WO2017119194A1 - Correction information accumulating device and correction information accumulating system - Google Patents

Correction information accumulating device and correction information accumulating system Download PDF

Info

Publication number
WO2017119194A1
WO2017119194A1 PCT/JP2016/083918 JP2016083918W WO2017119194A1 WO 2017119194 A1 WO2017119194 A1 WO 2017119194A1 JP 2016083918 W JP2016083918 W JP 2016083918W WO 2017119194 A1 WO2017119194 A1 WO 2017119194A1
Authority
WO
WIPO (PCT)
Prior art keywords
observation
correction
information
air vehicle
unmanned air
Prior art date
Application number
PCT/JP2016/083918
Other languages
French (fr)
Japanese (ja)
Inventor
邦夫 高木
Original Assignee
東京電力ホールディングス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東京電力ホールディングス株式会社 filed Critical 東京電力ホールディングス株式会社
Publication of WO2017119194A1 publication Critical patent/WO2017119194A1/en

Links

Images

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/0094Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots involving pointing a payload, e.g. camera, weapon, sensor, towards a fixed or moving target
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C13/00Control systems or transmitting systems for actuating flying-control surfaces, lift-increasing flaps, air brakes, or spoilers
    • B64C13/02Initiating means
    • B64C13/16Initiating means actuated automatically, e.g. responsive to gust detectors
    • B64C13/20Initiating means actuated automatically, e.g. responsive to gust detectors using radiated signals
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks

Definitions

  • the present invention relates to a correction information storage device and a correction information storage system.
  • the operator may forget to share the know-how as technical knowledge even if the worker observes the equipment and obtains the know-how. there were.
  • the level of proficiency of the worker when the worker extracts information about the equipment to be observed from the shared technical knowledge, the technical knowledge of the equipment different from the equipment to be observed is extracted. There was a case.
  • the level of proficiency of the worker when the level of proficiency of the worker is low, it is related to an observation method that is different from the method that should be observed when the worker extracts information on the observation method of the equipment from the information indicating the shared technical knowledge. In some cases, technical knowledge was extracted.
  • One aspect of the present invention has been made in view of the above points, and provides a correction information storage device that performs facility observation according to technical knowledge related to facility observation.
  • a correction information storage device comprising: an operation detection unit that detects a corresponding operation; and an output unit that outputs the operation detected by the operation detection unit as correction information indicating correction of the observation control information.
  • the operation is an operation indicating correction of an observation position where the unmanned air vehicle observes the equipment.
  • the operation is an operation indicating correction of an observation direction in which the unmanned air vehicle observes the equipment.
  • the observation result is an image obtained by imaging the equipment by an imaging unit included in the unmanned air vehicle, and the operation is a size of a field angle of the image. This is an operation to indicate the correction.
  • the observation result is an image obtained by imaging the equipment by an imaging unit included in the unmanned air vehicle, and the operation indicates correction of a color tone of the image. It is an operation.
  • the observation result is an image obtained by imaging the equipment by the imaging unit included in the unmanned air vehicle, and the operation is a spectrum of light reception sensitivity of the imaging unit. This is an operation indicating correction of characteristics.
  • the observation result is an image of the equipment captured by the imaging unit included in the unmanned air vehicle, and the operation is performed by a light source included in the unmanned air vehicle. This is an operation indicating correction of the irradiation direction of the light applied to the facility.
  • an acquisition unit that acquires the observation control information, and observation information that corrects the observation control information acquired by the acquisition unit based on the correction information output by the output unit And a correction unit.
  • One aspect of the present invention includes any of the above-described correction information storage device and an unmanned air vehicle, and the correction information storage device transmits the correction observation control information in which the observation information correction unit corrects the observation control information.
  • the unmanned air vehicle is a correction information storage system that receives the correction observation control information transmitted from the correction information storage device and updates the observation control information based on the received correction observation control information.
  • FIG. 1 is a schematic diagram illustrating an outline of observation of the power equipment according to the first embodiment.
  • the power supply company supplies power to the customer CS by laying the electric wire WR between a power supply source such as a substation and the customer CS receiving the power supply.
  • the electric wire WR is a power transmission line or a distribution line laid between the power supply source and the customer CS that receives the power supply.
  • the steel tower ST1 and the steel tower ST2 support the electric wire WR2.
  • the steel tower ST2 and the steel tower ST3 support the electric wire WR1.
  • the steel tower ST is, for example, a transmission line steel tower or a distribution pole.
  • the steel tower ST1 a facility that supplies power from the power supply source to the customer CS is referred to as a power facility E.
  • the power equipment E includes the above-described electric wire WR and the steel tower ST.
  • the unmanned air vehicle D is placed in a building BD such as a facility of a power supply company.
  • the unmanned air vehicle D flies from the building BD to the power equipment E to be observed, and observes the power equipment E.
  • the unmanned air vehicle D flies to the building BD after the observation of the power equipment E is completed.
  • the unmanned air vehicle D returns to the building BD after completing the observation of the power equipment E.
  • the unmanned air vehicle D is a flight used for controlling the flight of the unmanned air vehicle D from the building BD to the observation target power equipment E and the flight from the position where the observation of the power equipment E is completed to the building BD. Flight based on the control information FPG. Further, the unmanned air vehicle D observes the power equipment E based on the observation control information OPG used for controlling the operation of observation of the power equipment E.
  • the unmanned air vehicle D includes an imaging unit C as shown in FIG.
  • the imaging unit C includes, for example, a camera.
  • the unmanned air vehicle D flies based on the observation control information OPG, and observes the state of the power equipment E by imaging the power equipment E by the imaging unit C.
  • the flight control information FPG and the observation control information OPG are generated by the flying object control information generation device PGD.
  • FIG. 2 is a configuration diagram illustrating an example of a configuration of the flying object control information generation device PGD of the present embodiment.
  • an observation range specifying device OSD and an equipment information storage device EID are connected to the flying object control information generating device PGD.
  • the facility information storage device EID is a device that stores facility information EI.
  • FIG. 3 is a table showing an example of the facility information EI of the present embodiment.
  • the facility information EI is information indicating details of the power facility E that supplies power to the customer CS.
  • the facility information EI includes facility name information EN that is information related to the power facility E that supplies power to the customer CS, and facility position information EP.
  • Facility name information EN is information indicating the name of the power facility E. As shown in FIG. 3, in this example, the facility name information EN includes a tower ST1 (equipment name information EN1), a tower ST2 (equipment name information EN6), and a tower ST3 (equipment name information EN11) as the names of the facilities. included.
  • the facility name information EN includes a tower ST1 (equipment name information EN1), a tower ST2 (equipment name information EN6), and a tower ST3 (equipment name information EN11) as the names of the facilities. included.
  • a suspension clamp SC as a facility in which the steel tower ST supports the electric wire WR, a long insulator LI, and an arc horn AH are attached to each steel tower ST.
  • the facility name information EN includes a suspension clamp SC1 (equipment name information EN2), a long insulator LI1 (equipment name information EN3), and an arc horn AH1 (equipment name information) as the names of the power facilities E attached to the tower ST1. EN4).
  • the facility name information EN includes the suspension clamp SC2 (equipment name information EN7), the long insulator LI2 (equipment name information EN8), and the arc horn AH2 (equipment name) as the names of the power facilities E attached to the tower ST2.
  • the facility name information EN includes the suspension clamp SC3 (equipment name information EN12), the long insulator LI3 (equipment name information EN13), and the arc horn AH3 (equipment name) as the names of the power facilities E attached to the tower ST3.
  • Information EN14 includes an electric wire WR2 (equipment name information EN5) and an electric wire WR1 (equipment name information EN10) as names of the electric wires WR supported by the steel tower ST.
  • the facility position information EP is information indicating the position of the power facility E.
  • the equipment position information EP is indicated by coordinates.
  • the facility position information EP indicates coordinates for each power facility E indicated by the facility name information EN.
  • the coordinates indicating the position of the steel tower ST1 are facility position information EP1 (35.00,000, 135.000000).
  • the suspension clamp SC1, the long insulator LI1, and the arc horn AH1 are the power equipment E attached to the steel tower ST1, all are located at the same coordinates as the steel tower ST1. That is, the suspension clamp SC1, the long insulator LI1, and the arc horn AH1 are all located at the coordinates indicated by the facility position information EP1.
  • the coordinate which shows the position of steel tower ST2 is equipment position information EP3 (35.00200, 135.00200).
  • the suspension clamp SC2, the long insulator LI2, and the arc horn AH2 are the power equipment E attached to the steel tower ST2, all are located at the same coordinates as the steel tower ST2. That is, the suspension clamp SC2, the long insulator LI2, and the arc horn AH2 are all located at the coordinates indicated by the equipment position information EP3.
  • the coordinate which shows the position of steel tower ST3 is equipment position information EP5 (35.00400, 135.00400).
  • the suspension clamp SC3, the long insulator LI3, and the arc horn AH3 are the power equipment E attached to the steel tower ST3, all are located at the same coordinates as the steel tower ST3. That is, the suspension clamp SC3, the long insulator LI3, and the arc horn AH3 are all located at the coordinates indicated by the facility position information EP5.
  • the facility information EI includes facility position information EP of a support point that supports the electric wire WR among positions on the route where the electric wire WR is laid as the facility position information EP of the electric wire WR.
  • the electric wire WR is supported by two steel towers ST. That is, there are two support points for the electric wire WR.
  • the equipment position information EP of the electric wire WR is the coordinates of the steel tower ST that supports the electric wire WR.
  • the facility position information EP of the electric wire WR2 supported by the tower ST1 and the tower ST2 is the facility position information EP1 (35.00,000, 135.000000), and the coordinates are the facility position information EP3 (35.00200, 135.135). 00200).
  • the equipment position information EP of the electric wire WR1 supported by the steel tower ST2 and the steel tower ST3 has the coordinates of equipment position information EP3 (35.00200, 135.00200) and equipment position information EP5 (35.35). 00400, 135.00400).
  • the equipment information storage device EID supplies equipment information EI including equipment name information EN and equipment position information EP to the flying object control information generator PGD.
  • the observation range designation device OSD is a device that generates observation range information AI indicating the observation range of the power facility E of the unmanned air vehicle D by a known method.
  • the observation range designation device OSD supplies observation range information AI indicating the observation range of the power equipment E of the unmanned air vehicle D to the air vehicle control information generation device PGD.
  • the observation range information AI includes observation start position information AS that is information indicating a position where the unmanned air vehicle D starts observation of the power equipment E.
  • the observation range information AI includes observation end position information AE that is information indicating a position where the unmanned air vehicle D ends observation of the power equipment E.
  • the observation start position information AS and the observation end position information AE are indicated by coordinates.
  • the coordinates of the observation start position information AS are (35.000000, 135.000000).
  • the coordinates of the observation end position information AE are (35.00400, 135.00400).
  • the observation range designation device OSD supplies the observation range information AI including the observation start position information AS and the observation end position information AE to the flying object control information generation device PGD. That is, the observation range specifying device OSD supplies the observation range information AI including information indicating the position where the unmanned air vehicle D starts observation of the power equipment E and the position where the unmanned air vehicle D ends to the aircraft control information generation device PGD. To do.
  • observation range specifying device OSD and the facility information storage device EID are directly connected to the correction information storage device 1 .
  • present invention is not limited to this.
  • the observation range specifying device OSD and the facility information storage device EID may not be directly connected to the correction information storage device 1 but may be connected via a network capable of transmitting and receiving information.
  • the flying object control information generation device PGD includes a control unit 500.
  • the control unit 500 includes a CPU (Central Processing Unit), and includes an acquisition unit 510, a flight control information generation unit 530, an observation target selection unit 540, and an observation control information generation unit 550 as functional units.
  • CPU Central Processing Unit
  • the acquisition unit 510 acquires observation range information AI from the observation range specifying device OSD. In addition, the acquisition unit 510 acquires the facility information EI from the facility information storage device EID. Acquisition unit 510 supplies observation range information AI to flight control information generation unit 530. In addition, the acquisition unit 510 supplies the observation range information AI and the facility information EI to the observation target selection unit 540.
  • the flight control information generation unit 530 acquires the observation range information AI from the acquisition unit 510.
  • the flight control information generation unit 530 generates flight control information FPG used for controlling the flight of the unmanned air vehicle D autonomously based on the observation range information AI by a known method.
  • the flight control information FPG includes the route from the building BD where the unmanned air vehicle D is arranged to the position indicated by the observation start position information AS, and the route from the position indicated by the observation end position information AE to the building BD. Is information used for controlling the flight in which the unmanned air vehicle D autonomously flies.
  • the flight control information FPG is information used for controlling the flight of the unmanned air vehicle D in the route from the building BD to the observation start position information AS and the route from the observation end position information AE to the building BD.
  • the unmanned air vehicle D may be arranged at a place other than the building BD.
  • the flight control information generation unit 530 may generate the flight control information FPG by a known method based on the position of the place where the unmanned air vehicle D is arranged and the observation range information AI.
  • the observation target selection unit 540 acquires observation range information AI and facility information EI from the acquisition unit 510.
  • the observation target selection unit 540 selects the observation target facility OE that is the power facility E to be observed by the unmanned air vehicle D based on the observation range information AI and the facility information EI.
  • the observation target facility OE is a power facility E existing in a range observed by the unmanned air vehicle D.
  • the observation target selection unit 540 supplies the observation target selection information OES including the selected observation target facility OE to the observation control information generation unit 550.
  • the observation target equipment OE included in the observation target selection information OES and the power equipment E included in the equipment information EI illustrated in FIG. 3 are the same.
  • the observation target selection unit 540 supplies the selected observation target selection information OES to the observation control information generation unit 550.
  • the observation control information generation unit 550 acquires observation target selection information OES including the observation target facility OE selected by the observation target selection unit 540 from the observation target selection unit 540.
  • the observation control information generation unit 550 generates the observation control information OPG by a known method based on the acquired observation target selection information OES.
  • the observation control information OPG is information used for controlling the observation operation in which the unmanned air vehicle D observes the observation target equipment OE included in the observation target selection information OES.
  • the observation control information generation unit 550 generates observation control information OPG based on the observation range information AI and the equipment position information EP of the observation target equipment OE included in the observation target selection information OES.
  • the unmanned air vehicle D is hovered in the facility position information EP1 and observes the steel tower ST1 existing in the equipment position information EP1 and the power equipment E accompanying the steel tower ST1.
  • the unmanned air vehicle D observes the electric tower WR2 while flying to the equipment position information EP3 after observing the steel tower ST1 and the power equipment E accompanying the steel tower ST1 in the equipment position information EP1.
  • the unmanned air vehicle D hovers in the equipment position information EP3, and observes the steel tower ST2 present in the equipment position information EP3 and the power equipment E accompanying the steel tower ST2.
  • the unmanned air vehicle D observes the electric tower WR1 while flying to the equipment position information EP5 after observing the steel tower ST2 and the power equipment E accompanying the steel tower ST2 in the equipment position information EP3. Further, after moving to the equipment position information EP5, the unmanned air vehicle D hovers in the equipment position information EP5, and observes the steel tower ST3 present in the equipment position information EP5 and the power equipment E accompanying the steel tower ST3.
  • the observation control information OPG includes control of the operation in which the unmanned air vehicle D is hovering for the time for observing the observation target equipment OE at the coordinates indicated by the equipment position information EP1. Specifically, in the observation control information OPG, in the equipment position information EP1, the steel tower ST1, the suspension clamp SC1, which is the power equipment E attached to the steel tower ST1, the long insulator LI1, and the arc horn AH1 are observed. Control of the operation of the unmanned air vehicle D hovering only for the time is included.
  • the unmanned air vehicle D images the power equipment E, which is the observation target equipment OE, by the imaging unit C included in the unmanned air vehicle D, and generates an image P.
  • the image P is an image generated by imaging the power equipment E that is the observation target equipment OE by the imaging unit C included in the unmanned air vehicle D.
  • the unmanned air vehicle D images the steel tower ST1 and the power equipment E accompanying the steel tower ST1 in the equipment position information EP1 by the imaging unit C included in the unmanned air vehicle D, and generates an image P.
  • the image P is generated for each power equipment E included in the observation target selection information OES by the imaging unit C included in the unmanned air vehicle D.
  • the observation control information OPG includes control of an operation in which the unmanned air vehicle D observes the electric wire WR2 from the coordinates indicated by the equipment position information EP1 to the coordinates indicated by the equipment position information EP3. Thereby, the unmanned air vehicle D images the electric wire WR2 by the imaging unit C included in the unmanned air vehicle D, and generates the image P.
  • the observation control information OPG includes a control of an operation in which the unmanned air vehicle D hovers for the time for observing the observation target equipment OE at the coordinates indicated by the equipment position information EP3.
  • the observation control information OPG in the equipment position information EP3, the steel tower ST2, the suspension clamp SC2, which is the power equipment E attached to the steel tower ST2, the long insulator LI2, and the arc horn AH2 are observed.
  • Control of the operation of the unmanned air vehicle D hovering only for the time is included.
  • the unmanned air vehicle D images the steel tower ST2 and the power equipment E accompanying the steel tower ST2 in the equipment position information EP3 by the imaging unit C included in the unmanned air vehicle D, and generates an image P.
  • the observation control information OPG includes control of an operation in which the unmanned air vehicle D observes the electric wire WR1 from the coordinates indicated by the equipment position information EP3 to the coordinates indicated by the equipment position information EP5.
  • the unmanned aerial vehicle D images the electric wire WR1 by the imaging unit C included in the unmanned aerial vehicle D, and generates an image P.
  • the observation control information OPG includes a control of an operation in which the unmanned air vehicle D hovers for the time for observing the observation target equipment OE at the coordinates indicated by the equipment position information EP5.
  • the equipment position information EP5 in the equipment position information EP5, the steel tower ST3, the suspension clamp SC3 that is the power equipment E attached to the steel tower ST3, the long insulator LI3, and the arc horn AH3 are observed.
  • Control of the operation of the unmanned air vehicle D hovering only for the time is included.
  • the unmanned air vehicle D images the steel tower ST3 and the power equipment E accompanying the steel tower ST3 in the equipment position information EP5 by the imaging unit C included in the unmanned air vehicle D, and generates an image P.
  • the observation control information generation unit 550 generates the observation control information OPG based on the equipment position information EP of the observation target equipment OE included in the observation target selection information OES. Absent. For example, in the observation target equipment OE included in the observation target selection information OES, an observation method corresponding to the observation target equipment OE may be defined for each observation target equipment OE. That is, the observation control information generation unit 550 may generate the observation control information OPG for controlling the observation operation of the unmanned air vehicle D based on the observation method determined according to the observation target facility OE. For example, when the observation target facility OE is a steel tower ST, it is predetermined that the unmanned air vehicle D observes the entire steel tower ST.
  • the observation control information generation unit 550 may generate the observation control information OPG that controls the observation operation of the observation in which the imaging unit C included in the unmanned air vehicle D images the entire tower ST.
  • the observation target facility OE is a long insulator LI
  • the observation control information generation unit 550 may generate the observation control information OPG that controls the observation operation of the observation in which the imaging unit C included in the unmanned air vehicle D approaches the long trunk LI and images.
  • the unmanned air vehicle D flies based on the flight control information FPG and the observation control information OPG and observes the power equipment E.
  • the unmanned air vehicle D includes a storage area, and the image P observed by the power facility E by the unmanned air vehicle D is accumulated in the storage area of the unmanned air vehicle D by a known method.
  • the image P generated by the unmanned air vehicle D for each power equipment E by the imaging unit C is collectively referred to as an observation result ORT.
  • the observation result ORT is accumulated in a storage area included in the unmanned air vehicle D by a known method.
  • the accuracy of the observation may differ depending on the maturity of the worker to observe. Specifically, between a worker with a low proficiency level for observing the power equipment E and a worker with a high skill level, the power equipment E is better when a worker with a high skill level observes the power equipment E. Can be observed. This is because a worker with a high level of proficiency observes the power equipment E based on knowledge about the work of observing the power equipment E accumulated for many years.
  • a worker who has a high level of proficiency in observing the power equipment E is referred to as a skilled worker OP.
  • the knowledge which the skilled worker OP has, and the knowledge regarding the work of observation of the electric power equipment E is described as the technical knowledge TKH.
  • the correction information storage device 1 of the present embodiment is information for correcting the observation control information OPG used for controlling the observation operation of the unmanned air vehicle D for the purpose of the unmanned air vehicle D performing observation based on the technical knowledge TKH. Is output. As shown in FIG. 1, in this example, the correction information storage device 1 is provided in a building BD.
  • FIG. 5 is a schematic diagram showing an overview of the correction information storage device 1 of the present embodiment.
  • the building BD includes a correction information storage device 1 and a display device DP.
  • the display device DP displays the observation result ORT accumulated in the storage area of the unmanned air vehicle D.
  • the display device DP is, for example, a display that displays an observation result ORT obtained when the unmanned air vehicle D observes the power equipment E.
  • the observation result ORT is displayed on the display device DP by a known method.
  • the skilled worker OP modifies the observation control information OPG based on the technical knowledge TKH according to the observation result ORT displayed on the display device DP.
  • the observation result ORT accumulated in the storage area of the unmanned air vehicle D has been described as being displayed on the display device DP after the unmanned air vehicle D returns to the building BD. I can't.
  • the unmanned air vehicle D and the display device DP may be connected to each other via a network capable of transmitting and receiving information. Thereby, the unmanned air vehicle D may transmit the observation result ORT generated by the unmanned air vehicle D to the display device DP.
  • the display device DP may receive the observation result ORT transmitted by the unmanned air vehicle D and display the received observation result ORT.
  • an input device CNT is connected to the correction information storage device 1.
  • the skilled worker OP in accordance with the observation result ORT displayed on the display device DP, captures the image P as the observation result ORT, zooms up and zooms out, and captures the power equipment E captured in the image P.
  • An operation indicating correction of time or the like is input to the input device CNT.
  • the observation result ORT includes the image P for each power equipment E in which the unmanned air vehicle D observes the power equipment E.
  • the skilled worker OP confirms the image P that is the observation result ORT displayed on the display device DP, and when the observation of the power equipment E imaged in the image P is not based on the technical knowledge TKH, the input device CNT The operation indicating the correction of the observation control information OPG is input.
  • the unmanned air vehicle D observes the long insulator LI
  • the unmanned air vehicle D observes the long insulator LI based on the information indicating the control of the observation operation indicated in the observation control information OPG.
  • the observation control information OPG indicates control of the operation of the unmanned air vehicle D flying at a position where the imaging unit C included in the unmanned air vehicle D can image the entire trunk LI.
  • the imaging unit C included in the unmanned air vehicle D images the entire long insulator LI and generates the image P. Therefore, in this example, the image P of the long insulator LI included in the observation result ORT is an image P including the entire long insulator LI, and is an image P obtained by remotely imaging the long insulator LI. .
  • the skilled worker OP when the skilled worker OP observes the long insulator LI, the skilled worker OP confirms that the long insulator LI is not cracked and no dirt is attached based on the technical knowledge TKH. Observe the long trunk insulator LI. Therefore, the technical knowledge TKH when observing the long insulator LI is to observe the long insulator LI in close proximity.
  • the observation of the long insulator LI performed by the unmanned air vehicle D based on the observation control information OPG is different from the observation of the long insulator LI performed by the skilled worker OP based on the technical knowledge TKH.
  • the observation performed by the unmanned air vehicle D based on the observation control information OPG is performed by observing the long insulator LI remotely, and the observation performed by the skilled worker OP based on the technical knowledge TKH is performed by the long insulator LI. Observe closely.
  • the skilled worker OP performs, on the input device CNT, an operation indicating a correction that brings the position where the unmanned air vehicle D flies closer to the long insulator LI based on the observation result ORT displayed on the display device DP. input.
  • the observation result ORT displayed on the display device DP is the image P obtained by capturing the power equipment E at a position different from the position observed by the observation based on the technical knowledge TKH possessed by the skilled worker OP.
  • the skilled worker OP inputs, to the input device CNT, an operation indicating correction of the observation position where the unmanned air vehicle D observes the power equipment E in accordance with the observation result ORT displayed on the display device DP. .
  • the observation result ORT displayed on the display device DP may be an image P obtained by imaging the left part of the power equipment E, unlike the observation result based on the technical knowledge TKH.
  • the skilled worker OP inputs an operation indicating correction for turning the unmanned air vehicle D to the right on the input device CNT based on the observation result ORT displayed on the display device DP.
  • the observation result ORT displayed on the display device DP is the image P obtained by capturing the power equipment E in a direction different from the direction observed by the observation based on the technical knowledge TKH possessed by the skilled worker OP There is.
  • the skilled worker OP inputs, to the input device CNT, an operation indicating correction of the observation direction in which the unmanned air vehicle D observes the power equipment E in accordance with the observation result ORT displayed on the display device DP.
  • the observation direction of the unmanned air vehicle D includes the vertical and horizontal directions.
  • the operation input to the input device CNT is an operation indicating correction of the observation position where the unmanned air vehicle D observes the power equipment E and an operation indicating correction of the observation direction of the unmanned air vehicle D.
  • the observation operation of the power equipment E of the unmanned air vehicle D is controlled based on the observation control information OPG. Therefore, the observation position and the observation direction at which the unmanned air vehicle D associated with the observation operation observes the power equipment E is controlled based on the observation control information OPG.
  • the operation input by the skilled worker OP to the input device CNT is an operation corresponding to the observation result ORT displayed on the display device DP, and an operation indicating correction of the observation control information OPG based on the technical knowledge TKH. It is.
  • the operation input to the input device CNT is an operation indicating the correction of the observation position where the unmanned air vehicle D observes the power equipment E and the operation indicating the correction of the observation direction of the unmanned air vehicle D.
  • An operation indicating correction of the size of the angle of view of the image P that is the observation result ORT may be input to the input device CNT according to the observation result ORT displayed on the display device DP.
  • the observation result ORT displayed on the display device DP is an image P obtained by imaging the power equipment E in the vicinity unlike the observation based on the technical knowledge TKH
  • the angle of view of the image P is displayed on the input device CNT.
  • a widening operation may be input.
  • the input device CNT has a narrow angle of view of the image P. An operation to perform may be input.
  • FIG. 6 is a configuration diagram illustrating an example of the configuration of the correction information storage device 1 of the present embodiment.
  • an input device CNT is connected to the correction information storage device 1.
  • the input device CNT receives an operation corresponding to the observation result ORT displayed on the display device DP and indicating the correction of the observation control information OPG based on the technical knowledge TKH.
  • the correction information storage device 1 includes a control unit 100 and a storage unit 150.
  • the control unit 100 includes a CPU (Central Processing Unit), and includes an operation detection unit 110 and an output unit 120 as functional units.
  • FIG. 7 is a flowchart showing an example of the operation of the correction information storage apparatus 1 of the present embodiment.
  • the operation detection unit 110 detects an operation that is input to the input device CNT and indicates correction of the observation control information OPG based on the technical knowledge TKH.
  • the operation detection unit 110 supplies an operation indicating correction of the observation control information OPG based on the detected technical knowledge TKH to the output unit 120 as operation information OPT.
  • the operation detection unit 110 detects an operation input to the input device CNT (step S110). Further, the operation detection unit 110 detects an operation input to the input device CNT, and an operation indicating correction of the observation control information OPG based on the technical knowledge TKH as a detection result is output to the output unit 120 as operation information OPT. Supply (step S120).
  • the output unit 120 acquires operation information OPT that is an operation detected by the operation detection unit 110.
  • the output unit 120 outputs the acquired operation information OPT as correction information FI that is information indicating correction of the observation control information OPG.
  • the output unit 120 is the power information E observed by the control based on the observation control information OPG, and the correction information FI is set for each power equipment E that is the observation target equipment OE included in the observation target selection information OES. Is output. That is, the correction information FI is information indicating correction of the observation control information OPG used for observation for each power equipment E that is the observation target equipment OE.
  • the output unit 120 outputs the correction information FI to the storage unit 150. Thereby, the storage unit 150 stores the correction information FI output from the output unit 120.
  • the output unit 120 acquires the operation information OPT from the operation detection unit 110 (step S130). Further, the output unit 120 outputs the operation information OPT as the correction information FI to the storage unit 150 (Step S140).
  • the output unit 120 may output the correction information FI by voice, or may output the correction information FI by printing it on a paper medium or the like, and displays the correction information FI as character information on a display device such as a display. May be.
  • the input device CNT is connected to the correction information storage device 1 of the present embodiment.
  • the correction information storage device 1 of the present embodiment includes a control unit 100 and a storage unit 150.
  • the control unit 100 includes a CPU, and includes an operation detection unit 110 and an output unit 120 as functional units.
  • the operation detection unit 110 detects an operation input to the input device CNT in response to the observation result ORT observed by the unmanned air vehicle D being output to the display device DP.
  • the observation result ORT is the power equipment based on the observation control information OPG used for controlling the operation of the unmanned air vehicle D that observes the power equipment E, which is the equipment that supplies power to the customer CS. This is an image P in which E is observed.
  • the output unit 120 outputs the operation detected by the operation detection unit 110 to the storage unit 150 as correction information FI indicating correction of the observation control information OPG.
  • the storage unit 150 stores the correction information FI output from the output unit 120. Thereby, the correction information storage apparatus 1 of this embodiment can output the correction information FI according to the observation result ORT observed by the unmanned air vehicle D.
  • the skilled worker OP performs an operation indicating correction of the observation control information OPG on the input device CNT. input. That is, the operation indicating correction of the observation control information OPG input to the input device CNT is an operation based on the technical knowledge TKH.
  • the correction information storage device 1 generates the correction information FI indicating the correction of the observation control information OPG from the operation information OPT indicating the operation indicating the correction of the observation control information OPG input to the input device CNT. To do. That is, the correction information FI indicating the correction of the observation control information OPG is information indicating the technical knowledge TKH.
  • the technical knowledge TKH possessed by the skilled worker OP can be output as the correction information FI.
  • the skilled worker OP inputs the correction of the observation control information OPG based on the technical knowledge TKH on the spot according to the observation result ORT displayed on the display device DP. Can do.
  • the correction information storage device 1 can output the correction information FI indicating the technical knowledge TKH corresponding to the observation result ORT displayed on the display device DP without omission.
  • the correction information FI used for correcting the observation control information OPG can be output. For this reason, when the unmanned air vehicle D observes the power equipment E, it is sufficient to use the observation control information OPG to which the correction information FI is applied, thereby reducing the effort of extracting the technical knowledge TKH corresponding to the power equipment E to be observed. can do. That is, according to the correction information storage device 1 of the present embodiment, it is possible to reduce the effort of extracting the technical knowledge TKH corresponding to the power equipment E to be observed. Thereby, according to the correction information storage device 1 of the present embodiment, the technical knowledge TKH corresponding to the power equipment E to be observed is used for the observation of the power equipment E regardless of the skill level of the operator who observes the power equipment E. Can adapt.
  • the correction information FI used for correcting the observation control information OPG can be output.
  • the unmanned air vehicle D can control the power equipment E based on the technical knowledge TKH by being controlled based on the observation control information OPG to which the correction information FI output from the correction information storage device 1 is applied.
  • the unmanned air vehicle D performs observation of the power equipment E based on the observation control information OPG, it is possible to perform the observation of the power equipment E without omission. That is, according to the correction information storage device 1 of the present embodiment, it is possible to reduce the degree of omission of observation of the power equipment E based on the technical knowledge TKH.
  • the operation input to the input device CNT is, for example, an operation indicating correction of an observation position where the unmanned air vehicle D observes the power equipment E.
  • the correction information storage device 1 of this embodiment can output the correction information FI based on an operation indicating correction of the observation position input to the input device CNT.
  • the unmanned air vehicle D is controlled based on the observation control information OPG to which the correction information FI output from the correction information storage device 1 is applied, so that the power equipment E can be observed at a position based on the technical knowledge TKH. it can.
  • the operation input to the input device CNT is, for example, an operation indicating correction of the observation direction in which the unmanned air vehicle D observes the power equipment E.
  • the correction information storage device 1 of the present embodiment can output the correction information FI based on an operation indicating correction of the observation direction input to the input device CNT.
  • the unmanned air vehicle D is controlled based on the observation control information OPG to which the correction information FI output from the correction information storage device 1 is applied, thereby observing the power equipment E in the observation direction based on the technical knowledge TKH. Can do.
  • the observation result ORT is the image P obtained by imaging the power equipment E by the imaging unit C included in the unmanned air vehicle D
  • the image P that is the observation result ORT is displayed on the display device DP.
  • the operation input to the input device CNT is an operation indicating correction of the angle of view of the image P, for example.
  • the correction information storage device 1 of the present embodiment can output the correction information FI based on an operation indicating correction of the angle of view of the image P input to the input device CNT.
  • the unmanned air vehicle D is controlled based on the observation control information OPG to which the correction information FI output from the correction information storage device 1 is applied, so that the power plant E is captured at an angle of view based on the technical knowledge TKH. Can be generated. That is, the unmanned air vehicle D can observe the power equipment E based on the technical knowledge TKH.
  • the operation input to the input device CNT is described as a case where the observation direction of the unmanned air vehicle D, the observation position, and the angle of view of the image P are corrected.
  • an operation indicating correction of the setting of the imaging unit C when the imaging unit C images the observation target facility OE may be input to the input device CNT.
  • the setting of the imaging unit C is, for example, a setting of a camera included in the imaging unit C.
  • the setting of the imaging unit C is, for example, the setting of the color tone of the image P that is generated when the imaging unit C images the observation target facility OE. That is, an operation indicating correction of the color tone of the image P may be input to the input device CNT.
  • the skilled worker OP inputs an operation indicating a color tone correction suitable for the observation target equipment OE to the input device CNT.
  • the correction of the color tone based on the technical knowledge TKH is, for example, correction of the hue and brightness of the image P according to the color attached to the observation target equipment OE.
  • the correction information storage device 1 of the present embodiment can output the correction information FI based on an operation indicating correction of the color tone of the image P input to the input device CNT.
  • the unmanned air vehicle D is controlled based on the observation control information OPG to which the correction information FI output from the correction information storage device 1 is applied, so that the power equipment E is captured in the color tone based on the technical knowledge TKH and the image P is captured. Can be generated. That is, the unmanned air vehicle D can observe the power equipment E based on the technical knowledge TKH.
  • the setting of the imaging unit C is a setting of the spectral characteristic of the light receiving sensitivity when the imaging unit C images the observation target equipment OE.
  • the spectral characteristic of the light receiving sensitivity is a characteristic indicating a distribution of light receiving sensitivity for each wavelength of incident light incident on a light receiving element of a camera included in the imaging unit C.
  • an operation indicating correction of the spectral characteristics of the light receiving sensitivity of the imaging unit C may be input to the input device CNT.
  • the skilled worker OP inputs an operation indicating correction of the spectral characteristics of the light receiving sensitivity suitable for the observation target equipment OE to the input device CNT.
  • the correction of the spectral characteristic of the light receiving sensitivity based on the technical knowledge TKH is, for example, increasing the light receiving sensitivity of the color or wavelength after the deterioration discoloration of the observation target equipment OE in accordance with the deterioration and discoloration of the observation target equipment OE.
  • Etc. when the observation target facility OE is the electric wire WR, the electric wire WR may deteriorate and change its color from black to reddish brown.
  • the modification of the spectral characteristics of the light receiving sensitivity based on the technical knowledge TKH means that the light receiving sensitivity of the color or wavelength corresponding to the color after the deterioration and discoloration of the electric wire WR is increased according to the deterioration and discoloration of the electric wire WR.
  • This is a correction.
  • the correction of the spectral characteristic of the light receiving sensitivity based on the technical knowledge TKH is a correction such as increasing the light receiving sensitivity of the reddish brown color or wavelength that is the color after the deterioration discoloration of the electric wire WR.
  • the correction information storage device 1 of the present embodiment can output the correction information FI based on an operation indicating correction of the spectral characteristics of the light receiving sensitivity of the imaging unit C input to the input device CNT.
  • the unmanned air vehicle D is controlled based on the observation control information OPG to which the correction information FI output from the correction information storage device 1 is applied, thereby imaging the power equipment E in the spectral characteristics of the light receiving sensitivity based on the technical knowledge TKH.
  • the image P can be generated. That is, the unmanned air vehicle D can observe the power equipment E based on the technical knowledge TKH.
  • the unmanned air vehicle D may include a light source such as an illumination or a flashlight.
  • a light source such as an illumination or a flashlight.
  • the unmanned air vehicle D observes the observation target equipment OE at night, or when the imaging unit C images the observation target equipment OE, the unmanned air vehicle D emits light to the observation target equipment OE with a light source. It may be irradiated.
  • an operation indicating correction of the irradiation direction of the light irradiated to the observation target facility OE by the light source included in the unmanned air vehicle D may be input to the input device CNT.
  • the skilled worker OP inputs an operation indicating correction of the light irradiation direction suitable for observation of the observation target equipment OE to the input device CNT.
  • the correction of the light irradiation direction based on the technical knowledge TKH is, for example, a correction indicating the light irradiation direction in which the shadow does not fall on the observation target equipment OE.
  • the correction information storage device 1 of the present embodiment can output the correction information FI based on an operation indicating correction of the irradiation direction of light input to the input device CNT.
  • the unmanned air vehicle D is controlled based on the observation control information OPG to which the correction information FI output from the correction information storage device 1 is applied, thereby imaging the power equipment E according to the light irradiation direction based on the technical knowledge TKH.
  • An image P can be generated. That is, the unmanned air vehicle D can observe the power equipment E based on the technical knowledge TKH.
  • FIG. 8 is a configuration diagram illustrating an example of a configuration of the correction information storage device 2 according to the second embodiment.
  • symbol is attached
  • the correction information storage device 2 is connected to an input device CNT and an aircraft control information generation device PGD.
  • the flying object control information generation device PGD supplies the observation control information OPG generated by the above-described configuration to the correction information storage device 2.
  • the correction information storage device 2 of the present embodiment includes a control unit 200 and a storage unit 150.
  • the control unit 200 includes a CPU, and includes an operation detection unit 110, an output unit 120, an acquisition unit 210, and an observation information correction unit 220 as functional units.
  • the acquisition unit 210 acquires observation control information OPG from the flying object control information generation device PGD.
  • the acquisition unit 210 supplies the acquired observation control information OPG to the observation information correction unit 220.
  • the observation information correction unit 220 acquires the observation control information OPG from the acquisition unit 210. In addition, the observation information correction unit 220 acquires the correction information FI from the output unit 120. The observation information correction unit 220 corrects the observation control information OPG based on the correction information FI. In the following description, the corrected observation control information OPG corrected by the observation information correction unit 220 based on the correction information FI is referred to as corrected observation control information OPGF. That is, the corrected observation control information OPGF is observation control information OPG to which the correction information FI is applied.
  • the input device CNT and the flying object control information generation device PGD are connected to the correction information storage device 2 of the present embodiment.
  • the correction information storage device 2 of the present embodiment includes a control unit 200 and a storage unit 150.
  • the control unit 200 includes an operation detection unit 110, an output unit 120, an acquisition unit 210, and an observation information correction unit 220 as functional units.
  • the acquisition unit 210 acquires observation control information OPG from the flying object control information generation device PGD.
  • the observation information correction unit 220 corrects the observation control information OPG acquired by the acquisition unit 210 based on the correction information FI output by the output unit 120.
  • the observation control information OPG can be corrected based on the correction information FI, and the corrected observation control information OPGF can be generated.
  • the correction information FI is information indicating the technical knowledge TKH. That is, the unmanned air vehicle D can observe the power equipment E based on the technical knowledge TKH by observing the power equipment E based on the corrected observation control information OPGF.
  • the unmanned air vehicle D may include a sound collection unit, and the power equipment E may be observed by voice. Moreover, the unmanned air vehicle D may be provided with the temperature detection part, and may observe the electric power equipment E with temperature.
  • the unmanned air vehicle D flies from the building BD to the power equipment E, observes the power equipment E based on certain observation control information OPG until the observation of the power equipment E ends and returns to the building BD.
  • the present invention is not limited to this.
  • the unmanned air vehicle D and the display device DP may be a modified information storage system connected by a network capable of transmitting and receiving information.
  • the unmanned air vehicle D and the display device DP are connected to the network, the unmanned air vehicle D transmits the observation result ORT of the power equipment E currently observed to the display device DP. Further, the display device DP receives and displays the observation result ORT of the power equipment E that the unmanned air vehicle D is currently observing.
  • the skilled worker OP performs an operation indicating correction of the observation control information OPG based on the technical knowledge TKH according to the observation result ORT of the power equipment E currently observed by the unmanned air vehicle D displayed on the display device DP.
  • the correction information storage device 2 generates correction information FI based on the operation input to the input device CNT.
  • the correction information storage device 2 corrects the observation control information OPG based on the generated correction information FI, and generates corrected observation control information OPGF.
  • the unmanned air vehicle D and the correction information storage device 2 are connected by a network capable of transmitting and receiving information.
  • the correction information storage device 2 transmits the correction observation control information OPGF to the unmanned air vehicle D.
  • the unmanned air vehicle D receives the corrected observation control information OPGF from the correction information storage device 2, and updates the observation control information OPG based on the received corrected observation control information OPGF.
  • the unmanned air vehicle D observes the power equipment E based on the observation control information OPG updated from the correction information storage device 2.
  • the skilled worker OP is the observation result ORT displayed on the display device DP, and the observation control information OPG is transmitted to the input device CNT based on the observation result ORT of the power equipment E currently observed by the unmanned air vehicle D.
  • An operation indicating correction can be input.
  • the correction information storage device 2 of the present embodiment can generate the correction observation control information OPGF based on an operation input to the input device CNT. That is, the unmanned air vehicle D can observe the power equipment E based on the observation control information OPG in which the control of the observation operation of the power equipment E currently observed is updated.
  • each part with which the correction information storage device 1 and the correction information storage device 2 in each of the above embodiments are provided may be realized by dedicated hardware, or by a memory and a microprocessor. There may be.
  • each unit included in the correction information storage device 1 and the correction information storage device 2 includes a memory and a CPU (central processing unit), and realizes functions of the units included in the correction information storage device 1 and the correction information storage device 2. This function may be realized by loading the program into a memory and executing it.
  • a program for realizing the function of each unit included in the correction information storage device 1 and the correction information storage device 2 is recorded on a computer-readable recording medium, and the program recorded on the recording medium is read into a computer system.
  • the processing may be performed by executing.
  • the “computer system” includes an OS and hardware such as peripheral devices.
  • the “computer system” includes a homepage providing environment (or display environment) if a WWW system is used.
  • the “computer-readable recording medium” refers to a storage device such as a flexible medium, a magneto-optical disk, a portable medium such as a ROM or a CD-ROM, and a hard disk incorporated in a computer system.
  • the “computer-readable recording medium” dynamically holds a program for a short time like a communication line when transmitting a program via a network such as the Internet or a communication line such as a telephone line.
  • a volatile memory in a computer system serving as a server or a client in that case, and a program that holds a program for a certain period of time are also included.
  • the program may be a program for realizing a part of the functions described above, and may be a program capable of realizing the functions described above in combination with a program already recorded in a computer system.

