WO2017118442A1 - 一种资源分配方法及装置 - Google Patents

一种资源分配方法及装置 Download PDF

Info

Publication number
WO2017118442A1
WO2017118442A1 PCT/CN2017/072249 CN2017072249W WO2017118442A1 WO 2017118442 A1 WO2017118442 A1 WO 2017118442A1 CN 2017072249 W CN2017072249 W CN 2017072249W WO 2017118442 A1 WO2017118442 A1 WO 2017118442A1
Authority
WO
WIPO (PCT)
Prior art keywords
pusch transmission
resource allocation
frequency domain
time domain
dci
Prior art date
Application number
PCT/CN2017/072249
Other languages
English (en)
French (fr)
Inventor
杨维维
戴博
梁春丽
夏树强
鲁照华
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN201610082070.5A external-priority patent/CN106961736B/zh
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Publication of WO2017118442A1 publication Critical patent/WO2017118442A1/zh
Priority to US15/990,546 priority Critical patent/US10499392B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/12Wireless traffic scheduling

Definitions

  • the present application relates to, but is not limited to, a wireless communication technology, and more particularly to a resource allocation method and apparatus.
  • Machine Type Communications also known as Machine to Machine (M2M)
  • MTC Machine Type Communications
  • M2M Machine to Machine
  • GSM Global System of Mobile communication
  • LTE Long Term Evolution
  • LTE-A Long Term Evolution Advanced
  • LTE/LTE-A Long Term Evolution Advanced
  • MTC multi-class data services based on LTE/LTE-A will also be more attractive.
  • C-IOT Comb-Internet Of Things
  • 3GPP Third Generation Partnership Project
  • TR45.820V200 narrowband Internet of Things
  • NB-IoT narrowband Internet of Things
  • the system bandwidth of the NB-IoT system is 200 kilohertz (kHz), which is the same as the channel bandwidth of the GSM system. This is a great convenience for the NB-IoT system to reuse the GSM spectrum and reduce mutual interference between the adjacent and GSM channels.
  • the current technology only supports the uplink of the physical uplink shared channel (PUSCH).
  • PUSCH physical uplink shared channel
  • An effective solution has not been proposed for the problem of how to allocate resources for the PUSCH.
  • the embodiment of the invention provides a resource allocation method and device, which can implement resource allocation of a PUSCH.
  • an embodiment of the present invention provides a resource allocation method, including:
  • the base station allocates resources to the physical uplink shared channel (PUSCH) of the user equipment according to a predefined resource allocation manner;
  • PUSCH physical uplink shared channel
  • the base station sends the resource allocation result to the user equipment by using downlink control information (DCI).
  • DCI downlink control information
  • the predefined resource allocation manners include:
  • Manner 1 The time domain length corresponding to the PUSCH transmission is a preset fixed duration
  • Manner 2 The time domain length corresponding to the PUSCH transmission is a non-preset fixed duration.
  • the preset fixed duration is N ⁇ V milliseconds
  • N is a positive integer
  • the value of N is pre-agreed by the base station and the user equipment, where The value of V includes: 8, 10 or 12.
  • the DCI when the predefined resource allocation mode is mode 1, includes information indicating a frequency domain start location and a frequency domain size corresponding to the PUSCH transmission.
  • the DCI when the predefined resource allocation mode is mode 2, includes information indicating a frequency domain start location and a frequency domain size corresponding to the PUSCH transmission, and indicating the PUSCH transmission corresponding to the PUSCH transmission. Time domain length information.
  • the DCI when the predefined resource allocation mode is mode 2, includes information indicating a frequency domain start location and a frequency domain size corresponding to the PUSCH transmission, and indicating the PUSCH transmission corresponding to the PUSCH transmission.
  • the DCI includes information indicating a time domain offset corresponding to the PUSCH transmission.
  • the DCI when the predefined resource allocation mode is mode 2, includes information indicating a time domain offset corresponding to the PUSCH transmission, the frequency domain start location, and a frequency domain size. Information, and information on the time domain length corresponding to the PUSCH transmission.
  • the DCI when the predefined resource allocation mode is mode 2, includes information indicating a time domain offset corresponding to the PUSCH transmission, the frequency domain start location, and a frequency domain size. Information, and information of a multiple of the time domain basic unit corresponding to the PUSCH transmission.
  • the information indicating a frequency domain start position and a frequency domain size corresponding to the PUSCH transmission is represented by X bits in the DCI.
  • the information indicating a frequency domain start position and a frequency domain size corresponding to the PUSCH transmission is represented by X bits in the DCI, where the time domain length corresponding to the PUSCH transmission is indicated.
  • the information is represented by Y bits in the DCI; or the information indicating the frequency domain start position and the frequency domain size corresponding to the PUSCH transmission and the information indicating the time domain length corresponding to the PUSCH transmission are in the
  • the DCI is represented by P bits.
  • the information indicating a frequency domain start position and a frequency domain size corresponding to the PUSCH transmission is represented by X bits in the DCI, where the time domain basic unit corresponding to the PUSCH transmission is indicated.
  • the multiple of the information is represented by Z bits in the DCI; or the information indicating the frequency domain start position and the frequency domain size corresponding to the PUSCH transmission and the time domain basic unit corresponding to the PUSCH transmission.
  • the information of the multiple is represented by Q bits in the DCI.
  • the information indicating a time domain offset corresponding to the PUSCH transmission and the information indicating the frequency domain start position and a frequency domain size are represented by S bits in the DCI, S A positive integer; the information indicating the time domain length corresponding to the PUSCH transmission is represented by Y bits in the DCI, and Y is a positive integer.
  • the information indicating a time domain offset corresponding to the PUSCH transmission and the information indicating the frequency domain start position and a frequency domain size are represented by S bits in the DCI, S A positive integer; the information indicating the multiple of the time domain basic unit corresponding to the PUSCH transmission is represented by Z bits in the DCI.
  • the value of the X bit is determined according to at least one of the following manners:
  • the value of the Y bit is determined according to at least one of: a minimum of the number of schedulable subcarriers, a size of a schedulable maximum transport block, and a maximum number of storable resource units.
  • the value of the P bit is determined according to the value of the X bit and the value of the Y bit.
  • the value of the Z bit is determined according to at least one of: a minimum time domain unit, a minimum number of schedulable subcarriers, a schedulable maximum transport block size, and a maximum schedulable resource. The number of units.
  • the value of the Q bit is determined according to the value of the X bit and the value of the Z bit.
  • the number of the maximum schedulable resource units is N ⁇ M, where M is the number of resource units used for data transmission in one physical resource block, and N is a preset value, N The values include: 5, 6, 10, or 12.
  • the information indicating a time domain offset corresponding to the PUSCH transmission is represented by B bits in the DCI; wherein B is a positive integer, and the time domain offset is a time domain basic unit. L times, L is a non-negative number, and the time domain basic unit is determined by a preset, or by a high-level signaling configuration, or by a preset correspondence relationship with the number of sub-carriers.
  • the DCI includes information indicating a time domain offset corresponding to the PUSCH transmission and information about a frequency domain start location and a frequency domain size.
  • the information indicating a time domain offset corresponding to the PUSCH transmission and the information indicating the frequency domain start position and a frequency domain size are represented by S bits in the DCI; , S is a positive integer.
  • the predefined resource allocation manner includes: a subframe preset index of a start subframe of a PUSCH transmission is an integer multiple of a time domain basic unit; wherein the time domain basic unit is preset Determined, or determined by high-level signaling configuration, or determined by a preset correspondence with the number of sub-carriers.
  • an embodiment of the present invention provides a resource allocation apparatus, including:
  • An allocating module configured to allocate resources to a PUSCH of the user equipment according to a predefined resource allocation manner
  • a sending module configured to send the resource allocation result to the user equipment by using the DCI.
  • the predefined resource allocation manners include:
  • Manner 1 The time domain length corresponding to the PUSCH transmission is a preset fixed duration
  • Manner 2 The time domain length corresponding to the PUSCH transmission is a non-preset fixed duration.
  • the preset fixed duration is N ⁇ V milliseconds
  • N is a positive integer
  • the value of N is pre-agreed by the base station and the user equipment, where The value of V includes: 8, 10 or 12.
  • the DCI when the predefined resource allocation mode is mode 1, includes information indicating a frequency domain start location and a frequency domain size corresponding to the PUSCH transmission.
  • the DCI when the predefined resource allocation mode is mode 2, includes information indicating a frequency domain start location and a frequency domain size corresponding to the PUSCH transmission, and indicating the PUSCH transmission corresponding to the PUSCH transmission. Time domain length information.
  • the DCI when the predefined resource allocation mode is mode 2, includes information indicating a frequency domain start location and a frequency domain size corresponding to the PUSCH transmission, and indicating the PUSCH transmission corresponding to the PUSCH transmission.
  • the DCI includes information indicating a time domain offset corresponding to the PUSCH transmission.
  • the information indicating a frequency domain start position and a frequency domain size corresponding to the PUSCH transmission is represented by X bits in the DCI.
  • the information indicating a frequency domain start position and a frequency domain size corresponding to the PUSCH transmission is represented by X bits in the DCI, where the time domain length corresponding to the PUSCH transmission is indicated.
  • Information is represented by Y bits in the DCI; or the information indicating a frequency domain start position and a frequency domain size corresponding to the PUSCH transmission and the indication
  • the information of the time domain length corresponding to the PUSCH transmission is represented by P bits in the DCI.
  • the information indicating a frequency domain start position and a frequency domain size corresponding to the PUSCH transmission is represented by X bits in the DCI, where the time domain basic unit corresponding to the PUSCH transmission is indicated.
  • the multiple of the information is represented by Z bits in the DCI; or the information indicating the frequency domain start position and the frequency domain size corresponding to the PUSCH transmission and the time domain basic unit corresponding to the PUSCH transmission.
  • the information of the multiple is represented by Q bits in the DCI.
  • the value of the X bit is determined according to at least one of the following manners:
  • the value of the Y bit is determined according to at least one of: a minimum of the number of schedulable subcarriers, a size of a schedulable maximum transport block, and a maximum number of storable resource units.
  • the value of the P bit is determined according to the value of the X bit and the value of the Y bit.
  • the value of the Z bit is determined according to at least one of: a minimum time domain unit, a minimum number of schedulable subcarriers, a schedulable maximum transport block size, and a maximum schedulable resource. The number of units.
  • the value of the Q bit is determined according to the value of the X bit and the value of the Z bit.
  • the number of the maximum schedulable resource units is N ⁇ M, where M is the number of resource units used for data transmission in one physical resource block, and N is a preset value, N The values include: 5, 6, 10, or 12.
  • the information indicating a time domain offset corresponding to the PUSCH transmission is represented by B bits in the DCI; wherein B is a positive integer, and the time domain offset is a time domain basis L times of the unit, L is a non-negative number, and the time domain basic unit is determined by a preset, or by a high-level signaling configuration, or by a preset correspondence relationship with the number of sub-carriers.
  • an embodiment of the present invention provides a resource allocation apparatus, including: a processor; a memory for storing processor-executable instructions; wherein the processor executes instructions for: according to a predefined resource allocation manner
  • the PUSCH of the user equipment allocates resources; and the resource allocation result is sent to the user equipment by using the DCI.
  • the predefined resource allocation manners include:
  • Manner 1 The time domain length corresponding to the PUSCH transmission is a preset fixed duration
  • Manner 2 The time domain length corresponding to the PUSCH transmission is a non-preset fixed duration.
  • the preset fixed duration is N ⁇ V milliseconds
  • N is a positive integer
  • the value of N is pre-agreed by the base station and the user equipment, where The value of V includes: 8, 10 or 12.
  • the DCI when the predefined resource allocation mode is mode 1, includes information indicating a frequency domain start location and a frequency domain size corresponding to the PUSCH transmission.
  • the DCI when the predefined resource allocation mode is mode 2, includes information indicating a frequency domain start location and a frequency domain size corresponding to the PUSCH transmission, and indicating the PUSCH transmission corresponding to the PUSCH transmission. Time domain length information.
  • the DCI when the predefined resource allocation mode is mode 2, includes information indicating a frequency domain start location and a frequency domain size corresponding to the PUSCH transmission, and indicating the PUSCH transmission corresponding to the PUSCH transmission.
  • the DCI includes information indicating a time domain offset corresponding to the PUSCH transmission.
  • the DCI when the predefined resource allocation mode is mode 2, includes information indicating a time domain offset corresponding to the PUSCH transmission, the frequency domain start location, and a frequency domain size. Information, and information on the time domain length corresponding to the PUSCH transmission.
  • the DCI when the predefined resource allocation mode is mode two, the DCI The information indicating the time domain offset corresponding to the PUSCH transmission, the information about the frequency domain start position and the frequency domain size, and the multiple of the time domain basic unit corresponding to the PUSCH transmission are included.
  • the information indicating a frequency domain start position and a frequency domain size corresponding to the PUSCH transmission is represented by X bits in the DCI.
  • the information indicating a frequency domain start position and a frequency domain size corresponding to the PUSCH transmission is represented by X bits in the DCI, where the time domain length corresponding to the PUSCH transmission is indicated.
  • Information is represented by Y bits in the DCI; or the information indicating the frequency domain start position and the frequency domain size corresponding to the PUSCH transmission and the information indicating the time domain length corresponding to the PUSCH transmission are in the DCI It is represented by P bits.
  • the information indicating a frequency domain start position and a frequency domain size corresponding to the PUSCH transmission is represented by X bits in the DCI, where the time domain basic unit corresponding to the PUSCH transmission is indicated.
  • the multiple of the information is represented by Z bits in the DCI; or the information indicating the frequency domain start position and the frequency domain size corresponding to the PUSCH transmission and the time domain basic unit corresponding to the PUSCH transmission.
  • the information of the multiple is represented by Q bits in the DCI.
  • the information indicating a time domain offset corresponding to the PUSCH transmission and the information indicating the frequency domain start position and a frequency domain size are represented by S bits in the DCI, S A positive integer; the information indicating the time domain length corresponding to the PUSCH transmission is represented by Y bits in the DCI, and Y is a positive integer.
  • the information indicating a time domain offset corresponding to the PUSCH transmission and the information indicating the frequency domain start position and a frequency domain size are represented by S bits in the DCI, S A positive integer; the information indicating the multiple of the time domain basic unit corresponding to the PUSCH transmission is represented by Z bits in the DCI.
  • the value of the X bit is determined according to at least one of the following manners:
  • the value of the Y bit is determined according to at least one of: a minimum of the number of schedulable subcarriers, a size of a schedulable maximum transport block, and a maximum number of storable resource units.
  • the value of the P bit is determined according to the value of the X bit and the value of the Y bit.
  • the value of the Z bit is determined according to at least one of: a minimum time domain unit, a minimum number of schedulable subcarriers, a schedulable maximum transport block size, and a maximum schedulable resource. The number of units.
  • the value of the Q bit is determined according to the value of the X bit and the value of the Z bit.
  • the number of the maximum schedulable resource units is N ⁇ M, where M is the number of resource units used for data transmission in one physical resource block, and N is a preset value, N The values include: 5, 6, 10, or 12.
  • the information indicating a time domain offset corresponding to the PUSCH transmission is represented by B bits in the DCI; wherein B is a positive integer, and the time domain offset is a time domain basic unit. L times, L is a non-negative number, and the time domain basic unit is determined by a preset, or by a high-level signaling configuration, or by a preset correspondence relationship with the number of sub-carriers.
  • the predefined resource allocation manner includes:
  • the subframe preset index of the start subframe of the PUSCH transmission is an integer multiple of the time domain basic unit; wherein the time domain basic unit is determined by a preset, or by a high layer signaling configuration, or by the number of subcarriers The preset correspondence is determined.
