WO2017118284A1 - 一种被动式光学动作捕捉设备及其应用 - Google Patents

一种被动式光学动作捕捉设备及其应用 Download PDF

Info

Publication number
WO2017118284A1
WO2017118284A1 PCT/CN2016/111213 CN2016111213W WO2017118284A1 WO 2017118284 A1 WO2017118284 A1 WO 2017118284A1 CN 2016111213 W CN2016111213 W CN 2016111213W WO 2017118284 A1 WO2017118284 A1 WO 2017118284A1
Authority
WO
WIPO (PCT)
Prior art keywords
motion capture
main control
light source
passive optical
capture device
Prior art date
Application number
PCT/CN2016/111213
Other languages
English (en)
French (fr)
Inventor
孟杰
Original Assignee
北京度量科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京度量科技有限公司 filed Critical 北京度量科技有限公司
Publication of WO2017118284A1 publication Critical patent/WO2017118284A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J9/00Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting
    • H02J9/04Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting in which the distribution system is disconnected from the normal source and connected to a standby source
    • H02J9/06Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting in which the distribution system is disconnected from the normal source and connected to a standby source with automatic change-over, e.g. UPS systems
    • H02J9/061Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting in which the distribution system is disconnected from the normal source and connected to a standby source with automatic change-over, e.g. UPS systems for DC powered loads
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/50Constructional details
    • H04N23/55Optical parts specially adapted for electronic image sensors; Mounting thereof
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L12/00Data switching networks
    • H04L12/02Details
    • H04L12/10Current supply arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/56Cameras or camera modules comprising electronic image sensors; Control thereof provided with illuminating means
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/60Control of cameras or camera modules
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/60Control of cameras or camera modules
    • H04N23/65Control of camera operation in relation to power supply
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/60Control of cameras or camera modules
    • H04N23/66Remote control of cameras or camera parts, e.g. by remote control devices
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/60Control of cameras or camera modules
    • H04N23/66Remote control of cameras or camera parts, e.g. by remote control devices
    • H04N23/661Transmitting camera control signals through networks, e.g. control via the Internet
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/90Arrangement of cameras or camera modules, e.g. multiple cameras in TV studios or sports stadiums

