WO2017119112A1 - Manipulator system and method for driving same - Google Patents

Manipulator system and method for driving same Download PDF

Info

Publication number
WO2017119112A1
WO2017119112A1 PCT/JP2016/050436 JP2016050436W WO2017119112A1 WO 2017119112 A1 WO2017119112 A1 WO 2017119112A1 JP 2016050436 W JP2016050436 W JP 2016050436W WO 2017119112 A1 WO2017119112 A1 WO 2017119112A1
Authority
WO
WIPO (PCT)
Prior art keywords
lumen
manipulator
shape
shape sensor
sensor
Prior art date
Application number
PCT/JP2016/050436
Other languages
French (fr)
Japanese (ja)
Inventor
雅敏 飯田
直也 畠山
Original Assignee
オリンパス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by オリンパス株式会社 filed Critical オリンパス株式会社
Priority to PCT/JP2016/050436 priority Critical patent/WO2017119112A1/en
Priority to JP2017559999A priority patent/JP6701232B2/en
Publication of WO2017119112A1 publication Critical patent/WO2017119112A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B90/00Instruments, implements or accessories specially adapted for surgery or diagnosis and not covered by any of the groups A61B1/00 - A61B50/00, e.g. for luxation treatment or for protecting wound edges
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J18/00Arms
    • B25J18/06Arms flexible

Definitions

  • the present invention relates to a manipulator system and a driving method thereof.
  • an optical fiber sensor is arranged at a joint of a manipulator, and based on information on bending of the optical fiber sensor and information on a kinematic model, kinematic shape information of the manipulator, that is, information on a joint angle of the manipulator Is known (for example, see Patent Document 1).
  • Patent Document 1 requires a space for mounting the optical fiber sensor at the distal end portion of the manipulator that is required to be reduced in diameter for minimizing the invasiveness. Therefore, it is difficult to reduce the diameter of the distal end portion of the manipulator. Therefore, there is a problem that it is difficult to realize minimally invasiveness.
  • the present invention has been made in view of the above-described circumstances, and provides a manipulator system and a driving method thereof that can improve the operability of the manipulator while reducing the diameter of the insertion portion including the manipulator. It is an object.
  • a first aspect of the present invention is a tube member having flexibility and having a lumen penetrating in the longitudinal direction, and the shape of the lumen can be detected by being removably inserted into the lumen of the tube member.
  • the tube member into which the shape sensor is inserted into the lumen is inserted into the body cavity
  • the tube member and the shape sensor are curved following the shape of the body cavity.
  • the shape of the lumen of the tube member is detected by the shape sensor.
  • the shape sensor is removed from the lumen, and instead the manipulator is inserted into the lumen, the manipulator is bent following the shape of the lumen, and the tip reaches the target site.
  • the control unit can perform appropriate control according to the curved shape of the manipulator. Further, by alternately inserting the shape sensor and the manipulator into the lumen of the tube member, it is not necessary to secure a space for inserting two of the shape sensor and the manipulator in the tube member. Therefore, the operability of the manipulator can be improved while reducing the diameter of the manipulator and the tube member.
  • the manipulator includes an elongated flexible portion, a movable portion provided at a distal end of the flexible portion, a drive portion provided at a proximal end of the flexible portion, and driving the movable portion, and the movable portion. It is good also as providing the tension transmission member which connects the said drive part, and the said control part controls the said drive part.
  • the movable part of the manipulator can be accurately driven regardless of the shape of the tube member by controlling the drive part by the control unit based on the shape of the lumen of the tube member detected by the shape sensor.
  • the alignment portion can align the lumen of the tube member and the shape sensor in the longitudinal direction, and detect the curved shape of the lumen of the tube member more accurately. Thereby, the operability of the manipulator can be further improved.
  • the inclination control part which controls the inclination around the central axis of the said shape sensor accommodated in the said lumen
  • the inclination regulating unit associates the inclination around the center axis of the lumen of the tube member with the inclination around the center axis of the shape sensor, and more accurately detects the curved shape of the lumen of the tube member. can do. Thereby, the operability of the manipulator can be further improved.
  • the tilt restricting portion may be a key groove provided in one of the lumen and the shape sensor and a key provided in the other of the lumen and the shape sensor.
  • the axial alignment part which makes the center axis
  • the center shape of the lumen and the shape sensor can be substantially matched to detect the shape of the lumen with high accuracy.
  • the said axial alignment part is good also as a compensation member which fills the radial gap of the said lumen
  • the central axis of the lumen and the central axis of the shape sensor can be made to substantially coincide with each other with a simple configuration in which a filling member is buried in the radial gap between the lumen and the shape sensor.
  • control unit detects the shape of the lumen by the shape sensor and updates the control parameter of the manipulator, and does not detect the shape of the lumen and update the control parameter.
  • the detection update mode may be switched.
  • indication from the user which switches the said detection update mode and the said non-detection update mode to the said control part.
  • the user can switch between the detection update mode and the non-detection update mode at a desired timing by the input unit, such as when the manipulator is changed or the part of the body to be treated is changed. .
  • the manipulator can be driven with high accuracy by appropriately updating the control parameters of the manipulator.
  • control unit may include a mode switching unit that automatically switches between the detection update mode and the non-detection update mode.
  • a switching execution unit that switches from the detection update mode to the detection update mode may be provided.
  • the switching execution unit automatically switches from the non-detection update mode to the detection update mode.
  • the control parameters of the manipulator can be updated quickly.
  • the shape detection step the shape of the lumen of the tube member is detected by the shape sensor, and in the parameter update step, the control parameter of the manipulator is updated according to the shape of the lumen detected by the shape sensor.
  • the manipulator inserted in the lumen instead of the shape sensor is driven with appropriate control parameters.
  • the shape sensor and the manipulator alternately in the lumen of the tube member, it is not necessary to provide a space for the shape sensor and the manipulator in the lumen, so the diameter of the tube member and manipulator is reduced.
  • the manipulator inserted into the lumen can be operated with high accuracy regardless of the shape of the lumen.
  • the manipulator system 1 penetrates in an endoscope 3 and a manipulator (treatment tool) 5 inserted into the body of a patient P and in a longitudinal direction in which these can be accommodated.
  • An overtube (tube member) 11 having lumens 9A and 9B, a shape sensor 13 capable of detecting the shape of the overtube 11, an operation unit (input unit) 15 operated by an operator A, and an operation unit 15
  • a control unit 17 that controls the manipulator 5 based on an operation and a monitor 19 that displays an image acquired by the endoscope 3 are provided.
  • the manipulator 5 includes an elongated flexible part 5A inserted into the body of the patient P via the overtube 11, a movable part 5B disposed at the distal end of the flexible part 5A, and a base of the flexible part 5A.
  • a drive unit 5C such as a motor is disposed on the end side and drives the movable unit 5B by a tension transmission member such as a wire (not shown).
  • the movable portion 5B is disposed at the forefront in the longitudinal direction, and has a treatment portion 7A that acts on and treats the affected area in the body, and a plurality of positions that change the distal end position and posture of the treatment portion 7A. And a joint 7B.
  • the treatment portion 7A and each joint 7B are driven by the traction force of the tension transmitting member.
  • the drive unit 5C is provided with an encoder 5D for detecting the drive amount, as shown in FIG.
  • the drive unit 5C is driven based on the control signal sent from the control unit 17, and the output of the encoder 5D that detects the drive amount is fed back, so that the drive amount according to the control signal of the control unit 17 is obtained. Is controlled to be achieved.
  • the overtube 11 is an elongated tube made of a flexible material as shown in FIG.
  • the overtube 11 includes a slightly thicker diameter distal end tubular portion 11A disposed on the distal end side and a slightly smaller diameter proximal end tubular portion 11B extending in the longitudinal direction from the proximal end of the distal end tubular portion 11A.
  • the distal tubular portion 11A is provided with an endoscope lumen 9A through which the endoscope 3 can be inserted and removed, and a manipulator lumen 9B through which the manipulator 5 can be inserted and removed, and the proximal tubular portion 11B includes Only a manipulator lumen 9B extending from the distal tubular portion 11A is provided.
  • the manipulator lumen 9 ⁇ / b> B has a diameter that is almost the same as the diameter of the flexible portion 5 ⁇ / b> A of the manipulator 5. Further, as shown in FIG. 5A, the manipulator lumen 9B has an alignment recess (alignment portion) 10 that is recessed radially outward on the inner surface of the longitudinal tip.
  • the shape sensor 13 is, for example, an elongated optical fiber sensor or a three-dimensional magnetic sensor having flexibility as shown in FIG.
  • the shape sensor 13 can be removably inserted into the endoscope lumen 9A of the overtube 11 instead of the manipulator 5.
  • the shape sensor 13 is inserted into the endoscope lumen 9A so as to detect the shape of the endoscope lumen 9A.
  • the shape sensor 13 has an alignment convex portion (alignment portion) 14 made of an elastic body that can expand and contract in the radial direction on the side surface of the longitudinal end portion.
  • the alignment convex part 14 is formed to be extendable and contractable by, for example, a spring 14A.
  • the control unit 17 controls the drive unit 5 ⁇ / b> C of the manipulator 5 according to the control parameter.
  • the control parameter is set based on the estimated shape value of the manipulator 5 estimated from the shape of the endoscope lumen 9 ⁇ / b> A of the overtube 11 detected by the shape sensor 13.
  • the shape of the flexible portion 5A of the manipulator 5 changes following the shape of the endoscope lumen 9A. Therefore, the curved shape of the manipulator 5 is substantially equal to the curved shape of the endoscope lumen 9A, and the curved shape of the endoscope lumen 9A can be estimated as the curved shape of the overtube 11.
  • the control parameter 17 is automatically updated every time the shape sensor 13 detects the shape of the endoscope lumen 9A. Note that the operator A may manually update the control parameters.
  • control unit 17 detects the shape of the manipulator lumen 9B by the shape sensor 13 and updates the control parameters of the manipulator 5, and the manipulator lumen 9B. It is possible to switch between a standby mode and a treatment mode (both are non-detection update modes) in which shape detection and control parameter update are not performed.
  • the mode switching is performed by the operator A operating the operation unit 15.
  • the standby mode is set at startup.
  • the mode is switched to the sensor insertion mode when the shape sensor 13 is inserted into the manipulator lumen 9B, and the mode is switched to the treatment mode when restarted without changing the treatment site in the body.
  • the mode is switched to the treatment mode when the shape of the manipulator lumen 9B is detected and the control parameter is updated, and the mode is switched to the standby mode in an emergency.
  • the mode is switched to the standby mode at the time of emergency or at the end of the treatment, and the mode is switched to the sensor insertion mode when the treatment site is changed.
  • the shape sensor 13 is inserted into the endoscope lumen 9A of the overtube 11, and the shape of the endoscope lumen 9A is determined.
  • the parameter update step S3 for updating the control parameter for controlling the manipulator 5 based on the shape of the endoscope lumen 9A detected by the shape detection step S2, and the shape sensor 13.
  • It includes a treatment step (control step) S6 for inserting the manipulator 5 into the endoscope lumen 9A and controlling the drive unit 5C of the manipulator 5 based on the control parameter updated in the parameter update step S3.
  • the operator A switches the control unit 17 from the standby mode to the sensor insertion mode, and overruns outside the patient P's body.
  • the shape sensor 13 is inserted into the endoscope lumen 9A of the tube 11 (step S1).
  • the alignment projection 14 of the shape sensor 13 is accommodated in the alignment recess 10 of the manipulator lumen 9B, whereby the manipulator lumen 9B and the shape sensor 13 can be aligned in the insertion direction.
  • the operator A inserts the overtube 11 containing the shape sensor 13 into the body cavity of the patient P.
  • the overtube 11 containing the shape sensor 13 is inserted into the body cavity, the flexible overtube 11 and the shape sensor 13 bend following the shape of the body cavity of the patient P.
  • the operator A places the distal end of the overtube 11 in the vicinity of the target site for treatment, and the shape sensor 13 detects the shape of the endoscope lumen 9A of the overtube 11 (shape detection step S2). And the control parameter which controls the manipulator 5 is updated by the control part 17 based on the shape of the lumen 9A for endoscopes of the overtube 11 detected by the shape sensor 13 (parameter update step S3).
  • the operator A switches the control unit 17 from the sensor insertion mode to the treatment mode, and leaves the overtube 11 in the body of the patient P, and moves the shape sensor 13 from the endoscope lumen 9A of the overtube 11.
  • Remove step S4.
  • the manipulator 5 is inserted into the endoscope lumen 9A (step S5).
  • the flexible part 5A is curved following the shape of the endoscope lumen 9A, and the movable part 5B at the tip reaches the target affected part of the patient P.
  • Step S6 the operator A operates the operation unit 15 to start treatment.
  • the control unit 6 operates based on the command signal sent from the operation unit 15, and the control unit 6 controls the drive unit 5C of the manipulator 5 according to the updated control parameter to drive the movable unit 5B (control). Step S6).
  • the shape of the flexible portion 5A of the manipulator 5 and the shape of the tension transmission member change in accordance with the shape of the endoscope lumen 9A of the overtube 11, so that it can be moved by the frictional force according to the shape of the tension transmission member.
  • the tension of the tension transmitting member necessary for driving the portion 5B changes.
  • the drive unit 5C is controlled by the control unit 17 based on the shape of the endoscope lumen 9A detected in advance by the shape sensor 13, so that the manipulator 5 is controlled regardless of the shape of the overtube 11.
  • the movable portion 5B can be driven with high accuracy.
  • the curved shape of the manipulator lumen 9B of the overtube 11 equal to the curved shape of the manipulator 5 is detected in advance by the shape sensor 13, and the manipulator 5
  • the control unit 17 can perform appropriate control according to the curved shape of the manipulator 5.
  • the shape sensor 13 and the manipulator 5 into the manipulator lumen 9B of the overtube 11, it is not possible to secure a space for inserting two of the shape sensor 13 and the manipulator 5 into the overtube 11. I'll do it. Therefore, the operability of the manipulator 5 can be improved while reducing the diameter of the manipulator 5 and the overtube 11.
  • the overtube 11 that can accommodate the endoscope 3 and the manipulator 5 has been exemplified and described as the tube member.
  • the shape sensor 13 and the manipulator 5 are alternately inserted into the lumen of the endoscope treatment tool CH21, and the manipulator 5 is changed based on the shape of the lumen of the endoscope treatment tool CH21 detected by the shape sensor 13.
  • the abutting portion may be, for example, an elastic body 22 having a spring 14A as shown in FIGS. 9A and 9B, or as compared to the diameter of the manipulator lumen 9B as shown in FIGS. 10A and 10B. It may be a flange portion 23 that extends greatly outward in the radial direction.
  • the elastic body 22 or the flange portion 23 as the butting portion is formed from the manipulator of the shape sensor 13 so as to abut against the insertion port of the manipulator lumen 9B when the tip of the shape sensor 13 reaches the tip of the overtube 11. What is necessary is just to arrange
  • a sensor detection line sensor
  • the sensors may be, for example, photosensors 25A and 25B as shown in FIGS. 11A and 11B.
  • the photosensors 25A and 25B may be disposed on the inner surface of the tip of the manipulator lumen 9B of the overtube 11 so as to face each other in the radial direction.
  • the shape sensor 13 inserted into the manipulator lumen 9B detects that light is blocked between the photosensors 25A and 25B, the shape sensor 13 is inserted to a predetermined position of the manipulator lumen 9B. It should be.
  • the sensors may employ proximity sensors 27A and 27B as shown in FIGS. 12A and 12B, for example.
  • the proximity sensor 27A may be disposed on the inner surface of the distal end of the manipulator lumen 9B of the overtube 11 and the proximity sensor 27B may be disposed on the side surface of the distal end of the shape sensor 13.
  • the shape sensor 13 is inserted into the manipulator lumen 9B and it is detected that the proximity sensors 27A and 27B are close to each other, the shape sensor 13 is inserted up to a predetermined position of the manipulator lumen 9B. And it is sufficient.
  • the proximity sensors 27A and 27B include inductive proximity sensors, capacitive proximity sensors, magnetic proximity sensors, and the like.
  • the sensor may employ a magnet 29A and a hall element 29B as shown in FIGS. 13A and 13B, for example.
  • the magnet 29A may be disposed on the inner surface of the distal end of the manipulator lumen 9B of the overtube 11 and the Hall element 29B may be disposed on the side surface of the distal end of the shape sensor 13. Then, when the shape sensor 13 is inserted into the manipulator lumen 9B and the magnetic field by the magnet 29A is detected by the Hall element 29B, the shape sensor 13 is inserted to a predetermined position of the manipulator lumen 9B. That's fine.
  • a roller 31A and an encoder 31B may be employed as the alignment unit.
  • the roller 31 ⁇ / b> A may be disposed at the insertion port of the manipulator lumen 9 ⁇ / b> B of the overtube 11 so as to be rotatable around an axis orthogonal to the insertion direction of the shape sensor 13.
  • the amount of insertion of the shape sensor 13 may be detected by detecting the amount of rotation of the roller 31A that rotates when the shape sensor 13 inserted into the manipulator lumen 9B contacts the roller 31A with the encoder 31B.
  • control unit 17 when the insertion of the shape sensor 13 into the manipulator lumen 9B is detected by each sensor, the control unit (mode switching unit, switching execution unit) 17 changes from the non-detection update mode to the detection update mode. It is good also as switching. By doing in this way, the control parameter of the manipulator 5 can be updated quickly.
  • an effective range in the longitudinal direction of the shape sensor 13 may be set.
  • the shape sensor 13 may have a plurality of detection points 33 arranged at predetermined distance intervals in the longitudinal direction.
  • the total length of the manipulator lumen 9B of the overtube 11 is stored in advance by the control unit 17, and detection information from only the detection points 33 arranged in the same range as the total length of the manipulator lumen 9B from the tip of the shape sensor 13 is obtained. It is only necessary to detect the shape of the manipulator lumen 9B. By doing in this way, even when the manipulator 5 and the shape sensor 13 are placed apart from the overtube 11, the shape of the manipulator lumen 9B can be accurately detected.
  • an inclination restricting portion that restricts the inclination of the shape sensor 13 accommodated in the manipulator lumen 9B around the central axis may be provided.
  • the tilt restricting portion includes a groove-like key groove 35 ⁇ / b> A formed along the longitudinal direction on the inner surface of the manipulator lumen 9 ⁇ / b> B and the side surface of the shape sensor 13 in the longitudinal direction. It may be a protruding key 35B formed along.
  • a convex key 35B is formed along the longitudinal direction on the inner surface of the manipulator lumen 9B, and a groove-like key groove 35A is formed along the longitudinal direction on the side surface of the shape sensor 13. Also good.
  • the inclination restricting portion may be obtained by processing the cross-sectional shape of the shape sensor 13 and the cross-sectional shape of the manipulator lumen 9B into a polygonal shape or a D-cut shape, respectively.
  • the shape sensor 13 has a quadrangular prism shape extending along the longitudinal direction, or as shown in FIGS. 17 and 18B, the shape sensor 13 has a triangular prism shape extending along the longitudinal direction.
  • the shape sensor 13 may be formed in a shape obtained by cutting a part of a columnar circumferential direction extending in the longitudinal direction in the longitudinal direction. In this case, the manipulator lumen 9 ⁇ / b> B only needs to be processed into a shape corresponding to the shape of the shape sensor 13.
  • an axis aligning section that substantially matches the center axis of the manipulator lumen 9B and the center axis of the shape sensor 13 may be provided.
  • the shaft alignment portion may employ a compensation member that fills the radial gap between the manipulator lumen 9B and the shape sensor 13 substantially uniformly over the entire area in the circumferential direction.
  • the filling member may be a plurality of convex portions 37 ⁇ / b> A that are formed on the inner surface at the same position in the longitudinal direction of the manipulator lumen 9 ⁇ / b> B and project radially inward from each other.
  • the convex portions 37A opposed in the radial direction may be arranged so as to be separated by a distance slightly larger than the radial dimension of the shape sensor 13.
  • it is necessary is just to arrange
  • the compensation member may be an annular protrusion 37 ⁇ / b> B that protrudes radially outward over the entire circumferential direction of the shape sensor 13.
  • These convex portions 37A and 37B may be, for example, an elastic body having a spring inside.
  • the center axis of the manipulator lumen 9B and the center axis of the shape sensor 13 are different from the center axis of the lumen. If they do not match, an error is likely to occur between the shape of the manipulator lumen 9B detected by the shape sensor 13 and the actual shape of the manipulator lumen 9B.
  • the central axes of the manipulator lumen 9B and the shape sensor 13 are made to substantially coincide with each other so that the shape of the manipulator lumen 9B is made. It can be detected with high accuracy.
  • the filling member may be a cylindrical intermediate sheath 39 having a thickness dimension that fills a radial gap between the manipulator lumen 9 ⁇ / b> B and the shape sensor 13.
  • the filling member may be a balloon 41 disposed in a radial gap of the shape sensor 13 or the manipulator lumen 9B. The balloon 41 may be inflated when the shape sensor 13 is inserted at a desired position in the manipulator lumen 9B.
  • the central axis of the manipulator lumen 9B and the central axis of the shape sensor 13 are substantially reduced with a simple configuration in which a filling member is filled in the radial gap between the manipulator lumen 9B and the shape sensor 13.
  • the shape of the manipulator lumen 9B can be accurately detected.