  • an embodiment of the present invention further provides a computer readable storage medium storing computer executable instructions, where the computer executable instructions are executed by a processor to implement the resource allocation method.
  • a method for allocating resources includes: a base station allocates resources to a PUSCH of a user equipment according to a predefined resource allocation manner; and the base station sends the resource allocation result to a user equipment by using a DCI; where, when the PUSCH transmission When the length of the corresponding time domain is a preset length, the DCI includes information indicating a frequency domain start position and a frequency domain size corresponding to the PUSCH transmission; When the time domain length corresponding to the PUSCH transmission is determined according to a preset rule, the DCI includes information indicating a frequency domain start position and a frequency domain size corresponding to the PUSCH transmission, and a time domain length corresponding to the PUSCH transmission. information.
  • the resource allocation of the PUSCH is implemented, and the problem that there is no allocation method in the related art is solved.
  • FIG. 1 is a schematic flowchart of a resource allocation method according to an embodiment of the present disclosure
  • FIG. 2 is a schematic structural diagram of a resource allocation apparatus according to an embodiment of the present invention.
  • An embodiment of the present invention provides a resource allocation method, which is based on a base station side, as shown in FIG. 1 , the method includes:
  • Step 101 The base station allocates resources to a physical uplink shared channel (PUSCH) of the user equipment according to a predefined resource allocation manner.
  • PUSCH physical uplink shared channel
  • Step 102 The base station sends the resource allocation result to the user equipment by using Downlink Control Information (DCI).
  • DCI Downlink Control Information
  • the user equipment includes a common user equipment (User Equipment, The UE, the MTC UE, and the like may be, for example, a mobile terminal, a personal computer, a tablet, or the like.
  • a common user equipment User Equipment, The UE, the MTC UE, and the like may be, for example, a mobile terminal, a personal computer, a tablet, or the like.
  • the predefined resource allocation manner may include:
  • Manner 1 The time domain length corresponding to the PUSCH transmission is a preset fixed duration
  • Manner 2 The time domain length corresponding to the PUSCH transmission is a non-preset fixed duration.
  • the preset fixed duration is N ⁇ V milliseconds
  • N is a positive integer
  • the value of N is pre-agreed by the base station and the user equipment, where The value of V includes: 8, 10 or 12.
  • the DCI when the predefined resource allocation mode is mode 1, includes information indicating a frequency domain start location and a frequency domain size corresponding to the PUSCH transmission.
  • the DCI when the predefined resource allocation mode is mode 2, includes information indicating a frequency domain start location and a frequency domain size corresponding to the PUSCH transmission, and indicating the PUSCH transmission corresponding to the PUSCH transmission. Time domain length information.
  • the DCI when the predefined resource allocation mode is mode 2, includes information indicating a frequency domain start location and a frequency domain size corresponding to the PUSCH transmission, and indicating the PUSCH transmission corresponding to the PUSCH transmission.
  • the DCI includes information indicating a time domain offset corresponding to the PUSCH transmission.
  • the DCI when the predefined resource allocation mode is mode 2, includes information indicating a time domain offset corresponding to the PUSCH transmission, the frequency domain start location, and a frequency domain size. Information, and information on the time domain length corresponding to the PUSCH transmission.
  • the DCI when the predefined resource allocation mode is mode 2, includes information indicating a time domain offset corresponding to the PUSCH transmission, the frequency domain start location, and a frequency domain size. Information, and information of a multiple of the time domain basic unit corresponding to the PUSCH transmission.
  • the information indicating a frequency domain start position and a frequency domain size corresponding to the PUSCH transmission is represented by X bits in the DCI.
  • the information indicating a frequency domain start position and a frequency domain size corresponding to the PUSCH transmission is represented by X bits in the DCI, where the time domain length corresponding to the PUSCH transmission is indicated.
  • Information is represented by Y bits in the DCI; or, the information indicating a frequency domain start position and a frequency domain size corresponding to the PUSCH transmission and information indicating a time domain length corresponding to the PUSCH transmission are in the DCI It is represented by P bits.
  • the information indicating a frequency domain start position and a frequency domain size corresponding to the PUSCH transmission is represented by X bits in the DCI, where the time domain basic unit corresponding to the PUSCH transmission is indicated.
  • the multiple of the information is represented by Z bits in the DCI; or the information indicating the frequency domain start position and the frequency domain size corresponding to the PUSCH transmission and the time domain basic unit corresponding to the PUSCH transmission.
  • the information of the multiple is represented by Q bits in the DCI.
  • the information indicating a time domain offset corresponding to the PUSCH transmission and the information indicating the frequency domain start position and a frequency domain size are represented by S bits in the DCI, S A positive integer; the information indicating the time domain length corresponding to the PUSCH transmission is represented by Y bits in the DCI, and Y is a positive integer.
  • the information indicating a time domain offset corresponding to the PUSCH transmission and the information indicating the frequency domain start position and a frequency domain size are represented by S bits in the DCI, S A positive integer; the information indicating the multiple of the time domain basic unit corresponding to the PUSCH transmission is represented by Z bits in the DCI.
  • the value of the X bit is determined according to at least one of the following manners:
  • the value of the Y bit is determined according to at least one of: a minimum of the number of schedulable subcarriers, a size of a schedulable maximum transport block, and a maximum number of storable resource units.
  • the value of the P bit is determined according to the value of the X bit and the value of the Y bit.
  • the value of the Z bit is determined according to at least one of: a minimum time domain unit, a minimum number of schedulable subcarriers, a schedulable maximum transport block size, and a maximum schedulable resource. The number of units.
  • the value of the Q bit is determined according to the value of the X bit and the value of the Z bit.
  • the number of the maximum schedulable resource units is N ⁇ M, where M is the number of resource units used for data transmission in one physical resource block, and N is a preset value, N The values include: 5, 6, 10, or 12.
  • the information indicating a time domain offset corresponding to the PUSCH transmission is represented by B bits in the DCI; wherein B is a positive integer, and the time domain offset is a time domain basic unit. L times, L is a non-negative number, and the time domain basic unit is determined by a preset, or by a high-level signaling configuration, or by a preset correspondence relationship with the number of sub-carriers.
  • the predefined resource allocation manner includes:
  • the subframe preset index of the start subframe of the PUSCH transmission is an integer multiple of the time domain basic unit; wherein the time domain basic unit is determined by a preset, or by a high layer signaling configuration, or by the number of subcarriers The preset correspondence is determined.
  • the three modes are independent of each other, and it is worth mentioning that, if the present embodiment If the resource allocation result of the resource allocation method in the above manner conflicts with the resource allocation result of the first mode or the second mode, the resource allocation result obtained by using the resource allocation method in the present embodiment may be preferentially selected.
  • the time domain basic unit may be preset to 1 millisecond.
  • the immediate domain base unit can be the length of one subframe.
  • An embodiment of the present invention provides a resource allocation method, where a base station allocates resources to a PUSCH of a user equipment according to a predefined resource allocation manner; the base station sends the resource allocation result to a user equipment by using a DCI; wherein, when the PUSCH transmission corresponds to When the domain length is the preset length, in DCI And including information indicating a frequency domain start location and a frequency domain size corresponding to the PUSCH transmission; when the time domain length corresponding to the PUSCH transmission is determined according to a preset rule, the DCI includes a frequency domain corresponding to the PUSCH transmission. Information of a start position and a frequency domain size, information indicating a time domain length corresponding to the PUSCH transmission.
  • the base station allocates resources to the PUSCH of the UE according to the mode 1, and then sends the resource allocation result to the UE, and further assumes that the preset fixed duration in the first mode is 12 ms (in the case of N taking 1),
  • the preset fixed duration in the first mode is 12 ms (in the case of N taking 1)
  • the base station allocates a resource for the PUSCH transmission to the UE, and the base station transmits the resource allocation result by using the DCI, where the DCI includes the frequency domain corresponding to the PUSCH transmission.
  • the information of the start location and the frequency domain size (the information used for the indication in the embodiment of the present invention may be several bits in the DCI, and the information for the indication that appears in the following content may also be understood by referring to the description herein, no longer
  • the information indicating the frequency domain start position and the frequency domain size corresponding to the PUSCH transmission is represented by X bits, and the base station and the UE pre-agreed the combination of the frequency domain start position and the frequency domain size corresponding to the PUSCH transmission.
  • the base station allocates the PUSCH transmission resource to the UE, and the base station sends the resource allocation result to the UE by using the DCI.
  • the DCI includes the PUSI transmission corresponding to the PUSCH transmission. information of a frequency domain starting position and size of the frequency domain; corresponding to the information bits X, X bits according to the value of X bit indicates the value of X 1 bit frequency domain starting position of the corresponding PUSCH transmission And determining the value of the X 2 bit indicating the frequency domain size corresponding to the PUSCH transmission. Assuming that the total number of subcarriers supported by the uplink system is 12, then there are 12 types of starting positions in the frequency domain, and X 1 can take 4 bits.
  • the number of the sub-carriers of the PUSCH transmission is 0.
  • the number of sub-carriers corresponding to the PUSCH transmission is 0000000. 1.
  • the starting position of the frequency domain is 1, and the length of the time domain is 12ms.
  • the base station allocates a resource for the PUSCH transmission to the UE, and the base station transmits the resource allocation result by using the DCI, where the DCI includes the frequency domain corresponding to the PUSCH transmission.
  • the information of the starting position and the frequency domain size; the information corresponds to X bits, and if the total number of subcarriers supported by the uplink system is 12, then there are 12 kinds of starting positions in the frequency domain, then X 1 takes 4 bits, assuming The number of subcarriers supported by PUSCH transmission is A 6 (the number of subcarriers is 1, 2, 4, 6, 8, or 12), then according to the formula for calculating X 2 in the second embodiment, X 2 should be calculated. 3.
  • the value of X 2 is decreased to indicate the number of partial subcarriers, exemplarily, as shown in the pre-agreed table 3 of the following hypothesis.
  • X 2 2
  • X 6 bits
  • the number of other subcarriers can be expressed by prescribing the remaining state and the corresponding relationship.
  • the number of subcarriers corresponding to the PUSCH transmission is 12, and the starting position of the frequency domain is 1.
  • the length of the time domain is 12 ms, where 111111 should not belong to the corresponding relationship included in Table 3, that is, the value of the right two bits is not corresponding to the number of subcarriers in Table 3.
  • the number of subcarriers in Table 3 is 6,111111.
  • a pre-agreed one of the remaining states is exemplarily assigned in one-to-one correspondence with the case where the number of subcarriers is 12 and the frequency domain start position is 1 in the present embodiment.
  • the number of bits Y of the information indicating the time domain length corresponding to the PUSCH transmission depends on the minimum number of schedulable maximum resource units and the number of subcarriers, and further assumes that the maximum resource unit that can be scheduled
  • the base station is configured to allocate resources to the PUSCH of the UE according to the second mode, and then send the resource allocation result to the UE by using the DCI, where the DCI is used to indicate the indication of the PUSCH.
  • the base station Transmitting the information of the corresponding frequency domain start position and the frequency domain size, and indicating the time domain length corresponding to the PUSCH transmission by using Y bits; the base station needs to schedule the number of subcarriers corresponding to the PUSCH to be 1, and the frequency domain starts.
  • the position is 1 and the time domain length is 24 ms.
  • the value of the 5 bits of the information indicating the frequency domain start position and the frequency domain size corresponding to the PUSCH transmission sent by the base station through the DCI is 00000 (refer to Table 4 below, wherein Assume that the number of supported subcarriers is 1, 3, 6, and 12, and the corresponding relationship between the frequency domain start position and the frequency domain size and the X bits is as shown in Table 4, and the base station transmits the DCI to indicate the corresponding PUSCH transmission.
  • the information of the time domain length can be 010111.
  • the number of bits Y of the information indicating the length of the time domain corresponding to the PUSCH transmission is taken as 6, a possible case: 000000 corresponds to a time domain length of 1 ms, and 000001 corresponds to a time domain length of 2 ms, ... ..., 111011 corresponds to a time domain length of 60ms, and the value of the 6-bit bit and the value of the time domain length are sequentially incremented.
  • the base station allocates resources to the PUSCH of the UE according to the second mode, and then sends the resource allocation result to the UE by using the DCI, where the PCI is used to indicate the indication of the PUSCH.
  • Transmitting information of a corresponding frequency domain start position and frequency domain size and information indicating a time domain length corresponding to the PUSCH transmission; and indicating the frequency domain start position and frequency domain size information corresponding to the PUSCH transmission The X bit and the Y bit indicating the time domain length information corresponding to the PUSCH transmission are jointly encoded to obtain the P bit.
  • the base station will indicate 00000 indicating information indicating a frequency domain start position and a frequency domain size corresponding to the PUSCH transmission, and indicating time domain length information corresponding to the PUSCH transmission.
  • the 010111 joint encoding yields 00000010111, which is sent in the form of DCI.
  • the information indicating the frequency domain start position and the frequency domain size corresponding to the PUSCH transmission and the time domain length information indicating the PUSCH transmission are jointly represented by P bits are all within the protection scope of the present application, wherein , P ⁇ X + Y.
  • the base station allocates resources to the PUSCH of the UE according to the second mode, and then sends the resource allocation result to the UE by using the DCI, where the DCI includes the frequency domain corresponding to the PUSCH transmission.
  • the information of the multiple of the time domain basic unit is indicated by a value of 3 bits.
  • the multiple of the corresponding time domain basic unit is 000. 1,001 corresponds to a multiple of the time domain basic unit is 2, ..., 011 corresponds to a multiple of the time domain basic unit is 4, 100 corresponds to a multiple of the time domain basic unit is 5, wherein the value of the 3-bit bit and the time domain length The values are incremented in order.
  • the number of bits Z included in the information indicating the time domain length corresponding to the PUSCH transmission depends on the maximum number of storable resource units, the minimum number of subcarriers, and the time domain basic unit.
  • the maximum number of resource units is 5 ⁇ 144 and the time domain basic unit is a preset 12 ms, then the maximum value of the multiple of the time domain basic unit is 5, and the information of the multiple of the time domain basic unit includes the number of bits Z. 3 (refer to the third embodiment).
  • the fourth embodiment will be explained by the following two embodiment examples.
  • the base station is configured to allocate resources to the PUSCH of the UE according to the second mode, and the base station sends the resource allocation result to the UE by using the DCI, where the DCI includes a frequency domain start position corresponding to the PUSCH transmission.
  • the DCI includes a frequency domain start position corresponding to the PUSCH transmission.
  • the base station needs to schedule the number of subcarriers corresponding to the PUSCH to be 2, the frequency domain starting position is 1, and the time domain length is 24 ms.
  • the value of the 5 bits corresponding to the frequency domain start position and the frequency domain size information corresponding to the PUSCH transmission sent by the base station is 01100 (refer to Embodiment 1 of Embodiment 1), because the number of subcarriers is 2, assuming the preset relationship between the number of subcarriers and the basic unit of the time domain is as shown in Table 5, then the basic unit in the time domain is 6 ms, the length in the time domain is 24 ms, then the multiple of the basic unit in the time domain is 4, and the base station transmits through the DCI.
  • the value of the three bits corresponding to the information of the multiple of the time domain basic unit corresponding to the PUSCH transmission is 011 (refer to the third embodiment).
  • Time domain basic unit 12 1ms 6 2ms 4 3ms 3 4ms 2 6ms 1 12ms/8ms
