WO2017118175A1 - Procédé de commande en cas d'urgence applicable à une centrale éolienne photovoltaïque - Google Patents

Procédé de commande en cas d'urgence applicable à une centrale éolienne photovoltaïque Download PDF

Info

Publication number
WO2017118175A1
WO2017118175A1 PCT/CN2016/103721 CN2016103721W WO2017118175A1 WO 2017118175 A1 WO2017118175 A1 WO 2017118175A1 CN 2016103721 W CN2016103721 W CN 2016103721W WO 2017118175 A1 WO2017118175 A1 WO 2017118175A1
Authority
WO
WIPO (PCT)
Prior art keywords
energy storage
power
storage device
unit
cutting
Prior art date
Application number
PCT/CN2016/103721
Other languages
English (en)
Chinese (zh)
Inventor
陈永华
李雪明
唐冠军
许士光
罗剑波
陈汹
Original Assignee
国网电力科学研究院
国电南瑞科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国网电力科学研究院, 国电南瑞科技股份有限公司 filed Critical 国网电力科学研究院
Publication of WO2017118175A1 publication Critical patent/WO2017118175A1/fr

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/38Arrangements for parallely feeding a single network by two or more generators, converters or transformers
    • H02J3/46Controlling of the sharing of output between the generators, converters, or transformers
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/28Arrangements for balancing of the load in a network by storage of energy
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/38Arrangements for parallely feeding a single network by two or more generators, converters or transformers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/56Power conversion systems, e.g. maximum power point trackers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E70/00Other energy conversion or management systems reducing GHG emissions
    • Y02E70/30Systems combining energy storage with energy generation of non-fossil origin