Landscapes

  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Surgery (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Animal Behavior & Ethology (AREA)
  • Oral & Maxillofacial Surgery (AREA)
  • Biomedical Technology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Medical Informatics (AREA)
  • Molecular Biology (AREA)
  • Pathology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Robotics (AREA)
  • Mechanical Engineering (AREA)
  • Endoscopes (AREA)

Abstract

The purpose of the present invention is to reduce the diameter of an insertion part including a manipulator and improve the operability of the manipulator. This manipulator system 1 is provided with: a flexible overtube 11 having a manipulator lumen 9B that passes therethrough in the longitudinal direction; a flexible shape sensor 13 that is removably inserted into the manipulator lumen 9B of the overtube 11 and capable of detecting the shape of the manipulator lumen 9B; a flexible manipulator 5 that can be inserted into the manipulator lumen 9B instead of the shape sensor 13; and a control unit 17 that controls the manipulator 5 on the basis of the shape of the manipulator lumen 9B detected by the shape sensor 13.

Description

マニピュレータシステムとその駆動方法Manipulator system and its driving method
 本発明は、マニピュレータシステムとその駆動方法に関するものである。 The present invention relates to a manipulator system and a driving method thereof.
 従来、マニピュレータの関節に光ファイバセンサを配置し、光ファイバセンサの曲げに関する情報と運動学的なモデルに関する情報とを基に、マニピュレータの運動学的な形状情報、すなわち、マニピュレータの関節角度に関する情報を出力する方法が知られている(例えば、特許文献1参照。)。 Conventionally, an optical fiber sensor is arranged at a joint of a manipulator, and based on information on bending of the optical fiber sensor and information on a kinematic model, kinematic shape information of the manipulator, that is, information on a joint angle of the manipulator Is known (for example, see Patent Document 1).
米国特許第7720322号明細書US Patent No. 7,720,322
 しかしながら、特許文献1に記載の方法では、低侵襲化のために細径化が求められるマニピュレータの先端部に光ファイバセンサを搭載するスペースが必要なため、マニピュレータの先端部の細径化が妨げられ、低侵襲化の実現が困難になるという問題がある。 However, the method described in Patent Document 1 requires a space for mounting the optical fiber sensor at the distal end portion of the manipulator that is required to be reduced in diameter for minimizing the invasiveness. Therefore, it is difficult to reduce the diameter of the distal end portion of the manipulator. Therefore, there is a problem that it is difficult to realize minimally invasiveness.
 本発明は、上述した事情に鑑みてなされたものであって、マニピュレータを含む挿入部の細径化を図りつつ、マニピュレータの操作性を向上することができるマニピュレータシステムおよびその駆動方法を提供することを目的としている。 The present invention has been made in view of the above-described circumstances, and provides a manipulator system and a driving method thereof that can improve the operability of the manipulator while reducing the diameter of the insertion portion including the manipulator. It is an object.
 上記目的を達成するために、本発明は以下の手段を提供する。
 本発明の第1態様は、可撓性を有し、長手方向に貫通するルーメンを有するチューブ部材と、該チューブ部材の前記ルーメンに挿脱可能に挿入されて、該ルーメンの形状を検出可能な可撓性を有する形状センサと、該形状センサに代えて、前記ルーメン内に挿入可能な可撓性を有するマニピュレータと、前記形状センサにより検出された前記ルーメンの形状に基づいて、前記マニピュレータを制御する制御部とを備えるマニピュレータシステムである。
In order to achieve the above object, the present invention provides the following means.
A first aspect of the present invention is a tube member having flexibility and having a lumen penetrating in the longitudinal direction, and the shape of the lumen can be detected by being removably inserted into the lumen of the tube member. A flexible shape sensor, a flexible manipulator that can be inserted into the lumen instead of the shape sensor, and the manipulator controlled based on the shape of the lumen detected by the shape sensor It is a manipulator system provided with the control part to perform.
 本態様によれば、ルーメン内に形状センサを挿入したチューブ部材を体腔内に挿入していくと、チューブ部材および形状センサが体腔の形状に倣って湾曲する。チューブ部材の先端を処置の目的部位近傍に配置すると、チューブ部材のルーメンの形状が形状センサによって検出される。その後、ルーメン内から形状センサを抜き去り、これに代えてマニピュレータをルーメン内に挿入していくと、マニピュレータがルーメンの形状に倣って湾曲し、先端が目的部位に到達する。 According to this aspect, when the tube member into which the shape sensor is inserted into the lumen is inserted into the body cavity, the tube member and the shape sensor are curved following the shape of the body cavity. When the distal end of the tube member is disposed in the vicinity of the treatment target site, the shape of the lumen of the tube member is detected by the shape sensor. Thereafter, when the shape sensor is removed from the lumen, and instead the manipulator is inserted into the lumen, the manipulator is bent following the shape of the lumen, and the tip reaches the target site.
 この場合において、マニピュレータの湾曲形状はルーメンの湾曲形状と等しく、ルーメンの湾曲形状は形状センサにより予め検出されているので、制御部はマニピュレータの湾曲形状に合わせて適正な制御を行うことができる。また、形状センサとマニピュレータをチューブ部材のルーメン内に交互に挿入することで、チューブ部材にこれら形状センサとマニピュレータの2本分を挿入可能なスペースを確保しなくて済む。
 したがって、マニピュレータやチューブ部材の細径化を図りつつ、マニピュレータの操作性を向上することができる。
In this case, since the curved shape of the manipulator is equal to the curved shape of the lumen, and the curved shape of the lumen is detected in advance by the shape sensor, the control unit can perform appropriate control according to the curved shape of the manipulator. Further, by alternately inserting the shape sensor and the manipulator into the lumen of the tube member, it is not necessary to secure a space for inserting two of the shape sensor and the manipulator in the tube member.
Therefore, the operability of the manipulator can be improved while reducing the diameter of the manipulator and the tube member.
 上記態様においては、前記マニピュレータが、細長い軟性部と、該軟性部の先端に設けられた可動部と、前記軟性部の基端に設けられ前記可動部を駆動する駆動部と、前記可動部と前記駆動部とを接続する張力伝達部材とを備え、前記制御部が前記駆動部を制御することとしてもよい。 In the above aspect, the manipulator includes an elongated flexible portion, a movable portion provided at a distal end of the flexible portion, a drive portion provided at a proximal end of the flexible portion, and driving the movable portion, and the movable portion. It is good also as providing the tension transmission member which connects the said drive part, and the said control part controls the said drive part.
 このように構成することで、体腔内に挿入されたチューブ部材のルーメン内にマニピュレータを挿入すると、ルーメンの形状に倣ってマニピュレータの軟性部および張力伝達部材の形状が変化することにより、張力伝達部材の形状に応じた摩擦力によって、可動部を駆動するのに必要な張力伝達部材の張力が変化する。 With this configuration, when the manipulator is inserted into the lumen of the tube member inserted into the body cavity, the shape of the flexible portion of the manipulator and the shape of the tension transmission member change according to the shape of the lumen, whereby the tension transmission member The tension of the tension transmitting member necessary for driving the movable part changes due to the frictional force according to the shape of the.
 この場合において、形状センサにより検出されたチューブ部材のルーメンの形状に基づいて制御部により駆動部を制御することで、チューブ部材の形状に関わらずマニピュレータの可動部を精度よく駆動させることができる。 In this case, the movable part of the manipulator can be accurately driven regardless of the shape of the tube member by controlling the drive part by the control unit based on the shape of the lumen of the tube member detected by the shape sensor.
 上記態様においては、前記ルーメンと該ルーメン内に収容される前記形状センサとを挿入方向に位置合わせる位置合わせ部を備えることとしてもよい。
 このように構成することで、位置合わせ部により、チューブ部材のルーメンと形状センサとを長手方向に位置合わせして、チューブ部材のルーメンの湾曲形状をより精度よく検出することができる。これにより、マニピュレータの操作性をより向上することができる。
In the said aspect, it is good also as providing the position alignment part which aligns the said lumen and the said shape sensor accommodated in this lumen in an insertion direction.
With this configuration, the alignment portion can align the lumen of the tube member and the shape sensor in the longitudinal direction, and detect the curved shape of the lumen of the tube member more accurately. Thereby, the operability of the manipulator can be further improved.
 上記態様においては、前記ルーメン内に収容される前記形状センサの中心軸回りの傾きを規制する傾き規制部を備えることとしてもよい。
 このように構成することで、傾き規制部により、チューブ部材のルーメンの中心軸回りの傾きと形状センサの中心軸回りの傾きとを対応付けて、チューブ部材のルーメンの湾曲形状をより精度よく検出することができる。これにより、マニピュレータの操作性をより向上することができる。
In the said aspect, it is good also as providing the inclination control part which controls the inclination around the central axis of the said shape sensor accommodated in the said lumen | rumen.
By configuring in this way, the inclination regulating unit associates the inclination around the center axis of the lumen of the tube member with the inclination around the center axis of the shape sensor, and more accurately detects the curved shape of the lumen of the tube member. can do. Thereby, the operability of the manipulator can be further improved.
 上記態様においては、前記傾き規制部が、前記ルーメンおよび前記形状センサの一方に設けられたキー溝と、前記ルーメンおよび前記形状センサの他方に設けられたキーであることとしてもよい。
 このように構成することで、チューブ部材のルーメンおよび形状センサのキー溝とキーとを合わせるだけの簡易な操作で、形状センサの中心軸回りの傾きを容易かつ正確に規制することができる。
In the above aspect, the tilt restricting portion may be a key groove provided in one of the lumen and the shape sensor and a key provided in the other of the lumen and the shape sensor.
With this configuration, it is possible to easily and accurately regulate the inclination of the shape sensor around the central axis with a simple operation of aligning the lumen of the tube member and the key groove and key of the shape sensor.
 上記態様においては、前記ルーメンの中心軸と該ルーメン内の前記形状センサの中心軸とを略一致させる軸合わせ部を備えることとしてもよい。
 チューブ部材のルーメン内に挿入された形状センサの中心軸がルーメンの中心軸と異なると、形状センサにより検出されるルーメンの形状と実際のルーメンの形状とに誤差が生じ易い。軸合わせ部を設けることにより、ルーメンと形状センサの径寸法が大きく異なる場合でも、ルーメンと形状センサの中心軸を略一致させてルーメンの形状を精度よく検出することができる。
In the said aspect, it is good also as providing the axial alignment part which makes the center axis | shaft of the said lumen and the center axis | shaft of the said shape sensor in this lumen correspond substantially.
If the central axis of the shape sensor inserted into the lumen of the tube member is different from the central axis of the lumen, an error is likely to occur between the shape of the lumen detected by the shape sensor and the actual shape of the lumen. By providing the axis alignment portion, even when the diameters of the lumen and the shape sensor are greatly different, the center shape of the lumen and the shape sensor can be substantially matched to detect the shape of the lumen with high accuracy.
 上記態様においては、前記軸合わせ部が、前記ルーメンと前記形状センサとの径方向の隙間を周方向の全域に亘り略均等に埋める補填部材であることとしてもよい。
 このように構成することで、ルーメンと形状センサとの径方向の隙間に補填部材を埋めるだけの簡易な構成で、ルーメンの中心軸と形状センサの中心軸とを略一致させることができる。
In the said aspect, the said axial alignment part is good also as a compensation member which fills the radial gap of the said lumen | rumen and the said shape sensor substantially uniformly over the whole region of the circumferential direction.
With this configuration, the central axis of the lumen and the central axis of the shape sensor can be made to substantially coincide with each other with a simple configuration in which a filling member is buried in the radial gap between the lumen and the shape sensor.
 上記態様においては、前記制御部が、前記形状センサにより前記ルーメンの形状を検出して前記マニピュレータの制御パラメータを更新する検出更新モードと、前記ルーメンの形状検出および前記制御パラメータの更新を行わない非検出更新モードとを切り替え可能なこととしてもよい。
 このように構成することで、形状センサによるチューブ部材のルーメンの形状検出と、マニピュレータによる体腔内の目的部位の処置とをモードにより切り替えて実行することができる。
In the above aspect, the control unit detects the shape of the lumen by the shape sensor and updates the control parameter of the manipulator, and does not detect the shape of the lumen and update the control parameter. The detection update mode may be switched.
