WO2017119417A1 - Clec-2 antagonist, platelet aggregation inhibitor, antithrombotic agent, antimetastatic agent, antiarthritic agent, compound having porphyrin skeleton, and method for producing same - Google Patents

Clec-2 antagonist, platelet aggregation inhibitor, antithrombotic agent, antimetastatic agent, antiarthritic agent, compound having porphyrin skeleton, and method for producing same Download PDF

Info

Publication number
WO2017119417A1
WO2017119417A1 PCT/JP2017/000059 JP2017000059W WO2017119417A1 WO 2017119417 A1 WO2017119417 A1 WO 2017119417A1 JP 2017000059 W JP2017000059 W JP 2017000059W WO 2017119417 A1 WO2017119417 A1 WO 2017119417A1
Authority
WO
WIPO (PCT)
Prior art keywords
general formula
clec
compound
group
protoporphyrin
Prior art date
Application number
PCT/JP2017/000059
Other languages
French (fr)
Japanese (ja)
Inventor
克枝 井上
長田 誠
聡一 小嶋
臣雄 斎藤
知幸 佐々木
俊光 白井
英之 新森
ちひろ 望月
Original Assignee
国立大学法人山梨大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人山梨大学 filed Critical 国立大学法人山梨大学
Priority to JP2017560388A priority Critical patent/JP6805470B2/en
Publication of WO2017119417A1 publication Critical patent/WO2017119417A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/40Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having five-membered rings with one nitrogen as the only ring hetero atom, e.g. sulpiride, succinimide, tolmetin, buflomedil
    • A61K31/409Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having five-membered rings with one nitrogen as the only ring hetero atom, e.g. sulpiride, succinimide, tolmetin, buflomedil having four such rings, e.g. porphine derivatives, bilirubin, biliverdine
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D487/00Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, not provided for by groups C07D451/00 - C07D477/00
    • C07D487/22Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, not provided for by groups C07D451/00 - C07D477/00 in which the condensed system contains four or more hetero rings

Definitions

  • the present invention has a CLEC-2 antagonist, a platelet aggregation inhibitor, an antithrombotic agent, an anti-metastatic agent, an anti-arthritic agent, and a porphyrin skeleton that can specifically inhibit the function of the platelet activating receptor CLEC-2
  • the present invention relates to a compound and a production method thereof.
  • Platelets play a central role in arterial thrombosis such as myocardial infarction and cerebral infarction.
  • Antiplatelet drugs have a market size of about 2 trillion yen worldwide, but the side effects of bleeding are a problem. According to a large cohort study, the use of antiplatelet drugs for primary prevention is currently not recommended because the risk of bleeding outweighs the benefits. Therefore, an antiplatelet drug with few side effects of bleeding is desired.
  • the platelet activating receptor CLEC-2 was discovered by the present inventors, and was identified on platelets as a receptor for rhodocytin, a snake venom that activates platelets (for example, Non-patent Document 1). reference).
  • the present inventors have found that the in vivo ligand of CLEC-2 is a membrane protein podoplanin expressed in certain types of cancer cells (see, for example, Non-Patent Document 2).
  • Non-Patent Documents 3 to 5 As a mouse deficient in CLEC-2 function, thrombus formation is suppressed in CLEC-2 deficient bone marrow chimeric mice and mice deficient in CLEC-2 by injecting anti-podoplanin antibody.
  • the present inventors have shown that there is no significant extension (see, for example, Non-Patent Documents 3 to 5).
  • the present inventors have reported that anti-podoplanin antibodies suppress lung metastasis of cancer in a mouse lung metastasis model (see, for example, Non-Patent Document 6).
  • drugs targeting CLEC-2 can be antithrombotic, antiplatelet and antimetastatic drugs with few side effects of bleeding.
  • no drugs targeting CLEC-2 have been identified, and research and development of platelet aggregation inhibitors with few bleeding side effects, antimetastatic agents that suppress cancer metastasis, and candidate compounds thereof are desired. It is rare.
  • the present invention relates to a CLEC-2 antagonist capable of specifically suppressing the function of the platelet activating receptor CLEC-2, a platelet aggregation inhibitor, an antithrombotic agent, an antimetastatic agent, an antiarthritic agent, and a metal ion
  • a CLEC-2 antagonist capable of specifically suppressing the function of the platelet activating receptor CLEC-2, a platelet aggregation inhibitor, an antithrombotic agent, an antimetastatic agent, an antiarthritic agent, and a metal ion
  • An object of the present invention is to provide a compound in which a ligand having a porphyrin skeleton is coordinated, and a method for producing the same.
  • a CLEC-2 antagonist comprising a compound represented by any one of the following general formula (1) and the following general formula (2).
  • M represents any one of H 2 and Group 2 to 12 elements, R 1 represents either a vinyl group or a 1-hydroxyethyl group, and X represents Group 1) Represents an element.
  • R 2 represents a phenyl group, a sulfophenyl group, a carboxyphenyl group, and 1-methylpyridinium-4-yl.
  • [General Formula (1-A)] (In the general formula (1-A), M represents any one of Co, Zn, Ni and Pd, and X represents a Group 1 element.) ⁇ 11> A compound represented by the following general formula (1-B) is obtained by reacting hematoporphyrin and metal acetate in the presence of either methanol or acetic acid at 15 ° C. to 30 ° C. for 5 hours to 30 hours. It is a manufacturing method of the compound characterized by including a process. [General formula (1-B)] (In the general formula (1-B), M represents any one of Co, Zn and Cu.)
  • a CLEC-2 antagonist capable of solving the above-described problems and achieving the above-mentioned object and capable of specifically suppressing the function of the platelet-activating receptor CLEC-2, platelet aggregation inhibition Agents, antithrombotic agents, antimetastatic agents, antiarthritic agents, compounds in which a ligand having a porphyrin skeleton is coordinated to a metal ion, and a method for producing the same can be provided.
  • FIG. 1 is a diagram for explaining the flow and results of primary screening in Example 1.
  • FIG. 2 is a diagram for explaining the results of secondary screening in Example 1.
  • FIG. 3 is a graph showing the evaluation results of protoporphyrin IX (H 2 -PP) in Example 1 using a flow cytometer.
  • FIG. 4 is a graph showing the measurement results of the protoporphyrin zinc complex (Zn-PP) of Example 2 by UV-vis spectrum and fluorescence spectrum.
  • FIG. 5 is a diagram showing the results of 1 H-NMR measurement of the protoporphyrin zinc complex (Zn—PP) of Example 2.
  • FIG. 6 is a view showing the evaluation results of a protoporphyrin zinc complex (Zn—PP) in Example 2 using a flow cytometer.
  • FIG. 1 is a diagram for explaining the flow and results of primary screening in Example 1.
  • FIG. 2 is a diagram for explaining the results of secondary screening in Example 1.
  • FIG. 3 is a graph showing the evaluation results of
  • FIG. 7 is a graph showing the measurement results of the protoporphyrin nickel complex (Ni—PP) of Example 3 by UV-vis spectrum and fluorescence spectrum.
  • FIG. 8 is a view showing the evaluation results of the protoporphyrin nickel complex (Ni—PP) in Example 3 using a flow cytometer.
  • FIG. 9 is a graph showing the measurement results of the protoporphyrin cobalt complex (Co-PP) of Example 4 by UV-vis spectrum and fluorescence spectrum.
  • FIG. 10 is a view showing the evaluation results of the protoporphyrin cobalt complex (Co-PP) in Example 4 using a flow cytometer.
  • FIG. 11 is a graph showing the measurement results of the protoporphyrin palladium complex (Pd-PP) of Example 5 by UV-vis spectrum and fluorescence spectrum.
  • FIG. 12 is a view showing the evaluation results of a protoporphyrin palladium complex (Pd-PP) in Example 5 using a flow cytometer.
  • FIG. 13 is a diagram showing the evaluation results of hematoporphyrin (H 2 -HP) in Example 6 using a flow cytometer.
  • FIG. 14 shows the measurement results of UV-vis spectrum and fluorescence spectrum of the hematoporphyrin zinc complex (Zn—HP) of Example 7.
  • FIG. 15 shows the results of 1 H-NMR measurement of the hematoporphyrin zinc complex (Zn—HP) of Example 7.
  • FIG. 16 is a view showing the evaluation results of a hematoporphyrin zinc complex (Zn—HP) in Example 7 using a flow cytometer.
  • FIG. 17 shows the measurement results of the hematoporphyrin copper complex (Cu—HP) of Example 8 using the UV-vis spectrum and fluorescence spectrum.
  • FIG. 18 is a diagram showing the evaluation results of a hematoporphyrin copper complex (Cu—HP) in Example 8 using a flow cytometer.
  • FIG. 19 shows the measurement results of the hematoporphyrin cobalt complex (Co—HP) of Example 9 using UV-vis spectrum and fluorescence spectrum.
  • FIG. 20 is a diagram showing the evaluation results of a hematoporphyrin cobalt complex (Co—HP) in Example 9 using a flow cytometer.
  • FIG. 21 is a diagram showing the results of evaluation by flow cytometer of 5,10,15,20-tetrakis (p-sulfophenyl) -21H, 23H-porphyrin (TPPS) in Example 10.
  • FIG. 22 is a diagram showing the results of evaluation by flow cytometer of p-toluenesulfonate (TMPyP4OTs) of ⁇ , ⁇ , ⁇ , ⁇ -tetrakis (1-methylpyridinium-4-yl) porphyrin in Example 11.
  • TMPyP4OTs p-toluenesulfonate
  • FIG. 23 is a diagram showing the evaluation results of the platelet aggregation inhibitory effect on human platelet aggregation.
  • FIG. 24 is a diagram showing the evaluation results of the platelet aggregation inhibitory effect on mouse platelet aggregation.
  • FIG. 25 is a photograph showing the state of the lung on the 14th day after the start of compound administration (DMSO or Co-HP) in a mouse lung metastasis model.
  • FIG. 26 is a graph showing the weight of the lung on the 14th day from the start of compound administration (DMSO or Co-HP) in a mouse lung metastasis model.
  • FIG. 27 is a diagram showing the effect of prolonging the vascular occlusion time using a mouse in vivo iron chloride thrombus formation model.
  • FIG. 28 is a diagram showing the effect on bleeding time in mice in vivo.
  • FIG. 29 is a graph showing the degree of inflammation of rheumatoid arthritis in a K / BxN mouse serum transfer arthritis model using wild-type mice and CLEC-2 deficient bone marrow chimeric mice as recipient mice.
  • FIG. 30 shows the effect of Co-HP administration on rheumatoid arthritis in a K / BxN mouse serum transfer arthritis model using wild-type mice as recipient mice.
  • FIG. 31 is a photograph visualizing platelet adhesion of human lymphatic epithelial cells (LEC).
  • FIG. 32 is a graph showing a quantified platelet adhesion area of human lymphatic epithelial cells (LEC).
  • the CLEC-2 antagonist of the present invention comprises a compound having a porphyrin skeleton represented by any of the following general formula (1) and the following general formula (2).
  • the CLEC-2 antagonist is a drug having an action of suppressing the function of CLEC-2 which is a platelet activation receptor.
  • the CLEC-2 antagonist preferably has an action of suppressing the binding between CLEC-2 and podoplanin, which is a ligand in vivo of CLEC-2.
  • CLEC-2 has an official name: C-type lectin-like receptor-2 and was identified as a receptor for rhodocytin, a snake venom that activates platelets (Blood. 2006; 107 (2): 542-549. ). In humans, it is known to be specifically expressed only in platelets. On the other hand, podoplanin, an in vivo ligand for CLEC-2, is a membrane glycoprotein rich in sialic acid, and is expressed in squamous cell carcinoma, malignant mesothelioma, etc. It was known.
  • the CLEC-2 antagonist of the present invention functions as an antagonist that suppresses the function of CLEC-2 by specifically binding to CLEC-2 or competing with podoplanin.
  • M is any one of H 2 and Group 2 to 12 elements, and H 2 , Group 8 elements, Group 9 elements, Group 10 elements, Group 11 elements, Group 12 elements are preferred, and H 2 , Fe, Co, Ni, Pd, Cu, and Zn are more preferred.
  • the Group 2 elements and the like are based on a new notation of the International Pure Applied Chemical Association (IUPAC), and the Group 2 to 12 elements are Group IIA to Group VIIIA and IB of the former IUPAC notation. Corresponding to the Group and Group IIB respectively.
  • X is a Group 1 element, preferably H, Li, Na, or K, and more preferably H or Na.
  • the compound represented by the general formula (1) is preferably any one of a compound represented by the following general formula (1-A) and a compound represented by the following general formula (1-B).
  • Examples of the compound represented by the general formula (1-A) include a protoporphyrin IX represented by the following structural formula A1, a protoporphyrin zinc complex represented by the following structural formula A2, and a structural formula represented by the following structural formula A3.
  • Examples thereof include a protoporphyrin nickel complex, a protoporphyrin cobalt complex represented by the following structural formula A4, and a protoporphyrin palladium complex represented by the following structural formula A5.
  • a protoporphyrin IX represented by the following structural formula A1, a protoporphyrin zinc complex represented by the following structural formula A2, and a protoporphyrin cobalt complex represented by the following structural formula A4 are preferable, and represented by the following structural formula A1.
  • Protoporphyrin IX is more preferred.
  • the compound represented by the general formula (1-B) is specifically represented by hematoporphyrin represented by the following structural formula B1, hematoporphyrin zinc complex represented by the following structural formula B2, and represented by the following structural formula B3.
  • hematoporphyrin represented by the following structural formula B1 hematoporphyrin copper complex represented by the following structural formula B3, and hematoporphyrin cobalt complex represented by the following structural formula B4 are preferable, and CLEC-2, podoplanin, A hematoporphyrin cobalt complex represented by the following structural formula B4 is more preferable in that the activity of suppressing the binding of is particularly high.
  • M is any of H 2 and Group 2 to 12 elements, and H 2 , Group 8 elements, Group 9 elements, Group 10 elements, Group 11 elements, Group 12 elements are preferred, and H 2 , Fe, Co, Ni, Pd, Cu, and Zn are more preferred.
  • Examples of the compound represented by the general formula (2) include 5,10,15,20-tetrakis (p-sulfophenyl) -21H, 23H-porphyrin (“TPPS”) represented by the following structural formula C1.
  • TPPS 5,10,15,20-tetrakis (p-sulfophenyl) -21H, 23H-porphyrin
  • C1 5,10,15,20-tetrakis (p-sulfophenyl) -21H, 23H-porphyrin
  • TPPS 5-10,15,20-tetrakis (p-sulfophenyl) -21H, 23H-porphyrin
  • C2 5,10,15,20-tetrakis (p-sulfophenyl) -21H, 23H-porphyrin
  • TMPyP4OTs Toluenesulfonate
  • TPP tetraphenylporphyrin
  • TPPC 5,10,15,20-tetrakis (p-carboxyphenyl) -21H, 23H -Porphyrin
  • TPPS represented by the following structural formula C1 is preferable.
  • the platelet aggregation inhibitor of the present invention comprises the CLEC-2 antagonist of the present invention.
  • the platelet aggregation inhibitor is a drug having an action of suppressing platelet aggregation.
  • the antithrombotic agent of the present invention comprises the CLEC-2 antagonist of the present invention.
  • the antithrombotic drug is a drug having an action of suppressing the formation of a thrombus and preventing vascular occlusion.
  • the platelet aggregation inhibitor and the antithrombotic agent act via function suppression of CLEC-2 which is a platelet activating receptor, and podoplanin which is an in vivo ligand of CLEC-2 and CLEC-2 It is more preferable to have an action of suppressing the binding with.
  • the antimetastatic agent of the present invention comprises the CLEC-2 antagonist of the present invention.
  • the antimetastatic drug is a drug having an action of suppressing cancer cell metastasis.
  • the anti-metastatic agent preferably acts through suppression of the function of CLEC-2, which is a platelet activation receptor, and suppresses the binding of CLEC-2, which is a ligand in vivo of CLEC-2, to CLEC-2 More preferably, it has an action.
  • the anti-arthritic agent of the present invention comprises the CLEC-2 antagonist of the present invention.
  • the anti-arthritic drug is a drug having an action of suppressing joint inflammation, and examples thereof include an anti-rheumatic drug.
  • the anti-arthritic agent preferably acts through suppression of the function of CLEC-2, which is a platelet activating receptor, and suppresses the binding of CLEC-2 in vivo to podoplanin, which is a ligand of CLEC-2. More preferably, it has an action.
  • the preparation includes at least one of the CLEC-2 antagonist of the present invention, a platelet aggregation inhibitor, an antithrombotic drug, an antimetastatic drug, and an antiarthritic drug, and further pharmacologically acceptable as necessary. Contains other ingredients such as a carrier.
  • the CLEC-2 antagonist, the platelet aggregation inhibitor, the antithrombotic agent, the antimetastatic agent, and the antiarthritic agent are represented by any one of the general formula (1) and the general formula (2). Or a pharmacologically acceptable salt, solvate or prodrug of the compound.
  • the preparation is prepared by formulating into any dosage form such as liquid, powder, granule, tablet, etc. according to a conventional method using a pharmacologically acceptable carrier such as dextrin and cyclodextrin, and an auxiliary agent.
  • a pharmacologically acceptable carrier such as dextrin and cyclodextrin
  • an auxiliary agent in addition to being used in other compositions (for example, eye drops, oral pharmaceuticals, etc.), it can also be used as an ointment, a solution for external use, a patch, and the like.
  • an excipient filler, binder, a disintegrating agent, a lubricant agent, a stabilizer, a corrigent, a corrigent etc. can be used, for example.
  • excipient examples include lactose, sucrose, sodium chloride, glucose, starch, calcium carbonate, kaolin, microcrystalline cellulose, and silicic acid.
  • binder examples include water, ethanol, propanol, simple syrup, glucose solution, starch solution, gelatin solution, carboxymethylcellulose, hydroxypropylcellulose, hydroxypropyl starch, methylcellulose, ethylcellulose, shellac, calcium phosphate, polyvinylpyrrolidone and the like. It is done.
  • disintegrant examples include dry starch, sodium alginate, agar powder, sodium hydrogen carbonate, calcium carbonate, sodium lauryl sulfate, stearic acid monoglyceride, and lactose.
  • Examples of the lubricant include purified talc, stearate, borax, and polyethylene glycol.
  • examples of the stabilizer include sodium pyrosulfite, EDTA, thioglycolic acid, thiolactic acid, and the like.
  • examples of the flavoring agent or flavoring agent include sucrose, orange peel, citric acid, tartaric acid and the like.
  • the method for administering the preparation is not particularly limited, and administration conditions such as an administration route, administration timing, dosage, and administration schedule suitable for each drug can be appropriately selected according to the purpose.
  • administration conditions such as an administration route, administration timing, dosage, and administration schedule suitable for each drug can be appropriately selected according to the purpose.
  • administration route There is no restriction
  • the dosage of the preparation is not particularly limited and may be appropriately selected depending on factors such as the disease state of the subject requiring treatment, body weight, etc., but preferably 1 mg to 1,000 mg per day. ⁇ 200 mg is more preferred.
  • the compound of the present invention is a compound having a porphyrin skeleton represented by any one of the following general formula (1-A) and the following general formula (1-B).
  • the compound having a protoporphyrin skeleton represented by the general formula (1-A) can be preferably produced by the method for producing a compound represented by the general formula (1-A) of the present invention.
  • the compound having a hematoporphyrin skeleton represented by the general formula (1-B) can be preferably produced by the method for producing a compound represented by the general formula (1-B) of the present invention.
  • a method for producing a compound of the present invention is a method for producing a compound represented by the above general formula (1-A), comprising a salt of protoporphyrin and a metal acetate, either dimethyl sulfoxide or acetic acid, and water. Including a step of obtaining a compound represented by the following general formula (1-A) by reacting at 70 ° C. to 95 ° C. for 1 to 30 hours in the presence, and further including other steps such as a purification step, if necessary. .
  • the salt of protoporphyrin is not particularly limited as long as it is a salt of a compound in which M of the compound represented by the general formula (1-A) is H 2 , and can be appropriately selected depending on the purpose.
  • examples thereof include protoporphyrin IX represented by the following structural formula A1.
  • the metal in the metal acetate is any one of Co, Zn, Ni and Pd represented by M in the general formula (1-A).
  • the compound represented by the general formula (1-A) is a protoporphyrin zinc complex represented by the following structural formula A2
  • the salt of protoporphyrin and zinc acetate are reacted in the presence of dimethyl sulfoxide and water.
  • the reaction temperature is preferably 70 ° C. to 90 ° C. (eg, 80 ° C.), and the reaction time is preferably 1 hour to 10 hours (eg, 2 hours).
  • the compound represented by the general formula (1-A) is a protoporphyrin nickel complex represented by the following structural formula A3
  • the salt of protoporphyrin and nickel acetate are reacted in the presence of dimethyl sulfoxide and water.
  • the reaction temperature is preferably 70 ° C. to 90 ° C. (eg, 80 ° C.), and the reaction time is preferably 5 hours to 20 hours (eg, 8 hours).
  • the compound represented by the general formula (1-A) is a protoporphyrin cobalt complex represented by the following structural formula A4, a salt of protoporphyrin and cobalt (II) acetate are added in the presence of acetic acid and water.
  • the reaction temperature is preferably 80 ° C. to 95 ° C. (eg, 90 ° C.), and the reaction time is preferably 12 hours to 30 hours (eg, 24 hours).
  • the compound represented by the general formula (1-A) is a protoporphyrin palladium lead complex represented by the following structural formula A5
  • a salt of protoporphyrin and palladium (II) acetate are present in the presence of acetic acid and water.
  • the reaction temperature is preferably 80 ° C. to 95 ° C. (eg, 90 ° C.), and the reaction time is preferably 12 hours to 30 hours (eg, 24 hours).
  • the method for producing a compound of the present invention is a method for producing a compound represented by the general formula (1-B), wherein hematoporphyrin and metal acetate are added at 15 ° C. to 15 ° C. in the presence of either methanol or acetic acid. It includes a step of obtaining a compound represented by the following general formula (1-B) by reacting at 30 ° C. for 5 to 30 hours, and further includes other steps such as a purification step as necessary.
  • the hematoporphyrin is a compound represented by the following structural formula B1.
  • the metal in the metal acetate is any one of Co, Zn and Cu represented by M in the general formula (1-B).
  • the compound represented by the general formula (1-B) is a hematoporphyrin zinc complex represented by the following structural formula B2, it is preferable to react hematoporphyrin and zinc acetate in the presence of methanol.
  • the temperature is preferably 15 ° C. to 30 ° C. (eg, 25 ° C.), and the reaction time is preferably 5 hours to 20 hours (eg, 8 hours).
  • the compound represented by the general formula (1-B) is a hematoporphyrin copper complex represented by the following structural formula B3
  • hematoporphyrin and copper (II) acetate can be reacted in the presence of acetic acid.
  • the reaction temperature is preferably 15 ° C. to 30 ° C. (eg, 25 ° C.), and the reaction time is preferably 12 hours to 30 hours (eg, 24 hours).
  • the compound represented by the general formula (1-B) is a hematoporphyrin cobalt complex represented by the following structural formula B4
  • the hematoporphyrin and cobalt (II) acetate can be reacted in the presence of acetic acid.
  • the reaction temperature is preferably 15 ° C. to 30 ° C. (eg, 25 ° C.), and the reaction time is preferably 12 hours to 30 hours (eg, 24 hours).
  • Example 1 Protoporphyrin IX
  • ⁇ Search for compounds that suppress the binding of CLEC-2 to podoplanin (primary screening)>
  • each compound solution (10 ⁇ g / mL) of the low molecular compound library was dropped, and after removing the solution, washed with 400 ⁇ L of the washing solution three times. did.
  • 100 ⁇ L of a detection protein solution PBS containing 1 ⁇ g / 100 mL of human podoplanin-hFc2-Biotin, pH 7.4 was added dropwise and reacted at room temperature (25 ° C.) for 1 hour. After removing the detection protein solution, it was washed with 400 ⁇ L of the washing solution three times.
  • a detection reagent (streptAvidin-HRP, Vector Laboratories, CA) was added dropwise and reacted for 1 hour. After removing the detection reagent, it was washed 3 times with 400 ⁇ L of washing solution. Next, 100 ⁇ L of TBM solution (T0440, manufactured by SIGMA-ALDRICH) was dropped and reacted in a dark room for 3 to 5 minutes. Then, 50 ⁇ L of a reaction stop solution (0.5 M HCl) was added, and a microplate reader (apparatus Name: Absorbance at 450 nm was measured with a multi-label counter, ARV0mx-U1, 1420-050J, manufactured by Perkin Elmer).
  • Binding inhibition rate (%) 100 ⁇ (absorbance of each compound ⁇ absorbance of negative control) / (absorbance of positive control ⁇ absorbance of negative control)
  • FIG. 1 is a diagram for explaining the flow and results of the primary screening in Example 1.
  • a signal having a wavelength of 450 nm derived from the binding of CLEC-2 and podoplanin is observed.
  • Compound A that binds to CLEC-2 is administered, the binding between CLEC-2 and podoplanin is suppressed, and the signal observed in the positive control is reduced.
  • Compound B that does not bind to CLEC-2 or does not suppress binding to podoplanin
  • the signal observed in the positive control does not change because binding between CLEC-2 and podoplanin is not suppressed. .
  • CLEC-2 expressing cultured cells human CLEC-2 expressing 293TRex cells were prepared according to the method described in the literature “J Virol. 2003; 77 (7): 4070-4080”. This cell is a cell that expresses CLEC-2 by the addition of doxycycline by the Tet on system, and CLEC-2 is added by adding doxycycline at a final concentration of 1 ⁇ g / mL 24 hours before measurement with a flow cytometer. Expression was induced.
  • human podoplanin-human Fc2 was prepared according to the method described in the document “JBC, 2007; 282 (36): 25993-2601”.
  • a negative control a sample to which 1 ⁇ L of DMSO was added instead of the solution of each compound was used.
  • a sample to which human Fc2 was added instead of human podoplanin-human Fc2 was used.
  • a positive control a sample to which rhodocytin having a final concentration of 50 nM was added instead of the solution of each compound was used.
  • FIG. 2 shows a diagram for explaining the results of the secondary screening in Example 1.
  • a peak shift derived from the binding of CLEC-2 and podoplanin is observed by substituting human podoplanin-human Fc2 as a negative control.
  • a compound that binds to CLEC-2 is administered (see the right panel of FIG. 2), when the binding between CLEC-2 and podoplanin is completely suppressed, the peak derived from the binding between CLEC-2 and podoplanin No shift is observed and a peak that completely overlaps the peak from the negative control is observed.
  • Binding inhibition rate (%) 100-100 ⁇ (TN) / (PN)
  • P, N, and T are as follows.
  • N MFI derived from negative binding control (human Fc2, DMSO)
  • T MFI derived from administration of compound
  • FIG. 3 shows the evaluation results of protoporphyrin IX (H 2 -PP) in Example 1 using a flow cytometer. The binding inhibition rate of protoporphyrin IX was 86.2%.
  • protoporphyrin metal complex and hematoporphyrin are used as analogs of protoporphyrin IX.
  • a metal complex was prepared.
  • CLEC-2 and CLEC-2 were obtained in the same manner as in the secondary screening of Example 1, except that the compounds to be evaluated were similar to the protoporphyrin IX of Examples 2 to 11. Evaluation and optimization of compounds that inhibit the binding to podoplanin were performed.
  • Example 2 Protoporphyrin zinc complex
  • Zinc acetate (390 mg, 1.78 mmol) was added to a solution obtained by adding 20 mL of dimethyl sulfoxide (DMSO) and 5 mL of distilled water to protoporphyrin disodium salt (manufactured by Tokyo Chemical Industry Co., Ltd., 100 mg, 0.165 mmol). And stirred for 2 hours. Then, it cooled to room temperature (25 degreeC), ethanol was added and crystallized, and the obtained precipitation was wash
  • DMSO dimethyl sulfoxide
  • protoporphyrin disodium salt manufactured by Tokyo Chemical Industry Co., Ltd., 100 mg, 0.165 mmol
  • FIG. 4 shows the measurement results of the UV-vis spectrum and fluorescence spectrum of Example 2.
  • the measurement result by 1 H-NMR of Example 2 is shown in FIG.
  • UV-vis spectrum measurement was performed using UV-1800 (manufactured by Shimadzu Corporation), and fluorescence spectrum measurement was performed using FP-6300 (manufactured by JASCO Corporation).
  • the UV-vis spectrum is indicated by a solid line.
  • the fluorescence spectrum is shown by a broken line.
  • AVANCE 400 manufactured by Bruker
  • Example 4 Protoporphyrin cobalt complex
  • protoporphyrin disodium salt Tokyo Chemical Industry Co., Ltd., 100 mg, 0.165 mmol
  • cobalt acetate (II) tetrahydrate 410 mg, 1.65 mmol
  • the reaction mixture was added to 150 mL of distilled water and cooled to about 4 ° C. to obtain a deep purple precipitate (102 mg) at a yield of 93%.
  • FIG. 9 shows the measurement results of the UV-vis spectrum and fluorescence spectrum of Example 4.
  • Example 6 Hematoporphyrin
  • Example 6 Hematoporphyrin ⁇ Evaluation of binding inhibition between CLEC-2 and podoplanin>
  • CLEC was performed in the same manner as the secondary screening of Example 1, except that hematoporphyrin (manufactured by Wako Pure Chemical Industries, Ltd.) having a final concentration of 5 ⁇ g / mL was used as the evaluation target compound.
  • hematoporphyrin manufactured by Wako Pure Chemical Industries, Ltd.
  • -2 was evaluated for compounds that inhibit the binding of podoplanin.
  • the evaluation results of hematoporphyrin using a flow cytometer are shown in FIG.
  • the binding inhibition rate of hematoporphyrin was 90.2%.
  • the obtained compound was identified by 1 H-NMR, UV-vis spectrum, and fluorescence spectrum, and it was found that a hematoporphyrin zinc complex was obtained.
  • the reaction formula is shown in the following reaction formula (5).
  • FIG. 14 shows the measurement results of the UV-vis spectrum and the fluorescence spectrum of Example 7. Further,
  • FIG. 15 shows the measurement result of Synthesis Example 1 by 1 H-NMR.
  • FIG. 16 shows the results of evaluation of the hematoporphyrin zinc complex using a flow cytometer. The binding inhibition rate of the hematoporphyrin zinc complex was 81.3%.
  • FIG. 17 shows the measurement results of the UV-vis spectrum and fluorescence spectrum of Example 8.
  • Example 9 Hematoporphyrin cobalt complex
  • hematoporphyrin Waako Pure Chemical Industries, Ltd., 100 mg, 0.167 mmol
  • cobalt (II) acetate tetrahydrate 410 mg, 1.65 mmol
  • room temperature 25 ° C.
  • FIG. 20 shows the results of evaluation of the hematoporphyrin cobalt complex using a flow cytometer. The binding inhibition rate of the hematoporphyrin cobalt complex was 101.1%.
  • Example 10 5,10,15,20-tetrakis (p-sulfophenyl) -21H, 23H-porphyrin) ⁇ Evaluation of binding inhibition between CLEC-2 and podoplanin>
  • protoporphyrin IX having a final concentration of 5 ⁇ g / mL
  • the compound to be evaluated was replaced with 5,10,15,20-tetrakis (p-sulfo) represented by the following structural formula C1.
  • Phenyl) -21H, 23H-porphyrin (manufactured by Tokyo Chemical Industry Co., Ltd., sometimes referred to as “TPPS”) was used in the same manner as in the secondary screening of Example 1, except that CLEC-2 and podoplanin Evaluation of compounds that inhibit binding was performed.
  • FIG. 21 shows the results of evaluation using a TPPS flow cytometer. The binding inhibition rate of TPPS was 89.8%.
  • Example 11 p-toluenesulfonate of ⁇ , ⁇ , ⁇ , ⁇ -tetrakis (1-methylpyridinium-4-yl) porphyrin
  • ⁇ Evaluation of binding inhibition between CLEC-2 and podoplanin In the secondary screening of Example 1, instead of protoporphyrin IX having a final concentration of 5 ⁇ g / mL, the ⁇ , ⁇ , ⁇ , ⁇ -tetrakis (1-methyl) represented by the following structural formula C2 was used as the evaluation target compound.
  • TMPyP4OTs p-toluenesulfonate (manufactured by Tokyo Chemical Industry Co., Ltd., sometimes referred to as “TMPyP4OTs”) of pyridinium-4-yl) porphyrin (sometimes referred to as “TMPyP”) was used.
  • TMPyP4OTs p-toluenesulfonate (manufactured by Tokyo Chemical Industry Co., Ltd., sometimes referred to as “TMPyP4OTs”) of pyridinium-4-yl) porphyrin (sometimes referred to as “TMPyP”) was used.
  • TMPyP4OTs p-toluenesulfonate (manufactured by Tokyo Chemical Industry Co., Ltd., sometimes referred to as “TMPyP4OTs”) of pyridinium-4-yl) porphyrin (sometimes referred to as “TMPyP”) was used.
  • TMPyP4OTs
  • the compound was administered on the 2nd day, the 4th day, the 6th day, the 8th day, the 10th day, and the 12th day every 2 days, and the lungs were removed from the mice on the 14th day and the lung weight was measured. did.
  • FIG. 26 shows a graph showing the weight of the lungs on the 14th day from the start of compound administration (DMSO or Co-HP) in the mouse lung metastasis model.
  • the mouse was placed in a box to introduce anesthesia. Anesthesia was maintained under this anesthesia condition until the end of the experiment.
  • the compound was administered by administering 200 ⁇ L of 1% by mass DMSO or 100 ⁇ g / mL Co-HP from the orbit (20 ⁇ g per animal, 10 ⁇ g / mL as 2 mL of circulating blood volume).
  • the limbs were fixed with vinyl tape to expose the left femoral artery, and then the left femoral artery was detached from other tissues using a tapered tweezers, and infiltration of tissue fluid was prevented with a parafilm interposed therebetween.
  • a laser blood flow meter (device name: ALF21RD, manufactured by Advance Co., Ltd.), use the blood flow of 60 mL / min / 100 g or more as a guide to search for the position with the highest blood flow and fix the sensor, and blood flow for 2 to 3 minutes was measured to measure each stable parameter before injury (stimulation of thrombus formation by iron chloride administration).
  • Thrombus formation was induced by placing a filter paper immersed in an aqueous solution of 10% by mass iron chloride on the exposed left femoral artery.
  • measurement with a laser blood flow meter was continued until a blood flow of 5 mL / min / 100 g or less continued for 1 min or longer.
  • the vascular occlusion time was the time required from the administration of iron chloride to the occlusion start time when blood flow of 5 mL / min / 100 g or less continued for 1 min or more.
  • FIG. 27 shows the effect of prolonging the vascular occlusion time using the mouse in vivo iron chloride thrombus formation model.
  • the compound was administered by administering 200 ⁇ L of 1% by mass DMSO or 100 ⁇ g / mL Co-HP from the orbit (20 ⁇ g per animal, 10 ⁇ g / mL as 2 mL of circulating blood volume).
  • the mouse tail was cut from the tip with a 2 mm razor, the stump was immersed in 37 ° C. physiological saline, and the bleeding time was recorded.
  • the reference for hemostasis was that no rebleeding occurred for 30 seconds or more, and the bleeding time was the time required from the tail cut to the start time of hemostasis.
  • FIG. 28 shows the effect on bleeding time in mice in vivo.
  • the bleeding time (mean ⁇ standard deviation: 212.0 ⁇ 86.4 seconds) in the Co-HP administration group was compared to the bleeding time (152.0 ⁇ 52.6 seconds) of the control administered with DMSO. No statistically significant difference was observed, and therefore, it was found useful as an antithrombotic agent with few side effects of bleeding.
  • the forefoot thickness, the front ankle thickness, the heel thickness, and the rear foot thickness were measured with a digital caliper once a day until the 10th day after treatment (Day 10).
  • the total of these measured values was used as an index of the degree of arthritis.
  • the results are shown as mean values ⁇ standard deviation, and a significant difference test was performed by Student's t-test.
  • FIG. 29 shows the degree of inflammation of rheumatoid arthritis in a K / BxN mouse serum transfer arthritis model using wild type mice (WT) and CLEC-2 deficient bone marrow chimeric mice (CLEC-2 KO) as recipient mice.
  • FIG. 30 shows the effect of Co-HP administration on rheumatoid arthritis in a K / BxN mouse serum transfer arthritis model using wild-type mice as recipient mice. From the results in FIG. 29, the degree of rheumatoid arthritis inflammation was significantly suppressed in CLEC-2 deficient bone marrow chimeric mice compared to wild type mice. Therefore, it was suggested that CLEC-2 is involved in rheumatoid arthritis. From the results of FIG.
  • the degree of rheumatoid arthritis inflammation was significantly suppressed by Co-HP administration.
  • the combination of podoplanin expressed on the intra-articular synoviocytes and platelet CLEC-2 may activate platelets and promote inflammation. From these results, it was suggested that CLEC-2 antagonists including Co-HP could be used as anti-arthritic agents such as anti-rheumatic drugs.
  • Human lymphatic epithelial cells are cultured in a monolayer on a parallel plate flow chamber (ibidi ⁇ -slide VI 0.1 , ibiTreat, ibidi) and endothelial cells containing 1% by weight bovine serum albumin (BSA)
  • BSA bovine serum albumin
  • EGM-2 a growth medium
  • the blood was pretreated with endothelial cell growth medium containing 5 ⁇ M 3-dihexyloxycarbocyanine iodide (DiOC 6 , Thermo Fisher Scientific) and compound (Co-HP) or control solvent (DMSO) for 10 minutes. went.
  • the obtained blood sample was perfused into the parallel plate flow chamber at a shear rate of 400 s ⁇ 1 for 10 minutes.
  • Platelet adhesion was visualized using a fluorescent video microscope, and still images were taken after 1, 3, 5, 7, and 10 minutes from the start of perfusion. The still image after 10 minutes passed, and the platelet adhesion area was quantified using image processing software Image J (URL: https://imagej.nih.gov/ij/).
  • FIGS. 31 and 32 A photograph visualizing platelet adhesion of human lymphatic epithelial cells (LEC) and a graph quantifying the platelet adhesion area are shown in FIGS. 31 and 32, respectively.
  • LEC lymphatic epithelial cells
  • Co-HP hematoporphyrin cobalt complex
  • Lymphedema may occur after lymph node dissection in malignant tumor surgery. There are 50,000 patients with upper limb lymphedema and 70,000 patients with lower limb lymphedema in Japan, and this number is increasing year by year. When lymphedema becomes chronic, it progresses to elephantization and fibrosis, and repeats infection, or QOL becomes extremely low. As one of the treatments for lymphedema, there is a treatment method in which lymphatic vein anastomosis is performed and the lymph fluid in the lymphatic vessels is perfused into the vein. This is an effective treatment, but the long-term patency rate is only 40%. One of the causes that the anastomosis is blocked is the formation of a thrombus at the anastomosis.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Organic Chemistry (AREA)
  • Epidemiology (AREA)
  • Medicinal Chemistry (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)