Definitions

  • the invention belongs to the field of power systems and their automation technology, and more particularly relates to an emergency control method suitable for a wind power station.
  • wind power stations With the development and utilization of wind farms and photovoltaic power plants (hereinafter referred to as wind power stations), the safety and stability of power grids and photovoltaic power plants need to be deployed as cutting machine execution stations.
  • the cutting machine measures are based on the whole field or the feeder line, and are executed according to the principle of minimum overcutting, in which the performance of different units (inverters), the maintenance period and whether or not they are equipped with energy storage equipment are not considered too much. . Therefore, such a cutting strategy tends to bring excessive economic losses to the wind power station.
  • the object of the present invention is to provide an emergency control method for improving the economy of a wind power station for the problem of economical shortage in the emergency control of the wind power station, and not only realize the energy storage equipment to participate in the emergency control, but also reduce the actual cutting machine of the wind power station. Quantity, while achieving comprehensive consideration of unit performance, fault ride-through capability, The economical optimal cutting plan for unit maintenance to reduce the economic loss of wind and light power stations. .
  • the present invention is implemented by the following technical solutions, including the following steps:
  • the stability control device collects the current and voltage of the local high-voltage side of the local wind power main transformer, calculates the power of the wind power station, and communicates with the EMS system of the wind power station to obtain the unit type, current output and continuous running time of each unit, and collect energy storage and grid.
  • the current and voltage on the high voltage side of the transformer calculate the power of the energy storage device, and communicate with the energy storage control system in real time to obtain the current output and current power of the energy storage device;
  • the safety and stability control system to the power grid is obtained.
  • the alarm is as follows:
  • P T and P ST are respectively the power of the wind power station and the power of the energy storage device calculated by the stability control device, and the ⁇ P EMS is the sum of the current outputs of the units acquired by each EMS system, and the Ps is the energy storage. energy storage device of the control system acquires a current output, P Er is the allowable error power threshold;
  • the stability control device receives an emergency cutting command from the grid safety and stability control system, proceed to step 2); the emergency cutting command contains the power ⁇ P to be cut and the required cut-off time ts;
  • step 3 If there is no energy storage device available at the wind power station at this time, go directly to step 3), otherwise:
  • dp/dt is the maximum adjustment speed of the energy storage device
  • Psmax is the maximum charging power of the energy storage device
  • Qmax is the upper limit of the energy storage device
  • Q is the current capacity of the energy storage device
  • T is the emergency cutting command. The maximum time that the device must be operated
  • the stability control device sends the command of ⁇ P s to the energy storage control system. If the energy storage device can complete the emergency control separately, the method ends; otherwise, the remaining cutting power ⁇ P- ⁇ P s is taken as a new requirement.
  • the cut power ⁇ P proceeds to step 3);
  • P k is the current output power of the kth unit
  • T k is the running time after the last maintenance of the kth unit
  • ⁇ k is the cutting cost factor of the kth unit considering the adjustment performance of the unit.
  • the better the regulation performance The higher the cost factor of the cutting machine; ⁇ k is the cutting cost factor of the k-th unit considering the fault traversing ability.
  • the better the fault traversing performance, the higher the cost factor; W 0k is the kth unit of the electric power representation.
  • a further feature of the above technical solution is that the values of ⁇ k and ⁇ k in the step 3) are in the range of 0 to 1.
  • the invention preferentially utilizes the emergency control capability of the energy storage device of the wind power station when implementing the emergency cutting machine command, reduces the power loss of the unit, and comprehensively considers the performance difference of each unit of the wind power station and the maintenance period of the unit, according to The principle of the least economic cost is cut.
  • the invention can improve the utilization rate of the equipment and reduce the economic cost when the wind power station performs the emergency control under the premise of ensuring the safety and stability of the power grid.
  • Figure 1 shows a typical configuration of a wind power station.
  • the stability control device of the wind power station needs to collect the on-grid current and voltage of the local high-voltage side of the main wind power transformer to calculate the power of the wind power station, and also collect the current and voltage of the high-voltage side of the energy storage grid-connected transformer to calculate the power of the energy storage device.
  • the stability control device also needs to communicate with the EMS system of various units and the energy storage control system of the energy storage device.
  • Each EMS system sends relevant information of each unit to the stability control device, including the unit type, current output, and continuous running time. Wait.
  • the energy storage control system also generates the current state of the energy storage device to the stability control device, including information such as current output and current power.
  • FIG. 2 The flow of this embodiment is shown in FIG. 2, specifically:
  • Step 1 in Figure 2 describes the stability control device collecting the local wind current and voltage on the high-voltage side of the local wind power main transformer, calculating the power of the wind power station, and communicating with the EMS system of the wind power station to obtain the unit type, current output and continuous running time of each unit. Collecting the current and voltage on the high voltage side of the energy storage grid-connected transformer, calculating the power of the energy storage device, and communicating with the energy storage control system in real time to obtain the current output and current power of the energy storage device.
  • the safety and stability control system to the power grid is obtained.
  • the alarm is as follows:
  • P T and P ST are respectively the power of the wind power station and the power of the energy storage device calculated by the stability control device
  • ⁇ P EMS is the sum of the current outputs of the units acquired by each EMS system
  • Ps is the energy storage.
  • the current output of the energy storage device obtained by the control system, P Er is the power tolerance error threshold;
  • the stability control device receives an emergency cutting command from the grid safety and stability control system, proceed to step 2;
  • the emergency cutting command contains the power ⁇ P to be cut and the required cut-off time ts;
  • Step 2 in Figure 2 describes that if there is no energy storage device available at the wind power plant at this time, go directly to step 3). Otherwise, first, evaluate the adjustable amount ⁇ Ps of the energy storage device for this emergency control, as follows: Shown as follows:
  • dp/dt is the maximum adjustment speed of the energy storage device
  • Psmax is the maximum charging power of the energy storage device
  • Qmax is the upper limit of the energy storage device
  • Q is the current capacity of the energy storage device
  • T is the emergency cutting command. The maximum time that the device must be running.
  • the stability control device sends the command of ⁇ P s to the energy storage control system. If the energy storage device can complete the emergency control separately, the method ends; otherwise, the remaining cutting power ⁇ P- ⁇ P s is taken as a new requirement.
  • the cut power ⁇ P is entered into step 3.
  • Step 3 of Figure 2 depicts the calculation of the cost per machine. In order to ensure the economical efficiency of the cutting machine, it is necessary to evaluate the cutting cost of each unit, and the cutting machine cost is estimated according to the lost power after conversion.
  • the wind farm contains three types of units: ordinary asynchronous unit type, double-fed unit type and direct drive unit type.
  • the wind farm contains i ordinary asynchronous units (numbered from the first unit to the i-th unit), and j double-feed units (numbered from the i+1 unit to the i+j unit), n straight Drive unit (numbered from i+j+1 unit to i+j+n unit).
  • the running time of each unit after the last overhaul is T 1 , T 2 ... T i , T i+1 ... T i+j , T i+j+1 ... T i+j+n .
  • the start-stop cost of the common asynchronous unit is W 01
  • the start-stop cost of the double-fed unit is W 02
  • the start-stop cost of the direct-drive unit is W 03 .
  • the cost factors of conventional asynchronous generators, doubly-fed units and direct-drive units considering the regulation performance are ⁇ A , ⁇ B , ⁇ C ; the cost factors for considering the fault ride-through capability are ⁇ A , ⁇ B , ⁇ C.
  • ⁇ A , ⁇ B , ⁇ C and ⁇ A , ⁇ B , ⁇ C have a value range of 0 to 1, and the specific size wind farm operators are set according to actual needs. According to the actual operating experience, there are generally: ⁇ A ⁇ B ⁇ C , ⁇ A ⁇ B ⁇ C .
  • the cutting cost of the i+j double-fed unit is:
  • W i+j (1+ ⁇ i+j + ⁇ i+j )*P i+j +W 02 /T i+j
  • the cutting cost of the i+j+n direct drive unit is:
  • W i+j+n (1+ ⁇ i+j+n + ⁇ i+j+n )*P i+j+n +W 03 /T i+j+n
  • ⁇ i and ⁇ i are the cutting cost factor of the i-th ordinary asynchronous unit considering the adjustment performance and the cutting cost factor considering the fault traversing ability; ⁇ i+j and ⁇ i+j are the i+j doubly-fed asynchronous unit Consider the cost factor of the adjustment performance and the cost factor of the cutter considering the fault ride-through capability; ⁇ i+j+n and ⁇ i+j+n are the cutting machines for the i++j+n direct drive asynchronous unit considering the adjustment performance The cost factor and the cost factor of the cutter considering the fault ride-through capability.
  • P k is the current output power of the kth unit
  • T k is the running time after the last maintenance of the kth unit
  • ⁇ k is the cutting cost factor of the kth unit considering the adjustment performance of the unit.
  • the better the regulation performance The higher the cost factor of the cutting machine; ⁇ k is the cutting cost factor of the k-th unit considering the fault traversing ability.
  • the better the fault traversing performance, the higher the cost factor; W 0k is the kth unit of the electric power representation. Fixed maintenance costs.
  • the first term 1*P k in the formula represents the power loss directly lost after the machine is cut
  • the second term ⁇ k *P k represents the indirect adjustable power of the loss after cutting
  • the third term ⁇ k *P k represents the machine after cutting
  • Step 4 in Figure 2 describes that all units are sorted according to the cutter cost W k from small to large, and the minimum cut-off cost is maximized until the accumulated power of the cut unit ⁇ P sum > ⁇ P, and the cutting machine ends.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Supply And Distribution Of Alternating Current (AREA)