With this configuration, the shape detection of the lumen of the tube member by the shape sensor and the treatment of the target site in the body cavity by the manipulator can be switched and executed depending on the mode.
 上記態様においては、前記検出更新モードと前記非検出更新モードとを切り替えるユーザからの指示を前記制御部に入力する入力部を備えることとしてもよい。
 このように構成することで、マニピュレータを変更した場合や処置を施す体内の部位を変更した場合など、入力部により、ユーザが所望のタイミングで検出更新モードと非検出更新モードとを切り替えることができる。これにより、マニピュレータの制御パラメータを適宜更新して、マニピュレータを精度よく駆動することができる。
In the said aspect, it is good also as providing the input part which inputs the instruction | indication from the user which switches the said detection update mode and the said non-detection update mode to the said control part.
With this configuration, the user can switch between the detection update mode and the non-detection update mode at a desired timing by the input unit, such as when the manipulator is changed or the part of the body to be treated is changed. . Thereby, the manipulator can be driven with high accuracy by appropriately updating the control parameters of the manipulator.
 上記態様においては、前記制御部が、前記検出更新モードと前記非検出更新モードとを自動的に切り替えるモード切替部を備えることとしてもよい。
 このように構成することで、ユーザが手動でモードを切り替えなくて済み、操作を簡便化することができる。
In the above aspect, the control unit may include a mode switching unit that automatically switches between the detection update mode and the non-detection update mode.
With this configuration, the user does not have to switch the mode manually, and the operation can be simplified.
 上記態様においては、前記モード切替部が、前記ルーメン内に前記形状センサが挿入されたことを検出する検出センサと、前記形状センサが挿入されたことを前記検出センサにより検出された場合に前記非検出更新モードから前記検出更新モードに切り替える切替実行部とを備えることとしてもよい。 In the above aspect, when the mode switching unit detects that the shape sensor has been inserted into the lumen and the detection sensor detects that the shape sensor has been inserted, A switching execution unit that switches from the detection update mode to the detection update mode may be provided.
 このように構成することで、チューブ部材のルーメン内に形状センサが挿入されたことを検出センサによって検出されると、切替実行部により非検出更新モードから検出更新モードに自動的に切り替えられるので、マニピュレータの制御パラメータを迅速に更新することができる。 By configuring in this way, when the detection sensor detects that the shape sensor has been inserted into the lumen of the tube member, the switching execution unit automatically switches from the non-detection update mode to the detection update mode. The control parameters of the manipulator can be updated quickly.
 本発明の第2態様は、可撓性を有する細長いチューブ部材のルーメンに形状センサを挿入して、前記ルーメンの形状を検出する形状検出ステップと、該形状検出ステップにより検出された前記ルーメンの形状に基づき、マニピュレータを制御する制御パラメータを更新するパラメータ更新ステップと、前記ルーメンに挿入された前記形状センサに代えて前記マニピュレータを挿入し、前記パラメータ更新ステップにより更新された前記制御パラメータに基づいて、前記マニピュレータを制御する制御ステップとを含むマニピュレータシステムの駆動方法である。 According to a second aspect of the present invention, there is provided a shape detection step of detecting a shape of the lumen by inserting a shape sensor into the lumen of the flexible elongated tube member, and the shape of the lumen detected by the shape detection step Based on the parameter update step for updating a control parameter for controlling the manipulator, and inserting the manipulator instead of the shape sensor inserted in the lumen, based on the control parameter updated by the parameter update step, And a control step for controlling the manipulator.
 本態様によれば、形状検出ステップにおいて、形状センサによりチューブ部材のルーメンの形状が検出され、パラメータ更新ステップにおいて、形状センサにより検出されたルーメンの形状に合わせてマニピュレータの制御パラメータが更新されることで、制御ステップにおいて、ルーメン内に形状センサに代えて挿入されたマニピュレータが適正な制御パラメータで駆動される。 According to this aspect, in the shape detection step, the shape of the lumen of the tube member is detected by the shape sensor, and in the parameter update step, the control parameter of the manipulator is updated according to the shape of the lumen detected by the shape sensor. In the control step, the manipulator inserted in the lumen instead of the shape sensor is driven with appropriate control parameters.
 この場合において、チューブ部材のルーメン内に形状センサとマニピュレータとを交互に挿入することにより、ルーメンに形状センサとマニピュレータの2本分のスペースを設けなくて済むので、チューブ部材やマニピュレータが細径化されたマニピュレータシステムにおいて、ルーメンの形状に関わらず、ルーメン内に挿入したマニピュレータを高精度に操作することができる。 In this case, by inserting the shape sensor and the manipulator alternately in the lumen of the tube member, it is not necessary to provide a space for the shape sensor and the manipulator in the lumen, so the diameter of the tube member and manipulator is reduced. In the manufactured manipulator system, the manipulator inserted into the lumen can be operated with high accuracy regardless of the shape of the lumen.
 本発明によれば、マニピュレータを含む挿入部の細径化を図りつつ、マニピュレータの操作性を向上することができるという効果を奏する。 According to the present invention, it is possible to improve the manipulator operability while reducing the diameter of the insertion portion including the manipulator.
本発明の一実施形態に係るマニピュレータシステムを示す全体構成図である。It is a whole lineblock diagram showing the manipulator system concerning one embodiment of the present invention. 図1の内視鏡、マニピュレータ、形状センサおよびマニピュレータを示す概略構成図である。It is a schematic block diagram which shows the endoscope of FIG. 1, a manipulator, a shape sensor, and a manipulator. オーバーチューブの先端部とその先端部を貫通する内視鏡の先端部およびマニピュレータの先端部を示す概略構成図である。It is a schematic block diagram which shows the front-end | tip part of an overtube, the front-end | tip part of the endoscope which penetrates the front-end | tip part, and the front-end | tip part of a manipulator. 制御部とマニピュレータの駆動部、可動部およびエンコーダを示すブロック図である。It is a block diagram which shows the drive part, movable part, and encoder of a control part and a manipulator. オーバーチューブに形状センサを挿入する前のこれらの縦断面図である。It is these longitudinal cross-sectional views before inserting a shape sensor in an overtube. オーバーチューブに形状センサを挿入した状態のこれらの縦断面図である。It is these longitudinal cross-sectional views of the state which inserted the shape sensor in the overtube. 待機モード、センサ挿入モードおよび処置モードの遷移関係を示す図である。It is a figure which shows the transition relationship of standby mode, sensor insertion mode, and treatment mode. 本発明の一実施形態に係るマニピュレータシステムの駆動方法を示すフローチャートである。It is a flowchart which shows the drive method of the manipulator system which concerns on one Embodiment of this invention. チューブ部材としての内視鏡処置具CHに形状センサを挿入する様子を示す概略図である。It is the schematic which shows a mode that a shape sensor is inserted in endoscope treatment tool CH as a tube member. 本発明の一実施形態の第1変形例に係るマニピュレータシステムの突き当て部を有する形状センサをオーバーチューブに挿入する前のこれらの縦断面図である。It is these longitudinal cross-sectional views before inserting the shape sensor which has the butting part of the manipulator system which concerns on the 1st modification of one Embodiment of this invention in an overtube. 図9Aの形状センサをオーバーチューブに挿入した状態のこれらの縦断面図である。It is these longitudinal cross-sectional views of the state which inserted the shape sensor of FIG. 9A in the overtube. 本発明の一実施形態の第1変形例に係るマニピュレータシステムの別の突き当て部を有する形状センサをオーバーチューブに挿入する前のこれらの縦断面図である。It is these longitudinal cross-sectional views before inserting the shape sensor which has another abutting part of the manipulator system which concerns on the 1st modification of one Embodiment of this invention in an overtube. 図10Aの形状センサをオーバーチューブに挿入した状態のこれらの縦断面図である。It is these longitudinal cross-sectional views of the state which inserted the shape sensor of FIG. 10A in the overtube. 本発明の一実施形態の第1変形例に係るマニピュレータシステムのフォトセンサを有するオーバーチューブに形状センサを挿入する前のこれらの縦断面図である。It is these longitudinal cross-sectional views before inserting a shape sensor in the overtube which has a photosensor of the manipulator system which concerns on the 1st modification of one Embodiment of this invention. 図11Aのオーバーチューブに形状センサを挿入した状態のこれらの縦断面図である。It is these longitudinal cross-sectional views of the state which inserted the shape sensor in the overtube of FIG. 11A. 本発明の一実施形態の第1変形例に係るマニピュレータシステムの近接センサを有するオーバーチューブに形状センサを挿入する前のこれらの縦断面図である。It is these longitudinal cross-sectional views before inserting a shape sensor in the overtube which has a proximity sensor of the manipulator system which concerns on the 1st modification of one Embodiment of this invention. 図12Aのオーバーチューブに形状センサを挿入する前のこれらの縦断面図である。It is these longitudinal cross-sectional views before inserting a shape sensor in the overtube of FIG. 12A. 本発明の一実施形態の第1変形例に係るマニピュレータシステムの磁石を有するオーバーチューブにホール素子を有する形状センサを挿入する前のこれらの縦断面図である。It is these longitudinal cross-sectional views before inserting the shape sensor which has a Hall element in the overtube which has the magnet of the manipulator system which concerns on the 1st modification of one Embodiment of this invention. 図13Aのオーバーチューブに形状センサを挿入する前のこれらの縦断面図である。It is these longitudinal cross-sectional views before inserting a shape sensor in the overtube of FIG. 13A. 本発明の一実施形態の第1変形例に係るマニピュレータシステムのローラとエンコーダを有するオーバーチューブにホール素子を有する形状センサを挿入する前のこれらの縦断面図である。It is these longitudinal cross-sectional views before inserting the shape sensor which has a Hall element in the overtube which has the roller and encoder of the manipulator system which concerns on the 1st modification of one Embodiment of this invention. 図14Aのオーバーチューブに形状センサを挿入する前のこれらの縦断面図である。It is these longitudinal cross-sectional views before inserting a shape sensor in the overtube of FIG. 14A. 本発明の一実施形態の第2変形例に係るマニピュレータシステムの形状センサの一例を示す概略構成図である。It is a schematic block diagram which shows an example of the shape sensor of the manipulator system which concerns on the 2nd modification of one Embodiment of this invention. 本発明の一実施形態の第3変形例に係るマニピュレータシステムの傾き規制部を有するオーバーチューブに形状センサを挿入する前のこれらの縦断面図である。It is these longitudinal cross-sectional views before inserting a shape sensor in the overtube which has the inclination control part of the manipulator system which concerns on the 3rd modification of one Embodiment of this invention. 図16Aのオーバーチューブと形状センサを長手方向に見た縦断面図である。It is the longitudinal cross-sectional view which looked at the overtube and shape sensor of FIG. 16A in the longitudinal direction. 本発明の一実施形態の第3変形例に係るマニピュレータシステムの別の傾き規制部を有するオーバーチューブに形状センサを挿入する前のこれらの縦断面図である。It is these longitudinal cross-sectional views before inserting a shape sensor in the overtube which has another inclination control part of the manipulator system which concerns on the 3rd modification of one Embodiment of this invention. 断面が四角形状に加工されたオーバーチューブと形状センサをそれぞれ長手方向に見た縦断面図である。It is the longitudinal cross-sectional view which looked at the overtube and the shape sensor which were processed into the square shape in the longitudinal direction, respectively. 断面が三角形状に加工されたオーバーチューブと形状センサをそれぞれ長手方向に見た縦断面図である。It is the longitudinal cross-sectional view which looked at the overtube and shape sensor which the cross section was processed into the triangle shape in the longitudinal direction, respectively. 断面がDカット状に加工されたオーバーチューブと形状センサをそれぞれ長手方向に見た縦断面図である。It is the longitudinal cross-sectional view which looked at the overtube and the shape sensor which the cross section was processed into D cut shape in the longitudinal direction, respectively. 本発明の一実施形態の第4変形例に係るマニピュレータシステムの補填部材を有するオーバーチューブに形状センサを挿入した状態を示す概略構成図である。It is a schematic block diagram which shows the state which inserted the shape sensor in the overtube which has a supplementary member of the manipulator system which concerns on the 4th modification of one Embodiment of this invention. 本発明の一実施形態の第4変形例に係るマニピュレータシステムの補填部材を有する形状センサをオーバーチューブに挿入した状態を示す概略構成図である。It is a schematic block diagram which shows the state which inserted the shape sensor which has a compensation member of the manipulator system which concerns on the 4th modification of one Embodiment of this invention in the overtube. 本発明の一実施形態の第4変形例の参考例としての互いに径寸法が大きく異なるオーバーチューブに形状センサを挿入した状態を示す縦断面図である。It is a longitudinal cross-sectional view which shows the state which inserted the shape sensor into the overtube as a reference example of the 4th modification of one Embodiment of this invention from which a diameter size differs mutually mutually greatly. 本発明の一実施形態の第4変形例に係るマニピュレータシステムの中間シースを採用してオーバーチューブに形状センサを挿入する様子を示す縦断面図である。It is a longitudinal cross-sectional view which shows a mode that the intermediate | middle sheath of the manipulator system which concerns on the 4th modification of one Embodiment of this invention is employ | adopted and a shape sensor is inserted in an overtube. 本発明の一実施形態の第4変形例に係るマニピュレータシステムのバルーンを採用してオーバーチューブに形状センサを挿入する様子を示す縦断面図である。It is a longitudinal cross-sectional view which shows a mode that the balloon of the manipulator system which concerns on the 4th modification of one Embodiment of this invention is employ | adopted and a shape sensor is inserted in an overtube.