  • the base station is configured to allocate resources to the PUSCH of the UE according to the second mode, and the base station sends the resource allocation result to the UE by using the DCI, where the DCI includes a frequency domain start position corresponding to the PUSCH transmission.
  • the value of the 5-bit corresponding to the information of the frequency domain start position and the frequency domain size corresponding to the PUSCH transmission sent by the base station by the DCI is 11110 (refer to Embodiment 1 of Embodiment 1), because the time domain basic unit is 12 ms, the time domain length is 60 ms, then the multiple of the time domain basic unit is 5, and the value of the 3 bits corresponding to the information of the multiple of the time domain basic unit corresponding to the PUSCH transmission sent by the base station by the base station is 100 (refer to the third embodiment) .
  • the base station transmits the DCI corresponding to the PUSCH of the UE on the subframe ⁇ n, n+1 ⁇ , assuming that 2 bits in the DCI indicate the information of the time domain offset corresponding to the PUSCH transmission, 2 bits.
  • the correspondence between the value and the value of the time domain offset is shown in Table 6, where K is the time domain basic
  • the length of the unit, the number of subcarriers corresponding to the PUSCH transmission indicated in the DCI is 6, that is, K is 2 ms (refer to Table 5 in Embodiment 1 of Embodiment 4).
  • the base station needs to start transmitting the PUSCH in subframe n+5 (in this embodiment, based on the existing scheduling timing and the scheduling timing is 4 subframes) according to the scheduling situation, because the PUSCH of the UE is from the subframe n according to the scheduling timing. +5 starts transmission, so the 2 bits indicating the time domain offset in DCI is 00.
  • the base station transmits the DCI corresponding to the PUSCH of the UE on the subframe ⁇ n, n+1 ⁇ , and it is assumed that the DCI includes 2 bits of information indicating the time domain offset corresponding to the PUSCH transmission, the foregoing 2 bits.
  • the correspondence between the value of the value and the value of the time domain offset is as shown in Table 6, wherein K is a time domain basic unit, and the number of subcarriers corresponding to the PUSCH transmission in the DCI is 6, that is, K is 2.
  • the base station needs to start transmitting the PUSCH in the subframe n+7 according to the scheduling situation, because the PUSCH of the UE starts to be transmitted from the subframe n+5 according to the scheduling timing (in this embodiment, it is assumed that the scheduling timing is based on the existing scheduling timing and the scheduling timing is 4). Sub-frames, so the 2 bits representing the time domain offset in the DCI are 01.
  • the base station transmits the DCI corresponding to the PUSCH of the UE on the subframe ⁇ n ⁇ , and it is assumed that the DCI includes 6 bits of information indicating the time domain offset corresponding to the PUSCH transmission, and the value of 6 bits and the time domain.
  • Table 7 The correspondence between the values of the offsets is shown in Table 7. It is assumed that the base station needs to start transmitting the PUSCH in the subframe n+7 according to the scheduling situation, and the value of the B bit indicating the time domain offset in the DCI of the base station configuration is 000110 (refer to Table 7, indicating the value of the time domain offset is 7).
  • the UE After receiving the value of the time domain offset, the UE transmits the PUSCH on the subframe n+7 (not based on the existing scheduling timing in the present embodiment, and the UE side directly determines the value of the time domain offset indicated by the base station. Transmit the starting subframe of the PUSCH).
  • the value of the time domain offset is related to at least one of the following parameters: subcarrier spacing, The number of multiplexed users, the number of subcarriers, the length of the scheduling window, and the scheduling window period.
  • the maximum value of the time domain offset is a power of two.
  • the base station schedules in the form of a scheduling window/scheduling period when scheduling uplink data, assuming that the length of the scheduling window is 32 milliseconds.
  • the base station transmits the DCI corresponding to the PUSCH of the UE on the subframe ⁇ n ⁇ of the scheduling window #0 radio frame #1
  • the UE transmits the corresponding PUSCH in the scheduling window #1, where the PUSCH is within the scheduling window #1.
  • the start subframe is determined based on the time domain offset in the DCI, and the value of the time domain offset is related to the length of the scheduling window.
  • the time domain offset may be indicated by 5 bits in the DCI.
  • the time domain offset may be indicated by 00000-1111 corresponding to the time domain offset of 1 to 32 ms.
  • the value of the foregoing 5 bits is known, thereby determining the time domain offset, and then determining a certain subframe in the scheduling window #1 as the starting subframe for transmitting the PUSCH.
  • the UE side determines the transmission of the PUSCH in the scheduling window according to the value of the time domain offset indicated by the base station. Start sub-frame.
  • the base station schedules in the form of a scheduling window length/scheduling period when scheduling uplink data, assuming that the length of the scheduling window is 32 milliseconds. It is assumed that the base station transmits the DCI corresponding to the PUSCH of the UE on the subframe ⁇ n ⁇ of the scheduling window #0 radio frame #1. It is assumed that the information indicating the time domain offset corresponding to the PUSCH transmission, the frequency domain start position, and the frequency domain size in the DCI are jointly indicated by S bits, as shown in Table 8.
  • the UE has a starting position of 12 in the frequency domain of the scheduling window 1 and a PUSCH with a number of transmitting sub-carriers of 1 in the time domain starting position.
  • the frequency domain starting positions 1 to 12 are the subcarriers where the subcarrier preset indexes 0 to 11 are respectively located, and the time domain starting positions 1 to 4 are the subframe preset indexes respectively.
  • the number of subcarriers is 3, it is assumed that the starting positions of the frequency domain 1 to 4 are subcarriers where the subcarrier preset index is 0, 4, 8, and 12, respectively.
  • the starting position of the domain is 1 to 8, and the default index of the subframe is 0, 4, 8, 12, 16, 20, 24, 28 When the number of subcarriers is 6, it is assumed that the starting positions of the frequency domain 1 to 2 are the subcarriers where the subcarrier preset index is 0, 6 respectively, and the time domain starting positions 1 to 16 are respectively sub-carriers.
  • the frame preset index is 0, 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28, when the number of subcarriers is 12, the frequency is assumed.
  • the start position of the domain is the subcarrier where the subcarrier preset index is 0, and the start position of the time domain is 1 to 32, respectively, the subframe where the subframe preset index is 0 to 31, where the subframe preset index is An index that is numbered in the ascending order of the sub-frames from the preset sub-frames.
  • the preset sub-frame is the starting sub-frame of the scheduling window 1; wherein the sub-carrier preset index is started from the preset sub-carrier.
  • the base station transmits the DCI corresponding to the PUSCH of the UE on the subframe ⁇ 1 ⁇ , and it is assumed that the DCI includes 6 bits of information indicating the time domain offset corresponding to the PUSCH transmission, and the value of the foregoing 6 bits is timely.
  • the correspondence between the values of the domain offsets is as shown in Table 7, and is assumed to correspond to the PUSCH transmission.
  • the number of subcarriers is 3, and it is assumed that the base station needs to start transmitting the PUSCH in the subframe 7 according to the scheduling situation.
  • the base station side considers the subframe preset index of the starting subframe as the integer of the time domain basic unit when the PUSCH transmission is performed.
  • the time base basic unit is 4 ms (refer to Table 5 in Embodiment 1 of Embodiment 4), then the B bit indicating the time domain offset in the DCI of the base station configuration is 000110 (refer to Table 7). , indicating that the value of the time domain offset is 7), the UE transmits the PUSCH on the subframe 8 after receiving the DCI determining the value of the time domain offset. It should be noted that, in this implementation example, based on the scheduling timing, the UE side directly determines the time domain offset according to the value of the time domain offset indicated by the base station, and further determines the starting subframe for transmitting the PUSCH.
  • the base station transmits the DCI corresponding to the PUSCH of the UE on the subframe ⁇ 1 ⁇ , and it is assumed that the DCI includes 6 bits of information indicating the time domain offset corresponding to the PUSCH transmission, and the value of the foregoing 6 bits is timely.
  • the correspondence between the values of the domain offsets is as shown in Table 7. It is assumed that the number of subcarriers corresponding to the PUSCH transmission is 3. It is assumed that the base station needs to start transmitting the PUSCH in the subframe 7 according to the scheduling situation, and the base station configures the indication in the DCI.
  • the B bit of the domain offset is 000101 (refer to Table 7, indicating that the value of the time domain offset is 6).
  • the UE After receiving the DCI to determine the value of the time domain offset, the UE should start transmitting the PUSCH on the subframe 7, but the UE considers again.
  • the subframe preset index of the starting subframe to the PUSCH transmission is an integer multiple of the time domain basic unit.
  • the time domain basic unit is 4 ms (refer to Table 5), so the UE decides to be in the subframe.
  • the PUSCH is transmitted on 8 (the subframe preset index 8 of the start subframe in which the PUSCH is transmitted is guaranteed to be an integer multiple of the time domain basic unit 4).
  • the UE side directly determines the time domain offset according to the value of the time domain offset indicated by the base station, and further determines the starting subframe for transmitting the PUSCH.
  • the sub-frame preset index is an index that is numbered in the ascending order of the sub-frames from the preset sub-frame. In this embodiment, the preset sub-frame is assumed to be the sub-frame 0.
  • the embodiment of the present invention further provides a resource allocation device 10, which can be disposed in a base station. As shown in FIG. 2, the device includes:
  • the allocating module 11 is configured to allocate resources for the PUSCH of the user equipment according to a predefined resource allocation manner
  • the sending module 12 is configured to send the resource allocation result to the user equipment by using the DCI.
  • the predefined resource allocation manners include:
  • Manner 1 The time domain length corresponding to the PUSCH transmission is a preset fixed duration
  • Manner 2 The time domain length corresponding to the PUSCH transmission is a non-preset fixed duration.
  • the preset fixed duration is N ⁇ V milliseconds
  • N is a positive integer
  • the value of N is pre-agreed by the base station and the user equipment, where The value of V includes: 8, 10 or 12.
  • the DCI when the predefined resource allocation mode is mode 1, includes information indicating a frequency domain start location and a frequency domain size corresponding to the PUSCH transmission.
  • the DCI when the predefined resource allocation mode is mode 2, includes information indicating a frequency domain start location and a frequency domain size corresponding to the PUSCH transmission, and indicating the PUSCH transmission corresponding to the PUSCH transmission. Time domain length information.
  • the DCI when the predefined resource allocation mode is mode 2, includes information indicating a frequency domain start location and a frequency domain size corresponding to the PUSCH transmission, and indicating the PUSCH transmission corresponding to the PUSCH transmission.
  • the DCI includes information indicating a time domain offset corresponding to the PUSCH transmission.
  • the DCI when the predefined resource allocation mode is mode 2, includes information indicating a time domain offset corresponding to the PUSCH transmission, the frequency domain start location, and a frequency domain size. Information, and information on the time domain length corresponding to the PUSCH transmission.
  • the DCI when the predefined resource allocation manner is mode 2, includes information indicating a time domain offset corresponding to the PUSCH transmission, the frequency domain starting location, and Information of the frequency domain size and information of a multiple of the time domain basic unit corresponding to the PUSCH transmission.
  • the information indicating a frequency domain start position and a frequency domain size corresponding to the PUSCH transmission is represented by X bits in the DCI.
  • the information indicating a frequency domain start position and a frequency domain size corresponding to the PUSCH transmission is represented by X bits in the DCI, where the time domain length corresponding to the PUSCH transmission is indicated.
  • Information is represented by Y bits in the DCI; or the information indicating the frequency domain start position and the frequency domain size corresponding to the PUSCH transmission and the information indicating the time domain length corresponding to the PUSCH transmission are in the DCI It is represented by P bits.
  • the information indicating a frequency domain start position and a frequency domain size corresponding to the PUSCH transmission is represented by X bits in the DCI, where the time domain basic unit corresponding to the PUSCH transmission is indicated.
  • the multiple of the information is represented by Z bits in the DCI; or the information indicating the frequency domain start position and the frequency domain size corresponding to the PUSCH transmission and the time domain basic unit corresponding to the PUSCH transmission.
  • the information of the multiple is represented by Q bits in the DCI.
  • the information indicating a time domain offset corresponding to the PUSCH transmission and the information indicating the frequency domain start position and a frequency domain size are represented by S bits in the DCI, S A positive integer; the information indicating the time domain length corresponding to the PUSCH transmission is represented by Y bits in the DCI, and Y is a positive integer.
  • the information indicating a time domain offset corresponding to the PUSCH transmission and the information indicating the frequency domain start position and a frequency domain size are represented by S bits in the DCI, S A positive integer; the information indicating the multiple of the time domain basic unit corresponding to the PUSCH transmission is represented by Z bits in the DCI.
  • the value of the X bit is determined according to at least one of the following manners:
  • the value of the Y bit is determined according to at least one of: a minimum of the number of schedulable subcarriers, a size of a schedulable maximum transport block, and a maximum number of storable resource units.
  • the value of the P bit is determined according to the value of the X bit and the value of the Y bit.
  • the value of the Z bit is determined according to at least one of: a minimum time domain unit, a minimum number of schedulable subcarriers, a schedulable maximum transport block size, and a maximum schedulable resource. The number of units.
  • the value of the Q bit is determined according to the value of the X bit and the value of the Z bit.
  • the number of the maximum schedulable resource units is N ⁇ M, where M is the number of resource units used for data transmission in one physical resource block, and N is a preset value, N The values include: 5, 6, 10, or 12.
  • the information indicating a time domain offset corresponding to the PUSCH transmission is represented by B bits in the DCI; wherein B is a positive integer, and the time domain offset is a time domain basic unit. L times, L is a non-negative number, and the time domain basic unit is determined by a preset, or by a high-level signaling configuration, or by a preset correspondence relationship with the number of sub-carriers.
  • the predefined resource allocation manner includes:
  • the subframe preset index of the start subframe of the PUSCH transmission is an integer multiple of the time domain basic unit; wherein the time domain basic unit is determined by a preset, or by a high layer signaling configuration, or by the number of subcarriers The preset correspondence is determined.
  • a resource allocation apparatus is applied to a base station, and allocates resources to a PUSCH of a user equipment according to a predefined resource allocation manner; and sends the resource allocation result to a user equipment by using a DCI; wherein, when the PUSCH transmission is performed, When the length of the corresponding time domain is a preset length, the DCI includes information indicating a frequency domain start position and a frequency domain size corresponding to the PUSCH transmission; when the time domain length corresponding to the PUSCH transmission is determined according to a preset rule, Contains instructions in the DCI The PUSCH transmits information corresponding to a frequency domain start position and a frequency domain size and information indicating a time domain length corresponding to the PUSCH transmission.
  • the embodiment of the invention further provides a storage medium.
  • the above storage medium may be arranged to store program code for performing the method steps of the above-described embodiments.
  • the foregoing storage medium may include, but not limited to, a U disk, a Read-Only Memory (ROM), a Random Access Memory (RAM), a mobile hard disk, a magnetic disk, or an optical disk.
  • ROM Read-Only Memory
  • RAM Random Access Memory
  • mobile hard disk a magnetic disk
  • magnetic disk a magnetic disk
  • optical disk a variety of media that can store program code.
  • the processor may perform the method steps of the above embodiments according to the stored program code in the storage medium.
  • computer storage medium includes volatile and nonvolatile, implemented in any method or technology for storing information, such as computer readable instructions, data structures, program modules or other data. Sex, removable and non-removable media.
  • Computer storage media includes, but is not limited to, RAM, ROM, EEPROM, flash memory or other memory technology, CD-ROM, digital versatile disc (DVD) or other optical disc storage, magnetic cartridge, magnetic tape, magnetic disk storage or other magnetic storage device, or may Any other medium used to store the desired information and that can be accessed by the computer.
  • communication media typically includes computer readable instructions, data structures, program modules, or other data in a modulated data signal, such as a carrier wave or other transport mechanism, and can include any information delivery media. .
  • the embodiment of the present application provides a resource allocation method and device, which implements resource allocation of a PUSCH.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本文公开了一种资源分配方法及装置,上述资源分配方法包括:基站根据预定义的资源分配方式为用户设备的物理上行共享信道PUSCH分配资源;基站通过DCI向用户设备发送所述资源分配结果。通过本发明实施例提供的技术方案,实现了PUSCH的资源分配,解决了相关技术中没有分配方法的难题。

