서, 상기 단말제어부 또는 상기 서버제어부에는The method of claim 6, wherein the terminal control unit or the server control unit
    상기 센서부에 의해 수집된 생체신호의 전처리 및 저장을 제어하는 신호처리부;와A signal processor for controlling preprocessing and storage of the biosignal collected by the sensor unit; and
    상기 생체신호를 분석하는 정보분석부;와An information analyzer for analyzing the bio-signals; and
    상기 생체신호의 분석 결과 및 사용자의 설정 조건을 종합적으로 분석하여 수면장애 발생여부를 판단하는 수면상태분석부;와A sleep state analysis unit which determines whether a sleep disorder occurs by comprehensively analyzing a result of analyzing the biosignal and a user's setting condition; and
    상기 수면상태분석부의 판단결과에 따라 상기 자극발생부를 제어하는 자극제어부;를 구비하는 것을 특징으로 하는 실시간 수면장애 감시장치.And a stimulus controller for controlling the stimulus generator according to the determination result of the sleep state analyzer.
  9. 제8항에 있어서, 상기 정보분석부는The method of claim 8, wherein the information analysis unit
    상기 호흡신호감지센서에 의해 수집된 신호를 분석하여 호흡상태를 판정하는 호흡신호분석부;와Respiratory signal analysis unit for determining the respiratory state by analyzing the signal collected by the respiratory signal detection sensor; And
    상기 산소포화도센서에 의해 수집된 신호를 분석하여 혈중 산소포화도 및 심박수를 계산하는 산소포화도신호분석부;와Oxygen saturation signal analysis unit for calculating the blood oxygen saturation degree and heart rate by analyzing the signal collected by the oxygen saturation sensor; And
    상기 심전도센서에 의해 수집된 심전도 신호를 분석하여 심장의 이상 여부를 판정하는 심전도신호분석부;와An electrocardiogram signal analysis unit for determining an abnormality of the heart by analyzing the electrocardiogram signal collected by the electrocardiogram sensor; and
    상기 근전도센서들로부터 수집된 신호를 분석하여 안구 움직임, 이갈이, 이 악물기, 팔 및 다리 근육의 경직에 대한 정보를 추출하는 근전도신호분석부;와EMG signal analysis unit for extracting information on the movement of the eye movements, splitting, teeth cleavage, arm and leg muscles by analyzing the signals collected from the EMG sensors; And
    상기 움직임센서에 의해 수집된 신호를 분석하여 수면 중의 신체의 움직임 및 자세 정보를 추출하는 움직임신호분석부;를 구비하는 것을 특징으로 하는 실시간 수면장애 감시장치.And a motion signal analysis unit for analyzing the signals collected by the motion sensor and extracting motion and posture information of the body during sleep.
  10. 제9항에 있어서, 상기 호흡신호분석부는 The method of claim 9, wherein the respiratory signal analysis unit
    상기 단말본체를 착용한 사용자의 호흡신호를 정상호흡, 코골이 호흡, 무호흡 중 어느 하나로 호흡종류를 판별하는 호흡상태 분류기가 마련되어 있고,There is provided a respiratory state classifier that determines the type of respiration by any one of the normal breathing, snoring breathing, apnea as the breathing signal of the user wearing the terminal body,
    상기 호흡상태 분류기는 The respiratory state classifier
    상기 단말본체를 착용한 사용자로부터 검출된 호흡신호에 대하여 주파수영역에서 설정된 복수개의 주파수 부대역들 각각으로부터 계산된 파워스펙트럼의 평균값의 상대적 비율인 평균비율값들과, 상기 주파수 부대역들 각각으로부터 계산된 파워스펙트럼의 표준편차값의 상대적 비율인 표준편차비율값들을 근거로 하여 호흡종류를 판별하도록 되어 있는 것을 특징으로 하는 실시간 수면장애 감시장치.Average ratio values, which are relative ratios of average values of power spectrums calculated from each of a plurality of frequency subbands set in a frequency domain, with respect to a breathing signal detected from a user wearing the terminal body, and calculated from each of the frequency subbands. And a respiratory type is determined based on standard deviation ratio values which are relative ratios of the standard deviation values of the power spectrum.
  11. 제 1 항의 실시간 수면장애 감지장치의 단말제어부를 기능시켜, 상기 단말본체를 착용한 사용자로부터 검출된 호흡신호가 정상호흡, 코골이 호흡 또는 무호흡인지 판별하는 매체에 저장된 컴퓨터 프로그램으로서,A computer program stored in a medium for determining whether a breathing signal detected from a user wearing the terminal body is normal breathing, snoring breathing or apnea by acting as a terminal control unit of a real-time sleep disorder detecting device according to claim 1,
    상기 컴퓨터 프로그램은 상기 호흡신호에 대하여 주파수영역에서 설정된 복수개의 주파수 부대역들 각각으로부터 계산된 파워스펙트럼의 평균값의 상대적 비율인 평균비율값들과, 상기 주파수 부대역들 각각으로부터 계산된 파워스펙트럼의 표준편차값의 상대적 비율인 표준편차비율값들을 근거로 하여 호흡종류를 판별하는 것을 특징으로 하는 매체에 저장된 컴퓨터 프로그램.The computer program comprises average ratio values which are relative ratios of average values of power spectrums calculated from each of a plurality of frequency subbands set in the frequency domain with respect to the respiration signal, and a standard of power spectrums calculated from each of the frequency subbands. A computer program stored in a medium, characterized in that the type of respiration is determined based on standard deviation ratio values, which are relative ratios of deviation values.
  12. 제 11 항의 컴퓨터 프로그램이 저장되는 컴퓨터 장치.A computer device in which the computer program of claim 11 is stored.
  13. 제 12 항에 있어서,The method of claim 12,
    상기 컴퓨터 장치는 통신망을 통해 상기 실시간 수면장애 감시장치로부터 사용자의 호흡신호를 수신하고, 상기 컴퓨터 프로그램에 의해 기능하여 상기 호흡신호가 정상호흡, 코골이 호흡 또는 무호흡인지 판별하는 것을 특징으로 하는 컴퓨터 장치.The computer device receives a user's breathing signal from the real-time sleep disorder monitoring device through a communication network, and functions by the computer program to determine whether the breathing signal is normal breathing, snoring breathing or apnea. .
  14. 제 10 항의 컴퓨터 프로그램이 저장되는 저장 매체; 및A storage medium storing the computer program of claim 10; And
    상기 저장 매체에 저장된 컴퓨터 프로그램을 통신망을 통해 클라이언트 컴퓨터 장치로 전송할 수 있는 통신 매체;를 갖는 서버 컴퓨터 장치.And a communication medium capable of transmitting the computer program stored in the storage medium to a client computer device via a communication network.
PCT/KR2016/014979 2016-01-08 2016-12-21 Real-time sleep disorder monitoring apparatus WO2017119638A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR20160002780 2016-01-08
KR10-2016-0002780 2016-01-08
KR10-2016-0169182 2016-12-13
KR1020160169182A KR20170083483A (en) 2016-01-08 2016-12-13 Realtime monitoring apparatus for sleep disorders