Abstract

L'invention porte sur un procédé de commande en cas d'urgence applicable à une centrale éolienne photovoltaïque, appartenant au domaine des systèmes de production d'énergie électrique et de leur automatisation. Dans le procédé, la fonction de commande en cas d'urgence d'un appareil de stockage d'énergie d'une centrale éolienne photovoltaïque est de préférence utilisée lorsqu'une commande de retrait d'ensemble de machines de secours est exécutée, de manière à réduire les pertes de puissance d'ensembles de machines, et la différence de performances de tous les ensembles de machines de la centrale éolienne photovoltaïque et un cycle de réparation d'ensemble de machines sont pris en considération de façon globale, en vue de retirer les ensembles de machines au plus bas coût économique. Le procédé peut améliorer le taux d'utilisation d'un dispositif sur la prémisse de garantir la sécurité et la stabilité d'un réseau électrique, ce qui permet de réduire le coût économique lorsqu'une centrale éolienne photovoltaïque effectue une commande en cas d'urgence.
PCT/CN2016/103721 2016-01-05 2016-10-28 Procédé de commande en cas d'urgence applicable à une centrale éolienne photovoltaïque WO2017118175A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610006584.2A CN105703401B (zh) 2016-01-05 2016-01-05 一种适用于风光电站的紧急控制方法
CN2016100065842 2016-01-05