Landscapes

  • Engineering & Computer Science (AREA)
  • Automation & Control Theory (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Power Engineering (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Management, Administration, Business Operations System, And Electronic Commerce (AREA)
  • Supply And Distribution Of Alternating Current (AREA)
  • Electric Cable Installation (AREA)
  • Control Of Position, Course, Altitude, Or Attitude Of Moving Bodies (AREA)

Abstract

This correction information accumulating device is provided with: an operation detecting unit which detects an operation according to an output of an observation result obtained through observation on the basis of observation control information used for controlling an action of observing equipment by means of an unmanned aerial vehicle that observes the equipment supplying power to a consumer; and an output unit which outputs, as correction information for indicating corrections of the observation control information, the operation detected by the operation detecting unit.

Description

修正情報蓄積装置および修正情報蓄積システムCorrection information storage device and correction information storage system
 本発明は、修正情報蓄積装置および修正情報蓄積システムに関する。 The present invention relates to a correction information storage device and a correction information storage system.
 従来、電力設備の巡視点検を目的とした設備の観測をする際に、熟練した作業者が永年の間に蓄積したノウハウ等の技術知識を共有する技術が知られている。 Conventionally, there has been known a technique in which a skilled worker shares technical knowledge such as know-how accumulated for many years when observing equipment for inspection inspection of electric power equipment.
特開2009-70173号公報JP 2009-70173 A
 しかしながら、従来の技術では、作業者の習熟度が低い場合には、作業者が設備の観測をしてノウハウ等を得た場合であってもそのノウハウを技術知識として共有することを忘れる場合があった。また、作業者の習熟度が低い場合には、共有された技術知識から観測を行う設備に関する情報を作業者が抽出する際に、観測を行う設備とは異なる設備の技術知識を抽出してしまう場合があった。また、作業者の習熟度が低い場合には、共有された技術知識を示す情報から設備の観測の方法に関する情報を作業者が抽出する際に、本来観測すべき方法とは異なる観測の方法に関する技術知識を抽出してしまう場合があった。
 すなわち、設備の観測に関する作業者の習熟度によっては、共有された技術知識から観測に応じた技術知識を蓄積することおよび抽出することが困難である場合がある。
 また、従来の技術では、共有された技術知識を抽出することが可能な場合であっても、作業者の不注意等によって技術知識が示す設備の観測の実施漏れを低減することが困難である場合がある。
 すなわち、従来の技術では、設備の観測に関する技術知識に応じた設備の観測を行うことが困難である場合があった。
 本発明の一態様は、上記の点に鑑みて為されたものであり、設備の観測に関する技術知識に応じた設備の観測を行う修正情報蓄積装置を提供する。
However, in the conventional technology, when the proficiency level of the worker is low, the operator may forget to share the know-how as technical knowledge even if the worker observes the equipment and obtains the know-how. there were. In addition, when the level of proficiency of the worker is low, when the worker extracts information about the equipment to be observed from the shared technical knowledge, the technical knowledge of the equipment different from the equipment to be observed is extracted. There was a case. In addition, when the level of proficiency of the worker is low, it is related to an observation method that is different from the method that should be observed when the worker extracts information on the observation method of the equipment from the information indicating the shared technical knowledge. In some cases, technical knowledge was extracted.
In other words, depending on the level of proficiency of the operator regarding the observation of equipment, it may be difficult to accumulate and extract technical knowledge corresponding to the observation from the shared technical knowledge.
Moreover, in the conventional technology, even if it is possible to extract shared technical knowledge, it is difficult to reduce the omission of the observation of the equipment indicated by the technical knowledge due to carelessness of the operator. There is a case.
That is, with the conventional technology, it may be difficult to observe the equipment according to the technical knowledge regarding the equipment observation.
One aspect of the present invention has been made in view of the above points, and provides a correction information storage device that performs facility observation according to technical knowledge related to facility observation.
 本発明の一態様は、需要家に電力を供給する設備を観測する無人飛行体が前記設備を観測する動作の制御に用いられる観測制御情報に基づいて観測された観測結果が出力されることに応じた操作を検出する操作検出部と、前記操作検出部が検出した前記操作を前記観測制御情報の修正を示す修正情報として出力する出力部とを備える修正情報蓄積装置である。 One aspect of the present invention is that an observation result observed based on observation control information used for controlling an operation of an unmanned air vehicle that observes equipment that supplies power to a consumer is observed. A correction information storage device comprising: an operation detection unit that detects a corresponding operation; and an output unit that outputs the operation detected by the operation detection unit as correction information indicating correction of the observation control information.
 本発明の一態様の修正情報蓄積装置において、前記操作とは、前記無人飛行体が前記設備を観測する観測位置の修正を示す操作である。 In the correction information storage device of one aspect of the present invention, the operation is an operation indicating correction of an observation position where the unmanned air vehicle observes the equipment.
 本発明の一態様の修正情報蓄積装置において、前記操作とは、前記無人飛行体が前記設備を観測する観測方向の修正を示す操作である。 In the correction information storage device of one aspect of the present invention, the operation is an operation indicating correction of an observation direction in which the unmanned air vehicle observes the equipment.
 本発明の一態様の修正情報蓄積装置において、前記観測結果とは、前記無人飛行体が備える撮像部が前記設備を撮像した画像であって、前記操作とは、前記画像の画角の大きさの修正を示す操作である。 In the correction information storage device of one aspect of the present invention, the observation result is an image obtained by imaging the equipment by an imaging unit included in the unmanned air vehicle, and the operation is a size of a field angle of the image. This is an operation to indicate the correction.
 本発明の一態様の修正情報蓄積装置において、前記観測結果とは、前記無人飛行体が備える撮像部が前記設備を撮像した画像であって、前記操作とは、前記画像の色調の修正を示す操作である。 In the correction information storage device of one aspect of the present invention, the observation result is an image obtained by imaging the equipment by an imaging unit included in the unmanned air vehicle, and the operation indicates correction of a color tone of the image. It is an operation.
 本発明の一態様の修正情報蓄積装置において、前記観測結果とは、前記無人飛行体が備える撮像部が前記設備を撮像した画像であって、前記操作とは、前記撮像部の受光感度の分光特性の修正を示す操作である。 In the correction information storage device of one aspect of the present invention, the observation result is an image obtained by imaging the equipment by the imaging unit included in the unmanned air vehicle, and the operation is a spectrum of light reception sensitivity of the imaging unit. This is an operation indicating correction of characteristics.
 本発明の一態様の修正情報蓄積装置において、前記観測結果とは、前記無人飛行体が備える撮像部が前記設備を撮像した画像であって、前記操作とは、前記無人飛行体が備える光源によって前記設備に照射される光の照射方向の修正を示す操作である。 In the correction information storage device according to one aspect of the present invention, the observation result is an image of the equipment captured by the imaging unit included in the unmanned air vehicle, and the operation is performed by a light source included in the unmanned air vehicle. This is an operation indicating correction of the irradiation direction of the light applied to the facility.
 本発明の一態様の修正情報蓄積装置において、前記観測制御情報を取得する取得部と、前記取得部が取得した前記観測制御情報を前記出力部が出力した前記修正情報に基づいて修正する観測情報修正部とを更に備える。 In the correction information storage device of one aspect of the present invention, an acquisition unit that acquires the observation control information, and observation information that corrects the observation control information acquired by the acquisition unit based on the correction information output by the output unit And a correction unit.
 本発明の一態様は、上述のいずれかに修正情報蓄積装置と、無人飛行体とを備え、前記修正情報蓄積装置は、前記観測情報修正部が観測制御情報を修正した修正観測制御情報を送信し、前記無人飛行体は、前記修正情報蓄積装置が送信した前記修正観測制御情報を受信し、受信した前記修正観測制御情報に基づいて、前記観測制御情報を更新する修正情報蓄積システムである。 One aspect of the present invention includes any of the above-described correction information storage device and an unmanned air vehicle, and the correction information storage device transmits the correction observation control information in which the observation information correction unit corrects the observation control information. The unmanned air vehicle is a correction information storage system that receives the correction observation control information transmitted from the correction information storage device and updates the observation control information based on the received correction observation control information.
 本発明によれば、設備の観測に関する技術知識に応じた設備の観測を行う修正情報蓄積装置を提供することができる。 According to the present invention, it is possible to provide a correction information storage device that performs equipment observation according to technical knowledge related to equipment observation.
第1実施形態の電力設備の観測の概要を示す概要図である。It is a schematic diagram which shows the outline | summary of observation of the electric power installation of 1st Embodiment. 本実施形態の飛行体制御情報生成装置の構成の一例を示す構成図である。It is a block diagram which shows an example of a structure of the flying body control information generation apparatus of this embodiment. 本実施形態の設備情報の一例を示す表である。It is a table | surface which shows an example of the equipment information of this embodiment. 本実施形態の観測範囲情報の一例を示す表である。It is a table | surface which shows an example of the observation range information of this embodiment. 本実施形態の修正情報蓄積装置の概要を示す概要図である。It is a schematic diagram which shows the outline | summary of the correction information storage apparatus of this embodiment. 本実施形態の修正情報蓄積装置の構成の一例を示す構成図である。It is a block diagram which shows an example of a structure of the correction information storage apparatus of this embodiment. 本実施形態の修正情報蓄積装置の動作の一例を示す流れ図である。It is a flowchart which shows an example of operation | movement of the correction information storage apparatus of this embodiment. 第2実施形態の修正情報蓄積装置の構成の一例を示す構成図である。It is a block diagram which shows an example of a structure of the correction information storage apparatus of 2nd Embodiment.
[第1実施形態]
 以下、図を参照して本発明の第1実施形態について説明する。まず、図1を参照して、無人飛行体Dが行う観測の概要について説明する。図1は、第1実施形態の電力設備の観測の概要を示す概要図である。
[First Embodiment]
The first embodiment of the present invention will be described below with reference to the drawings. First, an outline of observation performed by the unmanned air vehicle D will be described with reference to FIG. FIG. 1 is a schematic diagram illustrating an outline of observation of the power equipment according to the first embodiment.
 電力供給会社は、変電所等の電力供給源と、電力の供給を受ける需要家CSとの間に電線WRを敷設することにより、需要家CSに電力を供給する。ここで、電線WRとは、電力供給源と、電力の供給を受ける需要家CSとの間に敷設される送電線や配電線である。
この一例では、図1に示す通り、鉄塔ST1と、鉄塔ST2とが電線WR2を支持する。
また、鉄塔ST2と、鉄塔ST3とが電線WR1を支持する。ここで、鉄塔STとは、例えば、送電線鉄塔や配電柱である。
 以降の説明において、電線WR1と、電線WR2とを特に区別しない場合には、電線WRと記載する。また、鉄塔ST1と、鉄塔ST2と、鉄塔ST3とを特に区別しない場合には、鉄塔STと記載する。
 また、以降の説明において、電力供給源から需要家CSに電力を供給する設備を電力設備Eと記載する。電力設備Eには、上述した電線WRと、鉄塔STとが含まれる。
The power supply company supplies power to the customer CS by laying the electric wire WR between a power supply source such as a substation and the customer CS receiving the power supply. Here, the electric wire WR is a power transmission line or a distribution line laid between the power supply source and the customer CS that receives the power supply.
In this example, as shown in FIG. 1, the steel tower ST1 and the steel tower ST2 support the electric wire WR2.
Further, the steel tower ST2 and the steel tower ST3 support the electric wire WR1. Here, the steel tower ST is, for example, a transmission line steel tower or a distribution pole.
In the following description, when the electric wire WR1 and the electric wire WR2 are not particularly distinguished, they are described as the electric wire WR. Further, when the steel tower ST1, the steel tower ST2, and the steel tower ST3 are not particularly distinguished, they are described as the steel tower ST.
In the following description, a facility that supplies power from the power supply source to the customer CS is referred to as a power facility E. The power equipment E includes the above-described electric wire WR and the steel tower ST.
 ここで、電力供給源から需要家CSまで安定して電力を供給するためには、電力設備Eが経年劣化等により破損および故障することを未然に防ぐことが求められる場合がある。
したがって、電力供給源から需要家CSまで安定して電力を供給するためには、電力設備Eに破損および故障を未然に防ぐことを目的として電力設備Eの状態を観測することが求められる。
 本実施形態では、自律飛行する無人飛行体Dを用いて電力設備Eの観測を行う場合について説明する。
Here, in order to supply power stably from the power supply source to the customer CS, it may be required to prevent the power equipment E from being damaged or broken due to aging or the like.
Therefore, in order to stably supply power from the power supply source to the customer CS, it is required to observe the state of the power equipment E for the purpose of preventing the power equipment E from being damaged or broken.
This embodiment demonstrates the case where the electric power installation E is observed using the unmanned air vehicle D which carries out autonomous flight.
[無人飛行体の自律飛行]
 以下、無人飛行体Dの自律飛行の概要について説明する。この一例では、無人飛行体Dは、電力供給会社の施設等の建物BDに配置される。無人飛行体Dは、建物BDから観測対象の電力設備Eまで飛行し、電力設備Eを観測する。無人飛行体Dは、電力設備Eの観測が終了した後、建物BDへ飛行する。以降の説明において、無人飛行体Dが電力設備Eの観測を終了した後、建物BDへ飛行することを帰還するとも記載する。
 無人飛行体Dは、建物BDから観測対象の電力設備Eまでの飛行と、電力設備Eの観測が終了した位置から建物BDまでの飛行とを、無人飛行体Dの飛行の制御に用いられる飛行制御情報FPGに基づいて飛行する。
 また、無人飛行体Dは、電力設備Eの観測の動作の制御に用いられる観測制御情報OPGに基づいて、電力設備Eを観測する。
 この一例では、図1に示す通り、無人飛行体Dが撮像部Cを備える。撮像部Cは、例えば、カメラを備える。無人飛行体Dは、観測制御情報OPGに基づいて飛行し、撮像部Cによって電力設備Eを撮像することによって電力設備Eの状態を観測する。
 飛行制御情報FPGと、観測制御情報OPGとは、飛行体制御情報生成装置PGDによって生成される。
[Autonomous flight of unmanned air vehicles]
Hereinafter, an outline of autonomous flight of the unmanned air vehicle D will be described. In this example, the unmanned air vehicle D is placed in a building BD such as a facility of a power supply company. The unmanned air vehicle D flies from the building BD to the power equipment E to be observed, and observes the power equipment E. The unmanned air vehicle D flies to the building BD after the observation of the power equipment E is completed. In the following description, it is also described that the unmanned air vehicle D returns to the building BD after completing the observation of the power equipment E.
The unmanned air vehicle D is a flight used for controlling the flight of the unmanned air vehicle D from the building BD to the observation target power equipment E and the flight from the position where the observation of the power equipment E is completed to the building BD. Flight based on the control information FPG.
Further, the unmanned air vehicle D observes the power equipment E based on the observation control information OPG used for controlling the operation of observation of the power equipment E.
In this example, the unmanned air vehicle D includes an imaging unit C as shown in FIG. The imaging unit C includes, for example, a camera. The unmanned air vehicle D flies based on the observation control information OPG, and observes the state of the power equipment E by imaging the power equipment E by the imaging unit C.
The flight control information FPG and the observation control information OPG are generated by the flying object control information generation device PGD.
[飛行体制御情報生成装置の概要]
 以下、図2を参照して飛行体制御情報生成装置PGDの概要について説明する。図2は、本実施形態の飛行体制御情報生成装置PGDの構成の一例を示す構成図である。
 図2に示す通り、飛行体制御情報生成装置PGDには、観測範囲指定装置OSDと、設備情報記憶装置EIDとが接続される。設備情報記憶装置EIDとは、設備情報EIを記憶する装置である。
[Outline of Aircraft Control Information Generator]
Hereinafter, the outline of the flying object control information generating device PGD will be described with reference to FIG. FIG. 2 is a configuration diagram illustrating an example of a configuration of the flying object control information generation device PGD of the present embodiment.
As shown in FIG. 2, an observation range specifying device OSD and an equipment information storage device EID are connected to the flying object control information generating device PGD. The facility information storage device EID is a device that stores facility information EI.
 以下、図3を参照して設備情報EIの詳細について説明する。図3は、本実施形態の設備情報EIの一例を示す表である。設備情報EIとは、需要家CSへ電力を供給する電力設備Eの詳細を示す情報である。具体的には、図3に示す通り、設備情報EIには、需要家CSへ電力を供給する電力設備Eに関する情報である設備名情報ENと、設備位置情報EPとが含まれる。 Details of the facility information EI will be described below with reference to FIG. FIG. 3 is a table showing an example of the facility information EI of the present embodiment. The facility information EI is information indicating details of the power facility E that supplies power to the customer CS. Specifically, as illustrated in FIG. 3, the facility information EI includes facility name information EN that is information related to the power facility E that supplies power to the customer CS, and facility position information EP.
 設備名情報ENとは、電力設備Eの名称を示す情報である。図3に示す通り、この一例では、設備名情報ENには、設備の名称として鉄塔ST1(設備名情報EN1)と、鉄塔ST2(設備名情報EN6)と、鉄塔ST3(設備名情報EN11)が含まれる。 Facility name information EN is information indicating the name of the power facility E. As shown in FIG. 3, in this example, the facility name information EN includes a tower ST1 (equipment name information EN1), a tower ST2 (equipment name information EN6), and a tower ST3 (equipment name information EN11) as the names of the facilities. included.
 この一例では、鉄塔STが電線WRを支持する設備としての懸垂クランプSCと、長幹がいしLIと、アークホーンAHとがそれぞれの鉄塔STに付属する。
 すなわち、設備名情報ENには、鉄塔ST1に付随する電力設備Eの名称として懸垂クランプSC1(設備名情報EN2)と、長幹がいしLI1(設備名情報EN3)と、アークホーンAH1(設備名情報EN4)とが含まれる。また、設備名情報ENには、鉄塔ST2に付随する電力設備Eの名称として、懸垂クランプSC2(設備名情報EN7)と、長幹がいしLI2(設備名情報EN8)と、アークホーンAH2(設備名情報EN9)とが含まれる。また、設備名情報ENには、鉄塔ST3に付随する電力設備Eの名称として、懸垂クランプSC3(設備名情報EN12)と、長幹がいしLI3(設備名情報EN13)と、アークホーンAH3(設備名情報EN14)とが含まれる。
 また、設備名情報ENには、鉄塔STが支持する電線WRの名称として電線WR2(設備名情報EN5)と、電線WR1(設備名情報EN10)とが含まれる。
In this example, a suspension clamp SC as a facility in which the steel tower ST supports the electric wire WR, a long insulator LI, and an arc horn AH are attached to each steel tower ST.
That is, the facility name information EN includes a suspension clamp SC1 (equipment name information EN2), a long insulator LI1 (equipment name information EN3), and an arc horn AH1 (equipment name information) as the names of the power facilities E attached to the tower ST1. EN4). In addition, the facility name information EN includes the suspension clamp SC2 (equipment name information EN7), the long insulator LI2 (equipment name information EN8), and the arc horn AH2 (equipment name) as the names of the power facilities E attached to the tower ST2. Information EN9). In addition, the facility name information EN includes the suspension clamp SC3 (equipment name information EN12), the long insulator LI3 (equipment name information EN13), and the arc horn AH3 (equipment name) as the names of the power facilities E attached to the tower ST3. Information EN14).
The facility name information EN includes an electric wire WR2 (equipment name information EN5) and an electric wire WR1 (equipment name information EN10) as names of the electric wires WR supported by the steel tower ST.
 設備位置情報EPとは、電力設備Eの位置を示す情報である。この一例では、設備位置情報EPが、座標によって示される場合について説明する。また、この一例では、設備位置情報EPは、設備名情報ENが示す電力設備E毎の座標を示す。 The facility position information EP is information indicating the position of the power facility E. In this example, a case where the equipment position information EP is indicated by coordinates will be described. In this example, the facility position information EP indicates coordinates for each power facility E indicated by the facility name information EN.
 図3に示す通り、この一例では、鉄塔ST1の位置を示す座標が設備位置情報EP1(35.00000,135.00000)である。また、懸垂クランプSC1、長幹がいしLI1およびアークホーンAH1は、鉄塔ST1に付属する電力設備Eであるため、いずれも鉄塔ST1と同一の座標に位置する。つまり、懸垂クランプSC1、長幹がいしLI1およびアークホーンAH1は、いずれも設備位置情報EP1が示す座標に位置する。
 また、この一例では、鉄塔ST2の位置を示す座標が設備位置情報EP3(35.00200,135.00200)である。また、懸垂クランプSC2、長幹がいしLI2およびアークホーンAH2は、鉄塔ST2に付随する電力設備Eであるため、いずれも鉄塔ST2と同一の座標に位置する。つまり、懸垂クランプSC2、長幹がいしLI2およびアークホーンAH2は、いずれも設備位置情報EP3が示す座標に位置する。
 また、この一例では、鉄塔ST3の位置を示す座標が設備位置情報EP5(35.00400,135.00400)である。また、懸垂クランプSC3、長幹がいしLI3およびアークホーンAH3は、鉄塔ST3に付随する電力設備Eであるため、いずれも鉄塔ST3と同一の座標に位置する。つまり、懸垂クランプSC3、長幹がいしLI3およびアークホーンAH3は、いずれも設備位置情報EP5が示す座標に位置する。
As shown in FIG. 3, in this example, the coordinates indicating the position of the steel tower ST1 are facility position information EP1 (35.00,000, 135.000000). Moreover, since the suspension clamp SC1, the long insulator LI1, and the arc horn AH1 are the power equipment E attached to the steel tower ST1, all are located at the same coordinates as the steel tower ST1. That is, the suspension clamp SC1, the long insulator LI1, and the arc horn AH1 are all located at the coordinates indicated by the facility position information EP1.
Moreover, in this example, the coordinate which shows the position of steel tower ST2 is equipment position information EP3 (35.00200, 135.00200). Further, since the suspension clamp SC2, the long insulator LI2, and the arc horn AH2 are the power equipment E attached to the steel tower ST2, all are located at the same coordinates as the steel tower ST2. That is, the suspension clamp SC2, the long insulator LI2, and the arc horn AH2 are all located at the coordinates indicated by the equipment position information EP3.
Moreover, in this example, the coordinate which shows the position of steel tower ST3 is equipment position information EP5 (35.00400, 135.00400). Moreover, since the suspension clamp SC3, the long insulator LI3, and the arc horn AH3 are the power equipment E attached to the steel tower ST3, all are located at the same coordinates as the steel tower ST3. That is, the suspension clamp SC3, the long insulator LI3, and the arc horn AH3 are all located at the coordinates indicated by the facility position information EP5.
 また、設備情報EIには、電線WRの設備位置情報EPとして電線WRが敷設される経路上の位置のうち、電線WRを支持する支持点の設備位置情報EPが含まれる。図1に示す通り、この一例では、電線WRが2つの鉄塔STによって支持される。すなわち、電線WRの支持点は2点である。これにより、電線WRの設備位置情報EPとは、電線WRを支持する鉄塔STの座標である。したがって、鉄塔ST1と、鉄塔ST2とに支持される電線WR2の設備位置情報EPは、設備位置情報EP1(35.00000,135.00000)と、座標が設備位置情報EP3(35.00200,135.00200)とである。また、この一例では、鉄塔ST2と、鉄塔ST3とに支持される電線WR1の設備位置情報EPは、座標が設備位置情報EP3(35.00200,135.00200)と、設備位置情報EP5(35.00400,135.00400)とである。
 設備情報記憶装置EIDは、設備名情報ENと、設備位置情報EPとが含まれる設備情報EIを飛行体制御情報生成装置PGDへ供給する。
The facility information EI includes facility position information EP of a support point that supports the electric wire WR among positions on the route where the electric wire WR is laid as the facility position information EP of the electric wire WR. As shown in FIG. 1, in this example, the electric wire WR is supported by two steel towers ST. That is, there are two support points for the electric wire WR. Thereby, the equipment position information EP of the electric wire WR is the coordinates of the steel tower ST that supports the electric wire WR. Therefore, the facility position information EP of the electric wire WR2 supported by the tower ST1 and the tower ST2 is the facility position information EP1 (35.00,000, 135.000000), and the coordinates are the facility position information EP3 (35.00200, 135.135). 00200). Moreover, in this example, the equipment position information EP of the electric wire WR1 supported by the steel tower ST2 and the steel tower ST3 has the coordinates of equipment position information EP3 (35.00200, 135.00200) and equipment position information EP5 (35.35). 00400, 135.00400).
The equipment information storage device EID supplies equipment information EI including equipment name information EN and equipment position information EP to the flying object control information generator PGD.
 図2に戻り、観測範囲指定装置OSDとは、無人飛行体Dの電力設備Eの観測の範囲を示す観測範囲情報AIを既知の方法によって生成する装置である。観測範囲指定装置OSDは、無人飛行体Dの電力設備Eの観測の範囲を示す観測範囲情報AIを飛行体制御情報生成装置PGDに供給する。 Referring back to FIG. 2, the observation range designation device OSD is a device that generates observation range information AI indicating the observation range of the power facility E of the unmanned air vehicle D by a known method. The observation range designation device OSD supplies observation range information AI indicating the observation range of the power equipment E of the unmanned air vehicle D to the air vehicle control information generation device PGD.
 以下、図4を参照して観測範囲情報AIの詳細について説明する。図4は、本実施形態の観測範囲情報AIの一例を示す表である。図4に示す通り、観測範囲情報AIには、無人飛行体Dが電力設備Eの観測を開始する位置を示す情報である観測開始位置情報ASが含まれる。また、観測範囲情報AIには、無人飛行体Dが電力設備Eの観測を終了する位置を示す情報である観測終了位置情報AEが含まれる。 Hereinafter, the details of the observation range information AI will be described with reference to FIG. FIG. 4 is a table showing an example of the observation range information AI of the present embodiment. As shown in FIG. 4, the observation range information AI includes observation start position information AS that is information indicating a position where the unmanned air vehicle D starts observation of the power equipment E. The observation range information AI includes observation end position information AE that is information indicating a position where the unmanned air vehicle D ends observation of the power equipment E.
 この一例では、観測開始位置情報ASと、観測終了位置情報AEとが座標によって示される場合について説明する。具体的には、図4に示す通り、観測開始位置情報ASの座標が、(35.00000,135.00000)である。
 また、図4に示す通り、観測終了位置情報AEの座標が、(35.00400,135.00400)である。これにより、無人飛行体Dは、鉄塔ST1から鉄塔ST3までの範囲に存在する電力設備Eの観測を行う。