Publications (1)

Publication Number Publication Date
WO2017119638A1 true WO2017119638A1 (en) 2017-07-13

Family

ID=59273850

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2016/014979 WO2017119638A1 (en) 2016-01-08 2016-12-21 Real-time sleep disorder monitoring apparatus

Country Status (1)

Country Link
WO (1) WO2017119638A1 (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107348945A (en) * 2017-08-15 2017-11-17 北京道贞健康科技发展有限责任公司 A kind of monitoring system and method for snoring of talking in one's dream of non-recording
PL423933A1 (en) * 2017-12-18 2019-07-01 Akademia Górniczo-Hutnicza im. Stanisława Staszica w Krakowie Individual portable device for monitoring of inhaled air composition
CN109965873A (en) * 2017-12-28 2019-07-05 株式会社理光 Biological function measuring and analysis system, method and recording medium
WO2020257291A1 (en) * 2019-06-17 2020-12-24 Oxiwear, Inc. Wearable earpiece oxygen monitor
WO2021158382A1 (en) * 2020-02-04 2021-08-12 Hu Jerry Chi Dynamic anatomic data collection and modeling during sleep
CN114869242A (en) * 2022-07-12 2022-08-09 吉林大学 Experimental animals cardiopulmonary exercise function detection device
USD962900S1 (en) 2019-06-17 2022-09-06 Oxiwear, Inc. Earpiece and charger
WO2023048497A1 (en) * 2021-09-23 2023-03-30 주식회사 클릭사운드 Bruxism relieving device and bruxism management system
CN116407767A (en) * 2023-03-15 2023-07-11 深圳市心流科技有限公司 Sleep state-based molar behavior intervention method, intelligent wearable device and medium
USD1002582S1 (en) 2020-05-29 2023-10-24 Oxiwear, Inc. Earpiece and charger case

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000079149A (en) * 1998-09-04 2000-03-21 Hayashibara Takeshi Mattress with vibrating function
WO2013177621A1 (en) * 2012-05-30 2013-12-05 Resmed Sensor Technologies Limited Method and apparatus for monitoring cardio-pulmonary health
KR20140039452A (en) * 2012-09-24 2014-04-02 주식회사 제이유에이치 Sleep control and/or monitoring apparatus based on portable eye-and-ear mask and method for the same
JP2014207934A (en) * 2013-04-16 2014-11-06 富士通株式会社 Biological information acquisition device, method, and program
KR20150033197A (en) * 2013-09-23 2015-04-01 삼성전자주식회사 Method of estimating sleep apnea, Computer readable storage medium of recording the method and a device of estimating sleep apnea