Abstract

Disclosed is a CLEC-2 antagonist comprising a compound represented by either general formula (1) or general formula (2). (In general formula (1), M represents H2 or one of Group 2 to 12 elements, R1 represents a vinyl group or a 1-hydroxyethyl group, and X represents a Group 1 element.) (In general formula (2), M represents H2 or one of Group 2 to 12 elements, and R2 represents a phenyl group, a sulfophenyl group, a carboxyphenyl group, or a 1-methylpyridinium-4-yl group.)

Description

CLEC-2拮抗剤、血小板凝集抑制剤、抗血栓薬、抗転移薬、及び抗関節炎薬、並びにポルフィリン骨格を有する化合物、及びその製造方法CLEC-2 antagonist, platelet aggregation inhibitor, antithrombotic agent, antimetastatic agent, antiarthritic agent, compound having porphyrin skeleton, and method for producing the same
 本発明は、血小板活性化受容体CLEC-2の機能を特異的に抑制可能なCLEC-2拮抗剤、血小板凝集抑制剤、抗血栓薬、抗転移薬、及び抗関節炎薬、並びにポルフィリン骨格を有する化合物、及びその製造方法に関する。 The present invention has a CLEC-2 antagonist, a platelet aggregation inhibitor, an antithrombotic agent, an anti-metastatic agent, an anti-arthritic agent, and a porphyrin skeleton that can specifically inhibit the function of the platelet activating receptor CLEC-2 The present invention relates to a compound and a production method thereof.
 心筋梗塞、脳梗塞などの動脈血栓症は、血小板が中心的な役割を果たす。抗血小板薬は、世界で約2兆円の市場規模があるが、出血の副作用が問題となっている。大規模コホート調査によると、出血のリスクがベネフィットを上回るため、現在、1次予防のための抗血小板薬の使用は推奨されていない。したがって、出血の副作用が少ない抗血小板薬が望まれている。 Platelets play a central role in arterial thrombosis such as myocardial infarction and cerebral infarction. Antiplatelet drugs have a market size of about 2 trillion yen worldwide, but the side effects of bleeding are a problem. According to a large cohort study, the use of antiplatelet drugs for primary prevention is currently not recommended because the risk of bleeding outweighs the benefits. Therefore, an antiplatelet drug with few side effects of bleeding is desired.
 癌による死亡の9割程度は、転移に起因するものであり、次に多いのが癌関連血栓症である。しかし、転移を抑制する薬剤はこれまでに報告されてない。一方、ヘパリンやワーファリンを癌患者に投与して、癌関連血栓症を予防する試みがなされてきたが、特に化学療法後など、出血の副作用が発生するという問題がある。 About 90% of cancer deaths are caused by metastasis, followed by cancer-related thrombosis. However, no drug that suppresses metastasis has been reported so far. On the other hand, attempts have been made to prevent cancer-related thrombosis by administering heparin or warfarin to cancer patients, but there is a problem that side effects of bleeding occur, particularly after chemotherapy.
 一方、血小板活性化受容体CLEC-2は、本発明者らが見出したものであり、血小板を活性化する蛇毒であるロドサイチンの受容体として、血小板上に同定された(例えば、非特許文献1参照)。本発明者らは、CLEC-2の生体内リガンドが、ある種の癌細胞に発現する膜蛋白ポドプラニンであることを見出した(例えば、非特許文献2参照)。 On the other hand, the platelet activating receptor CLEC-2 was discovered by the present inventors, and was identified on platelets as a receptor for rhodocytin, a snake venom that activates platelets (for example, Non-patent Document 1). reference). The present inventors have found that the in vivo ligand of CLEC-2 is a membrane protein podoplanin expressed in certain types of cancer cells (see, for example, Non-Patent Document 2).
 CLEC-2の機能を欠損させたマウスとして、CLEC-2欠損骨髄キメラマウス、及び抗ポドプラニン抗体を注射することによりCLEC-2を欠損させたマウスにおいて、血栓形成が抑制されるが、出血時間の有意な延長はないことを本発明者らは示した(例えば、非特許文献3~5参照)。また、抗ポドプラニン抗体が、マウス肺転移モデルにおいて癌の肺転移を抑制することを本発明者らは報告した(例えば、非特許文献6参照)。 As a mouse deficient in CLEC-2 function, thrombus formation is suppressed in CLEC-2 deficient bone marrow chimeric mice and mice deficient in CLEC-2 by injecting anti-podoplanin antibody. The present inventors have shown that there is no significant extension (see, for example, Non-Patent Documents 3 to 5). In addition, the present inventors have reported that anti-podoplanin antibodies suppress lung metastasis of cancer in a mouse lung metastasis model (see, for example, Non-Patent Document 6).
 したがって、CLEC-2をターゲットとした薬剤は、出血の副作用の少ない抗血栓、抗血小板薬、及び抗転移薬となり得ることが期待される。しかしながら、CLEC-2をターゲットとした薬剤は同定されておらず、また、出血の副作用が少ない血小板凝集抑制剤、及び癌の転移を抑制する抗転移薬、並びにそれらの候補化合物について研究開発が望まれている。 Therefore, it is expected that drugs targeting CLEC-2 can be antithrombotic, antiplatelet and antimetastatic drugs with few side effects of bleeding. However, no drugs targeting CLEC-2 have been identified, and research and development of platelet aggregation inhibitors with few bleeding side effects, antimetastatic agents that suppress cancer metastasis, and candidate compounds thereof are desired. It is rare.
 本発明は、従来における前記諸問題を解決し、以下の目的を達成することを課題とする。即ち、本発明は、血小板活性化受容体CLEC-2の機能を特異的に抑制可能なCLEC-2拮抗剤、血小板凝集抑制剤、抗血栓薬、抗転移薬、及び抗関節炎薬、並びに金属イオンにポルフィリン骨格を有する配位子が配位した化合物、及びその製造方法を提供することを目的とする。 This invention makes it a subject to solve the said various problems in the past and to achieve the following objectives. That is, the present invention relates to a CLEC-2 antagonist capable of specifically suppressing the function of the platelet activating receptor CLEC-2, a platelet aggregation inhibitor, an antithrombotic agent, an antimetastatic agent, an antiarthritic agent, and a metal ion An object of the present invention is to provide a compound in which a ligand having a porphyrin skeleton is coordinated, and a method for producing the same.
 本発明は、本発明者らによる前記知見に基づくものであり、前記課題を解決するための手段としては、以下の通りである。即ち、
<1> 下記一般式(1)及び下記一般式(2)のいずれかで表される化合物からなることを特徴とするCLEC-2拮抗剤である。
〔一般式(1)〕
Figure JPOXMLDOC01-appb-C000011
(ただし、前記一般式(1)中、MはH及び第2~12族元素のいずれかを表し、Rはビニル基及び1-ヒドロキシエチル基のいずれかを表し、Xは第1族元素を表す。)
〔一般式(2)〕
Figure JPOXMLDOC01-appb-C000012
(ただし、前記一般式(2)中、MはH及び第2~12族元素のいずれかを表し、Rはフェニル基、スルホフェニル基、カルボキシフェニル基及び1-メチルピリジニウム-4-イル基のいずれかを表す。)
<2> 前記一般式(1)で表される化合物が、下記一般式(1-A)及び下記一般式(1-B)のいずれかで表される化合物である前記<1>に記載のCLEC-2拮抗剤である。
〔一般式(1-A)〕
Figure JPOXMLDOC01-appb-C000013
(ただし、前記一般式(1-A)中、MはH、Co、Zn、Ni及びPdのいずれかを表し、Xは第1族元素を表す。)
〔一般式(1-B)〕
Figure JPOXMLDOC01-appb-C000014
(ただし、前記一般式(1-B)中、MはH、Co、Zn及びCuのいずれかを表す。)
<3> 前記一般式(1-B)で表される化合物が、下記構造式B4で表される化合物である前記<2>に記載のCLEC-2拮抗剤である。
〔構造式B4〕
Figure JPOXMLDOC01-appb-C000015
<4> 前記一般式(2)で表される化合物が、下記構造式C1で表される化合物である前記<1>から<3>のいずれかに記載のCLEC-2拮抗剤である。
〔構造式C1〕
Figure JPOXMLDOC01-appb-C000016
<5> 前記<1>から<4>のいずれかに記載のCLEC-2拮抗剤からなることを特徴とする血小板凝集抑制剤である。
<6> 前記<1>から<4>のいずれかに記載のCLEC-2拮抗剤からなることを特徴とする抗血栓薬である。
<7> 前記<1>から<4>のいずれかに記載のCLEC-2拮抗剤からなることを特徴とする抗転移薬である。
<8> 前記<1>から<4>のいずれかに記載のCLEC-2拮抗剤からなることを特徴とする抗関節炎薬である。
<9> 下記一般式(1-A)及び下記一般式(1-B)のいずれかで表されることを特徴とする化合物である。
〔一般式(1-A)〕
Figure JPOXMLDOC01-appb-C000017
(ただし、前記一般式(1-A)中、MはCo、Zn、Ni及びPdのいずれかを表し、Xは第1族元素を表す。)
〔一般式(1-B)〕
Figure JPOXMLDOC01-appb-C000018
(ただし、前記一般式(1-B)中、MはCo、Zn及びCuのいずれかを表す。)
<10> プロトポルフィリンの塩及び金属酢酸塩を、ジメチルスルホキシド及び酢酸のいずれかと、水との存在下、70℃~95℃で1時間~30時間反応させて下記一般式(1-A)で表される化合物を得る工程を含むことを特徴とする化合物の製造方法である。
〔一般式(1-A)〕
Figure JPOXMLDOC01-appb-C000019
(ただし、前記一般式(1-A)中、MはCo、Zn、Ni及びPdのいずれかを表し、Xは第1族元素を表す。)
<11> ヘマトポルフィリン及び金属酢酸塩を、メタノール及び酢酸のいずれかの存在下、15℃~30℃で5時間~30時間反応させて下記一般式(1-B)で表される化合物を得る工程を含むことを特徴とする化合物の製造方法である。
〔一般式(1-B)〕
Figure JPOXMLDOC01-appb-C000020
(ただし、前記一般式(1-B)中、MはCo、Zn及びCuのいずれかを表す。)
The present invention is based on the above findings by the present inventors, and means for solving the above problems are as follows. That is,
<1> A CLEC-2 antagonist comprising a compound represented by any one of the following general formula (1) and the following general formula (2).
[General formula (1)]
Figure JPOXMLDOC01-appb-C000011
(In the general formula (1), M represents any one of H 2 and Group 2 to 12 elements, R 1 represents either a vinyl group or a 1-hydroxyethyl group, and X represents Group 1) Represents an element.)
[General formula (2)]
Figure JPOXMLDOC01-appb-C000012
(In the general formula (2), M represents any one of H 2 and Group 2 to 12 elements, and R 2 represents a phenyl group, a sulfophenyl group, a carboxyphenyl group, and 1-methylpyridinium-4-yl.) Represents any of the groups.)
<2> The compound according to <1>, wherein the compound represented by the general formula (1) is a compound represented by any one of the following general formula (1-A) and the following general formula (1-B): CLEC-2 antagonist.
[General Formula (1-A)]
Figure JPOXMLDOC01-appb-C000013
(In the general formula (1-A), M represents any one of H 2 , Co, Zn, Ni, and Pd, and X represents a Group 1 element.)
[General formula (1-B)]
Figure JPOXMLDOC01-appb-C000014
(However, in the general formula (1-B), M represents any of H 2 , Co, Zn and Cu.)
<3> The CLEC-2 antagonist according to <2>, wherein the compound represented by the general formula (1-B) is a compound represented by the following structural formula B4.
[Structural formula B4]
Figure JPOXMLDOC01-appb-C000015
<4> The CLEC-2 antagonist according to any one of <1> to <3>, wherein the compound represented by the general formula (2) is a compound represented by the following structural formula C1.
[Structural formula C1]
Figure JPOXMLDOC01-appb-C000016
<5> A platelet aggregation inhibitor comprising the CLEC-2 antagonist according to any one of <1> to <4>.
<6> An antithrombotic agent comprising the CLEC-2 antagonist according to any one of <1> to <4>.
<7> An antimetastatic agent comprising the CLEC-2 antagonist according to any one of <1> to <4>.
<8> An anti-arthritic drug comprising the CLEC-2 antagonist according to any one of <1> to <4>.
<9> A compound represented by any one of the following general formula (1-A) and the following general formula (1-B).
[General Formula (1-A)]
Figure JPOXMLDOC01-appb-C000017
(In the general formula (1-A), M represents any one of Co, Zn, Ni and Pd, and X represents a Group 1 element.)
[General formula (1-B)]
Figure JPOXMLDOC01-appb-C000018
(In the general formula (1-B), M represents any one of Co, Zn and Cu.)
<10> A salt of protoporphyrin and a metal acetate are reacted with either dimethyl sulfoxide or acetic acid at 70 ° C. to 95 ° C. for 1 hour to 30 hours in the presence of water, and the following general formula (1-A) It is a manufacturing method of the compound characterized by including the process of obtaining the compound represented.
[General Formula (1-A)]
Figure JPOXMLDOC01-appb-C000019
(In the general formula (1-A), M represents any one of Co, Zn, Ni and Pd, and X represents a Group 1 element.)
<11> A compound represented by the following general formula (1-B) is obtained by reacting hematoporphyrin and metal acetate in the presence of either methanol or acetic acid at 15 ° C. to 30 ° C. for 5 hours to 30 hours. It is a manufacturing method of the compound characterized by including a process.
[General formula (1-B)]
Figure JPOXMLDOC01-appb-C000020
(In the general formula (1-B), M represents any one of Co, Zn and Cu.)
 本発明によれば、従来における前記諸問題を解決し、前記目的を達成することができ、血小板活性化受容体CLEC-2の機能を特異的に抑制可能なCLEC-2拮抗剤、血小板凝集抑制剤、抗血栓薬、抗転移薬、及び抗関節炎薬、並びに金属イオンにポルフィリン骨格を有する配位子が配位した化合物、及びその製造方法を提供することができる。 According to the present invention, a CLEC-2 antagonist capable of solving the above-described problems and achieving the above-mentioned object and capable of specifically suppressing the function of the platelet-activating receptor CLEC-2, platelet aggregation inhibition Agents, antithrombotic agents, antimetastatic agents, antiarthritic agents, compounds in which a ligand having a porphyrin skeleton is coordinated to a metal ion, and a method for producing the same can be provided.
図1は、実施例1における一次スクリーニングのフロー、及び結果を説明する図である。FIG. 1 is a diagram for explaining the flow and results of primary screening in Example 1. 図2は、実施例1における二次スクリーニングの結果を説明する図である。FIG. 2 is a diagram for explaining the results of secondary screening in Example 1. 図3は、実施例1におけるプロトポルフィリンIX(H-PP)のフローサイトメーターによる評価結果を示す図である。FIG. 3 is a graph showing the evaluation results of protoporphyrin IX (H 2 -PP) in Example 1 using a flow cytometer. 図4は、実施例2のプロトポルフィリン亜鉛錯体(Zn-PP)のUV-visスペクトル、及び蛍光スペクトルによる測定結果を示す図である。FIG. 4 is a graph showing the measurement results of the protoporphyrin zinc complex (Zn-PP) of Example 2 by UV-vis spectrum and fluorescence spectrum. 図5は、実施例2のプロトポルフィリン亜鉛錯体(Zn-PP)のH-NMRによる測定結果を示す図である。FIG. 5 is a diagram showing the results of 1 H-NMR measurement of the protoporphyrin zinc complex (Zn—PP) of Example 2. 図6は、実施例2におけるプロトポルフィリン亜鉛錯体(Zn-PP)のフローサイトメーターによる評価結果を示す図である。FIG. 6 is a view showing the evaluation results of a protoporphyrin zinc complex (Zn—PP) in Example 2 using a flow cytometer. 図7は、実施例3のプロトポルフィリンニッケル錯体(Ni-PP)のUV-visスペクトル、及び蛍光スペクトルによる測定結果を示す図である。FIG. 7 is a graph showing the measurement results of the protoporphyrin nickel complex (Ni—PP) of Example 3 by UV-vis spectrum and fluorescence spectrum. 図8は、実施例3におけるプロトポルフィリンニッケル錯体(Ni-PP)のフローサイトメーターによる評価結果を示す図である。FIG. 8 is a view showing the evaluation results of the protoporphyrin nickel complex (Ni—PP) in Example 3 using a flow cytometer. 図9は、実施例4のプロトポルフィリンコバルト錯体(Co-PP)のUV-visスペクトル、及び蛍光スペクトルによる測定結果を示す図である。FIG. 9 is a graph showing the measurement results of the protoporphyrin cobalt complex (Co-PP) of Example 4 by UV-vis spectrum and fluorescence spectrum. 図10は、実施例4におけるプロトポルフィリンコバルト錯体(Co-PP)のフローサイトメーターによる評価結果を示す図である。FIG. 10 is a view showing the evaluation results of the protoporphyrin cobalt complex (Co-PP) in Example 4 using a flow cytometer. 図11は、実施例5のプロトポルフィリンパラジウム錯体(Pd-PP)のUV-visスペクトル、及び蛍光スペクトルによる測定結果を示す図である。FIG. 11 is a graph showing the measurement results of the protoporphyrin palladium complex (Pd-PP) of Example 5 by UV-vis spectrum and fluorescence spectrum. 図12は、実施例5におけるプロトポルフィリンパラジウム錯体(Pd-PP)のフローサイトメーターによる評価結果を示す図である。FIG. 12 is a view showing the evaluation results of a protoporphyrin palladium complex (Pd-PP) in Example 5 using a flow cytometer. 図13は、実施例6におけるヘマトポルフィリン(H-HP)のフローサイトメーターによる評価結果を示す図である。FIG. 13 is a diagram showing the evaluation results of hematoporphyrin (H 2 -HP) in Example 6 using a flow cytometer. 図14は、実施例7のヘマトポルフィリン亜鉛錯体(Zn-HP)のUV-visスペクトル、及び蛍光スペクトルによる測定結果を示す図である。FIG. 14 shows the measurement results of UV-vis spectrum and fluorescence spectrum of the hematoporphyrin zinc complex (Zn—HP) of Example 7. 図15は、実施例7のヘマトポルフィリン亜鉛錯体(Zn-HP)のH-NMRによる測定結果を示す図である。FIG. 15 shows the results of 1 H-NMR measurement of the hematoporphyrin zinc complex (Zn—HP) of Example 7. 図16は、実施例7におけるヘマトポルフィリン亜鉛錯体(Zn-HP)のフローサイトメーターによる評価結果を示す図である。FIG. 16 is a view showing the evaluation results of a hematoporphyrin zinc complex (Zn—HP) in Example 7 using a flow cytometer. 図17は、実施例8のヘマトポルフィリン銅錯体(Cu-HP)のUV-visスペクトル、及び蛍光スペクトルによる測定結果を示す図である。FIG. 17 shows the measurement results of the hematoporphyrin copper complex (Cu—HP) of Example 8 using the UV-vis spectrum and fluorescence spectrum. 図18は、実施例8におけるヘマトポルフィリン銅錯体(Cu-HP)のフローサイトメーターによる評価結果を示す図である。FIG. 18 is a diagram showing the evaluation results of a hematoporphyrin copper complex (Cu—HP) in Example 8 using a flow cytometer. 図19は、実施例9のヘマトポルフィリンコバルト錯体(Co-HP)のUV-visスペクトル、及び蛍光スペクトルによる測定結果を示す図である。FIG. 19 shows the measurement results of the hematoporphyrin cobalt complex (Co—HP) of Example 9 using UV-vis spectrum and fluorescence spectrum. 図20は、実施例9におけるヘマトポルフィリンコバルト錯体(Co-HP)のフローサイトメーターによる評価結果を示す図である。FIG. 20 is a diagram showing the evaluation results of a hematoporphyrin cobalt complex (Co—HP) in Example 9 using a flow cytometer. 図21は、実施例10における5,10,15,20-テトラキス(p-スルホフェニル)-21H,23H-ポルフィリン(TPPS)のフローサイトメーターによる評価結果を示す図である。FIG. 21 is a diagram showing the results of evaluation by flow cytometer of 5,10,15,20-tetrakis (p-sulfophenyl) -21H, 23H-porphyrin (TPPS) in Example 10. 図22は、実施例11におけるα,β,γ,δ-テトラキス(1-メチルピリジニウム-4-イル)ポルフィリンのp-トルエンスルホナート(TMPyP4OTs)のフローサイトメーターによる評価結果を示す図である。FIG. 22 is a diagram showing the results of evaluation by flow cytometer of p-toluenesulfonate (TMPyP4OTs) of α, β, γ, δ-tetrakis (1-methylpyridinium-4-yl) porphyrin in Example 11. 図23は、ヒト血小板凝集に対する血小板凝集抑制効果の評価結果を示す図である。FIG. 23 is a diagram showing the evaluation results of the platelet aggregation inhibitory effect on human platelet aggregation. 図24は、マウス血小板凝集に対する血小板凝集抑制効果の評価結果を示す図である。FIG. 24 is a diagram showing the evaluation results of the platelet aggregation inhibitory effect on mouse platelet aggregation. 図25は、マウス肺転移モデルの化合物投与(DMSO、又はCo-HP)開始から14日目の肺の様子を示す写真である。FIG. 25 is a photograph showing the state of the lung on the 14th day after the start of compound administration (DMSO or Co-HP) in a mouse lung metastasis model. 図26は、マウス肺転移モデルの化合物投与(DMSO、又はCo-HP)開始から14日目の肺の重量を示す図である。FIG. 26 is a graph showing the weight of the lung on the 14th day from the start of compound administration (DMSO or Co-HP) in a mouse lung metastasis model. 図27は、マウスin vivo塩化鉄血栓形成モデルを用いた血管閉塞時間延長効果を示す図である。FIG. 27 is a diagram showing the effect of prolonging the vascular occlusion time using a mouse in vivo iron chloride thrombus formation model. 図28は、マウスin vivoにおける出血時間への影響を示す図である。FIG. 28 is a diagram showing the effect on bleeding time in mice in vivo. 図29は、野生型マウス、及びCLEC-2欠損骨髄キメラマウスをレシピエントマウスとするK/BxNマウス血清移入関節炎モデルにおけるリウマチ様関節炎の炎症の程度を示す図である。FIG. 29 is a graph showing the degree of inflammation of rheumatoid arthritis in a K / BxN mouse serum transfer arthritis model using wild-type mice and CLEC-2 deficient bone marrow chimeric mice as recipient mice. 図30は、野生型マウスをレシピエントマウスとするK/BxNマウス血清移入関節炎モデルにおけるリウマチ様関節炎に対するCo-HP投与による影響を示す図である。FIG. 30 shows the effect of Co-HP administration on rheumatoid arthritis in a K / BxN mouse serum transfer arthritis model using wild-type mice as recipient mice. 図31は、ヒトリンパ管上皮細胞(LEC)の血小板接着を視覚化した写真である。FIG. 31 is a photograph visualizing platelet adhesion of human lymphatic epithelial cells (LEC). 図32は、ヒトリンパ管上皮細胞(LEC)の血小板接着面積を定量化したグラフを示す図である。FIG. 32 is a graph showing a quantified platelet adhesion area of human lymphatic epithelial cells (LEC).
(CLEC-2拮抗剤)
 本発明のCLEC-2拮抗剤は、下記一般式(1)及び下記一般式(2)のいずれかで表される、ポルフィリン骨格を有する化合物からなる。
 前記CLEC-2拮抗剤は、血小板活性化受容体であるCLEC-2の機能を抑制する作用を有する薬剤である。前記CLEC-2拮抗剤は、CLEC-2の生体内のリガンドであるポドプラニンと、CLEC-2との結合を抑制する作用を有することが好ましい。
(CLEC-2 antagonist)
The CLEC-2 antagonist of the present invention comprises a compound having a porphyrin skeleton represented by any of the following general formula (1) and the following general formula (2).
The CLEC-2 antagonist is a drug having an action of suppressing the function of CLEC-2 which is a platelet activation receptor. The CLEC-2 antagonist preferably has an action of suppressing the binding between CLEC-2 and podoplanin, which is a ligand in vivo of CLEC-2.
-CLEC-2-
 前記CLEC-2は、正式名:C-type lectin-like receptor-2であり、血小板を活性化する蛇毒であるロドサイチンの受容体として同定された(Blood.2006;107(2):542-549)。ヒトでは、ほぼ血小板にのみ特異的に発現することが知られている。
 一方、前記CLEC-2の生体内リガンドであるポドプラニンは、シアル酸に富む膜糖タンパク質であり、扁平上皮癌、悪性中皮腫などに発現し、その発現量が多いほど予後不良になることが知られていた。また、血小板凝集活性、癌の転移促進活性を有することが知られ、血小板に受容体が存在することが予測されていたが、血小板受容体が前記CLEC-2であることが同定されるまで約20年間を要した。
 前記CLEC-2が、ポドプラニンにより活性化されると、血小板凝集が促進され、血栓形成が促進される。
 これに対して、本発明のCLEC-2拮抗剤は、CLEC-2に特異的に結合又はポドプラニンと競合することによりCLEC-2の機能を抑制する拮抗剤として機能する。
-CLEC-2-
The CLEC-2 has an official name: C-type lectin-like receptor-2 and was identified as a receptor for rhodocytin, a snake venom that activates platelets (Blood. 2006; 107 (2): 542-549. ). In humans, it is known to be specifically expressed only in platelets.
On the other hand, podoplanin, an in vivo ligand for CLEC-2, is a membrane glycoprotein rich in sialic acid, and is expressed in squamous cell carcinoma, malignant mesothelioma, etc. It was known. Further, it has been known that it has platelet aggregation activity and cancer metastasis promoting activity, and it has been predicted that a receptor exists in platelets. However, until the platelet receptor is identified as CLEC-2, It took 20 years.
When the CLEC-2 is activated by podoplanin, platelet aggregation is promoted and thrombus formation is promoted.