Definitions

  • the invention belongs to the technical field of digital image processing and machine vision, and relates to an optical motion capture device and an application thereof.
  • Machine vision is simply to use the machine instead of the human eye to make measurements and judgments.
  • an image pickup signal is usually converted into an image signal by an image pickup device, and image processing is performed to obtain a digitized signal of the form information of the object to be captured.
  • machine vision is being used more and more widely in various industries related to people's life and production. It can be said that as long as it is impossible for artificial vision to complete, it can be done through machine vision.
  • the analysis of motion data collection of people and objects in motion has become an important issue in the application of machine vision in recent years. By solving such problems, machine vision is playing an increasingly important role in sports technology analysis, teaching experiment research, physiotherapy rehabilitation engineering, radio and television animation production, virtual reality, ergonomics, mechanical bionics, industrial robots, and many other fields. effect.
  • Optical motion capture is a typical example of machine vision applications in recent years.
  • Motion capture is a technique for accurately measuring and recording the motion trajectory or attitude of an object in real three-dimensional space in real time, and reconstructing the motion state of the moving object at each moment in the virtual three-dimensional space.
  • Optical motion capture is a technique for motion capture based on the principle of computer vision, which monitors and tracks target feature points from different angles by multiple high-speed cameras. In theory, for any point in space, as long as it can be seen by both cameras at the same time, the position of the point in space at this moment can be determined. When the camera is continuously shooting at a high enough rate, the motion trajectory of the point is obtained from the sequence of images.
  • the existing optical motion capture mainly uses a marker point optical motion capture system, which generally consists of optical markers (Markers), motion capture cameras, signal transmission devices, and data processing platforms.
  • the capture process needs to paste the Marker point in key parts of the moving object (such as the joints of the human body).
  • the multiple motion capture cameras detect the Marker points in real time from different angles, and the detected data is transmitted to the processing platform in real time.
  • the platform accurately calculates according to the triangulation principle.
  • the spatial coordinates of the Marker point which in turn obtains the motion trajectory of the moving object.
  • Marked-point optical motion capture can be divided into active and passive, and passive optical motion capture is more widely used with its high capture accuracy.
  • the passive optical motion capture system is also called the reflective optical motion capture system.
  • the Marker point is usually a high-return retro-reflective ball, which is attached to each key part of the moving object.
  • the LED illumination light is emitted from the lens of the motion capture camera. Reflected by the reflective ball back to the motion capture camera lens, the motion capture camera detects the spatial orientation of the Maker.
  • a passive optical motion capture device that generally includes an illumination light source assembly, an optical lens, a control cabin; the illumination light source assembly includes a control circuit board of a light source and a light source, the light source disposed around the optical lens
  • the control cabin is provided with an imaging circuit board for controlling imaging and a main control board for controlling data processing, data synchronization and power supply; the imaging circuit board is provided with an image sensor, and the imaging circuit board passes through the main control board.
  • the FMC interface is electrically coupled; the surface of the control cabin has an opening, and the rear portion of the optical lens is fixedly mounted at the opening of the outer surface of the control cabin, and the optical lens passes through the opening and the imaging circuit board in the control cabin
  • the upper image sensor is opposite; the control circuit board of the light source is electrically coupled to the main control board; the main control board is provided with an FPGA module, participates in power supply control of the light source, and is responsible for receiving and transmitting data signals. And the processing of the image, and is also responsible for the occurrence, reception and transmission of the synchronization signal.
  • the optical lens is a C-port lens, and further preferably an industrial-grade C-port high-precision industrial lens.
  • the light source is an LED lamp, and further preferably an LED lamp composed of five or more LED lamp beads.
  • the main control board is provided with a level conversion chip, and the control circuit board of the light source is provided with a current driving chip with an enabling end; the FPGA module and the level The conversion chip and the current driving chip with the enable terminal are sequentially electrically connected to transmit a control signal for light source illumination.
  • the main control board is further provided with an Ethernet interface and a filter, and the Ethernet interface is electrically coupled to the filter.
  • the main control board is further provided with a rectifying main circuit and a transformer, and the filter, the rectifying main circuit and the transformer are sequentially electrically connected to form a power supply circuit as a main control board, The imaging board and the light source are powered.
  • an Ethernet transceiver is further disposed on the main control board, and the filter, the Ethernet transceiver, and the FPGA module are sequentially electrically connected to form a data. Transceiver circuit.
  • the passive optical motion capture device of the present invention can accurately capture the motion of an object under high-speed motion, and is suitable for use as a basic device in a motion capture system for high-speed moving objects.
  • the present invention is based on the passive optical motion capture device, further providing a passive optical motion capture system, which is generally composed of a plurality of said passive optical motion capture devices, a POE switch and a main control computer;
  • the passive optical motion capture device is respectively connected to the POE switch through a network cable by using the Ethernet interface, and the POE switch is connected with the main control computer.
  • At least two passive optical motion capture devices of the present invention are respectively connected to the same POE switch through a network cable by using its own Ethernet interface, and then the POE switch and one master are connected.
  • the computer is connected to form a motion capture system.
  • At least two passive optical motion capture devices in the system are placed at different positions around the moving object to be captured, and the optical lens is simultaneously aligned with the moving object, and the master-slave relationship between at least two passive optical motion capture devices can be arbitrarily set. It is also possible not to set a master-slave relationship.
  • the key position of the captured moving object is fixed to the Marker and then enters the motion state.
  • the light source of each passive optical motion capture device emits infrared light to illuminate the moving object.
  • the Marker of the moving object surface reflects the infrared light and returns to the optical lens of the capturing device.
  • the lens captures the motion picture according to the control of the imaging circuit board, and the image data is collected by the image sensor on the imaging circuit board and then transmitted to the FPGA module of the main control board through the FMC interface for processing.
  • the POE switch supplies power to each capture device through a network cable and transmits data and synchronization signals, and each capture device transmits data and synchronization signals to the POE switch through the same network cable.
  • the master computer can receive data of each capture device through the POE and set a master-slave relationship between the capture devices.
  • the invention realizes the simplification of structure and operation by the following two structural improvements: one is to closely connect the imaging circuit board and the main control board by using the FMC interface, thereby unifying the collected data signals to the main control board for centralized processing; After the main control board circuit is modified, the synchronization signal and the data signal are uniformly combined, and the Ethernet interface is set on the main control board, and the mutual transmission of power, data and synchronization signals with the outside world is completed only through one network cable.
  • the data signal and the power enter the filter on the main control board via the Ethernet interface, and the filter separates the data signal and the power;
  • the data signal enters the FPGA through the Ethernet transceiver to perform data processing and processing (this is the data receiving process, the data transmission process) For the reverse process);
  • the synchronization signal is a special data signal, usually transmitted with the ordinary data signal, but the synchronization signal has the highest priority.
  • the FPGA triggers the interrupt and immediately performs the synchronization task.
  • the above-mentioned modified capture device not only improves the accuracy of the data, but also effectively improves the delay of the conventional identification system.
  • the capture device of the present invention can be completed with only one standard network cable to complete power supply, data transmission and synchronization, and the number of external cables is reduced while ensuring complete and reliable data transmission. At the lowest. This undoubtedly brings great convenience to the actual use of the capture device. Due to the large number of cables, most of the existing devices often cause complicated and disordered structures, increased difficulty in use, increased failure rate, high maintenance cost, and the like, which cause great troubles for motion capture practice.
  • the invention solves the technical problem that has long been plagued by people in a clever way that is not easy to think, and obtains a good technical effect, brings a good use feeling for the practical application of the motion capture device, and has difficulty in use and failure rate. reduce.
  • the main power consumption of the motion capture device is consumed by the illumination light source component.