Description

一种资源分配方法及装置 技术领域
本申请涉及但不限于无线通信技术,尤指一种资源分配方法及装置。
背景技术
机器类型通信(Machine Type Communications,MTC),又称机器到机器(Machine to Machine,M2M)是现阶段物联网的主要应用形式。目前市场上部署的MTC设备主要基于全球移动通信(Global System of Mobile communication,GSM)系统。近年来,由于长期演进(Long Term Evolution,LTE)/高级长期演进(Long Term Evolution Advanced,LTE-A)的频谱效率高,越来越多的移动运营商选择LTE/LTE-A作为未来宽带无线通信系统的演进方向。基于LTE/LTE-A的MTC多种类数据业务也将更具吸引力。
在3GPP(Third Generation Partnership Project,第三代合作伙伴计划)技术报告TR45.820V200中公开了几种适用于蜂窝级物联网(Comb-Internet Of Things,C-IOT)的技术,其中,窄带物联网(Narrow Bang-Internet Of Things,NB-IoT)技术最为引人注目。NB-IoT系统的系统带宽为200千赫兹(kHz),与GSM系统的信道带宽相同,这为NB-IoT系统重用GSM频谱并降低邻近与GSM信道的相互干扰带来了极大便利。
对于物联网终端(User Equipment,UE)来说,目前技术上是上行只支持物理上行共享信道(Physical Uplink Shared Channel,PUSCH)的发送。对于PUSCH发送,支持单个子载波(single tone)PUSCH和多个子载波(multiple tone)PUSCH传输。针对如何为PUSCH分配资源的问题,目前尚未提出有效的解决方案。
发明内容
以下是对本文详细描述的主题的概述。本概述并非是为了限制权利要求的保护范围。
本发明实施例提供了一种资源分配方法及装置,能够实现PUSCH的资源分配。
第一方面,本发明实施例提供了一种资源分配方法,包括:
基站根据预定义的资源分配方式为用户设备的物理上行共享信道(PUSCH)分配资源;
基站通过下行控制信息(DCI)向用户设备发送所述资源分配结果。
在示例性实施方式中,预定义的资源分配方式包括:
方式一:所述PUSCH传输对应的时域长度为预设固定时长;或,
方式二:所述PUSCH传输对应的时域长度为非预设固定时长。
在示例性实施方式中,当预定义的资源分配方式为方式一时,所述预设固定时长为N×V毫秒,N为正整数且N的取值为基站和用户设备预先约定好的,其中,V的取值包括:8、10或12。
在示例性实施方式中,当预定义的资源分配方式为方式一时,所述DCI中包含用于指示所述PUSCH传输对应的频域起始位置和频域大小的信息。
在示例性实施方式中,当预定义的资源分配方式为方式二时,所述DCI中包含指示所述PUSCH传输对应的频域起始位置和频域大小的信息以及指示所述PUSCH传输对应的时域长度的信息。
在示例性实施方式中,当预定义的资源分配方式为方式二时,所述DCI中包含指示所述PUSCH传输对应的频域起始位置和频域大小的信息以及指示所述PUSCH传输对应的时域基本单元的倍数的信息;其中,所述时域基本单元通过预先设定,或者通过高层信令配置确定,或者通过与子载波个数的预设对应关系确定。
在示例性实施方式中,所述DCI中包含指示所述PUSCH传输对应的时域偏移的信息。
在示例性实施方式中,当预定义的资源分配方式为方式二时,所述DCI中包含指示所述PUSCH传输对应的时域偏移的信息、所述频域起始位置和频域大小的信息、以及所述PUSCH传输对应的时域长度的信息。
在示例性实施方式中,当预定义的资源分配方式为方式二时,所述DCI中包含指示所述PUSCH传输对应的时域偏移的信息、所述频域起始位置和频域大小的信息、以及所述PUSCH传输对应的时域基本单元的倍数的信息。
在示例性实施方式中,所述指示所述PUSCH传输对应的频域起始位置和频域大小的信息在所述DCI中用X比特表示。
在示例性实施方式中,所述指示所述PUSCH传输对应的频域起始位置和频域大小的信息在所述DCI中用X比特表示,所述指示所述PUSCH传输对应的时域长度的信息在所述DCI中用Y比特表示;或者,所述指示所述PUSCH传输对应的频域起始位置和频域大小的信息以及所述指示所述PUSCH传输对应的时域长度的信息在所述DCI中用P比特表示。
在示例性实施方式中,所述指示所述PUSCH传输对应的频域起始位置和频域大小的信息在所述DCI中用X比特表示,所述指示所述PUSCH传输对应的时域基本单元的倍数的信息在所述DCI中用Z比特表示;或者,所述指示所述PUSCH传输对应的频域起始位置和频域大小的信息以及所述指示所述PUSCH传输对应的时域基本单元的倍数的信息在所述DCI中用Q比特表示。
在示例性实施方式中,所述指示所述PUSCH传输对应的时域偏移的信息以及所述指示所述频域起始位置和频域大小的信息在所述DCI中用S比特表示,S为正整数;所述指示所述PUSCH传输对应的时域长度的信息在所述DCI中用Y比特表示,Y为正整数。
在示例性实施方式中,所述指示所述PUSCH传输对应的时域偏移的信息以及所述指示所述频域起始位置和频域大小的信息在所述DCI中用S比特表示,S为正整数;所述指示所述PUSCH传输对应的时域基本单元的倍数的信息在所述DCI中用Z比特表示。
在示例性实施方式中,所述X比特的取值根据以下方式至少之一确定:
根据预先约定的所述PUSCH传输对应的频域起始位置和频域大小的组合方式与所述X比特的值的对应关系确定;
根据所述X比特中用于指示所述PUSCH传输对应的频域起始位置的X1 比特的取值和用于指示所述PUSCH传输对应的频域大小的X2比特的取值来确定,其中,X1和X2均为正整数。
在示例性实施方式中,所述Y比特的取值根据以下至少之一确定:可调度的子载波个数的最小值、可调度的最大传输块的大小、可调度的最大资源单元个数。
在示例性实施方式中,所述P比特的取值根据所述X比特的取值和所述Y比特的取值来确定。
在示例性实施方式中,所述Z比特的取值根据以下至少之一确定:最小时域单元、可调度的子载波个数的最小值、可调度的最大传输块大小、可调度的最大资源单元个数。
在示例性实施方式中,所述Q比特的取值根据所述X比特的取值和所述Z比特的取值来确定。
在示例性实施方式中,所述可调度的最大资源单元个数为N×M,其中,M为一个物理资源块中用于数据传输的资源单元个数,N为预先设定的值,N的取值包括:5、6、10、或12。
在示例性实施方式中,所述指示所述PUSCH传输对应的时域偏移的信息在所述DCI中用B比特表示;其中,B为正整数,所述时域偏移为时域基本单元的L倍,L为非负数,所述时域基本单元通过预先设定,或者通过高层信令配置确定,或者通过与子载波个数的预设对应关系确定。
在示例性实施方式中,所述DCI中包含指示所述PUSCH传输对应的时域偏移的信息和所述频域起始位置和频域大小的信息。
在示例性实施方式中,所述指示所述PUSCH传输对应的时域偏移的信息以及所述指示所述频域起始位置和频域大小的信息在所述DCI中用S比特表示;其中,S为正整数。
在示例性实施方式中,所述预定义的资源分配方式包括:PUSCH传输的起始子帧的子帧预设索引为时域基本单元的整数倍;其中,所述时域基本单元通过预先设定,或者通过高层信令配置确定,或者通过与子载波个数的预设对应关系确定。
第二方面,本发明实施例提供一种资源分配装置,包括:
分配模块,配置为根据预定义的资源分配方式为用户设备的PUSCH分配资源;
发送模块,配置为通过DCI向用户设备发送所述资源分配结果。
在示例性实施方式中,预定义的资源分配方式包括:
方式一:所述PUSCH传输对应的时域长度为预设固定时长;或,
方式二:所述PUSCH传输对应的时域长度为非预设固定时长。
在示例性实施方式中,当预定义的资源分配方式为方式一时,所述预设固定时长为N×V毫秒,N为正整数且N的取值为基站和用户设备预先约定好的,其中,V的取值包括:8、10或12。
在示例性实施方式中,当预定义的资源分配方式为方式一时,所述DCI中包含用于指示所述PUSCH传输对应的频域起始位置和频域大小的信息。
在示例性实施方式中,当预定义的资源分配方式为方式二时,所述DCI中包含指示所述PUSCH传输对应的频域起始位置和频域大小的信息以及指示所述PUSCH传输对应的时域长度的信息。
在示例性实施方式中,当预定义的资源分配方式为方式二时,所述DCI中包含指示所述PUSCH传输对应的频域起始位置和频域大小的信息以及指示所述PUSCH传输对应的时域基本单元的倍数的信息;其中,所述时域基本单元通过预先设定,或者通过高层信令配置确定,或者通过与子载波个数的预设对应关系确定。
在示例性实施方式中,所述DCI中包含指示所述PUSCH传输对应的时域偏移的信息。
在示例性实施方式中,所述指示所述PUSCH传输对应的频域起始位置和频域大小的信息在所述DCI中用X比特表示。
在示例性实施方式中,所述指示所述PUSCH传输对应的频域起始位置和频域大小的信息在所述DCI中用X比特表示,所述指示所述PUSCH传输对应的时域长度的信息在所述DCI中用Y比特表示;或者,所述指示所述PUSCH传输对应的频域起始位置和频域大小的信息以及所述指示所述 PUSCH传输对应的时域长度的信息在所述DCI中用P比特表示。
在示例性实施方式中,所述指示所述PUSCH传输对应的频域起始位置和频域大小的信息在所述DCI中用X比特表示,所述指示所述PUSCH传输对应的时域基本单元的倍数的信息在所述DCI中用Z比特表示;或者,所述指示所述PUSCH传输对应的频域起始位置和频域大小的信息以及所述指示所述PUSCH传输对应的时域基本单元的倍数的信息在所述DCI中用Q比特表示。
在示例性实施方式中,所述X比特的取值根据以下方式至少之一确定:
根据预先约定的所述PUSCH传输对应的频域起始位置和频域大小的组合方式与所述X比特的值的对应关系确定;
根据所述X比特中用于指示所述PUSCH传输对应的频域起始位置的X1比特的取值和用于指示所述PUSCH传输对应的频域大小的X2比特的取值来确定,其中,X1和X2均为正整数。
在示例性实施方式中,所述Y比特的取值根据以下至少之一确定:可调度的子载波个数的最小值、可调度的最大传输块的大小、可调度的最大资源单元个数。
在示例性实施方式中,所述P比特的取值根据所述X比特的取值和所述Y比特的取值来确定。
在示例性实施方式中,所述Z比特的取值根据以下至少之一确定:最小时域单元、可调度的子载波个数的最小值、可调度的最大传输块大小、可调度的最大资源单元个数。
在示例性实施方式中,所述Q比特的取值根据所述X比特的取值和所述Z比特的取值来确定。
在示例性实施方式中,所述可调度的最大资源单元个数为N×M,其中,M为一个物理资源块中用于数据传输的资源单元个数,N为预先设定的值,N的取值包括:5、6、10、或12。
在示例性实施方式中,所述指示所述PUSCH传输对应的时域偏移的信息在所述DCI中用B比特表示;其中,B为正整数,所述时域偏移为时域基 本单元的L倍,L为非负数,所述时域基本单元通过预先设定,或者通过高层信令配置确定,或者通过与子载波个数的预设对应关系确定。
第三方面,本发明实施例提供一种资源分配装置,包括:处理器;用于存储处理器可执行指令的存储器;其中,所述处理器执行指令用于:根据预定义的资源分配方式为用户设备的PUSCH分配资源;通过DCI向用户设备发送所述资源分配结果。
在示例性实施方式中,预定义的资源分配方式包括:
方式一:所述PUSCH传输对应的时域长度为预设固定时长;或,
方式二:所述PUSCH传输对应的时域长度为非预设固定时长。
在示例性实施方式中,当预定义的资源分配方式为方式一时,所述预设固定时长为N×V毫秒,N为正整数且N的取值为基站和用户设备预先约定好的,其中,V的取值包括:8、10或12。
在示例性实施方式中,当预定义的资源分配方式为方式一时,所述DCI中包含用于指示所述PUSCH传输对应的频域起始位置和频域大小的信息。
在示例性实施方式中,当预定义的资源分配方式为方式二时,所述DCI中包含指示所述PUSCH传输对应的频域起始位置和频域大小的信息以及指示所述PUSCH传输对应的时域长度的信息。
在示例性实施方式中,当预定义的资源分配方式为方式二时,所述DCI中包含指示所述PUSCH传输对应的频域起始位置和频域大小的信息以及指示所述PUSCH传输对应的时域基本单元的倍数的信息;其中,所述时域基本单元通过预先设定,或者通过高层信令配置确定,或者通过与子载波个数的预设对应关系确定。
在示例性实施方式中,所述DCI中包含指示所述PUSCH传输对应的时域偏移的信息。
在示例性实施方式中,当预定义的资源分配方式为方式二时,所述DCI中包含指示所述PUSCH传输对应的时域偏移的信息、所述频域起始位置和频域大小的信息、以及所述PUSCH传输对应的时域长度的信息。
在示例性实施方式中,当预定义的资源分配方式为方式二时,所述DCI 中包含指示所述PUSCH传输对应的时域偏移的信息、所述频域起始位置和频域大小的信息、以及所述PUSCH传输对应的时域基本单元的倍数的信息。
在示例性实施方式中,所述指示所述PUSCH传输对应的频域起始位置和频域大小的信息在所述DCI中用X比特表示。
在示例性实施方式中,所述指示所述PUSCH传输对应的频域起始位置和频域大小的信息在所述DCI中用X比特表示,所述指示所述PUSCH传输对应的时域长度的信息在所述DCI中用Y比特表示;或者,所述指示所述PUSCH传输对应的频域起始位置和频域大小的信息和指示所述PUSCH传输对应的时域长度的信息在所述DCI中用P比特表示。