 本発明の一実施形態に係るマニピュレータシステムおよびその駆動方法について図面を参照して以下に説明する。
 本実施形態に係るマニピュレータシステム1は、図1および図2に示すように、患者Pの体内に挿入される内視鏡3およびマニピュレータ(処置具)5と、これらを収容可能な長手方向に貫通するルーメン9A,9Bを有するオーバーチューブ(チューブ部材)11と、オーバーチューブ11の形状を検出可能な形状センサ13と、操作者Aにより操作される操作部(入力部)15と、操作部15の操作に基づいてマニピュレータ5を制御する制御部17と、内視鏡3により取得された画像を表示するモニタ19とを備えている。
A manipulator system and a driving method thereof according to an embodiment of the present invention will be described below with reference to the drawings.
As shown in FIGS. 1 and 2, the manipulator system 1 according to the present embodiment penetrates in an endoscope 3 and a manipulator (treatment tool) 5 inserted into the body of a patient P and in a longitudinal direction in which these can be accommodated. An overtube (tube member) 11 having lumens 9A and 9B, a shape sensor 13 capable of detecting the shape of the overtube 11, an operation unit (input unit) 15 operated by an operator A, and an operation unit 15 A control unit 17 that controls the manipulator 5 based on an operation and a monitor 19 that displays an image acquired by the endoscope 3 are provided.
 マニピュレータ5は、図2に示すように、オーバーチューブ11を介して患者Pの体内に挿入される細長い軟性部5Aと、軟性部5Aの先端に配置された可動部5Bと、軟性部5Aの基端側に配置され、ワイヤ等(図示略)の張力伝達部材によって可動部5Bを駆動するモータ等の駆動部5Cとを備えている。 As shown in FIG. 2, the manipulator 5 includes an elongated flexible part 5A inserted into the body of the patient P via the overtube 11, a movable part 5B disposed at the distal end of the flexible part 5A, and a base of the flexible part 5A. A drive unit 5C such as a motor is disposed on the end side and drives the movable unit 5B by a tension transmission member such as a wire (not shown).
 可動部5Bは、図3に示すように、長手方向の最先端に配置され、体内の患部に作用してこれを処置する処置部7Aと、処置部7Aの先端位置および姿勢を変化させる複数の関節7Bとを備えている。これら処置部7Aおよび各関節7Bは、張力伝達部材の牽引力によって駆動されるようになっている。 As shown in FIG. 3, the movable portion 5B is disposed at the forefront in the longitudinal direction, and has a treatment portion 7A that acts on and treats the affected area in the body, and a plurality of positions that change the distal end position and posture of the treatment portion 7A. And a joint 7B. The treatment portion 7A and each joint 7B are driven by the traction force of the tension transmitting member.
 駆動部5Cには、図4に示すように、駆動量を検出するエンコーダ5Dが備えられている。この駆動部5Cは、制御部17から送られてくる制御信号に基づいて駆動されるとともに、駆動量を検出したエンコーダ5Dの出力がフィードバックされることにより、制御部17の制御信号通りの駆動量が達成されるように制御されるようになっている。 The drive unit 5C is provided with an encoder 5D for detecting the drive amount, as shown in FIG. The drive unit 5C is driven based on the control signal sent from the control unit 17, and the output of the encoder 5D that detects the drive amount is fed back, so that the drive amount according to the control signal of the control unit 17 is obtained. Is controlled to be achieved.
 オーバーチューブ11は、図2に示すように、可撓性を有する材質からなる細長いチューブである。このオーバーチューブ11は、先端側に配置されたやや太径の先端側管状部11Aと、先端側管状部11Aの基端から長手方向に延びるやや細径の基端側管状部11Bとを備えている。先端側管状部11Aには、内視鏡3を挿脱可能な内視鏡用ルーメン9Aと、マニピュレータ5を挿脱可能なマニピュレータ用ルーメン9Bとが設けられ、基端側管状部11Bには、先端側管状部11Aから延びるマニピュレータ用ルーメン9Bのみが設けられている。 The overtube 11 is an elongated tube made of a flexible material as shown in FIG. The overtube 11 includes a slightly thicker diameter distal end tubular portion 11A disposed on the distal end side and a slightly smaller diameter proximal end tubular portion 11B extending in the longitudinal direction from the proximal end of the distal end tubular portion 11A. Yes. The distal tubular portion 11A is provided with an endoscope lumen 9A through which the endoscope 3 can be inserted and removed, and a manipulator lumen 9B through which the manipulator 5 can be inserted and removed, and the proximal tubular portion 11B includes Only a manipulator lumen 9B extending from the distal tubular portion 11A is provided.
 マニピュレータ用ルーメン9Bは、マニピュレータ5の軟性部5Aの径寸法とほぼ同等に近い径寸法を有している。また、マニピュレータ用ルーメン9Bは、図5Aに示すように、長手方向の先端部の内表面に径方向外方に窪む位置合わせ凹部(位置合わせ部)10を有している。 The manipulator lumen 9 </ b> B has a diameter that is almost the same as the diameter of the flexible portion 5 </ b> A of the manipulator 5. Further, as shown in FIG. 5A, the manipulator lumen 9B has an alignment recess (alignment portion) 10 that is recessed radially outward on the inner surface of the longitudinal tip.
 形状センサ13は、例えば、図2に示すように、可撓性を有する細長い光ファイバセンサや三次元磁気センサである。この形状センサ13は、マニピュレータ5に代えて、オーバーチューブ11の内視鏡用ルーメン9Aに挿脱可能に挿入することができるようになっている。また、形状センサ13は、内視鏡用ルーメン9Aに挿入されて、内視鏡用ルーメン9Aの形状を検出することができるようになっている。 The shape sensor 13 is, for example, an elongated optical fiber sensor or a three-dimensional magnetic sensor having flexibility as shown in FIG. The shape sensor 13 can be removably inserted into the endoscope lumen 9A of the overtube 11 instead of the manipulator 5. The shape sensor 13 is inserted into the endoscope lumen 9A so as to detect the shape of the endoscope lumen 9A.
 また、形状センサ13は、図5Aに示すように、長手方向の先端部の側面に径方向に伸縮可能な弾性体からなる位置合わせ凸部(位置合わせ部)14を有している。位置合わせ凸部14は、例えば、ばね14Aにより伸縮可能に形成されている。オーバーチューブ11のマニピュレータ用ルーメン9B内に形状センサ13が挿入されて、図5Bに示すように、マニピュレータ用ルーメン9Bの位置合わせ凹部10に形状センサ13の位置合わせ凸部14が収容されることにより、マニピュレータ用ルーメン9Bと形状センサ13とが挿入方向に位置合わせされるようになっている。 Further, as shown in FIG. 5A, the shape sensor 13 has an alignment convex portion (alignment portion) 14 made of an elastic body that can expand and contract in the radial direction on the side surface of the longitudinal end portion. The alignment convex part 14 is formed to be extendable and contractable by, for example, a spring 14A. When the shape sensor 13 is inserted into the manipulator lumen 9B of the overtube 11 and the alignment convex portion 14 of the shape sensor 13 is accommodated in the alignment recess 10 of the manipulator lumen 9B as shown in FIG. 5B. The manipulator lumen 9B and the shape sensor 13 are aligned in the insertion direction.
 制御部17は、図4に示すように、操作部15から指令信号が入力されると、制御パラメータに従い、マニピュレータ5の駆動部5Cを制御するようになっている。制御パラメータは、形状センサ13により検出されたオーバーチューブ11の内視鏡用ルーメン9Aの形状から推定されるマニピュレータ5の形状推定値に基づいて設定されるようになっている。 As shown in FIG. 4, when a command signal is input from the operation unit 15, the control unit 17 controls the drive unit 5 </ b> C of the manipulator 5 according to the control parameter. The control parameter is set based on the estimated shape value of the manipulator 5 estimated from the shape of the endoscope lumen 9 </ b> A of the overtube 11 detected by the shape sensor 13.
 ここで、オーバーチューブ11の内視鏡用ルーメン9A内にマニピュレータ5を挿入すると、内視鏡用ルーメン9Aの形状に倣ってマニピュレータ5の軟性部5Aの形状が変化する。したがって、マニピュレータ5の湾曲形状は内視鏡用ルーメン9Aの湾曲形状とほぼ等しく、内視鏡用ルーメン9Aの湾曲形状をオーバーチューブ11の湾曲形状と推定することができる。制御パラメータは、形状センサ13により内視鏡用ルーメン9Aの形状が検出される度に制御部17が自動的に更新するようになっている。なお、操作者Aが手動で制御パラメータを更新することしてもよい。 Here, when the manipulator 5 is inserted into the endoscope lumen 9A of the overtube 11, the shape of the flexible portion 5A of the manipulator 5 changes following the shape of the endoscope lumen 9A. Therefore, the curved shape of the manipulator 5 is substantially equal to the curved shape of the endoscope lumen 9A, and the curved shape of the endoscope lumen 9A can be estimated as the curved shape of the overtube 11. The control parameter 17 is automatically updated every time the shape sensor 13 detects the shape of the endoscope lumen 9A. Note that the operator A may manually update the control parameters.
 また、制御部17は、図6に示すように、形状センサ13によりマニピュレータ用ルーメン9Bの形状を検出してマニピュレータ5の制御パラメータを更新するセンサ挿入モード(検出更新モード)と、マニピュレータ用ルーメン9Bの形状検出および制御パラメータの更新を行わない待機モードおよび処置モード(いずれも非検出更新モード)とに切り替えられるようになっている。 Further, as shown in FIG. 6, the control unit 17 detects the shape of the manipulator lumen 9B by the shape sensor 13 and updates the control parameters of the manipulator 5, and the manipulator lumen 9B. It is possible to switch between a standby mode and a treatment mode (both are non-detection update modes) in which shape detection and control parameter update are not performed.
 モードの切り替えは、操作者Aが操作部15を操作することにより行われるようになっている。例えば、起動時は待機モードに設定されるようになっている。待機モードでは、マニピュレータ用ルーメン9Bに形状センサ13が挿入される場合にセンサ挿入モードに切り替えられ、体内の処置部位を変更せずに再起動された場合に処置モードに切り替えられる。センサ挿入モードでは、マニピュレータ用ルーメン9Bの形状が検出されて制御パラメータが更新された場合に処置モードに切り替えられ、非常時には待機モードに切り替えられる。処置モードでは、非常時や処置終了時に待機モードに切り替えられ、処置部位が変更された場合にセンサ挿入モードに切り替えられる。 The mode switching is performed by the operator A operating the operation unit 15. For example, the standby mode is set at startup. In the standby mode, the mode is switched to the sensor insertion mode when the shape sensor 13 is inserted into the manipulator lumen 9B, and the mode is switched to the treatment mode when restarted without changing the treatment site in the body. In the sensor insertion mode, the mode is switched to the treatment mode when the shape of the manipulator lumen 9B is detected and the control parameter is updated, and the mode is switched to the standby mode in an emergency. In the treatment mode, the mode is switched to the standby mode at the time of emergency or at the end of the treatment, and the mode is switched to the sensor insertion mode when the treatment site is changed.
 また、本実施形態に係るマニピュレータシステムの駆動方法は、図7のフローチャートに示すように、オーバーチューブ11の内視鏡用ルーメン9Aに形状センサ13を挿入して、内視鏡用ルーメン9Aの形状を検出する形状検出ステップS2と、形状検出ステップS2により検出された内視鏡用ルーメン9Aの形状に基づき、マニピュレータ5を制御する制御パラメータを更新するパラメータ更新ステップS3と、形状センサ13に代えて内視鏡用ルーメン9Aにマニピュレータ5を挿入し、パラメータ更新ステップS3により更新された制御パラメータに基づいて、マニピュレータ5の駆動部5Cを制御する処置ステップ(制御ステップ)S6とを含んでいる。 Further, in the driving method of the manipulator system according to the present embodiment, as shown in the flowchart of FIG. 7, the shape sensor 13 is inserted into the endoscope lumen 9A of the overtube 11, and the shape of the endoscope lumen 9A is determined. In place of the shape detection step S2, the parameter update step S3 for updating the control parameter for controlling the manipulator 5 based on the shape of the endoscope lumen 9A detected by the shape detection step S2, and the shape sensor 13. It includes a treatment step (control step) S6 for inserting the manipulator 5 into the endoscope lumen 9A and controlling the drive unit 5C of the manipulator 5 based on the control parameter updated in the parameter update step S3.
 このように構成されたマニピュレータシステムおよびその駆動方法の作用について説明する。
 本実施形態に係るマニピュレータシステム1を用いて患者Pの体腔内の患部を処置するには、まず、操作者Aは、制御部17を待機モードからセンサ挿入モードに切り替え、患者Pの体外でオーバーチューブ11の内視鏡用ルーメン9A内に形状センサ13を挿入する(ステップS1)。このとき、マニピュレータ用ルーメン9Bの位置合わせ凹部10に形状センサ13の位置合わせ凸部14が収容されることで、マニピュレータ用ルーメン9Bと形状センサ13とを挿入方向に位置合わせすることができる。
The operation of the manipulator system configured as described above and the driving method thereof will be described.
In order to treat the affected part in the body cavity of the patient P using the manipulator system 1 according to the present embodiment, first, the operator A switches the control unit 17 from the standby mode to the sensor insertion mode, and overruns outside the patient P's body. The shape sensor 13 is inserted into the endoscope lumen 9A of the tube 11 (step S1). At this time, the alignment projection 14 of the shape sensor 13 is accommodated in the alignment recess 10 of the manipulator lumen 9B, whereby the manipulator lumen 9B and the shape sensor 13 can be aligned in the insertion direction.
 次いで、操作者Aは、形状センサ13を収容したオーバーチューブ11を患者Pの体腔内に挿入する。形状センサ13を収容したオーバーチューブ11を体腔内に挿入していくと、可撓性を有するオーバーチューブ11および形状センサ13が患者Pの体腔の形状に倣って湾曲する。 Next, the operator A inserts the overtube 11 containing the shape sensor 13 into the body cavity of the patient P. When the overtube 11 containing the shape sensor 13 is inserted into the body cavity, the flexible overtube 11 and the shape sensor 13 bend following the shape of the body cavity of the patient P.
 次いで、操作者Aによりオーバーチューブ11の先端が処置の目的部位近傍に配置され、形状センサ13によりオーバーチューブ11の内視鏡用ルーメン9Aの形状が検出される(形状検出ステップS2)。そして、制御部17により、形状センサ13により検出されたオーバーチューブ11の内視鏡用ルーメン9Aの形状に基づいて、マニピュレータ5を制御する制御パラメータが更新される(パラメータ更新ステップS3)。 Next, the operator A places the distal end of the overtube 11 in the vicinity of the target site for treatment, and the shape sensor 13 detects the shape of the endoscope lumen 9A of the overtube 11 (shape detection step S2). And the control parameter which controls the manipulator 5 is updated by the control part 17 based on the shape of the lumen 9A for endoscopes of the overtube 11 detected by the shape sensor 13 (parameter update step S3).
 次いで、操作者Aは、制御部17をセンサ挿入モードから処置モードに切り替え、患者Pの体内にオーバーチューブ11を残した状態で、オーバーチューブ11の内視鏡用ルーメン9A内から形状センサ13を抜去する(ステップS4)。そして、形状センサ13に代えて、マニピュレータ5を内視鏡用ルーメン9A内に挿入する(ステップS5)。マニピュレータ5は、軟性部5Aが内視鏡用ルーメン9Aの形状に倣って湾曲し、先端の可動部5Bが患者Pの目的の患部に到達する。 Next, the operator A switches the control unit 17 from the sensor insertion mode to the treatment mode, and leaves the overtube 11 in the body of the patient P, and moves the shape sensor 13 from the endoscope lumen 9A of the overtube 11. Remove (step S4). Then, instead of the shape sensor 13, the manipulator 5 is inserted into the endoscope lumen 9A (step S5). In the manipulator 5, the flexible part 5A is curved following the shape of the endoscope lumen 9A, and the movable part 5B at the tip reaches the target affected part of the patient P.
 次いで、操作者Aは操作部15を操作して処置を開始する。すると、操作部15から送られてくる指令信号に基づき制御部6が作動し、制御部6により、更新された制御パラメータに従ってマニピュレータ5の駆動部5Cが制御されて可動部5Bが駆動する(制御ステップS6)。 Next, the operator A operates the operation unit 15 to start treatment. Then, the control unit 6 operates based on the command signal sent from the operation unit 15, and the control unit 6 controls the drive unit 5C of the manipulator 5 according to the updated control parameter to drive the movable unit 5B (control). Step S6).
 この場合において、オーバーチューブ11の内視鏡用ルーメン9Aの形状に倣ってマニピュレータ5の軟性部5Aおよび張力伝達部材の形状が変化することにより、張力伝達部材の形状に応じた摩擦力によって、可動部5Bを駆動するのに必要な張力伝達部材の張力が変化する。本実施形態においては、形状センサ13により予め検出された内視鏡用ルーメン9Aの形状に基づいて制御部17により駆動部5Cが制御されることで、オーバーチューブ11の形状に関わらず、マニピュレータ5の可動部5Bを精度よく駆動させることができる。 In this case, the shape of the flexible portion 5A of the manipulator 5 and the shape of the tension transmission member change in accordance with the shape of the endoscope lumen 9A of the overtube 11, so that it can be moved by the frictional force according to the shape of the tension transmission member. The tension of the tension transmitting member necessary for driving the portion 5B changes. In the present embodiment, the drive unit 5C is controlled by the control unit 17 based on the shape of the endoscope lumen 9A detected in advance by the shape sensor 13, so that the manipulator 5 is controlled regardless of the shape of the overtube 11. The movable portion 5B can be driven with high accuracy.
 このように、本実施形態に係るマニピュレータシステム1およびその駆動方法によれば、マニピュレータ5の湾曲形状と等しいオーバーチューブ11のマニピュレータ用ルーメン9Bの湾曲形状を形状センサ13によりを予め検出してマニピュレータ5の制御パラメータを設定することで、制御部17はマニピュレータ5の湾曲形状に合わせて適正な制御を行うことができる。また、形状センサ13とマニピュレータ5をオーバーチューブ11のマニピュレータ用ルーメン9B内に交互に挿入することで、オーバーチューブ11にこれら形状センサ13とマニピュレータ5の2本分を挿入可能なスペースを確保しなくて済む。したがって、マニピュレータ5やオーバーチューブ11の細径化を図りつつ、マニピュレータ5の操作性を向上することができる。 Thus, according to the manipulator system 1 and the driving method thereof according to the present embodiment, the curved shape of the manipulator lumen 9B of the overtube 11 equal to the curved shape of the manipulator 5 is detected in advance by the shape sensor 13, and the manipulator 5 By setting the control parameters, the control unit 17 can perform appropriate control according to the curved shape of the manipulator 5. Further, by alternately inserting the shape sensor 13 and the manipulator 5 into the manipulator lumen 9B of the overtube 11, it is not possible to secure a space for inserting two of the shape sensor 13 and the manipulator 5 into the overtube 11. I'll do it. Therefore, the operability of the manipulator 5 can be improved while reducing the diameter of the manipulator 5 and the overtube 11.
 本実施形態においては、チューブ部材として、内視鏡3とマニピュレータ5を収容可能なオーバーチューブ11を例示して説明したが、これに代えて、例えば、図8に示すように、マニピュレータ5単体を収容可能なマニピュレータ用の内視鏡処置具CH(チャネル)21を採用することとしてもよい。この場合も、内視鏡処置具CH21のルーメンに形状センサ13とマニピュレータ5とを交互に挿入して、形状センサ13により検出された内視鏡処置具CH21のルーメンの形状に基づいてマニピュレータ5を制御することで、内視鏡処置具チャネル21の細径化を図りつつ、マニピュレータ5の湾曲形状に合わせて適正な制御を行うことができる。 In the present embodiment, the overtube 11 that can accommodate the endoscope 3 and the manipulator 5 has been exemplified and described as the tube member. Instead, for example, as shown in FIG. It is good also as employ | adopting the endoscope treatment tool CH (channel) 21 for manipulators which can be accommodated. Also in this case, the shape sensor 13 and the manipulator 5 are alternately inserted into the lumen of the endoscope treatment tool CH21, and the manipulator 5 is changed based on the shape of the lumen of the endoscope treatment tool CH21 detected by the shape sensor 13. By controlling, it is possible to perform appropriate control according to the curved shape of the manipulator 5 while reducing the diameter of the endoscope treatment instrument channel 21.
 本実施形態は以下のように変形することができる。
 本実施形態においては、位置合わせ部として凹凸構造の位置合わせ凹部10および位置合わせ凸部14を例示して説明したが、第1変形例としては、例えば、突き当て部を位置合わせ部として採用することしてもよい。突き当て部は、例えば、図9Aおよび図9Bに示すように、ばね14Aを有する弾性体22であってもよいし、図10Aおよび図10Bに示すように、マニピュレータ用ルーメン9Bの径寸法よりも半径方向外方に大きく広がる鍔部23であってもよい。
This embodiment can be modified as follows.
In the present embodiment, the alignment concave portion 10 and the alignment convex portion 14 of the concavo-convex structure have been exemplified and described as the alignment portion. However, as the first modification, for example, the butting portion is employed as the alignment portion. You may do that. The abutting portion may be, for example, an elastic body 22 having a spring 14A as shown in FIGS. 9A and 9B, or as compared to the diameter of the manipulator lumen 9B as shown in FIGS. 10A and 10B. It may be a flange portion 23 that extends greatly outward in the radial direction.
 これら突き当て部としての弾性体22または鍔部23は、形状センサ13の先端がオーバーチューブ11の先端に到達したときにマニピュレータ用ルーメン9Bの挿入口に突き当たるように、形状センサ13の先端からマニピュレータ用ルーメン9Bの長さ分だけ基端側にずらした位置に配置することとすればよい。 The elastic body 22 or the flange portion 23 as the butting portion is formed from the manipulator of the shape sensor 13 so as to abut against the insertion port of the manipulator lumen 9B when the tip of the shape sensor 13 reaches the tip of the overtube 11. What is necessary is just to arrange | position to the position shifted to the base end side by the length of the lumen 9B for use.
 また、位置合わせ部として、例えば、センサ(検出線センサ)を採用することとしてもよい。センサは、例えば、図11Aおよび図11Bに示すようなフォトセンサ25A,25Bであってもよい。この場合、オーバーチューブ11のマニピュレータ用ルーメン9Bの先端の内表面にフォトセンサ25A,25Bを互いに径方向に対向させて配置することとすればよい。そして、マニピュレータ用ルーメン9B内に挿入された形状センサ13によりフォトセンサ25A,25B間で光が遮断されたことを検知した場合に、形状センサ13がマニピュレータ用ルーメン9Bの所定の位置まで挿入されたものとすればよい。 Also, for example, a sensor (detection line sensor) may be employed as the alignment unit. The sensors may be, for example, photosensors 25A and 25B as shown in FIGS. 11A and 11B. In this case, the photosensors 25A and 25B may be disposed on the inner surface of the tip of the manipulator lumen 9B of the overtube 11 so as to face each other in the radial direction. When the shape sensor 13 inserted into the manipulator lumen 9B detects that light is blocked between the photosensors 25A and 25B, the shape sensor 13 is inserted to a predetermined position of the manipulator lumen 9B. It should be.
 また、センサは、例えば、図12Aおよび図12Bに示すように、近接センサ27A,27Bを採用することとしてもよい。この場合、オーバーチューブ11のマニピュレータ用ルーメン9Bの先端の内表面に近接センサ27Aを配置するとともに、形状センサ13の先端の側面に近接センサ27Bを配置することとすればよい。そして、マニピュレータ用ルーメン9B内に形状センサ13を挿入して、近接センサ27A,27Bどうしが互いに近接したことを検知した場合に、形状センサ13がマニピュレータ用ルーメン9Bの所定の位置まで挿入されたものとすればよい。近接センサ27A,27Bとしては、例えば、誘導形近接センサ、静電容量形近接センサまたは磁気式近接センサ等が挙げられる。 Further, the sensors may employ proximity sensors 27A and 27B as shown in FIGS. 12A and 12B, for example. In this case, the proximity sensor 27A may be disposed on the inner surface of the distal end of the manipulator lumen 9B of the overtube 11 and the proximity sensor 27B may be disposed on the side surface of the distal end of the shape sensor 13. When the shape sensor 13 is inserted into the manipulator lumen 9B and it is detected that the proximity sensors 27A and 27B are close to each other, the shape sensor 13 is inserted up to a predetermined position of the manipulator lumen 9B. And it is sufficient. Examples of the proximity sensors 27A and 27B include inductive proximity sensors, capacitive proximity sensors, magnetic proximity sensors, and the like.
 また、センサは、例えば、図13Aおよび図13Bに示すように、磁石29Aとホール素子29Bを採用することとしてもよい。この場合、オーバーチューブ11のマニピュレータ用ルーメン9Bの先端の内表面に磁石29Aを配置するともに、形状センサ13の先端の側面にホール素子29Bを配置することとすればよい。そして、マニピュレータ用ルーメン9B内に形状センサ13を挿入して、磁石29Aによる磁界がホール素子29Bにより検知された場合に、形状センサ13がマニピュレータ用ルーメン9Bの所定の位置まで挿入されたものとすればよい。 The sensor may employ a magnet 29A and a hall element 29B as shown in FIGS. 13A and 13B, for example. In this case, the magnet 29A may be disposed on the inner surface of the distal end of the manipulator lumen 9B of the overtube 11 and the Hall element 29B may be disposed on the side surface of the distal end of the shape sensor 13. Then, when the shape sensor 13 is inserted into the manipulator lumen 9B and the magnetic field by the magnet 29A is detected by the Hall element 29B, the shape sensor 13 is inserted to a predetermined position of the manipulator lumen 9B. That's fine.
 また、位置合わせ部として、例えば、図14Aおよび図14Bに示すように、ローラ31Aとエンコーダ31Bを採用してもよい。この場合、ローラ31Aは、例えば、オーバーチューブ11のマニピュレータ用ルーメン9Bの挿入口に、形状センサ13の挿入方向に直交する軸回りに回転可能に配置することとすればよい。また、マニピュレータ用ルーメン9Bに挿入される形状センサ13がローラ31Aに接触することによって回転するローラ31Aの回転量をエンコーダ31Bにより検知して、形状センサ13の挿入量を検出することとすればよい。 Further, as the alignment unit, for example, as shown in FIGS. 14A and 14B, a roller 31A and an encoder 31B may be employed. In this case, for example, the roller 31 </ b> A may be disposed at the insertion port of the manipulator lumen 9 </ b> B of the overtube 11 so as to be rotatable around an axis orthogonal to the insertion direction of the shape sensor 13. Further, the amount of insertion of the shape sensor 13 may be detected by detecting the amount of rotation of the roller 31A that rotates when the shape sensor 13 inserted into the manipulator lumen 9B contacts the roller 31A with the encoder 31B. .
 本変形例においては、各センサによりマニピュレータ用ルーメン9B内への形状センサ13の挿入が検出された場合に、制御部(モード切替部、切替実行部)17が非検出更新モードから検出更新モードに切り替えることとしてもよい。このようにすることで、マニピュレータ5の制御パラメータを迅速に更新することができる。 In this modification, when the insertion of the shape sensor 13 into the manipulator lumen 9B is detected by each sensor, the control unit (mode switching unit, switching execution unit) 17 changes from the non-detection update mode to the detection update mode. It is good also as switching. By doing in this way, the control parameter of the manipulator 5 can be updated quickly.
 第2変形例としては、形状センサ13の長手方向の有効範囲を設定することとしてもよい。この場合、形状センサ13は、例えば、図15に示すように、長手方向に所定の距離間隔で配された複数の検出点33を有すものであればよい。また、オーバーチューブ11のマニピュレータ用ルーメン9Bの全長を予め制御部17により記憶し、形状センサ13の先端からマニピュレータ用ルーメン9Bの全長と同じ範囲に配されている検出点33からのみの検出情報を用いて、マニピュレータ用ルーメン9Bの形状を検出することとすればよい。このようにすることで、オーバーチューブ11の外でマニピュレータ5と形状センサ13が離れて置かれているような場合でも、マニピュレータ用ルーメン9Bの形状を精度よく検出することができる。 As a second modification, an effective range in the longitudinal direction of the shape sensor 13 may be set. In this case, for example, as shown in FIG. 15, the shape sensor 13 may have a plurality of detection points 33 arranged at predetermined distance intervals in the longitudinal direction. Further, the total length of the manipulator lumen 9B of the overtube 11 is stored in advance by the control unit 17, and detection information from only the detection points 33 arranged in the same range as the total length of the manipulator lumen 9B from the tip of the shape sensor 13 is obtained. It is only necessary to detect the shape of the manipulator lumen 9B. By doing in this way, even when the manipulator 5 and the shape sensor 13 are placed apart from the overtube 11, the shape of the manipulator lumen 9B can be accurately detected.
 第3変形例としては、例えば、マニピュレータ用ルーメン9B内に収容される形状センサ13の中心軸回りの傾きを規制する傾き規制部を備えることとしてもよい。傾き規制部は、例えば、図16Aおよび図16Bに示すように、マニピュレータ用ルーメン9Bの内表面に長手方向に沿って形成された溝状のキー溝35Aと、形状センサ13の側面に長手方向に沿って形成された突状のキー35Bであってもよい。 As a third modification, for example, an inclination restricting portion that restricts the inclination of the shape sensor 13 accommodated in the manipulator lumen 9B around the central axis may be provided. For example, as shown in FIGS. 16A and 16B, the tilt restricting portion includes a groove-like key groove 35 </ b> A formed along the longitudinal direction on the inner surface of the manipulator lumen 9 </ b> B and the side surface of the shape sensor 13 in the longitudinal direction. It may be a protruding key 35B formed along.
 このようにすることで、マニピュレータ用ルーメン9Bのキー溝35Aと形状センサ13のキー35Bとを合わせるだけの簡易な操作で、形状センサ13の中心軸回りの傾きを容易かつ正確に規制することができる。そして、これらキー溝35Aおよびキー35Bにより、マニピュレータ用ルーメン9Bの中心軸回りの傾きと形状センサ13の中心軸回りの傾きとを対応付けて、マニピュレータ用ルーメン9Bの湾曲形状をより精度よく検出することができる。これにより、マニピュレータ5の操作性をより向上することができる。本変形例においては、マニピュレータ用ルーメン9Bの内表面に長手方向に沿って凸状のキー35Bを形成し、形状センサ13の側面に長手方向に沿って溝状のキー溝35Aを形成することとしてもよい。 By doing so, it is possible to easily and accurately regulate the inclination of the shape sensor 13 around the central axis with a simple operation of aligning the key groove 35A of the manipulator lumen 9B with the key 35B of the shape sensor 13. it can. Then, the key groove 35A and the key 35B associate the inclination around the central axis of the manipulator lumen 9B with the inclination around the central axis of the shape sensor 13 to detect the curved shape of the manipulator lumen 9B with higher accuracy. be able to. Thereby, the operativity of the manipulator 5 can be improved more. In this modification, a convex key 35B is formed along the longitudinal direction on the inner surface of the manipulator lumen 9B, and a groove-like key groove 35A is formed along the longitudinal direction on the side surface of the shape sensor 13. Also good.
 また、傾き規制部は、形状センサ13の断面形状とマニピュレータ用ルーメン9Bの断面形状をそれぞれ多角形状やDカット状に加工したものであってもよい。例えば、図17および図18Aに示すように、形状センサ13を長手方向に沿って延びる四角柱形状にしたり、図17および図18Bに示すように、形状センサ13を長手方向に沿って延びる三角柱形状にしたり、図17および図18Cに示すように、形状センサ13を長手方向に沿って延びる円柱形状の周方向の一部を長手方向に切除した形状にしたりすることとしてもよい。この場合、マニピュレータ用ルーメン9Bは、形状センサ13の形状に対応する形状に加工したものであればよい。 Further, the inclination restricting portion may be obtained by processing the cross-sectional shape of the shape sensor 13 and the cross-sectional shape of the manipulator lumen 9B into a polygonal shape or a D-cut shape, respectively. For example, as shown in FIGS. 17 and 18A, the shape sensor 13 has a quadrangular prism shape extending along the longitudinal direction, or as shown in FIGS. 17 and 18B, the shape sensor 13 has a triangular prism shape extending along the longitudinal direction. Alternatively, as shown in FIGS. 17 and 18C, the shape sensor 13 may be formed in a shape obtained by cutting a part of a columnar circumferential direction extending in the longitudinal direction in the longitudinal direction. In this case, the manipulator lumen 9 </ b> B only needs to be processed into a shape corresponding to the shape of the shape sensor 13.
 第4変形例としては、マニピュレータ用ルーメン9Bの中心軸と形状センサ13の中心軸とを略一致させる軸合わせ部を備えることとしてもよい。軸合わせ部は、例えば、マニピュレータ用ルーメン9Bと形状センサ13との径方向の隙間を周方向の全域に亘り略均等に埋める補填部材を採用することとしてもよい。 As a fourth modification, an axis aligning section that substantially matches the center axis of the manipulator lumen 9B and the center axis of the shape sensor 13 may be provided. For example, the shaft alignment portion may employ a compensation member that fills the radial gap between the manipulator lumen 9B and the shape sensor 13 substantially uniformly over the entire area in the circumferential direction.
 補填部材は、例えば、図19に示すように、マニピュレータ用ルーメン9Bの長手方向の同位置の内表面に形成された、互いに径方向内方に突出する複数の凸部37Aであってもよい。この場合、径方向に対向する凸部37Aどうしが、形状センサ13の径寸法よりも若干大きい距離だけ離間するように配置すればよい。また、このような凸部37Aの組を長手方向に沿って距離間隔を空けて複数配置することとすればよい。また、補填部材は、例えば、図20に示すように、形状センサ13の周方向の全域に亘り径方向外方に突出する環状の凸部37Bであってもよい。これら凸部37A,37Bは、例えば、内部にばねを有する弾性体であってもよい。 For example, as shown in FIG. 19, the filling member may be a plurality of convex portions 37 </ b> A that are formed on the inner surface at the same position in the longitudinal direction of the manipulator lumen 9 </ b> B and project radially inward from each other. In this case, the convex portions 37A opposed in the radial direction may be arranged so as to be separated by a distance slightly larger than the radial dimension of the shape sensor 13. Moreover, what is necessary is just to arrange | position two or more sets of such convex part 37A at intervals in the longitudinal direction. Further, for example, as shown in FIG. 20, the compensation member may be an annular protrusion 37 </ b> B that protrudes radially outward over the entire circumferential direction of the shape sensor 13. These convex portions 37A and 37B may be, for example, an elastic body having a spring inside.
 図21に示すように、マニピュレータ用ルーメン9Bの径寸法と形状センサ13の径寸法とが大きく異なるために、マニピュレータ用ルーメン9Bの中心軸と形状センサ13の中心軸とがルーメンの中心軸とが一致しない場合は、形状センサ13により検出されるマニピュレータ用ルーメン9Bの形状と実際のマニピュレータ用ルーメン9Bの形状とに誤差が生じ易い。凸部37A,37Bを設けることにより、マニピュレータ用ルーメン9Bと形状センサ13の径寸法が大きく異なる場合でも、マニピュレータ用ルーメン9Bと形状センサ13の中心軸を略一致させてマニピュレータ用ルーメン9Bの形状を精度よく検出することができる。 As shown in FIG. 21, since the diameter dimension of the manipulator lumen 9B and the diameter dimension of the shape sensor 13 are largely different, the center axis of the manipulator lumen 9B and the center axis of the shape sensor 13 are different from the center axis of the lumen. If they do not match, an error is likely to occur between the shape of the manipulator lumen 9B detected by the shape sensor 13 and the actual shape of the manipulator lumen 9B. By providing the convex portions 37A and 37B, even when the diameter dimensions of the manipulator lumen 9B and the shape sensor 13 are greatly different, the central axes of the manipulator lumen 9B and the shape sensor 13 are made to substantially coincide with each other so that the shape of the manipulator lumen 9B is made. It can be detected with high accuracy.
 また、補填部材は、図22に示すように、マニピュレータ用ルーメン9Bと形状センサ13の径方向の隙間を埋める厚さ寸法を有する筒状の中間シース39であってもよい。また、補填部材は、図23に示すように、形状センサ13またはマニピュレータ用ルーメン9Bの径方向の隙間に配されたバルーン41であってもよい。バルーン41は、マニピュレータ用ルーメン9B内の所望の位置に形状センサ13を挿入したときに膨らませることとすればよい。 Further, as shown in FIG. 22, the filling member may be a cylindrical intermediate sheath 39 having a thickness dimension that fills a radial gap between the manipulator lumen 9 </ b> B and the shape sensor 13. Further, as shown in FIG. 23, the filling member may be a balloon 41 disposed in a radial gap of the shape sensor 13 or the manipulator lumen 9B. The balloon 41 may be inflated when the shape sensor 13 is inserted at a desired position in the manipulator lumen 9B.
 このようにすることで、マニピュレータ用ルーメン9Bと形状センサ13との径方向の隙間に補填部材を埋めるだけの簡易な構成で、マニピュレータ用ルーメン9Bの中心軸と形状センサ13の中心軸とを略一致させて、マニピュレータ用ルーメン9Bの形状を精度よく検出することができる。 By doing so, the central axis of the manipulator lumen 9B and the central axis of the shape sensor 13 are substantially reduced with a simple configuration in which a filling member is filled in the radial gap between the manipulator lumen 9B and the shape sensor 13. By matching, the shape of the manipulator lumen 9B can be accurately detected.
 以上、本発明の実施形態について図面を参照して詳述してきたが、具体的な構成はこの実施形態に限られるものではなく、本発明の要旨を逸脱しない範囲の設計変更等も含まれる。例えば、本発明を上記各実施形態および変形例に適用したものに限定されることなく、これらの実施形態および変形例を適宜組み合わせた実施形態に適用してもよく、特に限定されるものではない。 As described above, the embodiment of the present invention has been described in detail with reference to the drawings. However, the specific configuration is not limited to this embodiment, and includes design changes and the like within a scope not departing from the gist of the present invention. For example, the present invention is not limited to those applied to the above-described embodiments and modifications, but may be applied to embodiments in which these embodiments and modifications are appropriately combined, and is not particularly limited. .
 1    マニピュレータシステム
 5  マニピュレータ
 5A  軟性部
 5B  可動部
 5C  駆動部
 9A  内視鏡用ルーメン(ルーメン)
 9B  マニピュレータ用ルーメン(ルーメン)
 10  位置合わせ凹部(位置合わせ部)
 11  オーバーチューブ(チューブ部材)
 13  形状センサ
 14  位置合わせ凸部(位置合わせ部)
 15  操作部(入力部)
 17  制御部(制御部、切替実行部) 23  突き当て部(位置合わせ部)
 25A,25B  フォトセンサ(位置合わせ部、検出センサ)
 27A,27B  近接センサ(位置合わせ部、検出センサ)
 29A  磁石(位置合わせ部、検出センサ)
 29B  ホール素子(位置合わせ部、検出センサ)
 31A  ローラ(位置合わせ部、検出センサ)
 31B  エンコーダ(位置合わせ部、検出センサ)
 35A  キー溝(傾き規制部)
 35B  キー(傾き規制部)
 37A,37B  凸部(軸合わせ部、補填部材)
 S2  形状検出ステップ
 S3  パラメータ更新ステップ
 S6  処置ステップ(制御ステップ)
DESCRIPTION OF SYMBOLS 1 Manipulator system 5 Manipulator 5A Soft part 5B Movable part 5C Drive part 9A Endoscope lumen (lumen)
9B Lumen for manipulator (lumen)
10 Positioning recess (Positioning section)
11 Overtube (tube member)
13 Shape sensor 14 Alignment convex part (Alignment part)
15 Operation part (input part)
17 control unit (control unit, switching execution unit) 23 abutment unit (positioning unit)
25A, 25B Photo sensor (positioning part, detection sensor)
27A, 27B Proximity sensor (alignment part, detection sensor)
29A Magnet (positioning part, detection sensor)
29B Hall element (alignment part, detection sensor)
31A roller (positioning part, detection sensor)
31B Encoder (Positioning part, detection sensor)
35A Keyway (Tilt restricting part)
35B key (Tilt control part)
37A, 37B Convex part (axis alignment part, compensation member)
S2 Shape detection step S3 Parameter update step S6 Treatment step (control step)

Claims (12)

  1.  可撓性を有し、長手方向に貫通するルーメンを有するチューブ部材と、
     該チューブ部材の前記ルーメンに挿脱可能に挿入されて、該ルーメンの形状を検出可能な可撓性を有する形状センサと、
     該形状センサに代えて、前記ルーメン内に挿入可能な可撓性を有するマニピュレータと、
     前記形状センサにより検出された前記ルーメンの形状に基づいて、前記マニピュレータを制御する制御部とを備えるマニピュレータシステム。
    A tube member having flexibility and having a lumen penetrating in the longitudinal direction;
    A flexible shape sensor that is removably inserted into the lumen of the tube member and capable of detecting the shape of the lumen;
    Instead of the shape sensor, a flexible manipulator that can be inserted into the lumen;
    A manipulator system comprising: a control unit that controls the manipulator based on the shape of the lumen detected by the shape sensor.
  2.  前記マニピュレータが、細長い軟性部と、該軟性部の先端に設けられた可動部と、前記軟性部の基端に設けられ前記可動部を駆動する駆動部と、前記可動部と前記駆動部とを接続する張力伝達部材とを備え、
     前記制御部が前記駆動部を制御する請求項1に記載のマニピュレータシステム。
    The manipulator includes: an elongated flexible portion; a movable portion provided at a distal end of the flexible portion; a drive portion provided at a proximal end of the flexible portion that drives the movable portion; and the movable portion and the drive portion. A tension transmission member to be connected,
    The manipulator system according to claim 1, wherein the control unit controls the drive unit.
  3.  前記ルーメンと該ルーメン内に収容される前記形状センサとを挿入方向に位置合わせる位置合わせ部を備える請求項1または請求項2に記載のマニピュレータシステム。 The manipulator system according to claim 1 or 2, further comprising an alignment unit that aligns the lumen and the shape sensor accommodated in the lumen in an insertion direction.
  4.  前記ルーメン内に収容される前記形状センサの中心軸回りの傾きを規制する傾き規制部を備える請求項1から請求項3のいずれかに記載のマニピュレータシステム。 The manipulator system according to any one of claims 1 to 3, further comprising an inclination regulating unit that regulates an inclination around a central axis of the shape sensor accommodated in the lumen.
  5.  前記傾き規制部が、前記ルーメンおよび前記形状センサの一方に設けられたキー溝と、前記ルーメンおよび前記形状センサの他方に設けられたキーである請求項4に記載のマニピュレータシステム。 5. The manipulator system according to claim 4, wherein the tilt regulating portion is a key groove provided in one of the lumen and the shape sensor and a key provided in the other of the lumen and the shape sensor.
  6.  前記ルーメンの中心軸と該ルーメン内の前記形状センサの中心軸とを略一致させる軸合わせ部を備える請求項1から請求項5のいずれかに記載のマニピュレータシステム。 The manipulator system according to any one of claims 1 to 5, further comprising an axis alignment portion that substantially matches a central axis of the lumen with a central axis of the shape sensor in the lumen.
  7.  前記軸合わせ部が、前記ルーメンと前記形状センサとの径方向の隙間を周方向の全域に亘り略均等に埋める補填部材である請求項6に記載のマニピュレータシステム。 The manipulator system according to claim 6, wherein the shaft alignment portion is a supplementary member that fills a radial gap between the lumen and the shape sensor substantially uniformly over the entire circumferential direction.
  8.  前記制御部が、前記形状センサにより前記ルーメンの形状を検出して前記マニピュレータの制御パラメータを更新する検出更新モードと、前記ルーメンの形状検出および前記制御パラメータの更新を行わない非検出更新モードとを切り替え可能な請求項1から請求項7のいずれかに記載のマニピュレータシステム。 The control unit detects a shape of the lumen by the shape sensor and updates a control parameter of the manipulator, and a non-detection update mode in which the shape of the lumen is not detected and the control parameter is not updated. The manipulator system according to any one of claims 1 to 7, which is switchable.
  9.  前記検出更新モードと前記非検出更新モードとを切り替えるユーザからの指示を前記制御部に入力する入力部を備える請求項8に記載のマニピュレータシステム。 The manipulator system according to claim 8, further comprising an input unit that inputs an instruction from a user for switching between the detection update mode and the non-detection update mode to the control unit.
  10.  前記制御部が、前記検出更新モードと前記非検出更新モードとを自動的に切り替えるモード切替部を備える請求項8に記載のマニピュレータシステム。 The manipulator system according to claim 8, wherein the control unit includes a mode switching unit that automatically switches between the detection update mode and the non-detection update mode.
  11.  前記モード切替部が、前記ルーメン内に前記形状センサが挿入されたことを検出する検出センサと、前記形状センサが挿入されたことを前記検出センサにより検出された場合に前記非検出更新モードから前記検出更新モードに切り替える切替実行部とを備える請求項10に記載のマニピュレータ。 When the mode switching unit detects that the shape sensor is inserted into the lumen, and when the shape sensor is detected by the detection sensor, the mode switching unit starts from the non-detection update mode. The manipulator according to claim 10, further comprising a switching execution unit that switches to the detection update mode.
  12.  可撓性を有する細長いチューブ部材のルーメンに形状センサを挿入して、前記ルーメンの形状を検出する形状検出ステップと、
     該形状検出ステップにより検出された前記ルーメンの形状に基づき、マニピュレータを制御する制御パラメータを更新するパラメータ更新ステップと、
     前記ルーメンに挿入された前記形状センサに代えて前記マニピュレータを挿入し、前記パラメータ更新ステップにより更新された前記制御パラメータに基づいて、前記マニピュレータを制御する制御ステップとを含むマニピュレータシステムの駆動方法。
     