  • the existing capture device basically lays a large number of LED lamp beads around the optical lens as an illumination source, and the LED lamp emits an uninterrupted continuous motion to the moving object during the capture process. Irradiation. This method is simple to implement, but the device consumes a lot of power and the device has a low service life.
  • the main control board is provided with an FPGA module and a control signal output device composed of the level conversion chip and the current drive chip with the enable end, and the FPGA outputs a control signal, which is output to the light board via the level conversion chip.
  • the current drives the chip enable end to achieve precise opening and closing control of the light source control circuit board circuit, so that the LED light performs the illumination work only during the exposure of the imaging circuit board.
  • the LED lamp can save a lot of ineffective illumination because the exposure time of the imaging board is extremely small (0.1 ms).
  • the LED lamp Based on the operating frequency of the imaging board at 100 Hz and the exposure time of 0.1 ms, the LED lamp adopts the form of synchronous flashing illumination, which can reduce the power consumption of the illumination source portion to the previous 1%.
  • the power consumption of the capture device of the present invention is about 10% of the power consumption of the conventional device.
  • the image processing speed of the capture device of the present invention is significantly improved compared to existing devices.
  • the image data captured by the capture device needs to be transmitted to the computer for processing, and is limited by the image transmission and computer processing performance.
  • the processing speed of the general device is about 60 Hz.
  • the invention attempts to connect the imaging circuit board and the main control board through the FMC interface in the control cabin, and directly transmits the video information collected by the imaging circuit board to the main control board via the FMC interface, and adopts the FPGA module on the main control board, Real-time transmission of signals transmitted by the imaging board through a suitable software program Take, process, and compress, then transfer it out. Since the data does not need to be sent back to the computer for processing, and the speed is increased by adopting the FPGA processing technology, the image processing speed can reach 1000 frames/second, which is dozens of times the processing speed of the conventional device.
  • the invention also provides the application of the passive optical motion capture device in the fields of sports technology analysis, teaching experiment research, physical therapy rehabilitation engineering, radio and television animation production, virtual reality development, human-machine ergonomics, mechanical bionics, industrial robots and the like.
  • FIG. 1 is a schematic structural view of a passive optical motion capture device according to Embodiment 1.
  • FIG. 2 is a block diagram showing the working principle of the passive optical motion capture device described in Embodiment 1.
  • FIG. 3 is a schematic diagram showing the structure of a passive optical motion capture system according to Embodiment 2.
  • 1-illumination light source assembly 2-optical lens; 3-control cabin; 11-LED lamp bead; 12-LED lamp control circuit board; 31-imaging circuit board; 32-main control board; 311-image sensor; FMC interface; 34-opening; 321-FPGA module; 322-level conversion chip; 121-current-driven chip with enable terminal; 122-data line; 323-Ethernet interface; 324-filter; Circuit; 326-transformer; 327-Ethernet transceiver; 328-illumination source assembly power supply circuit; 329- imaging circuit board power supply circuit.
  • A-passive optical motion capture device B-POE switch; C-master control computer; D-moving object to be captured.
  • optical lens used in the following examples is a 2/3 inch C-port high precision industrial lens; the LED lamp bead is a 1 watt LED lamp bead.
  • a passive optical motion capture device as shown in FIG. 1, generally comprises an illumination source assembly 1, an optical lens 2, a control cabin 3;
  • the illumination source assembly comprises an LED consisting of ten to sixteen LED beads 11 a control circuit board 12 for the lamp and the LED lamp, the LED lamp bead 11 is disposed around the optical lens 2;
  • the control panel 3 is provided with an imaging circuit board 31 for controlling imaging, and control data processing and data synchronization And a power supply main control board 32;
  • the imaging circuit board An image sensor 311 is disposed on the 31, and the imaging circuit board 31 and the main control board 32 are coupled through the FMC interface 33.
  • the control cabin 3 has an opening 34 on the surface thereof, and the rear portion of the optical lens 2 is fixedly mounted by a screw connection.
  • the optical lens 2 is opposed to the image sensor 311 on the imaging circuit board 31 in the control cabin through the opening 34; the band is enabled on the control circuit board 12 of the light source
  • the current driving chip 121 is disposed on the main control board 32, and the level converting chip 322 is disposed on the main control board 32.
  • the current driving chip 121 with the enabling end is coupled to the level converting chip 322 through the data line 122.
  • the main control board 32 is provided with an FPGA module 321, and the FPGA module 321, the level conversion chip 322 and the current driving chip 121 with an enable end are sequentially electrically connected to transmit LEDs.
  • the main control board 32 is further provided with an Ethernet interface 323 and a filter 324.
  • the Ethernet interface 323 is electrically coupled to the filter 324.
  • a rectifying main circuit 325 and a transformer 326 are further disposed on the main control board 32.
  • the filter 324, the rectifying main circuit 325 and the transformer 326 are sequentially electrically connected to form a power supply circuit as a main control board 32 and an imaging circuit.
  • the board 31 and the illumination source assembly 1 are powered.
  • An Ethernet transceiver 327 is further disposed on the main control board 32.
  • the filter 324, the Ethernet transceiver 327, and the FPGA module 321 are sequentially electrically coupled to form a data transceiver circuit.
  • the motion capture device of this embodiment connects the peripheral power supply or the POE switch through a network cable on the Ethernet interface 323, and the power and data signals provided by the peripheral power supply or the POE switch enter the capture device through the network cable and the Ethernet interface 323. It is separated by the filter 324; the power (shown by the solid line in Fig. 2) is processed by the rectification main circuit 325 and the transformer 326, and the use standard of each component is used for each component; the data signal (indicated by a dense dotted line in Fig.
  • the FPGA module 321 Via the Ethernet transceiver 327, enter the FPGA module 321 for data operation and processing (this is the data receiving process, the data transmission process is its inverse process); the synchronization signal (shown by the wavy line in Figure 2) is a special type of data. The signal is usually transmitted together with the normal data signal, but the synchronization signal has the highest priority.
  • the FPGA module 321 triggers the interrupt and immediately performs the synchronization task.
  • the LED light illuminates the captured object, and the captured object reflects the illumination light back to the optical lens 2.
  • the image sensor 311 on the imaging circuit board 31 senses the image obtained through the optical lens 2, and continuously captures the video data at a preset frequency.
  • the imaging circuit board 31 directly transmits the video data to the main control board 32 through the FMC interface, and the FPGA module 321 of the main control board can extract, process and compress the signal in time using a suitable computer processing program, and then transmit it to the outside. Meanwhile, the FPGA module 321 outputs a control signal (PWM waveform) according to the received synchronization signal, and outputs the current drive chip 323 enable terminal to the control circuit board 12 of the LED lamp via the level conversion chip 322 to realize control of the LED lamp. Precise on/off control of the current of the circuit board 12, so that the LED light is only exposed in the image sensor 311 Lighting work is performed during the period.
  • PWM waveform a control signal
  • the current drive chip 323 enable terminal to the control circuit board 12 of the LED lamp via the level conversion chip 322 to realize control of the LED lamp.
  • a passive optical motion capture system as shown in FIG. 3, is composed of 8 passive optical motion capture devices A, 1 POE switch B and 1 main control computer C according to Embodiment 1; 8 passive optical actions
  • the capture device A is connected to the POE switch B through one network cable by using the Ethernet interface, and the POE switch B is connected to the host computer C.
  • the eight passive optical motion capture devices A described in Embodiment 1 are placed at different positions around the moving object D to be captured, and the optical lens is simultaneously aligned with the moving object D, and one of the passive optical motion capture devices is set.
  • the master device is the master device and the rest are slave devices.
  • the key position of the captured moving object D is fixed to the Marker and then enters the motion state.
  • the light source of each passive optical motion capture device A emits infrared light to illuminate the moving object, and the Marker of the moving object D reflects the infrared light back to the optical of the capturing device.
  • the image sensor takes a motion picture according to the control of the imaging circuit board, and the image data collected by the imaging circuit board is transmitted to the FPGA module of the main control board through the FMC interface.
  • the POE switch B supplies power to each capturing device through a network cable and transmits parameter setting data and synchronization signals, and each capturing device A also transmits image data and synchronization signals to the POE switch B through a network cable.
  • the B passive signals are also exchanged between the eight passive optical motion capture devices A through the POE switch.
  • the master computer C can receive the image data of each capture device through the POE switch B, and transmit the parameter setting data to the capture device A through the POE switch B.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Multimedia (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Business, Economics & Management (AREA)
  • Emergency Management (AREA)
  • Power Engineering (AREA)
  • Length Measuring Devices By Optical Means (AREA)
  • Studio Devices (AREA)
  • Optical Communication System (AREA)

