WO2017119285A1 - Wireless communication system, wireless machine, wireless communication method, elavator control system and substation control system - Google Patents

Wireless communication system, wireless machine, wireless communication method, elavator control system and substation control system Download PDF

Info

Publication number
WO2017119285A1
WO2017119285A1 PCT/JP2016/088011 JP2016088011W WO2017119285A1 WO 2017119285 A1 WO2017119285 A1 WO 2017119285A1 JP 2016088011 W JP2016088011 W JP 2016088011W WO 2017119285 A1 WO2017119285 A1 WO 2017119285A1
Authority
WO
WIPO (PCT)
Prior art keywords
polarization
wireless communication
communication system
radio
rotational
Prior art date
Application number
PCT/JP2016/088011
Other languages
French (fr)
Japanese (ja)
Inventor
武井 健
Original Assignee
株式会社日立製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立製作所 filed Critical 株式会社日立製作所
Publication of WO2017119285A1 publication Critical patent/WO2017119285A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q3/00Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system
    • H01Q3/24Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the orientation by switching energy from one active radiating element to another, e.g. for beam switching
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • H01Q21/24Combinations of antenna units polarised in different directions for transmitting or receiving circularly and elliptically polarised waves or waves linearly polarised in any direction
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/10Polarisation diversity; Directional diversity
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W16/00Network planning, e.g. coverage or traffic planning tools; Network deployment, e.g. resource partitioning or cells structures
    • H04W16/24Cell structures
    • H04W16/28Cell structures using beam steering