在示例性实施方式中,所述指示所述PUSCH传输对应的频域起始位置和频域大小的信息在所述DCI中用X比特表示,所述指示所述PUSCH传输对应的时域基本单元的倍数的信息在所述DCI中用Z比特表示;或者,所述指示所述PUSCH传输对应的频域起始位置和频域大小的信息和所述指示所述PUSCH传输对应的时域基本单元的倍数的信息在所述DCI中用Q比特表示。
在示例性实施方式中,所述指示所述PUSCH传输对应的时域偏移的信息以及所述指示所述频域起始位置和频域大小的信息在所述DCI中用S比特表示,S为正整数;所述指示所述PUSCH传输对应的时域长度的信息在所述DCI中用Y比特表示,Y为正整数。
在示例性实施方式中,所述指示所述PUSCH传输对应的时域偏移的信息以及所述指示所述频域起始位置和频域大小的信息在所述DCI中用S比特表示,S为正整数;所述指示所述PUSCH传输对应的时域基本单元的倍数的信息在所述DCI中用Z比特表示。
在示例性实施方式中,所述X比特的取值根据以下方式至少之一确定:
根据预先约定的所述PUSCH传输对应的频域起始位置和频域大小的组合方式与所述X比特的值的对应关系确定;
根据所述X比特中用于指示所述PUSCH传输对应的频域起始位置的X1比特的取值和用于指示所述PUSCH传输对应的频域大小的X2比特的取值来 确定,其中,X1和X2均为正整数。
在示例性实施方式中,所述Y比特的取值根据以下至少之一确定:可调度的子载波个数的最小值、可调度的最大传输块的大小、可调度的最大资源单元个数。
在示例性实施方式中,所述P比特的取值根据所述X比特的取值和所述Y比特的取值来确定。
在示例性实施方式中,所述Z比特的取值根据以下至少之一确定:最小时域单元、可调度的子载波个数的最小值、可调度的最大传输块大小、可调度的最大资源单元个数。
在示例性实施方式中,所述Q比特的取值根据所述X比特的取值和所述Z比特的取值来确定。
在示例性实施方式中,所述可调度的最大资源单元个数为N×M,其中,M为一个物理资源块中用于数据传输的资源单元个数,N为预先设定的值,N的取值包括:5、6、10、或12。
在示例性实施方式中,所述指示所述PUSCH传输对应的时域偏移的信息在所述DCI中用B比特表示;其中,B为正整数,所述时域偏移为时域基本单元的L倍,L为非负数,所述时域基本单元通过预先设定,或者通过高层信令配置确定,或者通过与子载波个数的预设对应关系确定。
在示例性实施方式中,所述预定义的资源分配方式包括:
PUSCH传输的起始子帧的子帧预设索引为时域基本单元的整数倍;其中,所述时域基本单元通过预先设定,或者通过高层信令配置确定,或者通过与子载波个数的预设对应关系确定。
此外,本发明实施例还提供一种计算机可读存储介质,存储有计算机可执行指令,所述计算机可执行指令被处理器执行时实现上述资源分配方法。
本发明实施例提供的一种资源分配方法,包括:基站根据预定义的资源分配方式为用户设备的PUSCH分配资源;基站通过DCI向用户设备发送所述资源分配结果;其中,当所述PUSCH传输对应的时域长度为预设长度时,DCI中包含指示所述PUSCH传输对应的频域起始位置和频域大小的信息; 当所述PUSCH传输对应的时域长度根据预设规则确定时,DCI中包含指示所述PUSCH传输对应的频域起始位置和频域大小的信息以及指示所述PUSCH传输对应的时域长度的信息。通过本发明实施例提供的技术方案,实现了PUSCH的资源分配,解决了相关技术中没有分配方法的难题。
本申请的其它特征和优点将在随后的说明书中阐述,并且,部分地从说明书中变得显而易见,或者通过实施本申请而了解。本申请的目的和其他优点可通过在说明书、权利要求书以及附图中所特别指出的结构来实现和获得。
附图概述
附图用来提供对本申请技术方案的进一步理解,并且构成说明书的一部分,与本申请的实施例一起用于解释本申请的技术方案,并不构成对本申请技术方案的限制。
图1为本发明实施例提供的一种资源分配方法的流程示意图;
图2为本发明实施例提供的一种资源分配装置的结构示意图。
本发明的实施方式
下文中将结合附图对本发明实施例进行详细说明。需要说明的是,在不冲突的情况下,本申请中的实施例及实施例中的特征可以相互任意组合。
在附图的流程图示出的步骤可以在诸如一组计算机可执行指令的计算机系统中执行。并且,虽然在流程图中示出了逻辑顺序,但是在某些情况下,可以以不同于此处的顺序执行所示出或描述的步骤。
本发明实施例提供一种资源分配方法,基于基站侧,如图1所示,该方法包括:
步骤101、基站根据预定义的资源分配方式为用户设备的物理上行共享信道(PUSCH)分配资源;
步骤102、基站通过下行控制信息(Downlink Control Information,DCI)向用户设备发送所述资源分配结果。
本发明实施例中,所述用户设备包括普通的用户设备(User Equipment, UE)、MTC UE等设备,比如,可以是移动终端、个人计算机、平板电脑等各类设备。
在示例性实施方式中,预定义的资源分配方式可以包括:
方式一:所述PUSCH传输对应的时域长度为预设固定时长;或,
方式二:所述PUSCH传输对应的时域长度为非预设固定时长。
在示例性实施方式中,当预定义的资源分配方式为方式一时,所述预设固定时长为N×V毫秒,N为正整数且N的取值为基站和用户设备预先约定好的,其中,V的取值包括:8、10或12。
在示例性实施方式中,当预定义的资源分配方式为方式一时,所述DCI中包含用于指示所述PUSCH传输对应的频域起始位置和频域大小的信息。
在示例性实施方式中,当预定义的资源分配方式为方式二时,所述DCI中包含指示所述PUSCH传输对应的频域起始位置和频域大小的信息以及指示所述PUSCH传输对应的时域长度的信息。
在示例性实施方式中,当预定义的资源分配方式为方式二时,所述DCI中包含指示所述PUSCH传输对应的频域起始位置和频域大小的信息以及指示所述PUSCH传输对应的时域基本单元的倍数的信息;其中,所述时域基本单元通过预先设定,或者通过高层信令配置确定,或者通过与子载波个数的预设对应关系确定。
在示例性实施方式中,所述DCI中包含指示所述PUSCH传输对应的时域偏移的信息。
在示例性实施方式中,当预定义的资源分配方式为方式二时,所述DCI中包含指示所述PUSCH传输对应的时域偏移的信息、所述频域起始位置和频域大小的信息、以及所述PUSCH传输对应的时域长度的信息。
在示例性实施方式中,当预定义的资源分配方式为方式二时,所述DCI中包含指示所述PUSCH传输对应的时域偏移的信息、所述频域起始位置和频域大小的信息、以及所述PUSCH传输对应的时域基本单元的倍数的信息。
在示例性实施方式中,所述指示所述PUSCH传输对应的频域起始位置和频域大小的信息在所述DCI中用X比特表示。
在示例性实施方式中,所述指示所述PUSCH传输对应的频域起始位置和频域大小的信息在所述DCI中用X比特表示,所述指示所述PUSCH传输对应的时域长度的信息在所述DCI中用Y比特表示;或者,所述指示所述PUSCH传输对应的频域起始位置和频域大小的信息以及指示所述PUSCH传输对应的时域长度的信息在所述DCI中用P比特表示。
在示例性实施方式中,所述指示所述PUSCH传输对应的频域起始位置和频域大小的信息在所述DCI中用X比特表示,所述指示所述PUSCH传输对应的时域基本单元的倍数的信息在所述DCI中用Z比特表示;或者,所述指示所述PUSCH传输对应的频域起始位置和频域大小的信息以及所述指示所述PUSCH传输对应的时域基本单元的倍数的信息在所述DCI中用Q比特表示。
在示例性实施方式中,所述指示所述PUSCH传输对应的时域偏移的信息以及所述指示所述频域起始位置和频域大小的信息在所述DCI中用S比特表示,S为正整数;所述指示所述PUSCH传输对应的时域长度的信息在所述DCI中用Y比特表示,Y为正整数。
在示例性实施方式中,所述指示所述PUSCH传输对应的时域偏移的信息以及所述指示所述频域起始位置和频域大小的信息在所述DCI中用S比特表示,S为正整数;所述指示所述PUSCH传输对应的时域基本单元的倍数的信息在所述DCI中用Z比特表示。
在示例性实施方式中,所述X比特的取值根据以下方式至少之一确定:
根据预先约定的所述PUSCH传输对应的频域起始位置和频域大小的组合方式与所述X比特的值的对应关系确定;
根据所述X比特中用于指示所述PUSCH传输对应的频域起始位置的X1比特的取值和用于指示所述PUSCH传输对应的频域大小的X2比特的取值来确定,其中,X1和X2均为正整数。
在示例性实施方式中,所述Y比特的取值根据以下至少之一确定:可调度的子载波个数的最小值、可调度的最大传输块的大小、可调度的最大资源单元个数。
在示例性实施方式中,所述P比特的取值根据所述X比特的取值和所述Y比特的取值来确定。
在示例性实施方式中,所述Z比特的取值根据以下至少之一确定:最小时域单元、可调度的子载波个数的最小值、可调度的最大传输块大小、可调度的最大资源单元个数。
在示例性实施方式中,所述Q比特的取值根据所述X比特的取值和所述Z比特的取值来确定。
在示例性实施方式中,所述可调度的最大资源单元个数为N×M,其中,M为一个物理资源块中用于数据传输的资源单元个数,N为预先设定的值,N的取值包括:5、6、10、或12。
在示例性实施方式中,所述指示所述PUSCH传输对应的时域偏移的信息在所述DCI中用B比特表示;其中,B为正整数,所述时域偏移为时域基本单元的L倍,L为非负数,所述时域基本单元通过预先设定,或者通过高层信令配置确定,或者通过与子载波个数的预设对应关系确定。
在一种示例性实施方式中,所述预定义的资源分配方式包括:
PUSCH传输的起始子帧的子帧预设索引为时域基本单元的整数倍;其中,所述时域基本单元通过预先设定,或者通过高层信令配置确定,或者通过与子载波个数的预设对应关系确定。
在本示例性实施方式中,需要说明的是,对于上述方式一、上述方式二以及本实施方式中的资源分配方式,三种方式是互相独立的,另外值得一提的是,如果本实施方式中的上述资源分配方式的资源分配结果与所述方式一或者所述方式二的资源分配结果有冲突的话,可以优先选择采用本实施方式中的上述资源分配方式得到的资源分配结果。
其中,所述时域基本单元可以预先设定为1毫秒。即时域基本单元可以是一个子帧的长度。
本发明实施例提供一种资源分配方法,基站根据预定义的资源分配方式为用户设备的PUSCH分配资源;基站通过DCI向用户设备发送所述资源分配结果;其中,当所述PUSCH传输对应的时域长度为预设长度时,DCI中 包含指示所述PUSCH传输对应的频域起始位置和频域大小的信息;当所述PUSCH传输对应的时域长度根据预设规则确定时,DCI中包含指示所述PUSCH传输对应的频域起始位置和频域大小的信息、用于指示所述PUSCH传输对应的时域长度的信息。通过本发明实施例提供的技术方案,实现了PUSCH的资源分配,解决了相关技术中没有分配方法的难题。
下面通过多个实施例对本申请提供的技术方案进行详细说明。
实施例一
在本实施例中,假设基站按照方式一为UE的PUSCH分配资源,然后将资源分配结果发送给所述UE,并且进一步假设方式一中的预设固定时长为12ms(N取1的情况),以上假设仅是为了便于举例说明本实施例提供的技术方案,并不能用于限制本申请。在上述前提下,通过三个实施示例来说明实施例一,各个实施示例可以互相参照以理解本申请,并不孤立存在。
实施示例一
由于PUSCH传输对应的时域长度固定且为12ms,那么基站为UE分配PUSCH传输的资源,基站通过DCI发送所述资源分配结果;其中,所述DCI中包含指示所述PUSCH传输对应的频域起始位置和频域大小的信息(本发明实施例中用于指示的信息可以是DCI中的若干个比特,下述内容中出现的用于指示的信息也可以参照此处说明来理解,不再赘述);用X比特表示所述指示所述PUSCH传输对应的频域起始位置和频域大小的信息,基站和UE预先约定好PUSCH传输对应的频域起始位置和频域大小的组合方式与该信息对应的X个比特的取值的对应关系。假设一个示例性的预先约定好的例子如下表1所示,其中,X=5,PUSCH传输支持的子载波个数为{1,2,4,6,8,12},根据表1,如果基站需要调度子载波个数为1、频域起始位置为1的PUSCH,那么基站通过DCI发送的所述X=5个比特的取值为00000,此时PUSCH传输对应的子载波个数为1、频域起始位置为1、时域长度为12ms。在本实施示例中,从表1可以看出,当子载波个数为2,4,6,8时,频域起始位置分别限制为6,3,2,1种,此处假设X=5,5个比特的组合方式为32种,而本实施示例中频域大小与频域起始位置的组合方式为6×12=72种,无法做到一一对应。
表1
X个比特的取值 {频域大小,频域起始位置}
00000 {子载波个数1,起始位置1}
00001 {子载波个数1,起始位置2}
00010 {子载波个数1,起始位置3}
00011 {子载波个数1,起始位置4}
00100 {子载波个数1,起始位置5}
00101 {子载波个数1,起始位置6}
00110 {子载波个数1,起始位置7}
00111 {子载波个数1,起始位置8}
01000 {子载波个数1,起始位置9}
01001 {子载波个数1,起始位置10}
01010 {子载波个数1,起始位置11}
01011 {子载波个数1,起始位置12}
01100 {子载波个数2,起始位置1}
01101 {子载波个数2,起始位置2}
01110 {子载波个数2,起始位置3}
01111 {子载波个数2,起始位置4}
10000 {子载波个数2,起始位置5}
10001 {子载波个数2,起始位置6}
10010 {子载波个数4,起始位置1}