Abstract

本发明提供一种被动式光学动作捕捉设备,它大体上包括照射光源组件、光学镜头、控制舱;所述的照射光源组件包括光源和光源的控制电路板,所述的光源设置在所述的光学镜头周围;所述的控制舱内设有控制成像的成像电路板和控制数据处理、数据同步和供电的主控制板;所述的成像电路板上设置图像传感器,成像电路板与主控制板之间通过FMC接口电联接;所述的控制舱表面有开孔,所述的光学镜头后部固定安装在控制舱外表面所述开孔处,光学镜头通过所述的开孔与控制舱内成像电路板上的图像传感器相对;所述的光源的控制电路板与所述的主控制板电联接;所述的主控制板设置FPGA模块。本发明的被动式光学动作捕捉设备具有更快的捕捉速度和更低能耗。

Description

一种被动式光学动作捕捉设备及其应用 技术领域
本发明属于数字图像处理、机器视觉技术领域,涉及一种光学动作捕捉设备,及其应用。
背景技术
机器视觉简单说就是运用机器代替人眼来做测量和判断。机器视觉通常通过图像摄取装置将被摄取目标转换成图像信号,再进行图像处理,得到被摄目标的形态信息的数字化信号。目前,机器视觉正在越来越广泛地应用于关乎人们生活和生产的各个行业,可以说,只要是人工视觉无法完成的任务,大抵可以通过机器视觉完成。人和物体在运动状态下的运动数据采集分析成为了近年来运用机器视觉的重要课题。通过解决这类课题,使得机器视觉在体育运动技术分析、教学实验研究、理疗康复工程、广电动画制作、虚拟现实、人机工效、机械仿生、工业机器人等等诸多领域发挥着越来越重要的作用。
光学动作捕捉是近些年来机器视觉应用的典型代表。动作捕捉是实时地准确测量、记录物体在真实三维空间中的运动轨迹或姿态,并在虚拟三维空间中重建运动物体每一时刻运动状态的技术。光学动作捕捉是基于计算机视觉原理,由多个高速相机从不同角度对目标物体特征点的监视和跟踪,由此来进行动作捕捉的技术。理论上讲,对于空间中的任意一个点,只要它能同时为两部相机所见,就可以确定这一时刻该点在空间中的位置。当相机以足够高的速率连续拍摄时,从图像序列中就可以得到该点的运动轨迹。
现有的光学动作捕捉主要采用标记点式光学动作捕捉系统,该系统一般由光学标识点(Markers)、动作捕捉相机、信号传输设备以及数据处理平台组成。捕捉过程需要在运动物体关键部位(如人体的关节处等)粘贴Marker点,多个动作捕捉相机从不同角度实时探测Marker点,探测到的数据实时传输至处理平台,平台根据三角测量原理精确计算Marker点的空间坐标,进而获得运动物体的运动轨迹。标记点式光学动作捕捉大体上又可分为主动式和被动式两种,其中被动式的光学动作捕捉方式以其较高的捕捉精度而被更加广泛的使用。被动式光学动作捕捉系统也称反射式光学动作捕捉系统,其Marker点通常是一种高亮回归式反光球,粘贴于运动物体各关键部位,由动作捕捉相机的镜头上发出LED照射光,照射光经反光球反射回到动作捕捉相机镜头,动作捕捉相机以此检测Maker的空间定位。
现有的动作捕捉相机已经在多功能、智能化等方面有了不小的进步,但是仍然存在捕捉速度不够快、设备功耗大、线缆数目众多等不足之处,造成设备应用效果差、使用寿命低、结构复杂错乱、使用难度加大、故障率上升、维护成本高等诸多问题。
发明内容
基于上述技术背景,本发明的目的在于:提供一种具有更快的捕捉速度和更低能耗的被动式光学动作捕捉设备。
本发明的上述目的通过以下技术方案实现:
提供一种被动式光学动作捕捉设备,它大体上包括照射光源组件、光学镜头、控制舱;所述的照射光源组件包括光源和光源的控制电路板,所述的光源设置在所述的光学镜头周围;所述的控制舱内设有控制成像的成像电路板和控制数据处理、数据同步和供电的主控制板;所述的成像电路板上设置图像传感器,成像电路板与主控制板之间通过FMC接口电联接;所述的控制舱表面有开孔,所述的光学镜头后部固定安装在控制舱外表面所述开孔处,光学镜头通过所述的开孔与控制舱内成像电路板上的图像传感器相对;所述的光源的控制电路板与所述的主控制板电联接;所述的主控制板设置FPGA模块,参与所述光源的供电控制,同时负责数据信号的接收和发送以及图像的处理,还负责同步信号的发生、接收和发送。
本发明优选的一种方案中,所述的光学镜头为C口镜头,进一步优选工业级C口高精度工业镜头。
本发明优选的一种方案中,所述的光源是LED灯,进一步优选5个以上的LED灯珠组成的LED灯。
本发明优选的一种方案中,所述的主控制板上设有电平转换芯片,所述的光源的控制电路板上设有带使能端的电流驱动芯片;所述的FPGA模块、电平转换芯片和带使能端的电流驱动芯片顺次电联接,用以传递光源发光的控制信号。
本发明优选的一种方案中,所述的主控制板上还设有以太网接口和滤波器,以太网接口与滤波器电联接。
本发明进一步优选的上述方案中,在所述的主控制板上进一步设有整流主电路和变压器,所述的滤波器、整流主电路和变压器顺次电联接构成电源供电电路为主控制板、成像电路板和光源供电。
本发明进一步优选的上述方案中,在所述的主控制板上进一步设有以太网收发器,所述的滤波器、所述的以太网收发器和所述的FPGA模块顺次电联接构成数据收发电路。
本发明所述的被动式光学动作捕捉设备能够完成对高速运动下物体动作的精确捕捉,适合用作高速运动物体动作捕捉系统中的基础设备。