Definitions

  • the present invention relates to a wireless communication system, a wireless device, a wireless communication method, an elevator control system, and a substation control system, and in particular, a transmitter transmits using time-sequentially different polarized waves, and receivers are simultaneously different.
  • the present invention relates to a radio communication system for controlling polarization, a radio, a radio communication method for operating the radio communication system, an elevator control system and a substation control system using the radio communication system.
  • High-efficiency operation of social infrastructure systems that produce and distribute energy, water, gas, oil, etc. is important for the realization of a sustainable society.
  • High-efficiency operation of a social infrastructure system is realized by, for example, high-efficiency operation of devices constituting the system, and requires a device monitoring / control network that enables the operation.
  • a technology that places a large number of sensors on the device and estimates and predicts the operation status of the device from a lot of obtained data is promising.
  • the network for collecting and analyzing data from many sensors, estimating operating conditions, and transmitting control information to the same equipment has a large number of transmission paths, so wireless technology replaces conventional wired technology.
  • a network configuration is desired.
  • Social infrastructure systems provide a lifeline to society, so when a network is artificially or naturally affected by a specific transmission line that is damaged or obstructed, communication is performed without using the damaged or obstructed transmission line.
  • the function that can provide a lifeline is extremely important.
  • wireless communication since the transmission path is an open space, a plurality of transmission paths are automatically formed between transmission and reception points. It is assumed that the communication quality of the network deteriorates due to a transmission path failure and interference, and the network may be down.
  • wired communication an outsider can specify a transmission path, so if an outsider discovers or intervenes in a transmission path, the possibility of seriously affecting the supply of the lifeline cannot be completely denied. That is, in the wireless communication and the wired communication according to the prior art, it is assumed that a network having strong resistance to a specific and artificial failure or disturbance of a transmission path cannot always be realized.
  • Sensors and actuators that control the devices that make up the social infrastructure system are themselves electromagnetic wave scatterers. Therefore, in wireless networks that use electromagnetic waves as communication media, the wireless devices that make up the networks are expected. It is not expected to communicate in a state, and is operated in a special situation in which communication is performed in a non-line-of-sight state using multiple reflected waves reflected by the device. Since electromagnetic waves are vector waves and the physical reality called polarization perpendicular to the traveling direction due to reflection changes inherently, radio waves of the same polarization that are automatically emitted from a transmitter in multiple directions Inherent reflection is performed by the device, and arrives at the receiver as a plurality of radio waves that have undergone a specific polarization change through a plurality of propagation paths.
  • the receiver uses an unpredictable polarization direction generated by vector combination of the plurality of incoming radio waves. Due to transmission / reception symmetry of wireless communication using electromagnetic waves, unpredictable changes in polarization direction between transmission and reception are inherent to a specific pair of transmitters and receivers, and are irregular every moment as the radio wave environment changes. Make a change.
  • an object of the present invention is to realize a network that has strong resistance to transmission path failures and disturbances.
  • a wireless communication system The transmitter transmits information using a radio wave whose polarization is different from the frequency of the carrier wave and whose polarization is lower than that of the carrier wave.
  • the receiver Using three antennas to receive an incoming wave of polarization from multiple directions in three dimensions, obtain three signals of polarization parallel to three axes orthogonal to each other, Extract the elliptical trajectory including the direction of arrival of the ellipse rotation polarization obtained by three-dimensional synthesis of the incoming wave, the inclination of the major axis, and the ratio of the major axis to the minor axis, With reference to a table that stores in advance the outputs obtained from the three antennas for the combination of the arrival direction of the circularly polarized waves coming from a plurality of directions in three dimensions and the elliptical trajectory, a finite plurality of the reproducible elliptical trajectories can be reproduced. Find one or more circularly polarized waves that exhibit a
  • a radio receives information transmitted by using a radio wave whose polarization is different from that of the carrier wave and whose polarization is lower than that of the carrier wave.
  • Using three antennas to receive an incoming wave of polarization from multiple directions in three dimensions obtain three signals of polarization parallel to three axes orthogonal to each other, Extract the elliptical trajectory including the direction of arrival of the ellipse rotation polarization obtained by three-dimensional synthesis of the incoming wave, the inclination of the major axis, and the ratio of the major axis to the minor axis,
  • a finite plurality of the reproducible elliptical trajectories can be reproduced. Find one or more circularly polarized waves that exhibit a unique circular trajectory
  • a wireless communication method in a wireless communication system comprising: The transmitter transmits information using a radio wave whose polarization is different from the frequency of the carrier wave and whose polarization is lower than that of the carrier wave.
  • the receiver Using three antennas to receive an incoming wave of polarization from multiple directions in three dimensions, obtain three signals of polarization parallel to three axes orthogonal to each other, Extract the elliptical trajectory including the direction of arrival of the ellipse rotation polarization obtained by three-dimensional synthesis of the incoming wave, the inclination of the major axis, and the ratio of the major axis to the minor axis, With reference to a table that stores in advance the outputs obtained from the three antennas for the combination of the arrival direction of the circularly polarized waves coming from a plurality of directions in three dimensions and the elliptical trajectory, a finite plurality of the reproducible elliptical trajectories can be reproduced. Find one or more circular
  • An elevator control system to which the wireless communication system as described above is applied is provided.
  • a substation control system to which the wireless communication system as described above is applied is provided.
  • a transmitter and a receiver communicate using a plurality of polarizations, and a plurality of different received waves are formed by different combinations of a plurality of transmission paths corresponding to the plurality of polarizations.
  • the present embodiment includes a plurality of means for solving the above-mentioned problems.
  • a pair of radios having a transmission / reception function simultaneously transmits information at a frequency different from the frequency of the carrier wave. Transmits using a rotating radio wave, the receiver receives incoming waves of any polarization in three dimensions using multiple antennas, and has an arbitrary rotation plane vector obtained by three-dimensional synthesis of the incoming waves Ellipsoidal rotation polarization trajectory is extracted, and a circular polarization with a finite number of unique rotation plane vectors that can reproduce the trajectory is obtained by calculation. It is possible to perform communication by selectively using a transmission path to be performed.
  • the receiver uses a three-dimensional vector of incoming waves that have passed through a plurality of propagation paths. Receive the sum. Since the incoming wave passing through each propagation path is still a rotationally polarized wave at the receiving point, the three-dimensional vector sum becomes an elliptical rotationally polarized wave having an arbitrary rotational plane vector.
  • This elliptical circularly polarized trajectory can be reproduced three-dimensionally by a finite number of circularly polarized waves, and therefore a finite number of rotationally polarized waves that can be identified by a specific rotation plane vector and a specific polarization angle shift.
  • a rotational transmission path can be obtained.
  • the intensity of a rotationally polarized wave having an arbitrary rotation plane vector can be made extremely strong (for example, 1/100 or less) by a linearly polarized antenna whose direction coincides with the rotation plane vector.
  • a rotation polarization whose direction of the rotation plane vector does not match that of the antenna has a high code gain.
  • the signal carried in all rotational polarizations is reproduced. Using these characteristics, it is possible to select a transmission path that propagates a plurality of individual rotational polarizations that reproduce the received three-dimensional polarization trajectory. As a result, it is possible to realize a network that is highly resistant to a specific transmission line failure and disturbance.
  • a configuration example of a wireless system in which a transceiver (radio device) uses rotational polarization and selectively uses a plurality of rotational polarization propagation paths will be described with reference to FIGS. 1 and 13.
  • FIG. 1 is an example of a configuration diagram of a wireless system in which a transmitter / receiver selectively uses a plurality of rotational polarization propagation paths using rotational polarization.
  • the transmitter of the first wireless device 301 is configured to superimpose the output of the cyclic code generation circuit 11 on one of the two branches of the output of the information signal generator 1 by the first transmission multiplier 2 and then the second transmission multiplier. 4 multiplies the output of the cosine rotation polarization frequency generation circuit 3 and branches the output into three branches.
  • the first branch output is multiplied by a constant by the cosine X-axis weighting circuit 5 and becomes the first input of the first transmission synthesis circuit 7, and the second branch output is multiplied by a constant by the cosine Y-axis weighting circuit 15 to be the second input.
  • the output of the cyclic code generation circuit 11 is superposed by the fourth transmission multiplier 12 on the other of the two branches of the output of the information signal generator 1, and then the sine rotation polarization frequency generation circuit by the fifth transmission multiplier 14. 13 outputs are multiplied and the output is divided into three branches.
  • the first branch output is multiplied by a constant by the sine X-axis weighting circuit 6 and becomes the second input of the first transmission synthesis circuit 7, and the second branch output is multiplied by a constant by the sine Y-axis weighting circuit 16 and the second input This becomes the second input of the transmission synthesis circuit 17, and the third branch output is multiplied by a constant by the sine Z-axis weighting circuit 26 and becomes the second input of the third transmission synthesis circuit 27.
  • the output of the first transmission synthesis circuit 7 is multiplied by the output of the carrier frequency generation circuit 39 by the fifth transmission multiplier 8, and radio waves are radiated from the first transmission antenna 10 to the space via the first power amplifier 9.
  • the output of the second transmission synthesis circuit 17 is multiplied by the output of the carrier frequency generation circuit 39 by the sixth transmission multiplier 18, and the radio wave is transmitted from the second transmission antenna 20 to the space via the second power amplifier 19.
  • the output of the third transmission synthesis circuit 27 is multiplied by the output of the carrier frequency generation circuit 39 by the seventh transmission multiplier 28, and the radio wave is transmitted from the third transmission antenna 30 to the space via the third power amplifier 29. Radiate.
  • the transmission antennas 10, 20, and 30 are spatially orthogonal to each other.
  • the receiver of the first wireless device 301 obtains a reception electric field simultaneously using the first reception antenna 140, the second reception antenna 150, and the third reception antenna 160 that are spatially orthogonal.
  • the output of the first receiving antenna 140 is amplified by the first low noise amplifier 141 and then multiplied by the output of the local transmission circuit 149 that generates a signal having the same frequency as the carrier frequency by the first receiving multiplier 142.
  • the output is input to the first buffer amplifier 144 via the first band pass filter 143, and the output is sequentially delayed by the plurality of first delay units 145 and input to the digital signal processing circuit 148.
  • the output of the second receiving antenna 150 is amplified by the second low noise amplifier 151, and then multiplied by the output of the local transmission circuit 149 that generates a signal having the same frequency as the carrier frequency by the second receiving multiplier 152.
  • the output is input to the second buffer amplifier 154 via the second band pass filter 153, and the output is sequentially delayed by the plurality of second delay units 155 and input to the digital signal processing circuit 148.
  • the output of the third receiving antenna 160 is amplified by the third low noise amplifier 161 and then multiplied by the output of the local transmission circuit 149 that generates a signal having the same frequency as the carrier frequency by the third receiving multiplier 162.
  • the output is input to the third buffer amplifier 164 via the third band pass filter 163, and the output is sequentially delayed by the plurality of third delay units 165 and input to the digital signal processing circuit 148.
  • Information signal generator 1 cyclic code generation circuit 11, first transmission multiplier 2, second transmission multiplier 4, cosine rotation polarization frequency generation circuit 3, cosine X-axis weighting circuit 5, first transmission synthesis circuit 7, cosine Y-axis weighting circuit 15, second transmission synthesis circuit 17, cosine Z-axis weighting circuit 25, third transmission synthesis circuit 27, fourth transmission multiplier 12, fifth transmission multiplier 14, sinusoidal rotation Polarization frequency generation circuit 13, sine X-axis weighting circuit 6, sine Y-axis weighting circuit 16, sine Z-axis weighting circuit 26, first delay unit 145, signal processing circuit 148, second delay unit 155, third
  • the delay unit 165 is formed in the digital module 201.
  • the second radio 401 Since the second radio 401 has the same configuration and operation as the first radio 301, the description thereof is omitted.
  • the number of each part of the transmitter of the first radio 301 and the number in the 100s of each part of the transmitter of the second radio 401 are shown correspondingly, and the number of the receiver of the second radio 401 is also shown.
  • the numbers of the respective units and the numbers in the 100s of the respective units of the receiver of the first wireless device 301 are shown correspondingly.
  • the radio 301 includes three transmitting antennas 10 and 20 and 30 that are spatially orthogonal to each other. These antennas have an amplitude weight by a cosine X-axis weighting circuit 5, a cosine Y-axis weighting circuit 15, a cosine Z-axis weighting circuit 25 and a sine X-axis weighting circuit 6, a sine Y-axis weighting circuit 16, and a sine Z-axis weighting circuit 26. Attached.
  • the common input of the three cosine weighting circuits and the common input of the three sine weighting circuits are inputs to two antennas that are spatially orthogonal to each other.
  • the same spatial rotation weight may be given to the two antennas.
  • this spatial weight For example, if Euler angles ⁇ and ⁇ are used as parameters, cosine X-axis weighting circuit 5 and sine X-axis weighting circuit 6 have sin ⁇ cos ⁇ , cosine Y-axis weighting circuit 15 and sine.
  • the Y-axis weighting circuit 16 is sin ⁇ sin ⁇ , and the cosine Z-axis weighting circuit 25 and the sine Z-axis weighting circuit 26 are cos ⁇ .
  • the radio 301 has a circularly polarized wave whose propagation direction coincides with any one direction and has a circular locus, and a circularly polarized wave that rotates at a frequency ⁇ and a polarized wave that has any (multidirectional) propagation direction is a circle.
  • a rotating polarized wave rotating at a frequency ⁇ with a locus of Strictly speaking a fixed polarization whose magnitude changes at a frequency ⁇ is radiated in a direction in which the polarization is fixed in a direction orthogonal to the propagation direction of the rotational polarization whose rotation rotates at a frequency ⁇ with a circular locus.
  • this can be called a rotationally polarized wave whose polarization rotates with a frequency ⁇ with a locus of an ellipse.
  • the same operation is performed for the transmission of the wireless device 401.
  • the radio 401 includes three receiving antennas 40 and 50 and 60 that are spatially orthogonal to each other.
  • One polarization radiated from the transmitter rotates at a frequency ⁇ with a circular trajectory, and one with an infinite number of circular rotations at a frequency ⁇ with a circular trajectory. It is reflected on the surface of a plurality of radio wave scatterers that generally surround the two radios that perform. During this reflection, the polarization angle of the rotational polarization is shifted by a value specific to the incident angle of the rotational polarization with respect to the surface and the normal direction of the surface.
  • the rotational polarization transmitted from the transmitter is limited to that satisfying Snell's law between the transmission point, the reflection point, and the reception point. It is done. Therefore, the number of rotational polarizations reaching the receiver out of the rotational polarizations transmitted from the transmitter is finite.
  • the receiver is preliminarily provided with a table storing three outputs obtained by three antennas for a large number of combinations of rotationally polarized waves coming from a plurality of directions three-dimensionally. There are innumerable methods for creating the table, but it can be created as shown in FIG. 14, for example.
  • FIG. 14 is an explanatory diagram of a table for the combination and output of the rotational polarization of the present embodiment.
  • the table of FIG. 14 is created as follows. In the synthesis of rotationally polarized waves having a finite number of arrival directions, polarized waves arriving from a specific direction become rotationally polarized waves rotating at a frequency ⁇ with a locus of an ellipse.
  • the signal output by the combination of two antennas out of the antennas has an ellipse locus in which the major axis of the polarization coming from one specific direction is tilted (rotated at an angle in virtual two-dimensional coordinates) The locus of the rotationally polarized wave rotating at the frequency ⁇ is shown.
  • the resolution is represented by ⁇ and ⁇ .
  • is the resolution of the elevation angle ⁇ that varies from 0 ° to 180 °
  • is the resolution of the azimuth angle ⁇ that varies from 0 ° to 360 °.
  • Rotating polarized waves with a circular trajectory rotating at a frequency ⁇ are considered to be a special case of rotating polarized waves having a circular trajectory rotating at a frequency ⁇ .
  • the inclination is ⁇
  • the ratio of the major axis to the minor axis is ⁇ . Since there is a limit to the calculation accuracy of ⁇ and ⁇ of the receiver, their resolutions are assumed to be ⁇ and ⁇ .
  • is the resolution of ⁇ that changes the value from 0 ° to 180 °
  • is the resolution of ⁇ that changes the value from 1 to R.
  • R is determined with an integer as an upper limit.
  • the candidate values of ⁇ , ⁇ , ⁇ , and ⁇ can be expressed as i ⁇ , j ⁇ , k ⁇ , and l ⁇ , which are denoted as ⁇ i , ⁇ j , ⁇ k , and ⁇ l .
  • i, j, and k are non-negative integers, and l is a positive integer.
  • the slope of the major axis and the ratio of the major axis to the minor axis of the elliptical locus of the polarization of the output of each combination of the two orthogonal antennas of the three receiving antennas by the incoming wave having a plurality of ⁇ i , ⁇ j , ⁇ k , ⁇ l Are ⁇ m and ⁇ m , respectively.
  • m is a variable that identifies each combination of two orthogonal antennas of 1 to 3 receiving 3 antennas.
  • FIG. 15 is a flowchart of the digital signal processing of this embodiment.
  • the outline of the processing of the digital signal processing circuits 48 and 148 will be described below with reference to the flowchart of FIG.
  • the digital signal processing circuits 48 and 148 individually accumulate the outputs of the three antennas spatially orthogonal to each other on the time axis (S103).
  • the cosine X-axis weighting circuit 5 and the sine X-axis weighting circuit 6 are sin ⁇ cos ⁇
  • the cosine Y-axis weighting circuit 15 and the sine Y-axis weighting circuit 16 are sin ⁇ sin ⁇
  • the cosine Z-axis weighting circuit 25 and the sine Z-axis weighting circuit 26.
  • the digital signal processing circuits 48 and 148 calculate the temporal change of the signal strength over one period of the rotational polarization for the three combinations of the two, and the polarization of the rotational polarization input to each orthogonal two antenna. It obtains the trajectory of the waves, obtained by calculating the ratio [rho m of inclination [psi m and major axis and a minor axis of the major axis of the ellipse trajectory of rotation polarized wave input to each of two orthogonal antenna from the trajectory [( ⁇ 1, ⁇ 1 ), ([Psi] 2 , [Phi] 2 ), ([Psi] 3 , [Phi] 3 )] (S105).
  • the digital signal processing circuits 48 and 148 find a set of rotational polarizations ⁇ ′ m and ⁇ ′ m indicating the closest values from the obtained ⁇ m and ⁇ m using the table of FIG. 14 [( ⁇ ′ 1 , ⁇ ′ 1 ), ( ⁇ ′ 2 , ⁇ ′ 2 ), ( ⁇ ′ 3 , ⁇ ′ 3 )] (S107).
  • the digital signal processing circuits 48 and 148 are Yes in step S109 due to the initialized variable in step S101, and the process proceeds to step S111.
  • the digital signal processing circuits 48 and 148 include the inclination of the major axis and the ratio of the major axis to the minor axis ( ⁇ ′ m , ′ ′ m ) with respect to the set of orthogonal two antennas indicated by the set of rotational polarization obtained by the table,
  • the difference between the values ⁇ m and ⁇ m obtained from the received wave is stored as ⁇ m and ⁇ m in an appropriate memory such as an internal memory (S111).
  • the digital signal processing circuits 48 and 148 refer to the table, set ⁇ and ⁇ by ⁇ and ⁇ corresponding to ⁇ ′ m and ⁇ ′ m , and set the direction in which the rotational polarization of the transmitter is radiated.
  • the parameters of the cosine X-axis weighting circuit 5, the cosine Y-axis weighting circuit 15, the cosine Z-axis weighting circuit 25, the sine X-axis weighting circuit 6, the sine Y-axis weighting circuit 16, and the sine Z-axis weighting circuit 26 are changed (S113).
  • the digital signal processing circuits 48 and 148 can radiate a rotationally polarized wave in one specific direction of the space by setting the angles ⁇ and ⁇ using three spatially orthogonal transmitting antennas.
  • the necessity to control the direction of rotation of the rotational polarization arises because the trajectory of the rotational polarization of one elliptical trajectory reproduced by the set of rotational polarizations obtained by the table is the rotational deviation of the actually received elliptical trajectory. This is a case where the difference from the wave trajectory is large. Since the number of rotational polarization pairs that can be stored in the table is limited, ideally, the candidate values for ⁇ , ⁇ , ⁇ , and ⁇ must be continuous values. Represented by a finite number of discrete values.
  • This resolution determines how the candidate values of ⁇ , ⁇ , ⁇ , and ⁇ faithfully simulate the rotational polarization constituting the rotational polarization of the elliptical locus that is actually received. Since the capacity of the table is practically limited, by changing the direction of the rotational polarization to be transmitted slightly, the rotational polarization trajectory of one elliptical trajectory reproduced by the set of rotational polarization obtained by the table The difference between the actually received elliptical trajectory and the rotational polarization trajectory is reduced.
  • the digital signal processing circuits 48 and 148 change the values of the common inputs of the three cosine weighting circuits coupled to the three transmitting antennas and the values of the three sine weighting circuits with an appropriate algorithm (for example, a random change or a minute change of the parameter). Then, control is performed so that the locus of rotational polarization of the elliptical trajectory reproduced by the obtained candidate values of ⁇ , ⁇ , ⁇ , and ⁇ and the same trajectory actually obtained from the received signal are as close as possible.
  • an appropriate algorithm for example, a random change or a minute change of the parameter
  • ⁇ and ⁇ described in the table are those of the rotationally polarized wave of the elliptical polarization locus arriving at the receiver.
  • the transmitter transmits the obtained ⁇ and ⁇ (if there are a plurality of pairs of ⁇ and ⁇ , a specific one of them) as new ⁇ and ⁇ . Then, the above operation is repeated. Thereby, the difference between ⁇ and ⁇ used by the transmitter and ⁇ and ⁇ obtained by calculation (table comparison) by the receiver converges to a constant value (not necessarily zero).
  • a constant value not necessarily zero
  • the set of ⁇ and ⁇ is ( ⁇ 1, ⁇ 1), ( ⁇ 2, ⁇ 2), and ( ⁇ 3, ⁇ 3). From this, ⁇ 1 and ⁇ 1 are selected to be ⁇ and ⁇ used by the transmitter. Next, from the set of ⁇ and ⁇ obtained, the one close to the original ⁇ 1 and ⁇ 1 is selected and set as ⁇ and ⁇ used by the next transmitter. If any of the multiple pairs of ⁇ , ⁇ that the receiver obtains in the calculation (table comparison) is significantly different from the previously selected pair of ⁇ , ⁇ , One set is randomly selected from the set, and ⁇ and ⁇ are used by the next transmitter. Such a process is repeated.
  • the rotational polarization of the circularly polarized trajectory in the propagation direction determined by ⁇ and ⁇ finally transmitted by the transmitter is subjected to a plurality of reflections by a plurality of radio wave reflectors existing between the transmitter and the receiver.
  • a plurality of elliptical polarization trajectories having a set of ⁇ , ⁇ , ⁇ , and ⁇ are converted into rotationally polarized waves.
  • the digital signal processing circuits 48 and 148 set the parameters of the transmitter of the local radio device, and also transmit the information to the radio device of the counterpart side to thereby set the parameters of the transmitter of the counterpart radio device. Are set by the digital signal processing circuits 148 and 48 of the other radio. A method for transmitting information on these parameters to the radio device on the other side may be implemented by an appropriate method. After changing the parameters, the digital signal processing circuits 48 and 148 return to step S103 and perform the same operation on the received wave.
  • the digital signal processing circuits 48 and 148 repeat the same operation while the difference ⁇ m and ⁇ m is decreased, for example, by comparing the newly calculated difference (for example, by comparing with a predetermined threshold value).
  • a peak S109
  • a set of a plurality of rotational polarizations shown in the table is determined as a finite number of rotational polarizations used for communication (used for communication) (S115).
  • the digital signal processing circuits 48 and 148 may store parameter information (information including ⁇ and ⁇ ) in an internal memory.
  • the propagation direction of each finite number of rotational polarizations and the polarization direction at each time are known, so the outputs of the three antennas that are spatially orthogonal to each other Are weighted and added to a digital signal processing circuit to realize an antenna having a specific polarization direction virtually realized in space by the three antennas, and a specific propagation direction and a specific polarization. It becomes possible not to receive radio waves.
  • the technique relating to the weighting and the direction of the virtual antenna is the same as the technique used in the transmission antenna. With this principle, in this embodiment, it is possible to select an incoming wave in a specific propagation direction, that is, a specific propagation path formed between transmission and reception points.
  • the first wireless device 301 and the second wireless device 401 are communicating by changing the polarization periodically at the rotational polarization frequency at the same time, the first wireless device 301 and the second wireless device 401 can reduce the first by making the rotational polarization frequency sufficiently low.
  • the transmission / reception timing of the wireless device 301 and the transmission / reception timing of the second wireless device 401 can be made substantially the same. For example, when the communication service area is several hundred meters, if the rotational polarization frequency is 100 kHz, the wavelength corresponding to the same frequency is 3 km. In general, when the phase difference of radio waves is 1/10 wavelength or less, there is little possibility that the phase affects communication.
  • phase modulation used in general communication is BPSK and QPSK, and is based on phase change corresponding to 1/2 wavelength and 1/4 wavelength. Therefore, phase change corresponding to 1/10 wavelength corresponds to phase modulation. The effect can be ignored in practice.
  • a phase change corresponding to 1/16 wavelength or a phase change corresponding to 1/64 wavelength is used. In this case, 1/10 The change in phase corresponding to the wavelength cannot be ignored.
  • the background of the present invention and / or the present embodiment is the monitoring and control of a device that provides a lifeline, and the amount of information transmission suitable for the current application is on the order of several hundred kbps or less, and the phase corresponding to 1/10 wavelength. There is no need for high-speed data transmission in which changes in the data become a problem.
  • FIG. 13 is a diagram for explaining the operation of the wireless communication system of the present embodiment.
  • the frequency of the rotationally polarized wave be sufficiently long (5 times or more) for the same frequency as compared to the arrangement interval of the fixtures serving as a plurality of electromagnetic wave scatterers existing between the transceivers.
  • a plurality of incoming waves arriving at the second wireless device 401 via a plurality of propagation paths from the first wireless device 301 may be regarded as being in phase with respect to the polarization rotation. Therefore, a single rotational polarization having the same rotational plane vector and the same rotational polarization frequency having a transmission polarization and an inherent polarization angle difference is obtained.
  • the second radio 401 removes the carrier wave component from the outputs of the first receiving antenna 40, the second receiving antenna 50, and the third receiving antenna 60 that are spatially orthogonal to each other, and outputs signals of three systems of rotational polarization frequencies.
  • the trajectory of the polarization can be calculated and obtained three-dimensionally.
  • the three-dimensional trajectory obtained by this calculation becomes a single elliptical rotational polarization having an arbitrary rotation plane vector as shown in FIG.
  • the rotational frequency is equal to the transmitted rotational polarization.
  • a single elliptical rotational polarization having an arbitrary rotation plane vector can be reconstructed by calculation using a finite rotation polarization having a unique rotation plane vector.
  • This elliptical circularly polarized trajectory can be reproduced three-dimensionally by a finite number of circularly polarized waves, and therefore a finite number of rotationally polarized waves that can be identified by a specific rotation plane vector and a specific polarization angle shift.
  • a rotational transmission path can be obtained.
  • the intensity of a rotationally polarized wave having an arbitrary rotation plane vector can be made extremely strong (1/100 or less) by a linearly polarized antenna whose direction coincides with that of the rotation plane vector.
  • a cyclic code having a low sidelobe in one cycle corresponding to a sufficiently low polarization rotation frequency is generated by the cyclic code generation circuit and is associated with one cycle of the rotation polarization.
  • Rotation polarized waves whose directions do not coincide with each other are reproduced by a high code gain of the same cyclic code.
  • the baseband circuit can know the timing when the reception sensitivity of the radio receiver becomes maximum, and can also know the initial phase and three-dimensional weighting of the cyclic code at that time.
  • the baseband circuit converts the initial phase data and the stereoscopic weighting data into a cyclic code generation circuit, a cosine X-axis weighting circuit, a cosine Y-axis weighting circuit, a cosine Z-axis weighting circuit, a sine X-axis weighting circuit, and a sine Y.
  • FIG. 2 is an example of another configuration diagram of a wireless system in which a transmitter / receiver selectively uses a plurality of rotational polarization propagation paths using rotational polarization.
  • 1 is different from the embodiment of FIG. 1 in that the first radio 302 and the second radio 402 have cosine X-axis weighting circuits 5 and 105, cosine Y-axis weighting circuits 15 and 115, cosine Z-axis weighting circuit 25 and 125, sine X-axis weighting circuits 6 and 106, sine Y-axis weighting circuits 16 and 116, sine Z-axis weighting circuits 26 and 126, first transmission synthesis circuits 7 and 107, second transmission synthesis circuits 17 and 117,
  • the third transmission combining circuits 27 and 127, the sixth transmission multipliers 18 and 118, the second power amplifiers 19 and 119, and the second transmission antennas 20 and 120 are not provided, and the composite control lines 31 and 131 are single. It is a point that has been
  • the transmitters of the radios 302 and 402 cannot radiate rotational polarization in any direction, and radiate rotational polarization only in one fixed direction. It is assumed that the radiation direction of a large rotational polarization cannot be used. However, in an environment where there are many fixtures between the transmitter and the receiver, and the radio waves radiated from the transmitter have a lot of reflected waves that reach the receiver through a plurality of different paths, they are formed by their reflection. Since the number of rotational polarizations that can be selectively used by the receiver is large, functions other than the function related to the direction of the rotational polarization transmitted in the embodiment of FIG. 1 can be realized with fewer components. Manufacturing cost can be reduced.
  • FIG. 3 is an example of another configuration diagram of a radio system in which a transceiver uses a rotational polarization and selectively uses a plurality of rotational polarization propagation paths.
  • 2 is different from the embodiment of FIG. 2 in that the first radio 303 and the second radio 403 have the second low noise amplifiers 51 and 151, the third low noise amplifiers 61 and 161, and the second reception multiplication.
  • the second delay device 55, and the third second delay device 65 are not present, and the first delay device 45 is replaced by the delay device 35, and the second reception antennas 50 and 150 and the third reception device are replaced.
  • the receiving antenna changeover switch 46 for switching between the antennas 60 and 160 is provided, and these antennas and the first low noise amplifier 41 are coupled. As illustrated, each unit is formed in the digital module 203 and the digital module 203a.
  • the reception antenna changeover switch 46 is sequentially switched by a control signal from the baseband circuit 48, and the output of the first buffer amplifier 44 is three times as many delays as the delay amount of one third of the first delay unit 45.
  • the interval obtained by equally dividing the period of the rotational polarization is further divided into three parts that are spatially orthogonal to each other.
  • FIG. 4 is an example of another configuration diagram of a wireless system in which a transmitter / receiver selectively uses a plurality of rotational polarization propagation paths using rotational polarization.
  • the difference from the embodiment of FIG. 2 is that composite code control circuits 21 and 121 and code changeover switches 36 and 136 are newly provided, and the code changeover switches 36 and 136 and the cyclic code generation circuits 11 and 111 are controlled. Having lines 32 and 132. As illustrated, each unit is formed in the digital module 204 and the digital module 204a.
  • the baseband circuits 48 and 148 generate timing for superimposing the synchronization code on the rotational polarization by the code changeover switches 36 and 136, and the transmitter and receiver synchronize with each other by the synchronization code having a large correlation gain by the cyclic code.
  • the embodiment of FIG. 1 includes synchronous code generation circuits 21 and 121 and code changeover switches 36 and 136, and controls the code changeover switches 36 and 136 and the cyclic code generation circuits 11 and 111.
  • FIG. 5 is an example of another configuration diagram of a wireless system in which the transceiver uses the rotational polarization and selectively uses a plurality of rotational polarization propagation paths. 4 differs from the embodiment of FIG.
  • each unit is formed in a digital module 205 and a digital module 205a.
  • the cyclic code generation circuit arrays 22 and 122 generate different cyclic codes having a weak cross-correlation with each other, and the code selection switches 56 and 156 select the different codes and superimpose them on the outputs of the signal generation circuits 1 and 101. Due to the weak cross-correlation characteristics of the different codes, the first wireless device 305 and the second wireless device 405 can identify a plurality of wireless devices other than themselves. With this identification function, the wireless device of this embodiment can communicate with a plurality of wireless devices by switching the cyclic code generation circuit, so that the area on the time axis in which the wireless devices accommodated in the wireless system can simultaneously communicate increases. Therefore, there is an effect of improving the throughput of the wireless system.
  • FIG. 6 is an example of another configuration diagram of a radio system in which a transceiver uses a rotational polarization and selectively uses a plurality of rotational polarization propagation paths.
  • the difference from the embodiment of FIG. 2 is that the first and second radios are newly provided with time generation circuits 47 and 147. As illustrated, each unit is formed in the digital module 206 and the digital module 206a.
  • the digital signal processing circuits 48 and 148 indicate the rotation plane vector of the elliptically rotationally polarized wave calculated by the receivers of the first and second wireless devices and the change timing of the elliptical shape. It is obtained by the same method as in the first embodiment and stored in the time generation circuits 47 and 147. Once the values are stored in the time generation circuits 47 and 147, the digital signal processing circuits 48 and 148 use the outputs of the time generation circuits 47 and 147 to generate signs of the cyclic code generation circuits 111 and 11 for a certain period of time. Determine timing.
  • the digital signal processing circuits 48 and 148 indicate the rotation plane vector of the elliptically polarized wave and the change timing of the elliptical shape calculated by the receivers of the first and second radio units from the digital signal processing circuits 48 and 148. Obtained in the same manner as in the embodiment of FIG. According to the present embodiment, since the operation of the digital signal processing circuit included in the wireless device can be simplified, the power consumption of the wireless device can be reduced, which is effective in reducing the power consumption of the entire wireless system.
  • FIG. 7 is an example of another configuration diagram of a wireless system in which a transmitter / receiver selectively uses a plurality of rotational polarization propagation paths using rotational polarization.
  • the difference from the embodiment of FIG. 6 is that communication state storage devices 57 and 157 and data buses 67 and 167 are newly provided. As illustrated, each unit is formed in the digital module 207 and the digital module 207a.
  • the communication state storage devices 57 and 157 are coupled to the digital signal processing circuits 48 and 148, respectively, and the plane-of-rotation polarization plane vector calculated by the receiver of the first radio unit 307 and the second radio unit 407 is obtained.
  • the elliptical information can be stored in time series, and the information can be transmitted to the outside of the first wireless device 307 and the second wireless device 407 using the data buses 67 and 167.
  • the wireless system of the present embodiment is a time-series change in the environment that affects the propagation of radio waves surrounding the wireless system by examining changes in the plane of rotation and elliptical shape of the elliptically rotating polarization obtained by calculation by the receiver. Can be detected, and a maintenance function for stably operating the wireless system can be obtained, so that the operation of the wireless system of this embodiment can be stabilized and the time required to restore the system in response to an unexpected situation can be shortened. It becomes possible.
  • FIG. 8 is an example of another configuration diagram of a wireless system in which a transmitter / receiver selectively uses a plurality of rotational polarization propagation paths using rotational polarization.
  • 1 differs from the wireless device of the embodiment of FIG. 1 in that the first transmitting antenna 10, the second transmitting antenna 20, the third transmitting antenna 30, the first receiving antenna 40, the second receiving antenna 50, the third Instead of the first receiving antenna 60, a first transmitting / receiving antenna 70, a second transmitting / receiving antenna 80, and a third transmitting / receiving antenna 90 are provided, and a first circulator 71, a second circulator 81, and a second circulator 81 are newly provided. 3 circulators 91 are provided.
  • the first transmitting / receiving antenna 70 is connected to the first terminal of the first circulator 71
  • the second transmitting / receiving antenna 80 is connected to the first terminal of the second circulator 81
  • the third transmitting / receiving is connected to the first terminal of the third circulator 91.
  • Each shared antenna 90 is coupled.
  • the output of the first power amplifier 9 is connected to the second terminal of the first circulator 71
  • the output of the second power amplifier 19 is connected to the second terminal of the second circulator 81
  • the third terminal is connected to the second terminal of the third circulator 91.
  • the outputs of the power amplifiers 29 are combined.
  • the input of the first low noise amplifier 141 is input to the third terminal of the first circulator 71
  • the input of the second low noise amplifier 19 is input to the third terminal of the second circulator 81
  • the third terminal of the third circulator 91 is connected.
  • the inputs of the third low noise amplifier 29 are respectively coupled. As illustrated, each unit is formed in the digital module 208.
  • the first circulator 71, the second circulator 81, and the third circulator 91 transmit signals in the circulation order of the terminals, the first transmitting / receiving antenna 70, the second transmitting / receiving antenna 80, and the third transmitting / receiving are used.
  • the antenna 90 radiates the outputs of the first power amplifier 9, the second power amplifier 19, and the third power amplifier 29 to the space, and converts the power of the electromagnetic wave arriving at the radio unit 308 to the first low noise amplifier 141 and the first power amplifier.
  • the signals are input to the second low noise amplifier 151 and the third low noise amplifier 161.
  • the same function as that of the wireless device of the embodiment of FIG. 1 can be realized with three antennas, which is effective in reducing the size of the wireless device and reducing the manufacturing cost of the wireless device.
  • FIG. 9 is an example of another configuration diagram of a radio system in which a transceiver uses a rotational polarization and selectively uses a plurality of rotational polarization propagation paths.
  • the wireless device 309 includes a first antenna switch 72, a second antenna switch 82, and a third antenna switch 92 instead of the first circulator 71, the second circulator 81, and the third circulator 91. .
  • each unit is formed in the digital module 209.
  • the first transmitting / receiving antenna 70 is connected to the common terminal of the first antenna switch 72, the second transmitting / receiving antenna 80 is connected to the common terminal of the second antenna switch 82, and the third transmitting / receiving terminal is connected to the common terminal of the third antenna switch 92.
  • Each shared antenna 90 is coupled.
  • the output of the first power amplifier 9 is connected to the first terminal of the first antenna switch 72, the output of the second power amplifier 19 is connected to the first terminal of the second antenna switch 82, and the first terminal of the third antenna switch 92.
  • the input of the first low noise amplifier 141 is input to the second terminal of the first antenna switch 72, the input of the second low noise amplifier 19 is input to the second terminal of the second antenna switch 82, and the The inputs of the third low noise amplifier 29 are coupled to the two terminals, respectively.
  • functions similar to those of the wireless device of the embodiment of FIG. 1 can be realized without using three antennas and a large and heavy circulator, so that the size and weight of the wireless device can be reduced and the wireless device can be manufactured. Effective for cost reduction.
  • FIG. 10 is an example of another configuration diagram of a radio system in which a transceiver uses a rotational polarization and selectively uses a plurality of rotational polarization propagation paths.
  • the wireless device 210 includes two shared antennas, one receiving antenna, and two circulators, and the configuration of the receiving circuit is the same as that of the wireless device 301 in FIG.
  • the transmitter of the radio device 310 divides the output of the information signal generator 1 into two branches, and the output of the first cosine wave carrier generation circuit 78 and the output of the second cosine wave carrier generation circuit 79 by the cosine transmission multiplier 76.
  • the output is multiplied by a beat-like carrier wave formed by adding the adder 77, the output of the cyclic code generation circuit 11 is superimposed by the first transmission multiplier 2, and subsequently multiplied by the first delta-sigma circuit 97. Then, the signal is amplified by the first power amplifier 9 through the cosine bandpass filter 95 and input to the first terminal of the first circulator 71.
  • a difference between the output of the first sine wave carrier wave generation circuit 89 and the output of the second sine wave carrier wave generation circuit 89 is obtained by a subtractor 87 by the sine transmission multiplier 86 on the other side of the output of the information signal generator 1 in two branches.
  • the beat-shaped carrier waves formed by the signals are multiplied and the output of the cyclic code generation circuit 11 is superposed by the second transmission multiplier 12 and then multiplied by the second delta-sigma circuit 98 to obtain a sine band-pass filter.
  • the first delta sigma circuit 97 and the second delta sigma circuit 98 are supplied with an operation clock by a clock generation circuit 99.
  • the output of the third terminal of the first circulator 71 is amplified by the first low noise amplifier 141, and then a signal having the same frequency as the carrier frequency is output by the first reception multiplier 142.
  • the generated local oscillator 149 output is multiplied, and the output is input to the first buffer amplifier 144 via the first band-pass filter 143, and the output is sequentially delayed by the plurality of first delay devices 145.
  • Each is input to the digital signal processing circuit 148.
  • the output of the third terminal of the third circulator 91 is amplified by the third low noise amplifier 161, and then output from the local oscillator circuit 149 that generates a signal having the same frequency as the carrier frequency by the third reception multiplier 162.
  • the output is input to the third buffer amplifier 164 via the third band-pass filter 163, and the output is sequentially delayed by the plurality of third delay units 165 and input to the digital signal processing circuit 148, respectively. Is done.
  • the second terminals of the first circulator 71 and the third circulator 91 are coupled to the first transmitting / receiving antenna 70 and the third transmitting / receiving antenna 90, respectively.
  • the output of the second receiving antenna 150 is amplified by the second low noise amplifier 151, and then multiplied by the output of the local transmission circuit 149 that generates a signal having the same frequency as the carrier frequency by the second receiving multiplier 152.
  • the output is input to the second buffer amplifier 154 via the second band pass filter 153, and the output is sequentially delayed by the plurality of second delay units 155 and input to the digital signal processing circuit 148.
  • each unit is formed in the digital rotational polarization transmitting / receiving module 210.
  • the same function as the radio of the embodiment of FIG. 1 can be realized by three antennas, and the generation of the input signal to the power amplifier and the processing of the output signal of the low noise amplifier are all realized by a digital circuit. As a result, the size of the wireless device can be reduced, the manufacturing cost of the wireless device can be reduced, and the life of the wireless device can be increased.
  • FIG. 11 is an example of a configuration diagram of an elevator system to which a wireless system in which a transmitter / receiver uses rotational polarization and selectively uses a plurality of rotational polarization propagation paths is applied.
  • the elevator cage 1111 moves up and down in the building 1101 where the elevator is installed.
  • a base station radio 1102 and a base station 2 orthogonal polarization integrated antenna 1103 are coupled and installed on the floor and ceiling of the building 1101.
  • a terminal radio 1113 is installed on the external ceiling and the external floor of the elevator 1111, and an orthogonal polarization integrated antenna 1112 is coupled using a high frequency cable 1114.
  • the base station radio 1102 and the terminal radio 1113 each detect a channel modification act from an external party and compensate for the degradation in communication quality between transmission and reception for the modification as in the first to tenth embodiments. And a receiver. Since the base station radio 1103 and the terminal station radio 1113 use the inside of the building 1101 as a radio transmission medium, electromagnetic waves are subjected to multiple reflections by the inner wall of the building 1101 and the outer wall of the elevator, and a multiwave interference environment is formed.
  • the in the present embodiment it is possible to realize high-quality wireless transmission that detects a channel modification act from an external party in a multiwave interference environment and compensates for a decrease in communication quality between transmission and reception for the modification. Since the elevator 1111 can be controlled and monitored remotely from the building 1101 without using the wired connection means using the wireless connection means using the same wireless device, the wired connection means such as a cable can be deleted. In the present embodiment, the same transportation capacity can be realized with a smaller building volume, or the transportation capacity can be improved by increasing the elevator size with the same building volume.
  • FIG. 12 is an example of a configuration diagram of a substation equipment monitoring system to which a wireless system in which a transceiver uses rotational polarization and selectively uses a plurality of rotational polarization propagation paths is applied.
  • a plurality of substations 1201 and a substation 1201 are connected to a terminal station radio 1203 and a terminal station polarization antenna 1202.
  • the terminal station radio 1203 includes a transmitter and a receiver of a radio communication system that uses an electromagnetic wave having a rotationally polarized wave that includes an antenna capable of transmitting and receiving the rotationally polarized wave.
  • a plurality of base station apparatuses 1211 having a number smaller than the number of substations 1201 are installed.
  • a base station radio 1213 using a rotationally polarized electromagnetic wave having an antenna capable of transmitting and receiving rotationally polarized waves and a base station rotationally polarized antenna 1212 are coupled. Installed.
  • the dimensions of the transformer are, for example, on the order of several meters and are overwhelmingly larger than the wavelengths corresponding to several hundred MHz to several GHz, which are the frequencies of the electromagnetic waves used by the radio equipment.
  • a multiple wave interference environment is formed due to multiple reflections.
  • the control and monitoring of the transformer 1201 can be performed remotely by the plurality of wireless base stations 1211 without using the wired connection means.
  • the influence of the high-voltage induced power that becomes a problem when the wired connection means such as a cable is used can be solved, and the installation cost of the cable can be eliminated. It is effective in improving the performance and reducing the cost.
  • a transmitter superimposes a signal obtained by multiplying an electromagnetic wave whose polarization is rotated at a frequency lower than that of a carrier wave by a cyclic code having the same period as the rotation period, and a receiver transmits a cyclic code used by the transmitter.
  • a wireless communication system wherein the same code is used to know the direction of polarization used by the transmitter, and the transmission information is reproduced using a received signal at a specific time using information in the same direction.
  • Configuration Example 2 The wireless communication system according to Configuration Example 1, wherein the wireless devices share a plurality of different cyclic codes and use different cyclic codes at different timings.
  • the wireless devices In the wireless communication system according to Configuration Example 1 or 2, the wireless devices share a synchronization code, transmit the synchronization code as a signal at a timing different from the timing using the cyclic code, and synchronize with a plurality of wireless devices A wireless communication system.
  • a wireless communication system characterized by recognizing a change in a wireless environment surrounding a machine.
  • (Configuration example 5) The wireless communication system according to any one of the configuration examples 1 to 4, wherein the transmitter uses a total of four types of circuits, ie, a cosine generating circuit and a sine wave generating circuit having two different frequencies, and is half the difference between the two frequencies.
  • a radio communication system characterized by generating a radio wave whose polarization is rotated.
  • (Configuration example 6) The wireless communication system according to any one of Configuration Examples 1 to 5, wherein the wireless device includes three spatially orthogonal antennas having sensitivity to an electric field, and the receiver individually processes outputs from the three antennas.
  • a wireless communication system comprising a circuit group and a digital signal processing unit that integrally processes outputs of the circuit group.
  • (Configuration example 7) The wireless communication system according to any one of Configuration Examples 1 to 6, wherein the wireless device includes a third antenna having sensitivity to a magnetic field in a plane stretched by the same antenna and two spatially orthogonal antennas having sensitivity to an electric field.
  • the receiver includes three circuit groups that individually process outputs from the three antennas, and a digital signal processing unit that integrally processes the outputs of the circuit groups.
  • Wireless communication system. (Configuration example 8) An elevator control system to which the wireless communication system according to any one of Configuration Examples 1 to 7 is applied. (Configuration example 9) A substation control system to which any one of the configuration examples 1 to 7 is applied.
  • Each of the above-described configurations, functions, and the like may be realized by software by interpreting and executing a program that realizes each function by the processor.
  • Information such as programs, tables, and files for realizing each function can be stored in a memory, a hard disk, a recording device such as an SSD (Solid State Drive), or a recording medium such as an IC card, an SD card, or a DVD.
  • the control lines and information lines indicate what is considered necessary for the explanation, and not all the control lines and information lines on the product are necessarily shown. Actually, it may be considered that almost all the components are connected to each other.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Radio Transmission System (AREA)
  • Variable-Direction Aerials And Aerial Arrays (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