In this example, a case where the observation start position information AS and the observation end position information AE are indicated by coordinates will be described. Specifically, as shown in FIG. 4, the coordinates of the observation start position information AS are (35.000000, 135.000000).
Moreover, as shown in FIG. 4, the coordinates of the observation end position information AE are (35.00400, 135.00400). Thereby, the unmanned air vehicle D observes the electric power equipment E existing in the range from the steel tower ST1 to the steel tower ST3.
 観測範囲指定装置OSDは、観測開始位置情報ASと、観測終了位置情報AEとが含まれる観測範囲情報AIを飛行体制御情報生成装置PGDへ供給する。すなわち、観測範囲指定装置OSDは、無人飛行体Dが電力設備Eの観測を開始する位置と、終了する位置とを示す情報とが含まれる観測範囲情報AIを飛行体制御情報生成装置PGDへ供給する。 The observation range designation device OSD supplies the observation range information AI including the observation start position information AS and the observation end position information AE to the flying object control information generation device PGD. That is, the observation range specifying device OSD supplies the observation range information AI including information indicating the position where the unmanned air vehicle D starts observation of the power equipment E and the position where the unmanned air vehicle D ends to the aircraft control information generation device PGD. To do.
 なお、上述では、観測範囲指定装置OSDと、設備情報記憶装置EIDとが修正情報蓄積装置1に直接接続される場合について説明したが、これに限られない。観測範囲指定装置OSDと、設備情報記憶装置EIDとは、修正情報蓄積装置1に直接接続されていなくてもよく、情報の送受が可能なネットワークを介して接続されていてもよい。 In the above description, the case where the observation range specifying device OSD and the facility information storage device EID are directly connected to the correction information storage device 1 has been described. However, the present invention is not limited to this. The observation range specifying device OSD and the facility information storage device EID may not be directly connected to the correction information storage device 1 but may be connected via a network capable of transmitting and receiving information.
 図2に戻り、飛行体制御情報生成装置PGDは、制御部500を備える。
 制御部500は、CPU(Central Processing Unit)を備えており、取得部510と、飛行制御情報生成部530と、観測対象選択部540と、観測制御情報生成部550とをその機能部として備える。
Returning to FIG. 2, the flying object control information generation device PGD includes a control unit 500.
The control unit 500 includes a CPU (Central Processing Unit), and includes an acquisition unit 510, a flight control information generation unit 530, an observation target selection unit 540, and an observation control information generation unit 550 as functional units.
 図2に示す通り、取得部510は、観測範囲指定装置OSDから観測範囲情報AIを取得する。また、取得部510は、設備情報記憶装置EIDから設備情報EIを取得する。
取得部510は、観測範囲情報AIを飛行制御情報生成部530へ供給する。また、取得部510は、観測範囲情報AIと、設備情報EIとを観測対象選択部540とへ供給する。
As shown in FIG. 2, the acquisition unit 510 acquires observation range information AI from the observation range specifying device OSD. In addition, the acquisition unit 510 acquires the facility information EI from the facility information storage device EID.
Acquisition unit 510 supplies observation range information AI to flight control information generation unit 530. In addition, the acquisition unit 510 supplies the observation range information AI and the facility information EI to the observation target selection unit 540.
 図2に示す通り、飛行制御情報生成部530は、取得部510から観測範囲情報AIを取得する。飛行制御情報生成部530は、観測範囲情報AIに基づいて、無人飛行体Dが自律飛行する飛行の制御に用いられる飛行制御情報FPGを既知の方法によって生成する。
 この一例では、飛行制御情報FPGとは、無人飛行体Dが配置される建物BDから観測開始位置情報ASが示す位置までの経路と、観測終了位置情報AEが示す位置から建物BDまでの経路とを無人飛行体Dが自律飛行する飛行の制御に用いられる情報である。
As shown in FIG. 2, the flight control information generation unit 530 acquires the observation range information AI from the acquisition unit 510. The flight control information generation unit 530 generates flight control information FPG used for controlling the flight of the unmanned air vehicle D autonomously based on the observation range information AI by a known method.
In this example, the flight control information FPG includes the route from the building BD where the unmanned air vehicle D is arranged to the position indicated by the observation start position information AS, and the route from the position indicated by the observation end position information AE to the building BD. Is information used for controlling the flight in which the unmanned air vehicle D autonomously flies.
 なお、上述では、飛行制御情報FPGが、建物BDから観測開始位置情報ASまでの経路と、観測終了位置情報AEから建物BDまでの経路とにおける無人飛行体Dの飛行の制御に用いられる情報である場合について説明したが、これに限られない。例えば、無人飛行体Dは、建物BD以外の場所に配置されていてもよい。この場合、飛行制御情報生成部530は、無人飛行体Dが配置されている場所の位置と、観測範囲情報AIとに基づいて、飛行制御情報FPGを既知の方法によって生成してもよい。 In the above description, the flight control information FPG is information used for controlling the flight of the unmanned air vehicle D in the route from the building BD to the observation start position information AS and the route from the observation end position information AE to the building BD. Although a case has been described, the present invention is not limited to this. For example, the unmanned air vehicle D may be arranged at a place other than the building BD. In this case, the flight control information generation unit 530 may generate the flight control information FPG by a known method based on the position of the place where the unmanned air vehicle D is arranged and the observation range information AI.
 図2に示す通り、観測対象選択部540は、取得部510から観測範囲情報AIと、設備情報EIとを取得する。観測対象選択部540は、観測範囲情報AIと、設備情報EIとに基づいて、無人飛行体Dが観測する対象の電力設備Eである観測対象設備OEを選択する。観測対象設備OEとは、無人飛行体Dが観測する範囲に存在する電力設備Eである。
 観測対象選択部540は、選択した観測対象設備OEが含まれる観測対象選択情報OESを観測制御情報生成部550へ供給する。この一例では、観測対象選択情報OESに含まれる観測対象設備OEと、図3に示す設備情報EIに含まれる電力設備Eとは、同一である。このため、観測対象選択情報OESに含まれる観測対象設備OEである電力設備Eの種類については、説明を省略する。
 観測対象選択部540は、選択した観測対象選択情報OESを観測制御情報生成部550へ供給する。
As illustrated in FIG. 2, the observation target selection unit 540 acquires observation range information AI and facility information EI from the acquisition unit 510. The observation target selection unit 540 selects the observation target facility OE that is the power facility E to be observed by the unmanned air vehicle D based on the observation range information AI and the facility information EI. The observation target facility OE is a power facility E existing in a range observed by the unmanned air vehicle D.
The observation target selection unit 540 supplies the observation target selection information OES including the selected observation target facility OE to the observation control information generation unit 550. In this example, the observation target equipment OE included in the observation target selection information OES and the power equipment E included in the equipment information EI illustrated in FIG. 3 are the same. For this reason, description is abbreviate | omitted about the kind of the electric power equipment E which is the observation object equipment OE contained in the observation object selection information OES.
The observation target selection unit 540 supplies the selected observation target selection information OES to the observation control information generation unit 550.
 図2示す通り、観測制御情報生成部550は、観測対象選択部540から観測対象選択部540が選択した観測対象設備OEが含まれる観測対象選択情報OESを取得する。
 観測制御情報生成部550は、取得した観測対象選択情報OESに基づいて、観測制御情報OPGを既知の方法によって生成する。観測制御情報OPGとは、無人飛行体Dが観測対象選択情報OESに含まれる観測対象設備OEを観測する観測動作の制御に用いられる情報である。
As illustrated in FIG. 2, the observation control information generation unit 550 acquires observation target selection information OES including the observation target facility OE selected by the observation target selection unit 540 from the observation target selection unit 540.
The observation control information generation unit 550 generates the observation control information OPG by a known method based on the acquired observation target selection information OES. The observation control information OPG is information used for controlling the observation operation in which the unmanned air vehicle D observes the observation target equipment OE included in the observation target selection information OES.
 この一例では、観測制御情報生成部550は、観測範囲情報AIと、観測対象選択情報OESに含まれる観測対象設備OEの設備位置情報EPとに基づいて観測制御情報OPGを生成する。 In this example, the observation control information generation unit 550 generates observation control information OPG based on the observation range information AI and the equipment position information EP of the observation target equipment OE included in the observation target selection information OES.
 以下、観測制御情報OPGに基づく無人飛行体Dの動作の概要について説明する。
 この一例において、無人飛行体Dは、設備位置情報EP1においてホバリングし、設備位置情報EP1に存在する鉄塔ST1と、鉄塔ST1に付随する電力設備Eとを観測する。また、無人飛行体Dは、設備位置情報EP1において鉄塔ST1と、鉄塔ST1に付随する電力設備Eを観測した後、設備位置情報EP3まで飛行しながら電線WR2を観測する。また、無人飛行体Dは、設備位置情報EP3に移動した後、設備位置情報EP3においてホバリングし、設備位置情報EP3に存在する鉄塔ST2と、鉄塔ST2に付随する電力設備Eとを観測する。また、無人飛行体Dは、設備位置情報EP3において鉄塔ST2と、鉄塔ST2に付随する電力設備Eを観測した後、設備位置情報EP5まで飛行しながら電線WR1を観測する。また、無人飛行体Dは、設備位置情報EP5に移動した後、設備位置情報EP5においてホバリングし、設備位置情報EP5に存在する鉄塔ST3と、鉄塔ST3に付随する電力設備Eを観測する。
Hereinafter, an outline of the operation of the unmanned air vehicle D based on the observation control information OPG will be described.
In this example, the unmanned air vehicle D is hovered in the facility position information EP1 and observes the steel tower ST1 existing in the equipment position information EP1 and the power equipment E accompanying the steel tower ST1. In addition, the unmanned air vehicle D observes the electric tower WR2 while flying to the equipment position information EP3 after observing the steel tower ST1 and the power equipment E accompanying the steel tower ST1 in the equipment position information EP1. Moreover, after moving to the equipment position information EP3, the unmanned air vehicle D hovers in the equipment position information EP3, and observes the steel tower ST2 present in the equipment position information EP3 and the power equipment E accompanying the steel tower ST2. The unmanned air vehicle D observes the electric tower WR1 while flying to the equipment position information EP5 after observing the steel tower ST2 and the power equipment E accompanying the steel tower ST2 in the equipment position information EP3. Further, after moving to the equipment position information EP5, the unmanned air vehicle D hovers in the equipment position information EP5, and observes the steel tower ST3 present in the equipment position information EP5 and the power equipment E accompanying the steel tower ST3.
 以下、観測制御情報OPGに含まれる無人飛行体Dの観測の詳細について説明する。
 観測制御情報OPGには、設備位置情報EP1が示す座標において、観測対象設備OEを観測する時間だけ無人飛行体Dがホバリングする動作の制御が含まれる。具体的には、観測制御情報OPGには、設備位置情報EP1において、鉄塔ST1と、鉄塔ST1に付随する電力設備Eである懸垂クランプSC1と、長幹がいしLI1と、アークホーンAH1とを観測する時間だけ無人飛行体Dがホバリングする動作の制御が含まれる。
 ここで、無人飛行体Dは、無人飛行体Dが備える撮像部Cによって観測対象設備OEである電力設備Eを撮像し、画像Pを生成する。画像Pとは、無人飛行体Dが備える撮像部Cによって観測対象設備OEである電力設備Eを撮像し、生成された画像である。これにより、無人飛行体Dは、無人飛行体Dが備える撮像部Cによって、設備位置情報EP1において鉄塔ST1と、鉄塔ST1に付随する電力設備Eとを撮像し、画像Pを生成する。
 この一例では、画像Pは、無人飛行体Dが備える撮像部Cによって、観測対象選択情報OESに含まれる電力設備E毎に生成される。
Hereinafter, details of the observation of the unmanned air vehicle D included in the observation control information OPG will be described.
The observation control information OPG includes control of the operation in which the unmanned air vehicle D is hovering for the time for observing the observation target equipment OE at the coordinates indicated by the equipment position information EP1. Specifically, in the observation control information OPG, in the equipment position information EP1, the steel tower ST1, the suspension clamp SC1, which is the power equipment E attached to the steel tower ST1, the long insulator LI1, and the arc horn AH1 are observed. Control of the operation of the unmanned air vehicle D hovering only for the time is included.
Here, the unmanned air vehicle D images the power equipment E, which is the observation target equipment OE, by the imaging unit C included in the unmanned air vehicle D, and generates an image P. The image P is an image generated by imaging the power equipment E that is the observation target equipment OE by the imaging unit C included in the unmanned air vehicle D. Thereby, the unmanned air vehicle D images the steel tower ST1 and the power equipment E accompanying the steel tower ST1 in the equipment position information EP1 by the imaging unit C included in the unmanned air vehicle D, and generates an image P.
In this example, the image P is generated for each power equipment E included in the observation target selection information OES by the imaging unit C included in the unmanned air vehicle D.
 また、観測制御情報OPGには、設備位置情報EP1が示す座標から設備位置情報EP3が示す座標まで無人飛行体Dが飛行しながら電線WR2を観測する動作の制御が含まれる。これにより、無人飛行体Dは、無人飛行体Dが備える撮像部Cによって、電線WR2を撮像し、画像Pを生成する。 Further, the observation control information OPG includes control of an operation in which the unmanned air vehicle D observes the electric wire WR2 from the coordinates indicated by the equipment position information EP1 to the coordinates indicated by the equipment position information EP3. Thereby, the unmanned air vehicle D images the electric wire WR2 by the imaging unit C included in the unmanned air vehicle D, and generates the image P.
 また、観測制御情報OPGには、設備位置情報EP3が示す座標において、観測対象設備OEを観測する時間だけ無人飛行体Dがホバリングする動作の制御が含まれる。具体的には、観測制御情報OPGには、設備位置情報EP3において、鉄塔ST2と、鉄塔ST2に付随する電力設備Eである懸垂クランプSC2と、長幹がいしLI2と、アークホーンAH2とを観測する時間だけ無人飛行体Dがホバリングする動作の制御が含まれる。これにより、無人飛行体Dは、無人飛行体Dが備える撮像部Cによって、設備位置情報EP3において鉄塔ST2と、鉄塔ST2に付随する電力設備Eとを撮像し、画像Pを生成する。 Further, the observation control information OPG includes a control of an operation in which the unmanned air vehicle D hovers for the time for observing the observation target equipment OE at the coordinates indicated by the equipment position information EP3. Specifically, in the observation control information OPG, in the equipment position information EP3, the steel tower ST2, the suspension clamp SC2, which is the power equipment E attached to the steel tower ST2, the long insulator LI2, and the arc horn AH2 are observed. Control of the operation of the unmanned air vehicle D hovering only for the time is included. Thereby, the unmanned air vehicle D images the steel tower ST2 and the power equipment E accompanying the steel tower ST2 in the equipment position information EP3 by the imaging unit C included in the unmanned air vehicle D, and generates an image P.
 また、観測制御情報OPGには、設備位置情報EP3が示す座標から設備位置情報EP5が示す座標まで無人飛行体Dが飛行しながら電線WR1を観測する動作の制御が含まれる。これにより、無人飛行体Dは、無人飛行体Dが備える撮像部Cによって、電線WR1を撮像し、画像Pを生成する。 Further, the observation control information OPG includes control of an operation in which the unmanned air vehicle D observes the electric wire WR1 from the coordinates indicated by the equipment position information EP3 to the coordinates indicated by the equipment position information EP5. Thereby, the unmanned aerial vehicle D images the electric wire WR1 by the imaging unit C included in the unmanned aerial vehicle D, and generates an image P.
 また、観測制御情報OPGには、設備位置情報EP5が示す座標において、観測対象設備OEを観測する時間だけ無人飛行体Dがホバリングする動作の制御が含まれる。具体的には、観測制御情報OPGには、設備位置情報EP5において、鉄塔ST3と、鉄塔ST3に付随する電力設備Eである懸垂クランプSC3と、長幹がいしLI3と、アークホーンAH3とを観測する時間だけ無人飛行体Dがホバリングする動作の制御が含まれる。これにより、無人飛行体Dは、無人飛行体Dが備える撮像部Cによって、設備位置情報EP5において鉄塔ST3と、鉄塔ST3に付随する電力設備Eとを撮像し、画像Pを生成する。 Further, the observation control information OPG includes a control of an operation in which the unmanned air vehicle D hovers for the time for observing the observation target equipment OE at the coordinates indicated by the equipment position information EP5. Specifically, in the observation control information OPG, in the equipment position information EP5, the steel tower ST3, the suspension clamp SC3 that is the power equipment E attached to the steel tower ST3, the long insulator LI3, and the arc horn AH3 are observed. Control of the operation of the unmanned air vehicle D hovering only for the time is included. Thereby, the unmanned air vehicle D images the steel tower ST3 and the power equipment E accompanying the steel tower ST3 in the equipment position information EP5 by the imaging unit C included in the unmanned air vehicle D, and generates an image P.
 なお、上述では、観測制御情報生成部550は、観測対象選択情報OESに含まれる観測対象設備OEの設備位置情報EPに基づいて観測制御情報OPGを生成する場合について説明したが、これに限られない。例えば、観測対象選択情報OESに含まれる観測対象設備OEには、観測対象設備OE毎に観測対象設備OEに応じた観測の方法が定められていてもよい。すなわち、観測制御情報生成部550は、観測対象設備OEに応じて定められた観測の方法に基づいて、無人飛行体Dの観測の観測動作を制御する観測制御情報OPGを生成してもよい。
 例えば、観測対象設備OEが鉄塔STである場合には、無人飛行体Dは、鉄塔STの全体を観測することが予め定められる。この場合、観測制御情報生成部550は、無人飛行体Dが備える撮像部Cが鉄塔STの全体を撮像する観測の観測動作を制御する観測制御情報OPGを生成してもよい。また、観測対象設備OEが長幹がいしLIである場合には、無人飛行体Dは、長幹がいしLIに接近して観測することが予め定められる。この場合、観測制御情報生成部550は、無人飛行体Dが備える撮像部Cが長幹がいしLIを接近して撮像する観測の観測動作を制御する観測制御情報OPGを生成してもよい。
In the above description, the observation control information generation unit 550 generates the observation control information OPG based on the equipment position information EP of the observation target equipment OE included in the observation target selection information OES. Absent. For example, in the observation target equipment OE included in the observation target selection information OES, an observation method corresponding to the observation target equipment OE may be defined for each observation target equipment OE. That is, the observation control information generation unit 550 may generate the observation control information OPG for controlling the observation operation of the unmanned air vehicle D based on the observation method determined according to the observation target facility OE.
For example, when the observation target facility OE is a steel tower ST, it is predetermined that the unmanned air vehicle D observes the entire steel tower ST. In this case, the observation control information generation unit 550 may generate the observation control information OPG that controls the observation operation of the observation in which the imaging unit C included in the unmanned air vehicle D images the entire tower ST. In addition, when the observation target facility OE is a long insulator LI, it is determined in advance that the unmanned air vehicle D observes close to the long insulator LI. In this case, the observation control information generation unit 550 may generate the observation control information OPG that controls the observation operation of the observation in which the imaging unit C included in the unmanned air vehicle D approaches the long trunk LI and images.
 図1に戻り、上述したように、無人飛行体Dは、飛行制御情報FPGと、観測制御情報OPGとに基づいて飛行し、電力設備Eを観測する。
 この一例では、無人飛行体Dが記憶領域を備えており、無人飛行体Dが電力設備Eの観測した画像Pは、既知の方法によって無人飛行体Dの記憶領域に蓄積される。以降の説明において、無人飛行体Dが撮像部Cによって電力設備E毎に生成された画像Pを総称して観測結果ORTと記載する。この一例では、観測結果ORTは、既知の方法によって、無人飛行体Dが備える記憶領域に蓄積される。
Returning to FIG. 1, as described above, the unmanned air vehicle D flies based on the flight control information FPG and the observation control information OPG and observes the power equipment E.
In this example, the unmanned air vehicle D includes a storage area, and the image P observed by the power facility E by the unmanned air vehicle D is accumulated in the storage area of the unmanned air vehicle D by a known method. In the following description, the image P generated by the unmanned air vehicle D for each power equipment E by the imaging unit C is collectively referred to as an observation result ORT. In this example, the observation result ORT is accumulated in a storage area included in the unmanned air vehicle D by a known method.
 ここで、電力設備Eを人系によって観測する場合には、観測する作業者の成熟度によって観測の精度が異なる場合があった。具体的には、電力設備Eを観測する作業の習熟度が低い作業者と、習熟度が高い作業者とでは、習熟度が高い作業者が電力設備Eを観測した場合の方が電力設備Eに生じる破損および故障を観測することができる。これは、習熟度が高い作業者は、永年の間に蓄積された電力設備Eの観測の作業に関する知識に基づいて電力設備Eの観測を行うためである。以降の説明において、電力設備Eを観測する作業の習熟度が高い作業者を熟練作業者OPと記載する。また、熟練作業者OPが有する知識であって、電力設備Eの観測の作業に関する知識を技術知識TKHと記載する。 Here, when the power facility E is observed by a human system, the accuracy of the observation may differ depending on the maturity of the worker to observe. Specifically, between a worker with a low proficiency level for observing the power equipment E and a worker with a high skill level, the power equipment E is better when a worker with a high skill level observes the power equipment E. Can be observed. This is because a worker with a high level of proficiency observes the power equipment E based on knowledge about the work of observing the power equipment E accumulated for many years. In the following description, a worker who has a high level of proficiency in observing the power equipment E is referred to as a skilled worker OP. Moreover, the knowledge which the skilled worker OP has, and the knowledge regarding the work of observation of the electric power equipment E is described as the technical knowledge TKH.
 本実施形態の修正情報蓄積装置1は、無人飛行体Dが技術知識TKHに基づく観測を行うことを目的とし、無人飛行体Dの観測の動作の制御に用いられる観測制御情報OPGを修正する情報を出力する。
 図1に示す通り、この一例では、修正情報蓄積装置1は、建物BDに備えられる。
The correction information storage device 1 of the present embodiment is information for correcting the observation control information OPG used for controlling the observation operation of the unmanned air vehicle D for the purpose of the unmanned air vehicle D performing observation based on the technical knowledge TKH. Is output.
As shown in FIG. 1, in this example, the correction information storage device 1 is provided in a building BD.
[修正情報蓄積装置の概要]
 以下、図5を参照して修正情報蓄積装置1の概要について説明する。図5は、本実施形態の修正情報蓄積装置1の概要を示す概要図である。
 図5に示す通り、建物BDには、修正情報蓄積装置1と、表示装置DPとが備えられる。無人飛行体Dが電力設備Eの観測が終了し、建物BDに帰還した後、表示装置DPには、無人飛行体Dが備える記憶領域に蓄積される観測結果ORTが表示される。表示装置DPとは、例えば、無人飛行体Dが電力設備Eを観測した観測結果ORTを表示するディスプレイである。観測結果ORTは、既知の方法によって表示装置DPに表示される。
 熟練作業者OPは、表示装置DPに表示される観測結果ORTに応じて、観測制御情報OPGを技術知識TKHに基づいて修正する。
[Outline of correction information storage device]
Hereinafter, an outline of the correction information storage apparatus 1 will be described with reference to FIG. FIG. 5 is a schematic diagram showing an overview of the correction information storage device 1 of the present embodiment.
As shown in FIG. 5, the building BD includes a correction information storage device 1 and a display device DP. After the unmanned air vehicle D finishes observing the power equipment E and returns to the building BD, the display device DP displays the observation result ORT accumulated in the storage area of the unmanned air vehicle D. The display device DP is, for example, a display that displays an observation result ORT obtained when the unmanned air vehicle D observes the power equipment E. The observation result ORT is displayed on the display device DP by a known method.
The skilled worker OP modifies the observation control information OPG based on the technical knowledge TKH according to the observation result ORT displayed on the display device DP.
 なお、上述では、無人飛行体Dが備える記憶領域に蓄積された観測結果ORTが、無人飛行体Dが建物BDに帰還した後、表示装置DPに表示される場合について説明したが、これに限られない。
 無人飛行体Dと、表示装置DPとは、互いに情報の送受が可能なネットワークによって接続されていてもよい。これにより、無人飛行体Dは、無人飛行体Dが生成した観測結果ORTを表示装置DPに送信してもよい。表示装置DPは、無人飛行体Dが送信した観測結果ORTを受信し、受信した観測結果ORTを表示してもよい。
In the above description, the observation result ORT accumulated in the storage area of the unmanned air vehicle D has been described as being displayed on the display device DP after the unmanned air vehicle D returns to the building BD. I can't.
The unmanned air vehicle D and the display device DP may be connected to each other via a network capable of transmitting and receiving information. Thereby, the unmanned air vehicle D may transmit the observation result ORT generated by the unmanned air vehicle D to the display device DP. The display device DP may receive the observation result ORT transmitted by the unmanned air vehicle D and display the received observation result ORT.
 ここで、熟練作業者OPが、表示装置DPに表示される観測結果ORTに応じて行う観測制御情報OPGの修正の概要について説明する。
 図5に示す通り、修正情報蓄積装置1には、入力装置CNTが接続される。熟練作業者OPは、表示装置DPに表示される観測結果ORTに応じて、観測結果ORTである画像Pの撮像の方向、ズームアップ、ズームアウト、および画像Pに撮像される電力設備Eの撮像時間等の修正を示す操作を入力装置CNTに入力する。
 上述したように、観測結果ORTには、無人飛行体Dが電力設備Eを観測した電力設備E毎の画像Pが含まれる。熟練作業者OPは、表示装置DPに表示される観測結果ORTである画像Pを確認し、当該画像Pに撮像される電力設備Eの観測が技術知識TKHに基づいていない場合に、入力装置CNTから観測制御情報OPGの修正を示す操作を入力する。
Here, an outline of correction of the observation control information OPG performed by the skilled worker OP according to the observation result ORT displayed on the display device DP will be described.
As shown in FIG. 5, an input device CNT is connected to the correction information storage device 1. The skilled worker OP, in accordance with the observation result ORT displayed on the display device DP, captures the image P as the observation result ORT, zooms up and zooms out, and captures the power equipment E captured in the image P. An operation indicating correction of time or the like is input to the input device CNT.
As described above, the observation result ORT includes the image P for each power equipment E in which the unmanned air vehicle D observes the power equipment E. The skilled worker OP confirms the image P that is the observation result ORT displayed on the display device DP, and when the observation of the power equipment E imaged in the image P is not based on the technical knowledge TKH, the input device CNT The operation indicating the correction of the observation control information OPG is input.