本发明基于所述的被动式光学动作捕捉设备,进一步提出一种被动式光学动作捕捉系统,它大体上由多个所述的被动式光学动作捕捉设备、POE交换机和主控制计算机组成;多个所述的被动式光学动作捕捉设备分别利用所述的以太网接口通过一根网线与POE交换机联接,POE交换机与主控计算机联接。
在对运动物体的动作捕捉过程中,将至少两台本发明的被动式光学动作捕捉设备分别利用其自身的以太网接口通过一根网线与同一台POE交换机联接,然后再将该POE交换机与一台主控计算机联接,由此组成一套动作捕捉系统。将该系统中的至少两台被动式光学动作捕捉设备置于待捕捉的运动物体四周不同位置,光学镜头同时对准运动物体,可任意设置至少两台被动式光学动作捕捉设备之间的主从关系,也可不设置主从关系。被捕捉的运动物体表面关键位置固定好Marker后开始进入运动状态,每台被动式光学动作捕捉设备的光源发出红外光照射运动物体,运动物体表面的Marker反射红外光回到捕捉设备的光学镜头,光学镜头根据成像电路板的控制拍摄运动画面,由成像电路板上的图像传感器采集图像数据后通过FMC接口传输给主控制板的FPGA模块处理。在所述捕捉过程中,POE交换机通过一根网线给每台捕捉设备供电并传输数据和同步信号,同时每台捕捉设备也通过同一根网线向POE交换机传输数据和同步信号。主控计算机可以通过POE接收各捕捉设备的数据并且设置捕捉设备之间的主从关系。
上述过程中,捕捉系统的所有设备都需要完成供电、数据传输、同步三种类型的工作。现有的每一台捕捉设备需要三条或更多的线缆才能完成这三种类型的工作。本发明通过以下两方面的结构改进实现了结构和操作的简单化:一是将成像电路板与主控制板采用FMC接口紧密连接,从而将采集的数据信号统一到主控制板进行集中处理;二是将主控制板电路进行改造后,将同步信号与数据信号一致结合,在主控制板设置以太网接口,仅通过一根网线完成与外界的电力、数据及同步信号的互传。本发明的设备中,数据信号和电力(外设电源供电),经由以太网接口进入主控制板上的滤波器,滤波器将数据信号和电力进行分离;电力经 过整流主电路及变压器处理后,达到各个元器件的使用标准,供各个元器件使用;数据信号经由以太网收发器,进入FPGA进行数据的操作及处理(此为数据接收过程,数据的发送过程为其逆过程);同步信号是一种特殊的数据信号,平时与普通数据信号一同传输,但同步信号拥有最高优先级,当接受到同步信号后,FPGA触发中断,立即执行同步任务。经过上述改造的捕捉设备不但提高了数据准确性,而且有效改善了传统标识系统的延时问题。尤其值得一提的是,本发明的捕捉设备经过改造后可以只用一根标准网线就完成供电、数据传输和同步三项工作,在保证数据完整可靠的传输的同时,将外接线缆数量降到了最低。这无疑为捕捉设备的实际使用带来了极大的便利。现有的多数设备由于线缆数目众多,往往带来结构复杂错乱,使用难度加大,故障率上升,维护成本高等等诸多弊病,为动作捕捉实践造成很大困扰。本发明通过不容易想到的巧妙方式解决了这一长期困扰人们的技术问题,并且获得了良好的技术效果,为动作捕捉设备的实践应用带来的很好的使用感受,使用难度和故障率显著降低。
此外,动作捕捉设备的主要功耗由照射光源组件消耗,现有捕捉设备基本上都是在光学镜头周围布设大量LED灯珠作为照射光源,在捕捉过程中LED灯会向运动物体发出不间断的连续照射。该方式实现简单,但设备功耗大,设备使用寿命低。本发明的捕捉设备中,主控制板设置了FPGA模块及其与电平转换芯片和带使能端的电流驱动芯片组成的控制信号输出设备,FPGA输出控制信号,经由电平转换芯片输出到灯板的电流驱动芯片使能端,实现对光源控制电路板电路的精准的开闭控制,使LED灯仅仅在成像电路板曝光期间才执行照明工作。这样一来,由于成像电路板每次的曝光时间极小(0.1个ms),因此LED灯可以节省大量的无效照明。基于成像电路板100Hz的工作频率及0.1ms的曝光时间,LED灯采用同步闪烁照明形式,可以将照射光源部分的功耗降低为之前的1%。综合设备整体,本发明捕捉设备的功耗是传统设备功耗的10%左右。
再者,本发明捕捉设备的图像处理速度相比现有设备获得了显著的提升。现有技术中,捕捉设备捕捉到的图像数据需要先传输至计算机再处理,受图像传输及计算机处理性能的限制,一般设备处理速度为60Hz左右。本发明尝试在控制舱内使成像电路板与主控制板通过FMC接口连接,将成像电路板采集到的视频信息经由FMC接口直接发送给主控制板,并在主控制板上采用FPGA模块,可以通过合适的软件程序实时将成像电路板传输的信号进行提 取、处理及压缩,然后再向外传输。由于数据不需传回计算机处理,且采用采用FPGA处理技术进行提速,图像处理速度可达1000帧/秒,是传统设备处理速度的数十倍。
本发明还提供所述的被动式光学动作捕捉设备在体育运动技术分析、教学实验研究、理疗康复工程、广电动画制作、虚拟现实开发、人机工效、机械仿生、工业机器人等领域中的应用。
附图说明
图1是实施例1所述的被动式光学动作捕捉设备的结构示意图。
图2是实施例1所述的被动式光学动作捕捉设备工作原理框图。
图3是实施例2所述的被动式光学动作捕捉系统的组成结构示意图。
图中标记说明如下:
图1、2中:
1-照射光源组件;2-光学镜头;3-控制舱;11-LED灯珠;12-LED灯的控制电路板;31-成像电路板;32-主控制板;311-图像传感器;33-FMC接口;34-开孔;321-FPGA模块;322-电平转换芯片;121-带使能端的电流驱动芯片;122-数据线;323-以太网接口;324-滤波器;325-整流主电路;326-变压器;327-以太网收发器;328-照射光源组件供电电路;329-成像电路板供电电路。
图3中:
A-被动式光学动作捕捉设备;B-POE交换机;C-主控制计算机;D-待捕捉的运动物体。
具体实施方式
以下通过实施例的方式对本发明做进一步的详细说明。以下实施例中使用的光学镜头为2/3英寸C口高精度工业镜头;LED灯珠是1瓦的LED灯珠。
实施例1
一种被动式光学动作捕捉设备,如图1所示,它大体上包括照射光源组件1、光学镜头2、控制舱3;所述的照射光源组件包括十到十六个LED灯珠11组成的LED灯和LED灯的控制电路板12,所述的LED灯珠11设置在所述的光学镜头2周围;所述的控制舱3内设有控制成像的成像电路板31和控制数据处理、数据同步和供电的主控制板32;所述的成像电路板 31上设置图像传感器311,成像电路板31与主控制板32之间通过FMC接口33联接;所述的控制舱3表面有开孔34,所述的光学镜头2后部通过螺纹连接固定安装在控制舱外表面所述开孔34处,光学镜头2通过所述的开孔34与控制舱内成像电路板31上的图像传感器311相对;所述的光源的控制电路板12上设置带使能端的电流驱动芯片121,所述的主控制板32上设置电平转换芯片322,所述的带使能端的电流驱动芯片121通过数据线122与所述的电平转换芯片322联接。
如图1、2所示,所述的主控制板32设置FPGA模块321,所述的FPGA模块321、电平转换芯片322和带使能端的电流驱动芯片121顺次电联接,用以传递LED灯发光的控制信号。所述的主控制板32上还设有以太网接口323和滤波器324,以太网接口323与滤波器324电联接。在所述的主控制板32上进一步设有整流主电路325和变压器326,所述的滤波器324、整流主电路325和变压器326顺次电联接构成电源供电电路为主控制板32、成像电路板31和照射光源组件1供电。在所述的主控制板32上还进一步设有以太网收发器327,所述的滤波器324、以太网收发器327和FPGA模块321顺次电联接构成数据收发电路。
本实施例的动作捕捉设备在所述的以太网接口323通过一根网线连接外设电源或POE交换机,外设电源或POE交换机提供的电力和数据信号通过网线和以太网接口323进入捕捉设备后被滤波器324分离;电力(图2中实线表示)经过整流主电路325及变压器326处理后,达到各个元器件的使用标准,供各个元器件使用;数据信号(图2中密集虚线表示)经由以太网收发器327,进入FPGA模块321进行数据的操作及处理(此为数据接收过程,数据的发送过程为其逆过程);同步信号(图2中波浪线表示)是一种特殊的数据信号,平时与普通数据信号一同传输,但同步信号拥有最高优先级,当接受到同步信号后,FPGA模块321触发中断,立即执行同步任务。LED灯发光照射被捕捉物体,被捕捉物体反射照射光回到光学镜头2,成像电路板31上的图像传感器311感受通过光学镜头2获得的影像,并以预设的频率曝光连续采集视频数据,成像电路板31通过FMC接口将视频数据直接发送给主控制板32,主控制板的FPGA模块321可以利用合适的计算机处理程序对信号进行及时地提取、处理及压缩,然后再向外传输。其间,FPGA模块321根据收到的同步信号输出控制信号(PWM波形),经由电平转换芯片322输出到LED灯的控制电路板12上的电流驱动芯片323使能端,实现对LED灯的控制电路板12电流的精准通断控制,使LED灯仅仅在图像传感器311曝光 期间才执行照明工作。
实施例2
一种被动式光学动作捕捉系统,如图3所示,它由8台实施例1所述的被动式光学动作捕捉设备A、1台POE交换机B和1台主控制计算机C组成;8台被动式光学动作捕捉设备A分别利用所述的以太网接口通过1根网线与POE交换机B联接,POE交换机B与主控计算机C联接。
进行动作捕捉时,将8台实施例1所述的被动式光学动作捕捉设备A置于待捕捉的运动物体D四周不同位置,光学镜头同时对准运动物体D,设置其中1台被动式光学动作捕捉设备为主设备,其余为从设备。被捕捉的运动物体D表面关键位置固定好Marker后开始进入运动状态,每台被动式光学动作捕捉设备A的光源发出红外光照射运动物体,运动物体D表面的Marker反射红外光回到捕捉设备的光学镜头,光学镜头成像后图像传感器根据成像电路板的控制拍摄运动画面,由成像电路板将采集到的图像数据通过FMC接口传输给主控制板的FPGA模块处理。在所述捕捉过程中,POE交换机B通过一根网线给每台捕捉设备供电并传输参数设置数据和同步信号,同时每台捕捉设备A也通过一根网线向POE交换机B传输图像数据和同步信号。8台被动式光学动作捕捉设备A之间也通过POE交换机交换B同步信号。主控计算机C可以通过POE交换机B接收各捕捉设备的图像数据,并且通过POE交换机B将参数设置数据向捕捉设备A发送。