Publications (1)

Publication Number Publication Date
WO2017118175A1 true WO2017118175A1 (fr) 2017-07-13

Family

ID=56226148

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/103721 WO2017118175A1 (fr) 2016-01-05 2016-10-28 Procédé de commande en cas d'urgence applicable à une centrale éolienne photovoltaïque

Country Status (2)

Country Link
CN (1) CN105703401B (fr)
WO (1) WO2017118175A1 (fr)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108400604A (zh) * 2018-05-03 2018-08-14 南方电网科学研究院有限责任公司 一种基于异步电网频率特性的控制方法和装置
CN109802417A (zh) * 2017-11-16 2019-05-24 中国电力科学研究院有限公司 应对直流故障冲击弱交流通道的电网紧急控制方法及装置
CN111327062A (zh) * 2020-02-26 2020-06-23 中国电力科学研究院有限公司 一种用于评估储能站紧急稳定控制效果的方法及装置
CN113241761A (zh) * 2020-09-08 2021-08-10 云南电网有限责任公司 一种电网稳定控制线性需切机量的定值整定方法及系统
CN113364030A (zh) * 2021-05-30 2021-09-07 国网福建省电力有限公司 一种储能电站被动脱网运行方法
CN113964880A (zh) * 2021-09-30 2022-01-21 国电南瑞科技股份有限公司 兼顾切机和速调的新能源场群控制功率分配方法和装置

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105703401B (zh) * 2016-01-05 2018-06-05 国网电力科学研究院 一种适用于风光电站的紧急控制方法
CN111371123B (zh) * 2020-03-26 2021-06-18 国电南瑞科技股份有限公司 多类型电源汇集直流外送系统切机策略优化方法和装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007318844A (ja) * 2006-05-24 2007-12-06 Chugoku Electric Power Co Inc:The 小形風力発電蓄電システム及びその制御方法
US20120280569A1 (en) * 2011-05-04 2012-11-08 King Fahd University Of Petroleum And Minerals Supercapacitor-based grid fault ride-through system
CN104362679A (zh) * 2014-11-26 2015-02-18 国网电力科学研究院 一种用于提高风电场可控性的稳控装置与风电场ems的协调控制方法
CN105703401A (zh) * 2016-01-05 2016-06-22 国网电力科学研究院 一种适用于风光电站的紧急控制方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004282898A (ja) * 2003-03-14 2004-10-07 Osaka Gas Co Ltd 電力需給制御システム
JP4949902B2 (ja) * 2007-03-16 2012-06-13 日本碍子株式会社 二次電池の電力制御方法
CN102496965B (zh) * 2011-11-28 2014-02-26 天津天大求实电力新技术股份有限公司 基于孤岛电网的柴油发电机供电与电池储能协调控制方法
CN202721498U (zh) * 2012-06-12 2013-02-06 中国电力科学研究院 一种基于pcc平台的微电网协调控制器
CN104037792B (zh) * 2014-06-16 2016-04-06 清华大学 一种用水电和储能平抑风光功率波动的控制方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007318844A (ja) * 2006-05-24 2007-12-06 Chugoku Electric Power Co Inc:The 小形風力発電蓄電システム及びその制御方法
US20120280569A1 (en) * 2011-05-04 2012-11-08 King Fahd University Of Petroleum And Minerals Supercapacitor-based grid fault ride-through system
CN104362679A (zh) * 2014-11-26 2015-02-18 国网电力科学研究院 一种用于提高风电场可控性的稳控装置与风电场ems的协调控制方法
CN105703401A (zh) * 2016-01-05 2016-06-22 国网电力科学研究院 一种适用于风光电站的紧急控制方法