The purpose of the present invention is to implement a wireless system having a high tolerance for artificial or natural disturbance and interference in a specified propagation path. Simultaneously in a pair of wireless machines 201, 401 having a transmission/reception function, transmitters transmit information using a radio wave the polarization of which rotates at a frequency different from the frequency of a carrier wave, and receivers three-dimensionally receive incoming waves of all polarizations using a plurality of antennas, extract the trajectory of an elliptical rotational polarization having an arbitrarily defined rotational plane vector obtained by three-dimensional synthesis of the incoming waves, obtain, by calculation, rotational polarizations showing circular trajectories having a finite plurality of unique rotational plane vectors capable of reproducing the trajectory, and perform communication selectively using transmission paths corresponding to the obtained plurality of rotational polarizations.

Description

無線通信システム、無線機、無線通信方法、昇降機制御システム及び変電所制御システムWireless communication system, wireless device, wireless communication method, elevator control system, and substation control system
本発明は、無線通信システム、無線機、無線通信方法、昇降機制御システム及び変電所制御システムに係り、特に、送信機が時系列的に異なる偏波を用いて送信を行い、受信機が同時に異なる偏波で受信を行う、偏波を制御する無線通信システム、無線機、同無線通信システムを運用するための無線通信方法、同無線通信システムを用いる昇降機制御システム及び変電所制御システムに関する。 The present invention relates to a wireless communication system, a wireless device, a wireless communication method, an elevator control system, and a substation control system, and in particular, a transmitter transmits using time-sequentially different polarized waves, and receivers are simultaneously different. The present invention relates to a radio communication system for controlling polarization, a radio, a radio communication method for operating the radio communication system, an elevator control system and a substation control system using the radio communication system.
持続的発展可能な社会の実現に向けて、エネルギー、水、ガス、石油等を生産・分配する社会インフラシステムの高効率運用が重要となっている。社会インフラシステムの高効率運用は、例えば、同システムを構成する機器の高効率動作により実現され、同動作を可能とする機器の監視・制御ネットワーク等を必要とする。同機器の高効率動作を行う為に、同機器に多数のセンサを配置し、得られた多くのデータから機器の稼働状況を推測・予測する技術が有望視されている。このように多くのセンサからのデータを収集・解析し、稼働状況推測し、制御情報を同機器に伝達する為のネットワークは、伝送経路が極めて多数となるため、従来の有線技術に代わり無線技術によるネットワークの構成が望まれる。社会インフラシステムは社会にライフラインを提供するので、ネットワークが人為的あるいは自然的に特定の伝送路が障害および妨害を受けた場合に、該障害・妨害を受けた伝送路を用いない通信を行い、ライフラインを提供可能な機能が極めて重要である。一般に無線通信では伝送路が開放空間であるので、自動的に複数の伝送路が送受信点間に形成されるが、一般にそれらを一括して送受信するため、人為的あるいは自然的に発生した特定の伝送路の障害および妨害に対してネットワークの通信品質は劣化する場合が想定され、ネットワークダウンにまで及ぶ可能性がある。有線通信では外部者が伝送路を特定できるので、外部者が伝送路を発見・介入した場合、ライフラインの供給に深刻な影響を与える可能性を完全には否定できない。すなわち、従来技術の無線通信および有線通信では、人為的あるいは自然的な特定の伝送路の障害および妨害に対して、強い耐性を持つネットワークを必ずしも実現できていない場合が想定される。 High-efficiency operation of social infrastructure systems that produce and distribute energy, water, gas, oil, etc. is important for the realization of a sustainable society. High-efficiency operation of a social infrastructure system is realized by, for example, high-efficiency operation of devices constituting the system, and requires a device monitoring / control network that enables the operation. In order to perform high-efficiency operation of the device, a technology that places a large number of sensors on the device and estimates and predicts the operation status of the device from a lot of obtained data is promising. In this way, the network for collecting and analyzing data from many sensors, estimating operating conditions, and transmitting control information to the same equipment has a large number of transmission paths, so wireless technology replaces conventional wired technology. A network configuration is desired. Social infrastructure systems provide a lifeline to society, so when a network is artificially or naturally affected by a specific transmission line that is damaged or obstructed, communication is performed without using the damaged or obstructed transmission line. The function that can provide a lifeline is extremely important. In general, in wireless communication, since the transmission path is an open space, a plurality of transmission paths are automatically formed between transmission and reception points. It is assumed that the communication quality of the network deteriorates due to a transmission path failure and interference, and the network may be down. In wired communication, an outsider can specify a transmission path, so if an outsider discovers or intervenes in a transmission path, the possibility of seriously affecting the supply of the lifeline cannot be completely denied. That is, in the wireless communication and the wired communication according to the prior art, it is assumed that a network having strong resistance to a specific and artificial failure or disturbance of a transmission path cannot always be realized.
社会インフラシステムを構成する機器に配置されるセンサおよび同機器を制御するアクチュエータは同機器自体が電磁波散乱体となるので、電磁波を通信媒体として用いる無線ネットワークでは、同ネットワークを構成する無線機が見通し状態で通信をすることが期待できず、該機器により反射された多重反射波を用いる非見通し状態で通信をするという特殊な状況で運用される。電磁波はベクトル波であり反射により進行方向に垂直な偏波と呼ばれる物理実態が固有な変化をするために、送信機から自動的に複数の方向に放射された同一偏波の電波は、複数の機器により固有の反射を行い、受信機に複数の伝搬路を通じて固有の偏波の変化を受けた複数の電波として到来する。従って、受信機はこれら複数の到来電波のベクトル合成によって生じる予測不能な偏波方向を用いることとなる。電磁波を用いる無線通信の送受対称性により、送受信間に生じる予測不能な偏波方向の変化は特定の送受信機の対に固有なものであり、且つ電波環境が変化することで時々刻々と不規則な変化をする。 Sensors and actuators that control the devices that make up the social infrastructure system are themselves electromagnetic wave scatterers. Therefore, in wireless networks that use electromagnetic waves as communication media, the wireless devices that make up the networks are expected. It is not expected to communicate in a state, and is operated in a special situation in which communication is performed in a non-line-of-sight state using multiple reflected waves reflected by the device. Since electromagnetic waves are vector waves and the physical reality called polarization perpendicular to the traveling direction due to reflection changes inherently, radio waves of the same polarization that are automatically emitted from a transmitter in multiple directions Inherent reflection is performed by the device, and arrives at the receiver as a plurality of radio waves that have undergone a specific polarization change through a plurality of propagation paths. Therefore, the receiver uses an unpredictable polarization direction generated by vector combination of the plurality of incoming radio waves. Due to transmission / reception symmetry of wireless communication using electromagnetic waves, unpredictable changes in polarization direction between transmission and reception are inherent to a specific pair of transmitters and receivers, and are irregular every moment as the radio wave environment changes. Make a change.
従来技術としては、送信機と受信機が電波環境の変化に対応して最適な一組の偏波を用いて通信品質の向上を目指す通信システムが、特開2003-520545号公報記載の先行技術にて提案されている。 As a prior art, there is a communication system in which a transmitter and a receiver aim to improve communication quality by using an optimal set of polarized waves corresponding to a change in radio wave environment, as disclosed in Japanese Patent Application Laid-Open No. 2003-520545. Has been proposed.
特開2003-520545号公報JP 2003-520545 A
上述のような該先行技術では、送受信間で特定の一組の偏波を用いて通信を行うために、送受信間で単一の伝送路を用いることとなり、人為的あるいは自然的な特定の伝送路の障害および妨害に対して、通信品質が大きく変動するという課題があった。 In the prior art as described above, in order to perform communication using a specific set of polarized waves between transmission and reception, a single transmission line is used between transmission and reception. There was a problem that the communication quality greatly fluctuated due to road disturbance and disturbance.
本発明は、以上の点に鑑み、伝送路の障害および妨害に対し強い耐性を持つネットワークを実現することを目的とする。 In view of the above, an object of the present invention is to realize a network that has strong resistance to transmission path failures and disturbances.
 本発明の第1の解決手段によると、
 無線通信システムであって、
 送信機は、搬送波の周波数とは異なる周波数で偏波が搬送波に比べて低い周波数で回転する電波を用いて、情報を送信し、
 受信機は、
 3つのアンテナを用いて3次元的に多方向からの偏波の到来波を受信し、互いに直交する3軸に平行な偏波の3つの信号を得て、
 到来波の3次元的合成によって得られる楕円回転偏波の到来方向及び長軸の傾き並びに長軸と短軸の比を含む楕円軌跡を抽出し、
 3次元的に複数の方向から到来する回転偏波の到来方向及び楕円軌跡の組み合わせに対する3つのアンテナから得られる出力を予め記憶したテーブルを参照し、抽出した楕円軌跡を再現可能な有限複数個の固有の円軌跡を呈するひとつ又は複数の回転偏波を求め、
 求めたひとつ又は複数の回転偏波に対応する伝送路を用いて通信を行う、無線通信システムが提供される。
According to the first solution of the present invention,
A wireless communication system,
The transmitter transmits information using a radio wave whose polarization is different from the frequency of the carrier wave and whose polarization is lower than that of the carrier wave.
The receiver
Using three antennas to receive an incoming wave of polarization from multiple directions in three dimensions, obtain three signals of polarization parallel to three axes orthogonal to each other,
Extract the elliptical trajectory including the direction of arrival of the ellipse rotation polarization obtained by three-dimensional synthesis of the incoming wave, the inclination of the major axis, and the ratio of the major axis to the minor axis,
With reference to a table that stores in advance the outputs obtained from the three antennas for the combination of the arrival direction of the circularly polarized waves coming from a plurality of directions in three dimensions and the elliptical trajectory, a finite plurality of the reproducible elliptical trajectories can be reproduced. Find one or more circularly polarized waves that exhibit a unique circular trajectory,
There is provided a wireless communication system that performs communication using a transmission path corresponding to one or a plurality of obtained rotationally polarized waves.
 本発明の第2の解決手段によると、
 無線機であって、
 送信機により、搬送波の周波数とは異なる周波数で偏波が搬送波に比べて低い周波数で回転する電波を用いて送信された、情報を受信し、
 3つのアンテナを用いて3次元的に多方向からの偏波の到来波を受信し、互いに直交する3軸に平行な偏波の3つの信号を得て、
 到来波の3次元的合成によって得られる楕円回転偏波の到来方向及び長軸の傾き並びに長軸と短軸の比を含む楕円軌跡を抽出し、
 3次元的に複数の方向から到来する回転偏波の到来方向及び楕円軌跡の組み合わせに対する3つのアンテナから得られる出力を予め記憶したテーブルを参照し、抽出した楕円軌跡を再現可能な有限複数個の固有の円軌跡を呈するひとつ又は複数の回転偏波を求め、
 求めたひとつ又は複数の回転偏波に対応する伝送路を用いて通信を行う、
無線機が提供される。
According to the second solution of the present invention,
A radio,
The transmitter receives information transmitted by using a radio wave whose polarization is different from that of the carrier wave and whose polarization is lower than that of the carrier wave.
Using three antennas to receive an incoming wave of polarization from multiple directions in three dimensions, obtain three signals of polarization parallel to three axes orthogonal to each other,
Extract the elliptical trajectory including the direction of arrival of the ellipse rotation polarization obtained by three-dimensional synthesis of the incoming wave, the inclination of the major axis, and the ratio of the major axis to the minor axis,
With reference to a table that stores in advance the outputs obtained from the three antennas for the combination of the arrival direction of the circularly polarized waves coming from a plurality of directions in three dimensions and the elliptical trajectory, a finite plurality of the reproducible elliptical trajectories can be reproduced. Find one or more circularly polarized waves that exhibit a unique circular trajectory,
Communicate using a transmission line corresponding to the obtained one or more rotational polarizations,
A radio is provided.
 本発明の第3の解決手段によると、
 無線通信システムにおける無線通信方法であって、
 送信機は、搬送波の周波数とは異なる周波数で偏波が搬送波に比べて低い周波数で回転する電波を用いて、情報を送信し、
 受信機は、
 3つのアンテナを用いて3次元的に多方向からの偏波の到来波を受信し、互いに直交する3軸に平行な偏波の3つの信号を得て、
 到来波の3次元的合成によって得られる楕円回転偏波の到来方向及び長軸の傾き並びに長軸と短軸の比を含む楕円軌跡を抽出し、
 3次元的に複数の方向から到来する回転偏波の到来方向及び楕円軌跡の組み合わせに対する3つのアンテナから得られる出力を予め記憶したテーブルを参照し、抽出した楕円軌跡を再現可能な有限複数個の固有の円軌跡を呈するひとつ又は複数の回転偏波を求め、
 求めたひとつ又は複数の回転偏波に対応する伝送路を用いて通信を行う、
無線通信方法が提供される。
According to the third solution of the present invention,
A wireless communication method in a wireless communication system, comprising:
The transmitter transmits information using a radio wave whose polarization is different from the frequency of the carrier wave and whose polarization is lower than that of the carrier wave.
The receiver
Using three antennas to receive an incoming wave of polarization from multiple directions in three dimensions, obtain three signals of polarization parallel to three axes orthogonal to each other,
Extract the elliptical trajectory including the direction of arrival of the ellipse rotation polarization obtained by three-dimensional synthesis of the incoming wave, the inclination of the major axis, and the ratio of the major axis to the minor axis,
With reference to a table that stores in advance the outputs obtained from the three antennas for the combination of the arrival direction of the circularly polarized waves coming from a plurality of directions in three dimensions and the elliptical trajectory, a finite plurality of the reproducible elliptical trajectories can be reproduced. Find one or more circularly polarized waves that exhibit a unique circular trajectory,
Communicate using a transmission line corresponding to the obtained one or more rotational polarizations,
A wireless communication method is provided.
 本発明の第4の解決手段によると、
 上述のような無線通信システムを適用した昇降機制御システムが提供される。
 本発明の第5の解決手段によると、
 上述のような無線通信システムを適用した変電所制御システムが提供される。
According to the fourth solution of the present invention,
An elevator control system to which the wireless communication system as described above is applied is provided.
According to the fifth solution of the present invention,
A substation control system to which the wireless communication system as described above is applied is provided.
本発明によると、伝送路の障害および妨害に対し強い耐性を持つネットワークを実現することができる。 According to the present invention, it is possible to realize a network having strong resistance to transmission path failures and disturbances.
本実施例の無線通信システムの構成図の例である。It is an example of the block diagram of the radio | wireless communications system of a present Example. 本実施例の無線通信システムの他の構成図の例である。It is an example of the other block diagram of the radio | wireless communications system of a present Example. 本実施例の無線通信システムの他の構成図の例である。It is an example of the other block diagram of the radio | wireless communications system of a present Example. 本実施例の無線通信システムの他の構成図の例である。It is an example of the other block diagram of the radio | wireless communications system of a present Example. 本実施例の無線通信システムの他の構成図の例である。It is an example of the other block diagram of the radio | wireless communications system of a present Example. 本実施例の無線通信システムの他の構成図の例である。It is an example of the other block diagram of the radio | wireless communications system of a present Example. 本実施例の無線通信システムの他の構成図の例である。It is an example of the other block diagram of the radio | wireless communications system of a present Example. 本実施例の無線通信システムの無線機の構造図の例である。It is an example of the structure figure of the radio | wireless machine of the radio | wireless communications system of a present Example. 本実施例の無線通信システムの他の無線機の構造図の例である。It is an example of the structure figure of the other radio | wireless machine of the radio | wireless communications system of a present Example. 本実施例の無線通信システムの他の無線機の構造図の例である。It is an example of the structure figure of the other radio | wireless machine of the radio | wireless communications system of a present Example. 本実施例の無線通信システムを適用した昇降機システムの構成図の例である。It is an example of the block diagram of the elevator system to which the radio | wireless communications system of a present Example is applied. 本実施例の無線通信システムを適用した変電所システムの構成図の例である。It is an example of the block diagram of the substation system to which the radio | wireless communications system of a present Example is applied. 本実施例の無線通信システムの動作を説明する図である。It is a figure explaining operation | movement of the radio | wireless communications system of a present Example. 本実施例の回転偏波の組み合わせと出力についてのテーブルの説明図である。It is explanatory drawing of the table about the combination and output of a rotational polarization of a present Example. 本実施例のデジタル信号処理のフローチャートである。It is a flowchart of the digital signal processing of a present Example.
 以下、実施例を図面を用いて説明する。
 
A.概要
 
本実施例においては、送信機および受信機が複数の偏波を用いて通信を行い、該複数の偏波に対応する複数の伝送路の異なる組み合わせにより複数の異なる受信波を形成し、該複数の受信波を用いて、特定の伝送路からの信号を選択的に再現し、人為的あるいは自然的に特定の伝送路が障害および妨害を受けた場合に、該障害・妨害を受けた伝送路を用いない通信を行う。
Hereinafter, examples will be described with reference to the drawings.