Claims (9)

  1. 一种被动式光学动作捕捉设备,其特征在于:它大体上包括照射光源组件、光学镜头、控制舱;所述的照射光源组件包括光源和光源的控制电路板,所述的光源设置在所述的光学镜头周围;所述的控制舱内设有控制成像的成像电路板和控制数据处理、数据同步和供电的主控制板;所述的成像电路板上设置图像传感器,成像电路板与主控制板之间通过FMC接口电联接;所述的控制舱表面有开孔,所述的光学镜头后部固定安装在控制舱外表面所述开孔处,光学镜头通过所述的开孔与控制舱内成像电路板上的图像传感器相对;所述的光源的控制电路板与所述的主控制板电联接;所述的主控制板设置FPGA模块,参与所述光源的供电控制,同时负责数据信号的接收和发送以及图像的处理,还负责同步信号的发生、接收和发送。
  2. 权利要求1所述的被动式光学动作捕捉设备,其特征在于:所述的光学镜头为C口镜头,进一步优选工业级C口高精度工业镜头。
  3. 权利要求1所述的被动式光学动作捕捉设备,其特征在于:所述的光源是LED灯,进一步优选5个以上的LED灯珠组成的LED灯。
  4. 权利要求1所述的被动式光学动作捕捉设备,其特征在于:所述的主控制板上设有电平转换芯片,所述的光源的控制电路板上设有带使能端的电流驱动芯片;所述的FPGA模块、电平转换芯片和带使能端的电流驱动芯片顺次电联接,用以传递光源发光的控制信号。
  5. 权利要求4所述的被动式光学动作捕捉设备,其特征在于:所述的主控制板上还设有以太网接口和滤波器,以太网接口与滤波器电联接。
  6. 权利要求5所述的被动式光学动作捕捉设备,其特征在于:所述的主控制板上进一步设有整流主电路和变压器,所述的滤波器、整流主电路和变压器顺次电联接构成电源供电电路为主控制板、成像电路板和光源供电。
  7. 权利要求5所述的被动式光学动作捕捉设备,其特征在于:所述的主控制板上进一步设有以太网收发器,所述的滤波器、所述的以太网收发器和所述的FPGA模块顺次电联接构成数据收发电路。
  8. 一种被动式光学动作捕捉系统,它大体上由多个权利要求1所述的被动式光学动作捕 捉设备、POE交换机和主控制计算机组成;多个所述的被动式光学动作捕捉设备分别利用所述的以太网接口通过一根网线与POE交换机联接,POE交换机与主控计算机联接。
  9. 权利要求1所述的被动式光学动作捕捉设备或权利要求8所述的被动式光学动作捕捉系统在体育运动技术分析、教学实验研究、理疗康复工程、广电动画制作、虚拟现实、人机工效、机械仿生、工业机器人等领域中的应用。
PCT/CN2016/111213 2016-01-05 2016-12-21 一种被动式光学动作捕捉设备及其应用 WO2017118284A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN2016100060459 2016-01-05
CN201610006045.9A CN105472224B (zh) 2016-01-05 2016-01-05 一种被动式光学动作捕捉设备及其应用

Publications (1)

Publication Number Publication Date
WO2017118284A1 true WO2017118284A1 (zh) 2017-07-13

Family

ID=55609460

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/111213 WO2017118284A1 (zh) 2016-01-05 2016-12-21 一种被动式光学动作捕捉设备及其应用

Country Status (2)

Country Link
CN (1) CN105472224B (zh)
WO (1) WO2017118284A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115334219A (zh) * 2022-08-08 2022-11-11 南京航空航天大学 基于主被动照明的高速摄影系统及方法
CN117058766A (zh) * 2023-09-11 2023-11-14 轻威科技(绍兴)有限公司 一种基于主动光频闪的动作捕捉系统和方法

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105472224B (zh) * 2016-01-05 2017-03-15 北京度量科技有限公司 一种被动式光学动作捕捉设备及其应用
CN108921921A (zh) * 2018-06-27 2018-11-30 河南职业技术学院 一种用于三维动漫设计的数据采集方法及系统
CN114470678A (zh) * 2022-01-25 2022-05-13 上海众一健康科技有限公司 一种针对患者康复使用的语音交互辅助装置