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109802417A (zh) * 2017-11-16 2019-05-24 中国电力科学研究院有限公司 应对直流故障冲击弱交流通道的电网紧急控制方法及装置
CN109802417B (zh) * 2017-11-16 2023-11-03 中国电力科学研究院有限公司 应对直流故障冲击弱交流通道的电网紧急控制方法及装置
CN108400604A (zh) * 2018-05-03 2018-08-14 南方电网科学研究院有限责任公司 一种基于异步电网频率特性的控制方法和装置
CN111327062A (zh) * 2020-02-26 2020-06-23 中国电力科学研究院有限公司 一种用于评估储能站紧急稳定控制效果的方法及装置
CN111327062B (zh) * 2020-02-26 2022-07-01 中国电力科学研究院有限公司 一种用于评估储能站紧急稳定控制效果的方法及装置
CN113241761A (zh) * 2020-09-08 2021-08-10 云南电网有限责任公司 一种电网稳定控制线性需切机量的定值整定方法及系统
CN113241761B (zh) * 2020-09-08 2022-11-01 云南电网有限责任公司 一种电网稳定控制线性需切机量的定值整定方法及系统
CN113364030A (zh) * 2021-05-30 2021-09-07 国网福建省电力有限公司 一种储能电站被动脱网运行方法
CN113364030B (zh) * 2021-05-30 2023-06-27 国网福建省电力有限公司 一种储能电站被动脱网运行方法
CN113964880A (zh) * 2021-09-30 2022-01-21 国电南瑞科技股份有限公司 兼顾切机和速调的新能源场群控制功率分配方法和装置
CN113964880B (zh) * 2021-09-30 2023-11-28 国电南瑞科技股份有限公司 兼顾切机和速调的新能源场群控制功率分配方法和装置

Also Published As

Publication number Publication date
CN105703401A (zh) 2016-06-22
CN105703401B (zh) 2018-06-05

Similar Documents

Publication Publication Date Title
WO2017118175A1 (fr) Procédé de commande en cas d'urgence applicable à une centrale éolienne photovoltaïque
CN108336761B (zh) 风电场的功率控制方法、装置、系统和计算机设备
CN102354992B (zh) 风电场无功功率控制方法
CN104184171B (zh) 一种风电场层有功功率控制系统和方法
CN108736500B (zh) 区域电网富裕电力直流外送系统的优化切机方法和装置
CN109659980A (zh) 集成混合储能与光伏装置的牵引供电系统能量管理优化方法
CN103606966B (zh) 风力发电机有功功率、无功功率分配的控制方法
CN102684201B (zh) 一种基于电压越限概率的含风电场电网无功优化方法
CN104410094B (zh) 一种电池储能电站的有功功率分配方法
WO2014005550A1 (fr) Procédé de vérification de simulation pour capacité de maintien d'alimentation en creux de tension de ferme éolienne
CN103475027B (zh) 风电集中接入时风场与枢纽站时间序列协调控制的方法
CN105356477B (zh) 一种大型风电集群及其送出通道的无功电压综合控制方法
CN105391050A (zh) 高周切机配置方案的校核方法和系统
CN104037816A (zh) 多源发电联合运行方式下风光发电出力最大化的计算方法
WO2022156014A1 (fr) Procédé et système de commande coordonnée distribuée à réponse de fréquence rapide pour miniréseau éolien-solaire en série-parallèle
CN105244912A (zh) 有源配电网孤岛恢复供电及黑启动方法
CN109546679A (zh) 光伏中压直流汇集系统及中压侧双极短路故障穿越方法
CN105391082B (zh) 基于分类样板逆变器的光伏电站理论功率计算方法
CN105186496B (zh) 一种微网群运行状态评估方法及系统
CN106385055B (zh) 一种含分布式电源的配电网安全校核方法
CN108155665A (zh) 风力发电机组低电压穿越控制方法及装置
CN104734165B (zh) 一种风电机组全功率变流器低电压穿越无功功率控制方法
CN108134404B (zh) 风力发电机组高电压穿越控制方法及装置
CN107508314B (zh) 一种分布式光伏保护系统及保护方法
CN103532520B (zh) 一种防御大规模风电机组连锁脱网的无功补偿装置控制方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16883303

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16883303

Country of ref document: EP

Kind code of ref document: A1