10011 {子载波个数4,起始位置2}
10100 {子载波个数4,起始位置3}
10101 {子载波个数6,起始位置1}
10110 {子载波个数6,起始位置2}
10111 {子载波个数8,起始位置1}
11000 {子载波个数12}
需要说明的是,表1中每一行左右两个参数是一一对应的关系,并且以上表1中给出的每一行左右两个参数的对应关系也只是一种示例性的举例,本领域技术人员可以根据实际给出其他的对应关系来应用。
实施示例二
由于PUSCH传输对应的时域长度固定且为12ms,那么基站为UE分配PUSCH传输的资源,基站通过DCI向UE发送所述资源分配结果;其中,所述DCI中包含用于指示所述PUSCH传输对应的频域起始位置和频域大小的信息;所述信息对应X比特,X比特的取值根据所述X比特中指示所述PUSCH传输对应的频域起始位置的X1比特的取值和指示所述PUSCH传输对应的频域大小的X2比特的取值来确定。假设上行系统支持的总子载波个数为12,那么频域的起始位置有12种,则X1取4比特即可,假设PUSCH传输支持的子载波个数有A种,那么X2=ceil(log2(A)),ceil表示向上取整运算。假设一个示例性的预先约定好的例子如下表2所示,其中,X2=3(根据表2可知本实施示例中A=6),那么X取为7比特,假设基站需要调度子载波个数为1、频域起始位置为1的PUSCH,那么一种可能的情况下基站通过DCI发送的所述X=7个比特的取值为0000000,此时PUSCH传输对应的子载波个数为1、频域起始位置为1、时域长度为12ms。其中,根据表2可知所述7个比特中右边X2=3个比特为000对应表示子载波个数为1,左边X1=4个比特为0000对应表示频域起始位置为1(此处为一种可能的示例)。
表2
X2个比特对应的取值 子载波个数
000 1
001 2
010 4
011 6
100 8
101 12
需要说明的是,表2中同一行左右两个参数仅是一种对应关系,以上表2中给出的对应关系也只是一种示例性的举例,本领域技术人员可以根据实际给出其他的对应关系来使用。
实施示例三
由于PUSCH传输对应的时域长度固定且为12ms,那么基站为UE分配PUSCH传输的资源,基站通过DCI发送所述资源分配结果;其中,所述DCI中包含指示所述PUSCH传输对应的频域起始位置和频域大小的信息;所述信息对应X比特,假设上行系统支持的总子载波个数为12,那么频域的起始位置有12种,则X1取4比特即可,假设PUSCH传输支持的子载波个数有A=6种(子载波个数为1,2,4,6,8或12),那么根据实施示例二中计算X2的公式可以计算得到X2应该取3。但是,考虑到下行控制信令开销,在本实施示例中,减小X2的取值,用以指示部分子载波个数,示例性的,如下一个假设的预先约定好的表3中所示,其中X2=2,那么X为6比特,对于其他子载波个数可以通过预先约定剩余状态和对应关系的方式表示。例如,基站根据调度情况需要调度子载波个数为12的PUSCH,那么所述X=6个比特取值为111111,此时PUSCH传输对应的子载波个数为12、频域起始位置为1、时域长度为12ms,其中,111111应当不属于表3中所包括的对应关系,也即右边两位比特取值11并不对应表3中子载波个数为6,111111可以理解为上述提及的预先约定的一个剩余状态,在本实施示例中,示例性地被指定与子载波个数为12以及频域起始位置为1这样的情况一一对应。
表3
X2个比特对应的取值 子载波个数
00 1
01 2
10 4
11 6
需要说明的是,表3中同一行左右两个参数仅是一种对应关系,以上表3中给出的对应关系也只是一种示例性的举例,本领域技术人员可以根据实际给出其他的对应关系来使用。
实施例二
在本实施例中,假设指示所述PUSCH传输对应的时域长度的信息的比特数Y取决于可调度的最大资源单元个数和子载波个数的最小值,进一步假设可调度的最大资源单元个数为N×M,其中,N=5,M=144,子载波个数的最小值为1,那么时域长度的最大值为60ms((5×144)/(1×12)=60,其中,12为1ms内包含的资源单元个数),那么Y为6(26=64,6位比特足以指示60ms)。基于以上前提,提供多个实施示例来说明实施例二。
实施示例一
另外,在本实施例中,假设基站按照方式二为UE的PUSCH分配资源,然后将资源分配结果通过DCI发送给所述UE,其中,所述DCI中用X比特来表示所述指示所述PUSCH传输对应的频域起始位置和频域大小的信息以及用Y比特表示指示所述PUSCH传输对应的时域长度的信息;假设基站需要调度PUSCH对应的子载波个数为1、频域起始位置为1、时域长度为24ms,那么基站通过DCI发送的指示所述PUSCH传输对应的频域起始位置和频域大小的信息的5比特的取值为00000(参照下表4得到,其中假设支持的子载波个数为1,3,6,12,频域起始位置和频域大小与X比特的对应关系如表4所示),基站通过DCI发送的用于指示PUSCH传输对应的时域长度的信息可以为010111。在本实施例中,所述指示所述PUSCH传输对应的时域长度的信息的比特数Y取6,一种可能的情况:000000对应时域长度为1ms,000001对应时域长度为2ms,……,111011对应时域长度为60ms,6位比特的取值与时域长度的值是对应依次递增的。
表4
X个比特的取值 {频域大小,频域起始位置}
00000 {子载波个数1,起始位置1}
00001 {子载波个数1,起始位置2}
00010 {子载波个数1,起始位置3}
00011 {子载波个数1,起始位置4}
00100 {子载波个数1,起始位置5}
00101 {子载波个数1,起始位置6}
00110 {子载波个数1,起始位置7}
00111 {子载波个数1,起始位置8}
01000 {子载波个数1,起始位置9}
01001 {子载波个数1,起始位置10}
01010 {子载波个数1,起始位置11}
01011 {子载波个数1,起始位置12}
01100 {子载波个数3,起始位置1}
01101 {子载波个数3,起始位置2}
01110 {子载波个数3,起始位置3}
01111 {子载波个数3,起始位置4}
10000 {子载波个数6,起始位置1}
10001 {子载波个数6,起始位置2}
10010 {子载波个数12}
实施示例二
另外,在本实施例中,假设基站按照方式二为UE的PUSCH分配资源,然后将资源分配结果通过DCI发送给所述UE,其中,所述DCI中用P比特来表示所述指示所述PUSCH传输对应的频域起始位置和频域大小的信息和指示所述PUSCH传输对应的时域长度的信息;将所述指示所述PUSCH传输对应的频域起始位置和频域大小的信息的X比特以及所述指示所述PUSCH传输对应的时域长度信息的Y比特联合编码得到所述P比特。假设基站需要调度PUSCH对应的子载波个数为1、频域起始位置为1、时域长度为24ms, 那么用于指示所述PUSCH传输对应的频域起始位置和频域大小信息的5比特的取值为00000(参照表4得到),指示PUSCH传输对应的时域长度的信息可以为010111(参考实施例二的实施示例一),那么基站将表示所述指示所述PUSCH传输对应的频域起始位置和频域大小的信息的00000和表示所述指示所述PUSCH传输对应的时域长度信息的010111联合编码得到00000010111,通过DCI的形式发送。本实施例中,给出一种联合编码的示例,即联合编码后的比特数P为联合编码的2个信息的比特数之和,即P=X+Y,本申请不排除其他联合编码方式,凡是将指示所述PUSCH传输对应的频域起始位置和频域大小的信息和指示所述PUSCH传输对应的时域长度信息联合起来用P比特表示的都在本申请的保护范围内,其中,P≤X+Y。
需要说明的是,本实施例中以上假设和示例是为了举例说明本申请提供的技术方案,其中仅列举了一些可能的情况,并不能用于限制本申请。
实施例三
在本实施例中,假设指示所述PUSCH传输对应的时域基本单元的倍数的信息包含的比特数Z取决于可调度的最大资源单元个数、子载波个数的最小值以及时域基本单元,进一步假设最大资源单元个数为5×144以及时域基本单元为预先设定的12ms,那么时域基本单元的倍数的最大值为5(参照实施例二的计算方式),所述时域基本单元的倍数的信息对应的比特数Z为3(23=8,3位比特足以指示5种方式)。
另外,在本实施例中,假设基站按照方式二为UE的PUSCH分配资源,然后通过DCI将资源分配结果发送给所述UE;其中,所述DCI中包含指示所述PUSCH传输对应的频域起始位置和频域大小的信息以及指示所述PUSCH传输对应的时域基本单元的倍数的信息;假设基站需要调度PUSCH对应的子载波个数为1、频域起始位置为1、时域长度为24ms,那么基站通过DCI发送的所述PUSCH传输对应的频域起始位置和频域大小的信息的X=5比特的取值为00000(参照实施例一的实施示例一),因为时域基本单元固定为12ms,当时域长度为24ms时,那么时域基本单元的倍数为2,即基站通过DCI发送的PUSCH传输对应的时域基本单元的倍数的信息对应的 Z=3比特的取值为001;在本实施例中,所述时域基本单元的倍数的信息用3比特的取值来指示,一种可能的情况:000对应时域基本单元的倍数为1,001对应时域基本单元的倍数为2,……,011对应时域基本单元的倍数为4,100对应时域基本单元的倍数为5,其中,3位比特的取值与时域长度的值是对应依次递增的。
需要说明的是,本实施例中以上假设和示例是为了举例说明本申请提供的技术方案,其中仅列举了一些可能的情况,并不能用于限制本申请。
实施例四
在本实施例中,假设指示所述PUSCH传输对应的时域长度的信息包含的比特数Z取决于可调度的最大资源单元个数、子载波个数的最小值以及时域基本单元,进一步假设最大资源单元个数为5×144以及时域基本单元为预先设定的12ms,那么时域基本单元的倍数的最大值为5,所述时域基本单元的倍数的信息包含的比特数Z为3(参照实施例三)。在上述前提下,通过以下两个实施示例来说明实施例四。
实施示例一
在本实施示例中,假设基站按照方式二为UE的PUSCH分配资源,基站通过DCI将资源分配结果发送给所述UE;其中,所述DCI中包含指示所述PUSCH传输对应的频域起始位置和频域大小的信息以及指示所述PUSCH传输对应的时域基本单元的倍数的信息;假设基站需要调度PUSCH对应的子载波个数为2、频域起始位置为1、时域长度为24ms,那么基站通过DCI发送的指示所述PUSCH传输对应的频域起始位置和频域大小信息对应的5比特的取值为01100(参照实施例一的实施示例一),因为子载波个数为2,假设子载波个数和时域基本单元的预设关系如表5所示,那么时域基本单元为6ms,时域长度为24ms,那么时域基本单元的倍数为4,基站通过DCI发送的PUSCH传输对应的时域基本单元的倍数的信息对应的3比特的取值为011(参照实施例三)。
表5
子载波个数 时域基本单元
12 1ms
6 2ms
4 3ms
3 4ms
2 6ms
1 12ms/8ms
实施示例二
在本实施示例中,假设基站按照方式二为UE的PUSCH分配资源,基站通过DCI将资源分配结果发送给所述UE;其中,所述DCI中包含指示所述PUSCH传输对应的频域起始位置和频域大小的信息以及指示所述PUSCH传输对应的时域基本单元的倍数的信息;假设基站需要调度PUSCH对应的子载波个数为12、频域起始位置为1、时域长度为60ms,那么基站通过DCI发送的所述PUSCH传输对应的频域起始位置和频域大小的信息对应的5比特的取值为11110(参照实施例一的实施示例一),因为时域基本单元为12ms,时域长度为60ms,那么时域基本单元的倍数为5,基站通过DCI发送的PUSCH传输对应的时域基本单元的倍数的信息对应的3比特的取值为100(参照实施例三)。
需要说明的是,本实施例中以上假设和示例是为了举例说明本申请提供的技术方案,其中仅列举了一些可能的情况,并不能用于限制本申请。
实施例五
本实施例通过以下五个实施示例进行说明。
实施示例一
在本实施示例中,假设基站在子帧{n,n+1}上发送UE的PUSCH对应的DCI,假设DCI中的2比特指示所述PUSCH传输对应的时域偏移的信息,2比特的取值与时域偏移的值的对应关系如表6所示,其中,K为时域基本 单元的长度,DCI中指示PUSCH传输对应的子载波个数为6,即K为2ms(参照实施例四的实施示例一中表5)。假设基站根据调度情况,需要UE在子帧n+5(本实施示例中假设基于现有调度定时且调度定时为4个子帧)开始传输PUSCH,因为根据调度定时,UE的PUSCH就从子帧n+5开始传输,所以DCI中表示时域偏移的2比特为00。
表6
B比特的值 时域偏移
00 0
01 K
10 2K
11 3K
实施示例二
在本实施示例中,假设基站在子帧{n,n+1}上发送UE的PUSCH对应的DCI,假设DCI中包含2比特指示所述PUSCH传输对应的时域偏移的信息,前述2比特的值与时域偏移的值的对应关系如上表6所示,其中,K为时域基本单元,DCI中指示PUSCH传输对应的子载波个数为6,即K为2。假设基站根据调度情况,需要UE在子帧n+7开始传输PUSCH,因为根据调度定时,UE的PUSCH从子帧n+5开始传输(本实施示例中假设基于现有调度定时且调度定时为4个子帧),所以DCI中表示时域偏移的2比特为01。
实施示例三