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6121953A (en) * 1997-02-06 2000-09-19 Modern Cartoons, Ltd. Virtual reality system for sensing facial movements
US20030193571A1 (en) * 2002-04-10 2003-10-16 Schultz Kevin L. Smart camera with modular expansion capability
US20090027497A1 (en) * 2007-07-26 2009-01-29 Stephen Thomas Peacock Camera light
US20090033761A1 (en) * 2007-08-03 2009-02-05 Cetrulo Raffaele A Smart Camera with an Integrated Lighting Controller
CN201789556U (zh) * 2010-09-02 2011-04-06 广州市晶华光学电子有限公司 一种可自动感应和拍照的相机
US20130021486A1 (en) * 2011-07-22 2013-01-24 Naturalpoint, Inc. Hosted camera remote control
US20140300758A1 (en) * 2013-04-04 2014-10-09 Bao Tran Video processing systems and methods
CN105472224A (zh) * 2016-01-05 2016-04-06 北京度量科技有限公司 一种被动式光学动作捕捉设备及其应用
CN105678817A (zh) * 2016-01-05 2016-06-15 北京度量科技有限公司 一种高速提取圆形图像中心点的方法
CN205320165U (zh) * 2016-01-05 2016-06-15 北京度量科技有限公司 一种被动式光学动作捕捉设备

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7957007B2 (en) * 2006-05-17 2011-06-07 Mitsubishi Electric Research Laboratories, Inc. Apparatus and method for illuminating a scene with multiplexed illumination for motion capture
US9019349B2 (en) * 2009-07-31 2015-04-28 Naturalpoint, Inc. Automated collective camera calibration for motion capture
KR101694797B1 (ko) * 2010-12-21 2017-01-11 삼성전자주식회사 3차원 이미지 센서의 구동 방법

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6121953A (en) * 1997-02-06 2000-09-19 Modern Cartoons, Ltd. Virtual reality system for sensing facial movements
US20030193571A1 (en) * 2002-04-10 2003-10-16 Schultz Kevin L. Smart camera with modular expansion capability
US20090027497A1 (en) * 2007-07-26 2009-01-29 Stephen Thomas Peacock Camera light
US20090033761A1 (en) * 2007-08-03 2009-02-05 Cetrulo Raffaele A Smart Camera with an Integrated Lighting Controller
CN201789556U (zh) * 2010-09-02 2011-04-06 广州市晶华光学电子有限公司 一种可自动感应和拍照的相机
US20130021486A1 (en) * 2011-07-22 2013-01-24 Naturalpoint, Inc. Hosted camera remote control
US20140300758A1 (en) * 2013-04-04 2014-10-09 Bao Tran Video processing systems and methods
CN105472224A (zh) * 2016-01-05 2016-04-06 北京度量科技有限公司 一种被动式光学动作捕捉设备及其应用
CN105678817A (zh) * 2016-01-05 2016-06-15 北京度量科技有限公司 一种高速提取圆形图像中心点的方法
CN205320165U (zh) * 2016-01-05 2016-06-15 北京度量科技有限公司 一种被动式光学动作捕捉设备

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115334219A (zh) * 2022-08-08 2022-11-11 南京航空航天大学 基于主被动照明的高速摄影系统及方法
CN117058766A (zh) * 2023-09-11 2023-11-14 轻威科技(绍兴)有限公司 一种基于主动光频闪的动作捕捉系统和方法
CN117058766B (zh) * 2023-09-11 2023-12-19 轻威科技(绍兴)有限公司 一种基于主动光频闪的动作捕捉系统和方法

Also Published As

Publication number Publication date
CN105472224A (zh) 2016-04-06
CN105472224B (zh) 2017-03-15

Similar Documents

Publication Publication Date Title
WO2017118284A1 (zh) 一种被动式光学动作捕捉设备及其应用
CN102221887B (zh) 互动投影系统及方法
CN106681510B (zh) 位姿识别装置、虚拟现实显示装置以及虚拟现实系统
WO2016184107A1 (zh) 用于视线焦点定位的可穿戴设备及视线焦点定位方法
CN102622591B (zh) 3d人体姿态捕捉模仿系统
CN107660039A (zh) 一种识别动态手势的灯具控制系统
EP1335322A3 (en) Method of determining body motion from captured image data
CN103619090A (zh) 基于微型惯性传感器舞台灯光自动定位和追踪系统和方法
CN107448822A (zh) 一种基于目标跟踪与手势识别技术的手术无影灯及其控制方法
CN203576464U (zh) 一种双目成像内窥镜装置
CN109129492A (zh) 一种动态捕捉的工业机器人平台
CN108202316A (zh) 一种自动开关机柜门的巡检机器人及控制方法
CN111726921B (zh) 一种体感交互灯光控制系统
CN109434830A (zh) 一种多模态监控的工业机器人平台
WO2022068193A1 (zh) 可穿戴设备、智能引导方法及装置、引导系统、存储介质
CN204546543U (zh) 高压线路跌落开关自动更换控制系统
CN109011490B (zh) 基于红外双目高速摄像的高尔夫运动地面感测装置及方法
CN212256370U (zh) 光学式运动捕捉系统
WO2022027865A1 (zh) 基于行走无人洗车设备的双视觉反馈运动控制系统
CN206865801U (zh) 一种手势识别照明控制系统
CN111862170A (zh) 光学式运动捕捉系统及方法
CN202261627U (zh) 智能跟踪网络球型摄像机
CN205320165U (zh) 一种被动式光学动作捕捉设备
CN209648746U (zh) 一种视觉机器人远程监控系统
CN215264708U (zh) 一种交互式可穿戴多媒体装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16883410

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16883410

Country of ref document: EP

Kind code of ref document: A1