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000079149A (en) * 1998-09-04 2000-03-21 Hayashibara Takeshi Mattress with vibrating function
WO2013177621A1 (en) * 2012-05-30 2013-12-05 Resmed Sensor Technologies Limited Method and apparatus for monitoring cardio-pulmonary health
KR20140039452A (en) * 2012-09-24 2014-04-02 주식회사 제이유에이치 Sleep control and/or monitoring apparatus based on portable eye-and-ear mask and method for the same
JP2014207934A (en) * 2013-04-16 2014-11-06 富士通株式会社 Biological information acquisition device, method, and program
KR20150033197A (en) * 2013-09-23 2015-04-01 삼성전자주식회사 Method of estimating sleep apnea, Computer readable storage medium of recording the method and a device of estimating sleep apnea

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107348945B (en) * 2017-08-15 2024-02-06 北京道贞健康科技发展有限责任公司 Non-recording dream snoring monitoring system and method
CN107348945A (en) * 2017-08-15 2017-11-17 北京道贞健康科技发展有限责任公司 A kind of monitoring system and method for snoring of talking in one's dream of non-recording
PL423933A1 (en) * 2017-12-18 2019-07-01 Akademia Górniczo-Hutnicza im. Stanisława Staszica w Krakowie Individual portable device for monitoring of inhaled air composition
CN109965873A (en) * 2017-12-28 2019-07-05 株式会社理光 Biological function measuring and analysis system, method and recording medium
CN109965873B (en) * 2017-12-28 2022-12-20 株式会社理光 Biological function measurement and analysis system, method and recording medium
US11864905B2 (en) 2017-12-28 2024-01-09 Ricoh Company, Ltd. Biological function measurement and analysis system, biological function measurement and analysis method, and recording medium storing program code
WO2020257291A1 (en) * 2019-06-17 2020-12-24 Oxiwear, Inc. Wearable earpiece oxygen monitor
US10987067B2 (en) 2019-06-17 2021-04-27 Oxiwear, Inc. Wearable earpiece oxygen monitor
USD962900S1 (en) 2019-06-17 2022-09-06 Oxiwear, Inc. Earpiece and charger
WO2021158382A1 (en) * 2020-02-04 2021-08-12 Hu Jerry Chi Dynamic anatomic data collection and modeling during sleep
USD1002582S1 (en) 2020-05-29 2023-10-24 Oxiwear, Inc. Earpiece and charger case
WO2023048497A1 (en) * 2021-09-23 2023-03-30 주식회사 클릭사운드 Bruxism relieving device and bruxism management system
CN114869242A (en) * 2022-07-12 2022-08-09 吉林大学 Experimental animals cardiopulmonary exercise function detection device
CN116407767A (en) * 2023-03-15 2023-07-11 深圳市心流科技有限公司 Sleep state-based molar behavior intervention method, intelligent wearable device and medium

Similar Documents

Publication Publication Date Title
WO2017119638A1 (en) Real-time sleep disorder monitoring apparatus
US11071493B2 (en) Multicomponent brain-based electromagnetic biosignal detection system
KR20170083483A (en) Realtime monitoring apparatus for sleep disorders
US9820680B2 (en) System and method for determining sleep and sleep stages of a person
CN212521754U (en) Sleep physiological system
US20150057512A1 (en) Wearable heart failure monitor patch
CN113347916A (en) System and method for multivariate stroke detection
TW201918222A (en) Method and apparatus for high accuracy photoplethysmogram based atrial fibrillation detection using wearable device
US20220022809A1 (en) Systems and methods to detect and treat obstructive sleep apnea and upper airway obstruction
JP2020503989A (en) Sleep apnea measuring apparatus and method
Doheny et al. Feature-based evaluation of a wearable surface EMG sensor against laboratory standard EMG during force-varying and fatiguing contractions
KR102100120B1 (en) Method, apparatus and computer program for monitoring of bio signals
Nguyen et al. In-ear biosignal recording system: A wearable for automatic whole-night sleep staging
TW202042219A (en) Sleep physiology system and sleep alert method capable of evaluating and improving obstructive sleep apnea
JPH07124126A (en) Medical living body information detector, diagnostic device, and medical device
KR100662103B1 (en) Method and apparatus for diagnosing sleep apnea and treating according to sleep apnea type
JP7361784B2 (en) Behavioral task evaluation system and behavioral task evaluation method
Gardner et al. Estimation of heart rate during sleep measured from a gyroscope embedded in a CPAP mask
CN115607123A (en) Cardiopulmonary function monitoring and respirator closed-loop control integrated device
Rahman et al. Detecting physiological responses using multimodal earbud sensors
WO2017087680A1 (en) Seizure detection and injury mitigation system and method for using same
KR20180099030A (en) Human Body Change Measurement System And Method In Accordance With Stimulus Presentation To Classify The Sex Offense
US20220218273A1 (en) System and Method for Noninvasive Sleep Monitoring and Reporting
Bethel et al. Wearable at-home recording system for sleep apnea
US20210338175A1 (en) Signaling device for cathetering requirement

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16884021

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16884021

Country of ref document: EP

Kind code of ref document: A1