A. Overview
In this embodiment, a transmitter and a receiver communicate using a plurality of polarizations, and a plurality of different received waves are formed by different combinations of a plurality of transmission paths corresponding to the plurality of polarizations. When a specific transmission line is manually or naturally disturbed and interfered with a specific transmission line by using the received wave, the transmission line that has suffered the disturbance or disturbance Communication without using.
本実施例は上記課題を解決する手段を複数含んでいるが、その一例を挙げるならば、送受信機能を具備する一対の無線機が同時に、送信機が情報を搬送波の周波数とは異なる周波数で偏波が回転する電波を用い送信し、受信機は複数のアンテナを用いて三次元的にあらゆる偏波の到来波を受信し、到来波の三次元的合成によって得られる任意の回転面ベクトルを有する楕円回転偏波の軌跡を抽出し、同軌跡を再現可能な有限複数個の固有な回転面ベクトルを有する円軌跡を呈する回転偏波を計算で得て、得られた複数の回転偏波に対応する伝送路を選択的に用いて通信を行うことを特徴とすることができる。 The present embodiment includes a plurality of means for solving the above-mentioned problems. For example, a pair of radios having a transmission / reception function simultaneously transmits information at a frequency different from the frequency of the carrier wave. Transmits using a rotating radio wave, the receiver receives incoming waves of any polarization in three dimensions using multiple antennas, and has an arbitrary rotation plane vector obtained by three-dimensional synthesis of the incoming waves Ellipsoidal rotation polarization trajectory is extracted, and a circular polarization with a finite number of unique rotation plane vectors that can reproduce the trajectory is obtained by calculation. It is possible to perform communication by selectively using a transmission path to be performed.
本実施例では、送信機が搬送波の周波数と比べて十分に低い周波数で偏波が回転する電波を用いて送信を行う場合、受信機は複数の伝播路を経由した到来波の三次元的ベクトル和を受信する。各伝搬路を経由した到来波は受信点ではやはり回転偏波であるから、該三次元的ベクトル和は任意の回転面ベクトルを有する楕円回転偏波となる。この楕円円偏波軌跡は、有限の複数個の円偏波により三次元的に再現可能であるため、固有の回転面ベクトルと固有の偏波角度シフトで識別可能な、有限個の回転偏波回転伝送路を得ることができる。任意の回転面ベクトルを有する回転偏波は同回転面ベクトルと方向が一致する直線偏波アンテナにより強度を極端に(例えば、100分の1以下)できる。更に、十分低い偏波の回転周波数に対応する一周期にサイドローブの低い循環符号を対応付けることで、同アンテナと回転面ベクトルの方向が一致しない回転偏波は同循環符号の高い符号利得によりそのすべての回転偏波で運ばれる信号は再現される。これらの特性を用いて、受信した三次元的偏波軌跡を再現する複数の個々の回転偏波を伝播する伝送路を選択することができ、障害・妨害を受けた伝送路を用いない通信が可能となるので、人為的あるいは自然的な特定の伝送路の障害および妨害に対し強い耐性を持つネットワークを実現することができる。 In this embodiment, when the transmitter performs transmission using a radio wave whose polarization rotates at a frequency sufficiently lower than the frequency of the carrier wave, the receiver uses a three-dimensional vector of incoming waves that have passed through a plurality of propagation paths. Receive the sum. Since the incoming wave passing through each propagation path is still a rotationally polarized wave at the receiving point, the three-dimensional vector sum becomes an elliptical rotationally polarized wave having an arbitrary rotational plane vector. This elliptical circularly polarized trajectory can be reproduced three-dimensionally by a finite number of circularly polarized waves, and therefore a finite number of rotationally polarized waves that can be identified by a specific rotation plane vector and a specific polarization angle shift. A rotational transmission path can be obtained. The intensity of a rotationally polarized wave having an arbitrary rotation plane vector can be made extremely strong (for example, 1/100 or less) by a linearly polarized antenna whose direction coincides with the rotation plane vector. Furthermore, by associating a cycle code with a low sidelobe with one cycle corresponding to a sufficiently low polarization frequency, a rotation polarization whose direction of the rotation plane vector does not match that of the antenna has a high code gain. The signal carried in all rotational polarizations is reproduced. Using these characteristics, it is possible to select a transmission path that propagates a plurality of individual rotational polarizations that reproduce the received three-dimensional polarization trajectory. As a result, it is possible to realize a network that is highly resistant to a specific transmission line failure and disturbance.
B.無線機及び無線通信システム
 