 ここで、長幹がいしLIを観測する場合を一例に説明する。
 無人飛行体Dが長幹がいしLIを観測する場合、無人飛行体Dは、観測制御情報OPGに示される観測動作の制御を示す情報に基づいて、長幹がいしLIを観測する。
 この一例では、観測制御情報OPGには、無人飛行体Dが備える撮像部Cが長幹がいしLIの全体を撮像可能な位置を無人飛行体Dが飛行する動作の制御が示される。これにより、無人飛行体Dが備える撮像部Cは、長幹がいしLIの全体を撮像し、画像Pを生成する。したがって、この一例では、観測結果ORTに含まれる長幹がいしLIの画像Pとは、長幹がいしLIの全体が含まれる画像Pであって、長幹がいしLIを遠隔から撮像した画像Pである。
Here, a case where a long stem insulator LI is observed will be described as an example.
When the unmanned air vehicle D observes the long insulator LI, the unmanned air vehicle D observes the long insulator LI based on the information indicating the control of the observation operation indicated in the observation control information OPG.
In this example, the observation control information OPG indicates control of the operation of the unmanned air vehicle D flying at a position where the imaging unit C included in the unmanned air vehicle D can image the entire trunk LI. Thereby, the imaging unit C included in the unmanned air vehicle D images the entire long insulator LI and generates the image P. Therefore, in this example, the image P of the long insulator LI included in the observation result ORT is an image P including the entire long insulator LI, and is an image P obtained by remotely imaging the long insulator LI. .
 一方、熟練作業者OPが長幹がいしLIを観測する場合、熟練作業者OPは、技術知識TKHに基づいて、長幹がいしLIにひび割れが生じていないことおよび汚れが付着していないことを、長幹がいしLIに接近して観測する。したがって、長幹がいしLIを観測する場合の技術知識TKHとは、長幹がいしLIを近接して観測することである。 On the other hand, when the skilled worker OP observes the long insulator LI, the skilled worker OP confirms that the long insulator LI is not cracked and no dirt is attached based on the technical knowledge TKH. Observe the long trunk insulator LI. Therefore, the technical knowledge TKH when observing the long insulator LI is to observe the long insulator LI in close proximity.
 上述したように、観測制御情報OPGに基づいて無人飛行体Dが行う長幹がいしLIの観測と、技術知識TKHに基づいて熟練作業者OPが行う長幹がいしLIの観測とは異なる。具体的には、観測制御情報OPGに基づいて無人飛行体Dが行う観測は、長幹がいしLIを遠隔から観測し、技術知識TKHに基づいて熟練作業者OPが行う観測は、長幹がいしLIを近接して観測する。この場合には、熟練作業者OPは、表示装置DPに表示される観測結果ORTに基づいて、無人飛行体Dが飛行する位置を、長幹がいしLIに近づける修正を示す操作を入力装置CNTに入力する。 As described above, the observation of the long insulator LI performed by the unmanned air vehicle D based on the observation control information OPG is different from the observation of the long insulator LI performed by the skilled worker OP based on the technical knowledge TKH. Specifically, the observation performed by the unmanned air vehicle D based on the observation control information OPG is performed by observing the long insulator LI remotely, and the observation performed by the skilled worker OP based on the technical knowledge TKH is performed by the long insulator LI. Observe closely. In this case, the skilled worker OP performs, on the input device CNT, an operation indicating a correction that brings the position where the unmanned air vehicle D flies closer to the long insulator LI based on the observation result ORT displayed on the display device DP. input.
 上述したように、表示装置DPに表示される観測結果ORTが、熟練作業者OPが有する技術知識TKHに基づく観測によって観測される位置とは異なる位置において電力設備Eを撮像した画像Pである場合がある。この場合には、熟練作業者OPは、表示装置DPに表示される観測結果ORTに応じて、無人飛行体Dが電力設備Eを観測する観測位置の修正を示す操作を入力装置CNTに入力する。 As described above, when the observation result ORT displayed on the display device DP is the image P obtained by capturing the power equipment E at a position different from the position observed by the observation based on the technical knowledge TKH possessed by the skilled worker OP. There is. In this case, the skilled worker OP inputs, to the input device CNT, an operation indicating correction of the observation position where the unmanned air vehicle D observes the power equipment E in accordance with the observation result ORT displayed on the display device DP. .
 また、例えば、表示装置DPに表示される観測結果ORTが、技術知識TKHに基づく観測の結果とは異なり、電力設備Eの左部分を撮像した画像Pである場合がある。この場合には、熟練作業者OPは、表示装置DPに表示される観測結果ORTに基づいて、無人飛行体Dを右向きにする修正を示す操作を入力装置CNTに入力する。 Also, for example, the observation result ORT displayed on the display device DP may be an image P obtained by imaging the left part of the power equipment E, unlike the observation result based on the technical knowledge TKH. In this case, the skilled worker OP inputs an operation indicating correction for turning the unmanned air vehicle D to the right on the input device CNT based on the observation result ORT displayed on the display device DP.
 上述したように、表示装置DPに表示される観測結果ORTが、熟練作業者OPが有する技術知識TKHに基づく観測によって観測される方向とは異なる方向において電力設備Eを撮像した画像Pである場合がある。この場合には、熟練作業者OPは、表示装置DPに表示される観測結果ORTに応じて、無人飛行体Dが電力設備Eを観測する観測方向の修正を示す操作を入力装置CNTに入力する。ここで、無人飛行体Dの観測方向には、上下左右の方向が含まれる。 As described above, when the observation result ORT displayed on the display device DP is the image P obtained by capturing the power equipment E in a direction different from the direction observed by the observation based on the technical knowledge TKH possessed by the skilled worker OP There is. In this case, the skilled worker OP inputs, to the input device CNT, an operation indicating correction of the observation direction in which the unmanned air vehicle D observes the power equipment E in accordance with the observation result ORT displayed on the display device DP. . Here, the observation direction of the unmanned air vehicle D includes the vertical and horizontal directions.
 すなわち、入力装置CNTに入力される操作とは、無人飛行体Dが電力設備Eを観測する観測位置の修正を示す操作および無人飛行体Dの観測方向の修正を示す操作である。
 ここで、上述したように、無人飛行体Dの電力設備Eの観測動作は、観測制御情報OPGに基づいて制御される。したがって、観測の動作に伴う無人飛行体Dが電力設備Eを観測する観測位置および観測方向とは、観測制御情報OPGに基づいて制御される。
 すなわち、熟練作業者OPが入力装置CNTに入力する操作とは、表示装置DPに表示される観測結果ORTに応じた操作であって、技術知識TKHに基づいた観測制御情報OPGの修正を示す操作である。
That is, the operation input to the input device CNT is an operation indicating correction of the observation position where the unmanned air vehicle D observes the power equipment E and an operation indicating correction of the observation direction of the unmanned air vehicle D.
Here, as described above, the observation operation of the power equipment E of the unmanned air vehicle D is controlled based on the observation control information OPG. Therefore, the observation position and the observation direction at which the unmanned air vehicle D associated with the observation operation observes the power equipment E is controlled based on the observation control information OPG.
That is, the operation input by the skilled worker OP to the input device CNT is an operation corresponding to the observation result ORT displayed on the display device DP, and an operation indicating correction of the observation control information OPG based on the technical knowledge TKH. It is.
 なお、上述では、入力装置CNTに入力される操作が、無人飛行体Dが電力設備Eを観測する観測位置の修正を示す操作および無人飛行体Dの観測方向の修正を示す操作である場合について説明したが、これに限られない。入力装置CNTには、表示装置DPに示される観測結果ORTに応じて、観測結果ORTである画像Pの画角の大きさの修正を示す操作が入力されてもよい。
 例えば、表示装置DPに表示される観測結果ORTが、技術知識TKHに基づく観測とは異なり電力設備Eを近接して撮像した画像Pである場合、入力装置CNTには、画像Pの画角を広くする操作が入力されてもよい。また、表示装置DPに表示される観測結果ORTが、技術知識TKHに基づく観測とは異なり電力設備Eを遠隔から撮像した画像Pである場合、入力装置CNTには、画像Pの画角を狭くする操作が入力されてもよい。
In the above description, the operation input to the input device CNT is an operation indicating the correction of the observation position where the unmanned air vehicle D observes the power equipment E and the operation indicating the correction of the observation direction of the unmanned air vehicle D. Although explained, it is not limited to this. An operation indicating correction of the size of the angle of view of the image P that is the observation result ORT may be input to the input device CNT according to the observation result ORT displayed on the display device DP.
For example, when the observation result ORT displayed on the display device DP is an image P obtained by imaging the power equipment E in the vicinity unlike the observation based on the technical knowledge TKH, the angle of view of the image P is displayed on the input device CNT. A widening operation may be input. Further, when the observation result ORT displayed on the display device DP is an image P obtained by remotely capturing the power equipment E unlike the observation based on the technical knowledge TKH, the input device CNT has a narrow angle of view of the image P. An operation to perform may be input.
 以下、図6を参照して修正情報蓄積装置1の構成について説明する。図6は、本実施形態の修正情報蓄積装置1の構成の一例を示す構成図である。
 図6に示す通り、修正情報蓄積装置1には、入力装置CNTが接続される。入力装置CNTには、表示装置DPに表示される観測結果ORTに応じた操作であって、技術知識TKHに基づいた観測制御情報OPGの修正を示す操作が入力される。
Hereinafter, the configuration of the correction information storage apparatus 1 will be described with reference to FIG. FIG. 6 is a configuration diagram illustrating an example of the configuration of the correction information storage device 1 of the present embodiment.
As shown in FIG. 6, an input device CNT is connected to the correction information storage device 1. The input device CNT receives an operation corresponding to the observation result ORT displayed on the display device DP and indicating the correction of the observation control information OPG based on the technical knowledge TKH.
 また、図6に示す通り、修正情報蓄積装置1は、制御部100と、記憶部150とを備える。制御部100は、CPU(Central Processing Unit)を備えており、操作検出部110と、出力部120とをその機能部として備える。
 以下、図6と、図7とを参照して修正情報蓄積装置1が備える各部の説明と、各部の動作とについて説明する。図7は、本実施形態の修正情報蓄積装置1の動作の一例を示す流れ図である。
In addition, as illustrated in FIG. 6, the correction information storage device 1 includes a control unit 100 and a storage unit 150. The control unit 100 includes a CPU (Central Processing Unit), and includes an operation detection unit 110 and an output unit 120 as functional units.
Hereinafter, with reference to FIG. 6 and FIG. 7, description of each part with which the correction information storage device 1 is provided, and operation | movement of each part are demonstrated. FIG. 7 is a flowchart showing an example of the operation of the correction information storage apparatus 1 of the present embodiment.
 図6に示す通り、操作検出部110は、入力装置CNTに入力される操作であって、技術知識TKHに基づいた観測制御情報OPGの修正を示す操作を検出する。操作検出部110は、検出した技術知識TKHに基づいた観測制御情報OPGの修正を示す操作を、操作情報OPTとして出力部120へ供給する。
 具体的には、図7に示す通り、操作検出部110は、入力装置CNTに入力される操作を検出する(ステップS110)。また、操作検出部110は、入力装置CNTに入力される操作を検出し、検出した結果である技術知識TKHに基づいた観測制御情報OPGの修正を示す操作を、操作情報OPTとして出力部120へ供給する(ステップS120)。
As illustrated in FIG. 6, the operation detection unit 110 detects an operation that is input to the input device CNT and indicates correction of the observation control information OPG based on the technical knowledge TKH. The operation detection unit 110 supplies an operation indicating correction of the observation control information OPG based on the detected technical knowledge TKH to the output unit 120 as operation information OPT.
Specifically, as shown in FIG. 7, the operation detection unit 110 detects an operation input to the input device CNT (step S110). Further, the operation detection unit 110 detects an operation input to the input device CNT, and an operation indicating correction of the observation control information OPG based on the technical knowledge TKH as a detection result is output to the output unit 120 as operation information OPT. Supply (step S120).
 図6に戻り、出力部120は、操作検出部110が検出した操作である操作情報OPTを取得する。出力部120は、取得した操作情報OPTを観測制御情報OPGの修正を示す情報である修正情報FIとして出力する。この一例では、出力部120は、観測制御情報OPGに基づく制御によって観測される電力設備Eであって、観測対象選択情報OESに含まれる観測対象設備OEである電力設備E毎に、修正情報FIを出力する。すなわち、修正情報FIとは、観測対象設備OEである電力設備E毎の観測に用いられる観測制御情報OPGの修正を示す情報である。
 また、この一例では、出力部120は、修正情報FIを記憶部150へ出力する。これにより、記憶部150には、出力部120が出力した修正情報FIが記憶される。
Returning to FIG. 6, the output unit 120 acquires operation information OPT that is an operation detected by the operation detection unit 110. The output unit 120 outputs the acquired operation information OPT as correction information FI that is information indicating correction of the observation control information OPG. In this example, the output unit 120 is the power information E observed by the control based on the observation control information OPG, and the correction information FI is set for each power equipment E that is the observation target equipment OE included in the observation target selection information OES. Is output. That is, the correction information FI is information indicating correction of the observation control information OPG used for observation for each power equipment E that is the observation target equipment OE.
In this example, the output unit 120 outputs the correction information FI to the storage unit 150. Thereby, the storage unit 150 stores the correction information FI output from the output unit 120.
 具体的には、図7に示す通り、出力部120は、操作検出部110から操作情報OPTを取得する(ステップS130)。また、出力部120は、操作情報OPTを修正情報FIとして記憶部150へ出力する(ステップS140)。 Specifically, as shown in FIG. 7, the output unit 120 acquires the operation information OPT from the operation detection unit 110 (step S130). Further, the output unit 120 outputs the operation information OPT as the correction information FI to the storage unit 150 (Step S140).
 なお、上述では、出力部120が修正情報FIをデジタル情報として出力する場合について説明したが、これに限られない。出力部120は、修正情報FIを音声によって出力してもよく、修正情報FIを紙媒体等に印刷することによって出力してもよく、修正情報FIを文字情報としてディスプレイ等の表示装置に表示してもよい。 In the above description, the case where the output unit 120 outputs the correction information FI as digital information has been described. However, the present invention is not limited to this. The output unit 120 may output the correction information FI by voice, or may output the correction information FI by printing it on a paper medium or the like, and displays the correction information FI as character information on a display device such as a display. May be.
 以上説明したように、本実施形態の修正情報蓄積装置1には、入力装置CNTが接続される。また、本実施形態の修正情報蓄積装置1は、制御部100と、記憶部150とを備える。制御部100はCPUを備えており、操作検出部110と、出力部120とをその機能部として備える。
 操作検出部110は、無人飛行体Dが観測した観測結果ORTが表示装置DPに出力されることに応じて入力装置CNTに入力された操作を検出する。観測結果ORTとは、需要家CSに電力を供給する設備である電力設備Eを観測する無人飛行体Dが、電力設備Eを観測する動作の制御に用いられる観測制御情報OPGに基づいて電力設備Eを観測した画像Pである。
 出力部120は、操作検出部110が検出した操作を観測制御情報OPGの修正を示す修正情報FIとして記憶部150に出力する。記憶部150には、出力部120が出力した修正情報FIが記憶される。
 これにより、本実施形態の修正情報蓄積装置1は、無人飛行体Dが観測した観測結果ORTに応じて、修正情報FIを出力することができる。
As described above, the input device CNT is connected to the correction information storage device 1 of the present embodiment. In addition, the correction information storage device 1 of the present embodiment includes a control unit 100 and a storage unit 150. The control unit 100 includes a CPU, and includes an operation detection unit 110 and an output unit 120 as functional units.
The operation detection unit 110 detects an operation input to the input device CNT in response to the observation result ORT observed by the unmanned air vehicle D being output to the display device DP. The observation result ORT is the power equipment based on the observation control information OPG used for controlling the operation of the unmanned air vehicle D that observes the power equipment E, which is the equipment that supplies power to the customer CS. This is an image P in which E is observed.
The output unit 120 outputs the operation detected by the operation detection unit 110 to the storage unit 150 as correction information FI indicating correction of the observation control information OPG. The storage unit 150 stores the correction information FI output from the output unit 120.
Thereby, the correction information storage apparatus 1 of this embodiment can output the correction information FI according to the observation result ORT observed by the unmanned air vehicle D.
 上述したように、熟練作業者OPは、表示装置DPに表示される観測結果ORTが、技術知識TKHに基づく観測の観測結果と異なる場合、観測制御情報OPGの修正を示す操作を入力装置CNTに入力する。すなわち、入力装置CNTに入力される観測制御情報OPGの修正を示す操作とは、技術知識TKHに基づく操作である。また、上述したように、修正情報蓄積装置1は、入力装置CNTに入力された観測制御情報OPGの修正を示す操作を示す操作情報OPTから、観測制御情報OPGの修正を示す修正情報FIを生成する。つまり、観測制御情報OPGの修正を示す修正情報FIとは、技術知識TKHを示す情報である。
 これにより、本実施形態の修正情報蓄積装置1によれば、熟練作業者OPが有する技術知識TKHを、修正情報FIとして出力することができる。
As described above, when the observation result ORT displayed on the display device DP is different from the observation result based on the technical knowledge TKH, the skilled worker OP performs an operation indicating correction of the observation control information OPG on the input device CNT. input. That is, the operation indicating correction of the observation control information OPG input to the input device CNT is an operation based on the technical knowledge TKH. Further, as described above, the correction information storage device 1 generates the correction information FI indicating the correction of the observation control information OPG from the operation information OPT indicating the operation indicating the correction of the observation control information OPG input to the input device CNT. To do. That is, the correction information FI indicating the correction of the observation control information OPG is information indicating the technical knowledge TKH.
Thereby, according to the correction information storage apparatus 1 of this embodiment, the technical knowledge TKH possessed by the skilled worker OP can be output as the correction information FI.
 ここで、従来の技術では、既知の技術知識を共有することができても、新たな技術知識を共有することまでは困難である場合があった。
 具体的には、人系によって電力設備の観測を行う場合、熟練作業者とは異なる作業者が、熟練作業者が有する技術知識を電力設備の観測を行う現場にて教示され、現場から作業事務所に戻った後に当該技術知識をデータベース等の共有装置によって共有する場合がある。この場合、技術知識を教示されてから共有装置に技術知識を入力するまで時間が経過する。したがって、作業者が、時間が経過することに伴い、熟練作業者から教示された技術知識を忘れてしまう場合、技術知識を正確に共有することが困難である場合があった。
 また、熟練作業者が電力設備の観測を行う現地において、共有が必要である技術知識に気づき、現地から作業事務所に戻った後に当該技術知識を共有装置によって共有する場合がある。この場合、共有が必要である技術知識に気づいてから共有装置に技術知識を入力するまで時間が経過する。したがって、熟練作業者が、時間が経過することに伴い、共有が必要である技術知識を忘れてしまう場合、技術知識を正確に共有することが困難である場合があった。
Here, in the conventional technique, even if the known technical knowledge can be shared, it may be difficult to share new technical knowledge.
Specifically, when observing power equipment by a human system, an operator different from a skilled worker is taught the technical knowledge possessed by the skilled worker at the site where the power facility is observed, and the work work is started from the site. After returning to the place, the technical knowledge may be shared by a sharing device such as a database. In this case, time elapses after the technical knowledge is taught until the technical knowledge is input to the sharing apparatus. Therefore, when the worker forgets the technical knowledge taught by the skilled worker as time passes, it may be difficult to accurately share the technical knowledge.
Further, there is a case where a skilled worker notices technical knowledge that needs to be shared at a site where the power facility is observed, and shares the technical knowledge with a sharing device after returning from the site to the work office. In this case, time elapses after the technical knowledge that needs to be shared is recognized and the technical knowledge is input to the sharing device. Therefore, when a skilled worker forgets technical knowledge that needs to be shared as time passes, it may be difficult to accurately share technical knowledge.
 本実施形態の修正情報蓄積装置1によれば、熟練作業者OPが表示装置DPに表示される観測結果ORTに応じて、技術知識TKHに基づく観測制御情報OPGの修正をその場で入力することができる。これにより、修正情報蓄積装置1は、表示装置DPに表示される観測結果ORTに応じた技術知識TKHを示す修正情報FIを漏れなく出力することができる。 According to the correction information storage device 1 of the present embodiment, the skilled worker OP inputs the correction of the observation control information OPG based on the technical knowledge TKH on the spot according to the observation result ORT displayed on the display device DP. Can do. Thereby, the correction information storage device 1 can output the correction information FI indicating the technical knowledge TKH corresponding to the observation result ORT displayed on the display device DP without omission.
 また、従来の技術では、熟練作業者が有する電力設備の観測の作業に関する技術知識を共有することができても、電力設備の観測を行う作業者の習熟度によっては、観測する電力設備に応じた技術知識を抽出することが困難である場合があった。 In addition, in the conventional technology, even if the skilled worker can share technical knowledge regarding the observation work of the power equipment, depending on the proficiency level of the worker who observes the power equipment, It may be difficult to extract technical knowledge.
 上述したように、本実施形態の修正情報蓄積装置1によれば、観測制御情報OPGの修正に用いられる修正情報FIを出力することができる。
 このため、無人飛行体Dが電力設備Eの観測の際に、修正情報FIが適用された観測制御情報OPGを用いればよく、観測する電力設備Eに応じた技術知識TKHを抽出する手間を削減することができる。すなわち、本実施形態の修正情報蓄積装置1によれば、観測する電力設備Eに応じた技術知識TKHを抽出する手間を削減することができる。
 これにより、本実施形態の修正情報蓄積装置1によれば、電力設備Eの観測を行う作業者の習熟度に関わらず、観測する電力設備Eに応じた技術知識TKHを電力設備Eの観測に適応することができる。
As described above, according to the correction information storage apparatus 1 of the present embodiment, the correction information FI used for correcting the observation control information OPG can be output.
For this reason, when the unmanned air vehicle D observes the power equipment E, it is sufficient to use the observation control information OPG to which the correction information FI is applied, thereby reducing the effort of extracting the technical knowledge TKH corresponding to the power equipment E to be observed. can do. That is, according to the correction information storage device 1 of the present embodiment, it is possible to reduce the effort of extracting the technical knowledge TKH corresponding to the power equipment E to be observed.
Thereby, according to the correction information storage device 1 of the present embodiment, the technical knowledge TKH corresponding to the power equipment E to be observed is used for the observation of the power equipment E regardless of the skill level of the operator who observes the power equipment E. Can adapt.
 また、従来の技術では、観測する電力設備に応じた技術知識を抽出することが可能な場合であっても、作業者の不注意等による観測の実施漏れ等によって、技術知識が示す電力設備の観測の実施漏れの程度を低減することが困難である場合があった。 Moreover, in the conventional technology, even if it is possible to extract technical knowledge according to the power equipment to be observed, due to omission of observation due to carelessness of the operator, etc., the power equipment indicated by the technical knowledge In some cases, it was difficult to reduce the level of omissions in observation.
 上述したように、本実施形態の修正情報蓄積装置1によれば、観測制御情報OPGの修正に用いられる修正情報FIを出力することができる。
 無人飛行体Dは、修正情報蓄積装置1が出力した修正情報FIが適用された観測制御情報OPGに基づいて制御されることにより、技術知識TKHに基づく電力設備Eの観測を行うことができる。この場合、無人飛行体Dは、電力設備Eの観測を観測制御情報OPGに基づいて行うため、電力設備Eの観測の実施を漏れなく行うことができる。
 すなわち、本実施形態の修正情報蓄積装置1によれば、技術知識TKHに基づく電力設備Eの観測の実施漏れの程度を低減することができる。
As described above, according to the correction information storage apparatus 1 of the present embodiment, the correction information FI used for correcting the observation control information OPG can be output.
The unmanned air vehicle D can control the power equipment E based on the technical knowledge TKH by being controlled based on the observation control information OPG to which the correction information FI output from the correction information storage device 1 is applied. In this case, since the unmanned air vehicle D performs observation of the power equipment E based on the observation control information OPG, it is possible to perform the observation of the power equipment E without omission.
That is, according to the correction information storage device 1 of the present embodiment, it is possible to reduce the degree of omission of observation of the power equipment E based on the technical knowledge TKH.
 また、入力装置CNTに入力される操作とは、例えば、無人飛行体Dが電力設備Eを観測する観測位置の修正を示す操作である。本実施形態の修正情報蓄積装置1は、入力装置CNTに入力される観測位置の修正を示す操作に基づいて修正情報FIを出力することができる。
 無人飛行体Dは、修正情報蓄積装置1が出力した修正情報FIが適用された観測制御情報OPGに基づいて制御されることにより、技術知識TKHに基づく位置において電力設備Eの観測を行うことができる。
The operation input to the input device CNT is, for example, an operation indicating correction of an observation position where the unmanned air vehicle D observes the power equipment E. The correction information storage device 1 of this embodiment can output the correction information FI based on an operation indicating correction of the observation position input to the input device CNT.
The unmanned air vehicle D is controlled based on the observation control information OPG to which the correction information FI output from the correction information storage device 1 is applied, so that the power equipment E can be observed at a position based on the technical knowledge TKH. it can.
 また、入力装置CNTに入力される操作とは、例えば、無人飛行体Dが電力設備Eを観測する観測方向の修正を示す操作である。本実施形態の修正情報蓄積装置1は、入力装置CNTに入力される観測方向の修正を示す操作に基づいて修正情報FIを出力することができる。
 無人飛行体Dは、修正情報蓄積装置1が出力した修正情報FIが適用された観測制御情報OPGに基づいて制御されることにより、技術知識TKHに基づく観測方向において電力設備Eの観測を行うことができる。
The operation input to the input device CNT is, for example, an operation indicating correction of the observation direction in which the unmanned air vehicle D observes the power equipment E. The correction information storage device 1 of the present embodiment can output the correction information FI based on an operation indicating correction of the observation direction input to the input device CNT.
The unmanned air vehicle D is controlled based on the observation control information OPG to which the correction information FI output from the correction information storage device 1 is applied, thereby observing the power equipment E in the observation direction based on the technical knowledge TKH. Can do.
 また、上述した通り、観測結果ORTが、無人飛行体Dが備える撮像部Cが電力設備Eを撮像した画像Pである場合、表示装置DPには観測結果ORTである画像Pが表示される。この場合、入力装置CNTに入力される操作とは、例えば、画像Pの画角の修正を示す操作である。本実施形態の修正情報蓄積装置1は、入力装置CNTに入力される画像Pの画角の修正を示す操作に基づいて修正情報FIを出力することができる。
 無人飛行体Dは、修正情報蓄積装置1が出力した修正情報FIが適用された観測制御情報OPGに基づいて制御されることにより、技術知識TKHに基づく画角において電力設備Eを撮像し画像Pを生成することができる。すなわち、無人飛行体Dは、技術知識TKHに基づく電力設備Eの観測を行うことができる。
Further, as described above, when the observation result ORT is the image P obtained by imaging the power equipment E by the imaging unit C included in the unmanned air vehicle D, the image P that is the observation result ORT is displayed on the display device DP. In this case, the operation input to the input device CNT is an operation indicating correction of the angle of view of the image P, for example. The correction information storage device 1 of the present embodiment can output the correction information FI based on an operation indicating correction of the angle of view of the image P input to the input device CNT.
The unmanned air vehicle D is controlled based on the observation control information OPG to which the correction information FI output from the correction information storage device 1 is applied, so that the power plant E is captured at an angle of view based on the technical knowledge TKH. Can be generated. That is, the unmanned air vehicle D can observe the power equipment E based on the technical knowledge TKH.
 なお、上述では、入力装置CNTに入力される操作とは、無人飛行体Dの観測方向、観測位置および画像Pの画角の修正を示す場合について説明したが、これに限られない。
 例えば、入力装置CNTには、撮像部Cが観測対象設備OEを撮像する際の撮像部Cの設定の修正を示す操作が入力されてもよい。撮像部Cの設定とは、例えば、撮像部Cが備えるカメラの設定である。具体的には、撮像部Cの設定とは、例えば、撮像部Cが観測対象設備OEを撮像し、生成される画像Pの色調の設定である。すなわち、入力装置CNTには、画像Pの色調の修正を示す操作が入力されてもよい。熟練作業者OPは、技術知識TKHに基づいて、観測対象設備OEに適した色調の修正を示す操作を入力装置CNTに入力する。技術知識TKHに基づく色調の修正とは、例えば、観測対象設備OEに付される色に応じた画像Pの色合いおよび明暗等の修正である。
 本実施形態の修正情報蓄積装置1は、入力装置CNTに入力される画像Pの色調の修正を示す操作に基づいて修正情報FIを出力することができる。無人飛行体Dは、修正情報蓄積装置1が出力した修正情報FIが適用された観測制御情報OPGに基づいて制御されることにより、技術知識TKHに基づく色調において電力設備Eを撮像し画像Pを生成することができる。すなわち、無人飛行体Dは、技術知識TKHに基づく電力設備Eの観測を行うことができる。
In the above description, the operation input to the input device CNT is described as a case where the observation direction of the unmanned air vehicle D, the observation position, and the angle of view of the image P are corrected. However, the present invention is not limited to this.
For example, an operation indicating correction of the setting of the imaging unit C when the imaging unit C images the observation target facility OE may be input to the input device CNT. The setting of the imaging unit C is, for example, a setting of a camera included in the imaging unit C. Specifically, the setting of the imaging unit C is, for example, the setting of the color tone of the image P that is generated when the imaging unit C images the observation target facility OE. That is, an operation indicating correction of the color tone of the image P may be input to the input device CNT. Based on the technical knowledge TKH, the skilled worker OP inputs an operation indicating a color tone correction suitable for the observation target equipment OE to the input device CNT. The correction of the color tone based on the technical knowledge TKH is, for example, correction of the hue and brightness of the image P according to the color attached to the observation target equipment OE.
The correction information storage device 1 of the present embodiment can output the correction information FI based on an operation indicating correction of the color tone of the image P input to the input device CNT. The unmanned air vehicle D is controlled based on the observation control information OPG to which the correction information FI output from the correction information storage device 1 is applied, so that the power equipment E is captured in the color tone based on the technical knowledge TKH and the image P is captured. Can be generated. That is, the unmanned air vehicle D can observe the power equipment E based on the technical knowledge TKH.
 また、例えば、撮像部Cの設定とは、撮像部Cが観測対象設備OEを撮像する際の受光感度の分光特性の設定である。受光感度の分光特性とは、撮像部Cが備えるカメラの受光素子に入射される入射光の波長毎の受光感度の分布を示す特性である。すなわち、入力装置CNTには、撮像部Cの受光感度の分光特性の修正を示す操作が入力されてもよい。熟練作業者OPは、技術知識TKHに基づいて、観測対象設備OEに適した受光感度の分光特性の修正を示す操作を入力装置CNTに入力する。技術知識TKHに基づく受光感度の分光特性の修正とは、例えば、観測対象設備OEが劣化し、変色することに応じて、観測対象設備OEの劣化変色後の色や波長の受光感度を高くする等の修正である。ここで、観測対象設備OEが電線WRである場合、電線WRは、劣化し、変色することに応じて、その色が黒色から赤褐色に変色する場合がある。この場合、技術知識TKHに基づく受光感度の分光特性の修正とは、電線WRが劣化し、変色することに応じて、電線WRの劣化変色後の色に応じた色や波長の受光感度を高くする等の修正である。具体的には、技術知識TKHに基づく受光感度の分光特性の修正とは、電線WRの劣化変色後の色である赤褐色の色や波長の受光感度を高くする等の修正である。
 本実施形態の修正情報蓄積装置1は、入力装置CNTに入力される撮像部Cの受光感度の分光特性の修正を示す操作に基づいて修正情報FIを出力することができる。無人飛行体Dは、修正情報蓄積装置1が出力した修正情報FIが適用された観測制御情報OPGに基づいて制御されることにより、技術知識TKHに基づく受光感度の分光特性において電力設備Eを撮像し画像Pを生成することができる。すなわち、無人飛行体Dは、技術知識TKHに基づく電力設備Eの観測を行うことができる。
Further, for example, the setting of the imaging unit C is a setting of the spectral characteristic of the light receiving sensitivity when the imaging unit C images the observation target equipment OE. The spectral characteristic of the light receiving sensitivity is a characteristic indicating a distribution of light receiving sensitivity for each wavelength of incident light incident on a light receiving element of a camera included in the imaging unit C. In other words, an operation indicating correction of the spectral characteristics of the light receiving sensitivity of the imaging unit C may be input to the input device CNT. Based on the technical knowledge TKH, the skilled worker OP inputs an operation indicating correction of the spectral characteristics of the light receiving sensitivity suitable for the observation target equipment OE to the input device CNT. The correction of the spectral characteristic of the light receiving sensitivity based on the technical knowledge TKH is, for example, increasing the light receiving sensitivity of the color or wavelength after the deterioration discoloration of the observation target equipment OE in accordance with the deterioration and discoloration of the observation target equipment OE. Etc. Here, when the observation target facility OE is the electric wire WR, the electric wire WR may deteriorate and change its color from black to reddish brown. In this case, the modification of the spectral characteristics of the light receiving sensitivity based on the technical knowledge TKH means that the light receiving sensitivity of the color or wavelength corresponding to the color after the deterioration and discoloration of the electric wire WR is increased according to the deterioration and discoloration of the electric wire WR. This is a correction. Specifically, the correction of the spectral characteristic of the light receiving sensitivity based on the technical knowledge TKH is a correction such as increasing the light receiving sensitivity of the reddish brown color or wavelength that is the color after the deterioration discoloration of the electric wire WR.
The correction information storage device 1 of the present embodiment can output the correction information FI based on an operation indicating correction of the spectral characteristics of the light receiving sensitivity of the imaging unit C input to the input device CNT. The unmanned air vehicle D is controlled based on the observation control information OPG to which the correction information FI output from the correction information storage device 1 is applied, thereby imaging the power equipment E in the spectral characteristics of the light receiving sensitivity based on the technical knowledge TKH. The image P can be generated. That is, the unmanned air vehicle D can observe the power equipment E based on the technical knowledge TKH.
 また、例えば、無人飛行体Dは、照明やフラッシュライト等の光源を備えていてもよい。無人飛行体Dは、観測対象設備OEの観測を夜間に行う場合や、撮像部Cが観測対象設備OEを撮像する際に光量が不足している場合等、光源によって観測対象設備OEに光を照射してもよい。
 ここで、入力装置CNTには、無人飛行体Dが備える光源によって観測対象設備OEに照射される光の照射方向の修正を示す操作が入力されてもよい。熟練作業者OPは、技術知識TKHに基づいて、観測対象設備OEの観測に適した光の照射方向の修正を示す操作を入力装置CNTに入力する。技術知識TKHに基づく光の照射方向の修正とは、例えば、観測対象設備OEに影が落ちない光の照射方向を示す修正である。
 本実施形態の修正情報蓄積装置1は、入力装置CNTに入力される光の照射方向の修正を示す操作に基づいて修正情報FIを出力することができる。無人飛行体Dは、修正情報蓄積装置1が出力した修正情報FIが適用された観測制御情報OPGに基づいて制御されることにより、技術知識TKHに基づく光の照射方向によって電力設備Eを撮像し画像Pを生成することができる。すなわち、無人飛行体Dは、技術知識TKHに基づく電力設備Eの観測を行うことができる。
Further, for example, the unmanned air vehicle D may include a light source such as an illumination or a flashlight. When the unmanned air vehicle D observes the observation target equipment OE at night, or when the imaging unit C images the observation target equipment OE, the unmanned air vehicle D emits light to the observation target equipment OE with a light source. It may be irradiated.
Here, an operation indicating correction of the irradiation direction of the light irradiated to the observation target facility OE by the light source included in the unmanned air vehicle D may be input to the input device CNT. Based on the technical knowledge TKH, the skilled worker OP inputs an operation indicating correction of the light irradiation direction suitable for observation of the observation target equipment OE to the input device CNT. The correction of the light irradiation direction based on the technical knowledge TKH is, for example, a correction indicating the light irradiation direction in which the shadow does not fall on the observation target equipment OE.
The correction information storage device 1 of the present embodiment can output the correction information FI based on an operation indicating correction of the irradiation direction of light input to the input device CNT. The unmanned air vehicle D is controlled based on the observation control information OPG to which the correction information FI output from the correction information storage device 1 is applied, thereby imaging the power equipment E according to the light irradiation direction based on the technical knowledge TKH. An image P can be generated. That is, the unmanned air vehicle D can observe the power equipment E based on the technical knowledge TKH.
[第2実施形態]
 次に図8を参照して、本発明の第2実施形態について説明する。図8は、第2実施形態の修正情報蓄積装置2の構成の一例を示す構成図である。
 なお、上述した第1実施形態と同様の構成および動作については、同一の符号を付してその説明を省略する。
 図8に示す通り、本実施形態では、修正情報蓄積装置2には、入力装置CNTと、飛行体制御情報生成装置PGDとが接続される。飛行体制御情報生成装置PGDは、上述した構成によって生成した観測制御情報OPGを修正情報蓄積装置2へ供給する。
[Second Embodiment]
Next, a second embodiment of the present invention will be described with reference to FIG. FIG. 8 is a configuration diagram illustrating an example of a configuration of the correction information storage device 2 according to the second embodiment.
In addition, about the structure and operation | movement similar to 1st Embodiment mentioned above, the same code | symbol is attached | subjected and the description is abbreviate | omitted.
As shown in FIG. 8, in the present embodiment, the correction information storage device 2 is connected to an input device CNT and an aircraft control information generation device PGD. The flying object control information generation device PGD supplies the observation control information OPG generated by the above-described configuration to the correction information storage device 2.
 また、図8に示す通り、本実施形態の修正情報蓄積装置2は、制御部200と、記憶部150とを備える。制御部200は、CPUを備えており、操作検出部110と、出力部120と、取得部210と、観測情報修正部220とをその機能部として備える。
 取得部210は、飛行体制御情報生成装置PGDから観測制御情報OPGを取得する。
取得部210は、取得した観測制御情報OPGを観測情報修正部220へ供給する。
Further, as illustrated in FIG. 8, the correction information storage device 2 of the present embodiment includes a control unit 200 and a storage unit 150. The control unit 200 includes a CPU, and includes an operation detection unit 110, an output unit 120, an acquisition unit 210, and an observation information correction unit 220 as functional units.
The acquisition unit 210 acquires observation control information OPG from the flying object control information generation device PGD.
The acquisition unit 210 supplies the acquired observation control information OPG to the observation information correction unit 220.
 観測情報修正部220は、取得部210から観測制御情報OPGを取得する。また、観測情報修正部220は、出力部120から修正情報FIを取得する。
 観測情報修正部220は、修正情報FIに基づいて、観測制御情報OPGを修正する。
 以降の説明において、観測情報修正部220が修正情報FIに基づいて修正した修正後の観測制御情報OPGを修正観測制御情報OPGFと記載する。すなわち、修正観測制御情報OPGFとは、修正情報FIが適用された観測制御情報OPGである。
The observation information correction unit 220 acquires the observation control information OPG from the acquisition unit 210. In addition, the observation information correction unit 220 acquires the correction information FI from the output unit 120.
The observation information correction unit 220 corrects the observation control information OPG based on the correction information FI.
In the following description, the corrected observation control information OPG corrected by the observation information correction unit 220 based on the correction information FI is referred to as corrected observation control information OPGF. That is, the corrected observation control information OPGF is observation control information OPG to which the correction information FI is applied.
 以上説明したように、本実施形態の修正情報蓄積装置2には、入力装置CNTと、飛行体制御情報生成装置PGDとが接続される。また、本実施形態の修正情報蓄積装置2は、制御部200と、記憶部150とを備える。
 制御部200は、操作検出部110と、出力部120と、取得部210と、観測情報修正部220とをその機能部として備える。
 取得部210は、飛行体制御情報生成装置PGDから観測制御情報OPGを取得する。
 観測情報修正部220は、取得部210が取得した観測制御情報OPGを出力部120が出力した修正情報FIに基づいて修正する。
As described above, the input device CNT and the flying object control information generation device PGD are connected to the correction information storage device 2 of the present embodiment. Further, the correction information storage device 2 of the present embodiment includes a control unit 200 and a storage unit 150.
The control unit 200 includes an operation detection unit 110, an output unit 120, an acquisition unit 210, and an observation information correction unit 220 as functional units.
The acquisition unit 210 acquires observation control information OPG from the flying object control information generation device PGD.
The observation information correction unit 220 corrects the observation control information OPG acquired by the acquisition unit 210 based on the correction information FI output by the output unit 120.
 これにより、本実施形態の修正情報蓄積装置2によれば、修正情報FIに基づいて、観測制御情報OPGを修正し、修正観測制御情報OPGFを生成することができる。また、上述したように、修正情報FIとは、技術知識TKHを示す情報である。すなわち、無人飛行体Dは、修正観測制御情報OPGFに基づいて電力設備Eを観測することにより、技術知識TKHに基づいて電力設備Eを観測することができる。 Thereby, according to the correction information storage device 2 of the present embodiment, the observation control information OPG can be corrected based on the correction information FI, and the corrected observation control information OPGF can be generated. As described above, the correction information FI is information indicating the technical knowledge TKH. That is, the unmanned air vehicle D can observe the power equipment E based on the technical knowledge TKH by observing the power equipment E based on the corrected observation control information OPGF.
 なお、上述では、無人飛行体Dが撮像部Cによって電力設備Eを観測する場合について説明したが、これに限られない。無人飛行体Dは、集音部を備えていてもよく、電力設備Eを音声によって観測してもよい。また、無人飛行体Dは、温度検出部を備えていてもよく、電力設備Eを温度によって観測してもよい。 In the above description, the case where the unmanned air vehicle D observes the power equipment E by the imaging unit C has been described, but the present invention is not limited thereto. The unmanned air vehicle D may include a sound collection unit, and the power equipment E may be observed by voice. Moreover, the unmanned air vehicle D may be provided with the temperature detection part, and may observe the electric power equipment E with temperature.
 なお、上述では、無人飛行体Dが、建物BDから電力設備Eまで飛行し、電力設備Eの観測を終えて建物BDへ帰還するまで、ある観測制御情報OPGに基づいて電力設備Eを観測する場合について説明したがこれに限られない。
 この一例では、上述したように、無人飛行体Dと、表示装置DPとが、情報の送受が可能なネットワークによって接続される修正情報蓄積システムであってもよい。無人飛行体Dと、表示装置DPとがネットワークに接続されることにより、無人飛行体Dは、現在観測する電力設備Eの観測結果ORTを表示装置DPへ送信する。また、表示装置DPは、無人飛行体Dが現在観測している電力設備Eの観測結果ORTを受信し、表示する。
In the above description, the unmanned air vehicle D flies from the building BD to the power equipment E, observes the power equipment E based on certain observation control information OPG until the observation of the power equipment E ends and returns to the building BD. Although the case has been described, the present invention is not limited to this.
In this example, as described above, the unmanned air vehicle D and the display device DP may be a modified information storage system connected by a network capable of transmitting and receiving information. When the unmanned air vehicle D and the display device DP are connected to the network, the unmanned air vehicle D transmits the observation result ORT of the power equipment E currently observed to the display device DP. Further, the display device DP receives and displays the observation result ORT of the power equipment E that the unmanned air vehicle D is currently observing.
 この場合、熟練作業者OPは、表示装置DPに表示された無人飛行体Dが現在観測する電力設備Eの観測結果ORTに応じて、技術知識TKHに基づく観測制御情報OPGの修正を示す操作を入力装置CNTに入力する。修正情報蓄積装置2は、入力装置CNTに入力された操作に基づいて、修正情報FIを生成する。また、修正情報蓄積装置2は、生成した修正情報FIに基づいて観測制御情報OPGを修正し、修正観測制御情報OPGFを生成する。 In this case, the skilled worker OP performs an operation indicating correction of the observation control information OPG based on the technical knowledge TKH according to the observation result ORT of the power equipment E currently observed by the unmanned air vehicle D displayed on the display device DP. Input to the input device CNT. The correction information storage device 2 generates correction information FI based on the operation input to the input device CNT. The correction information storage device 2 corrects the observation control information OPG based on the generated correction information FI, and generates corrected observation control information OPGF.
 また、この一例では、無人飛行体Dと、修正情報蓄積装置2とは、情報の送受が可能なネットワークによって接続される。また、この一例では、修正情報蓄積装置2は、修正観測制御情報OPGFを無人飛行体Dへ送信する。また、この一例では、無人飛行体Dは、修正情報蓄積装置2から修正観測制御情報OPGFを受信し、受信した修正観測制御情報OPGFに基づいて観測制御情報OPGを更新する。
 無人飛行体Dは、修正情報蓄積装置2から更新した観測制御情報OPGに基づいて、電力設備Eを観測する。
In this example, the unmanned air vehicle D and the correction information storage device 2 are connected by a network capable of transmitting and receiving information. In this example, the correction information storage device 2 transmits the correction observation control information OPGF to the unmanned air vehicle D. In this example, the unmanned air vehicle D receives the corrected observation control information OPGF from the correction information storage device 2, and updates the observation control information OPG based on the received corrected observation control information OPGF.
The unmanned air vehicle D observes the power equipment E based on the observation control information OPG updated from the correction information storage device 2.
 これにより、熟練作業者OPは、表示装置DPに表示される観測結果ORTであって、無人飛行体Dが現在観測する電力設備Eの観測結果ORTに基づいて入力装置CNTに観測制御情報OPGの修正を示す操作を入力することができる。これにより、本実施形態の修正情報蓄積装置2は、入力装置CNTに入力される操作に基づいて修正観測制御情報OPGFを生成することができる。すなわち、無人飛行体Dは、現在観測する電力設備Eの観測動作の制御が更新された観測制御情報OPGに基づいて、電力設備Eを観測することができる。 Thereby, the skilled worker OP is the observation result ORT displayed on the display device DP, and the observation control information OPG is transmitted to the input device CNT based on the observation result ORT of the power equipment E currently observed by the unmanned air vehicle D. An operation indicating correction can be input. Thereby, the correction information storage device 2 of the present embodiment can generate the correction observation control information OPGF based on an operation input to the input device CNT. That is, the unmanned air vehicle D can observe the power equipment E based on the observation control information OPG in which the control of the observation operation of the power equipment E currently observed is updated.
 なお、上記の各実施形態における修正情報蓄積装置1および修正情報蓄積装置2が備える各部は、専用のハードウェアにより実現されるものであってもよく、また、メモリおよびマイクロプロセッサにより実現させるものであってもよい。 In addition, each part with which the correction information storage device 1 and the correction information storage device 2 in each of the above embodiments are provided may be realized by dedicated hardware, or by a memory and a microprocessor. There may be.
 なお、修正情報蓄積装置1および修正情報蓄積装置2が備える各部は、メモリおよびCPU(中央演算装置)により構成され、修正情報蓄積装置1および修正情報蓄積装置2が備える各部の機能を実現するためのプログラムをメモリにロードして実行することによりその機能を実現させるものであってもよい。 Note that each unit included in the correction information storage device 1 and the correction information storage device 2 includes a memory and a CPU (central processing unit), and realizes functions of the units included in the correction information storage device 1 and the correction information storage device 2. This function may be realized by loading the program into a memory and executing it.
 また、修正情報蓄積装置1および修正情報蓄積装置2が備える各部の機能を実現するためのプログラムをコンピュータ読み取り可能な記録媒体に記録して、この記録媒体に記録されたプログラムをコンピュータシステムに読み込ませ、実行することにより処理を行ってもよい。なお、ここでいう「コンピュータシステム」とは、OSや周辺機器等のハードウェアを含むものとする。 Further, a program for realizing the function of each unit included in the correction information storage device 1 and the correction information storage device 2 is recorded on a computer-readable recording medium, and the program recorded on the recording medium is read into a computer system. The processing may be performed by executing. Here, the “computer system” includes an OS and hardware such as peripheral devices.
 また、「コンピュータシステム」は、WWWシステムを利用している場合であれば、ホームページ提供環境(あるいは表示環境)も含むものとする。
 また、「コンピュータ読み取り可能な記録媒体」とは、フレキシブルディスク、光磁気ディスク、ROM、CD-ROM等の可搬媒体、コンピュータシステムに内蔵されるハードディスク等の記憶装置のことをいう。さらに「コンピュータ読み取り可能な記録媒体」とは、インターネット等のネットワークや電話回線等の通信回線を介してプログラムを送信する場合の通信線のように、短時間の間、動的にプログラムを保持するもの、その場合のサーバやクライアントとなるコンピュータシステム内部の揮発性メモリのように、一定時間プログラムを保持しているものも含むものとする。また上記プログラムは、前述した機能の一部を実現するためのものであってもよく、さらに前述した機能をコンピュータシステムにすでに記録されているプログラムとの組み合わせで実現できるものであってもよい。
Further, the “computer system” includes a homepage providing environment (or display environment) if a WWW system is used.
The “computer-readable recording medium” refers to a storage device such as a flexible medium, a magneto-optical disk, a portable medium such as a ROM or a CD-ROM, and a hard disk incorporated in a computer system. Furthermore, the “computer-readable recording medium” dynamically holds a program for a short time like a communication line when transmitting a program via a network such as the Internet or a communication line such as a telephone line. In this case, a volatile memory in a computer system serving as a server or a client in that case, and a program that holds a program for a certain period of time are also included. The program may be a program for realizing a part of the functions described above, and may be a program capable of realizing the functions described above in combination with a program already recorded in a computer system.
 以上、本発明の実施形態を、図面を参照して詳述してきたが、具体的な構成はこの実施形態に限られるものではなく、本発明の趣旨を逸脱しない範囲で適宜変更を加えることができる。上述した各実施形態に記載の構成を組み合わせてもよい。 The embodiment of the present invention has been described in detail with reference to the drawings. However, the specific configuration is not limited to this embodiment, and appropriate modifications may be made without departing from the spirit of the present invention. it can. You may combine the structure as described in each embodiment mentioned above.
1、2…修正情報蓄積装置、100、200、500…制御部、150…記憶部、110…操作検出部、120…出力部、210…取得部、220…観測情報修正部、510…取得部、530…飛行制御情報生成部、540…観測対象選択部、550…観測制御情報生成部、FI…修正情報、OPGF…修正観測制御情報、DP…表示装置、C…撮像部、D…無人飛行体、PGD…飛行体制御情報生成装置、OPG…観測制御情報、FPG…飛行制御情報、OES…観測対象選択情報、ORT…観測結果、P…画像、CNT…入力装置、OPT…操作情報、EID…設備情報記憶装置、EI…設備情報、EN…設備名情報、EP、EP1、EP3、EP5…設備位置情報、OSD…観測範囲指定装置、AI…観測範囲情報、AE…観測終了位置情報、AS…観測開始位置情報、OP…熟練作業者、CS…需要家、TKH…技術知識、BD…建物、AH、AH1、AH2、AH3…アークホーン、SC、SC1、SC2、SC3…懸垂クランプ、ST、ST1、ST2、ST3…鉄塔、WR、WR1、WR2…電線 DESCRIPTION OF SYMBOLS 1, 2 ... Correction information storage apparatus, 100, 200, 500 ... Control part, 150 ... Memory | storage part, 110 ... Operation detection part, 120 ... Output part, 210 ... Acquisition part, 220 ... Observation information correction part, 510 ... Acquisition part 530 ... Flight control information generation unit, 540 ... Observation target selection unit, 550 ... Observation control information generation unit, FI ... Correction information, OPGF ... Correction observation control information, DP ... Display device, C ... Imaging unit, D ... Unmanned flight Body, PGD ... Aircraft control information generator, OPG ... Observation control information, FPG ... Flight control information, OES ... Observation target selection information, ORT ... Observation result, P ... Image, CNT ... Input device, OPT ... Operation information, EID ... equipment information storage device, EI ... equipment information, EN ... equipment name information, EP, EP1, EP3, EP5 ... equipment position information, OSD ... observation range designation device, AI ... observation range information, AE ... observation end position Information, AS ... Observation start position information, OP ... Skilled worker, CS ... Consumer, TKH ... Technical knowledge, BD ... Building, AH, AH1, AH2, AH3 ... Arc horn, SC, SC1, SC2, SC3 ... Suspension clamp , ST, ST1, ST2, ST3 ... steel tower, WR, WR1, WR2 ... electric wire