    A shape detection step of detecting the shape of the lumen by inserting a shape sensor into the lumen of the elongated tube member having flexibility; and
    A parameter update step for updating a control parameter for controlling the manipulator based on the shape of the lumen detected by the shape detection step;
    A control step of inserting the manipulator instead of the shape sensor inserted into the lumen and controlling the manipulator based on the control parameter updated by the parameter updating step.
PCT/JP2016/050436 2016-01-08 2016-01-08 Manipulator system and method for driving same WO2017119112A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP2016/050436 WO2017119112A1 (en) 2016-01-08 2016-01-08 Manipulator system and method for driving same
JP2017559999A JP6701232B2 (en) 2016-01-08 2016-01-08 Manipulator system and its driving method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2016/050436 WO2017119112A1 (en) 2016-01-08 2016-01-08 Manipulator system and method for driving same

Publications (1)

Publication Number Publication Date
WO2017119112A1 true WO2017119112A1 (en) 2017-07-13

Family

ID=59273388

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/050436 WO2017119112A1 (en) 2016-01-08 2016-01-08 Manipulator system and method for driving same

Country Status (2)

Country Link
JP (1) JP6701232B2 (en)
WO (1) WO2017119112A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11478306B2 (en) 2016-12-27 2022-10-25 Olympus Corporation Shape acquiring method and controlling method for medical manipulator
CN116573333A (en) * 2023-06-16 2023-08-11 北京妙想科技有限公司 Battery case feeding system

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013519432A (en) * 2010-02-12 2013-05-30 インテュイティブ サージカル オペレーションズ, インコーポレイテッド Method and system for absolute three-dimensional measurement using a shape sensor with low sensitivity to torsion
JP2015505507A (en) * 2012-02-03 2015-02-23 インテュイティブ サージカル オペレーションズ, インコーポレイテッド Steerable flexible needle with implantable shape sensing function
WO2015119935A1 (en) * 2014-02-04 2015-08-13 Intuitive Surgical Operations, Inc. Systems and methods for non-rigid deformation of tissue for virtual navigation of interventional tools
JP2015159926A (en) * 2014-02-27 2015-09-07 オリンパス株式会社 medical system

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5443801B2 (en) * 2009-03-23 2014-03-19 オリンパス株式会社 Tension detection means and manipulator using the same

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013519432A (en) * 2010-02-12 2013-05-30 インテュイティブ サージカル オペレーションズ, インコーポレイテッド Method and system for absolute three-dimensional measurement using a shape sensor with low sensitivity to torsion
JP2015505507A (en) * 2012-02-03 2015-02-23 インテュイティブ サージカル オペレーションズ, インコーポレイテッド Steerable flexible needle with implantable shape sensing function
WO2015119935A1 (en) * 2014-02-04 2015-08-13 Intuitive Surgical Operations, Inc. Systems and methods for non-rigid deformation of tissue for virtual navigation of interventional tools
JP2015159926A (en) * 2014-02-27 2015-09-07 オリンパス株式会社 medical system

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11478306B2 (en) 2016-12-27 2022-10-25 Olympus Corporation Shape acquiring method and controlling method for medical manipulator
CN116573333A (en) * 2023-06-16 2023-08-11 北京妙想科技有限公司 Battery case feeding system
CN116573333B (en) * 2023-06-16 2024-01-23 北京妙想科技有限公司 Battery case feeding system

Also Published As

Publication number Publication date
JP6701232B2 (en) 2020-05-27
JPWO2017119112A1 (en) 2018-11-01

Similar Documents

Publication Publication Date Title
EP3781021B1 (en) Occlusion-crossing devices
JP6165080B2 (en) Initialization method of manipulator system
EP2147630B1 (en) Endoscopic surgical system
EP3692933B1 (en) Medical systems and devices
JP6214660B2 (en) Catheter using optical fiber and camera
US9955857B2 (en) Endoscope device
US20170296040A1 (en) Adapter component set
JP2019501699A (en) Symmetrically placed joints of surgical instruments
US20120116163A1 (en) Control device
JP2018538065A (en) Pulley mechanism for rotating surgical instruments
JP5425354B1 (en) Endoscope
EP2574269B1 (en) Insertion portion rigidity changeable catheter with balloon
US11051896B2 (en) Manipulator
WO2017119112A1 (en) Manipulator system and method for driving same
WO2015115317A1 (en) Medical device and medical system
US11510557B2 (en) Endoscope system and endoscope
EP3015045B1 (en) Spiral unit and guide device
US9259141B2 (en) Endoscope
JP2019503735A (en) Interface connection configuration between surgical robot and instrument
JP6623462B2 (en) Treatment tool insertion aid
EP2982330A1 (en) Treatment tool exchanging device and medical system
US10582976B2 (en) Manipulator system and manipulator control method
US20170311790A1 (en) Insertion aid and medical device
EP3158909B1 (en) Guiding device and surgical system
US20180228651A1 (en) Small gauge instruments for micro surgery

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16883615

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017559999

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16883615

Country of ref document: EP

Kind code of ref document: A1