B. Radio and radio communication system
本実施例では、送受信機(無線機)が回転偏波を使い複数の回転偏波伝搬路を選択的に使用する無線システムの構成例を図1および図13を用いて説明する。 In the present embodiment, a configuration example of a wireless system in which a transceiver (radio device) uses rotational polarization and selectively uses a plurality of rotational polarization propagation paths will be described with reference to FIGS. 1 and 13.
図1は、送受信機が回転偏波を使い複数の回転偏波伝搬路を選択的に使用する無線システムの構成図の例である。 FIG. 1 is an example of a configuration diagram of a wireless system in which a transmitter / receiver selectively uses a plurality of rotational polarization propagation paths using rotational polarization.
第一の無線機301の送信機は、情報信号発生器1の出力を二分岐した一方に循環符号発生回路11の出力を第一の送信乗算器2により重畳し続いて第二の送信乗算器4により余弦回転偏波周波数発生回路3の出力を掛け合わせその出力を三分岐する。第一の分岐出力が余弦X軸重み付け回路5により定数倍されて第一の送信合成回路7の第一入力となり、第二の分岐出力が余弦Y軸重み付け回路15により定数倍されて第二の送信合成回路17の第一入力となり、第三の分岐出力が余弦Z軸重み付け回路25により定数倍されて第三の送信合成回路27の第一入力となる。情報信号発生器1の出力を二分岐した他方に、循環符号発生回路11の出力を第四の送信乗算器12により重畳し、続いて第五の送信乗算器14により正弦回転偏波周波数発生回路13の出力を掛け合わせ、その出力を三分岐する。第一の分岐出力が正弦X軸重み付け回路6により定数倍されて第一の送信合成回路7の第二入力となり、第二の分岐出力が正弦Y軸重み付け回路16により定数倍されて第二の送信合成回路17の第二入力となり、第三の分岐出力が正弦Z軸重み付け回路26により定数倍されて第三の送信合成回路27の第二入力となる。第一の送信合成回路7の出力に第五の送信乗算器8により搬送波周波数発生回路39の出力を掛け合わせ、第一の電力増幅器9を介して第一の送信アンテナ10から空間に電波を放射し、第二の送信合成回路17の出力に第六の送信乗算器18により搬送波周波数発生回路39の出力を掛け合わせ第二の電力増幅器19を介して第二の送信アンテナ20から空間に電波を放射し、第三の送信合成回路27の出力に第七の送信乗算器28により搬送波周波数発生回路39の出力を掛け合わせ第三の電力増幅器29を介して第三の送信アンテナ30から空間に電波を放射する。各送信アンテナ10,20,30は互いに空間的に直交する。 The transmitter of the first wireless device 301 is configured to superimpose the output of the cyclic code generation circuit 11 on one of the two branches of the output of the information signal generator 1 by the first transmission multiplier 2 and then the second transmission multiplier. 4 multiplies the output of the cosine rotation polarization frequency generation circuit 3 and branches the output into three branches. The first branch output is multiplied by a constant by the cosine X-axis weighting circuit 5 and becomes the first input of the first transmission synthesis circuit 7, and the second branch output is multiplied by a constant by the cosine Y-axis weighting circuit 15 to be the second input. This becomes the first input of the transmission synthesis circuit 17, and the third branch output is multiplied by a constant by the cosine Z-axis weighting circuit 25 and becomes the first input of the third transmission synthesis circuit 27. The output of the cyclic code generation circuit 11 is superposed by the fourth transmission multiplier 12 on the other of the two branches of the output of the information signal generator 1, and then the sine rotation polarization frequency generation circuit by the fifth transmission multiplier 14. 13 outputs are multiplied and the output is divided into three branches. The first branch output is multiplied by a constant by the sine X-axis weighting circuit 6 and becomes the second input of the first transmission synthesis circuit 7, and the second branch output is multiplied by a constant by the sine Y-axis weighting circuit 16 and the second input This becomes the second input of the transmission synthesis circuit 17, and the third branch output is multiplied by a constant by the sine Z-axis weighting circuit 26 and becomes the second input of the third transmission synthesis circuit 27. The output of the first transmission synthesis circuit 7 is multiplied by the output of the carrier frequency generation circuit 39 by the fifth transmission multiplier 8, and radio waves are radiated from the first transmission antenna 10 to the space via the first power amplifier 9. Then, the output of the second transmission synthesis circuit 17 is multiplied by the output of the carrier frequency generation circuit 39 by the sixth transmission multiplier 18, and the radio wave is transmitted from the second transmission antenna 20 to the space via the second power amplifier 19. The output of the third transmission synthesis circuit 27 is multiplied by the output of the carrier frequency generation circuit 39 by the seventh transmission multiplier 28, and the radio wave is transmitted from the third transmission antenna 30 to the space via the third power amplifier 29. Radiate. The transmission antennas 10, 20, and 30 are spatially orthogonal to each other.
第一の無線機301の受信機は、空間的に直交する第一の受信アンテナ140と第二の受信アンテナ150と第三の受信アンテナ160を用いて同時に受信電界を得る。第一の受信アンテナ140の出力は、第一の低雑音増幅器141によって増幅された後、第一の受信乗算器142によって搬送波周波数と同一周波数の信号を発生する局部発信回路149の出力が掛合わされその出力が第一の帯域通過フィルタ143を介して第一のバッファアンプ144に入力され、その出力が複数の第一の遅延器145で順次遅延されデジタル信号処理回路148に夫々入力される。第二の受信アンテナ150の出力は、第二の低雑音増幅器151によって増幅された後、第二の受信乗算器152によって搬送波周波数と同一周波数の信号を発生する局部発信回路149の出力が掛合わされその出力が第二の帯域通過フィルタ153を介して第二のバッファアンプ154に入力され、その出力が複数の第二の遅延器155で順次遅延されデジタル信号処理回路148に夫々入力される。第三の受信アンテナ160の出力は、第三の低雑音増幅器161によって増幅された後、第三の受信乗算器162によって搬送波周波数と同一周波数の信号を発生する局部発信回路149の出力が掛合わされ、その出力が第三の帯域通過フィルタ163を介して第三のバッファアンプ164に入力され、その出力が複数の第三の遅延器165で順次遅延されデジタル信号処理回路148に夫々入力される。情報信号発生器1、循環符号発生回路11、第一の送信乗算器2、第二の送信乗算器4、余弦回転偏波周波数発生回路3、余弦X軸重み付け回路5、第一の送信合成回路7、余弦Y軸重み付け回路15、第二の送信合成回路17、余弦Z軸重み付け回路25、第三の送信合成回路27、第四の送信乗算器12、第五の送信乗算器14、正弦回転偏波周波数発生回路13、正弦X軸重み付け回路6、正弦Y軸重み付け回路16、正弦Z軸重み付け回路26、第一の遅延器145、信号処理回路148、第二の遅延器155、第三の遅延器165は、デジタルモジュール201内に形成される。 The receiver of the first wireless device 301 obtains a reception electric field simultaneously using the first reception antenna 140, the second reception antenna 150, and the third reception antenna 160 that are spatially orthogonal. The output of the first receiving antenna 140 is amplified by the first low noise amplifier 141 and then multiplied by the output of the local transmission circuit 149 that generates a signal having the same frequency as the carrier frequency by the first receiving multiplier 142. The output is input to the first buffer amplifier 144 via the first band pass filter 143, and the output is sequentially delayed by the plurality of first delay units 145 and input to the digital signal processing circuit 148. The output of the second receiving antenna 150 is amplified by the second low noise amplifier 151, and then multiplied by the output of the local transmission circuit 149 that generates a signal having the same frequency as the carrier frequency by the second receiving multiplier 152. The output is input to the second buffer amplifier 154 via the second band pass filter 153, and the output is sequentially delayed by the plurality of second delay units 155 and input to the digital signal processing circuit 148. The output of the third receiving antenna 160 is amplified by the third low noise amplifier 161 and then multiplied by the output of the local transmission circuit 149 that generates a signal having the same frequency as the carrier frequency by the third receiving multiplier 162. The output is input to the third buffer amplifier 164 via the third band pass filter 163, and the output is sequentially delayed by the plurality of third delay units 165 and input to the digital signal processing circuit 148. Information signal generator 1, cyclic code generation circuit 11, first transmission multiplier 2, second transmission multiplier 4, cosine rotation polarization frequency generation circuit 3, cosine X-axis weighting circuit 5, first transmission synthesis circuit 7, cosine Y-axis weighting circuit 15, second transmission synthesis circuit 17, cosine Z-axis weighting circuit 25, third transmission synthesis circuit 27, fourth transmission multiplier 12, fifth transmission multiplier 14, sinusoidal rotation Polarization frequency generation circuit 13, sine X-axis weighting circuit 6, sine Y-axis weighting circuit 16, sine Z-axis weighting circuit 26, first delay unit 145, signal processing circuit 148, second delay unit 155, third The delay unit 165 is formed in the digital module 201.
第二の無線機401も第一の無線機301と同様の構成・動作をとるので説明を省略する。なお、第一無線機301の送信機の各部の番号と、第二の無線機401の送信機の各部の100番台の番号とが対応して示し、また、第二無線機401の受信機の各部の番号と、第一の無線機301の受信機の各部の100番台の番号とが対応して示される。 Since the second radio 401 has the same configuration and operation as the first radio 301, the description thereof is omitted. The number of each part of the transmitter of the first radio 301 and the number in the 100s of each part of the transmitter of the second radio 401 are shown correspondingly, and the number of the receiver of the second radio 401 is also shown. The numbers of the respective units and the numbers in the 100s of the respective units of the receiver of the first wireless device 301 are shown correspondingly.
無線機301は空間的に互いに直交する三つの送信アンテナ10および20および30を具備する。これらのアンテナには余弦X軸重み付け回路5、余弦Y軸重み付け回路15、余弦Z軸重み付け回路25および正弦X軸重み付け回路6、正弦Y軸重み付け回路16、正弦Z軸重み付け回路26により振幅重みが付けられる。三つの余弦重み付け回路の共通入力と三つの正弦重み付け回路の共通入力は空間的に互いに直交する2アンテナに対する入力である。この互いに直交する2アンテナからの電波を三次元的に回転させるためには、これら2アンテナに対して同一の空間回転重みを与えればよい。この空間重みの与え方には無数の方法があるがたとえばオイラー角θとφをパラメータとして用いれば、余弦X軸重み付け回路5および正弦X軸重み付け回路6はsinθcosφ、余弦Y軸重み付け回路15および正弦Y軸重み付け回路16はsinθsinφ、余弦Z軸重み付け回路25および正弦Z軸重み付け回路26はcosθとなる。これらのパラメータはデジタル信号処理回路148によって制御される。その結果、無線機301は任意の一方向に伝搬方向が一致する偏波が円の軌跡を持って周波数ωで回転する回転偏波とあらゆる(多方向の)伝搬方向を持つ偏波が惰円の軌跡を持って周波数ωで回転する回転偏波を空間に放射する。厳密にいえば、偏波が円の軌跡を持って周波数ωで回転する回転偏波の伝搬方向に直交方向には偏波が固定の方向で大きさが周波数ωで変化する固定偏波が放射されるが、これを広義の意味で偏波が惰円の軌跡を持って周波数ωで回転する回転偏波と呼んでも差し支えない。無線機401の送信に関しても同様の動作がなされる。 The radio 301 includes three transmitting antennas 10 and 20 and 30 that are spatially orthogonal to each other. These antennas have an amplitude weight by a cosine X-axis weighting circuit 5, a cosine Y-axis weighting circuit 15, a cosine Z-axis weighting circuit 25 and a sine X-axis weighting circuit 6, a sine Y-axis weighting circuit 16, and a sine Z-axis weighting circuit 26. Attached. The common input of the three cosine weighting circuits and the common input of the three sine weighting circuits are inputs to two antennas that are spatially orthogonal to each other. In order to rotate the radio waves from the two antennas orthogonal to each other in a three-dimensional manner, the same spatial rotation weight may be given to the two antennas. There are an infinite number of ways to give this spatial weight. For example, if Euler angles θ and φ are used as parameters, cosine X-axis weighting circuit 5 and sine X-axis weighting circuit 6 have sin θ cos φ, cosine Y-axis weighting circuit 15 and sine. The Y-axis weighting circuit 16 is sin θsinφ, and the cosine Z-axis weighting circuit 25 and the sine Z-axis weighting circuit 26 are cos θ. These parameters are controlled by the digital signal processing circuit 148. As a result, the radio 301 has a circularly polarized wave whose propagation direction coincides with any one direction and has a circular locus, and a circularly polarized wave that rotates at a frequency ω and a polarized wave that has any (multidirectional) propagation direction is a circle. A rotating polarized wave rotating at a frequency ω with a locus of Strictly speaking, a fixed polarization whose magnitude changes at a frequency ω is radiated in a direction in which the polarization is fixed in a direction orthogonal to the propagation direction of the rotational polarization whose rotation rotates at a frequency ω with a circular locus. However, in a broad sense, this can be called a rotationally polarized wave whose polarization rotates with a frequency ω with a locus of an ellipse. The same operation is performed for the transmission of the wireless device 401.
無線機401は空間的に互いに直交する三つの受信アンテナ40および50および60を具備する。送信機から放射された一つの偏波が円の軌跡を持って周波数ωで回転する回転偏波および無数の偏波が惰円の軌跡を持って周波数ωで回転する回転偏波は、送受信を行う二つの無線機を取り囲む一般に複数の電波散乱体の表面で反射される。この反射の際に回転偏波の該表面に対する入射角と該表面の法線方向に固有な値で回転偏波の偏波角度シフトを受ける。送信機から送信された回転偏波のうち受信機に到達する電波散乱体の表面で反射された回転偏波は、送信点と反射点と受信点の間でスネルの法則を満足するものに限られる。従って、送信機から送信された回転偏波のうち受信機に到達する回転偏波の数は有限となる。受信機は三次元的に複数の方向から到来する回転偏波の多数の組み合わせに対する3アンテナが得る3出力を記憶したテーブルをあらかじめ具備している。そのテーブルの作成法は無数にあるが、たとえば図14のように作成できる。 The radio 401 includes three receiving antennas 40 and 50 and 60 that are spatially orthogonal to each other. One polarization radiated from the transmitter rotates at a frequency ω with a circular trajectory, and one with an infinite number of circular rotations at a frequency ω with a circular trajectory. It is reflected on the surface of a plurality of radio wave scatterers that generally surround the two radios that perform. During this reflection, the polarization angle of the rotational polarization is shifted by a value specific to the incident angle of the rotational polarization with respect to the surface and the normal direction of the surface. Of the rotational polarization transmitted from the transmitter, the rotational polarization reflected by the surface of the wave scatterer that reaches the receiver is limited to that satisfying Snell's law between the transmission point, the reflection point, and the reception point. It is done. Therefore, the number of rotational polarizations reaching the receiver out of the rotational polarizations transmitted from the transmitter is finite. The receiver is preliminarily provided with a table storing three outputs obtained by three antennas for a large number of combinations of rotationally polarized waves coming from a plurality of directions three-dimensionally. There are innumerable methods for creating the table, but it can be created as shown in FIG. 14, for example.
図14は、本実施例の回転偏波の組み合わせと出力についてのテーブルの説明図である。図14のテーブルは次のように作成されている。有限の複数の到来方向を持つ回転偏波の合成は特定の一方向から到来する偏波が惰円の軌跡を持って周波数ωで回転する回転偏波になるから、空間的に互いに直交する3アンテナのうち2アンテナの組み合わせが出力する信号は特定の一方向から到来する偏波が一般に長軸が傾いている(仮想的二次元座標中である角度で回転した)惰円の軌跡を持って周波数ωで回転する回転偏波の軌跡を示す。受信機に到来する波の数は有限であることが分かっているので、この数をある整数Nを上限として定める。受信機が具備する空間的に互いに他と直交する3アンテナにより識別できる一つの到来波の到来方向の精度には現実的に限界があるので、その分解能をΔΘとΔΦで表わす。ΔΘは0°から180°の値を変化する仰角Θの分解能であり、ΔΦは0°から360°の値を変化する方位角Φの分解能である。偏波が円の軌跡を持って周波数ωで回転する回転偏波を偏波が惰円の軌跡を持って周波数ωで回転する回転偏波の特殊な場合と考えて、楕円軌跡の長軸の傾きをψ、長軸と短軸の比をρとする。受信機のψおよびρの計算精度にも限界があるから、それらの分解能をΔψとΔρとする。Δψは0°から180°の値を変化するψの分解能であり、Δρは1からRの値を変化するρの分解能である。ここでRはある整数を上限として定める。各分解能を用いて、Θ、Φ、ψ、ρの候補値をiΔΘ、jΔΦ、kΔψ、lΔρと表わすことができ、これらをΘ、Φ、ψ、ρとする。但し、i、j、kは非負の整数でありlは正の整数である。複数のΘ、Φ、ψ、ρを有する到来波による受信3アンテナの直交する2アンテナの各組み合わせの出力の偏波の楕円軌跡の長軸の傾きと長軸と短軸の比を夫々Ψ、Ρとする。mは1から3の受信3アンテナの直交する2アンテナの各組み合わせを識別する変数である。i、j、k、lの個数をI、J、K、Lとすれば図14のテーブルの列の数はI×J×K×L+3であり、第2行以下の行の数はI*J*K*Lである。 FIG. 14 is an explanatory diagram of a table for the combination and output of the rotational polarization of the present embodiment. The table of FIG. 14 is created as follows. In the synthesis of rotationally polarized waves having a finite number of arrival directions, polarized waves arriving from a specific direction become rotationally polarized waves rotating at a frequency ω with a locus of an ellipse. The signal output by the combination of two antennas out of the antennas has an ellipse locus in which the major axis of the polarization coming from one specific direction is tilted (rotated at an angle in virtual two-dimensional coordinates) The locus of the rotationally polarized wave rotating at the frequency ω is shown. Since the number of waves arriving at the receiver is known to be finite, this number is determined with an integer N as an upper limit. Since there is a practical limit to the accuracy of the arrival direction of one incoming wave that can be identified by three antennas spatially orthogonal to each other provided in the receiver, the resolution is represented by ΔΘ and ΔΦ. ΔΘ is the resolution of the elevation angle Θ that varies from 0 ° to 180 °, and ΔΦ is the resolution of the azimuth angle Φ that varies from 0 ° to 360 °. Rotating polarized waves with a circular trajectory rotating at a frequency ω are considered to be a special case of rotating polarized waves having a circular trajectory rotating at a frequency ω. The inclination is ψ, and the ratio of the major axis to the minor axis is ρ. Since there is a limit to the calculation accuracy of ψ and ρ of the receiver, their resolutions are assumed to be Δψ and Δρ. Δψ is the resolution of ψ that changes the value from 0 ° to 180 °, and Δρ is the resolution of ρ that changes the value from 1 to R. Here, R is determined with an integer as an upper limit. Using each resolution, the candidate values of Θ, Φ, ψ, and ρ can be expressed as iΔΘ, jΔΦ, kΔψ, and lΔρ, which are denoted as Θ i , Φ j , ψ k , and ρ l . However, i, j, and k are non-negative integers, and l is a positive integer. The slope of the major axis and the ratio of the major axis to the minor axis of the elliptical locus of the polarization of the output of each combination of the two orthogonal antennas of the three receiving antennas by the incoming wave having a plurality of Θ i , Φ j , ψ k , ρ l Are Ψ m and Ρ m , respectively. m is a variable that identifies each combination of two orthogonal antennas of 1 to 3 receiving 3 antennas. If the number of i, j, k, l is I, J, K, L, the number of columns in the table of FIG. 14 is I × J × K × L + 3, and the number of rows below the second row is I *. is a J * K * L C N.
図15は、本実施例のデジタル信号処理のフローチャートである。
以下に、デジタル信号処理回路48および148の処理の概要を図15のフローチャートを用いて説明する。
デジタル信号処理回路48および148は、まず、ΔΨ=0,ΔΡ=0として、変数初期化を行う(S101)。つぎに、デジタル信号処理回路48および148は、空間的に互いに直交する3アンテナの出力を個別に時間軸上に蓄積する(S103)。上述のように、余弦X軸重み付け回路5および正弦X軸重み付け回路6がsinθcosφ、余弦Y軸重み付け回路15および正弦Y軸重み付け回路16がsinθsinφ、余弦Z軸重み付け回路25および正弦Z軸重み付け回路26がcosθである場合、E1(t)=rsinθcosφ,E2(t)=rsinθsinφ),E3(t)=rcosθ、となる(なお、rは振幅を表す。)。つぎに、デジタル信号処理回路48および148は、それらの2つの組み合わせ三種類について信号強度の時間的変化を回転偏波の一周期に亘り計算し、各直交2アンテナに入力する回転偏波の偏波の軌跡を求め、各直交2アンテナに入力する回転偏波の楕円軌跡の長軸の傾きΨと長軸と短軸の比Ρを該軌跡から計算で求める[(Ψ,Ρ),(Ψ,Ρ),(Ψ,Ρ)](S105)。つぎに、デジタル信号処理回路48および148は、求めたΨ、Ρから図14のテーブルを用いて最も近い値を示す回転偏波の組Ψ’,Ρ’を見つける[(Ψ’1,Ρ’), (Ψ’,Ρ’),(Ψ’,Ρ’)](S107)。ここで、最初は、デジタル信号処理回路48および148は、ステップS101の初期化された変数により、ステップS109はYesとなり、ステップS111に移行する。デジタル信号処理回路48および148は、テーブルで得られる回転偏波の組が示す該直交2アンテナの組に対する長軸の傾きと長軸と短軸の比(Ψ’、Ρ’)と、受信波から求まる値Ψ、Ρの差分をΔΨ、ΔΡとして内部メモリ等の適宜のメモリに記憶する(S111)。
FIG. 15 is a flowchart of the digital signal processing of this embodiment.
The outline of the processing of the digital signal processing circuits 48 and 148 will be described below with reference to the flowchart of FIG.
First, the digital signal processing circuits 48 and 148 perform variable initialization by setting ΔΨ m = 0 and Δ = m = 0 (S101). Next, the digital signal processing circuits 48 and 148 individually accumulate the outputs of the three antennas spatially orthogonal to each other on the time axis (S103). As described above, the cosine X-axis weighting circuit 5 and the sine X-axis weighting circuit 6 are sin θ cos φ, the cosine Y-axis weighting circuit 15 and the sine Y-axis weighting circuit 16 are sin θ sin φ, the cosine Z-axis weighting circuit 25, and the sine Z-axis weighting circuit 26. Is cos θ, E1 (t) = rsinθcosφ, E2 (t) = rsinθsinφ), and E3 (t) = rcosθ (where r represents amplitude). Next, the digital signal processing circuits 48 and 148 calculate the temporal change of the signal strength over one period of the rotational polarization for the three combinations of the two, and the polarization of the rotational polarization input to each orthogonal two antenna. It obtains the trajectory of the waves, obtained by calculating the ratio [rho m of inclination [psi m and major axis and a minor axis of the major axis of the ellipse trajectory of rotation polarized wave input to each of two orthogonal antenna from the trajectory [(Ψ 1, Ρ 1 ), ([Psi] 2 , [Phi] 2 ), ([Psi] 3 , [Phi] 3 )] (S105). Next, the digital signal processing circuits 48 and 148 find a set of rotational polarizations ψ ′ m and Ρ ′ m indicating the closest values from the obtained Ψ m and Ρ m using the table of FIG. 14 [(Ψ ′ 1 , Ρ ′ 1 ), (ψ ′ 2 , Ρ ′ 2 ), (ψ ′ 3 , Ρ ′ 3 )] (S107). Here, at first, the digital signal processing circuits 48 and 148 are Yes in step S109 due to the initialized variable in step S101, and the process proceeds to step S111. The digital signal processing circuits 48 and 148 include the inclination of the major axis and the ratio of the major axis to the minor axis (Ψ ′ m , ′ ′ m ) with respect to the set of orthogonal two antennas indicated by the set of rotational polarization obtained by the table, The difference between the values Ψ m and Ρ m obtained from the received wave is stored as ΔΨ m and ΔΡ m in an appropriate memory such as an internal memory (S111).
つぎに、デジタル信号処理回路48および148は、テーブルを参照し、Ψ’、Ρ’に対応するΘ、Φにより、θ、φを設定し、送信機の回転偏波を放射する方向を余弦X軸重み付け回路5、余弦Y軸重み付け回路15、余弦Z軸重み付け回路25および正弦X軸重み付け回路6、正弦Y軸重み付け回路16、正弦Z軸重み付け回路26のパラメータを変化させる(S113)。 Next, the digital signal processing circuits 48 and 148 refer to the table, set θ and φ by Θ and Φ corresponding to Ψ ′ m and Ρ ′ m , and set the direction in which the rotational polarization of the transmitter is radiated. The parameters of the cosine X-axis weighting circuit 5, the cosine Y-axis weighting circuit 15, the cosine Z-axis weighting circuit 25, the sine X-axis weighting circuit 6, the sine Y-axis weighting circuit 16, and the sine Z-axis weighting circuit 26 are changed (S113).
デジタル信号処理回路48および148は、空間的に直交する3つの送信アンテナを用いて空間の特定の一方向に回転偏波を角度θ、φを設定することにより放射することが出来る。回転偏波の放射方向を制御する必要性が生じるのは、テーブルで得られる回転偏波の組により再現する一つの楕円軌跡の回転偏波の軌跡が、実際に受信される楕円軌跡の回転偏波の軌跡との差が大きい場合である。テーブルが格納可能な有限数の回転偏波の組の数は限られるので、理想的にはΘ、Φ、ψ、ρの候補値は連続値でなくてはならないところを、ある分解能を定めて有限個の離散値で代表させる。この分解能がΘ、Φ、ψ、ρの候補値が如何に実際に受信している楕円軌跡の回転偏波を構成する回転偏波を忠実に模擬しているかを決定する。テーブルの容量は現実的に限界があるので、送信する回転偏波の方向を微小に変化させることで、テーブルで得られる回転偏波の組により再現する一つの楕円軌跡の回転偏波の軌跡と、実際に受信される楕円軌跡の回転偏波の軌跡との差を、縮小する。デジタル信号処理回路48および148は、3つの送信アンテナに結合する三つの余弦重み付け回路の共通入力と三つの正弦重み付け回路の値を適当なアルゴリズム(たとえばランダム変化あるいはパラメータの逐次微小変化)で変化させ、得られたΘ、Φ、ψ、ρの候補値によって再現される楕円軌跡の回転偏波の軌跡と、実際に受信信号から得られる同軌跡とが、限りなく近くなるように制御を行う。 The digital signal processing circuits 48 and 148 can radiate a rotationally polarized wave in one specific direction of the space by setting the angles θ and φ using three spatially orthogonal transmitting antennas. The necessity to control the direction of rotation of the rotational polarization arises because the trajectory of the rotational polarization of one elliptical trajectory reproduced by the set of rotational polarizations obtained by the table is the rotational deviation of the actually received elliptical trajectory. This is a case where the difference from the wave trajectory is large. Since the number of rotational polarization pairs that can be stored in the table is limited, ideally, the candidate values for Θ, Φ, ψ, and ρ must be continuous values. Represented by a finite number of discrete values. This resolution determines how the candidate values of Θ, Φ, ψ, and ρ faithfully simulate the rotational polarization constituting the rotational polarization of the elliptical locus that is actually received. Since the capacity of the table is practically limited, by changing the direction of the rotational polarization to be transmitted slightly, the rotational polarization trajectory of one elliptical trajectory reproduced by the set of rotational polarization obtained by the table The difference between the actually received elliptical trajectory and the rotational polarization trajectory is reduced. The digital signal processing circuits 48 and 148 change the values of the common inputs of the three cosine weighting circuits coupled to the three transmitting antennas and the values of the three sine weighting circuits with an appropriate algorithm (for example, a random change or a minute change of the parameter). Then, control is performed so that the locus of rotational polarization of the elliptical trajectory reproduced by the obtained candidate values of Θ, Φ, ψ, and ρ and the same trajectory actually obtained from the received signal are as close as possible.
さらに、詳細に説明すると、次のようになる。テーブルに記載されているψ、ρは、受信機に到来する楕円偏波軌跡の回転偏波のものである。送信機は、求められたΘ、Φ(Θ、Φの組が複数ある場合は、そのうちの特定の一つ)を、新たなθ、φとして送信する。そして上述の動作を繰り返す。それにより、送信機が用いるθ、φと受信機が計算(テーブル参照比較)で得るΘ、Φとの差は、一定値(ゼロとは限らない)に収束してゆく。Θ、Φの組が複数ある場合を詳細に説明すると、次のようになる。たとえば、Θ、Φの組が(Θ1、Φ1)、(Θ2、Φ2)、(Θ3、Φ3)であったとする。これよりΘ1、Φ1を選び、送信機が用いるθ、φとする。次に得られるΘ、Φの組のうち元のΘ1、Φ1に近いものを選んで、次の送信機が用いるθ、φとする。受信機が計算(テーブル参照比較)で得るΘ、Φの複数の組のどれもが前回選んだΘ、Φの組に対して大幅に値が異なる場合は、得られたΘ、Φの複数の組からランダムに一組選んで、次の送信機が用いるθ、φとする。このような処理を繰り返す。これにより、最終的に送信機が送信するθ、φで決まる伝搬方向の円偏波軌跡の回転偏波が、送受信機間に存在する複数の電波反射体により複数の反射を受けて、固有のΘ、Φ、ψ、ρの組を持つ複数の楕円偏波軌跡の回転偏波へと変換されることになる。 Further, it will be described in detail as follows. Ψ and ρ described in the table are those of the rotationally polarized wave of the elliptical polarization locus arriving at the receiver. The transmitter transmits the obtained Θ and Φ (if there are a plurality of pairs of Θ and Φ, a specific one of them) as new θ and φ. Then, the above operation is repeated. Thereby, the difference between θ and φ used by the transmitter and θ and φ obtained by calculation (table comparison) by the receiver converges to a constant value (not necessarily zero). The case where there are a plurality of pairs of Θ and Φ will be described in detail as follows. For example, it is assumed that the set of Θ and Φ is (Θ1, Φ1), (Θ2, Φ2), and (Θ3, Φ3). From this, Θ1 and Φ1 are selected to be θ and φ used by the transmitter. Next, from the set of Θ and Φ obtained, the one close to the original Θ1 and Φ1 is selected and set as θ and φ used by the next transmitter. If any of the multiple pairs of Θ, Φ that the receiver obtains in the calculation (table comparison) is significantly different from the previously selected pair of Θ, Φ, One set is randomly selected from the set, and θ and φ are used by the next transmitter. Such a process is repeated. As a result, the rotational polarization of the circularly polarized trajectory in the propagation direction determined by θ and φ finally transmitted by the transmitter is subjected to a plurality of reflections by a plurality of radio wave reflectors existing between the transmitter and the receiver. A plurality of elliptical polarization trajectories having a set of Θ, Φ, ψ, and ρ are converted into rotationally polarized waves.
また、デジタル信号処理回路48および148は、自側の無線機の送信機のパラメータを設定するとともに、相手側の無線機にもこの情報を伝送することで相手側の無線機の送信機のパラメータも相手側の無線機のデジタル信号処理回路148および48が設定する。相手側の無線機にこれらのパラメータの情報を伝送する方法は適宜の手法により実施すれ
ば良い。パラメータを変化した後、デジタル信号処理回路48および148は、ステップS103に戻り、受信波について同様の操作を行う。
Also, the digital signal processing circuits 48 and 148 set the parameters of the transmitter of the local radio device, and also transmit the information to the radio device of the counterpart side to thereby set the parameters of the transmitter of the counterpart radio device. Are set by the digital signal processing circuits 148 and 48 of the other radio. A method for transmitting information on these parameters to the radio device on the other side may be implemented by an appropriate method. After changing the parameters, the digital signal processing circuits 48 and 148 return to step S103 and perform the same operation on the received wave.
デジタル信号処理回路48および148は、新たに計算された差分をΔΨ、ΔΡが減少する間は同様の操作を繰り返し、(例えば、予め定められた定められた閾値と比較する等により、)同差分の減少が頭打ちになった時点で(S109)、テーブルに示される複数の回転偏波の組を通信に用いている(通信に用いる)有限数の回転偏波と決定する(S115)。なお、デジタル信号処理回路48および148は、パラメータの情報(Θ、Φを含む情)を内部メモリに記憶してもよい。送信機が放射する回転偏波の方向を変化させる手法についてはこれまで色々な方法が知られており、その代表はランダムに方向を変化させるものと、該方向を微小に変化させ目的関数の極小化を目指すものがある。後者の場合、図15のフローチャートで示される操作は、送信機が放射する回転偏波の方向を特定方向に変化させ、目的関数であるΔΨ、ΔΡが減少する間はその方向を保ちΔΨ、ΔΡが増加した場合はその方向を変化させ、方向の変化に係わらず目的関数であるΔΨ、ΔΡが収束したと判断された場合操作を終了させることになる。 The digital signal processing circuits 48 and 148 repeat the same operation while the difference ΔΨ m and ΔΡ m is decreased, for example, by comparing the newly calculated difference (for example, by comparing with a predetermined threshold value). When the decrease in the difference reaches a peak (S109), a set of a plurality of rotational polarizations shown in the table is determined as a finite number of rotational polarizations used for communication (used for communication) (S115). The digital signal processing circuits 48 and 148 may store parameter information (information including Θ and Φ) in an internal memory. Various methods have been known so far to change the direction of the rotationally polarized wave radiated by the transmitter, the representative of which is to change the direction at random, and the minimum of the objective function by changing the direction slightly. There is something that aims to be. In the latter case, the operation shown in the flowchart of FIG. 15 changes the direction of the rotationally polarized wave radiated by the transmitter to a specific direction, and maintains that direction while the objective functions ΔΨ m and ΔΡ m decrease. When m 1 and ΔΡ m increase, the direction is changed, and when it is determined that the objective functions ΔΨ m and ΔΡ m converge regardless of the change in direction, the operation is terminated.
受信波に到来する有限の回転偏波が定まった後は、有限数の各回転偏波の伝搬方向および各時刻での偏波方向が分かるので、空間的に互いに他と直交する3アンテナの出力をデジタル信号処理回路に蓄えて、これらに重み付けを行い加算することで該3アンテナにより空間に仮想的に実現される特定の偏波方向を有するアンテナを実現し、特定の伝搬方向および特定の偏波の電波を受信させないことが可能となる。重み付けと仮想アンテナの方向に関する技術は、送信アンテナで用いた技術と同様である。このような原理で本実施例では、特定の伝搬方向の到来波、すなわち送受信点間に形成される特定の伝搬路を選択することが可能となる。 After the finite rotational polarization arriving at the received wave is determined, the propagation direction of each finite number of rotational polarizations and the polarization direction at each time are known, so the outputs of the three antennas that are spatially orthogonal to each other Are weighted and added to a digital signal processing circuit to realize an antenna having a specific polarization direction virtually realized in space by the three antennas, and a specific propagation direction and a specific polarization. It becomes possible not to receive radio waves. The technique relating to the weighting and the direction of the virtual antenna is the same as the technique used in the transmission antenna. With this principle, in this embodiment, it is possible to select an incoming wave in a specific propagation direction, that is, a specific propagation path formed between transmission and reception points.
第一の無線機301および第二の無線機401は同時に偏波を回転偏波周波数で周期的に変化させ通信しているため、該回転偏波周波数を十分に低くすることにより、第一の無線機301の送受信タイミングと第二の無線機401の送受信タイミングを実質的に同一とすることができる。たとえば通信のサービスエリアが数100mである場合、回転偏波の周波数を100kHzとすれば同周波数に対応する波長は3kmとなる。一般に電波の位相差が1/10波長以下である場合、該位相が通信に影響を与える可能性は少ない。なぜならば、電波の振幅が減衰を受ける干渉は1/2波長で最大となり、1/10波長では減衰の効果は実用的に無視できる。また、一般の通信で用いる位相変調はBPSk,QPSKであり1/2波長および1/4波長に対応する位相の変化を基本とするので、1/10波長に対応する位相の変化では位相変調に対する効果は実用上無視できる。非常に高速のデータを伝送するためにより多値の位相変調を行う場合は、1/16波長に対応する位相の変化あるいは1/64波長に対応する位相の変化を用いるが、この場合1/10波長に対応する位相の変化は無視できない。本発明及び/又は本実施例の背景はライフラインを提供する機器の監視・制御であり、現状その用途に適合する情報伝送量は数100kbps以下のオーダーであり、1/10波長に対応する位相の変化が問題となるような高速のデータ伝送は不要である。 Since the first wireless device 301 and the second wireless device 401 are communicating by changing the polarization periodically at the rotational polarization frequency at the same time, the first wireless device 301 and the second wireless device 401 can reduce the first by making the rotational polarization frequency sufficiently low. The transmission / reception timing of the wireless device 301 and the transmission / reception timing of the second wireless device 401 can be made substantially the same. For example, when the communication service area is several hundred meters, if the rotational polarization frequency is 100 kHz, the wavelength corresponding to the same frequency is 3 km. In general, when the phase difference of radio waves is 1/10 wavelength or less, there is little possibility that the phase affects communication. This is because the interference at which the amplitude of the radio wave is attenuated is maximum at 1/2 wavelength, and the effect of attenuation is practically negligible at 1/10 wavelength. In addition, phase modulation used in general communication is BPSK and QPSK, and is based on phase change corresponding to 1/2 wavelength and 1/4 wavelength. Therefore, phase change corresponding to 1/10 wavelength corresponds to phase modulation. The effect can be ignored in practice. When performing multilevel phase modulation to transmit very high-speed data, a phase change corresponding to 1/16 wavelength or a phase change corresponding to 1/64 wavelength is used. In this case, 1/10 The change in phase corresponding to the wavelength cannot be ignored. The background of the present invention and / or the present embodiment is the monitoring and control of a device that provides a lifeline, and the amount of information transmission suitable for the current application is on the order of several hundred kbps or less, and the phase corresponding to 1/10 wavelength. There is no need for high-speed data transmission in which changes in the data become a problem.
図13は、本実施例の無線通信システムの動作を説明する図である。
一般に、回転偏波の周波数は送受信機間に存在する複数の電磁波散乱体となる什器の配置間隔に比べて同周波数に対する波長が十分に長い(5倍以上)にとることが望ましい。この場合、第一の無線機301から複数の伝播路を介して第二の無線機401に到着する複数の到来波は偏波の回転に対しては位相が揃っていると見做してよいので、固有の回転面ベクトルを有し送信偏波と固有の偏波角度差を持つ回転偏波周波数を同じくする単一の回転偏波となる。第二の無線機401は空間的に直交する第一の受信アンテナ40と第二の受信アンテナ50と第三の受信アンテナ60の出力から搬送波成分を取り除き、三系統の回転偏波周波数の信号をデジタル信号処理によって該回転偏波の周期より十分に短い時間で(四分の一以下で八分の一以下が望ましい)サンプリングし、ベースバンド信号として用いることにより、複数の到来波のベクトル合成の偏波の軌跡を三次元的に計算し求めることができる。この計算で得られた三次元的軌跡は図13に示すように任意の回転面ベクトルを有する単独の楕円回転偏波となる。回転周波数は送信回転偏波と等しい。この任意の回転面ベクトルを有する単独の楕円回転偏波は、先述のとおり、固有の回転面ベクトルを有する有限の回転偏波を用いて計算により再構成することができる。
FIG. 13 is a diagram for explaining the operation of the wireless communication system of the present embodiment.
In general, it is desirable that the frequency of the rotationally polarized wave be sufficiently long (5 times or more) for the same frequency as compared to the arrangement interval of the fixtures serving as a plurality of electromagnetic wave scatterers existing between the transceivers. In this case, a plurality of incoming waves arriving at the second wireless device 401 via a plurality of propagation paths from the first wireless device 301 may be regarded as being in phase with respect to the polarization rotation. Therefore, a single rotational polarization having the same rotational plane vector and the same rotational polarization frequency having a transmission polarization and an inherent polarization angle difference is obtained. The second radio 401 removes the carrier wave component from the outputs of the first receiving antenna 40, the second receiving antenna 50, and the third receiving antenna 60 that are spatially orthogonal to each other, and outputs signals of three systems of rotational polarization frequencies. Sampling in a time sufficiently shorter than the period of the rotational polarization by digital signal processing (preferably less than one quarter and preferably less than one eighth), and using it as a baseband signal, The trajectory of the polarization can be calculated and obtained three-dimensionally. The three-dimensional trajectory obtained by this calculation becomes a single elliptical rotational polarization having an arbitrary rotation plane vector as shown in FIG. The rotational frequency is equal to the transmitted rotational polarization. As described above, a single elliptical rotational polarization having an arbitrary rotation plane vector can be reconstructed by calculation using a finite rotation polarization having a unique rotation plane vector.
この楕円円偏波軌跡は、有限の複数個の円偏波により三次元的に再現可能であるため、固有の回転面ベクトルと固有の偏波角度シフトで識別可能な、有限個の回転偏波回転伝送路を得ることができる。任意の回転面ベクトルを有する回転偏波は同回転面ベクトルと方向が一致する直線偏波アンテナにより強度を極端に(100分の1以下)できる。更に、十分低い偏波の回転周波数に対応する一周期にサイドローブの低い循環符号が循環符号発生回路で生成されこれが回転偏波の一周期に対応付けられているので、同アンテナと回転面ベクトルの方向が一致しない回転偏波は同循環符号の高い符号利得によりそのすべての回転偏波で運ばれる信号は再現される。本実施例では、これらの特性を用いて、受信した三次元的偏波軌跡を再現する複数の個々の回転偏波を伝播する伝送路を選択することができ、障害・妨害を受けた伝送路を用いない通信が可能となるので、人為的あるいは自然的な特定の伝送路の障害および妨害に対し強い耐性を持つネットワークを実現することができる。 This elliptical circularly polarized trajectory can be reproduced three-dimensionally by a finite number of circularly polarized waves, and therefore a finite number of rotationally polarized waves that can be identified by a specific rotation plane vector and a specific polarization angle shift. A rotational transmission path can be obtained. The intensity of a rotationally polarized wave having an arbitrary rotation plane vector can be made extremely strong (1/100 or less) by a linearly polarized antenna whose direction coincides with that of the rotation plane vector. Furthermore, a cyclic code having a low sidelobe in one cycle corresponding to a sufficiently low polarization rotation frequency is generated by the cyclic code generation circuit and is associated with one cycle of the rotation polarization. Rotation polarized waves whose directions do not coincide with each other are reproduced by a high code gain of the same cyclic code. In this embodiment, it is possible to select a transmission path that propagates a plurality of individual rotational polarizations that reproduce the received three-dimensional polarization trajectory using these characteristics, and a transmission path that has been damaged or disturbed. Therefore, it is possible to realize a network having a strong resistance against an artificial or natural failure or disturbance of a specific transmission line.
第一の無線機301と第二の無線機401は同時に送受信を行うことで無線通信の対称性より回転偏波の周波数では同時に偏波角度の情報を自動的に共有すると考えてよいので、各無線機の受信機の受信感度が最大となるタイミングをベースバンド回路は知ることができ、その時の循環符号の初期位相と立体的重み付けも知ることができる。本実施例では、ベースバンド回路がこの初期位相データと立体的重み付けデータを循環符号生成回路、余弦X軸重み付け回路、余弦Y軸重み付け回路、余弦Z軸重み付け回路、正弦X軸重み付け回路、正弦Y軸重み付け回路、正弦Z軸重み付け回路に供給することにより、送受信間で良好な通信品質を無線システムが稼働している電波環境の変化に追随して良好に保つ効果がある。
 