Claims (9)

  1.  需要家に電力を供給する設備を観測する無人飛行体が前記設備を観測する動作の制御に用いられる観測制御情報に基づいて観測された観測結果が出力されることに応じた操作を検出する操作検出部と、
     前記操作検出部が検出した前記操作を前記観測制御情報の修正を示す修正情報として出力する出力部と
     を備えることを特徴とする修正情報蓄積装置。
    An operation for detecting an operation in response to an observation result output based on observation control information used for controlling an operation of an unmanned air vehicle for observing the facility supplying power to a consumer. A detection unit;
    A correction information storage device, comprising: an output unit that outputs the operation detected by the operation detection unit as correction information indicating correction of the observation control information.
  2.  前記操作とは、
     前記無人飛行体が前記設備を観測する観測位置の修正を示す操作である
     ことを特徴とする請求項1に記載の修正情報蓄積装置。
    The operation is
    The correction information storage device according to claim 1, wherein the unmanned air vehicle is an operation indicating correction of an observation position at which the facility is observed.
  3.  前記操作とは、
     前記無人飛行体が前記設備を観測する観測方向の修正を示す操作である
     ことを特徴とする請求項1または請求項2に記載の修正情報蓄積装置。
    The operation is
    The correction information storage device according to claim 1, wherein the unmanned air vehicle is an operation indicating correction of an observation direction in which the facility is observed.
  4.  前記観測結果とは、
     前記無人飛行体が備える撮像部が前記設備を撮像した画像であって、
     前記操作とは、
     前記画像の画角の大きさの修正を示す操作である
     ことを特徴とする請求項1から請求項3のいずれか一項に記載の修正情報蓄積装置。
    The observation result is
    An imaging unit provided in the unmanned air vehicle is an image obtained by imaging the equipment,
    The operation is
    The correction information storage device according to any one of claims 1 to 3, wherein the operation is an operation indicating correction of a size of an angle of view of the image.
  5.  前記観測結果とは、
     前記無人飛行体が備える撮像部が前記設備を撮像した画像であって、
     前記操作とは、
     前記画像の色調の修正を示す操作である
     ことを特徴とする請求項1から請求項4のいずれか一項に記載の修正情報蓄積装置。
    The observation result is
    An imaging unit provided in the unmanned air vehicle is an image obtained by imaging the equipment,
    The operation is
    The correction information storage device according to any one of claims 1 to 4, wherein the operation is an operation indicating correction of a color tone of the image.
  6.  前記観測結果とは、
     前記無人飛行体が備える撮像部が前記設備を撮像した画像であって、
     前記操作とは、
     前記撮像部の受光感度の分光特性の修正を示す操作である
     ことを特徴とする請求項1から請求項5のいずれか一項に記載の修正情報蓄積装置。
    The observation result is
    An imaging unit provided in the unmanned air vehicle is an image obtained by imaging the equipment,
    The operation is
    The correction information storage device according to any one of claims 1 to 5, wherein the correction information is an operation indicating correction of spectral characteristics of light reception sensitivity of the imaging unit.
  7.  前記観測結果とは、
     前記無人飛行体が備える撮像部が前記設備を撮像した画像であって、
     前記操作とは、
     前記無人飛行体が備える光源によって前記設備に照射される光の照射方向の修正を示す操作である
     ことを特徴とする請求項1から請求項6のいずれか一項に記載の修正情報蓄積装置。
    The observation result is
    An imaging unit provided in the unmanned air vehicle is an image obtained by imaging the equipment,
    The operation is
    The correction information storage device according to any one of claims 1 to 6, wherein the operation is an operation indicating correction of an irradiation direction of light irradiated on the facility by a light source provided in the unmanned air vehicle.
  8.  前記観測制御情報を取得する取得部と、
     前記取得部が取得した前記観測制御情報を前記出力部が出力した前記修正情報に基づいて修正する観測情報修正部と
     を更に備えることを特徴とする請求項1から請求項7のいずれか一項に記載の修正情報蓄積装置。
    An acquisition unit for acquiring the observation control information;
    The observation information correction unit that corrects the observation control information acquired by the acquisition unit based on the correction information output by the output unit. The correction information storage device described in 1.
  9.  請求項8に記載の修正情報蓄積装置と、無人飛行体とを備え、
     前記修正情報蓄積装置は、
     前記観測情報修正部が観測制御情報を修正した修正観測制御情報を送信し、
     前記無人飛行体は、
     前記修正情報蓄積装置が送信した前記修正観測制御情報を受信し、受信した前記修正観測制御情報に基づいて、前記観測制御情報を更新する
     ことを特徴とする修正情報蓄積システム。
    The correction information storage device according to claim 8 and an unmanned air vehicle,
    The correction information storage device includes:
    The observation information correction unit transmits corrected observation control information in which the observation control information is corrected,
    The unmanned air vehicle is
    The correction information storage system characterized by receiving the correction observation control information transmitted by the correction information storage device and updating the observation control information based on the received correction observation control information.
PCT/JP2016/083918 2016-01-06 2016-11-16 Correction information accumulating device and correction information accumulating system WO2017119194A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-001184 2016-01-06
JP2016001184A JP2017123016A (en) 2016-01-06 2016-01-06 Modification information storage device and modification information storage system

Publications (1)

Publication Number Publication Date
WO2017119194A1 true WO2017119194A1 (en) 2017-07-13

Family

ID=59273596

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/083918 WO2017119194A1 (en) 2016-01-06 2016-11-16 Correction information accumulating device and correction information accumulating system

Country Status (2)

Country Link
JP (1) JP2017123016A (en)
WO (1) WO2017119194A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110963037A (en) * 2019-12-27 2020-04-07 国网河北省电力有限公司衡水供电分公司 Relay type unmanned aerial vehicle power transmission and distribution line inspection system and method

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006027448A (en) * 2004-07-16 2006-02-02 Chugoku Electric Power Co Inc:The Aerial photographing method and device using unmanned flying body
JP2013157676A (en) * 2012-01-26 2013-08-15 Canon Inc Photographing support system, photographing support device, control method for photographing support device, and program
JP2014236245A (en) * 2013-05-30 2014-12-15 株式会社ニコン Remote operation program for camera, and remote controller

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006027448A (en) * 2004-07-16 2006-02-02 Chugoku Electric Power Co Inc:The Aerial photographing method and device using unmanned flying body
JP2013157676A (en) * 2012-01-26 2013-08-15 Canon Inc Photographing support system, photographing support device, control method for photographing support device, and program
JP2014236245A (en) * 2013-05-30 2014-12-15 株式会社ニコン Remote operation program for camera, and remote controller

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110963037A (en) * 2019-12-27 2020-04-07 国网河北省电力有限公司衡水供电分公司 Relay type unmanned aerial vehicle power transmission and distribution line inspection system and method

Also Published As

Publication number Publication date
JP2017123016A (en) 2017-07-13

Similar Documents

Publication Publication Date Title
US11676257B2 (en) Method and device for detecting defect of meal box, server, and storage medium
WO2018056498A1 (en) Transmission line electromagnetic field and instantaneous inspection image acquisition device and method
WO2017042650A3 (en) System and method for planning and performing a repeat interventional procedure
US10009595B2 (en) Image calibration system and calibration method of a stereo camera
CN108269322B (en) Inspection method
EP3689215A8 (en) Region attribute determination
CN107992064B (en) Slave unmanned aerial vehicle flight control method, device and system based on master unmanned aerial vehicle
WO2014186420A3 (en) Augmented reality (ar) capture & play
WO2012100030A3 (en) Imaging and visualization systems, instruments, and methods using optical coherence tomography
EP2202489A3 (en) Avionics display system and method for generating three dimensional display including error-compensated airspace
US20180160507A1 (en) Visual tracking system and method
WO2011143073A3 (en) Method, system, and apparatus for pressure image registration
WO2012003512A3 (en) Aircraft hover system and method
MX2016012999A (en) Apparatus and method for generating image around vehicle.
WO2020068384A3 (en) Systems, methods and apparatuses to perform self-authentication
US20210302152A1 (en) Three-Dimensional Scanning Method and System
CN113972586B (en) High-voltage transmission line unmanned aerial vehicle carrying laser foreign matter removing system and method
WO2017119194A1 (en) Correction information accumulating device and correction information accumulating system
CA2916849C (en) Georeferencing method and system
WO2020100356A1 (en) Queue management device, queue management system, queue management method, and program
SG10201907975SA (en) Machine to machine targeting maintaining positive identification
CN110850894A (en) Automatic return method and device for unmanned aerial vehicle, unmanned aerial vehicle and storage medium
WO2019026516A1 (en) Video distribution system
US20130271604A1 (en) Integrated method for camera planning and positioning
CN205334240U (en) Many rotors of infrared detection electric power patrols line unmanned aerial vehicle system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16883694

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16883694

Country of ref document: EP

Kind code of ref document: A1