在本实施示例中,假设基站在子帧{n}上发送UE的PUSCH对应的DCI,假设DCI中包含6比特指示所述PUSCH传输对应的时域偏移的信息,6比特的值与时域偏移的值的对应关系如表7所示。假设基站根据调度情况,需要UE在子帧n+7开始传输PUSCH,那么基站配置DCI中指示时域偏移的B比特的值为000110(参照表7,表示时域偏移的值为7),UE收到DCI确定时域偏移的值后,在子帧n+7上传输PUSCH(本实施示例中不基于现有调度定时,UE侧直接根据基站指示的时域偏移的值进而确定发送PUSCH的起始子帧)。其中,时域偏移的值与以下参数至少之一有关:子载波间隔、 复用的用户数量、子载波数量、调度窗长度、调度窗周期,另外,时域偏移的最大值为2的幂次倍。
表7
B比特的值 时域偏移
000000~111111 1~64
实施示例四
在本实施例中,假设基站在调度上行数据时以调度窗/调度周期的形式调度,假设调度窗的长度为32毫秒。假设基站在调度窗#0无线帧#1的子帧{n}上发送UE的PUSCH对应的DCI,那么UE在调度窗#1中发送对应的PUSCH,其中,PUSCH在调度窗#1内的起始子帧根据DCI中的时域偏移确定,时域偏移的值和调度窗的长度有关。示例性的,调度窗长度为32=25,可以在DCI中用5比特来指示时域偏移,例如可以用00000~11111来对应指示时域偏移1~32ms,当UE收到基站发送的DCI后获知前述5比特的值,从而确定时域偏移,进而再将调度窗#1内的某个子帧确定为发送PUSCH的起始子帧。需要说明的是,在本实施示例中,基于调度定时,且调度定时只用来确定PUSCH传输所在的调度窗,UE侧根据基站指示的时域偏移的值进而确定调度窗内发送PUSCH的起始子帧。
实施示例五
假设基站在调度上行数据时以调度窗长度/调度周期的形式调度,假设调度窗的长度为32毫秒。假设基站在调度窗#0无线帧#1的子帧{n}上发送UE的PUSCH对应的DCI。假设在DCI中指示所述PUSCH传输对应的时域偏移的信息、频域起始位置和频域大小的信息是用S比特联合指示的,如表8所示。假设基站配置S比特的值为00101111,那么UE在调度窗1频域起始位置为12,时域起始位置为4上发送子载波个数为1的PUSCH。当子载波个数为1时,假设频域起始位置1~12分别为子载波预设索引0~11所在的子载波,时域起始位置1~4分别为子帧预设索引为0,8,16,24所在的子帧;当子载波个数为3时,假设频域起始位置1~4分别为子载波预设索引为0,4,8,12所在的子载波,时域起始位置1~8分别为子帧预设索引为0,4,8,12,16,20,24,28 所在的子帧;当子载波个数为6时,假设频域起始位置1~2分别为子载波预设索引为0,6所在的子载波,时域起始位置1~16分别为子帧预设索引为0,2,4,6,8,10,12,14,16,18,20,22,24,26,28所在的子帧,当子载波个数为12时,假设频域起始位置1分别为子载波预设索引为0所在的子载波,时域起始位置1~32分别为子帧预设索引为0~31所在的子帧,其中,子帧预设索引是从预设子帧开始按照子帧递增顺序编号的索引;本实施例中,预设子帧为调度窗1的起始子帧;其中,子载波预设索引是从预设子载波开始按照子载波递增/递减的顺序编号的索引,其中,预设子载波为系统中载频最大/最小的子载波。
表8
Figure PCTCN2017072249-appb-000001
实施例六
本实施例通过以下两个实施示例进行说明。
实施示例一
在本实施示例中,假设基站在子帧{1}上发送UE的PUSCH对应的DCI,假设DCI中包含6比特指示所述PUSCH传输对应的时域偏移的信息,前述6比特的值与时域偏移的值的对应关系如表7所示,假设为PUSCH传输对应 的子载波个数为3,假设基站根据调度情况,需要UE在子帧7开始传输PUSCH,另外基站侧又考虑到PUSCH传输时起始子帧的子帧预设索引为时域基本单元的整数倍,当子载波个数为3时,时域基本单元为4ms(参照实施例四的实施示例一中表5),那么基站配置DCI中指示时域偏移的B比特为000110(参照表7,表示时域偏移的值为7),UE收到DCI确定时域偏移的值后在子帧8上传输PUSCH。需要说明的是,在本实施示例中,不基于调度定时,UE侧直接根据基站指示的时域偏移的值确定时域偏移量,进而确定发送PUSCH的起始子帧。
实施示例二
在本实施示例中,假设基站在子帧{1}上发送UE的PUSCH对应的DCI,假设DCI中包含6比特指示所述PUSCH传输对应的时域偏移的信息,前述6比特的值与时域偏移的值的对应关系如表7所示,假设为PUSCH传输对应的子载波个数为3,假设基站根据调度情况,需要UE在子帧7开始传输PUSCH,那么基站配置DCI中指示时域偏移的B比特为000101(参照表7,表示时域偏移的值为6),UE收到DCI确定时域偏移的值后应该在子帧7上开始传输PUSCH,但是UE又考虑到PUSCH传输时起始子帧的子帧预设索引为时域基本单元的整数倍,当子载波个数为3时,时域基本单元为4ms(参照表5),所以UE决定在子帧8上传输PUSCH(保证了传输PUSCH的起始子帧的子帧预设索引8为时域基本单元4的整数倍)。需要说明的是,在本实施示例中,不基于调度定时,UE侧直接根据基站指示的时域偏移的值确定时域偏移量,进而确定发送PUSCH的起始子帧。其中,子帧预设索引是从预设子帧开始按照子帧递增顺序编号的索引,本实施例中,假设预设子帧为子帧0。
还需说明的是,本实施例中以上假设和示例是为了举例说明本申请提供的技术方案,其中仅列举了一些可能的情况,并不能用于限制本申请。
值得一提的是,上述六个实施例以及其中包括的实施示例并不是孤立存在的,可以互相参照用以阐述本申请提供的技术方案,并且本申请提供的技术方案也并不局限于上述的实施例。
本发明实施例还提供一种资源分配装置10,可以设置在基站中,如图2所示,该装置包括:
分配模块11,配置为根据预定义的资源分配方式为用户设备的PUSCH分配资源;
发送模块12,配置为通过DCI向用户设备发送所述资源分配结果。
在示例性实施方式中,预定义的资源分配方式包括:
方式一:所述PUSCH传输对应的时域长度为预设固定时长;或,
方式二:所述PUSCH传输对应的时域长度为非预设固定时长。
在示例性实施方式中,当预定义的资源分配方式为方式一时,所述预设固定时长为N×V毫秒,N为正整数且N的取值为基站和用户设备预先约定好的,其中,V的取值包括:8、10或12。
在示例性实施方式中,当预定义的资源分配方式为方式一时,所述DCI中包含用于指示所述PUSCH传输对应的频域起始位置和频域大小的信息。
在示例性实施方式中,当预定义的资源分配方式为方式二时,所述DCI中包含指示所述PUSCH传输对应的频域起始位置和频域大小的信息以及指示所述PUSCH传输对应的时域长度的信息。
在示例性实施方式中,当预定义的资源分配方式为方式二时,所述DCI中包含指示所述PUSCH传输对应的频域起始位置和频域大小的信息以及指示所述PUSCH传输对应的时域基本单元的倍数的信息;其中,所述时域基本单元通过预先设定,或者通过高层信令配置确定,或者通过与子载波个数的预设对应关系确定。
在示例性实施方式中,所述DCI中包含指示所述PUSCH传输对应的时域偏移的信息。
在示例性实施方式中,当预定义的资源分配方式为方式二时,所述DCI中包含指示所述PUSCH传输对应的时域偏移的信息、所述频域起始位置和频域大小的信息、以及所述PUSCH传输对应的时域长度的信息。
在示例性实施方式中,当预定义的资源分配方式为方式二时,所述DCI中包含指示所述PUSCH传输对应的时域偏移的信息、所述频域起始位置和 频域大小的信息、以及所述PUSCH传输对应的时域基本单元的倍数的信息。
在示例性实施方式中,所述指示所述PUSCH传输对应的频域起始位置和频域大小的信息在所述DCI中用X比特表示。
在示例性实施方式中,所述指示所述PUSCH传输对应的频域起始位置和频域大小的信息在所述DCI中用X比特表示,所述指示所述PUSCH传输对应的时域长度的信息在所述DCI中用Y比特表示;或者,所述指示所述PUSCH传输对应的频域起始位置和频域大小的信息和指示所述PUSCH传输对应的时域长度的信息在所述DCI中用P比特表示。
在示例性实施方式中,所述指示所述PUSCH传输对应的频域起始位置和频域大小的信息在所述DCI中用X比特表示,所述指示所述PUSCH传输对应的时域基本单元的倍数的信息在所述DCI中用Z比特表示;或者,所述指示所述PUSCH传输对应的频域起始位置和频域大小的信息和用于指示所述PUSCH传输对应的时域基本单元的倍数的信息在所述DCI中用Q比特表示。
在示例性实施方式中,所述指示所述PUSCH传输对应的时域偏移的信息以及所述指示所述频域起始位置和频域大小的信息在所述DCI中用S比特表示,S为正整数;所述指示所述PUSCH传输对应的时域长度的信息在所述DCI中用Y比特表示,Y为正整数。
在示例性实施方式中,所述指示所述PUSCH传输对应的时域偏移的信息以及所述指示所述频域起始位置和频域大小的信息在所述DCI中用S比特表示,S为正整数;所述指示所述PUSCH传输对应的时域基本单元的倍数的信息在所述DCI中用Z比特表示。
在示例性实施方式中,所述X比特的取值根据以下方式至少之一确定:
根据预先约定的所述PUSCH传输对应的频域起始位置和频域大小的组合方式与所述X比特的值的对应关系确定;
根据所述X比特中用于指示所述PUSCH传输对应的频域起始位置的X1比特的取值和用于指示所述PUSCH传输对应的频域大小的X2比特的取值来确定,其中,X1和X2均为正整数。
在示例性实施方式中,所述Y比特的取值根据以下至少之一确定:可调度的子载波个数的最小值、可调度的最大传输块的大小、可调度的最大资源单元个数。
在示例性实施方式中,所述P比特的取值根据所述X比特的取值和所述Y比特的取值来确定。
在示例性实施方式中,所述Z比特的取值根据以下至少之一确定:最小时域单元、可调度的子载波个数的最小值、可调度的最大传输块大小、可调度的最大资源单元个数。
在示例性实施方式中,所述Q比特的取值根据所述X比特的取值和所述Z比特的取值来确定。
在示例性实施方式中,所述可调度的最大资源单元个数为N×M,其中,M为一个物理资源块中用于数据传输的资源单元个数,N为预先设定的值,N的取值包括:5、6、10、或12。
在示例性实施方式中,所述指示所述PUSCH传输对应的时域偏移的信息在所述DCI中用B比特表示;其中,B为正整数,所述时域偏移为时域基本单元的L倍,L为非负数,所述时域基本单元通过预先设定,或者通过高层信令配置确定,或者通过与子载波个数的预设对应关系确定。
在示例性实施方式中,所述预定义的资源分配方式包括:
PUSCH传输的起始子帧的子帧预设索引为时域基本单元的整数倍;其中,所述时域基本单元通过预先设定,或者通过高层信令配置确定,或者通过与子载波个数的预设对应关系确定。
本实施例用于实现上述各方法实施例,本实施例中各个模块的工作流程和工作原理参见上述各方法实施例中的描述,在此不再赘述。
本发明实施例提供的一种资源分配装置,应用于基站,根据预定义的资源分配方式为用户设备的PUSCH分配资源;通过DCI向用户设备发送所述资源分配结果;其中,当所述PUSCH传输对应的时域长度为预设长度时,DCI中包含指示所述PUSCH传输对应的频域起始位置和频域大小的信息;当所述PUSCH传输对应的时域长度根据预设规则确定时,DCI中包含指示 所述PUSCH传输对应的频域起始位置和频域大小的信息以及指示所述PUSCH传输对应的时域长度的信息。通过本发明实施例提供的技术方案,实现了PUSCH的资源分配,解决了相关技术中没有分配方法的难题。
本发明实施例还提供了一种存储介质。在本实施例中,上述存储介质可以被设置为存储用于执行上述实施例方法步骤的程序代码。
在本实施例中,上述存储介质可以包括但不限于:U盘、只读存储器(ROM,Read-Only Memory)、随机存取存储器(RAM,Random Access Memory)、移动硬盘、磁碟或者光盘等各种可以存储程序代码的介质。
在本实施例中,处理器可以根据存储介质中已存储的程序代码执行上述实施例方法步骤。
本实施例中的示例可以参考上述方法实施例及实施方式中所描述的示例,本实施例在此不再赘述。
本领域普通技术人员可以理解,上文中所公开方法中的全部或某些步骤、系统、装置中的功能模块/单元可以被实施为软件、固件、硬件及其适当的组合。在硬件实施方式中,在以上描述中提及的功能模块/单元之间的划分不一定对应于物理单元的划分;例如,一个物理组件可以具有多个功能,或者一个功能或步骤可以由若干物理组件合作执行。某些组件或所有组件可以被实施为由处理器,如数字信号处理器或微处理器执行的软件,或者被实施为硬件,或者被实施为集成电路,如专用集成电路。这样的软件可以分布在计算机可读介质上,计算机可读介质可以包括计算机存储介质(或非暂时性介质)和通信介质(或暂时性介质)。如本领域普通技术人员公知的,术语计算机存储介质包括在用于存储信息(诸如计算机可读指令、数据结构、程序模块或其他数据)的任何方法或技术中实施的易失性和非易失性、可移除和不可移除介质。计算机存储介质包括但不限于RAM、ROM、EEPROM、闪存或其他存储器技术、CD-ROM、数字多功能盘(DVD)或其他光盘存储、磁盒、磁带、磁盘存储或其他磁存储装置、或者可以用于存储期望的信息并且可以被计算机访问的任何其他的介质。此外,本领域普通技术人员公知的是,通信介质通常包含计算机可读指令、数据结构、程序模块或者诸如载波或其他传输机制之类的调制数据信号中的其他数据,并且可包括任何信息递送介质。
虽然本申请所揭露的实施方式如上,但所述的内容仅为便于理解本申请而采用的实施方式,并非用以限定本申请。任何本申请所属领域内的技术人员,在不脱离本申请所揭露的精神和范围的前提下,可以在实施的形式及细节上进行任何的修改与变化,但本申请的专利保护范围,仍须以所附的权利要求书所界定的范围为准。
工业实用性
本申请实施例提供一种资源分配方法及装置,实现了PUSCH的资源分配。