Since the first radio 301 and the second radio 401 can transmit and receive at the same time, it may be considered that the information on the polarization angle is automatically shared simultaneously at the rotational polarization frequency due to the symmetry of the radio communication. The baseband circuit can know the timing when the reception sensitivity of the radio receiver becomes maximum, and can also know the initial phase and three-dimensional weighting of the cyclic code at that time. In this embodiment, the baseband circuit converts the initial phase data and the stereoscopic weighting data into a cyclic code generation circuit, a cosine X-axis weighting circuit, a cosine Y-axis weighting circuit, a cosine Z-axis weighting circuit, a sine X-axis weighting circuit, and a sine Y. By supplying to the axis weighting circuit and the sine Z-axis weighting circuit, there is an effect of maintaining good communication quality between transmission and reception following the change in the radio wave environment in which the wireless system is operating.
本実施例では、送受信機が回転偏波を使い複数の回転偏波伝搬路を選択的に使用する無線システムの他の構成例を図2を用いて説明する。 In the present embodiment, another configuration example of a wireless system in which a transceiver uses rotational polarization and selectively uses a plurality of rotational polarization propagation paths will be described with reference to FIG.
図2は、送受信機が回転偏波を使い複数の回転偏波伝搬路を選択的に使用する無線システムの他の構成図の例である。図1の実施例と異なる点は、第一の無線機302および第二の無線機402が、余弦X軸重み付け回路5および105、余弦Y軸重み付け回路15および115、余弦Z軸重み付け回路25および125、正弦X軸重み付け回路6および106、正弦Y軸重み付け回路16および116、正弦Z軸重み付け回路26および126、第一の送信合成回路7および107、第二の送信合成回路17および117、第三の送信合成回路27および127、第六の送信乗算器18および118、第二の電力増幅器19および119、第二の送信アンテナ20および120を具備せず、複合制御線31および131が単一の制御線に置き換わっている点である。図示のように、各部が、デジタルモジュール202内、デジタルモジュール202a内にそれぞれ形成される。 FIG. 2 is an example of another configuration diagram of a wireless system in which a transmitter / receiver selectively uses a plurality of rotational polarization propagation paths using rotational polarization. 1 is different from the embodiment of FIG. 1 in that the first radio 302 and the second radio 402 have cosine X-axis weighting circuits 5 and 105, cosine Y- axis weighting circuits 15 and 115, cosine Z- axis weighting circuit 25 and 125, sine X-axis weighting circuits 6 and 106, sine Y- axis weighting circuits 16 and 116, sine Z-axis weighting circuits 26 and 126, first transmission synthesis circuits 7 and 107, second transmission synthesis circuits 17 and 117, The third transmission combining circuits 27 and 127, the sixth transmission multipliers 18 and 118, the second power amplifiers 19 and 119, and the second transmission antennas 20 and 120 are not provided, and the composite control lines 31 and 131 are single. It is a point that has been replaced by the control line. As illustrated, each unit is formed in the digital module 202 and the digital module 202a.
本実施例によれば、無線機302および402の送信機は、任意の方向に回転偏波を放射することができず、固定の一方向にのみ回転偏波を放射するので、送信機が最適な回転偏波の放射方向を用いることができない場合が想定される。しかしながら、送信機と受信機の間に多くの什器等が存在し、送信機から放射された電波が複数の異なる経路で受信機に到達する反射波が多い環境では、それらの反射によって形成される受信機が選択的に用いることができる回転偏波の数も大きいので、図1の実施例の送信する回転偏波の方向に関する機能以外の機能をより少ない構成要素で実現できるので、無線機の製造コストを低減することができる。
 
According to the present embodiment, the transmitters of the radios 302 and 402 cannot radiate rotational polarization in any direction, and radiate rotational polarization only in one fixed direction. It is assumed that the radiation direction of a large rotational polarization cannot be used. However, in an environment where there are many fixtures between the transmitter and the receiver, and the radio waves radiated from the transmitter have a lot of reflected waves that reach the receiver through a plurality of different paths, they are formed by their reflection. Since the number of rotational polarizations that can be selectively used by the receiver is large, functions other than the function related to the direction of the rotational polarization transmitted in the embodiment of FIG. 1 can be realized with fewer components. Manufacturing cost can be reduced.
本実施例では、送受信機が回転偏波を使い複数の回転偏波伝搬路を選択的に使用する無線システムの他の構成例を図3を用いて説明する。
図3は、送受信機が回転偏波を使い複数の回転偏波伝搬路を選択的に使用する無線システムの他の構成図の例である。図2の実施例と異なる点は、第一の無線機303および第二の無線機403が、第二の低雑音増幅器51および151、第三の低雑音増幅器61および161、第二の受信乗算器52および152、第三の受信乗算器62および162、第二の帯域通過フィルタ53および153、第三の帯域通過フィルタ63および163、第二のバッファアンプ54および154、第三のバッファアンプ64および164、第二の遅延器55、第三の第二の遅延器65が存在せず、第一の遅延器45が遅延器35で置き換わり、第二の受信アンテナ50および150と第三の受信アンテナ60および160を切り替える受信アンテナ切り替えスイッチ46を具備しこれらのアンテナと第一の低雑音増幅器41とを結合することである。図示のように、各部がデジタルモジュール203内、デジタルモジュール203a内にそれぞれ形成される。
In the present embodiment, another configuration example of a wireless system in which a transceiver uses rotational polarization and selectively uses a plurality of rotational polarization propagation paths will be described with reference to FIG.
FIG. 3 is an example of another configuration diagram of a radio system in which a transceiver uses a rotational polarization and selectively uses a plurality of rotational polarization propagation paths. 2 is different from the embodiment of FIG. 2 in that the first radio 303 and the second radio 403 have the second low noise amplifiers 51 and 151, the third low noise amplifiers 61 and 161, and the second reception multiplication. Multipliers 52 and 152, third reception multipliers 62 and 162, second bandpass filters 53 and 153, third bandpass filters 63 and 163, second buffer amplifiers 54 and 154, and third buffer amplifier 64. 164, the second delay device 55, and the third second delay device 65 are not present, and the first delay device 45 is replaced by the delay device 35, and the second reception antennas 50 and 150 and the third reception device are replaced. The receiving antenna changeover switch 46 for switching between the antennas 60 and 160 is provided, and these antennas and the first low noise amplifier 41 are coupled. As illustrated, each unit is formed in the digital module 203 and the digital module 203a.
該受信アンテナ切り替えスイッチ46はベースバンド回路48からの制御信号で順次切り替えられ第一のバッファアンプ44の出力は第一の遅延器45の三分の一の遅延量を持つ三倍の個数の遅延器35の従属結合へと入力される。本実施例によれば、回転偏波の周期がベースバンド回路の最短処理時間より十分に大きい場合は、回転偏波の周期を等分割した間隔を更に三分割して空間的に互いに直交する三つの受信アンテナを切り替えることにより、図2の実施例と同じ効果を少ない構成要素で実現できるので、無線機の製造コストを低減することができる。
 
The reception antenna changeover switch 46 is sequentially switched by a control signal from the baseband circuit 48, and the output of the first buffer amplifier 44 is three times as many delays as the delay amount of one third of the first delay unit 45. To the subordinate combination of the device 35. According to the present embodiment, when the period of the rotational polarization is sufficiently larger than the shortest processing time of the baseband circuit, the interval obtained by equally dividing the period of the rotational polarization is further divided into three parts that are spatially orthogonal to each other. By switching the two receiving antennas, the same effect as that of the embodiment of FIG. 2 can be realized with a small number of components, so that the manufacturing cost of the radio can be reduced.
本実施例では、送受信機が回転偏波を使い複数の回転偏波伝搬路を選択的に使用する無線システムの他の構成例を図4を用いて説明する。
図4は、送受信機が回転偏波を使い複数の回転偏波伝搬路を選択的に使用する無線システムの他の構成図の例である。図2の実施例と異なる点は、新たに同期符号発生回路21および121と符号切り替えスイッチ36および136を具備し、該符号切り替えスイッチ36および136と循環符合発生回路11および111を制御する複合制御線32および132を有することである。図示のように、各部は、デジタルモジュール204内、デジタルモジュール204a内にそれぞれ形成される。
In the present embodiment, another configuration example of a wireless system in which a transceiver uses rotational polarization and selectively uses a plurality of rotational polarization propagation paths will be described with reference to FIG.
FIG. 4 is an example of another configuration diagram of a wireless system in which a transmitter / receiver selectively uses a plurality of rotational polarization propagation paths using rotational polarization. The difference from the embodiment of FIG. 2 is that composite code control circuits 21 and 121 and code changeover switches 36 and 136 are newly provided, and the code changeover switches 36 and 136 and the cyclic code generation circuits 11 and 111 are controlled. Having lines 32 and 132. As illustrated, each unit is formed in the digital module 204 and the digital module 204a.
ベースバンド回路48および148は該符号切り替えスイッチ36および136によって回転偏波に同期符号を重畳させるタイミングを生成し、送受信機は循環符号により相関利得の大きい同期符号により互いの同期をとる。本実施例によれば、無線システムの送受信に跨る信号処理の精度を向上させることができるので、受信機が用いる複数の回転偏波による伝播路の通信品質を向上させる効果がある。なお、図1の実施例に本実施例と同様に、同期符号発生回路21および121と符号切り替えスイッチ36および136を具備し、該符号切り替えスイッチ36および136と循環符合発生回路11および111を制御する複合制御線32および132を新たに導入することにより、実施例の効果を図1の実施例に与えることが可能である。
 
The baseband circuits 48 and 148 generate timing for superimposing the synchronization code on the rotational polarization by the code changeover switches 36 and 136, and the transmitter and receiver synchronize with each other by the synchronization code having a large correlation gain by the cyclic code. According to the present embodiment, it is possible to improve the accuracy of signal processing over the transmission and reception of the wireless system, so that there is an effect of improving the communication quality of the propagation path due to the plurality of rotational polarizations used by the receiver. As in the present embodiment, the embodiment of FIG. 1 includes synchronous code generation circuits 21 and 121 and code changeover switches 36 and 136, and controls the code changeover switches 36 and 136 and the cyclic code generation circuits 11 and 111. By introducing new composite control lines 32 and 132, the effect of the embodiment can be given to the embodiment of FIG.
本実施例では、送受信機が回転偏波を使い複数の回転偏波伝搬路を選択的に使用する無線システムの他の構成例を図5を用いて説明する。
図5は、送受信機が回転偏波を使い複数の回転偏波伝搬路を選択的に使用する無線システムの他の構成図の例である。図4の実施例と異なる点は、循環符号発生回路11および111の代わりに循環符号発生回路アレイ22および122を具備し、符号切り替えスイッチ36および136の代わりに符号選択スイッチ56および156と、該符号選択スイッチ56および156と循環符号発生回路アレイ22および122を制御する複合制御線33および133を具備することである。図示のように、各部は、デジタルモジュール205内、デジタルモジュール205a内にそれぞれ形成される。
In the present embodiment, another configuration example of a radio system in which a transceiver uses rotational polarization and selectively uses a plurality of rotational polarization propagation paths will be described with reference to FIG.
FIG. 5 is an example of another configuration diagram of a wireless system in which the transceiver uses the rotational polarization and selectively uses a plurality of rotational polarization propagation paths. 4 differs from the embodiment of FIG. 4 in that it includes cyclic code generation circuit arrays 22 and 122 instead of the cyclic code generation circuits 11 and 111, code selection switches 56 and 156 instead of the code changeover switches 36 and 136, The composite control lines 33 and 133 for controlling the code selection switches 56 and 156 and the cyclic code generation circuit arrays 22 and 122 are provided. As illustrated, each unit is formed in a digital module 205 and a digital module 205a.
循環符号発生回路アレイ22および122は互いに弱い相互相関を有する異なる循環符号を生成し、符号選択スイッチ56および156は該異なる符号を選択して信号発生回路1および101の出力に重畳する。該異なる符号の弱い相互相関特性により、第一の無線機305と第二の無線機405は複数の自分以外の無線機を識別可能となる。この識別機能によって、本実施例の無線機は循環符号発生回路を切り替えることにより複数の無線機と通信可能となるので、無線システムが収容する無線機が同時に通信可能な時間軸上の領域が増えることから無線システムのスループット向上させる効果がある。
 
The cyclic code generation circuit arrays 22 and 122 generate different cyclic codes having a weak cross-correlation with each other, and the code selection switches 56 and 156 select the different codes and superimpose them on the outputs of the signal generation circuits 1 and 101. Due to the weak cross-correlation characteristics of the different codes, the first wireless device 305 and the second wireless device 405 can identify a plurality of wireless devices other than themselves. With this identification function, the wireless device of this embodiment can communicate with a plurality of wireless devices by switching the cyclic code generation circuit, so that the area on the time axis in which the wireless devices accommodated in the wireless system can simultaneously communicate increases. Therefore, there is an effect of improving the throughput of the wireless system.
本実施例では、送受信機が回転偏波を使い複数の回転偏波伝搬路を選択的に使用する無線システムの他の構成例を図6を用いて説明する。 In the present embodiment, another configuration example of a wireless system in which a transceiver uses rotational polarization and selectively uses a plurality of rotational polarization propagation paths will be described with reference to FIG.
図6は、送受信機が回転偏波を使い複数の回転偏波伝搬路を選択的に使用する無線システムの他の構成図の例である。図2の実施例と異なる点は、第一および第二の無線機が時刻発生回路47および147を新たに具備することである。図示のように、各部は、デジタルモジュール206内、デジタルモジュール206a内にそれぞれ形成される。 FIG. 6 is an example of another configuration diagram of a radio system in which a transceiver uses a rotational polarization and selectively uses a plurality of rotational polarization propagation paths. The difference from the embodiment of FIG. 2 is that the first and second radios are newly provided with time generation circuits 47 and 147. As illustrated, each unit is formed in the digital module 206 and the digital module 206a.
本実施例の無線システムでは、第一および第二の無線機の受信機が計算して求める楕円回転偏波の回転面ベクトルと楕円形状の変化のタイミングを、デジタル信号処理回路48および148が図1の実施例と同様の方法で得て時刻発生回路47および147に蓄える。
一旦、時刻発生回路47および147に値が蓄えられた後の一定期間はデジタル信号処理回路48および148は時刻発生回路47および147の出力を用いて、循環符号発生回路111および11の符合発生のタイミングを決定する。該一定の期間を過ぎた後は、第一および第二の無線機の受信機が計算して求める楕円回転偏波の回転面ベクトルと楕円形状の変化のタイミングをデジタル信号処理回路48および148から図1の実施例と同様の方法で得る。本実施例によれば無線機が具備するデジタル信号処理回路の動作を簡略化できるので、無線機の消費電力を削減することができ、無線システム全体の低消費電力化に効果がある。
 
In the wireless system of the present embodiment, the digital signal processing circuits 48 and 148 indicate the rotation plane vector of the elliptically rotationally polarized wave calculated by the receivers of the first and second wireless devices and the change timing of the elliptical shape. It is obtained by the same method as in the first embodiment and stored in the time generation circuits 47 and 147.
Once the values are stored in the time generation circuits 47 and 147, the digital signal processing circuits 48 and 148 use the outputs of the time generation circuits 47 and 147 to generate signs of the cyclic code generation circuits 111 and 11 for a certain period of time. Determine timing. After the predetermined period has passed, the digital signal processing circuits 48 and 148 indicate the rotation plane vector of the elliptically polarized wave and the change timing of the elliptical shape calculated by the receivers of the first and second radio units from the digital signal processing circuits 48 and 148. Obtained in the same manner as in the embodiment of FIG. According to the present embodiment, since the operation of the digital signal processing circuit included in the wireless device can be simplified, the power consumption of the wireless device can be reduced, which is effective in reducing the power consumption of the entire wireless system.
本実施例では、送受信機が回転偏波を使い複数の回転偏波伝搬路を選択的に使用する無線システムの他の構成例を図7を用いて説明する。 In the present embodiment, another configuration example of a wireless system in which a transceiver uses rotational polarization and selectively uses a plurality of rotational polarization propagation paths will be described with reference to FIG.
図7は、送受信機が回転偏波を使い複数の回転偏波伝搬路を選択的に使用する無線システムの他の構成図の例である。図6の実施例と異なる点は、新たに、通信状態記憶装置57および157とデータバス67とおよび167を具備することである。図示のように、各部は、デジタルモジュール207内、デジタルモジュール207a内にそれぞれ形成される。 FIG. 7 is an example of another configuration diagram of a wireless system in which a transmitter / receiver selectively uses a plurality of rotational polarization propagation paths using rotational polarization. The difference from the embodiment of FIG. 6 is that communication state storage devices 57 and 157 and data buses 67 and 167 are newly provided. As illustrated, each unit is formed in the digital module 207 and the digital module 207a.
通信状態記憶装置57および157はそれぞれデジタル信号処理回路48および148と結合し、第一の無線機307と第二の無線機407の受信機が計算して求める楕円回転偏波の回転面ベクトルと楕円形状の情報を時系列的に蓄え、該情報をデータバス67および167を用いて第一の無線機307および第二の無線機407の外部に伝達することができる。本実施例の無線システムは時系列的な該受信機が計算して求める楕円回転偏波の回転面ベクトルと楕円形状の変化を調べることによって、該無線システムを取り巻く電波伝搬に影響を与える環境変化を検出することができ、無線システムを安定動作させる為のメインテナンス機能を得ることができるので、本実施例の無線システムの動作安定化および不測の事態に対応してシステムを復旧させる時間を短縮することが可能となる。
 
The communication state storage devices 57 and 157 are coupled to the digital signal processing circuits 48 and 148, respectively, and the plane-of-rotation polarization plane vector calculated by the receiver of the first radio unit 307 and the second radio unit 407 is obtained. The elliptical information can be stored in time series, and the information can be transmitted to the outside of the first wireless device 307 and the second wireless device 407 using the data buses 67 and 167. The wireless system of the present embodiment is a time-series change in the environment that affects the propagation of radio waves surrounding the wireless system by examining changes in the plane of rotation and elliptical shape of the elliptically rotating polarization obtained by calculation by the receiver. Can be detected, and a maintenance function for stably operating the wireless system can be obtained, so that the operation of the wireless system of this embodiment can be stabilized and the time required to restore the system in response to an unexpected situation can be shortened. It becomes possible.
本実施例では、送受信機が回転偏波を使い複数の回転偏波伝搬路を選択的に使用する無線システムが用いる送信機の他の構成例を図8を用いて説明する。 In this embodiment, another configuration example of a transmitter used in a wireless system in which a transmitter / receiver selectively uses a plurality of rotational polarization propagation paths using rotational polarization will be described with reference to FIG.
図8は、送受信機が回転偏波を使い複数の回転偏波伝搬路を選択的に使用する無線システムの他の構成図の例である。図1の実施例の無線機と異なる点は、第一の送信アンテナ10、第二の送信アンテナ20、第三の送信アンテナ30、第一の受信アンテナ40、第二の受信アンテナ50、第三の受信アンテナ60の代わりに、第一の送受共用アンテナ70と第二の送受共用アンテナ80と第三の送受共用アンテナ90を具備し、新たに第一のサーキュレータ71と第二のサーキュレータ81と第三のサーキュレータ91を具備したことである。第一のサーキュレータ71の第一端子に第一の送受共用アンテナ70、第二のサーキュレータ81の第一端子に第二の送受共用アンテナ80、第三のサーキュレータ91の第一端子に第三の送受共用アンテナ90がそれぞれ結合する。第一のサーキュレータ71の第二端子に第一の電力増幅器9の出力、第二のサーキュレータ81の第二端子に第二の電力増幅器19の出力、第三のサーキュレータ91の第二端子に第三の電力増幅器29の出力がそれぞれ結合する。第一のサーキュレータ71の第三端子に第一の低雑音増幅器141の入力、第二のサーキュレータ81の第三端子に第二の低雑音増幅器19の入力、第三のサーキュレータ91の第三端子に第三の低雑音増幅器29の入力、がそれぞれ結合する。図示のように、各部は、デジタルモジュール208内に形成される。 FIG. 8 is an example of another configuration diagram of a wireless system in which a transmitter / receiver selectively uses a plurality of rotational polarization propagation paths using rotational polarization. 1 differs from the wireless device of the embodiment of FIG. 1 in that the first transmitting antenna 10, the second transmitting antenna 20, the third transmitting antenna 30, the first receiving antenna 40, the second receiving antenna 50, the third Instead of the first receiving antenna 60, a first transmitting / receiving antenna 70, a second transmitting / receiving antenna 80, and a third transmitting / receiving antenna 90 are provided, and a first circulator 71, a second circulator 81, and a second circulator 81 are newly provided. 3 circulators 91 are provided. The first transmitting / receiving antenna 70 is connected to the first terminal of the first circulator 71, the second transmitting / receiving antenna 80 is connected to the first terminal of the second circulator 81, and the third transmitting / receiving is connected to the first terminal of the third circulator 91. Each shared antenna 90 is coupled. The output of the first power amplifier 9 is connected to the second terminal of the first circulator 71, the output of the second power amplifier 19 is connected to the second terminal of the second circulator 81, and the third terminal is connected to the second terminal of the third circulator 91. The outputs of the power amplifiers 29 are combined. The input of the first low noise amplifier 141 is input to the third terminal of the first circulator 71, the input of the second low noise amplifier 19 is input to the third terminal of the second circulator 81, and the third terminal of the third circulator 91 is connected. The inputs of the third low noise amplifier 29 are respectively coupled. As illustrated, each unit is formed in the digital module 208.
第一のサーキュレータ71および第二のサーキュレータ81および第三のサーキュレータ91は端子の循環順序で信号を伝達するので、第一の送受両用アンテナ70および第二の送受両用アンテナ80および第三の送受両用アンテナ90は第一の電力増幅器9と第二の電力増幅器19と第三の電力増幅器29の出力を空間に放射し、無線機308に到来する電磁波の電力を第一の低雑音増幅器141と第二の低雑音増幅器151と第三の低雑音増幅器161に入力する。本実施例によれば、図1の実施例の無線機と同一の機能を3つのアンテナで実現できるので、無線機寸法の小型化および無線機の製造コスト低減に効果がある。
 