In contrast, the CLEC-2 antagonist of the present invention functions as an antagonist that suppresses the function of CLEC-2 by specifically binding to CLEC-2 or competing with podoplanin.
<<一般式(1)で表される化合物>>
〔一般式(1)〕
Figure JPOXMLDOC01-appb-C000021
(ただし、前記一般式(1)中、MはH及び第2~12族元素のいずれかを表し、Rはビニル基及び1-ヒドロキシエチル基のいずれかを表し、Xは第1族元素を表す。)
<< Compound Represented by Formula (1) >>
[General formula (1)]
Figure JPOXMLDOC01-appb-C000021
(In the general formula (1), M represents any one of H 2 and Group 2 to 12 elements, R 1 represents either a vinyl group or a 1-hydroxyethyl group, and X represents Group 1) Represents an element.)
 前記一般式(1)中、Mは、H及び第2~12族元素のいずれかであり、H、第8族元素、第9族元素、第10族元素、第11族元素、第12族元素が好ましく、H、Fe、Co、Ni、Pd、Cu、Znがより好ましい。
 なお、第2族元素等は、国際純正応用化学連合(IUPAC)の新しい表記法に基づくものであり、前記第2~12族元素は、旧IUPAC表記の第IIA族~第VIIIA族、第IB族及び第IIB族にそれぞれ対応する。
In the general formula (1), M is any one of H 2 and Group 2 to 12 elements, and H 2 , Group 8 elements, Group 9 elements, Group 10 elements, Group 11 elements, Group 12 elements are preferred, and H 2 , Fe, Co, Ni, Pd, Cu, and Zn are more preferred.
The Group 2 elements and the like are based on a new notation of the International Pure Applied Chemical Association (IUPAC), and the Group 2 to 12 elements are Group IIA to Group VIIIA and IB of the former IUPAC notation. Corresponding to the Group and Group IIB respectively.
 前記一般式(1)中、Xは、第1族元素であり、H、Li、Na、Kが好ましく、H、Naがより好ましい。 In the general formula (1), X is a Group 1 element, preferably H, Li, Na, or K, and more preferably H or Na.
 前記一般式(1)で表される化合物としては、下記一般式(1-A)表される化合物、及び下記一般式(1-B)で表される化合物のいずれかであることが好ましい。 The compound represented by the general formula (1) is preferably any one of a compound represented by the following general formula (1-A) and a compound represented by the following general formula (1-B).
<<<一般式(1-A)で表される化合物>>>
 下記一般式(1-A)表される化合物は、前記一般式(1)中、Rがビニル基である、プロトポルフィリン骨格を有する化合物である。
〔一般式(1-A)〕
Figure JPOXMLDOC01-appb-C000022
(ただし、前記一般式(1-A)中、MはH、Co、Zn、Ni及びPdのいずれかを表し、Xは第1族元素を表す。)
<<< Compound represented by formula (1-A) >>>
The compound represented by the following general formula (1-A) is a compound having a protoporphyrin skeleton in which R 1 is a vinyl group in the general formula (1).
[General Formula (1-A)]
Figure JPOXMLDOC01-appb-C000022
(In the general formula (1-A), M represents any one of H 2 , Co, Zn, Ni, and Pd, and X represents a Group 1 element.)
 前記一般式(1-A)表される化合物としては、例えば、下記構造式A1で表されるプロトポルフィリンIX、下記構造式A2で表されるプロトポルフィリン亜鉛錯体、下記構造式A3で表されるプロトポルフィリンニッケル錯体、下記構造式A4で表されるプロトポルフィリンコバルト錯体、下記構造式A5で表されるプロトポルフィリンパラジウム錯体などが挙げられる。これらの中でも、下記構造式A1で表されるプロトポルフィリンIX、下記構造式A2で表されるプロトポルフィリン亜鉛錯体、下記構造式A4で表されるプロトポルフィリンコバルト錯体が好ましく、下記構造式A1で表されるプロトポルフィリンIXがより好ましい。
Figure JPOXMLDOC01-appb-C000023
Examples of the compound represented by the general formula (1-A) include a protoporphyrin IX represented by the following structural formula A1, a protoporphyrin zinc complex represented by the following structural formula A2, and a structural formula represented by the following structural formula A3. Examples thereof include a protoporphyrin nickel complex, a protoporphyrin cobalt complex represented by the following structural formula A4, and a protoporphyrin palladium complex represented by the following structural formula A5. Among these, a protoporphyrin IX represented by the following structural formula A1, a protoporphyrin zinc complex represented by the following structural formula A2, and a protoporphyrin cobalt complex represented by the following structural formula A4 are preferable, and represented by the following structural formula A1. Protoporphyrin IX is more preferred.
Figure JPOXMLDOC01-appb-C000023
<<<一般式(1-B)で表される化合物>>>
 下記一般式(1-B)で表される化合物は、前記一般式(1)中、Rが1-ヒドロキシエチル基であり、XがH(水素)である、ヘマトポルフィリン骨格を有する化合物である。
〔一般式(1-B)〕
Figure JPOXMLDOC01-appb-C000024
(ただし、前記一般式(1-B)中、MはH、Co、Zn及びCuのいずれかを表す。)
<<< Compound represented by formula (1-B) >>>
The compound represented by the following general formula (1-B) is a compound having a hematoporphyrin skeleton in which R 1 is a 1-hydroxyethyl group and X is H (hydrogen) in the general formula (1). is there.
[General formula (1-B)]
Figure JPOXMLDOC01-appb-C000024
(However, in the general formula (1-B), M represents any of H 2 , Co, Zn and Cu.)
 前記一般式(1-B)表される化合物は、具体的には、下記構造式B1で表されるヘマトポルフィリン、下記構造式B2で表されるヘマトポルフィリン亜鉛錯体、下記構造式B3で表されるヘマトポルフィリン銅錯体、及び下記構造式B4で表されるヘマトポルフィリンコバルト錯体である。これらの中でも、下記構造式B1で表されるヘマトポルフィリン、下記構造式B3で表されるヘマトポルフィリン銅錯体、及び下記構造式B4で表されるヘマトポルフィリンコバルト錯体が好ましく、CLEC-2とポドプラニンとの結合を抑制する活性が特に高い点で、下記構造式B4で表されるヘマトポルフィリンコバルト錯体がより好ましい。
Figure JPOXMLDOC01-appb-C000025
The compound represented by the general formula (1-B) is specifically represented by hematoporphyrin represented by the following structural formula B1, hematoporphyrin zinc complex represented by the following structural formula B2, and represented by the following structural formula B3. A hematoporphyrin copper complex and a hematoporphyrin cobalt complex represented by the following structural formula B4. Among these, hematoporphyrin represented by the following structural formula B1, hematoporphyrin copper complex represented by the following structural formula B3, and hematoporphyrin cobalt complex represented by the following structural formula B4 are preferable, and CLEC-2, podoplanin, A hematoporphyrin cobalt complex represented by the following structural formula B4 is more preferable in that the activity of suppressing the binding of is particularly high.
Figure JPOXMLDOC01-appb-C000025
<<一般式(2)で表される化合物>>
〔一般式(2)〕
Figure JPOXMLDOC01-appb-C000026
(ただし、前記一般式(2)中、MはH及び第2~12族元素のいずれかを表し、Rはフェニル基、スルホフェニル基、カルボキシフェニル基及び1-メチルピリジニウム-4-イル基のいずれかを表す。)
<< Compound Represented by Formula (2) >>
[General formula (2)]
Figure JPOXMLDOC01-appb-C000026
(In the general formula (2), M represents any one of H 2 and Group 2 to 12 elements, and R 2 represents a phenyl group, a sulfophenyl group, a carboxyphenyl group, and 1-methylpyridinium-4-yl.) Represents any of the groups.)
 前記一般式(2)中、Mは、H及び第2~12族元素のいずれかであり、H、第8族元素、第9族元素、第10族元素、第11族元素、第12族元素が好ましく、H、Fe、Co、Ni、Pd、Cu、Znがより好ましい。 In the general formula (2), M is any of H 2 and Group 2 to 12 elements, and H 2 , Group 8 elements, Group 9 elements, Group 10 elements, Group 11 elements, Group 12 elements are preferred, and H 2 , Fe, Co, Ni, Pd, Cu, and Zn are more preferred.
 前記一般式(2)で表される化合物としては、例えば、下記構造式C1で表される、5,10,15,20-テトラキス(p-スルホフェニル)-21H,23H-ポルフィリン(「TPPS」と称することがある。)、下記構造式C2で表される、α,β,γ,δ-テトラキス(1-メチルピリジニウム-4-イル)ポルフィリン(「TMPyP」と称することがある。)のp-トルエンスルホナート(「TMPyP4OTs」と称することがある。)、テトラフェニルポルフィリン(「TPP」と称することがある。)、5,10,15,20-テトラキス(p-カルボキシフェニル)-21H,23H-ポルフィリン(「TPPC」と称することがある。)などが挙げられる。これらの中でも、下記構造式C1で表されるTPPSが好ましい。 Examples of the compound represented by the general formula (2) include 5,10,15,20-tetrakis (p-sulfophenyl) -21H, 23H-porphyrin (“TPPS”) represented by the following structural formula C1. P) of α, β, γ, δ-tetrakis (1-methylpyridinium-4-yl) porphyrin (sometimes referred to as “TMPyP”) represented by the following structural formula C2. Toluenesulfonate (sometimes referred to as “TMPyP4OTs”), tetraphenylporphyrin (sometimes referred to as “TPP”), 5,10,15,20-tetrakis (p-carboxyphenyl) -21H, 23H -Porphyrin (sometimes referred to as "TPPC"). Among these, TPPS represented by the following structural formula C1 is preferable.
〔構造式C1〕
Figure JPOXMLDOC01-appb-C000027
[Structural formula C1]
Figure JPOXMLDOC01-appb-C000027
〔構造式C2〕
Figure JPOXMLDOC01-appb-C000028
[Structural formula C2]
Figure JPOXMLDOC01-appb-C000028
(血小板凝集抑制剤及び抗血栓薬)
 本発明の血小板凝集抑制剤は、本発明の前記CLEC-2拮抗剤からなる。前記血小板凝集抑制剤は、血小板の凝集を抑制する作用を有する薬剤である。
 本発明の抗血栓薬は、本発明の前記CLEC-2拮抗剤からなる。前記抗血栓薬は、血栓の形成を抑制し、血管閉塞を予防する作用を有する薬剤である。
 前記血小板凝集抑制剤及び前記抗血栓薬は、血小板活性化受容体であるCLEC-2の機能抑制を介して作用することが好ましく、CLEC-2の生体内のリガンドであるポドプラニンと、CLEC-2との結合を抑制する作用を有することがより好ましい。
(Platelet aggregation inhibitor and antithrombotic agent)
The platelet aggregation inhibitor of the present invention comprises the CLEC-2 antagonist of the present invention. The platelet aggregation inhibitor is a drug having an action of suppressing platelet aggregation.
The antithrombotic agent of the present invention comprises the CLEC-2 antagonist of the present invention. The antithrombotic drug is a drug having an action of suppressing the formation of a thrombus and preventing vascular occlusion.
It is preferable that the platelet aggregation inhibitor and the antithrombotic agent act via function suppression of CLEC-2 which is a platelet activating receptor, and podoplanin which is an in vivo ligand of CLEC-2 and CLEC-2 It is more preferable to have an action of suppressing the binding with.
(抗転移薬)
 本発明の抗転移薬は、本発明の前記CLEC-2拮抗剤からなる。前記抗転移薬は、がん細胞の転移を抑制する作用を有する薬剤である。
 前記抗転移薬は、血小板活性化受容体であるCLEC-2の機能抑制を介して作用することが好ましく、CLEC-2の生体内のリガンドであるポドプラニンと、CLEC-2との結合を抑制する作用を有することがより好ましい。
(Anti-metastatic drug)
The antimetastatic agent of the present invention comprises the CLEC-2 antagonist of the present invention. The antimetastatic drug is a drug having an action of suppressing cancer cell metastasis.
The anti-metastatic agent preferably acts through suppression of the function of CLEC-2, which is a platelet activation receptor, and suppresses the binding of CLEC-2, which is a ligand in vivo of CLEC-2, to CLEC-2 More preferably, it has an action.
(抗関節炎薬)
 本発明の抗関節炎薬は、本発明の前記CLEC-2拮抗剤からなる。前記抗関節炎薬は、関節の炎症を抑制する作用を有する薬剤であり、例えば、抗リウマチ薬などが挙げられる。
 前記抗関節炎薬は、血小板活性化受容体であるCLEC-2の機能抑制を介して作用することが好ましく、CLEC-2の生体内のリガンドであるポドプラニンと、CLEC-2との結合を抑制する作用を有することがより好ましい。
(Anti-arthritis drug)
The anti-arthritic agent of the present invention comprises the CLEC-2 antagonist of the present invention. The anti-arthritic drug is a drug having an action of suppressing joint inflammation, and examples thereof include an anti-rheumatic drug.
The anti-arthritic agent preferably acts through suppression of the function of CLEC-2, which is a platelet activating receptor, and suppresses the binding of CLEC-2 in vivo to podoplanin, which is a ligand of CLEC-2. More preferably, it has an action.
(製剤)
 前記製剤としては、本発明のCLEC-2拮抗剤、血小板凝集抑制剤、抗血栓薬、抗転移薬、及び抗関節炎薬の少なくともいずれかを含み、更に必要に応じて薬理学的に許容可能な担体などのその他の成分を含む。
 前記CLEC-2拮抗剤、血小板凝集抑制剤、抗血栓薬、抗転移薬、及び抗関節炎薬の少なくともいずれかとしては、前記一般式(1)及び前記一般式(2)のいずれかで表される化合物であってもよく、前記化合物の薬理学的に許容可能な、塩、溶媒和物及びプロドラッグの少なくともいずれかであってもよい。
(Formulation)
The preparation includes at least one of the CLEC-2 antagonist of the present invention, a platelet aggregation inhibitor, an antithrombotic drug, an antimetastatic drug, and an antiarthritic drug, and further pharmacologically acceptable as necessary. Contains other ingredients such as a carrier.
The CLEC-2 antagonist, the platelet aggregation inhibitor, the antithrombotic agent, the antimetastatic agent, and the antiarthritic agent are represented by any one of the general formula (1) and the general formula (2). Or a pharmacologically acceptable salt, solvate or prodrug of the compound.
 前記製剤は、デキストリン、シクロデキストリンなどの薬理学的に許容可能な担体、助剤を用いて、常法に従い、液状、粉末状、顆粒状、錠剤状などの任意の剤形に製剤化して提供することができ、他の組成物(例えば、点眼薬、経口医薬品など)に配合して使用できる他、軟膏剤、外用液剤、貼付剤などとして使用することができる。
 前記助剤としては、例えば、賦形剤、結合剤、崩壊剤、滑沢剤、安定剤、矯味剤、矯臭剤などを用いることができる。
The preparation is prepared by formulating into any dosage form such as liquid, powder, granule, tablet, etc. according to a conventional method using a pharmacologically acceptable carrier such as dextrin and cyclodextrin, and an auxiliary agent. In addition to being used in other compositions (for example, eye drops, oral pharmaceuticals, etc.), it can also be used as an ointment, a solution for external use, a patch, and the like.
As said adjuvant, an excipient | filler, binder, a disintegrating agent, a lubricant agent, a stabilizer, a corrigent, a corrigent etc. can be used, for example.
 前記賦形剤としては、例えば、乳糖、白糖、塩化ナトリウム、ブドウ糖、デンプン、炭酸カルシウム、カオリン、微結晶セルロース、珪酸などが挙げられる。前記結合剤としては、例えば、水、エタノール、プロパノール、単シロップ、ブドウ糖液、デンプン液、ゼラチン液、カルボキシメチルセルロース、ヒドロキシプロピルセルロース、ヒドロキシプロピルスターチ、メチルセルロース、エチルセルロース、シェラック、リン酸カルシウム、ポリビニルピロリドンなどが挙げられる。前記崩壊剤としては、例えば、乾燥デンプン、アルギン酸ナトリウム、カンテン末、炭酸水素ナトリウム、炭酸カルシウム、ラウリル硫酸ナトリウム、ステアリン酸モノグリセリド、乳糖などが挙げられる。前記滑沢剤としては、例えば、精製タルク、ステアリン酸塩、ホウ砂、ポリエチレングリコールなどが挙げられる。前記安定剤としては、例えば、ピロ亜硫酸ナトリウム、EDTA、チオグリコール酸、チオ乳酸などが挙げられる。前記矯味剤乃至矯臭剤としては、例えば、白糖、橙皮、クエン酸、酒石酸などが挙げられる。 Examples of the excipient include lactose, sucrose, sodium chloride, glucose, starch, calcium carbonate, kaolin, microcrystalline cellulose, and silicic acid. Examples of the binder include water, ethanol, propanol, simple syrup, glucose solution, starch solution, gelatin solution, carboxymethylcellulose, hydroxypropylcellulose, hydroxypropyl starch, methylcellulose, ethylcellulose, shellac, calcium phosphate, polyvinylpyrrolidone and the like. It is done. Examples of the disintegrant include dry starch, sodium alginate, agar powder, sodium hydrogen carbonate, calcium carbonate, sodium lauryl sulfate, stearic acid monoglyceride, and lactose. Examples of the lubricant include purified talc, stearate, borax, and polyethylene glycol. Examples of the stabilizer include sodium pyrosulfite, EDTA, thioglycolic acid, thiolactic acid, and the like. Examples of the flavoring agent or flavoring agent include sucrose, orange peel, citric acid, tartaric acid and the like.
 前記製剤を投与する方法としては、特に制限はなく、目的に応じて各薬剤に適した投与経路、投与タイミング、投与量、投与スケジュール等の投与条件を適宜選択することができる。
 前記投与経路としては、特に制限はなく、目的に応じて適宜選択することができるが、静脈内投与、経皮投与、経口投与が好ましい。
The method for administering the preparation is not particularly limited, and administration conditions such as an administration route, administration timing, dosage, and administration schedule suitable for each drug can be appropriately selected according to the purpose.
There is no restriction | limiting in particular as said administration route, Although it can select suitably according to the objective, Intravenous administration, transdermal administration, and oral administration are preferable.
 前記製剤の投与量としては、特に制限はなく、処置を必要とする対象の疾患状態、体重等の要因に応じて適宜選択することができるが、一日当たり、1mg~1,000mgが好ましく、10mg~200mgがより好ましい。 The dosage of the preparation is not particularly limited and may be appropriately selected depending on factors such as the disease state of the subject requiring treatment, body weight, etc., but preferably 1 mg to 1,000 mg per day. ˜200 mg is more preferred.
(化合物)
 本発明の化合物は、下記一般式(1-A)及び下記一般式(1-B)のいずれかで表される、ポルフィリン骨格を有する化合物である。
 前記一般式(1-A)で表されるプロトポルフィリン骨格を有する化合物は、本発明の前記一般式(1-A)で表される化合物の製造方法により好適に製造することができる。
 前記一般式(1-B)で表されるヘマトポルフィリン骨格を有する化合物は、本発明の前記一般式(1-B)で表される化合物の製造方法により好適に製造することができる。
(Compound)
The compound of the present invention is a compound having a porphyrin skeleton represented by any one of the following general formula (1-A) and the following general formula (1-B).
The compound having a protoporphyrin skeleton represented by the general formula (1-A) can be preferably produced by the method for producing a compound represented by the general formula (1-A) of the present invention.
The compound having a hematoporphyrin skeleton represented by the general formula (1-B) can be preferably produced by the method for producing a compound represented by the general formula (1-B) of the present invention.
〔一般式(1-A)〕
Figure JPOXMLDOC01-appb-C000029
(ただし、前記一般式(1-A)中、MはCo、Zn、Ni及びPdのいずれかを表し、Xは第1族元素を表す。)
[General Formula (1-A)]
Figure JPOXMLDOC01-appb-C000029
(In the general formula (1-A), M represents any one of Co, Zn, Ni and Pd, and X represents a Group 1 element.)
〔一般式(1-B)〕
Figure JPOXMLDOC01-appb-C000030
(ただし、前記一般式(1-B)中、MはCo、Zn及びCuのいずれかを表す。)
[General formula (1-B)]
Figure JPOXMLDOC01-appb-C000030
(In the general formula (1-B), M represents any one of Co, Zn and Cu.)
(化合物の製造方法)
<一般式(1-A)で表される化合物の製造方法>
 本発明の化合物の製造方法は、前記一般式(1-A)で表される化合物の製造方法であって、プロトポルフィリンの塩及び金属酢酸塩を、ジメチルスルホキシド及び酢酸のいずれかと、水との存在下、70℃~95℃で1時間~30時間反応させて下記一般式(1-A)で表される化合物を得る工程を含み、更に必要に応じて精製工程などのその他の工程を含む。
 前記プロトポルフィリンの塩としては、前記一般式(1-A)で表される化合物のMがHである化合物の塩であれば特に制限はなく、目的に応じて適宜選択することができ、例えば、下記構造式A1で表されるプロトポルフィリンIXなどが挙げられる。
 ここで、前記金属酢酸塩における金属は、前記一般式(1-A)中、Mで表されるCo、Zn、Ni及びPdのいずれかである。
(Method for producing compound)
<Method for Producing Compound Represented by General Formula (1-A)>
A method for producing a compound of the present invention is a method for producing a compound represented by the above general formula (1-A), comprising a salt of protoporphyrin and a metal acetate, either dimethyl sulfoxide or acetic acid, and water. Including a step of obtaining a compound represented by the following general formula (1-A) by reacting at 70 ° C. to 95 ° C. for 1 to 30 hours in the presence, and further including other steps such as a purification step, if necessary. .
The salt of protoporphyrin is not particularly limited as long as it is a salt of a compound in which M of the compound represented by the general formula (1-A) is H 2 , and can be appropriately selected depending on the purpose. Examples thereof include protoporphyrin IX represented by the following structural formula A1.
Here, the metal in the metal acetate is any one of Co, Zn, Ni and Pd represented by M in the general formula (1-A).
 前記一般式(1-A)で表される化合物が、下記構造式A2で表されるプロトポルフィリン亜鉛錯体である場合、プロトポルフィリンの塩及び酢酸亜鉛を、ジメチルスルホキシドと水との存在下で反応させることが好ましく、反応温度としては70℃~90℃(例えば、80℃)が好ましく、反応時間としては1時間~10時間(例えば、2時間)が好ましい。 When the compound represented by the general formula (1-A) is a protoporphyrin zinc complex represented by the following structural formula A2, the salt of protoporphyrin and zinc acetate are reacted in the presence of dimethyl sulfoxide and water. The reaction temperature is preferably 70 ° C. to 90 ° C. (eg, 80 ° C.), and the reaction time is preferably 1 hour to 10 hours (eg, 2 hours).
 前記一般式(1-A)で表される化合物が、下記構造式A3で表されるプロトポルフィリンニッケル錯体である場合、プロトポルフィリンの塩及び酢酸ニッケルを、ジメチルスルホキシドと水との存在下で反応させることが好ましく、反応温度としては70℃~90℃(例えば、80℃)が好ましく、反応時間としては5時間~20時間(例えば、8時間)が好ましい。 When the compound represented by the general formula (1-A) is a protoporphyrin nickel complex represented by the following structural formula A3, the salt of protoporphyrin and nickel acetate are reacted in the presence of dimethyl sulfoxide and water. The reaction temperature is preferably 70 ° C. to 90 ° C. (eg, 80 ° C.), and the reaction time is preferably 5 hours to 20 hours (eg, 8 hours).
 前記一般式(1-A)で表される化合物が、下記構造式A4で表されるプロトポルフィリンコバルト錯体である場合、プロトポルフィリンの塩及び酢酸コバルト(II)を、酢酸と水との存在下で反応させることが好ましく、反応温度としては80℃~95℃(例えば、90℃)が好ましく、反応時間としては12時間~30時間(例えば、24時間)が好ましい。 When the compound represented by the general formula (1-A) is a protoporphyrin cobalt complex represented by the following structural formula A4, a salt of protoporphyrin and cobalt (II) acetate are added in the presence of acetic acid and water. The reaction temperature is preferably 80 ° C. to 95 ° C. (eg, 90 ° C.), and the reaction time is preferably 12 hours to 30 hours (eg, 24 hours).
 前記一般式(1-A)で表される化合物が、下記構造式A5で表されるプロトポルフィリンパラジウム鉛錯体である場合、プロトポルフィリンの塩及び酢酸パラジウム(II)を、酢酸と水との存在下で反応させることが好ましく、反応温度としては80℃~95℃(例えば、90℃)が好ましく、反応時間としては12時間~30時間(例えば、24時間)が好ましい。
Figure JPOXMLDOC01-appb-C000031
When the compound represented by the general formula (1-A) is a protoporphyrin palladium lead complex represented by the following structural formula A5, a salt of protoporphyrin and palladium (II) acetate are present in the presence of acetic acid and water. The reaction temperature is preferably 80 ° C. to 95 ° C. (eg, 90 ° C.), and the reaction time is preferably 12 hours to 30 hours (eg, 24 hours).
Figure JPOXMLDOC01-appb-C000031
<一般式(1-B)で表される化合物の製造方法>
 本発明の化合物の製造方法は、前記一般式(1-B)で表される化合物の製造方法であって、ヘマトポルフィリン及び金属酢酸塩を、メタノール及び酢酸のいずれかの存在下、15℃~30℃で5時間~30時間反応させて下記一般式(1-B)で表される化合物を得る工程を含み、更に必要に応じて精製工程などのその他の工程を含む。
 前記ヘマトポルフィリンは、下記構造式B1で表される化合物である。
 ここで、前記金属酢酸塩における金属は、前記一般式(1-B)中、Mで表されるCo、Zn及びCuのいずれかである。
<Method for Producing Compound Represented by General Formula (1-B)>
The method for producing a compound of the present invention is a method for producing a compound represented by the general formula (1-B), wherein hematoporphyrin and metal acetate are added at 15 ° C. to 15 ° C. in the presence of either methanol or acetic acid. It includes a step of obtaining a compound represented by the following general formula (1-B) by reacting at 30 ° C. for 5 to 30 hours, and further includes other steps such as a purification step as necessary.
The hematoporphyrin is a compound represented by the following structural formula B1.
Here, the metal in the metal acetate is any one of Co, Zn and Cu represented by M in the general formula (1-B).
 前記一般式(1-B)で表される化合物が、下記構造式B2で表されるヘマトポルフィリン亜鉛錯体である場合、ヘマトポルフィリン及び酢酸亜鉛を、メタノールの存在下で反応させることが好ましく、反応温度としては15℃~30℃(例えば、25℃)が好ましく、反応時間としては5時間~20時間(例えば、8時間)が好ましい。 When the compound represented by the general formula (1-B) is a hematoporphyrin zinc complex represented by the following structural formula B2, it is preferable to react hematoporphyrin and zinc acetate in the presence of methanol. The temperature is preferably 15 ° C. to 30 ° C. (eg, 25 ° C.), and the reaction time is preferably 5 hours to 20 hours (eg, 8 hours).
 前記一般式(1-B)で表される化合物が、下記構造式B3で表されるヘマトポルフィリン銅錯体である場合、ヘマトポルフィリン及び酢酸銅(II)を、酢酸の存在下で反応させることが好ましく、反応温度としては15℃~30℃(例えば、25℃)が好ましく、反応時間としては12時間~30時間(例えば、24時間)が好ましい。 When the compound represented by the general formula (1-B) is a hematoporphyrin copper complex represented by the following structural formula B3, hematoporphyrin and copper (II) acetate can be reacted in the presence of acetic acid. The reaction temperature is preferably 15 ° C. to 30 ° C. (eg, 25 ° C.), and the reaction time is preferably 12 hours to 30 hours (eg, 24 hours).
 前記一般式(1-B)で表される化合物が、下記構造式B4で表されるヘマトポルフィリンコバルト錯体である場合、ヘマトポルフィリン及び酢酸コバルト(II)を、酢酸の存在下で反応させることが好ましく、反応温度としては15℃~30℃(例えば、25℃)が好ましく、反応時間としては12時間~30時間(例えば、24時間)が好ましい。
Figure JPOXMLDOC01-appb-C000032
When the compound represented by the general formula (1-B) is a hematoporphyrin cobalt complex represented by the following structural formula B4, the hematoporphyrin and cobalt (II) acetate can be reacted in the presence of acetic acid. The reaction temperature is preferably 15 ° C. to 30 ° C. (eg, 25 ° C.), and the reaction time is preferably 12 hours to 30 hours (eg, 24 hours).
Figure JPOXMLDOC01-appb-C000032
 以下、実施例に基づいて本発明をより具体的に説明するが、本発明は以下の実施例に制限されるものではない。 Hereinafter, the present invention will be described more specifically based on examples, but the present invention is not limited to the following examples.
(実施例1:プロトポルフィリンIX)
<CLEC-2とポドプラニンとの結合を抑制する化合物の探索(一次スクリーニング)>
 理化学研究所ケミカルバイオロジー研究基盤施設の天然物を中心とした15,000種類の低分子化合物ライブラリーを用い、下記の方法により、CLEC-2とポドプラニンとの結合を抑制する化合物の一次スクリーニングを行った。
 リコンビナントCLEC-2とリコンビナントポドプラニンとの結合を検出可能なELISA検出系を構築し、ELISA検出系を用いた測定によって一次スクリーニングを行った。
(Example 1: Protoporphyrin IX)
<Search for compounds that suppress the binding of CLEC-2 to podoplanin (primary screening)>
Using a library of 15,000 kinds of low molecular weight compounds centering on natural products at the RIKEN Chemical Biology Research Base Facility, primary screening of compounds that inhibit the binding of CLEC-2 to podoplanin is performed by the following method. went.
An ELISA detection system capable of detecting the binding between the recombinant CLEC-2 and the recombinant podopranin was constructed, and primary screening was performed by measurement using the ELISA detection system.
-リコンビナントCLEC-2の調製-
 リコンビナントCLEC-2として、文献「JBC,2007;282(36):25993-26001」に記載の方法にしたがって、ヒトCLEC-2-rFc2を調製した。
-Preparation of recombinant CLEC-2-
Human CLEC-2-rFc2 was prepared as recombinant CLEC-2 according to the method described in the document “JBC, 2007; 282 (36): 25993-2601”.
-リコンビナントポドプラニンの調製-
 リコンビナントポドプラニンとして、文献「JBC,2007;282(36):25993-26001」に記載の方法にしたがって、ヒトポドプラニン-hFc2-Biotinを調製した。
-Preparation of recombinant podopranin-
As a recombinant podopranin, human podoplanin-hFc2-Biotin was prepared according to the method described in the literature “JBC, 2007; 282 (36): 25993-2601”.
-ELISA検出系による測定-
 96ウェルプレート(Immulon(登録商標)2HB、Thermo Scientific社製)に固相蛋白液(1μg/100mLのヒトCLEC-2-rFc2を含むPBS、pH7.4)100μLを滴下し、プレートシールをして、4℃にて8時間~24時間反応させた。固相蛋白液を除去後、洗浄液(0.05体積%Tween20を含むPBS、pH7.2)400μLで1回洗浄した。次いで、ブロック剤(Super Block、Scy Laboratories社製)150μLを加え、正確に5分間放置した。ブロック剤を除去後、洗浄液400μLで2回洗浄した。
-Measurement using ELISA detection system-
100 μL of a solid phase protein solution (PBS containing 1 μg / 100 mL of human CLEC-2-rFc2, pH 7.4) was added dropwise to a 96-well plate (Immulon (registered trademark) 2HB, manufactured by Thermo Scientific), and the plate was sealed. The reaction was carried out at 4 ° C. for 8 to 24 hours. After removing the solid phase protein solution, it was washed once with 400 μL of a washing solution (PBS containing 0.05 vol% Tween 20, pH 7.2). Next, 150 μL of a blocking agent (Super Block, manufactured by Scy Laboratories) was added, and the mixture was allowed to stand accurately for 5 minutes. After removing the blocking agent, washing was performed twice with 400 μL of the washing solution.
 得られたリコンビナントCLEC-2をコートしたELISAプレートの各ウェルに、前記低分子化合物ライブラリーの各化合物の溶液(10μg/mL)100μLを滴下し、前記溶液を除去後、洗浄液400μLで3回洗浄した。次いで、検出蛋白液(1μg/100mLのヒトポドプラニン-hFc2-Biotinを含むPBS、pH7.4)100μLを滴下して、室温(25℃)にて1時間反応させた。検出蛋白液を除去後、洗浄液400μLで3回洗浄した。検出試薬(streptoAvidin-HRP、Vector Laboratories,CA社製)100μLを滴下して1時間反応させた。検出試薬を除去後、洗浄液400μLで3回洗浄した。次いで、TBM液(T0440、SIGMA-ALDRICH社製)を100μL滴下し、暗室にて3分間~5分間反応させた後、反応停止液(0.5MのHCl)を50μL加え、マイクロプレートリーダー(装置名:マルチラベルカウンター、ARV0mx-U1 1420-050J、Perkin Elmer社製)にて450nmでの吸光度を測定した。 To each well of the obtained ELISA plate coated with the recombinant CLEC-2, 100 μL of each compound solution (10 μg / mL) of the low molecular compound library was dropped, and after removing the solution, washed with 400 μL of the washing solution three times. did. Subsequently, 100 μL of a detection protein solution (PBS containing 1 μg / 100 mL of human podoplanin-hFc2-Biotin, pH 7.4) was added dropwise and reacted at room temperature (25 ° C.) for 1 hour. After removing the detection protein solution, it was washed with 400 μL of the washing solution three times. 100 μL of a detection reagent (streptAvidin-HRP, Vector Laboratories, CA) was added dropwise and reacted for 1 hour. After removing the detection reagent, it was washed 3 times with 400 μL of washing solution. Next, 100 μL of TBM solution (T0440, manufactured by SIGMA-ALDRICH) was dropped and reacted in a dark room for 3 to 5 minutes. Then, 50 μL of a reaction stop solution (0.5 M HCl) was added, and a microplate reader (apparatus Name: Absorbance at 450 nm was measured with a multi-label counter, ARV0mx-U1, 1420-050J, manufactured by Perkin Elmer).
 なお、陰性コントロールとして、各化合物の溶液、及び検出蛋白液に代えて、それぞれPBSを用いた。また、陽性コントロールとして、各化合物の溶液に代えてPBSを用いた。
 各化合物の吸光度から、下記式1により、結合抑制率を算出した。結合抑制率が40%以上の化合物を、CLEC-2に対する結合活性を有する化合物と判断した。
〔式1〕
 結合抑制率(%)=100-(各化合物の吸光度―陰性コントロールの吸光度)/(陽性コントロールの吸光度-陰性コントロールの吸光度)
As a negative control, PBS was used instead of each compound solution and detection protein solution. As a positive control, PBS was used instead of the solution of each compound.
From the absorbance of each compound, the binding inhibition rate was calculated by the following formula 1. A compound having a binding inhibition rate of 40% or more was judged as a compound having binding activity to CLEC-2.
[Formula 1]
Binding inhibition rate (%) = 100− (absorbance of each compound−absorbance of negative control) / (absorbance of positive control−absorbance of negative control)
 図1に、実施例1における一次スクリーニングのフロー、及び結果を説明する図を示す。陽性コントロールにおいては、CLEC-2とポドプラニンとの結合に由来する波長450nmのシグナルが観察される。これに対して、図1に示す通り、CLEC-2に結合する化合物Aを投与した場合、CLEC-2とポドプラニンとの結合が抑制され、前記陽性コントロールで観察されたシグナルが低減される。一方、CLEC-2に結合しない(又は、ポドプラニンとの結合を抑制しない)化合物Bを投与した場合、CLEC-2とポドプラニンとの結合が抑制されないため、前記陽性コントロールで観察されたシグナルは変化しない。 FIG. 1 is a diagram for explaining the flow and results of the primary screening in Example 1. In the positive control, a signal having a wavelength of 450 nm derived from the binding of CLEC-2 and podoplanin is observed. In contrast, as shown in FIG. 1, when Compound A that binds to CLEC-2 is administered, the binding between CLEC-2 and podoplanin is suppressed, and the signal observed in the positive control is reduced. On the other hand, when Compound B that does not bind to CLEC-2 (or does not suppress binding to podoplanin) is administered, the signal observed in the positive control does not change because binding between CLEC-2 and podoplanin is not suppressed. .
 以上の通り、リコンビナントCLEC-2とリコンビナントポドプラニンとの結合に対して、前記低分子化合物ライブラリーの各化合物がその結合を抑制するか否かを指標として、CLEC-2に結合する低分子化合物リガンドを探索した。その結果、ポルフィリン骨格を有する化合物であるプロトポルフィリンIX(「H-PP」と称することがある。)を含む、64種類の化合物が得られた。 As described above, a small molecule that binds to CLEC-2 with respect to the binding between recombinant CLEC-2 and recombinant podopranin, using as an index whether or not each compound in the low molecular compound library suppresses the binding. Compound ligands were searched. As a result, 64 types of compounds including protoporphyrin IX (sometimes referred to as “H 2 -PP”), which is a compound having a porphyrin skeleton, were obtained.
<CLEC-2とポドプラニンとの結合を抑制する化合物の評価(二次スクリーニング)>
 一次スクリーニングにおいて得られた64種類の化合物について、次いで、CLEC-2発現培養細胞を用いたフローサイトメーターによって二次スクリーニングを行った。
<Evaluation of compounds that suppress the binding of CLEC-2 to podoplanin (secondary screening)>
The 64 compounds obtained in the primary screening were then subjected to secondary screening by a flow cytometer using CLEC-2 expressing cultured cells.
-CLEC-2発現培養細胞の調製-
 CLEC-2発現培養細胞として、文献「J Virol. 2003;77(7):4070-4080」に記載の方法にしたがって、ヒトCLEC-2発現293TREx細胞を調製した。
 なお、この細胞は、Tet onシステムにより、ドキシサイクリン添加でCLEC-2を発現する細胞であり、フローサイトメーターによる測定の24時間前に、終濃度1μg/mLのドキシサイクリンを添加することによってCLEC-2の発現を誘導した。
-Preparation of CLEC-2 expressing cultured cells-
As CLEC-2 expressing cultured cells, human CLEC-2 expressing 293TRex cells were prepared according to the method described in the literature “J Virol. 2003; 77 (7): 4070-4080”.
This cell is a cell that expresses CLEC-2 by the addition of doxycycline by the Tet on system, and CLEC-2 is added by adding doxycycline at a final concentration of 1 μg / mL 24 hours before measurement with a flow cytometer. Expression was induced.
-ヒトポドプラニン-ヒトFc2の調製-
 リコンビナントポドプラニンとして、文献「JBC,2007;282(36):25993-26001」に記載の方法にしたがって、ヒトポドプラニン-ヒトFc2を調製した。
-Human podoplanin -Preparation of human Fc2-
As a recombinant podopranin, human podoplanin-human Fc2 was prepared according to the method described in the document “JBC, 2007; 282 (36): 25993-2601”.
-CLEC-2発現培養細胞を用いたフローサイトメーターによる測定-
 ヒトCLEC-2発現293TREx細胞2.5×10細胞を含むPBS50μLを1.5mLマイクロチューブに加えた。20μg/mLの各化合物を終濃度5μg/mLとなるように前記マイクロチューブに加えて4℃で30分間静置した。次いで、5μg/mLとなるようにヒトポドプラニン-ヒトFc2又はヒトFc2を添加して(ただし、検出モードFL1で自家蛍光が出る化合物に関しては、ビオチン標識したヒトポドプラニン-ヒトFc2又はビオチン標識したヒトFc2を添加して)4℃で30分間静置した。更に、1mLのPBSを加えて洗浄し、余分な化合物やリコンビナント蛋白質を除き、0.1mLのPBSを加えて再懸濁した。その後、抗ヒトIgG抗体-FITCを添加して(ただし、検出モードFL1で自家蛍光が出る化合物に関しては、APCラベルavidinを添加して)4℃で20分間静置した。得られた試料に300μLのPBSを加えてフローサイトメーター(装置名:BD Accuri(登録商標)C6、BD Bioscience社製)の検出モードFL1で解析した(ただし、検出モードFL1で自家蛍光が出る化合物に関しては、検出モードFL4で解析した)。
 なお、陰性コントロールとして、各化合物の溶液に代えて1μLのDMSOを添加した試料を用いた。また、別の陰性コントロールとして、ヒトポドプラニン-ヒトFc2に代えてヒトFc2を添加した試料を用いた。陽性コントロールとして、各化合物の溶液に代えて終濃度50nMのロドサイチンを添加した試料を用いた。
-Measurement with a flow cytometer using CLEC-2 expressing cultured cells-
50 μL of PBS containing human CLEC-2 expressing 293TRex cells 2.5 × 10 5 cells was added to a 1.5 mL microtube. 20 μg / mL of each compound was added to the microtube to a final concentration of 5 μg / mL and allowed to stand at 4 ° C. for 30 minutes. Next, human podoplanin-human Fc2 or human Fc2 is added so as to be 5 μg / mL (however, for compounds that emit autofluorescence in detection mode FL1, biotin-labeled human podoplanin-human Fc2 or biotin-labeled human Fc2 is added. And left at 4 ° C. for 30 minutes. Further, 1 mL of PBS was added for washing, excess compounds and recombinant proteins were removed, and 0.1 mL of PBS was added for resuspension. Thereafter, anti-human IgG antibody-FITC was added (however, with respect to a compound that exhibits autofluorescence in detection mode FL1, an APC label avidin was added) and left at 4 ° C. for 20 minutes. 300 μL of PBS was added to the obtained sample and analyzed in detection mode FL1 of a flow cytometer (device name: BD Accuri (registered trademark) C6, manufactured by BD Bioscience) (provided that autofluorescence was detected in detection mode FL1) Were analyzed in detection mode FL4).
As a negative control, a sample to which 1 μL of DMSO was added instead of the solution of each compound was used. As another negative control, a sample to which human Fc2 was added instead of human podoplanin-human Fc2 was used. As a positive control, a sample to which rhodocytin having a final concentration of 50 nM was added instead of the solution of each compound was used.
 図2に、実施例1における二次スクリーニングの結果を説明する図を示す。化合物非存在下では(図2の左パネル参照)、陰性コントロールであるヒトFc2をヒトポドプラニン-ヒトFc2に置換することにより、CLEC-2とポドプラニンとの結合に由来するピークシフトが観察される。一方、CLEC-2に結合する化合物を投与した場合(図2の右パネル参照)、CLEC-2とポドプラニンとの結合が完全に抑制されると、CLEC-2とポドプラニンとの結合に由来するピークシフトが全く観察されず、陰性コントロールに由来するピークに完全に重なるピークが観察される。また、CLEC-2とポドプラニンとの結合が部分的に抑制された場合(図示せず)、抑制の程度に依存して、陰性コントロールに由来するピークと、CLEC-2とポドプラニンとの結合に由来するピークとの間のピークが観察される。 FIG. 2 shows a diagram for explaining the results of the secondary screening in Example 1. In the absence of the compound (see the left panel of FIG. 2), a peak shift derived from the binding of CLEC-2 and podoplanin is observed by substituting human podoplanin-human Fc2 as a negative control. On the other hand, when a compound that binds to CLEC-2 is administered (see the right panel of FIG. 2), when the binding between CLEC-2 and podoplanin is completely suppressed, the peak derived from the binding between CLEC-2 and podoplanin No shift is observed and a peak that completely overlaps the peak from the negative control is observed. In addition, when the binding between CLEC-2 and podoplanin is partially suppressed (not shown), depending on the degree of suppression, it is derived from the peak derived from the negative control and the binding between CLEC-2 and podoplanin. A peak in between is observed.
 下記式2により、結合抑制率を算出した。結合抑制率が40%以上の化合物を、CLEC-2に対する結合活性を有する化合物と判断した。
〔式2〕
 結合抑制率(%)=100-100×(T-N)/(P-N)
 ただし、前記式中、P、N、及びTは以下の通りである。
 P:化合物の陽性コントロール(ヒトポドプラニン-ヒトFc2、DMSO)に由来するmean fluorescent intensity(MFI)
 N:結合の陰性コントロール(ヒトFc2、DMSO)に由来するMFI
 T:化合物を投与した場合に由来するMFI
The binding inhibition rate was calculated by the following formula 2. A compound having a binding inhibition rate of 40% or more was judged as a compound having binding activity to CLEC-2.
[Formula 2]
Binding inhibition rate (%) = 100-100 × (TN) / (PN)
In the above formula, P, N, and T are as follows.
P: mean fluorescent intensity (MFI) derived from compound positive control (human podoplanin-human Fc2, DMSO)
N: MFI derived from negative binding control (human Fc2, DMSO)
T: MFI derived from administration of compound
 以上の通り、CLEC-2発現細胞とリコンビナントポドプラニンとの結合に対して、一次スクリーニングにて同定した各化合物がその結合を抑制するか否か(結合抑制率40%以上)を指標として、CLEC-2とポドプラニンとの結合を抑制する化合物を探索した。
 その結果、ポルフィリン骨格を有する化合物であるプロトポルフィリンIX(H-PP)が得られた。実施例1におけるプロトポルフィリンIX(H-PP)のフローサイトメーターによる評価結果を図3に示す。プロトポルフィリンIXの結合抑制率は、86.2%であった。
As described above, with respect to the binding between CLEC-2 expressing cells and recombinant podopranin, whether or not each compound identified in the primary screening suppresses the binding (binding suppression rate of 40% or more) is used as an index. A compound that suppresses the binding between CLEC-2 and podoplanin was searched.
As a result, protoporphyrin IX (H 2 -PP), which is a compound having a porphyrin skeleton, was obtained. FIG. 3 shows the evaluation results of protoporphyrin IX (H 2 -PP) in Example 1 using a flow cytometer. The binding inhibition rate of protoporphyrin IX was 86.2%.
 以下の実施例2~5及び7~9に示す通り、実施例1の二次スクリーニングにおいて得られたプロトポルフィリンIXを最適化するため、プロトポルフィリンIXの類似物質として、プロトポルフィリン金属錯体及びヘマトポルフィリン金属錯体を製造した。
 また、以下の実施例2~11では、評価対象の化合物として、実施例2~11のプロトポルフィリンIXの類似物質を用いた以外は、実施例1の二次スクリーニングと同様にしてCLEC-2とポドプラニンとの結合を抑制する化合物の評価及び最適化を行った。
In order to optimize the protoporphyrin IX obtained in the secondary screening of Example 1 as shown in Examples 2 to 5 and 7 to 9 below, protoporphyrin metal complex and hematoporphyrin are used as analogs of protoporphyrin IX. A metal complex was prepared.
Further, in Examples 2 to 11 below, CLEC-2 and CLEC-2 were obtained in the same manner as in the secondary screening of Example 1, except that the compounds to be evaluated were similar to the protoporphyrin IX of Examples 2 to 11. Evaluation and optimization of compounds that inhibit the binding to podoplanin were performed.
(実施例2:プロトポルフィリン亜鉛錯体)
<プロトポルフィリン亜鉛錯体(Zn-PP)の合成及び同定>
 プロトポルフィリン 二ナトリウム塩(東京化成工業株式会社製、100mg、0.165mmol)にジメチルスルホキシド(DMSO)20mL、蒸留水5mLを加えて溶解したところに酢酸亜鉛(390mg、1.78mmol)加え、80℃で2時間加熱撹拌した。その後、室温(25℃)まで冷却し、エタノールを加えて結晶化させ、得られた沈殿を蒸留水で洗浄し、収率98%で紫色沈殿(109mg)を得た。
 得られた化合物の同定を、H-NMR、紫外線-可視光吸収スペクトル(UV-visスペクトル)、及び蛍光スペクトルにより行った結果、プロトポルフィリン亜鉛錯体が得られたことが分かった。反応式を下記反応式(1)に示す。実施例2のUV-visスペクトル、及び蛍光スペクトルによる測定結果を図4に示す。また、実施例2のH-NMRによる測定結果を図5に示す。
 なお、UV-visスペクトル測定には、UV-1800(株式会社島津製作所製)、蛍光スペクトル測定には、FP-6300(日本分光株式会社製)を用い、図中、UV-visスペクトルを実線で示し、蛍光スペクトルを破線で示した。H-NMR測定には、AVANCE 400(Bruker社製)を用い、重DMSO中で測定を行った。
(Example 2: Protoporphyrin zinc complex)
<Synthesis and Identification of Protoporphyrin Zinc Complex (Zn-PP)>
Zinc acetate (390 mg, 1.78 mmol) was added to a solution obtained by adding 20 mL of dimethyl sulfoxide (DMSO) and 5 mL of distilled water to protoporphyrin disodium salt (manufactured by Tokyo Chemical Industry Co., Ltd., 100 mg, 0.165 mmol). And stirred for 2 hours. Then, it cooled to room temperature (25 degreeC), ethanol was added and crystallized, and the obtained precipitation was wash | cleaned with distilled water, and the purple precipitate (109 mg) was obtained with yield 98%.
The obtained compound was identified by 1 H-NMR, ultraviolet-visible light absorption spectrum (UV-vis spectrum), and fluorescence spectrum, and it was found that a protoporphyrin zinc complex was obtained. The reaction formula is shown in the following reaction formula (1). FIG. 4 shows the measurement results of the UV-vis spectrum and fluorescence spectrum of Example 2. The measurement result by 1 H-NMR of Example 2 is shown in FIG.
UV-vis spectrum measurement was performed using UV-1800 (manufactured by Shimadzu Corporation), and fluorescence spectrum measurement was performed using FP-6300 (manufactured by JASCO Corporation). In the figure, the UV-vis spectrum is indicated by a solid line. The fluorescence spectrum is shown by a broken line. For 1 H-NMR measurement, AVANCE 400 (manufactured by Bruker) was used, and measurement was performed in heavy DMSO.
〔反応式(1)〕
Figure JPOXMLDOC01-appb-C000033
 (ただし、前記反応式(1)中、Zn(OAc)は酢酸亜鉛を表し、DMSOはジメチルスルホキシドを表す。)
[Reaction Formula (1)]
Figure JPOXMLDOC01-appb-C000033
(In the reaction formula (1), Zn (OAc) 2 represents zinc acetate, and DMSO represents dimethyl sulfoxide.)
<CLEC-2とポドプラニンとの結合抑制評価>
 実施例1の二次スクリーニングにおいて、評価対象の化合物として、終濃度5μg/mLのプロトポルフィリン亜鉛錯体を用いた以外は、実施例1の二次スクリーニングと同様にしてCLEC-2とポドプラニンとの結合を抑制する化合物の評価を行った。プロトポルフィリン亜鉛錯体のフローサイトメーターによる評価結果を図6に示す。プロトポルフィリン亜鉛錯体の結合抑制率は、71.2%であった。
<Evaluation of binding inhibition between CLEC-2 and podoplanin>
In the secondary screening of Example 1, binding of CLEC-2 and podoplanin was performed in the same manner as in the secondary screening of Example 1, except that a protoporphyrin zinc complex having a final concentration of 5 μg / mL was used as the compound to be evaluated. Evaluation of compounds that inhibit the above was performed. The evaluation result by the flow cytometer of a protoporphyrin zinc complex is shown in FIG. The binding inhibition rate of the protoporphyrin zinc complex was 71.2%.
(実施例3:プロトポルフィリンニッケル錯体)
<プロトポルフィリンニッケル錯体(Ni-PP)の合成及び同定>
 プロトポルフィリン 二ナトリウム塩(東京化成工業株式会社製、100mg、0.165mmol)にDMSO 20mL、蒸留水5mLを加え溶解したところに酢酸ニッケル(610mg、2.47mmol)加え、80℃で8時間加熱撹拌した。その後、室温(25℃)まで冷却し、メタノールを加えて結晶化させ、得られた沈殿を蒸留水で洗浄した。この沈殿を酢酸-蒸留水で再結晶を行うことにより収率65%で深紫色沈殿(71mg)を得た。
 得られた化合物の同定を、UV-visスペクトル、及び蛍光スペクトルにより行った結果、プロトポルフィリンニッケル錯体が得られたことが分かった。反応式を下記反応式(2)に示す。実施例3のUV-visスペクトル、及び蛍光スペクトルによる測定結果を図7に示す。
(Example 3: Protoporphyrin nickel complex)
<Synthesis and Identification of Protoporphyrin Nickel Complex (Ni-PP)>
To a protoporphyrin disodium salt (Tokyo Chemical Industry Co., Ltd., 100 mg, 0.165 mmol) was added DMSO (20 mL) and distilled water (5 mL), nickel acetate (610 mg, 2.47 mmol) was added to the solution, and the mixture was heated and stirred at 80 ° C. for 8 hours. did. Then, it cooled to room temperature (25 degreeC), methanol was added and crystallized, and the obtained precipitation was wash | cleaned with distilled water. This precipitate was recrystallized with acetic acid-distilled water to obtain a deep purple precipitate (71 mg) with a yield of 65%.
The obtained compound was identified by UV-vis spectrum and fluorescence spectrum, and it was found that a protoporphyrin nickel complex was obtained. The reaction formula is shown in the following reaction formula (2). FIG. 7 shows the measurement results of the UV-vis spectrum and fluorescence spectrum of Example 3.
〔反応式(2)〕
Figure JPOXMLDOC01-appb-C000034
 (ただし、前記反応式(2)中、Ni(OAc)は酢酸ニッケルを表し、DMSOはジメチルスルホキシドを表す。)
[Reaction Formula (2)]
Figure JPOXMLDOC01-appb-C000034
(However, in the reaction formula (2), Ni (OAc) 2 represents nickel acetate and DMSO represents dimethyl sulfoxide.)
<CLEC-2とポドプラニンとの結合抑制評価>
 実施例1の二次スクリーニングにおいて、評価対象の化合物として、終濃度5μg/mLのプロトポルフィリンニッケル錯体を用いた以外は、実施例1の二次スクリーニングと同様にしてCLEC-2とポドプラニンとの結合を抑制する化合物の評価を行った。プロトポルフィリンニッケル錯体のフローサイトメーターによる評価結果を図8に示す。プロトポルフィリンニッケル錯体の結合抑制率は、50.4%であった。
<Evaluation of binding inhibition between CLEC-2 and podoplanin>
In the secondary screening of Example 1, binding of CLEC-2 and podoplanin was performed in the same manner as in the secondary screening of Example 1, except that a protoporphyrin nickel complex having a final concentration of 5 μg / mL was used as the evaluation target compound. Evaluation of compounds that inhibit the above was performed. FIG. 8 shows the evaluation results of the protoporphyrin nickel complex using a flow cytometer. The binding inhibition rate of the protoporphyrin nickel complex was 50.4%.
(実施例4:プロトポルフィリンコバルト錯体)
<プロトポルフィリンコバルト錯体(Co-PP)の合成及び同定>
 プロトポルフィリン 二ナトリウム塩(東京化成工業株式会社製、100mg、0.165mmol)に酢酸20mLを加え溶解したところに酢酸コバルト(II)4水和物(410mg、1.65mmol)加え、90℃で24時間加熱撹拌した。その後、室温(25℃)まで冷却した後、蒸留水150mLに反応混合物を加えて約4℃に冷却することにより収率93%で深紫色沈殿(102mg)を得た。
 得られた化合物の同定を、UV-visスペクトル、及び蛍光スペクトルにより行った結果、プロトポルフィリンコバルト錯体が得られたことが分かった。反応式を下記反応式(3)に示す。実施例4のUV-visスペクトル、及び蛍光スペクトルによる測定結果を図9に示す。
(Example 4: Protoporphyrin cobalt complex)
<Synthesis and Identification of Protoporphyrin Cobalt Complex (Co-PP)>
When 20 mL of acetic acid was added to and dissolved in protoporphyrin disodium salt (Tokyo Chemical Industry Co., Ltd., 100 mg, 0.165 mmol), cobalt acetate (II) tetrahydrate (410 mg, 1.65 mmol) was added to the solution. Stir for hours. Thereafter, after cooling to room temperature (25 ° C.), the reaction mixture was added to 150 mL of distilled water and cooled to about 4 ° C. to obtain a deep purple precipitate (102 mg) at a yield of 93%.
As a result of identification of the obtained compound by UV-vis spectrum and fluorescence spectrum, it was found that a protoporphyrin cobalt complex was obtained. The reaction formula is shown in the following reaction formula (3). FIG. 9 shows the measurement results of the UV-vis spectrum and fluorescence spectrum of Example 4.
〔反応式(3)〕
Figure JPOXMLDOC01-appb-C000035
 (ただし、前記反応式(3)中、Co(OAc)は酢酸コバルト(II)を表す。)
[Reaction Formula (3)]
Figure JPOXMLDOC01-appb-C000035
(In the reaction formula (3), Co (OAc) 2 represents cobalt acetate (II).)
<CLEC-2とポドプラニンとの結合抑制評価>
 実施例1の二次スクリーニングにおいて、評価対象の化合物として、終濃度5μg/mLのプロトポルフィリンコバルト錯体を用いた以外は、実施例1の二次スクリーニングと同様にしてCLEC-2とポドプラニンとの結合を抑制する化合物の評価を行った。プロトポルフィリンコバルト錯体のフローサイトメーターによる評価結果を図10に示す。プロトポルフィリンコバルト錯体の結合抑制率は、79.4%であった。
<Evaluation of binding inhibition between CLEC-2 and podoplanin>
In the secondary screening of Example 1, binding of CLEC-2 and podoplanin was performed in the same manner as in the secondary screening of Example 1, except that a protoporphyrin cobalt complex having a final concentration of 5 μg / mL was used as the compound to be evaluated. Evaluation of compounds that inhibit the above was performed. The evaluation result by the flow cytometer of a protoporphyrin cobalt complex is shown in FIG. The binding inhibition rate of the protoporphyrin cobalt complex was 79.4%.
(実施例5:プロトポルフィリンパラジウム錯体)
<プロトポルフィリンパラジウム錯体(Pd-PP)の合成及び同定>
 プロトポルフィリン 二ナトリウム塩(東京化成工業株式会社製、50mg、0.083mmol)に酢酸10mLを加え溶解したところに酢酸パラジウム(II)(92mg、0.415mmol)加え、90℃で24時間加熱撹拌した。その後、室温(25℃)まで冷却した後、蒸留水50mLに反応混合物を加えて結晶化させ、得られた沈殿をDMSO-メタノール及びDMSO-蒸留水で再結晶を行うことで定量的収率にて深紫色沈殿(65mg)を得た。
 得られた化合物の同定を、UV-visスペクトル、及び蛍光スペクトルにより行った結果、プロトポルフィリンパラジウム錯体が得られたことが分かった。反応式を下記反応式(4)に示す。実施例5のUV-visスペクトル、及び蛍光スペクトルによる測定結果を図11に示す。
(Example 5: Protoporphyrin palladium complex)
<Synthesis and Identification of Protoporphyrin Palladium Complex (Pd-PP)>
To a protoporphyrin disodium salt (manufactured by Tokyo Chemical Industry Co., Ltd., 50 mg, 0.083 mmol) was added 10 mL of acetic acid and dissolved therein, palladium (II) acetate (92 mg, 0.415 mmol) was added, and the mixture was heated and stirred at 90 ° C. for 24 hours. . Then, after cooling to room temperature (25 ° C.), the reaction mixture is added to 50 mL of distilled water to crystallize, and the resulting precipitate is recrystallized with DMSO-methanol and DMSO-distilled water to obtain a quantitative yield. Deep purple precipitate (65 mg) was obtained.
The obtained compound was identified by UV-vis spectrum and fluorescence spectrum, and it was found that a protoporphyrin palladium complex was obtained. The reaction formula is shown in the following reaction formula (4). FIG. 11 shows the measurement results of the UV-vis spectrum and fluorescence spectrum of Example 5.
〔反応式(4)〕
Figure JPOXMLDOC01-appb-C000036
 (ただし、前記反応式(4)中、Pd(OAc)は酢酸パラジウム(II)を表す。)
[Reaction Formula (4)]
Figure JPOXMLDOC01-appb-C000036
(In the reaction formula (4), Pd (OAc) 2 represents palladium acetate (II).)
<CLEC-2とポドプラニンとの結合抑制評価>
 実施例1の二次スクリーニングにおいて、評価対象の化合物として、終濃度5μg/mLのプロトポルフィリンパラジウム錯体を用いた以外は、実施例1の二次スクリーニングと同様にしてCLEC-2とポドプラニンとの結合を抑制する化合物の評価を行った。プロトポルフィリンパラジウム錯体のフローサイトメーターによる評価結果を図12に示す。プロトポルフィリンパラジウム錯体の結合抑制率は、66.7%であった。
<Evaluation of binding inhibition between CLEC-2 and podoplanin>
In the secondary screening of Example 1, binding of CLEC-2 and podoplanin was performed in the same manner as in the secondary screening of Example 1, except that a protoporphyrin palladium complex having a final concentration of 5 μg / mL was used as the compound to be evaluated. Evaluation of compounds that inhibit the above was performed. FIG. 12 shows the evaluation results of the protoporphyrin palladium complex using a flow cytometer. The binding inhibition rate of the protoporphyrin palladium complex was 66.7%.
(実施例6:ヘマトポルフィリン)
<CLEC-2とポドプラニンとの結合抑制評価>
 実施例1の二次スクリーニングにおいて、評価対象の化合物として、終濃度5μg/mLのヘマトポルフィリン(和光純薬工業株式会社製)を用いた以外は、実施例1の二次スクリーニングと同様にしてCLEC-2とポドプラニンとの結合を抑制する化合物の評価を行った。ヘマトポルフィリンのフローサイトメーターによる評価結果を図13に示す。ヘマトポルフィリンの結合抑制率は、90.2%であった。
(Example 6: Hematoporphyrin)
<Evaluation of binding inhibition between CLEC-2 and podoplanin>
In the secondary screening of Example 1, CLEC was performed in the same manner as the secondary screening of Example 1, except that hematoporphyrin (manufactured by Wako Pure Chemical Industries, Ltd.) having a final concentration of 5 μg / mL was used as the evaluation target compound. -2 was evaluated for compounds that inhibit the binding of podoplanin. The evaluation results of hematoporphyrin using a flow cytometer are shown in FIG. The binding inhibition rate of hematoporphyrin was 90.2%.
(実施例7:ヘマトポルフィリン亜鉛錯体)
<ヘマトポルフィリン亜鉛錯体(Zn-HP)の合成及び同定>
 ヘマトポルフィリン(和光純薬工業株式会社製、100mg、0.167mmol)にメタノール20mLを加え溶解したところに飽和酢酸亜鉛メタノール溶液2mLを加え、室温(25℃)で一晩(8時間)撹拌した。その後、蒸留水50mLに反応混合物を加えて約4℃に冷却することで定量的収率にて紫色沈殿(116mg)を得た。
 得られた化合物の同定を、H-NMR、UV-visスペクトル、及び蛍光スペクトルにより行った結果、ヘマトポルフィリン亜鉛錯体が得られたことが分かった。反応式を下記反応式(5)に示す。実施例7のUV-visスペクトル、及び蛍光スペクトルによる測定結果を図14に示す。また、合成例1のH-NMRによる測定結果を図15に示す。
(Example 7: Hematoporphyrin zinc complex)
<Synthesis and Identification of Hematoporphyrin Zinc Complex (Zn-HP)>
20 ml of methanol was added to hematoporphyrin (manufactured by Wako Pure Chemical Industries, Ltd., 100 mg, 0.167 mmol) and dissolved, 2 ml of a saturated zinc acetate / methanol solution was added, and the mixture was stirred overnight (8 hours) at room temperature (25 ° C.). Thereafter, the reaction mixture was added to 50 mL of distilled water and cooled to about 4 ° C. to obtain a purple precipitate (116 mg) in a quantitative yield.
The obtained compound was identified by 1 H-NMR, UV-vis spectrum, and fluorescence spectrum, and it was found that a hematoporphyrin zinc complex was obtained. The reaction formula is shown in the following reaction formula (5). FIG. 14 shows the measurement results of the UV-vis spectrum and the fluorescence spectrum of Example 7. Further, FIG. 15 shows the measurement result of Synthesis Example 1 by 1 H-NMR.
〔反応式(5)〕
Figure JPOXMLDOC01-appb-C000037
 (ただし、前記反応式(5)中、Zn(OAc)は酢酸亜鉛を表し、MeOHはメタノールを表す。)
[Reaction Formula (5)]
Figure JPOXMLDOC01-appb-C000037
(In the reaction formula (5), Zn (OAc) 2 represents zinc acetate, and MeOH represents methanol.)
<CLEC-2とポドプラニンとの結合抑制評価>
 実施例1の二次スクリーニングにおいて、評価対象の化合物として、終濃度5μg/mLのヘマトポルフィリン亜鉛錯体を用いた以外は、実施例1の二次スクリーニングと同様にしてCLEC-2とポドプラニンとの結合を抑制する化合物の評価を行った。ヘマトポルフィリン亜鉛錯体のフローサイトメーターによる評価結果を図16に示す。ヘマトポルフィリン亜鉛錯体の結合抑制率は、81.3%であった。
<Evaluation of binding inhibition between CLEC-2 and podoplanin>
In the secondary screening of Example 1, binding of CLEC-2 and podoplanin was performed in the same manner as in the secondary screening of Example 1, except that a hematoporphyrin zinc complex having a final concentration of 5 μg / mL was used as the compound to be evaluated. Evaluation of compounds that inhibit the above was performed. FIG. 16 shows the results of evaluation of the hematoporphyrin zinc complex using a flow cytometer. The binding inhibition rate of the hematoporphyrin zinc complex was 81.3%.
(実施例8:ヘマトポルフィリン銅錯体)
<ヘマトポルフィリン銅錯体(Cu-HP)の合成及び同定>
 ヘマトポルフィリン(和光純薬工業株式会社製、100mg、0.167mmol)に酢酸20mLを加え溶解したところに酢酸銅(II)(300mg、1.65mmol)加え、室温(25℃)で24時間撹拌した。その後、蒸留水150mLに反応混合物を加えて約4℃に冷却することで定量的収率にて紫色沈殿(162mg)を得た。
 得られた化合物の同定を、UV-visスペクトル、及び蛍光スペクトルにより行った結果、ヘマトポルフィリン銅錯体が得られたことが分かった。反応式を下記反応式(6)に示す。実施例8のUV-visスペクトル、及び蛍光スペクトルによる測定結果を図17に示す。
(Example 8: Hematoporphyrin copper complex)
<Synthesis and Identification of Hematoporphyrin Copper Complex (Cu-HP)>
To hematoporphyrin (Wako Pure Chemical Industries, Ltd., 100 mg, 0.167 mmol), 20 mL of acetic acid was added and dissolved, copper (II) acetate (300 mg, 1.65 mmol) was added, and the mixture was stirred at room temperature (25 ° C.) for 24 hours. . Thereafter, the reaction mixture was added to 150 mL of distilled water and cooled to about 4 ° C. to obtain a purple precipitate (162 mg) in a quantitative yield.
As a result of identification of the obtained compound by UV-vis spectrum and fluorescence spectrum, it was found that a hematoporphyrin copper complex was obtained. The reaction formula is shown in the following reaction formula (6). FIG. 17 shows the measurement results of the UV-vis spectrum and fluorescence spectrum of Example 8.
〔反応式(6)〕
Figure JPOXMLDOC01-appb-C000038
 (ただし、前記反応式(6)中、Cu(OAc)は酢酸銅(II)を表す。)
[Reaction Formula (6)]
Figure JPOXMLDOC01-appb-C000038
(In the reaction formula (6), Cu (OAc) 2 represents copper acetate (II).)
<CLEC-2とポドプラニンとの結合抑制評価>
 実施例1の二次スクリーニングにおいて、評価対象の化合物として、終濃度5μg/mLのヘマトポルフィリン銅錯体を用いた以外は、実施例1の二次スクリーニングと同様にしてCLEC-2とポドプラニンとの結合を抑制する化合物の評価を行った。ヘマトポルフィリン銅錯体のフローサイトメーターによる評価結果を図18に示す。ヘマトポルフィリン銅錯体の結合抑制率は、84.0%であった。
<Evaluation of binding inhibition between CLEC-2 and podoplanin>
In the secondary screening of Example 1, binding of CLEC-2 and podoplanin was performed in the same manner as in the secondary screening of Example 1, except that a hematoporphyrin copper complex having a final concentration of 5 μg / mL was used as the compound to be evaluated. Evaluation of compounds that inhibit the above was performed. FIG. 18 shows the results of evaluation of the hematoporphyrin copper complex using a flow cytometer. The binding inhibition rate of the hematoporphyrin copper complex was 84.0%.
(実施例9:ヘマトポルフィリンコバルト錯体)
<ヘマトポルフィリンコバルト錯体(Co-HP)の合成及び同定>
 ヘマトポルフィリン(和光純薬工業株式会社製、100mg、0.167mmol)に酢酸20mLを加え溶解したところに酢酸コバルト(II)4水和物(410mg、1.65mmol)加え、室温(25℃)で24時間撹拌した。その後、酢酸エチルと蒸留水を加えて抽出操作を行ったところ、沈殿が生じたため、ろ取し、有機相は硫酸ナトリウムで乾燥して溶媒を減圧留去した。残渣成分と抽出操作で得た沈殿と同一成分であることがTLCによって確認できたため、併せてメタノール-トルエンにより再結晶を行うことにより収率50%で深紫色沈殿(55mg)を得た。
 得られた化合物の同定を、UV-visスペクトル、及び蛍光スペクトルにより行った結果、ヘマトポルフィリンコバルト錯体が得られたことが分かった。反応式を下記反応式(7)に示す。実施例9のUV-visスペクトル、及び蛍光スペクトルによる測定結果を図19に示す。
(Example 9: Hematoporphyrin cobalt complex)
<Synthesis and Identification of Hematoporphyrin Cobalt Complex (Co-HP)>
When hematoporphyrin (Wako Pure Chemical Industries, Ltd., 100 mg, 0.167 mmol) was added with 20 mL of acetic acid, cobalt (II) acetate tetrahydrate (410 mg, 1.65 mmol) was added to the solution, and room temperature (25 ° C.) was added. Stir for 24 hours. Then, when extraction operation was performed by adding ethyl acetate and distilled water, a precipitate was formed. The precipitate was collected by filtration, the organic phase was dried over sodium sulfate, and the solvent was distilled off under reduced pressure. Since it was confirmed by TLC that the residue component and the precipitate obtained by the extraction operation were the same component, a deep purple precipitate (55 mg) was obtained in a yield of 50% by recrystallization from methanol-toluene.
As a result of identification of the obtained compound by UV-vis spectrum and fluorescence spectrum, it was found that a hematoporphyrin cobalt complex was obtained. The reaction formula is shown in the following reaction formula (7). FIG. 19 shows the measurement results of the UV-vis spectrum and fluorescence spectrum of Example 9.
〔反応式(7)〕
Figure JPOXMLDOC01-appb-C000039
 (ただし、前記反応式(7)中、Co(OAc)は酢酸コバルト(II)を表す。)
[Reaction Formula (7)]
Figure JPOXMLDOC01-appb-C000039
(However, Co (OAc) 2 in the reaction formula (7) represents cobalt acetate (II).)
<CLEC-2とポドプラニンとの結合抑制評価>
 実施例1の二次スクリーニングにおいて、評価対象の化合物として、終濃度5μg/mLのヘマトポルフィリンコバルト錯体を用いた以外は、実施例1の二次スクリーニングと同様にしてCLEC-2とポドプラニンとの結合を抑制する化合物の評価を行った。ヘマトポルフィリンコバルト錯体のフローサイトメーターによる評価結果を図20に示す。ヘマトポルフィリンコバルト錯体の結合抑制率は、101.1%であった。
<Evaluation of binding inhibition between CLEC-2 and podoplanin>
In the secondary screening of Example 1, binding of CLEC-2 and podoplanin was performed in the same manner as in the secondary screening of Example 1, except that the hematoporphyrin cobalt complex having a final concentration of 5 μg / mL was used as the evaluation target compound. Evaluation of compounds that inhibit the above was performed. FIG. 20 shows the results of evaluation of the hematoporphyrin cobalt complex using a flow cytometer. The binding inhibition rate of the hematoporphyrin cobalt complex was 101.1%.
(実施例10:5,10,15,20-テトラキス(p-スルホフェニル)-21H,23H-ポルフィリン)
<CLEC-2とポドプラニンとの結合抑制評価>
 実施例1の二次スクリーニングにおいて、評価対象の化合物として、終濃度5μg/mLのプロトポルフィリンIXに代えて、下記構造式C1で表される、5,10,15,20-テトラキス(p-スルホフェニル)-21H,23H-ポルフィリン(東京化成工業株式会社製、「TPPS」と称することがある。)を用いた以外は、実施例1の二次スクリーニングと同様にしてCLEC-2とポドプラニンとの結合を抑制する化合物の評価を行った。TPPSのフローサイトメーターによる評価結果を図21に示す。TPPSの結合抑制率は、89.8%であった。
(Example 10: 5,10,15,20-tetrakis (p-sulfophenyl) -21H, 23H-porphyrin)
<Evaluation of binding inhibition between CLEC-2 and podoplanin>
In the secondary screening of Example 1, instead of protoporphyrin IX having a final concentration of 5 μg / mL, the compound to be evaluated was replaced with 5,10,15,20-tetrakis (p-sulfo) represented by the following structural formula C1. Phenyl) -21H, 23H-porphyrin (manufactured by Tokyo Chemical Industry Co., Ltd., sometimes referred to as “TPPS”) was used in the same manner as in the secondary screening of Example 1, except that CLEC-2 and podoplanin Evaluation of compounds that inhibit binding was performed. FIG. 21 shows the results of evaluation using a TPPS flow cytometer. The binding inhibition rate of TPPS was 89.8%.
〔構造式C1〕
Figure JPOXMLDOC01-appb-C000040
[Structural formula C1]
Figure JPOXMLDOC01-appb-C000040
(実施例11:α,β,γ,δ-テトラキス(1-メチルピリジニウム-4-イル)ポルフィリンのp-トルエンスルホナート)
<CLEC-2とポドプラニンとの結合抑制評価>
 実施例1の二次スクリーニングにおいて、評価対象の化合物として、終濃度5μg/mLのプロトポルフィリンIXに代えて、下記構造式C2で表される、α,β,γ,δ-テトラキス(1-メチルピリジニウム-4-イル)ポルフィリン(「TMPyP」と称することがある。)のp-トルエンスルホナート(東京化成工業株式会社製、「TMPyP4OTs」と称することがある。)を用いた以外は、実施例1の二次スクリーニングと同様にしてCLEC-2とポドプラニンとの結合を抑制する化合物の評価を行った。TMPyP4OTsのフローサイトメーターによる評価結果を図22に示す。TMPyP4OTsの結合抑制率は、54.4%であった。
(Example 11: p-toluenesulfonate of α, β, γ, δ-tetrakis (1-methylpyridinium-4-yl) porphyrin)
<Evaluation of binding inhibition between CLEC-2 and podoplanin>
In the secondary screening of Example 1, instead of protoporphyrin IX having a final concentration of 5 μg / mL, the α, β, γ, δ-tetrakis (1-methyl) represented by the following structural formula C2 was used as the evaluation target compound. Except that p-toluenesulfonate (manufactured by Tokyo Chemical Industry Co., Ltd., sometimes referred to as “TMPyP4OTs”) of pyridinium-4-yl) porphyrin (sometimes referred to as “TMPyP”) was used. In the same manner as in the second screening of 1, the compounds that inhibit the binding of CLEC-2 and podoplanin were evaluated. The evaluation result by the flow cytometer of TMPyP4OTs is shown in FIG. The binding inhibition rate of TMPyP4OTs was 54.4%.
〔構造式C2〕
Figure JPOXMLDOC01-appb-C000041
[Structural formula C2]
Figure JPOXMLDOC01-appb-C000041
 実施例2~11の結果、評価したプロトポルフィリンIXの類似物質の全てが、40%以上の結合抑制活性を示し、CLEC-2とポドプラニンとの結合を抑制することが分かった。中でも、Co-HPの結合抑制活性が高く、実施例1の二次スクリーニングの評価系(化合物を終濃度5μg/mLで用いた場合)において、ほぼ完全に結合を抑制することが分かった。 As a result of Examples 2 to 11, it was found that all of the evaluated protoporphyrin IX analogs showed a binding inhibitory activity of 40% or more and suppressed the binding between CLEC-2 and podoplanin. In particular, the binding inhibition activity of Co-HP was high, and it was found that the binding was almost completely suppressed in the secondary screening evaluation system of Example 1 (when the compound was used at a final concentration of 5 μg / mL).
<ヒト血小板凝集に対する血小板凝集抑制効果の評価>
 ヒト由来の血小板(PLT:20×10/μL)を用い、ロドサイチン、コラーゲン、又はトロンビンにより血小板凝集を惹起した際の、プロトポルフィリンIX(H-PP)及びヘマトポルフィリンコバルト錯体(Co-HP)による血小板凝集抑制効果を、文献「Blood 2003:102(4):1367-1373」に記載の方法にしたがって評価した。
<Evaluation of platelet aggregation inhibitory effect on human platelet aggregation>
Protoporphyrin IX (H 2 -PP) and hematoporphyrin cobalt complex (Co-HP) when platelet aggregation is induced by rhodocytin, collagen, or thrombin using human-derived platelets (PLT: 20 × 10 4 / μL). ) Was evaluated according to the method described in the document “Blood 2003: 102 (4): 1367-1373”.
 ヒト血小板凝集に対する血小板凝集抑制効果の評価結果を、図23に示す。
 その結果、1.0μg/mL(1.5μM)のH-PP又はCo-HP投与により、ロドサイチン惹起血小板凝集が特異的に抑制され、特に、Co-HP投与によりほぼ完全に抑制されることが分かった。
The evaluation results of the platelet aggregation inhibitory effect on human platelet aggregation are shown in FIG.
As a result, administration of 1.0 μg / mL (1.5 μM) of H 2 -PP or Co-HP specifically inhibits rhodocytin-induced platelet aggregation, and in particular, almost completely suppresses co-HP administration. I understood.
<マウス血小板凝集に対する血小板凝集抑制効果の評価>
 マウス由来の血小板(PLT:20×10/μL)を用い、ロドサイチン、コラーゲン、又はトロンビンにより血小板凝集を惹起した際の、プロトポルフィリンIX(H-PP)及びヘマトポルフィリンコバルト錯体(Co-HP)による血小板凝集抑制効果を、文献「Blood 2003:102(4):1367-1373」に記載の方法にしたがって評価した。
<Evaluation of platelet aggregation inhibitory effect on mouse platelet aggregation>
Protoporphyrin IX (H 2 -PP) and hematoporphyrin cobalt complex (Co-HP) when platelet aggregation was induced by rhodocytin, collagen, or thrombin using platelets derived from mice (PLT: 20 × 10 4 / μL). ) Was evaluated according to the method described in the document “Blood 2003: 102 (4): 1367-1373”.
 マウス血小板凝集に対する血小板凝集抑制効果の評価結果を、図24に示す。
 その結果、1.0μg/mL(1.5μM)のH-PP又はCo-HP投与により、ロドサイチン惹起血小板凝集が抑制され、特に、1.0μg/mL(1.5μM)のCo-HP投与が最もロドサイチン惹起血小板凝集を抑制することが分かった。
The evaluation results of the platelet aggregation inhibitory effect on mouse platelet aggregation are shown in FIG.
As a result, administration of 1.0 μg / mL (1.5 μM) of H 2 -PP or Co-HP suppresses rhodocytin-induced platelet aggregation, and in particular, administration of 1.0 μg / mL (1.5 μM) of Co-HP. Was found to most inhibit rhodocytin-induced platelet aggregation.
<マウス肺転移モデルを用いた転移抑制効果の評価>
 高転移性を示し、ポドプラニンを発現する細胞株であるメラノーマ細胞株B16F10細胞を移植したマウス肺転移モデルを用いて、ヘマトポルフィリンコバルト錯体(Co-HP)による転移抑制効果を下記の方法により評価した。
<Evaluation of metastasis suppression effect using mouse lung metastasis model>
Using the mouse lung metastasis model transplanted with the melanoma cell line B16F10 cells, which is highly metastatic and expresses podoplanin, the metastasis inhibitory effect of hematoporphyrin cobalt complex (Co-HP) was evaluated by the following method. .
 C57BL/6系統マウス(8週齢、雄、日本チャールズ・リバー株式会社より購入、各群n=5)に対し、0日目にB16F10-GFP細胞(アンチキャンサージャパン株式会社製)1×10細胞/個体を尾静脈より経静脈的に投与した。0日目に同時に、1質量%DMSO、100μg/mLのCo-HPを眼窩より200μL投与することにより化合物投与を行った(1匹あたり20μg、循環血液量2mLとして、10μg/mL)。以後、2日ごとの2日目、4日目、6日目、8日目、10日目及び12日目に化合物投与を行い、14日目にマウスから肺を摘出して肺重量を測定した。 B16F10-GFP cells (manufactured by Anti-Cancer Japan Co., Ltd.) 1 × 10 6 on day 0 for C57BL / 6 strain mice (8 weeks old, male, purchased from Japan Charles River Co., Ltd., each group n = 5) Cells / individuals were administered intravenously via the tail vein. Simultaneously on day 0, the compound was administered by administering 200 μL of 1% by weight DMSO, 100 μg / mL Co-HP from the orbit (20 μg per animal, 10 μg / mL as 2 mL of circulating blood volume). Thereafter, the compound was administered on the 2nd day, the 4th day, the 6th day, the 8th day, the 10th day, and the 12th day every 2 days, and the lungs were removed from the mice on the 14th day and the lung weight was measured. did.
 マウス肺転移モデルの化合物投与(DMSO、又はCo-HP)開始から14日目の肺の様子を示す写真を、図25に示す。また、マウス肺転移モデルの化合物投与(DMSO、又はCo-HP)開始から14日目の肺の重量を示すグラフを、図26に示す。
 その結果、メラノーマ細胞株B16F10細胞の移植により、肺に腫瘍ができ(図25、左パネル参照)、肺重量が増加するのに対し、Co-HPでは、腫瘍の発生が抑制され(図25、右パネル参照)、また肺重量の増加も抑制された(図26、p=0.0144;Dunn多重比較検定)。
A photograph showing the state of the lung on the 14th day from the start of compound administration (DMSO or Co-HP) in a mouse lung metastasis model is shown in FIG. In addition, FIG. 26 shows a graph showing the weight of the lungs on the 14th day from the start of compound administration (DMSO or Co-HP) in the mouse lung metastasis model.
As a result, transplantation of the melanoma cell line B16F10 cells produced a tumor in the lung (see FIG. 25, left panel) and increased lung weight, whereas Co-HP suppressed tumor development (FIG. 25, (See right panel) and also increased lung weight (FIG. 26, p = 0.0144; Dunn multiple comparison test).
<マウスin vivo塩化鉄血栓形成モデルを用いた血管閉塞時間延長効果の評価>
 塩化鉄により血栓を形成させた、血栓形成モデルマウスを用いて、ヘマトポルフィリンコバルト錯体(Co-HP)による血管閉塞時間延長効果を下記の方法により評価した。
<Evaluation of vascular occlusion time extension effect using mouse in vivo iron chloride thrombus formation model>
Using a thrombus formation model mouse in which a thrombus was formed with iron chloride, the effect of prolonging the vascular occlusion time by hematoporphyrin cobalt complex (Co-HP) was evaluated by the following method.
 C57BL/6系統マウス(8週齢、雄、日本チャールズ・リバー株式会社より購入、各群n=3)に3質量%セボフルラン(丸石製薬株式会社製)をプラスチックボックスに0.5L/分間で気化させ、マウスをボックス内に入れて麻酔を導入した。実験が終了するまでこの麻酔条件下で麻酔状態を維持した。1質量%DMSO、又は100μg/mLのCo-HPを眼窩より200μL投与することにより化合物投与を行った(1匹あたり20μg、循環血液量2mLとして、10μg/mL)。次いで、四肢をビニールテープで固定し、左大腿動脈を露出させた後、先細ピンセットを用いて他の組織から左大腿動脈を剥離し、パラフィルムを挟んで組織液の浸潤を防止した。レーザー血流計(装置名:ALF21RD、株式会社アドバンス製)を用い、血流60mL/分間/100g以上を目安として血流量の最も高い位置を探してセンサーを固定し、2分間~3分間血流を測定することにより、障害(塩化鉄投与による血栓形成刺激)前の安定した各パラメータを測定した。
 10質量%塩化鉄の水溶液を浸漬させたろ紙を、露出させた左大腿動脈の上に載せることにより、血栓の形成を惹起した。血栓が形成され、血管が閉塞する基準として、血流5mL/分間/100g以下が1分間以上継続した時点まで、レーザー血流計による測定を続けた。なお、血管閉塞時間は、塩化鉄投与から、血流5mL/分間/100g以下が1分間以上継続した際の、閉塞開始時刻までに要した時間とした。
C57BL / 6 strain mice (8 weeks old, male, purchased from Charles River Japan Co., Ltd., each group n = 3) were vaporized 3% sevoflurane (manufactured by Maruishi Pharmaceutical Co., Ltd.) in a plastic box at 0.5 L / min. The mouse was placed in a box to introduce anesthesia. Anesthesia was maintained under this anesthesia condition until the end of the experiment. The compound was administered by administering 200 μL of 1% by mass DMSO or 100 μg / mL Co-HP from the orbit (20 μg per animal, 10 μg / mL as 2 mL of circulating blood volume). Next, the limbs were fixed with vinyl tape to expose the left femoral artery, and then the left femoral artery was detached from other tissues using a tapered tweezers, and infiltration of tissue fluid was prevented with a parafilm interposed therebetween. Using a laser blood flow meter (device name: ALF21RD, manufactured by Advance Co., Ltd.), use the blood flow of 60 mL / min / 100 g or more as a guide to search for the position with the highest blood flow and fix the sensor, and blood flow for 2 to 3 minutes Was measured to measure each stable parameter before injury (stimulation of thrombus formation by iron chloride administration).
Thrombus formation was induced by placing a filter paper immersed in an aqueous solution of 10% by mass iron chloride on the exposed left femoral artery. As a reference for clot formation and blood vessel occlusion, measurement with a laser blood flow meter was continued until a blood flow of 5 mL / min / 100 g or less continued for 1 min or longer. The vascular occlusion time was the time required from the administration of iron chloride to the occlusion start time when blood flow of 5 mL / min / 100 g or less continued for 1 min or more.
 マウスin vivo塩化鉄血栓形成モデルを用いた血管閉塞時間延長効果を、図27に示す。
 その結果、DMSOを投与した対照と比較して、Co-HP投与により、顕著に血管閉塞時間が延長することが分かった。
FIG. 27 shows the effect of prolonging the vascular occlusion time using the mouse in vivo iron chloride thrombus formation model.
As a result, it was found that the vascular occlusion time was significantly prolonged by Co-HP administration as compared with the control to which DMSO was administered.
<マウスin vivoにおける出血時間への影響の評価>
 一般的な抗血栓薬の副作用として、血液が固まりにくくなる作用(出血傾向)があり、出血のリスクがあることが知られている。そこで、ヘマトポルフィリンコバルト錯体(Co-HP)の投与が、出血してから止血するまでの時間(出血時間)に与える影響を下記の方法により評価した。
<Evaluation of effects on bleeding time in mice in vivo>
As a side effect of general antithrombotic drugs, it has been known that there is an action (bleeding tendency) that makes blood hard to clot, and there is a risk of bleeding. Therefore, the effect of administration of hematoporphyrin cobalt complex (Co-HP) on the time from bleeding to hemostasis (bleeding time) was evaluated by the following method.
 C57BL/6系統マウス(8週齢、雄、日本チャールズ・リバー株式会社、各群n=8)に3質量%セボフルラン(丸石製薬株式会社製)をプラスチックボックスに0.5L/分間で気化させ、マウスをボックス内に入れて麻酔を導入した。実験が終了するまでこの麻酔条件下で麻酔状態を維持した。1質量%DMSO、又は100μg/mLのCo-HPを眼窩より200μL投与することにより化合物投与を行った(1匹あたり20μg、循環血液量2mLとして、10μg/mL)。10分間後に、マウス尾部を先端より2mmカミソリで切断し、断端を37℃の生理食塩水に浸し、出血時間を記録した。
 なお、止血の基準を、30秒間以上再出血が起こらないこととし、出血時間は、尾部切断から、止血の開始時刻までに要した時間とした。
C57BL / 6 strain mice (8 weeks old, male, Japan Charles River Co., Ltd., each group n = 8) were vaporized with 3 mass% sevoflurane (manufactured by Maruishi Pharmaceutical Co., Ltd.) in a plastic box at 0.5 L / min. Anesthesia was introduced by placing the mouse in a box. Anesthesia was maintained under this anesthesia condition until the end of the experiment. The compound was administered by administering 200 μL of 1% by mass DMSO or 100 μg / mL Co-HP from the orbit (20 μg per animal, 10 μg / mL as 2 mL of circulating blood volume). Ten minutes later, the mouse tail was cut from the tip with a 2 mm razor, the stump was immersed in 37 ° C. physiological saline, and the bleeding time was recorded.
The reference for hemostasis was that no rebleeding occurred for 30 seconds or more, and the bleeding time was the time required from the tail cut to the start time of hemostasis.
 マウスin vivoにおける出血時間への影響を、図28に示す。
 その結果、Co-HP投与群における出血時間(平均±標準偏差:212.0±86.4秒間)は、DMSOを投与した対照の出血時間(152.0±52.6秒間)に対して、統計的有意差が観察されず、したがって、出血の副作用が少ない抗血栓薬などとして有用であることが分かった。
FIG. 28 shows the effect on bleeding time in mice in vivo.
As a result, the bleeding time (mean ± standard deviation: 212.0 ± 86.4 seconds) in the Co-HP administration group was compared to the bleeding time (152.0 ± 52.6 seconds) of the control administered with DMSO. No statistically significant difference was observed, and therefore, it was found useful as an antithrombotic agent with few side effects of bleeding.
<K/BxNマウス血清移入関節炎モデルを用いた関節炎への影響の評価>
 CLEC-2欠損骨髄キメラマウスに、関節炎抑制作用があることを本発明者らは新たに見出した。そこで、ヘマトポルフィリンコバルト錯体(Co-HP)の投与が、リウマチ様関節炎に与える影響を下記の方法により評価した。
<Evaluation of effects on arthritis using K / BxN mouse serum transfer arthritis model>
The present inventors have newly found that CLEC-2-deficient bone marrow chimeric mice have an arthritis inhibitory effect. Therefore, the effect of administration of hematoporphyrin cobalt complex (Co-HP) on rheumatoid arthritis was evaluated by the following method.
 関節炎誘発性K/BxNマウス血清(山梨大学にて繁殖の上、血清を採取)100μL/Bodyを、処置当日(Day0)と処置後2日目(Day2)に、レシピエントマウスへと腹腔投与した(図29~30中、黒矢頭)。前記レシピエントマウスとして、野生型骨髄キメラマウス(野生型マウス胎仔肝臓を放射線照射した野生型マウスに移植した15週齢の骨髄キメラC57BL/6雄マウス、図29、n=5;野生型マウスはC57BL/6系統マウス、8週齢、雄、日本チャールズ・リバー株式会社より購入した。)、又はCLEC-2欠損骨髄キメラマウス(血小板特異的CLEC-2欠損マウス胎仔肝臓を移植した15週齢の骨髄キメラC57BL/6雄マウス、図29、n=5;野生型マウスはC57BL/6系統マウス、8週齢、雄、日本チャールズ・リバー株式会社より購入した。)を用いた。
 更に、野生型マウスにおいて、200μg/mLのCo-HPを100μL/Bodyで、Day0、2、4、及び6に眼窩静脈叢より投与した(図30、Co-HP投与群n=5)。一方、対照としてPBSを同様に投与した(図30、対照群n=6)。
 処置後10日目(Day10)まで1日1回、前足の厚み、前足首の厚み、踵の厚み、後足の厚みをデジタルノギスにて測定した。各個体において、これらの測定値の合計を関節炎の程度の指標とした。結果を平均値±標準偏差で示し、Student’s t-testにより有意差検定を行った。
100 μL / Body of arthritis-induced K / BxN mouse serum (bred at Yamanashi University and collected serum) was intraperitoneally administered to recipient mice on the day of treatment (Day 0) and the second day after treatment (Day 2). (In Fig. 29-30, black arrowhead). As the recipient mice, wild-type bone marrow chimeric mice (15-week-old bone marrow chimeric C57BL / 6 male mice transplanted into wild-type mice irradiated with wild-type mouse fetal liver, FIG. 29, n = 5; C57BL / 6 strain mice, 8 weeks old, male, purchased from Japan Charles River Co., Ltd.), or CLEC-2 deficient bone marrow chimeric mice (platelet-specific CLEC-2 deficient mice fetal liver transplanted 15 weeks old Bone marrow chimeric C57BL / 6 male mice, FIG. 29, n = 5; wild-type mice were C57BL / 6 strain mice, 8 weeks old, male, purchased from Charles River Japan Co., Ltd.).
Further, in wild-type mice, 200 μg / mL Co-HP was administered at 100 μL / Body via Day 0, 2, 4, and 6 from the orbital venous plexus (FIG. 30, Co-HP administration group n = 5). On the other hand, PBS was similarly administered as a control (FIG. 30, control group n = 6).
The forefoot thickness, the front ankle thickness, the heel thickness, and the rear foot thickness were measured with a digital caliper once a day until the 10th day after treatment (Day 10). In each individual, the total of these measured values was used as an index of the degree of arthritis. The results are shown as mean values ± standard deviation, and a significant difference test was performed by Student's t-test.
 野生型マウス(WT)、及びCLEC-2欠損骨髄キメラマウス(CLEC-2 KO)をレシピエントマウスとするK/BxNマウス血清移入関節炎モデルにおけるリウマチ様関節炎の炎症の程度を、図29に示す。また、野生型マウスをレシピエントマウスとするK/BxNマウス血清移入関節炎モデルにおけるリウマチ様関節炎に対するCo-HP投与による影響を、図30に示す。
 図29の結果から、野生型マウスに比べて、CLEC-2欠損骨髄キメラマウスにおいてリウマチ様関節炎の炎症の程度は有意に抑制された。したがって、リウマチ様関節炎にCLEC-2が関与することが示唆された。
 図30の結果から、Co-HP投与によって、リウマチ様関節炎の炎症の程度は有意に抑制された。おそらく、関節内滑膜細胞上に発現しているポドプラニンと血小板CLEC-2の結合で血小板が活性化され、炎症が促進される可能性があるのではないかと考えられる。
 これらの結果から、Co-HPを始めとするCLEC-2拮抗剤は、抗リウマチ薬などの抗関節炎薬として使用できる可能性が示唆された。
FIG. 29 shows the degree of inflammation of rheumatoid arthritis in a K / BxN mouse serum transfer arthritis model using wild type mice (WT) and CLEC-2 deficient bone marrow chimeric mice (CLEC-2 KO) as recipient mice. FIG. 30 shows the effect of Co-HP administration on rheumatoid arthritis in a K / BxN mouse serum transfer arthritis model using wild-type mice as recipient mice.
From the results in FIG. 29, the degree of rheumatoid arthritis inflammation was significantly suppressed in CLEC-2 deficient bone marrow chimeric mice compared to wild type mice. Therefore, it was suggested that CLEC-2 is involved in rheumatoid arthritis.
From the results of FIG. 30, the degree of rheumatoid arthritis inflammation was significantly suppressed by Co-HP administration. Presumably, the combination of podoplanin expressed on the intra-articular synoviocytes and platelet CLEC-2 may activate platelets and promote inflammation.
From these results, it was suggested that CLEC-2 antagonists including Co-HP could be used as anti-arthritic agents such as anti-rheumatic drugs.
<リンパ管内皮上の血栓形成への影響の評価>
 血管内皮上のみならず、リンパ管内皮上でも血栓が形成されることが知られている。そこで、リンパ管内皮上で形成された血栓に対する、ヘマトポルフィリンコバルト錯体(Co-HP)の投与による影響を、下記の方法により評価した。
<Evaluation of effects on thrombus formation on lymphatic endothelium>
It is known that thrombi are formed not only on the vascular endothelium but also on the lymphatic endothelium. Therefore, the effect of administration of hematoporphyrin cobalt complex (Co-HP) on the thrombus formed on the lymphatic endothelium was evaluated by the following method.
 ヒトリンパ管上皮細胞(LEC)をパラレルプレートフローチャンバー(ibidi μ-スライドVI0.1、ibiTreat、ibidi社製)上で単層状に培養し、1質量%ウシ血清アルブミン(BSA)を含有する内皮細胞成長培地(商品名:;EGM-2、Lonza社製)を用いてLECのブロッキングを2時間行った。
 健康なボランティアからのヒト全血を、100ng/mLアルガトロバン(商品名:ノバスタン、田辺三菱製薬株式会社製)、及び5U/mLヘパリン(商品名:ヘパリンNa注、持田製薬株式会社製)を用いて採取した。血液を5μMの3-ジヘキシルオキシカルボシアニンヨウ化物(DiOC、Thermo Fisher Scientific社製)、及び化合物(Co-HP)又は対照溶媒(DMSO)を含有する内皮細胞成長培地で10分間の前処理を行った。得られた血液サンプルを400s-1のせん断速度で10分間、前記パラレルプレートフローチャンバーに灌流した。蛍光ビデオ顕微鏡を用いて、血小板接着を視覚化し、灌流開始から、1、3、5、7、及び10分間経過後に静止画を撮影した。10分間経過後の静止画を、血小板接着面積を画像処理ソフトウェアImage J(URL:https://imagej.nih.gov/ij/)を用いて定量した。
Human lymphatic epithelial cells (LEC) are cultured in a monolayer on a parallel plate flow chamber (ibidi μ-slide VI 0.1 , ibiTreat, ibidi) and endothelial cells containing 1% by weight bovine serum albumin (BSA) The LEC was blocked for 2 hours using a growth medium (trade name: EGM-2, manufactured by Lonza).
Human whole blood from healthy volunteers using 100 ng / mL Argatroban (trade name: Novastan, manufactured by Mitsubishi Tanabe Pharma Corporation) and 5 U / mL heparin (trade name: heparin Na injection, manufactured by Mochida Pharmaceutical Co., Ltd.) Collected. The blood was pretreated with endothelial cell growth medium containing 5 μM 3-dihexyloxycarbocyanine iodide (DiOC 6 , Thermo Fisher Scientific) and compound (Co-HP) or control solvent (DMSO) for 10 minutes. went. The obtained blood sample was perfused into the parallel plate flow chamber at a shear rate of 400 s −1 for 10 minutes. Platelet adhesion was visualized using a fluorescent video microscope, and still images were taken after 1, 3, 5, 7, and 10 minutes from the start of perfusion. The still image after 10 minutes passed, and the platelet adhesion area was quantified using image processing software Image J (URL: https://imagej.nih.gov/ij/).
 ヒトリンパ管上皮細胞(LEC)の血小板接着を視覚化した写真、及び血小板接着面積を定量化したグラフを、それぞれ図31及び図32に示す。
 その結果、ヘマトポルフィリンコバルト錯体(Co-HP)の投与により、リンパ管内皮上での血栓形成が著しく抑制されることが示唆された。
A photograph visualizing platelet adhesion of human lymphatic epithelial cells (LEC) and a graph quantifying the platelet adhesion area are shown in FIGS. 31 and 32, respectively.
As a result, it was suggested that the administration of hematoporphyrin cobalt complex (Co-HP) significantly suppresses thrombus formation on the lymphatic endothelium.
 悪性腫瘍手術においてリンパ節郭清を施行後、リンパ浮腫が生じることがある。日本における上肢リンパ浮腫患者が5万人、下肢リンパ浮腫患者が7万人となっており、この数は年々増加している。リンパ浮腫が慢性化すると、象皮化、線維化と進み、感染を繰り返したり、QOLが著しく低い状態となる。リンパ浮腫の治療の一つとして、リンパ管静脈吻合術を行い、リンパ管内のリンパ液を静脈に灌流させるという治療法がある。これは有効な治療法であるが、長期の開存率は40%しかない。吻合部が閉塞してしまう原因の一つに吻合部での血栓形成がある。おそらく、血液がリンパ管内に逆流する際、血小板CLEC-2とリンパ管内皮のポドプラニンが結合して血栓が形成されるものと考えられる。CLEC-2とポドプラニンの結合を抑制することができれば、リンパ管血管吻合術後の閉塞をある程度予防できると考える。
 本実験の結果から、リンパ管内皮上での血栓形成がCo-HPで著しく抑制されることが明らかとなった。このことは、Co-HPを始めとするCLEC-2拮抗剤がリンパ管血管吻合部などの血管以外の部位においても、抗血栓薬として使用できることを示唆する。
Lymphedema may occur after lymph node dissection in malignant tumor surgery. There are 50,000 patients with upper limb lymphedema and 70,000 patients with lower limb lymphedema in Japan, and this number is increasing year by year. When lymphedema becomes chronic, it progresses to elephantization and fibrosis, and repeats infection, or QOL becomes extremely low. As one of the treatments for lymphedema, there is a treatment method in which lymphatic vein anastomosis is performed and the lymph fluid in the lymphatic vessels is perfused into the vein. This is an effective treatment, but the long-term patency rate is only 40%. One of the causes that the anastomosis is blocked is the formation of a thrombus at the anastomosis. Presumably, when blood flows back into the lymphatic vessels, platelets CLEC-2 and the podoplanin of the lymphatic endothelium are combined to form a thrombus. If the binding between CLEC-2 and podoplanin can be suppressed, it is considered that occlusion after lymphangiovascular anastomosis can be prevented to some extent.
From the results of this experiment, it became clear that thrombus formation on the lymphatic endothelium was remarkably suppressed by Co-HP. This suggests that a CLEC-2 antagonist such as Co-HP can be used as an antithrombotic drug at sites other than blood vessels such as lymph vessel vascular anastomoses.

Claims (11)

  1.  下記一般式(1)及び下記一般式(2)のいずれかで表される化合物からなることを特徴とするCLEC-2拮抗剤。
    〔一般式(1)〕
    Figure JPOXMLDOC01-appb-C000001
    (ただし、前記一般式(1)中、MはH及び第2~12族元素のいずれかを表し、Rはビニル基及び1-ヒドロキシエチル基のいずれかを表し、Xは第1族元素を表す。)
    〔一般式(2)〕
    Figure JPOXMLDOC01-appb-C000002
    (ただし、前記一般式(2)中、MはH及び第2~12族元素のいずれかを表し、Rはフェニル基、スルホフェニル基、カルボキシフェニル基及び1-メチルピリジニウム-4-イル基のいずれかを表す。)
    A CLEC-2 antagonist comprising a compound represented by any one of the following general formula (1) and the following general formula (2).
    [General formula (1)]
    Figure JPOXMLDOC01-appb-C000001
    (In the general formula (1), M represents any one of H 2 and Group 2 to 12 elements, R 1 represents either a vinyl group or a 1-hydroxyethyl group, and X represents Group 1) Represents an element.)
    [General formula (2)]
    Figure JPOXMLDOC01-appb-C000002
    (In the general formula (2), M represents any one of H 2 and Group 2 to 12 elements, and R 2 represents a phenyl group, a sulfophenyl group, a carboxyphenyl group, and 1-methylpyridinium-4-yl.) Represents any of the groups.)
  2.  前記一般式(1)で表される化合物が、下記一般式(1-A)及び下記一般式(1-B)のいずれかで表される化合物である請求項1に記載のCLEC-2拮抗剤。
    〔一般式(1-A)〕
    Figure JPOXMLDOC01-appb-C000003
    (ただし、前記一般式(1-A)中、MはH、Co、Zn、Ni及びPdのいずれかを表し、Xは第1族元素を表す。)
    〔一般式(1-B)〕
    Figure JPOXMLDOC01-appb-C000004
    (ただし、前記一般式(1-B)中、MはH、Co、Zn及びCuのいずれかを表す。)
    2. The CLEC-2 antagonist according to claim 1, wherein the compound represented by the general formula (1) is a compound represented by any one of the following general formula (1-A) and the following general formula (1-B). Agent.
    [General Formula (1-A)]
    Figure JPOXMLDOC01-appb-C000003
    (In the general formula (1-A), M represents any one of H 2 , Co, Zn, Ni, and Pd, and X represents a Group 1 element.)
    [General formula (1-B)]
    Figure JPOXMLDOC01-appb-C000004
    (However, in the general formula (1-B), M represents any of H 2 , Co, Zn and Cu.)
  3.  前記一般式(1-B)で表される化合物が、下記構造式B4で表される化合物である請求項2に記載のCLEC-2拮抗剤。
    〔構造式B4〕
    Figure JPOXMLDOC01-appb-C000005
    The CLEC-2 antagonist according to claim 2, wherein the compound represented by the general formula (1-B) is a compound represented by the following structural formula B4.
    [Structural formula B4]
    Figure JPOXMLDOC01-appb-C000005
  4.  前記一般式(2)で表される化合物が、下記構造式C1で表される化合物である請求項1から3のいずれかに記載のCLEC-2拮抗剤。
    〔構造式C1〕
    Figure JPOXMLDOC01-appb-C000006
    The CLEC-2 antagonist according to any one of claims 1 to 3, wherein the compound represented by the general formula (2) is a compound represented by the following structural formula C1.
    [Structural formula C1]
    Figure JPOXMLDOC01-appb-C000006
  5.  請求項1から4のいずれかに記載のCLEC-2拮抗剤からなることを特徴とする血小板凝集抑制剤。 A platelet aggregation inhibitor comprising the CLEC-2 antagonist according to any one of claims 1 to 4.
  6.  請求項1から4のいずれかに記載のCLEC-2拮抗剤からなることを特徴とする抗血栓薬。 An antithrombotic drug comprising the CLEC-2 antagonist according to any one of claims 1 to 4.
  7.  請求項1から4のいずれかに記載のCLEC-2拮抗剤からなることを特徴とする抗転移薬。 An antimetastatic drug comprising the CLEC-2 antagonist according to any one of claims 1 to 4.
  8.  請求項1から4のいずれかに記載のCLEC-2拮抗剤からなることを特徴とする抗関節炎薬。 An anti-arthritic drug comprising the CLEC-2 antagonist according to any one of claims 1 to 4.
  9.  下記一般式(1-A)及び下記一般式(1-B)のいずれかで表されることを特徴とする化合物。
    〔一般式(1-A)〕
    Figure JPOXMLDOC01-appb-C000007
    (ただし、前記一般式(1-A)中、MはCo、Zn、Ni及びPdのいずれかを表し、Xは第1族元素を表す。)
    〔一般式(1-B)〕
    Figure JPOXMLDOC01-appb-C000008
    (ただし、前記一般式(1-B)中、MはCo、Zn及びCuのいずれかを表す。)
    A compound represented by any one of the following general formula (1-A) and the following general formula (1-B).
    [General Formula (1-A)]
    Figure JPOXMLDOC01-appb-C000007
    (In the general formula (1-A), M represents any one of Co, Zn, Ni and Pd, and X represents a Group 1 element.)
    [General formula (1-B)]
    Figure JPOXMLDOC01-appb-C000008
    (In the general formula (1-B), M represents any one of Co, Zn and Cu.)
  10.  プロトポルフィリンの塩及び金属酢酸塩を、ジメチルスルホキシド及び酢酸のいずれかと、水との存在下、70℃~95℃で1時間~30時間反応させて下記一般式(1-A)で表される化合物を得る工程を含むことを特徴とする化合物の製造方法。
    〔一般式(1-A)〕
    Figure JPOXMLDOC01-appb-C000009
    (ただし、前記一般式(1-A)中、MはCo、Zn、Ni及びPdのいずれかを表し、Xは第1族元素を表す。)
    A salt of protoporphyrin and a metal acetate are reacted with either dimethyl sulfoxide or acetic acid at 70 ° C. to 95 ° C. for 1 hour to 30 hours in the presence of water and represented by the following general formula (1-A) The manufacturing method of the compound characterized by including the process of obtaining a compound.
    [General Formula (1-A)]
    Figure JPOXMLDOC01-appb-C000009
    (In the general formula (1-A), M represents any one of Co, Zn, Ni and Pd, and X represents a Group 1 element.)
  11.  ヘマトポルフィリン及び金属酢酸塩を、メタノール及び酢酸のいずれかの存在下、15℃~30℃で5時間~30時間反応させて下記一般式(1-B)で表される化合物を得る工程を含むことを特徴とする化合物の製造方法。
    〔一般式(1-B)〕
    Figure JPOXMLDOC01-appb-C000010
    (ただし、前記一般式(1-B)中、MはCo、Zn及びCuのいずれかを表す。)
    A step of reacting hematoporphyrin and metal acetate in the presence of either methanol or acetic acid at 15 ° C. to 30 ° C. for 5 to 30 hours to obtain a compound represented by the following general formula (1-B) A method for producing a compound characterized by the above.
    [General formula (1-B)]
    Figure JPOXMLDOC01-appb-C000010
    (In the general formula (1-B), M represents any one of Co, Zn and Cu.)
PCT/JP2017/000059 2016-01-04 2017-01-04 Clec-2 antagonist, platelet aggregation inhibitor, antithrombotic agent, antimetastatic agent, antiarthritic agent, compound having porphyrin skeleton, and method for producing same WO2017119417A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017560388A JP6805470B2 (en) 2016-01-04 2017-01-04 CLEC-2 antagonist, platelet aggregation inhibitor, antithrombotic drug, antimetastasis drug, anti-arthritis drug, compound having porphyrin skeleton, and method for producing the same.

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016000267 2016-01-04
JP2016-000267 2016-01-04

Publications (1)

Publication Number Publication Date
WO2017119417A1 true WO2017119417A1 (en) 2017-07-13

Family

ID=59274417

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/000059 WO2017119417A1 (en) 2016-01-04 2017-01-04 Clec-2 antagonist, platelet aggregation inhibitor, antithrombotic agent, antimetastatic agent, antiarthritic agent, compound having porphyrin skeleton, and method for producing same

Country Status (2)

Country Link
JP (1) JP6805470B2 (en)
WO (1) WO2017119417A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109575036A (en) * 2018-12-11 2019-04-05 怀化学院 Two ester type compound of Metal hematoporphyrins bis ether, catalyst and preparation method thereof and catalytic oxidation of cyclohexane method

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000027379A2 (en) * 1998-11-08 2000-05-18 Yeda Research And Development Co. Ltd. Pharmaceutical compositions comprising porphyrins and some novel porphyrin derivatives
US6423703B1 (en) * 1998-04-08 2002-07-23 Sephra S.A.R.L. Use of a porphyrin for producing a medicine reducing the number of eosinophils
CN1450066A (en) * 2002-04-08 2003-10-22 巩宪昌 Porphyrin derivate with macrosubstituent, preparation process thereof and use as small molecule antioxidant
KR20060034061A (en) * 2004-10-18 2006-04-21 원광대학교산학협력단 Pharmaceutical composition containing ho-1 inducer and co donor to treat autoimmune disease
EP1762248A1 (en) * 2005-09-09 2007-03-14 CORIT Consorzio per la Ricerca sul Use of cobalt porphyrins in joint therapy with an immunosuppressant drug for treatment of transplant patients or autoimmune disorders
WO2007142132A1 (en) * 2006-06-02 2007-12-13 Hamamatsu Foundation For Science And Technology Promotion Novel process for production of compound between porphyrin (y) and polyvalent metal
JP4719919B2 (en) * 2005-03-24 2011-07-06 学校法人近畿大学 Method for producing functional coating on aluminum-based material and aluminum-based material having the functional coating
KR20120121234A (en) * 2011-04-26 2012-11-05 서울대학교산학협력단 COMPOSITION COMPRISING PROTOPORPHYRIN CHEMICALS FOR PREVENTING OR TREATING DISEASE ORIGINATING FROM OVEREXPRESSION OF HIF-1 alpha OR VEGF

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6423703B1 (en) * 1998-04-08 2002-07-23 Sephra S.A.R.L. Use of a porphyrin for producing a medicine reducing the number of eosinophils
WO2000027379A2 (en) * 1998-11-08 2000-05-18 Yeda Research And Development Co. Ltd. Pharmaceutical compositions comprising porphyrins and some novel porphyrin derivatives
CN1450066A (en) * 2002-04-08 2003-10-22 巩宪昌 Porphyrin derivate with macrosubstituent, preparation process thereof and use as small molecule antioxidant
KR20060034061A (en) * 2004-10-18 2006-04-21 원광대학교산학협력단 Pharmaceutical composition containing ho-1 inducer and co donor to treat autoimmune disease
JP4719919B2 (en) * 2005-03-24 2011-07-06 学校法人近畿大学 Method for producing functional coating on aluminum-based material and aluminum-based material having the functional coating
EP1762248A1 (en) * 2005-09-09 2007-03-14 CORIT Consorzio per la Ricerca sul Use of cobalt porphyrins in joint therapy with an immunosuppressant drug for treatment of transplant patients or autoimmune disorders
WO2007142132A1 (en) * 2006-06-02 2007-12-13 Hamamatsu Foundation For Science And Technology Promotion Novel process for production of compound between porphyrin (y) and polyvalent metal
KR20120121234A (en) * 2011-04-26 2012-11-05 서울대학교산학협력단 COMPOSITION COMPRISING PROTOPORPHYRIN CHEMICALS FOR PREVENTING OR TREATING DISEASE ORIGINATING FROM OVEREXPRESSION OF HIF-1 alpha OR VEGF

Non-Patent Citations (12)

* Cited by examiner, † Cited by third party
Title
A LONSO-CASTRO, ANGEL ET AL.: "Synthesis, antinociceptive and anti-inflammatory effects of porphyrins", BIOORGANIC & MEDICINAL CHEMISTRY, vol. 23, no. 10, 23 March 2015 (2015-03-23) - 15 May 2015 (2015-05-15), pages 2529 - 2537, XP055598964, ISSN: 0968-0896, DOI: 10.1016/j.bmc.2015.03.043 *
AVIEZER, DAVID ET AL.: "Porphyrin Analogues as Novel Antagonsits of Fibroblast Growth Factor and Vascular Endothelial Cell Proliferation, tumor progression and metastasis", T UMOR PROGRESSION AND METASTASIS, CANCER RES., vol. 60, 2000, pages 2973 - 2980, XP003004990, ISSN: 0099-7013 *
DAVIS, RICHARD B. ET AL.: "Effects of ''Haematoporphyrin'' on Adhesiveness and Aggregation of Rabbit Platelets", NATURE, vol. 214, 1967, pages 186 - 187, XP055598950, ISSN: 0028-0836 *
DEVESA, ISABEL ET AL.: "Influence of Heme Oxygenase 1 Modulation on the Progression of Murine Collagen-Induced Arthritis", ARTHRITIS & RHEUMATISM, vol. 52, no. 10, 30 September 2005 (2005-09-30) - October 2005 (2005-10-01), pages 3230 - 3238, XP055598934, ISSN: 2326-5205 and 0004-3591, DOI: 10.1002/art.21356 *
FAWWAZ, R. A. ET AL.: "POTENTIAL USE OF 109Pd-PORPHYRIN COMPLEXES FOR SELECTIVE LYMPHATIC ABLATION", J. NUCL. MED., vol. 12, no. 5, May 1971 (1971-05-01), pages 231 - 236, XP055598974, ISSN: 0161-5505 *
JOHNS, DOUGLAS G. ET AL.: "Heme-oxygenase induction inhibits arteriolar thrombosis in vivo: Effect of the non-substrate inducer cobalt protoporphyrin", EUR. J. PHARMACOL., vol. 606, 2009, pages 109 - 114, XP026002320, ISSN: 0014-2999, DOI: doi:10.1016/j.ejphar.2008.12.030 *
LOACH, PAUL A. ET AL.: "Oxidatino States of Manganese Hematoporphyrin IX in Aqueous Solution", BIOCHEMISTRY, vol. 2, no. 2, March 1963 (1963-03-01), pages 361 - 371, XP055598982, ISSN: 0006-2960, DOI: 10.1021/bi00902a032 *
LUM, CHING TUNG ET AL.: "Gold(III) porphyrin la inhibited nasopharyngeal carcinoma metastasis in vivo and inhibited cell migration and invasion in vitro", CANCER LETTERS, vol. 294, no. 2, 28 August 2010 (2010-08-28), pages 159 - 166, XP055598960, ISSN: 0304-3835, DOI: 10.1016/j.canlet.2010.01.033 *
ROTHEMUND, PAUL ET AL.: "Porphyrin Studies. V. The Metal Complex Salts of alpha, beta, y, delta -Tetraphenylporphine", J. AMER. CHEM. SOC., vol. 70, no. 5, 1948, pages 1808 - 1812, ISSN: 0002-7863 *
SHANG, FU-TAI ET AL.: "ZnPPIX inhibits peritoneal metastasis of gastric cancer via its antiangiogenic activity", BIOMED. PHARMACOTHER., vol. 71, 2015, pages 240 - 246, XP029590464, ISSN: 0753-3322, DOI: doi:10.1016/j.biopha.2015.03.005 *
VZOROV, ANDREI N. ET AL.: "Inactivation of Human Immunodeficiency Virus Type 1 by Porphyrins,", ANTIMICROBIAL AGENTS AND CHEMOTHERAPY, OLOGY, vol. 46, no. 12, 2002, pages 3917 - 3925, XP002335389, ISSN: 0066-4804, DOI: 10.1128/AAC.46.12.3917-3925.2002 *
YAMMANI, RAGHUNATHA R. ET AL.: "Increase in Production of Matrix Metalloproteinase 13 by Human Articular Chondrocytes Due to Stimulation With S 100A4", ARTHRITIS RHEUM., vol. 54, no. 9, September 2006 (2006-09-01) - September 2006 (2006-09-01), pages 2901 - 2911, XP055598956, ISSN: 0004-3591, DOI: 10.1002/art.22042 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109575036A (en) * 2018-12-11 2019-04-05 怀化学院 Two ester type compound of Metal hematoporphyrins bis ether, catalyst and preparation method thereof and catalytic oxidation of cyclohexane method
CN109575036B (en) * 2018-12-11 2020-09-22 怀化学院 Metal hematoporphyrin diether diester compound, catalyst and preparation method thereof, and cyclohexane catalytic oxidation method

Also Published As

Publication number Publication date
JPWO2017119417A1 (en) 2018-12-06
JP6805470B2 (en) 2020-12-23

Similar Documents

Publication Publication Date Title
Tsukiji et al. Cobalt hematoporphyrin inhibits CLEC-2–podoplanin interaction, tumor metastasis, and arterial/venous thrombosis in mice
Gibault et al. Non-photoinduced biological properties of verteporfin
Yang et al. TMTP1, a novel tumor-homing peptide specifically targeting metastasis
Lee et al. Identification of synovium‐specific homing peptides by in vivo phage display selection
KR101203501B1 (en) Perturbed membrane-binding compounds and methods of using the same
JP7365715B2 (en) Bispecific therapeutic proteins for tissue repair
JP6793122B2 (en) Intraoperative imaging
JP6966741B2 (en) Radioactive labeling drug
EA029958B1 (en) Antibodies that bind vascular endothelial growth factor (vegf)/delta-like 4 ligand (dll4) and use thereof
JP2022043040A (en) Anti-GPC-1 antibody
CN106794177A (en) The method for the treatment of cancer
JP6484785B2 (en) antibody
US20230348605A1 (en) Nanobody based imaging and targeting of ecm in disease and development
JP2016535584A (en) TM4SF1 binding protein and method of using the same
CN108883147B (en) Stabilized BCL9 peptides for the treatment of aberrant Wnt signaling
Nowak-Sliwinska et al. Antiangiogenic and Anticancer Properties of Bifunctional Ruthenium (II)–p-Cymene Complexes: Influence of Pendant Perfluorous Chains
Szotowski et al. Alternatively spliced tissue factor: a previously unknown piece in the puzzle of hemostasis
US11465993B2 (en) Water soluble novel cyanine fluorophore with tunable properties between near IR and SWIR region for in vivo imaging
WO2017119417A1 (en) Clec-2 antagonist, platelet aggregation inhibitor, antithrombotic agent, antimetastatic agent, antiarthritic agent, compound having porphyrin skeleton, and method for producing same
JP2013508356A (en) Recombinant human monoclonal antibody that specifically binds to VCAM-1 and inhibits the junction and permeation between leukocytes and endothelial cells
JP7376476B2 (en) BCL9 peptide and its variants
IL145210A (en) Use of pmbc in the preparation of an agent for the selective binding of cells, a method for the detection of apoptosis and a pharmaceutical composition for the treatment of a disease characterized by the presence of apoptosis in cells, tissues or cellular structures
Bodenheimer Jr et al. Characterization of a new monoclonal antibody to rat macrophages and Kupffer cells
WO2023064669A2 (en) Inhibitors of the mtdh-snd1 protein complex for cancer therapy
CN115583938A (en) Small molecule compound targeting BCL 9/beta-catenin interaction

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17735954

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
ENP Entry into the national phase

Ref document number: 2017560388

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17735954

Country of ref document: EP

Kind code of ref document: A1