Claims (39)

  1. 一种资源分配方法,包括:
    基站根据预定义的资源分配方式为用户设备的物理上行共享信道PUSCH分配资源;
    基站通过下行控制信息DCI向用户设备发送所述资源分配结果。
  2. 根据权利要求1所述的资源分配方法,其中,所述预定义的资源分配方式包括:
    方式一:所述PUSCH传输对应的时域长度为预设固定时长;或,
    方式二:所述PUSCH传输对应的时域长度为非预设固定时长。
  3. 根据权利要求2所述的资源分配方法,其中,当所述预定义的资源分配方式为方式一时,所述预设固定时长为N×V毫秒,N为正整数且N的取值为基站和用户设备预先约定好的,V的取值包括:8、10或12。
  4. 根据权利要求2所述的资源分配方法,其中,当所述预定义的资源分配方式为方式一时,所述DCI中包含用于指示所述PUSCH传输对应的频域起始位置和频域大小的信息。
  5. 根据权利要求2所述的资源分配方法,其中,当所述预定义的资源分配方式为方式二时,所述DCI中包含指示所述PUSCH传输对应的频域起始位置和频域大小的信息以及指示所述PUSCH传输对应的时域长度的信息。
  6. 根据权利要求2所述的资源分配方法,其中,当所述预定义的资源分配方式为方式二时,所述DCI中包含指示所述PUSCH传输对应的频域起始位置和频域大小的信息以及指示所述PUSCH传输对应的时域基本单元的倍数的信息;其中,所述时域基本单元通过预先设定,或者通过高层信令配置确定,或者通过与子载波个数的预设对应关系确定。
  7. 根据权利要求2所述的资源分配方法,其中,所述DCI中包含指示所述PUSCH传输对应的时域偏移的信息。
  8. 根据权利要求2所述的资源分配方法,其中,当所述预定义的资源分配方式为方式二时,所述DCI中包含指示所述PUSCH传输对应的时域偏移 的信息、所述频域起始位置和频域大小的信息、以及所述PUSCH传输对应的时域长度的信息。
  9. 根据权利要求2所述的资源分配方法,其中,当所述预定义的资源分配方式为方式二时,所述DCI中包含指示所述PUSCH传输对应的时域偏移的信息、所述频域起始位置和频域大小的信息、以及所述PUSCH传输对应的时域基本单元的倍数的信息。
  10. 根据权利要求4所述的资源分配方法,其中,所述指示所述PUSCH传输对应的频域起始位置和频域大小的信息在所述DCI中用X比特表示。
  11. 根据权利要求5或8所述的资源分配方法,其中,所述指示所述PUSCH传输对应的频域起始位置和频域大小的信息在所述DCI中用X比特表示,所述指示所述PUSCH传输对应的时域长度的信息在所述DCI中用Y比特表示;或者,所述指示所述PUSCH传输对应的频域起始位置和频域大小的信息以及所述指示所述PUSCH传输对应的时域长度的信息在所述DCI中用P比特表示。
  12. 根据权利要求6或9所述的资源分配方法,其中,所述指示所述PUSCH传输对应的频域起始位置和频域大小的信息在所述DCI中用X比特表示,所述指示所述PUSCH传输对应的时域基本单元的倍数的信息在所述DCI中用Z比特表示;或者,所述指示所述PUSCH传输对应的频域起始位置和频域大小的信息以及所述指示所述PUSCH传输对应的时域基本单元的倍数的信息在所述DCI中用Q比特表示。
  13. 根据权利要求8所述的资源分配方法,其中,所述指示所述PUSCH传输对应的时域偏移的信息以及所述指示所述频域起始位置和频域大小的信息在所述DCI中用S比特表示,S为正整数;所述指示所述PUSCH传输对应的时域长度的信息在所述DCI中用Y比特表示,Y为正整数。
  14. 根据权利要求9所述的资源分配方法,其中,所述指示所述PUSCH传输对应的时域偏移的信息以及所述指示所述频域起始位置和频域大小的信息在所述DCI中用S比特表示,S为正整数;所述指示所述PUSCH传输对应的时域基本单元的倍数的信息在所述DCI中用Z比特表示。
  15. 根据权利要求10或11或12所述的资源分配方法,其中,所述X 比特的取值根据以下方式至少之一确定:
    根据预先约定的所述PUSCH传输对应的频域起始位置和频域大小的组合方式与所述X比特的值的对应关系确定;
    根据所述X比特中用于指示所述PUSCH传输对应的频域起始位置的X1比特的取值和用于指示所述PUSCH传输对应的频域大小的X2比特的取值来确定,其中,X1和X2均为正整数。
  16. 根据权利要求11或13所述的资源分配方法,其中,所述Y比特的取值根据以下至少之一确定:可调度的子载波个数的最小值、可调度的最大传输块的大小、可调度的最大资源单元个数。
  17. 根据权利要求11所述的资源分配方法,其中,所述P比特的取值根据所述X比特的取值和所述Y比特的取值来确定。
  18. 根据权利要求12或14所述的资源分配方法,其中,所述Z比特的取值根据以下至少之一确定:最小时域单元、可调度的子载波个数的最小值、可调度的最大传输块大小、可调度的最大资源单元个数。
  19. 根据权利要求12所述的资源分配方法,其中,所述Q比特的取值根据所述X比特的取值和所述Z比特的取值来确定。
  20. 根据权利要求16或18所述的资源分配方法,其中,所述可调度的最大资源单元个数为N×M,M为一个物理资源块中用于数据传输的资源单元个数,N为预先设定的值,N的取值包括:5、6、10、或12。
  21. 根据权利要求7或8或9所述的资源分配方法,其中,所述指示所述PUSCH传输对应的时域偏移的信息在所述DCI中用B比特表示;其中,B为正整数,所述时域偏移为时域基本单元的L倍,L为非负数,所述时域基本单元通过预先设定,或者通过高层信令配置确定,或者通过与子载波个数的预设对应关系确定。
  22. 根据权利要求1所述的资源分配方法,其中,所述预定义的资源分配方式包括:
    所述PUSCH传输的起始子帧的子帧预设索引为时域基本单元的整数倍;其中,所述时域基本单元通过预先设定,或者通过高层信令配置确定,或者 通过与子载波个数的预设对应关系确定。
  23. 一种资源分配装置,包括:
    分配模块,配置为根据预定义的资源分配方式为用户设备的物理上行共享信道PUSCH分配资源;
    发送模块,配置为通过下行控制信息DCI向用户设备发送所述资源分配结果。
  24. 根据权利要求23所述的资源分配装置,其中,所述预定义的资源分配方式包括:
    方式一:所述PUSCH传输对应的时域长度为预设固定时长;或,
    方式二:所述PUSCH传输对应的时域长度为非预设固定时长。
  25. 根据权利要求24所述的资源分配装置,其中,当所述预定义的资源分配方式为方式一时,所述预设固定时长为N×V毫秒,N为正整数且N的取值为基站和用户设备预先约定好的,V的取值包括:8、10或12。
  26. 根据权利要求24所述的资源分配装置,其中,当所述预定义的资源分配方式为方式一时,所述DCI中包含用于指示所述PUSCH传输对应的频域起始位置和频域大小的信息。
  27. 根据权利要求24所述的资源分配装置,其中,当所述预定义的资源分配方式为方式二时,所述DCI中包含指示所述PUSCH传输对应的频域起始位置和频域大小的信息以及指示所述PUSCH传输对应的时域长度的信息。
  28. 根据权利要求24所述的资源分配装置,其中,当所述预定义的资源分配方式为方式二时,所述DCI中包含指示所述PUSCH传输对应的频域起始位置和频域大小的信息以及指示所述PUSCH传输对应的时域基本单元的倍数的信息;其中,所述时域基本单元通过预先设定,或者通过高层信令配置确定,或者通过与子载波个数的预设对应关系确定。
  29. 根据权利要求24所述的资源分配装置,其中,所述DCI中包含指示所述PUSCH传输对应的时域偏移的信息。
  30. 根据权利要求26所述的资源分配装置,其中,所述指示所述PUSCH传输对应的频域起始位置和频域大小的信息在所述DCI中用X比特表示。
  31. 根据权利要求27所述的资源分配装置,其中,所述指示所述PUSCH传输对应的频域起始位置和频域大小的信息在所述DCI中用X比特表示,所述指示所述PUSCH传输对应的时域长度的信息在所述DCI中用Y比特表示;或者,所述指示所述PUSCH传输对应的频域起始位置和频域大小的信息以及所述指示所述PUSCH传输对应的时域长度的信息在所述DCI中用P比特表示。
  32. 根据权利要求28所述的资源分配装置,其中,所述指示所述PUSCH传输对应的频域起始位置和频域大小的信息在所述DCI中用X比特表示,所述指示所述PUSCH传输对应的时域基本单元的倍数的信息在所述DCI中用Z比特表示;或者,所述指示所述PUSCH传输对应的频域起始位置和频域大小的信息以及所述指示所述PUSCH传输对应的时域基本单元的倍数的信息在所述DCI中用Q比特表示。
  33. 根据权利要求30或31或32所述的资源分配装置,其中,所述X比特的取值根据以下方式至少之一确定:
    根据预先约定的所述PUSCH传输对应的频域起始位置和频域大小的组合方式与所述X比特的值的对应关系确定;
    根据所述X比特中用于指示所述PUSCH传输对应的频域起始位置的X1比特的取值和用于指示所述PUSCH传输对应的频域大小的X2比特的取值来确定,其中,X1和X2均为正整数。
  34. 根据权利要求31所述的资源分配装置,其中,所述Y比特的取值根据以下至少之一确定:可调度的子载波个数的最小值、可调度的最大传输块的大小、可调度的最大资源单元个数。
  35. 根据权利要求31所述的资源分配装置,其中,所述P比特的取值根据所述X比特的取值和所述Y比特的取值来确定。
  36. 根据权利要求32所述的资源分配装置,其中,所述Z比特的取值根据以下至少之一确定:最小时域单元、可调度的子载波个数的最小值、可调度的最大传输块大小、可调度的最大资源单元个数。
  37. 根据权利要求32所述的资源分配装置,其中,所述Q比特的取值 根据所述X比特的取值和所述Z比特的取值来确定。
  38. 根据权利要求34或36所述的资源分配装置,其中,所述可调度的最大资源单元个数为N×M,M为一个物理资源块中用于数据传输的资源单元个数,N为预先设定的值,N的取值包括:5、6、10、或12。
  39. 根据权利要求29所述的资源分配装置,其中,所述指示所述PUSCH传输对应的时域偏移的信息在所述DCI中用B比特表示;B为正整数,所述时域偏移为时域基本单元的L倍,L为非负数,所述时域基本单元通过预先设定,或者通过高层信令配置确定,或者通过与子载波个数的预设对应关系确定。
PCT/CN2017/072249 2016-01-08 2017-01-23 一种资源分配方法及装置 WO2017118442A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US15/990,546 US10499392B2 (en) 2016-01-08 2018-05-25 Method and apparatus for resource allocation

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN201610015588 2016-01-08
CN201610015588.7 2016-01-08
CN201610082070.5A CN106961736B (zh) 2016-01-08 2016-02-05 一种无线通信的方法及装置
CN201610082070.5 2016-02-05

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US15/990,546 Continuation US10499392B2 (en) 2016-01-08 2018-05-25 Method and apparatus for resource allocation

Publications (1)

Publication Number Publication Date
WO2017118442A1 true WO2017118442A1 (zh) 2017-07-13

Family

ID=59274066

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/072249 WO2017118442A1 (zh) 2016-01-08 2017-01-23 一种资源分配方法及装置

Country Status (1)

Country Link
WO (1) WO2017118442A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102427396A (zh) * 2011-08-15 2012-04-25 中兴通讯股份有限公司 一种小区间上行解调参考信号的信息交互方法和基站
CN102468950A (zh) * 2010-11-15 2012-05-23 华为技术有限公司 信息传输方法、终端、基站和通信系统
CN102652404A (zh) * 2009-12-10 2012-08-29 Lg电子株式会社 无线通信系统中同时收发信号的转发器设备及其方法
CN102934381A (zh) * 2010-06-02 2013-02-13 三星电子株式会社 无线通信系统中用于发送信道状态信息的方法和系统
CN104113924A (zh) * 2013-04-17 2014-10-22 中兴通讯股份有限公司 一种多子帧调度方法、装置及系统

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102652404A (zh) * 2009-12-10 2012-08-29 Lg电子株式会社 无线通信系统中同时收发信号的转发器设备及其方法
CN102934381A (zh) * 2010-06-02 2013-02-13 三星电子株式会社 无线通信系统中用于发送信道状态信息的方法和系统
CN102468950A (zh) * 2010-11-15 2012-05-23 华为技术有限公司 信息传输方法、终端、基站和通信系统
CN102427396A (zh) * 2011-08-15 2012-04-25 中兴通讯股份有限公司 一种小区间上行解调参考信号的信息交互方法和基站
CN104113924A (zh) * 2013-04-17 2014-10-22 中兴通讯股份有限公司 一种多子帧调度方法、装置及系统

Similar Documents

Publication Publication Date Title
EP3131321B1 (en) Communication data sending method and device
CN105813204B (zh) 资源池配置方法及设备
CN102238621B (zh) 基于物理下行共享信道传输公共数据的方法和系统
EP3100551B1 (en) Telecommunications apparatus and methods
CN106416404B (zh) 终端装置、基站装置以及通信方法
EP3389326B1 (en) Downlink messages using repeated transmission
CN106537996B (zh) 终端装置以及方法
CN105960824B (zh) 终端装置、基站装置以及通信方法
US9813196B2 (en) Terminal device, base station apparatus, integrated circuit, and communication method
CN106413105B (zh) 一种资源传输的指示方法、装置、网络侧设备及终端
EP3166364B1 (en) Physical downlink data channel transmission method, base station and user equipment
EP3096577B1 (en) Terminal device, base station device, communication method and integrated circuit
WO2010018819A1 (ja) 基地局装置及び通信制御方法
EP2903312B1 (en) Method and device for processing trunking service, base station and user equipment
CN106961736B (zh) 一种无线通信的方法及装置
KR20220092950A (ko) 업링크 취소 표시를 위한 방법 및 사용자 장비
WO2013137699A1 (ko) 상향 링크 전송 방법 및 장치
US11456817B2 (en) Method and apparatus for transmitting and receiving signal in wireless communication system
EP3479516A1 (en) Flexible radio resource allocation
JP2017529014A5 (zh)
CN106465373B (zh) 终端装置、集成电路以及无线通信方法
CN113574948A (zh) 用于复用uci的方法和装备
EP3606231B1 (en) Scheduling-free transmission method and apparatus
CN105228248A (zh) 一种d2d传输中的资源分配方法和装置
WO2019024865A1 (zh) 一种资源配置、控制信息发送方法及装置、设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17735880

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17735880

Country of ref document: EP

Kind code of ref document: A1