Since the first circulator 71, the second circulator 81, and the third circulator 91 transmit signals in the circulation order of the terminals, the first transmitting / receiving antenna 70, the second transmitting / receiving antenna 80, and the third transmitting / receiving are used. The antenna 90 radiates the outputs of the first power amplifier 9, the second power amplifier 19, and the third power amplifier 29 to the space, and converts the power of the electromagnetic wave arriving at the radio unit 308 to the first low noise amplifier 141 and the first power amplifier. The signals are input to the second low noise amplifier 151 and the third low noise amplifier 161. According to the present embodiment, the same function as that of the wireless device of the embodiment of FIG. 1 can be realized with three antennas, which is effective in reducing the size of the wireless device and reducing the manufacturing cost of the wireless device.
本実施例では、送受信機が回転偏波を使い複数の回転偏波伝搬路を選択的に使用する無線システムが用いる送信機の他の構成例を図9を用いて説明する。 In the present embodiment, another configuration example of a transmitter used in a wireless system in which a transmitter / receiver uses rotational polarization and selectively uses a plurality of rotational polarization propagation paths will be described with reference to FIG.
図9は、送受信機が回転偏波を使い複数の回転偏波伝搬路を選択的に使用する無線システムの他の構成図の例である。図8の実施例の無線機と異なる点は、
無線機309は第一のサーキュレータ71および第二のサーキュレータ81および第三のサーキュレータ91の代わりに第一のアンテナスイッチ72および第二のアンテナスイッチ82および第三のアンテナスイッチ92を具備することである。図示のように、各部は、デジタルモジュール209内に形成される。
FIG. 9 is an example of another configuration diagram of a radio system in which a transceiver uses a rotational polarization and selectively uses a plurality of rotational polarization propagation paths. The difference from the wireless device of the embodiment of FIG.
The wireless device 309 includes a first antenna switch 72, a second antenna switch 82, and a third antenna switch 92 instead of the first circulator 71, the second circulator 81, and the third circulator 91. . As illustrated, each unit is formed in the digital module 209.
第一のアンテナスイッチ72の共通端子に第一の送受共用アンテナ70、第二のアンテナスイッチ82の共通端子に第二の送受共用アンテナ80、第三のアンテナスイッチ92の共通端子に第三の送受共用アンテナ90がそれぞれ結合する。第一のアンテナスイッチ72の第一端子に第一の電力増幅器9の出力、第二のアンテナスイッチ82の第一端子に第二の電力増幅器19の出力、第三のアンテナスイッチ92の第一端子に第三の電力増幅器29の出力がそれぞれ結合する。第一のアンテナスイッチ72の第二端子に第一の低雑音増幅器141の入力、第二のアンテナスイッチ82の第二端子に第二の低雑音増幅器19の入力、第三のアンテナスイッチ92の第二端子に第三の低雑音増幅器29の入力、がそれぞれ結合する。 The first transmitting / receiving antenna 70 is connected to the common terminal of the first antenna switch 72, the second transmitting / receiving antenna 80 is connected to the common terminal of the second antenna switch 82, and the third transmitting / receiving terminal is connected to the common terminal of the third antenna switch 92. Each shared antenna 90 is coupled. The output of the first power amplifier 9 is connected to the first terminal of the first antenna switch 72, the output of the second power amplifier 19 is connected to the first terminal of the second antenna switch 82, and the first terminal of the third antenna switch 92. Are coupled to the outputs of the third power amplifier 29, respectively. The input of the first low noise amplifier 141 is input to the second terminal of the first antenna switch 72, the input of the second low noise amplifier 19 is input to the second terminal of the second antenna switch 82, and the The inputs of the third low noise amplifier 29 are coupled to the two terminals, respectively.
本実施例によれば図1の実施例の無線機と同様の機能を3つのアンテナおよび寸法が大きく重いサーキュレータを用いることなく実現できるので、無線機寸法の小型化・軽量化および無線機の製造コスト低減に効果がある。
 
According to the present embodiment, functions similar to those of the wireless device of the embodiment of FIG. 1 can be realized without using three antennas and a large and heavy circulator, so that the size and weight of the wireless device can be reduced and the wireless device can be manufactured. Effective for cost reduction.
本実施例では、送受信機が回転偏波を使い複数の回転偏波伝搬路を選択的に使用する無線システムが用いる送信機の他の構成例を図10を用いて説明する。 In the present embodiment, another configuration example of a transmitter used in a wireless system in which a transmitter / receiver uses rotational polarization and selectively uses a plurality of rotational polarization propagation paths will be described with reference to FIG.
図10は、送受信機が回転偏波を使い複数の回転偏波伝搬路を選択的に使用する無線システムの他の構成図の例である。無線機210は2つの送受共用アンテナと1つの受信アンテナおよび2つのサーキュレータを具備し、受信回路の構成は図1の無線機301と同様である。無線機310の送信機は、情報信号発生器1の出力を二分岐した一方に余弦送信乗算器76により、第一の余弦波搬送波発生回路78の出力と第二の余弦波搬送波発生回路79の出力を加算器77により足し合わせて形成されるビート状の搬送波を掛け合わせ、循環符号発生回路11の出力を第一の送信乗算器2により重畳し、続いて第一のデルタシグマ回路97で逓倍し、余弦帯域通過型フィルタ95を介し第一の電力増幅器9により増幅して第一のサーキュレータ71の第一端子に入力する。情報信号発生器1の出力を二分岐した他方に正弦送信乗算器86により、第一の正弦波搬送波発生回路88の出力と第二の正弦波搬送波発生回路89の出力を減算器87により差を採って形成されるビート状の搬送波を掛け合わせ、循環符号発生回路11の出力を第二の送信乗算器12により重畳し、続いて第二のデルタシグマ回路98で逓倍し、正弦帯域通過型フィルタ96を介し第二の電力増幅器19により増幅して第三のサーキュレータ91の第一端子に入力する。なお、第一のデルタシグマ回路97と第二のデルタシグマ回路98にはクロック生成回路99により動作クロックか供給される。 FIG. 10 is an example of another configuration diagram of a radio system in which a transceiver uses a rotational polarization and selectively uses a plurality of rotational polarization propagation paths. The wireless device 210 includes two shared antennas, one receiving antenna, and two circulators, and the configuration of the receiving circuit is the same as that of the wireless device 301 in FIG. The transmitter of the radio device 310 divides the output of the information signal generator 1 into two branches, and the output of the first cosine wave carrier generation circuit 78 and the output of the second cosine wave carrier generation circuit 79 by the cosine transmission multiplier 76. The output is multiplied by a beat-like carrier wave formed by adding the adder 77, the output of the cyclic code generation circuit 11 is superimposed by the first transmission multiplier 2, and subsequently multiplied by the first delta-sigma circuit 97. Then, the signal is amplified by the first power amplifier 9 through the cosine bandpass filter 95 and input to the first terminal of the first circulator 71. A difference between the output of the first sine wave carrier wave generation circuit 89 and the output of the second sine wave carrier wave generation circuit 89 is obtained by a subtractor 87 by the sine transmission multiplier 86 on the other side of the output of the information signal generator 1 in two branches. The beat-shaped carrier waves formed by the signals are multiplied and the output of the cyclic code generation circuit 11 is superposed by the second transmission multiplier 12 and then multiplied by the second delta-sigma circuit 98 to obtain a sine band-pass filter. Amplified by the second power amplifier 19 via 96 and input to the first terminal of the third circulator 91. The first delta sigma circuit 97 and the second delta sigma circuit 98 are supplied with an operation clock by a clock generation circuit 99.
無線機310の受信機は、第一のサーキュレータ71の第三端子の出力は、第一の低雑音増幅器141によって増幅された後、第一の受信乗算器142によって搬送波周波数と同一周波数の信号を発生する局部発信回路149の出力が掛合わされ、その出力が第一の帯域通過フィルタ143を介して第一のバッファアンプ144に入力され、その出力が複数の第一の遅延器145で順次遅延されデジタル信号処理回路148に夫々入力される。第三のサーキュレータ91の第三端子の出力は、第三の低雑音増幅器161によって増幅された後、第三の受信乗算器162によって搬送波周波数と同一周波数の信号を発生する局部発信回路149の出力が掛合わされ、その出力が第三の帯域通過フィルタ163を介して第三のバッファアンプ164に入力され、その出力が複数の第三の遅延器165で順次遅延されデジタル信号処理回路148に夫々入力される。第一のサーキュレータ71および第三のサーキュレータ91の第二端子は、それぞれ第一の送受両用アンテナ70および第三の送受両用アンテナ90と結合する。第二の受信アンテナ150の出力は第二の低雑音増幅器151によって増幅された後、第二の受信乗算器152によって搬送波周波数と同一周波数の信号を発生する局部発信回路149の出力が掛合わされその出力が第二の帯域通過フィルタ153を介して第二のバッファアンプ154に入力され、その出力が複数の第二の遅延器155で順次遅延されデジタル信号処理回路148に夫々入力される。図示のように、各部は、デジタル回転偏波送受信モジュール210内に形成される。本実施例によれば、図1の実施例の無線機と同一の機能を3つのアンテナで実現でき、且つ電力増幅器に入力信号の生成および低雑音増幅器の出力信号の処理をすべてデジタル回路で実現可能となるので、無線機寸法の小型化および無線機の製造コスト低減さらに無線機の高寿命化に効果がある。 In the receiver of the radio 310, the output of the third terminal of the first circulator 71 is amplified by the first low noise amplifier 141, and then a signal having the same frequency as the carrier frequency is output by the first reception multiplier 142. The generated local oscillator 149 output is multiplied, and the output is input to the first buffer amplifier 144 via the first band-pass filter 143, and the output is sequentially delayed by the plurality of first delay devices 145. Each is input to the digital signal processing circuit 148. The output of the third terminal of the third circulator 91 is amplified by the third low noise amplifier 161, and then output from the local oscillator circuit 149 that generates a signal having the same frequency as the carrier frequency by the third reception multiplier 162. And the output is input to the third buffer amplifier 164 via the third band-pass filter 163, and the output is sequentially delayed by the plurality of third delay units 165 and input to the digital signal processing circuit 148, respectively. Is done. The second terminals of the first circulator 71 and the third circulator 91 are coupled to the first transmitting / receiving antenna 70 and the third transmitting / receiving antenna 90, respectively. The output of the second receiving antenna 150 is amplified by the second low noise amplifier 151, and then multiplied by the output of the local transmission circuit 149 that generates a signal having the same frequency as the carrier frequency by the second receiving multiplier 152. The output is input to the second buffer amplifier 154 via the second band pass filter 153, and the output is sequentially delayed by the plurality of second delay units 155 and input to the digital signal processing circuit 148. As shown in the figure, each unit is formed in the digital rotational polarization transmitting / receiving module 210. According to the present embodiment, the same function as the radio of the embodiment of FIG. 1 can be realized by three antennas, and the generation of the input signal to the power amplifier and the processing of the output signal of the low noise amplifier are all realized by a digital circuit. As a result, the size of the wireless device can be reduced, the manufacturing cost of the wireless device can be reduced, and the life of the wireless device can be increased.
D.他のシステムへの適用
 
D. Application to other systems
本実施例では、送受信機が回転偏波を使い複数の回転偏波伝搬路を選択的に使用する無線システムの他の構成例を図11を用いて説明する。
図11は、送受信機が回転偏波を使い複数の回転偏波伝搬路を選択的に使用する無線システムを適用した昇降機システムの構成図の例である。本実施例の昇降機システム1100は、昇降機が設置される建物1101の内部を昇降カゴ1111が昇降する。建物1101の内部の床部および天井部には、基地局無線機1102と基地局2直交偏波一体アンテナ1103が結合し設置される。昇降機1111の外部天井と外部床面には、端末無線機1113が設置され、直交偏波一体アンテナ1112が高周波ケーブル1114を用いて結合されている。基地局無線機1102及び端末無線機1113は、実施例1~10のように、其々外部者からの伝搬路改変行為を検出し同改変に対して送受信間の通信品質の低下を補償する送信機および受信機を具備する。基地局無線機1103と端末局無線機1113は、建物1101の内部を無線伝送媒体とするので、該建物1101の内壁および該昇降機の外壁により電磁波は多重反射を受け、多重波干渉環境が形成される。本実施例では、多重波干渉環境下で外部者からの伝搬路改変行為を検出し同改変に対して送受信間の通信品質の低下を補償する高品質の無線伝送が実現可能となる。そして、同無線機を用いた無線接続手段を用いて、昇降機1111の制御・監視を建物1101より有線接続手段を用いずに遠隔で実施できるので、ケーブル等の該有線接続手段を削除可能できる。また、本実施例では、同一の輸送能力をより小さい建物体積で実現でき、あるいは同一の建物体積で昇降機寸法を増大させることによる輸送能力向上を実現できる。
 
In the present embodiment, another configuration example of a wireless system in which a transceiver uses rotational polarization and selectively uses a plurality of rotational polarization propagation paths will be described with reference to FIG.
FIG. 11 is an example of a configuration diagram of an elevator system to which a wireless system in which a transmitter / receiver uses rotational polarization and selectively uses a plurality of rotational polarization propagation paths is applied. In the elevator system 1100 of the present embodiment, the elevator cage 1111 moves up and down in the building 1101 where the elevator is installed. A base station radio 1102 and a base station 2 orthogonal polarization integrated antenna 1103 are coupled and installed on the floor and ceiling of the building 1101. A terminal radio 1113 is installed on the external ceiling and the external floor of the elevator 1111, and an orthogonal polarization integrated antenna 1112 is coupled using a high frequency cable 1114. The base station radio 1102 and the terminal radio 1113 each detect a channel modification act from an external party and compensate for the degradation in communication quality between transmission and reception for the modification as in the first to tenth embodiments. And a receiver. Since the base station radio 1103 and the terminal station radio 1113 use the inside of the building 1101 as a radio transmission medium, electromagnetic waves are subjected to multiple reflections by the inner wall of the building 1101 and the outer wall of the elevator, and a multiwave interference environment is formed. The In the present embodiment, it is possible to realize high-quality wireless transmission that detects a channel modification act from an external party in a multiwave interference environment and compensates for a decrease in communication quality between transmission and reception for the modification. Since the elevator 1111 can be controlled and monitored remotely from the building 1101 without using the wired connection means using the wireless connection means using the same wireless device, the wired connection means such as a cable can be deleted. In the present embodiment, the same transportation capacity can be realized with a smaller building volume, or the transportation capacity can be improved by increasing the elevator size with the same building volume.
本実施例では、送受信機が回転偏波を使い複数の回転偏波伝搬路を選択的に使用する無線システムの他の構成例を図13を用いて説明する。
図12は、送受信機が回転偏波を使い複数の回転偏波伝搬路を選択的に使用する無線システムを適用した変電設備監視システムの構成図の例である。本実施例の変電設備監視システム1200は、複数の変電機1201と同変電機1201には、端末局無線機1203、と端末局回転偏波アンテナ1202が結合し設置される。端末局無線機1203は、実施例1~10のように、回転偏波を送受信可能なアンテナを具備する回転偏波の電磁波を用いる無線通信システムの送信機および受信機を具備する。該複数の変電機1201の近傍に、該変電機1201の数よりも少ない数の複数の基地局装置1211が設営される。
該基地局装置1211は、実施例1~10のように、回転偏波を送受信可能なアンテナを具備する回転偏波の電磁波を用いる基地局無線機1213と、基地局回転偏波アンテナ1212が結合し設置される。変電機の寸法は、例えば数mのオーダーであり無線機が使用する電磁波の周波数である数百MHzから数GHzに対応する波長に比べ圧倒的に大きいため、該複数の変電機1201により電磁波は多重反射を受け、多重波干渉環境が形成される。本実施例では、多重波干渉環境下で複数の反射波を用いて送受信間の通信品質の低下を補償する高品質の無線伝送が実現可能となる。そして、同無線機を用いた無線接続手段を用いて、変電機1201の制御・監視を複数の無線基地局1211により有線接続手段を用いずに遠隔で実施できる。また、本実施例では、ケーブル等の該有線接続手段を用いる場合に課題となる高圧誘導電力の影響を解決でき、同ケーブルの敷設コストを削除できるので、変電機1201の制御・監視システムの安全性向上およびコスト削減に効果がある。
In the present embodiment, another configuration example of a wireless system in which a transmitter / receiver selectively uses a plurality of rotational polarization propagation paths using rotational polarization will be described with reference to FIG.
FIG. 12 is an example of a configuration diagram of a substation equipment monitoring system to which a wireless system in which a transceiver uses rotational polarization and selectively uses a plurality of rotational polarization propagation paths is applied. In the substation equipment monitoring system 1200 of the present embodiment, a plurality of substations 1201 and a substation 1201 are connected to a terminal station radio 1203 and a terminal station polarization antenna 1202. As in the first to tenth embodiments, the terminal station radio 1203 includes a transmitter and a receiver of a radio communication system that uses an electromagnetic wave having a rotationally polarized wave that includes an antenna capable of transmitting and receiving the rotationally polarized wave. In the vicinity of the plurality of substations 1201, a plurality of base station apparatuses 1211 having a number smaller than the number of substations 1201 are installed.
In the base station apparatus 1211, as in the first to tenth embodiments, a base station radio 1213 using a rotationally polarized electromagnetic wave having an antenna capable of transmitting and receiving rotationally polarized waves and a base station rotationally polarized antenna 1212 are coupled. Installed. The dimensions of the transformer are, for example, on the order of several meters and are overwhelmingly larger than the wavelengths corresponding to several hundred MHz to several GHz, which are the frequencies of the electromagnetic waves used by the radio equipment. A multiple wave interference environment is formed due to multiple reflections. In this embodiment, it is possible to realize high-quality wireless transmission that compensates for deterioration in communication quality between transmission and reception using a plurality of reflected waves in a multi-wave interference environment. Then, using the wireless connection means using the same wireless device, the control and monitoring of the transformer 1201 can be performed remotely by the plurality of wireless base stations 1211 without using the wired connection means. Further, in this embodiment, the influence of the high-voltage induced power that becomes a problem when the wired connection means such as a cable is used can be solved, and the installation cost of the cable can be eliminated. It is effective in improving the performance and reducing the cost.
D.構成例
 
本発明及び/又は本実施例は、例えば、以下の構成例のように提供されることができる。
 
D. Configuration example
This invention and / or a present Example can be provided like the following structural examples, for example.
(構成例1)
送信機は偏波が搬送波に比べて低い周波数で回転する電磁波に該回転周期と同一の周期を有する循環符号が掛け合わされた信号を重畳して送信し、受信機は送信機が用いた循環符号と同一の符号を用いて、送信機が用いた偏波の方向を知り、同方向の情報を用いて特定の時刻の受信信号を用いて送信情報を再現することを特徴とする無線通信システム。
(構成例2)
構成例1の無線通信システムであって、無線機は異なる複数の循環符号を共有し、異なるタイミングで異なる該循環符号を用いることを特徴とする無線通信システム。
(構成例3)
構成例1又は2の無線通信システムであって、無線機は同期符号を共有し、循環符号を用いるタイミングとは別のタイミングで同期符号を信号として送信し、複数の無線機で同期をとることを特徴とする無線通信システム。
(構成例4)
構成例1乃至3のいずれかの無線通信システムであって、無線機はログメモリを具備し、受信機は三次元空間のあらゆる方向に感度を有するアンテナを用いて互いに直交する三軸に平行な偏波の三信号を個別に得て、該三信号の空間的ベクトル和を抽出し、該空間的ベクトル和の情報をログメモリに時系列的に記憶し、該ログメモリの情報を用いて無線機を取り巻く無線環境の状況変化を認識することを特徴とする無線通信システム。
(Configuration example 1)
A transmitter superimposes a signal obtained by multiplying an electromagnetic wave whose polarization is rotated at a frequency lower than that of a carrier wave by a cyclic code having the same period as the rotation period, and a receiver transmits a cyclic code used by the transmitter. A wireless communication system, wherein the same code is used to know the direction of polarization used by the transmitter, and the transmission information is reproduced using a received signal at a specific time using information in the same direction.
(Configuration example 2)
The wireless communication system according to Configuration Example 1, wherein the wireless devices share a plurality of different cyclic codes and use different cyclic codes at different timings.
(Configuration example 3)
In the wireless communication system according to Configuration Example 1 or 2, the wireless devices share a synchronization code, transmit the synchronization code as a signal at a timing different from the timing using the cyclic code, and synchronize with a plurality of wireless devices A wireless communication system.
(Configuration example 4)
The wireless communication system according to any one of Configuration Examples 1 to 3, wherein the wireless device includes a log memory, and the receiver is parallel to three axes orthogonal to each other using antennas having sensitivity in all directions in the three-dimensional space. Obtain three polarization signals individually, extract the spatial vector sum of the three signals, store the information of the spatial vector sum in the log memory in time series, and use the information in the log memory A wireless communication system characterized by recognizing a change in a wireless environment surrounding a machine.
(構成例5)
 構成例1乃至4のいずれかの無線通信システムであって、送信機は異なる2周波数の余弦発生回路と正弦波発生回路の計4種類の回路を用いて、2周波数の差の半分の周波数で偏波が回転する電波を生成することを特徴とする無線通信システム。
(構成例6)
 構成例1乃至5のいずれかの無線通信システムであって、無線機は電界に感度を有する空間的に直交する3アンテナを具備し、受信機は同3アンテナからの出力を個別に処理する3つの回路群を有し、同回路群の出力を統合的に処理するデジタル信号処理部を有することを特徴とする無線通信システム。
(構成例7)
 構成例1乃至6のいずれかの無線通信システムであって、無線機は電界に感度を有する空間的に直交する2アンテナと同アンテナが張る面内の磁界に感度を有する第三のアンテナを同面内に具備し、受信機は同3アンテナからの出力を個別に処理する3つの回路群を有し、同回路群の出力を統合的に処理するデジタル信号処理部を有することを特徴とする無線通信システム。
 
(構成例8)
構成例1乃至7のいずれかの無線通信システムを適用した昇降機制御システム。
(構成例9)
構成例1乃至7のいずれかの無線通信システムを適用した変電所制御システム。
(Configuration example 5)
The wireless communication system according to any one of the configuration examples 1 to 4, wherein the transmitter uses a total of four types of circuits, ie, a cosine generating circuit and a sine wave generating circuit having two different frequencies, and is half the difference between the two frequencies. A radio communication system characterized by generating a radio wave whose polarization is rotated.
(Configuration example 6)
The wireless communication system according to any one of Configuration Examples 1 to 5, wherein the wireless device includes three spatially orthogonal antennas having sensitivity to an electric field, and the receiver individually processes outputs from the three antennas. A wireless communication system comprising a circuit group and a digital signal processing unit that integrally processes outputs of the circuit group.
(Configuration example 7)
The wireless communication system according to any one of Configuration Examples 1 to 6, wherein the wireless device includes a third antenna having sensitivity to a magnetic field in a plane stretched by the same antenna and two spatially orthogonal antennas having sensitivity to an electric field. The receiver includes three circuit groups that individually process outputs from the three antennas, and a digital signal processing unit that integrally processes the outputs of the circuit groups. Wireless communication system.

(Configuration example 8)
An elevator control system to which the wireless communication system according to any one of Configuration Examples 1 to 7 is applied.
(Configuration example 9)
A substation control system to which any one of the configuration examples 1 to 7 is applied.
E.付記
 
 なお、本発明は上記した実施例に限定されるものではなく、様々な変形例が含まれている。例えば、上記した実施例は本発明を分かりやすく説明するために詳細に説明したものであり、必ずしも説明した全ての構成を備えるものに限定されるものではない。また、ある実施例の構成の一部を他の実施例の構成に置き換えることが可能であり、また、ある実施例の構成に他の実施例の構成を加えることも可能である。また、各実施例の構成の一部について、他の構成の追加・削除・置換をすることが可能である。
 また、上記の各構成、機能、処理部、処理手段等は、それらの一部又は全部を、例えば集積回路で設計する等によりハードウェアで実現してもよい。また、上記の各構成、機能等は、プロセッサがそれぞれの機能を実現するプログラムを解釈し、実行することによりソフトウェアで実現してもよい。各機能を実現するプログラム、テーブル、ファイル等の情報は、メモリや、ハードディスク、SSD(Solid State Drive)等の記録装置、または、ICカード、SDカード、DVD等の記録媒体に置くことができる。
 また、制御線や情報線は説明上必要と考えられるものを示しており、製品上必ずしも全ての制御線や情報線を示しているとは限らない。実際には殆ど全ての構成が相互に接続されていると考えてもよい。
E. Appendix
In addition, this invention is not limited to an above-described Example, Various modifications are included. For example, the above-described embodiments have been described in detail for easy understanding of the present invention, and are not necessarily limited to those having all the configurations described. Further, a part of the configuration of one embodiment can be replaced with the configuration of another embodiment, and the configuration of another embodiment can be added to the configuration of one embodiment. Further, it is possible to add, delete, and replace other configurations for a part of the configuration of each embodiment.
Each of the above-described configurations, functions, processing units, processing means, and the like may be realized by hardware by designing a part or all of them with, for example, an integrated circuit. Each of the above-described configurations, functions, and the like may be realized by software by interpreting and executing a program that realizes each function by the processor. Information such as programs, tables, and files for realizing each function can be stored in a memory, a hard disk, a recording device such as an SSD (Solid State Drive), or a recording medium such as an IC card, an SD card, or a DVD.
Further, the control lines and information lines indicate what is considered necessary for the explanation, and not all the control lines and information lines on the product are necessarily shown. Actually, it may be considered that almost all the components are connected to each other.
1…情報信号発生器
3…余弦回転周波数発生回路
5…余弦X軸重み付け回路
6…正弦X軸重み付け回路
10…第一の送信アンテナ
11…循環符号発生回路
13…正弦回転周波数発生回路
15…余弦Y軸重み付け回路
16…正弦Y軸重み付け回路
20…第二の送信アンテナ
25…余弦Z軸重み付け回路
26…正弦Z軸重み付け回路
30…第三の受信アンテナ
39…搬送波周波数発生回路
DESCRIPTION OF SYMBOLS 1 ... Information signal generator 3 ... Cosine rotation frequency generation circuit 5 ... Cosine X-axis weighting circuit 6 ... Sine X-axis weighting circuit 10 ... First transmission antenna 11 ... Cyclic code generation circuit 13 ... Sine rotation frequency generation circuit 15 ... Cosine Y-axis weighting circuit 16 ... sine Y-axis weighting circuit 20 ... second transmitting antenna 25 ... cosine Z-axis weighting circuit 26 ... sine Z-axis weighting circuit 30 ... third receiving antenna 39 ... carrier frequency generating circuit

Claims (15)

  1.  無線通信システムであって、
     送信機は、搬送波の周波数とは異なる周波数で偏波が搬送波に比べて低い周波数で回転する電波を用いて、情報を送信し、
     受信機は、
     3つのアンテナを用いて3次元的に多方向からの偏波の到来波を受信し、互いに直交する3軸に平行な偏波の3つの信号を得て、
     到来波の3次元的合成によって得られる楕円回転偏波の到来方向及び長軸の傾き並びに長軸と短軸の比を含む楕円軌跡を抽出し、
     3次元的に複数の方向から到来する回転偏波の到来方向及び楕円軌跡の組み合わせに対する3つのアンテナから得られる出力を予め記憶したテーブルを参照し、抽出した楕円軌跡を再現可能な有限複数個の固有の円軌跡を呈するひとつ又は複数の回転偏波を求め、
     求めたひとつ又は複数の回転偏波に対応する伝送路を用いて通信を行う、
    無線通信システム。
    A wireless communication system,
    The transmitter transmits information using a radio wave whose polarization is different from the frequency of the carrier wave and whose polarization is lower than that of the carrier wave.
    The receiver
    Using three antennas to receive an incoming wave of polarization from multiple directions in three dimensions, obtain three signals of polarization parallel to three axes orthogonal to each other,
    Extract the elliptical trajectory including the direction of arrival of the ellipse rotation polarization obtained by three-dimensional synthesis of the incoming wave, the inclination of the major axis, and the ratio of the major axis to the minor axis,
    With reference to a table that stores in advance the outputs obtained from the three antennas for the combination of the arrival direction of the circularly polarized waves coming from a plurality of directions in three dimensions and the elliptical trajectory, a finite plurality of the reproducible elliptical trajectories can be reproduced. Find one or more circularly polarized waves that exhibit a unique circular trajectory,
    Communicate using a transmission line corresponding to the obtained one or more rotational polarizations,
    Wireless communication system.
  2.  請求項1に記載された無線通信システムにおいて、
     受信機は、
     デジタル信号処理回路
    を備え、
     前記テーブルは、仰角Θ及び方位角Φを含む到来方向、楕円軌跡の長軸の傾きψ及び長軸と短軸の比ρを含む楕円軌跡と、到来波を受信する3つのアンテナの直交する2つのアンテナの各組み合わせの出力による楕円偏波の楕円軌跡の長軸の傾きΨと長軸と短軸の比Ρとの関係を予め記憶し、
     前記デジタル信号処理回路は、空間的に互いに直交する3つのアンテナの出力を個別に時間軸上に蓄積し、
     前記デジタル信号処理回路は、3つのアンテナのうちの直交する2つのアンテナの3種類の組み合わせについて、信号強度の時間的変化を回転偏波の一周期に亘り計算し、各直交する2つのアンテナに入力する回転偏波の楕円軌跡の長軸の傾きΨ及び長軸と短軸の比Ρ(m=1~3)を計算し、
     前記デジタル信号処理回路は、Ψ、Ρから、前記テーブルを用いて最も近い値を示す回転偏波の楕円軌跡の長軸の傾きΨ’及び長軸と短軸の比Ρ’を求め、
     前記デジタル信号処理回路は、前記テーブルを参照し、Ψ’、Ρ’に対応するΘ、Φにより、自側の送信機の回転偏波を放射する方向を変化させ、さらに、相手側の無線機にΘ、Φを含む情報を伝送し、Θ、Φにより、相手側の送信機の回転偏波を放射する方向を変化させ、
     前記デジタル信号処理回路は、回転偏波を放射する方向が変化された受信波について、前記テーブルで得られる回転偏波のΨ’,Ρ’と、受信波から求まる回転偏波のΨ、Ρの差分の減少が予め定められた閾値以下になった時点で、前記テーブルに示されるΘ、Φを内部メモリに記憶し、Θ、Φにより設定される回転偏波で通信を行うことを特徴とする無線通信システム。
     
    The wireless communication system according to claim 1, wherein
    The receiver
    With digital signal processing circuit,
    The table includes an arrival direction including an elevation angle Θ and an azimuth angle Φ, an elliptical trajectory including a major axis tilt ψ and a major axis / minor axis ratio ρ, and two antennas orthogonal to each other that receive an incoming wave. The relationship between the long axis inclination Ψ m of the elliptical trajectory of the elliptical polarization and the ratio of the major axis to the minor axis m is stored in advance.
    The digital signal processing circuit individually accumulates outputs of three antennas that are spatially orthogonal to each other on a time axis,
    The digital signal processing circuit calculates a temporal change in signal strength over one period of rotational polarization for three types of combinations of two orthogonal antennas among the three antennas, and applies each orthogonal two antennas. Calculate the major axis tilt Ψ m and the major axis to minor axis ratio m m (m = 1 to 3) of the elliptical locus of the input rotational polarization,
    The digital signal processing circuit calculates, from Ψ m and Ρ m , the inclination ψ ′ m of the major axis of the elliptical locus of the rotational polarization showing the closest value using the table and the ratio Ρ ′ m between the major axis and the minor axis. Seeking
    The digital signal processing circuit refers to the table and changes the direction of emitting the rotational polarization of the transmitter on its own side according to Θ and Φ corresponding to Ψ ′ m and Ρ ′ m , and further, Transmits information including Θ and Φ to the radio, and changes the direction of radiating the rotational polarization of the transmitter on the other side by Θ and Φ.
    The digital signal processing circuit is configured to obtain Ψ ′ m and Ρ ′ m of the rotational polarization obtained from the table and Ψ m of the rotational polarization obtained from the reception wave with respect to the reception wave in which the direction of radiating the rotational polarization is changed. , [rho when the reduction of the difference is equal to or less than a predetermined threshold value of m, stored theta indicated in the table, the Φ in the internal memory, theta, that communicates with rotating polarization set by Φ A wireless communication system.
  3.  請求項2に記載された無線通信システムにおいて、
     前記デジタル信号処理回路は、
     送信機の、余弦X軸重み付け回路及び正弦X軸重み付け回路をsinΘcosΦ、余弦Y軸重み付け回路及び正弦Y軸重み付け回路をsinΘsinΦ、余弦Z軸重み付け回路及び正弦Z軸重み付け回路をcosΘ、にそれぞれ設定し、
     送信機は、任意の一方向に伝搬方向が一致する偏波が円の軌跡を持って周波数wで回転する回転偏波とあらゆる伝搬方向を持つ偏波が惰円の軌跡を持って周波数wで回転する回転偏波を空間に放射する、
    ことを特徴とする無線通信システム。
     
    The wireless communication system according to claim 2,
    The digital signal processing circuit includes:
    Set cosine X-axis weighting circuit and sine X-axis weighting circuit to sin ΘcosΦ, cosine Y-axis weighting circuit and sine Y-axis weighting circuit to sin ΘsinΦ, and cosine Z-axis weighting circuit and sine Z-axis weighting circuit to cos Θ, respectively. ,
    The transmitter has a circularly polarized wave whose propagation direction coincides with any one direction and has a circular trajectory that rotates at a frequency w, and a polarized wave that has any propagation direction has a circular locus at a frequency w. Radiates rotating rotating polarization into space,
    A wireless communication system.
  4.  請求項1に記載された無線通信システムにおいて、
     一方の無線機の送信機及び他方の無線機の受信機は、同一の循環符号を共有し、
     一方の無線機の送信機は、偏波が搬送波に比べて低い周波数で回転する電磁波に、回転周期と同一の周期を有する循環符号が掛け合わされた信号を重畳して送信し、
     他方の無線機の受信機は、送信機が用いた循環符号と同一の符号を用いて、送信情報を再現する
    ことを特徴とする無線通信システム。
     
    The wireless communication system according to claim 1, wherein
    The transmitter of one radio and the receiver of the other radio share the same cyclic code,
    The transmitter of one radio transmits a signal obtained by superimposing a signal obtained by multiplying an electromagnetic wave whose polarization is rotated at a frequency lower than that of a carrier wave by a cyclic code having the same period as the rotation period,
    The wireless communication system, wherein the receiver of the other wireless device reproduces transmission information using the same code as the cyclic code used by the transmitter.
  5.  請求項4に記載された無線通信システムにおいて、
     一方の無線機の送信機及び他方の無線機の受信機は、異なる複数の循環符号を共有し、異なるタイミングで異なる前記循環符号を用いることを特徴とする無線通信システム。
     
    The wireless communication system according to claim 4, wherein
    A wireless communication system, wherein a transmitter of one wireless device and a receiver of the other wireless device share a plurality of different cyclic codes and use different cyclic codes at different timings.
  6.  請求項1に記載された無線通信システムにおいて、
     一方の無線機の送信機及び他方の無線機の受信機は、同期符号を共有し、循環符号を用いるタイミングとは別のタイミングで同期符号を信号として送信し、一方の無線機の送信機及び他方の無線機の受信機で同期をとることを特徴とする無線通信システム。
     
    The wireless communication system according to claim 1, wherein
    The transmitter of one radio and the receiver of the other radio share the synchronization code, and transmit the synchronization code as a signal at a timing different from the timing using the cyclic code, A radio communication system characterized in that synchronization is achieved with a receiver of the other radio.
  7.  請求項1に記載された無線通信システムにおいて、
     受信機は、タイマーを具備し、前記タイマーにより定められた一定期間毎に、前記テーブルを参照し、抽出した楕円軌跡を再現可能な有限複数個の固有の円軌跡を呈するひとつ又は複数の回転偏波を計算することを特徴とする無線通信システム。
     
    The wireless communication system according to claim 1, wherein
    The receiver includes a timer, and refers to the table at regular intervals determined by the timer and displays one or more rotational biases that exhibit a finite number of unique circular trajectories that can reproduce the extracted elliptical trajectory. A wireless communication system characterized by calculating a wave.
  8.  請求項1に記載された無線通信システムにおいて、
     受信機は、ログメモリを具備し、受信した楕円回転偏波の到来方向及び楕円軌跡を含む情報を前記ログメモリに時系列的に記憶し、及び/又は、前記ログメモリから到来方向及び楕円軌跡を含む情報を外部装置に出力することを特徴とする無線通信システム。
     
    The wireless communication system according to claim 1, wherein
    The receiver includes a log memory, stores information including the arrival direction and elliptic trajectory of the received elliptical rotational polarization in time series in the log memory, and / or the arrival direction and elliptic trajectory from the log memory. A wireless communication system, characterized in that information including: is output to an external device.
  9.  請求項1に記載された無線通信システムにおいて、
     第1の受信アンテナと第2の受信アンテナと第3の受信アンテナを切り替える受信アンテナ切り替えスイッチを備えたこと、
    又は、
     第1乃至第3の送受共用アンテナにそれぞれ接続された第1乃至第3のサーキュレータ又は第1乃至第3のアンテナスイッチ
    を備えたこと、
    を特徴とする無線通信システム。
     
    The wireless communication system according to claim 1, wherein
    A reception antenna changeover switch for switching between the first reception antenna, the second reception antenna, and the third reception antenna;
    Or
    Comprising first to third circulators or first to third antenna switches respectively connected to the first to third shared antennas;
    A wireless communication system.
  10.  請求項1に記載された無線通信システムにおいて、
     2つの送受共用アンテナと1つの受信アンテナと、
     前記2つの送受共用アンテナに接続された2つのサーキュレータ
    を備え、
     送信機は、異なる2周波数の余弦発生回路と正弦波発生回路の計4種類の回路を用いて情報に信号を重畳し、2周波数の差の半分の周波数で偏波が回転する電波を生成することを特徴とする無線通信システム。
     
    The wireless communication system according to claim 1, wherein
    Two shared antennas and one receiving antenna,
    Comprising two circulators connected to the two antennas for transmission and reception;
    The transmitter superimposes signals on information using a total of four types of circuits, a cosine generation circuit and a sine wave generation circuit of two different frequencies, and generates a radio wave whose polarization rotates at a frequency half the difference between the two frequencies. A wireless communication system.
  11.  請求項1に記載された無線通信システムにおいて、
     電界に感度を有する空間的に直交する2つのアンテナと、
     前記2つのアンテナが張る面内の磁界に感度を有する前記面内の第3のアンテナを備え、
     受信機は、3つのアンテナからの出力を個別に処理する3つの回路群を有し、前記回路群の出力を処理するデジタル信号処理部を有する
    ことを特徴とする無線通信システム。
     
    The wireless communication system according to claim 1, wherein
    Two spatially orthogonal antennas sensitive to the electric field;
    A third in-plane antenna having sensitivity to a magnetic field in the plane spanned by the two antennas;
    The receiver has three circuit groups that individually process outputs from three antennas, and a digital signal processing unit that processes the outputs of the circuit groups.
  12.  無線機であって、
     送信機により、搬送波の周波数とは異なる周波数で偏波が搬送波に比べて低い周波数で回転する電波を用いて送信された、情報を受信し、
     3つのアンテナを用いて3次元的に多方向からの偏波の到来波を受信し、互いに直交する3軸に平行な偏波の3つの信号を得て、
     到来波の3次元的合成によって得られる楕円回転偏波の到来方向及び長軸の傾き並びに長軸と短軸の比を含む楕円軌跡を抽出し、
     3次元的に複数の方向から到来する回転偏波の到来方向及び楕円軌跡の組み合わせに対する3つのアンテナから得られる出力を予め記憶したテーブルを参照し、抽出した楕円軌跡を再現可能な有限複数個の固有の円軌跡を呈するひとつ又は複数の回転偏波を求め、
     求めたひとつ又は複数の回転偏波に対応する伝送路を用いて通信を行う、
    無線機。
    A radio,
    The transmitter receives information transmitted by using a radio wave whose polarization is different from that of the carrier wave and whose polarization is lower than that of the carrier wave.
    Using three antennas to receive an incoming wave of polarization from multiple directions in three dimensions, obtain three signals of polarization parallel to three axes orthogonal to each other,
    Extract the elliptical trajectory including the direction of arrival of the ellipse rotation polarization obtained by three-dimensional synthesis of the incoming wave, the inclination of the major axis, and the ratio of the major axis to the minor axis,
    With reference to a table that stores in advance the outputs obtained from the three antennas for the combination of the arrival direction of the circularly polarized waves coming from a plurality of directions in three dimensions and the elliptical trajectory, a finite plurality of the reproducible elliptical trajectories can be reproduced. Find one or more circularly polarized waves that exhibit a unique circular trajectory,
    Communicate using a transmission line corresponding to the obtained one or more rotational polarizations,
    transceiver.
  13.  無線通信システムにおける無線通信方法であって、
     送信機は、搬送波の周波数とは異なる周波数で偏波が搬送波に比べて低い周波数で回転する電波を用いて、情報を送信し、
     受信機は、
     3つのアンテナを用いて3次元的に多方向からの偏波の到来波を受信し、互いに直交する3軸に平行な偏波の3つの信号を得て、
     到来波の3次元的合成によって得られる楕円回転偏波の到来方向及び長軸の傾き並びに長軸と短軸の比を含む楕円軌跡を抽出し、
     3次元的に複数の方向から到来する回転偏波の到来方向及び楕円軌跡の組み合わせに対する3つのアンテナから得られる出力を予め記憶したテーブルを参照し、抽出した楕円軌跡を再現可能な有限複数個の固有の円軌跡を呈するひとつ又は複数の回転偏波を求め、
     求めたひとつ又は複数の回転偏波に対応する伝送路を用いて通信を行う、
    無線通信方法。
     
    A wireless communication method in a wireless communication system, comprising:
    The transmitter transmits information using a radio wave whose polarization is different from the frequency of the carrier wave and whose polarization is lower than that of the carrier wave.
    The receiver
    Using three antennas to receive an incoming wave of polarization from multiple directions in three dimensions, obtain three signals of polarization parallel to three axes orthogonal to each other,
    Extract the elliptical trajectory including the direction of arrival of the ellipse rotation polarization obtained by three-dimensional synthesis of the incoming wave, the inclination of the major axis, and the ratio of the major axis to the minor axis,
    With reference to a table that stores in advance the outputs obtained from the three antennas for the combination of the arrival direction of the circularly polarized waves coming from a plurality of directions in three dimensions and the elliptical trajectory, a finite plurality of the reproducible elliptical trajectories can be reproduced. Find one or more circularly polarized waves that exhibit a unique circular trajectory,
    Communicate using a transmission line corresponding to the obtained one or more rotational polarizations,
    Wireless communication method.
  14.  請求項1に記載された無線通信システムを適用した昇降機制御システム。
     
    An elevator control system to which the wireless communication system according to claim 1 is applied.
  15.  請求項1に記載された無線通信システムを適用した変電所制御システム。 A substation control system to which the wireless communication system according to claim 1 is applied.
PCT/JP2016/088011 2016-01-05 2016-12-21 Wireless communication system, wireless machine, wireless communication method, elavator control system and substation control system WO2017119285A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016000602A JP2019062246A (en) 2016-01-05 2016-01-05 Radio communication system, radio device, radio communication method, elevator control system, and substation control system
JP2016-000602 2016-01-05

Publications (1)

Publication Number Publication Date
WO2017119285A1 true WO2017119285A1 (en) 2017-07-13

Family

ID=59274346

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/088011 WO2017119285A1 (en) 2016-01-05 2016-12-21 Wireless communication system, wireless machine, wireless communication method, elavator control system and substation control system

Country Status (2)

Country Link
JP (1) JP2019062246A (en)
WO (1) WO2017119285A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001237757A (en) * 2000-01-05 2001-08-31 Lucent Technol Inc Communication using transmission of triply polarized waves
JP2012521695A (en) * 2009-03-23 2012-09-13 テレフオンアクチーボラゲット エル エム エリクソン(パブル) Antenna placement
WO2014128906A1 (en) * 2013-02-22 2014-08-28 株式会社 日立製作所 Radio communication system, transmitter, receiver, elevator control system, and substation facility monitori ng system
WO2015056353A1 (en) * 2013-10-18 2015-04-23 株式会社日立製作所 Highly-secure wireless communication system

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001237757A (en) * 2000-01-05 2001-08-31 Lucent Technol Inc Communication using transmission of triply polarized waves
JP2012521695A (en) * 2009-03-23 2012-09-13 テレフオンアクチーボラゲット エル エム エリクソン(パブル) Antenna placement
WO2014128906A1 (en) * 2013-02-22 2014-08-28 株式会社 日立製作所 Radio communication system, transmitter, receiver, elevator control system, and substation facility monitori ng system
WO2015056353A1 (en) * 2013-10-18 2015-04-23 株式会社日立製作所 Highly-secure wireless communication system

Also Published As

Publication number Publication date
JP2019062246A (en) 2019-04-18

Similar Documents

Publication Publication Date Title
You et al. Fast beam training for IRS-assisted multiuser communications
CN113765550B (en) Communication method and related device
KR102072834B1 (en) Method and apparatus for focused data communications
US10348381B2 (en) Antenna system configuration
JP4677451B2 (en) Blind signal separation using a combination of correlated and uncorrelated antenna elements
JP2008515291A (en) Blind signal separation using signal path selection
CN107135023B (en) Three-dimensional training codebook design method and beam alignment method for millimeter wave communication system
WO2014155470A1 (en) Wireless transmitter, wireless communication system, elevator control/monitoring system, and tranformer equipment control/monitoring system
JP2008517491A (en) Brand signal separation using spreading codes
US10305200B2 (en) Wireless communication system having a transmission unit that transmits or receives based on a detected timing
JP4570660B2 (en) Blind signal separation using array deflection
Zhang et al. Antenna deembedding for mmWave propagation modeling and field measurement validation at 73 GHz
US10277351B2 (en) Wireless communication system, shielded yard wireless communication system, and wireless communication device
JP2008515287A (en) Blind signal separation using correlated antenna elements
WO2017119285A1 (en) Wireless communication system, wireless machine, wireless communication method, elavator control system and substation control system
JP7182560B2 (en) personal radar
Li et al. An IRS-Assisted Secure Dual-Function Radar-Communication System
KR20200080034A (en) A method for testing a wireless communication module, and an electronic device including the wireless communication module
JP6475042B2 (en) Wireless transmitter, wireless receiver, and wireless communication system
US10149180B2 (en) Radio communication system, elevator control system using same, and substation facility monitoring system
RU2658591C1 (en) Adaptive radio data transmission line of decameter radio wave band
JP2017163393A (en) Radio communication system, radio equipment, radio communication method, lift control system and transformer station control system
JP7245710B2 (en) radios and radio systems
Chen et al. Reception of misaligned multi-mode OAM signals
US10148338B1 (en) Wireless communication system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16883784

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16883784

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP