WO2017116064A1 - Biomarker dkk for predicting efficacy of c-met inhibitor - Google Patents

Biomarker dkk for predicting efficacy of c-met inhibitor Download PDF

Info

Publication number
WO2017116064A1
WO2017116064A1 PCT/KR2016/015043 KR2016015043W WO2017116064A1 WO 2017116064 A1 WO2017116064 A1 WO 2017116064A1 KR 2016015043 W KR2016015043 W KR 2016015043W WO 2017116064 A1 WO2017116064 A1 WO 2017116064A1
Authority
WO
WIPO (PCT)
Prior art keywords
seq
amino acid
acid sequence
met
group
Prior art date
Application number
PCT/KR2016/015043
Other languages
French (fr)
Korean (ko)
Inventor
김보규
이은진
김경아
이지민
안태진
남도현
Original Assignee
삼성전자 주식회사
사회복지법인 삼성생명공익재단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 삼성전자 주식회사, 사회복지법인 삼성생명공익재단 filed Critical 삼성전자 주식회사
Publication of WO2017116064A1 publication Critical patent/WO2017116064A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K39/395Antibodies; Immunoglobulins; Immune serum, e.g. antilymphocytic serum
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K16/00Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
    • C07K16/18Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans
    • C07K16/32Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against translation products of oncogenes
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • G01N33/574Immunoassay; Biospecific binding assay; Materials therefor for cancer

Definitions

  • compositions for predicting the efficacy of a c-Met inhibitor comprising biomarkers DKK (Dickkopf-related protein) for detecting the efficacy of a c-Met inhibitor and / or for selecting a subject for application of a c-Met inhibitor.
  • DKK Dickkopf-related protein
  • Biomarker is an indicator that can identify changes caused inside the living body due to external influences, and is used to diagnose various diseases such as cancer, stroke, and dementia, or to predict or monitor the efficacy of certain therapeutic agents. Is getting active.
  • Biomarkers related to drug development include pharmacodynamic markers (PD markers) for confirming the in vivo activity of drugs, and predictive efficacy markers for predicting drug reactivity prior to in vivo administration. markers). The use of these markers helps to establish the clinical strategy of the drug.
  • the efficacy predictive markers which are expected to be effective through the action of the drug, can be used in the patient selection process to enable more effective drug treatment. In this case, more effective treatment strategies can be established by monitoring whether the drug is working well in individual patients and / or whether resistance is achieved.
  • the presence of efficacy assay markers allows for early monitoring of individual patient responses to drugs in drug treatment, so that early screening of groups with and without drug efficacy is indicated. To enable a more effective and successful drug treatment.
  • the effect verification marker can be used as an index for estimating the appropriate dose of drug by monitoring the degree of drug reactivity according to the concentration of administration.
  • Cancer is one of the leading causes of death to date. Advances in medical technology are bringing notable changes in cancer treatment technology, but the five-year survival rate has only improved by 10% over the past 20 years. This is because the rapid growth and metastasis of cancer is difficult to diagnose and treat at the proper time.
  • appropriate biomarkers into cancer treatments, the success of cancer treatments can be greatly increased by increasing the chance of identifying the characteristics of the cancer and using the appropriate treatment in a timely manner. For example, even in the same lung cancer patients, the characteristics of lung cancer classification, gene, and secreted protein are different, and accordingly, appropriate treatment is also different. Therefore, in chemotherapy using a specific therapeutic agent, if a biomarker corresponding to the therapeutic agent is present, trial and error can be reduced and the probability of success can be increased.
  • the search for biomarkers for predicting or testing efficacy of anticancer drugs is very important, and if a suitable biomarker is successfully derived, the efficacy and value of anticancer drugs and the success rate of treatment using the same may be greatly increased.
  • c-Met is a receptor for hepatocyte growth factor (HGF), and HGF binds to the extracellular site of c-Met receptor tyrosine kinase, resulting in division, movement, morphogenesis, and blood vessels in various normal and tumor cells. It is a type of cytokine that causes formation.
  • c-Met is a representative receptor tyrosine kinase on the surface of the cell, which itself is a cancer-causing gene and sometimes cancer development, cancer metastasis, cancer cell migration, cancer cell invasion, neovascularization, regardless of the ligand HGF. Since it is involved in various mechanisms related to tumors, etc., it is a protein recently attracting attention as a target of anticancer treatment, and development of a target therapeutic agent such as an antibody that inhibits the action of c-Met is in progress.
  • HGF hepatocyte growth factor
  • the efficacy of the therapeutic agent is predicted or assayed to select patients who are suitable for application of the therapeutic agent to establish a more effective treatment strategy. There is a need for the development of applicable biomarkers.
  • One example is to predict the efficacy of a c-Met inhibitor comprising one or more selected from the group consisting of a DKK protein (Dickkopf-related protein) and genes encoding them and / or to select and / or apply c-Met inhibitors. Biomarkers for efficacy monitoring following Met inhibitor administration are provided.
  • a DKK protein Dickkopf-related protein
  • Another example is for use in predicting the efficacy of one or more c-Met inhibitors selected from the group consisting of DKK proteins and genes encoding them and / or selecting subjects for application of c-Met inhibitors and / or monitoring efficacy after administration of c-Met inhibitors.
  • c-Met inhibitors selected from the group consisting of DKK proteins and genes encoding them and / or selecting subjects for application of c-Met inhibitors and / or monitoring efficacy after administration of c-Met inhibitors.
  • compositions, and kits, for monitoring efficacy after administration of an inhibitor are provided.
  • c-Met inhibitors include predicting the efficacy of a c-Met inhibitor of a substance interacting with one or more selected from the group consisting of DKK proteins and genes encoding them and / or screening for and / or administering a c-Met inhibitor. Provides use for use in later efficacy monitoring.
  • Another example includes measuring the presence and / or level of one or more selected from the group consisting of DKK proteins and genes encoding them in a biological sample, and / or c-Met inhibitors. Screening methods for applying and / or monitoring efficacy after administration of c-Met inhibitors, or predicting efficacy of c-Met inhibitors and / or screening for application of c-Met inhibitors and / or monitoring efficacy after administration of c-Met inhibitors Provide a way to provide information.
  • compositions for the prevention or treatment of cancer comprising a c-Met inhibitor and a Wnt signaling inhibitor.
  • a pharmaceutical composition comprising a c-Met inhibitor and a Wnt signaling inhibitor for the prevention or treatment of cancer, or for the manufacture of a pharmaceutical composition for the prevention or treatment of cancer.
  • the cancer may be a cancer having resistance to c-Met inhibitors.
  • Another example provides a method for the prevention or treatment of cancer comprising administering a c-Met inhibitor to the selected patient.
  • Another example provides a method of preventing or treating cancer, comprising administering a c-Met inhibitor and a Wnt signaling inhibitor.
  • the cancer may be a cancer having resistance to c-Met inhibitors.
  • Another example provides a pharmaceutical composition for reducing resistance to a c-Met inhibitor including a c-Met inhibitor and a Wnt inhibitor. Another example provides the use of the pharmaceutical composition comprising a c-Met inhibitor and a Wnt inhibitor for use in reducing resistance to a c-Met inhibitor. Another example provides a method of reducing resistance to a c-Met inhibitor, comprising administering a c-Met inhibitor and a Wnt inhibitor.
  • DKK proteins Dickkopf-related proteins such as DKK1 and / or genes encoding them are provided as markers that can predict the efficacy of c-Met inhibitors.
  • DKK protein eg, DKK1
  • levels of DKK can be measured not only at the level of coding genes but also at the level of protein secreted into the serum.
  • the amount of DKK1 is increased in gastric cancer cells to which the anti-c-Met antibody acts, and if the amount of DKK1 is lowered through siRNA in gastric cancer cell lines with high DKK1 and anti-c-Met antibody efficacy It has been shown that anti-c-Met antibody efficacy is reduced. As such, it was confirmed that DKK protein level or gene expression level affected anti-c-Met antibody potency, thereby confirming the applicability of DKK1 as a c-Met inhibitor potency marker.
  • c-Met inhibitors selected from the group consisting of DKK proteins and genes encoding them, and / or selecting patients for whom the application of c-Met inhibitors is appropriate, and / or c-Met Use is provided as a marker for monitoring efficacy after administration of an inhibitor.
  • the efficacy of the c-Met inhibitors includes the effects of c-Met inhibition (such as intracellular migration and / or degradation of c-Met) of c-Met inhibitors, prevention, improvement of c-Met related diseases such as cancer, Means to alleviate, and / or therapeutic effects, and in the case of cancer, may mean effects such as reduction of cancer cells or cancer tissues, death of cancer cells or cancer tissues, inhibition of migration and / or penetration of cancer cells associated with cancer metastasis. Can be.
  • 'efficacy monitoring after administration of a c-Met inhibitor' refers to a desired efficacy in a patient administered a c-Met inhibitor, such as c-Met inhibition (such as intracellular migration and / or degradation of c-Met).
  • Efficacy, prevention, amelioration, alleviation, and / or treatment efficacy of c-Met related diseases such as cancer (eg, in the case of cancer, reduction of cancer cells or cancer tissues, death of cancer cells or cancer tissues, migration of cancer cells associated with cancer metastasis) And / or efficacy such as inhibition of penetration) and / or assay (or confirmation) of resistance to administered c-Met inhibitor.
  • DKK protein is a protein that acts as an antagonist (inhibitor) of the Wnt signaling pathway, DKK1 (Dickkopf-related protein 1), DKK2 (Dickkopf-related protein 2), DKK3 (Dickkopf-related protein 3) And the like.
  • the DKK protein is human ( Homo sapiens ), monkey ( Macaca Primates, including murat ), mice ( Mus musculus ), rats ( Rattus) mammals such as rodents including norvegicus ), fish such as zebrafish ( Danio rerio ), frogs ( Xenopus) laevis ) may be derived from amphibians and the like.
  • DKK1 may be a human DKK1 (eg NP_036374.1 (gene: NM_012242.2), etc.), monkey DKK1 (eg, NP_001247454.1 (gene: NM_001260525.1), etc.), mouse DKK1 (eg, NP_034181.2 (gene) : NM_010051.3), etc.), rat DKK1 (eg, NP_001099820.1 (gene: NM_001106350.1); XP_003749137.1 (gene: XM_003749089.3), etc.), zebrafish DKK1 (eg, XP_005173020.1 (gene: XM_005172963 .1), NP_571078.1 (gene: NM_131003.1), etc.), frog DKK1 (eg, NP_001079061.1 (gene: NM_001085592.1), etc.) and the like, but is not
  • DKK2 includes human DKK2 (eg, NP_055236.1 (gene: NM_014421.2), etc.), monkey DKK2 (eg, XP_001085254.1 (gene: XM_001085254.2), etc.), mouse DKK2 (eg, NP_064661.2 (gene: NM_020265) .4) and the like), rat DKK2 (eg, NP_001099942.1 (gene: NM_001106472.1), etc.), zebrafish DKK2 (eg, NP_001104679.1 (gene: NM_001111209.1), etc.), frog DKK2 (eg, NP_001079319.
  • human DKK2 eg, NP_055236.1 (gene: NM_014421.2
  • monkey DKK2 eg, XP_001085254.1 (gene: XM_001085254.2), etc.
  • DKK3 includes human DKK3 (eg, NP_001018067.1 (gene: NM_001018057.1), etc.), monkey DKK3 (eg, NP_001252678.1 (gene: NM_001265749.1), etc.), mouse DKK3 (eg, NP_056629.1 (gene: NM_015814) .2), etc.), rat DKK3 (e.g.
  • NP_612528.2 (gene: NM_138519.2), XP_006230071.1 (gene: XM_006230009.2), etc.), zebrafish DKK3 (eg, NP_001083014.1 (gene: NM_001089545.1 ), NP_001152755.1 (gene: NM_001159283.1), etc., frog DKK3 (eg, NP_001121290.1 (gene: NM_001127818.1), etc.) and the like, but are not limited thereto.
  • One embodiment provides a biomarker for predicting the efficacy of a c-Met inhibitor comprising one or more selected from the group consisting of a DKK protein and a gene encoding the same and / or selecting a subject (or patient) for applying the c-Met inhibitor. do.
  • Another example provides a biomarker for efficacy monitoring after administration of a c-Met inhibitor comprising one or more selected from the group consisting of DKK proteins and genes encoding them.
  • Another example provides a use for predicting the efficacy of a c-Met inhibitor comprising one or more selected from the group consisting of a DKK protein and a gene encoding the same and / or for selecting a subject (or patient) for applying the c-Met inhibitor. .
  • Another example provides a use for monitoring efficacy after administration of one or more c-Met inhibitors selected from the group consisting of DKK proteins and genes encoding them.
  • compositions for predicting the efficacy of a c-Met inhibitor and / or for selecting a subject (patient) to apply a c-Met inhibitor comprising a substance that interacts with one or more selected from the group consisting of a DKK protein and a gene encoding the same.
  • kits for predicting the efficacy of a c-Met inhibitor and / or for selecting a subject (patient) to apply a c-Met inhibitor comprising a substance that interacts with one or more selected from the group consisting of a DKK protein and a gene encoding the same.
  • compositions and kits for monitoring efficacy after administration of a c-Met inhibitor comprising a substance that interacts with one or more selected from the group consisting of DKK proteins and genes encoding them.
  • Another example is for use in predicting the efficacy of a c-Met inhibitor of a substance interacting with at least one selected from the group consisting of a DKK protein and a gene encoding the same and / or selecting a subject (patient) to apply the c-Met inhibitor.
  • Another example provides a use for monitoring efficacy after administration of one or more c-Met inhibitors selected from the group consisting of DKK proteins and genes encoding them.
  • Another example provides a method for predicting the efficacy of a c-Met inhibitor, and providing information for predicting the efficacy of a c-Met inhibitor, the method comprising measuring at least one level selected from the group consisting of DKK protein and a gene encoding the same in a biological sample.
  • the present invention provides a method for screening a subject (patient) to be applied to a c-Met inhibitor, or a method for providing information for selecting a subject (patient) to be applied to a c-Met inhibitor.
  • the level of one or more selected from the group consisting of DKK protein in the biological sample and the gene encoding the same is high, DKK necessary for the c-Met inhibitor to act in the biological sample, so that the c-Met inhibitor It may mean that it can work well. Therefore, in the method for predicting the efficacy of the c-Met inhibitor or the screening method of applying the c-Met inhibitor, when the level of one or more selected from the group consisting of DKK protein and gene encoding the biological sample, the biological sample or The c-Met inhibitor may be determined (predicted) to be effective in the patient from which the biological sample is derived, or the biological sample or the patient from which the biological sample is derived may be judged as an application target of the c-Met inhibitor.
  • the method of providing information for predicting the efficacy or predicting the efficacy of the c-Met inhibitor after the step of measuring at least one level selected from the group consisting of the DKK protein and the gene encoding the same, in the biological sample If the level of one or more selected from the group consisting of DKK protein and the gene encoding it is high, the step of determining (predicting) the c-Met inhibitor will be effective in the biological sample or the patient from which the biological sample is derived. It can be included as.
  • the method of selecting a target of the application of c-Met inhibitor or the method of providing information for the selection of the target of application of c-Met inhibitor, the level of one or more selected from the group consisting of the DKK protein and the gene encoding the same After the measuring step, if the level of one or more selected from the group consisting of DKK protein and the gene encoding the biological sample in the biological sample, applying the c-Met inhibitor to the biological sample or the patient from which the biological sample is derived The method may further include determining an appropriate target.
  • Another example is a method for monitoring efficacy after administration of a c-Met inhibitor or information for monitoring efficacy after administration of a c-Met inhibitor comprising measuring at least one level selected from the group consisting of DKK protein and a gene encoding the same in a biological sample.
  • a method for monitoring efficacy after administration of a c-Met inhibitor or information for monitoring efficacy after administration of a c-Met inhibitor comprising measuring at least one level selected from the group consisting of DKK protein and a gene encoding the same in a biological sample.
  • the c-Met inhibitor may work well It may be meant. Therefore, in the method for monitoring efficacy after administration of the c-Met inhibitor, when one or more levels selected from the group consisting of DKK protein in a biological sample and a gene encoding the same are high, the biological sample or a patient from which the biological sample is derived It can be judged (assay) that the c-Met inhibitor is exhibiting efficacy.
  • the method for monitoring efficacy after administration of the c-Met inhibitor after measuring at least one level selected from the group consisting of the DKK protein and the gene encoding the same, the DKK protein in the biological sample and the gene encoding the same
  • the biological sample or the patient from which the biological sample may further comprise determining (testing) that the c-Met inhibitor is effective.
  • the DKK protein may be DKK1, eg, human DKK1, and the gene encoding it may be a DKK1 gene, eg, a human DKK1 gene.
  • At least one level selected from the group consisting of DKK proteins (such as DKK1) and / or genes encoding them” may be determined based on the following criteria.
  • a biological sample isolated from a patient in which a DKK protein and / or a gene encoding the same is present or the c-Met inhibitor to be applied is ineffective, or a biological sample in which the c-Met inhibitor is ineffective (comparison) Reference samples; for example, MKN74 (JCRB0255, JCRB) gastric cancer cell line, NUGC4 (JCRB0834, JCRB) gastric cancer cell line, NCI-N87 (CRL-5822, ATCC) gastric cancer cell line, SNU668 (00668, KCLB) gastric cancer cell line, H1373 (ATCC, CRL Lung cancer cell line, HCC1806 (ATCC, CRL-2335) breast cancer cell line, Caki-1 (ATCC, HTB-46) kidney cancer cell line, SKBR3 (ATCC, HTB-30) breast cancer cell line, BT474 (ATCC, HTB-20) Breast Cancer Cell Line, HT-29 (ATCC, HTB-38) Colon Cancer Cell Line, LoVo (
  • the comparative reference sample may be a cell, tissue, or a culture thereof, isolated from a living body or artificially cultured.
  • the efficacy prediction method, subject screening method, and / or efficacy monitoring method may further comprise the step of measuring the level of DKK protein and / or gene encoding the comparative reference sample prior to the determining step.
  • the determining of the methods may include one or more levels selected from the group consisting of DKK protein of a biological sample and a gene encoding the same, and one or more levels selected from the group consisting of DKK protein of a comparative reference sample and a gene encoding the same.
  • One or more levels selected from the group consisting of DKK proteins and genes encoding them are compared If it is lower than the sample, it is determined that the c-Met inhibitor will not be effective in the biological sample or the patient from which the biological sample is derived (predicted), and the patient is determined to be not suitable for applying the c-Met inhibitor. Or, determining that the c-Met inhibitor is not effective.
  • the step of measuring the DKK protein level of the biological sample of the efficacy prediction method, subject screening method, and / or efficacy monitoring method may be performed by immunohistochemistry using conventional antibodies to the DKK protein,
  • the determining step i) when a value of +2 or +3 is obtained as a result of the immunohistochemistry, it is determined that the c-Met inhibitor will be effective in the biological sample or the patient from which the biological sample is derived (prediction).
  • the c-Met inhibitor is effective in the biological sample or the patient from which the biological sample is derived. It can be predicted that.
  • the mRNA expression level of the DKK1 gene is expressed relative to the mRNA expression level of other genes, thereby predicting the effect of the c-Met inhibitor. for example,
  • the c-Met inhibitor may be used in the biological sample or the biological sample. Predicted to be effective in patients from which is derived;
  • the c-Met inhibitor may be used in the biological sample or the biological sample. Predicted to be effective in patients from which is derived;
  • mRNA expression level of DKK1 gene mRNA expression level of DKK1 gene / 10 above the mean of mRNA expression levels of 10 genes (EEF1A1, RPL23, TPT1, HUWE1, MATR3, SRSF3, HNRNPC, SMARCA4, WDR90, and TUT1)
  • An average of dog gene mRNA expression levels is greater than or equal to about 1.05 and it can be predicted that the c-Met inhibitor may be effective in the biological sample or in the patient from which the biological sample is derived.
  • the level of the DKK protein (eg, DKK1 protein) or gene encoding it (eg, DKK1 gene) can be measured by any conventional protein or gene analysis method using a substance that interacts with the protein or gene.
  • a substance that interacts with the DKK protein (eg, DKK1 protein) or a gene encoding it (eg, DKK1 gene) binds specifically to the DKK protein (eg, DKK1 protein) or DKK gene (eg, DKK1 gene). It may be at least one selected from the group consisting of chemical (small) molecules, proteins, peptides, nucleic acid molecules (polynucleotides, oligonucleotides, etc.).
  • a substance that interacts with the DKK protein may be a compound, antibody, aptamer, and the like that specifically binds to the DKK protein (eg, DKK1 protein). It may be one or more selected from the group consisting of nucleic acid molecules (eg, primers, probes, aptamers, etc.) that bind to all or part of the DKK gene (eg, DKK1 gene).
  • the level of the DKK protein can be determined by conventional enzymatic reactions, fluorescence, luminescence and / or radiation using compounds, antibodies, aptamers, etc. that specifically bind to the DKK protein (eg, DKK1 protein). It can be measured by detection, and specifically, immunochromatography, immunohistochemical staining, enzyme linked immunosorbent assay (ELISA), radioimmunoassay (RIA), enzyme immunoassay (RIA). enzyme immunoassay (EIA), fluorescence immunoassay (FIA), luminescence immunoassay (LIA), Western blotting, microarray, and the like. However, it is not limited thereto.
  • the level of the DKK gene (eg, DKK1 gene) (DNA, cDNA or mRNA) can be measured using conventional genetic analysis methods, for example using a primer, probe, or aptamer that is hybridizable with the gene.
  • Phosphorus gene analysis methods such as polymerase chain reaction method (PCR; such as qPCR, real-time PCR, etc.), fluorescent in situ hybridization (FISH), microarray method, etc. can be measured, but is not limited thereto. no.
  • the primer is a gene fragment of consecutive 5 to 1000 bp, such as 10 to 500 bp, 20 to 200 bp, or 50 to 200 bp in the sequence of the DKK gene (eg, DKK1 gene) (full length DNA, cDNA, or mRNA).
  • the DKK gene eg, DKK1 gene
  • Primer pairs including the base sequence.
  • the probe or aptamer may have a total length of 5 to 100 bp, 5 to 50 bp, 5 to 30 bp, or 5 to 25 bp, and is continuous in the base sequence of a gene (full length DNA, cDNA, or mRNA) encoding DKK1.
  • 5 to 100 bp, 5 to 50 bp, 5 to 30 bp, or 5 to 25 bp gene fragment may be one having a sequence capable of binding or hybridizing (eg, complementary).
  • the term 'combinable' may mean that the gene may be bound to the gene site by chemical and / or physical bonds such as covalent bonds, and the term “hybridization possible” may refer to the nucleotide sequence of the gene site.
  • complementary binding may be achieved by having at least%, such as at least 90%, at least 95%, at least 98%, at least 99%, or at least 100% of sequence complementarity.
  • a method for predicting the efficacy of the c-Met inhibitor and / or a method for selecting a target of the c-Met inhibitor and / or a method for monitoring the efficacy after administration of the c-Met inhibitor, wherein the DKK protein (eg, DKK1 protein) in the biological sample and Measuring one or more levels selected from the group consisting of genes encoding them may optionally include: i) preparing a biological sample; ii) reacting the biological sample by treating (adding) and reacting a substance interacting with at least one selected from the group consisting of DKK protein (eg, DKK1 protein) and a gene encoding the same; And iii) analyzing the obtained reactant to quantify one or more selected from the group consisting of DKK protein (eg, DKK1 protein) and genes encoding the same.
  • the DKK protein eg, DKK1 protein
  • Preparing the biological sample of step i) may include obtaining (separating) a biological sample from the patient or obtaining a biological sample separated from the patient.
  • the interacting substance is a chemical, small molecule, protein, peptide, nucleic acid molecule (poly) that specifically binds to a DKK protein (such as DKK1 protein) and / or a DKK (such as DKK1) gene. Nucleotides, oligonucleotides, etc.), and the like.
  • the interacting agent binds to some or all of a small molecule, antibody, aptamer, or gene encoding a DKK protein (such as DKK1 protein) that specifically binds to a DKK protein (such as DKK1 protein).
  • a DKK protein such as DKK1 protein
  • Polynucleotides eg, primers, probes, aptamers, etc.
  • the reactant interacts (binds) with at least one selected from the group consisting of DKK protein (such as DKK1 protein) and / or DKK (such as DKK1) gene obtained in step ii) and a substance interacting with it.
  • the quantifying step may be performed by quantifying the generated complex, measuring a labeled substance labeled on the complex, or separating the complex from a sample, and then extracting the DKK protein (eg, And re-isolating the DKK1 protein) and / or the DKK (eg DKK1) gene to quantify the isolated DKK protein (eg DKK1 protein) and / or DKK (eg DKK1) gene.
  • the DKK protein eg, And re-isolating the DKK1 protein
  • the DKK eg DKK1 gene
  • Quantification of the DKK protein is conventional protein quantification methods, such as immunochromatography, immunohistochemical staining, enzyme linked immunosorbent assay (ELISA), radioimmunoassay (RIA), enzyme By immunoassay (EIA), fluorescence immunoassay (FIA), luminescence immunoassay (LIA), Western blotting, microarray, etc. It may be performed, but is not limited thereto.
  • Quantification of the DKK gene is carried out in a conventional gene quantification method such as polymerase chain reaction (PCR; such as qPCR, real-time PCR, etc.), FISH (fluorescent in situ hybridization), microarray method, etc. It may be performed by, but is not limited thereto.
  • the method for predicting efficacy and / or subject selection may be performed after the step of judging to a patient judged (predicted) that the c-Met inhibitor will exhibit efficacy or to a patient determined to be suitable for applying the c-Met inhibitor.
  • the method may further comprise administering a pharmaceutically effective amount of a c-Met inhibitor.
  • the monitoring method is a step of administering a pharmaceutically effective amount of a c-Met inhibitor to a patient judged (tested) that the c-Met inhibitor is effective after the step of determining, or the c-Met inhibitor is Discontinuing administration of the c-Met inhibitor to the patient judged (black) to be ineffective.
  • the subject of application of the c-Met inhibitor refers to a patient suitable for applying a therapy using the c-Met inhibitor, and all mammals, such as primates such as humans and monkeys, rodents such as mice and rats.
  • the biological sample is isolated or artificially cultured from all patients (e.g., mammals including primates such as humans, monkeys, rodents, mice, rats, etc.), such as cancer patients, or the patient to which the c-Met inhibitor is to be applied.
  • Cells, tissues, body fluids eg, blood, serum, urine, saliva, etc.
  • c-Met inhibitor in order for the c-Met inhibitor to be effective, it may be assumed that the target material, c-Met high expression conditions (present a certain level or more) is satisfied.
  • the composition (or kit) for predicting the efficacy of the c-Met inhibitor, the composition (or kit) for monitoring the efficacy, or the composition (or kit) for selecting a target to be applied is c-Met and a gene encoding the same (eg, full-length DNA).
  • cDNA, mRNA, etc. may further include a substance that interacts with one or more selected from the group consisting of.
  • Substances that interact with the c-Met and / or genes encoding the same may include chemical, small molecules, proteins, peptides, nucleic acid molecules (specifically binding to the c-Met and / or genes encoding the same).
  • a substance that interacts with the c-Met and / or a gene encoding the c-Met may include a compound, an antibody, an aptamer, and a nucleic acid molecule that binds to all or part of a c-Met gene.
  • it may be one or more selected from the group consisting of primers, probes, aptamers, and the like.
  • the method for predicting the efficacy of the c-Met inhibitor, the method for monitoring the efficacy, or the method for screening an application may include c-Met protein levels and / or genes encoding the same (eg, full-length DNA, cDNA, mRNA, etc.) in a biological sample obtained from a patient.
  • the method may further include measuring the level of c). Determining the c-Met protein level of the sample or the level of genes encoding the same (eg, full-length DNA, cDNA, mRNA, etc.) is the same as the step of measuring the level of the DKK protein and / or the gene encoding the same as described above There is no limitation in order, and the two measuring steps may be performed simultaneously or sequentially in any order.
  • the specific measuring method is the same as the method of measuring the level of the DKK protein described above and / or the gene encoding the same.
  • a certain amount of total intracellular protein e.g., 10 ug (microgram)
  • the biological sample e.g., cancer cells or cancer tissues
  • the film is elapsed for a certain time (e.g., 30).
  • mRNA levels are measured according to manufacturer's instructions using an Affymetrix U133 Plus 2.0 array and c-Met in the biological sample has an mRNA level of at least about 13.5, at least about 13.6, or at least about 13.78, Met high expression is recognized, and it can be determined that treatment with c-Met inhibitors has met the prerequisites for efficacy.
  • the cancer cells having high expression characteristics of c-Met may be cancer cells such as lung cancer, breast cancer, brain cancer, stomach cancer, liver cancer, kidney cancer, etc., but c-Met expression according to the characteristics of individual patients may be other types of cancer cells. High doses can also be included in the treatment target using c-Met inhibitors.
  • the biological sample used in the method for predicting or monitoring the efficacy of the c-Met inhibitor or the screening method for applying the c-Met inhibitor is a tissue, cell, or body fluid (blood, serum, urine, saliva, etc.) obtained from a patient.
  • Tissue, cells, or body fluids obtained from a patient.
  • a high c-Met expression level such as, for example, a c-Met level of at least about 13.5, at least about 13.6, or at least about 13.78, as measured using an Affymetrix U133 Plus 2.0 array. Serum, urine, saliva, etc.).
  • Another example is a method of inhibiting c-Met (or degradation) comprising administering a c-Met inhibitor to at least one high level subject selected from the group consisting of DKK proteins (such as DKK1) and / or genes encoding the same. to provide.
  • a c-Met inhibitor to at least one high level subject selected from the group consisting of DKK proteins (such as DKK1) and / or genes encoding the same. to provide.
  • Another example provides a method of treating cancer comprising administering a c-Met inhibitor to one or more high-level subjects selected from the group consisting of DKK proteins (such as DKK1) and / or genes encoding them.
  • a c-Met inhibitor to one or more high-level subjects selected from the group consisting of DKK proteins (such as DKK1) and / or genes encoding them.
  • DKK proteins eg DKK1
  • genes encoding them may be determined as described above.
  • One or more high-level patients selected from the group consisting of the DKK protein (eg, DKK1) and genes encoding the same may be subjects selected by the selected compositions, kits and / or methods to which the c-Met inhibitor described above is applied. . Therefore, the c-Met inhibition method or the method of treating cancer may further comprise the step of selecting the anti-c-Met antibody application target prior to the administering step, the specific methods and steps as described above.
  • the c-Met inhibition method or a method for preventing and / or treating cancer More specifically, the c-Met inhibition method or a method for preventing and / or treating cancer,
  • Selecting at least one level of c-Met inhibitor by measuring one or more levels selected from the group consisting of DKK proteins (eg, DKK1) and / or genes encoding them in a biological sample;
  • the administration conditions of the c-Met inhibitor such as the dosage, the interval of administration, and / or the number of administrations may be appropriate administration conditions of the c-Met inhibitor determined in the efficacy assay method of the c-Met inhibitor.
  • DKK1 is a Wnt antagonist
  • DKK1 expression when DKK1 expression is high, Wnt signaling is suppressed.
  • DKK1 expression When DKK1 expression is decreased, Wnt signaling may be activated. If resistance to c-Met inhibitors such as anti-c-Met antibodies is induced, activation of Wnt signaling may be one cause, so Wnt signaling of c-Met inhibitors such as anti-c-Met antibodies Use with inhibitors can overcome resistance to c-Met inhibitors such as anti-c-Met antibodies (see FIG. 5).
  • another embodiment of the present invention provides a pharmaceutical composition for concomitant administration for overcoming or reducing (improving) resistance to a c-Met inhibitor including an c-Met inhibitor and a Wnt signaling inhibitor as an active ingredient.
  • a pharmaceutical composition for concomitant administration for the prevention and / or treatment of cancer comprising a c-Met inhibitor and a Wnt signaling inhibitor as an active ingredient.
  • the cancer may be a cancer having acquired resistance by intrinsic or sustained administration to a c-Met inhibitor, such as an anti-c-Met antibody.
  • the pharmaceutical composition for concomitant administration may be in the form for simultaneous administration of two drugs, including a mixture of a pharmaceutically effective amount of a c-Met inhibitor and a pharmaceutically effective amount of a Wnt signaling inhibitor.
  • the pharmaceutical composition for concomitant administration may be in a form for formulating a pharmaceutically effective amount of a c-Met inhibitor and a pharmaceutically effective amount of a Wnt signaling inhibitor, respectively, to be administered simultaneously or sequentially.
  • the pharmaceutical composition for concomitant administration comprises a first pharmaceutical composition comprising a pharmaceutically effective amount of a c-Met inhibitor as an active ingredient and a second pharmaceutical composition comprising a pharmaceutically effective amount of a Wnt signaling inhibitor as an active ingredient. It may be a pharmaceutical composition for concomitant administration for simultaneous or sequential administration. In the case of sequential administration, the order may be interchanged.
  • kits for abatement overcomes resistance to c-Met inhibitors, including a first pharmaceutical composition comprising a pharmaceutically effective amount of a c-Met inhibitor, a second pharmaceutical composition comprising a pharmaceutically effective amount of a Wnt signaling inhibitor, and a packaging container
  • kits for abatement are also possible.
  • Another example is for the prevention and / or treatment of cancer comprising a first pharmaceutical composition comprising a pharmaceutically effective amount of a c-Met inhibitor, a second pharmaceutical composition comprising a pharmaceutically effective amount of a Wnt signaling inhibitor, and a packaging container Provide the kit.
  • the cancer may be a cancer having acquired resistance by intrinsic or sustained administration to a c-Met inhibitor, such as an anti-c-Met antibody.
  • Another example provides a method of overcoming or reducing (improving) resistance to a c-Met inhibitor comprising co-administering a c-Met inhibitor and a Wnt signaling inhibitor to a patient in need of prophylaxis and / or treatment of cancer.
  • Another example provides a method of preventing and / or treating cancer comprising co-administering a c-Met inhibitor and a Wnt signaling inhibitor to a patient in need thereof.
  • the cancer may be a cancer having acquired resistance by intrinsic or sustained administration to a c-Met inhibitor, such as an anti-c-Met antibody.
  • the method may further comprise identifying, prior to administering, the patient in need of overcoming or reducing (improving) resistance to the c-Met inhibitor or preventing and / or treating cancer.
  • the combination administration may be carried out by administering a mixture of c-Met inhibitors and Wnt signaling inhibitors.
  • the combination administration may be performed simultaneously or sequentially with the first step of administering the c-Met inhibitor and the second step of administering the Wnt signaling inhibitor. When sequentially administered, the order may be interchanged.
  • the Wnt signaling inhibitor may be any substance that inhibits the expression and / or function of proteins involved in the Wnt signaling pathway and / or genes encoding them, such as, for example, those involved in the Wnt signaling pathway.
  • the proteins involved in the Wnt signaling pathway are Wnt protein families (e.g., human origin; Wnt1, Wnt2, Wnt2B, Wnt3, Wnt3A, Wnt4, Wnt5A, Wnt5B, Wnt6, Wnt7A, Wnt7B, Wnt8A, Wnt8B, Wnt9A, Wnt9B, Wnt10A) , Wnt10B, Wnt11, Wnt16, etc.), lipoprotein receptor-related protein (LRP), Frizzled (Fz) family receptor, DSH (phosphoprotein Dishevelled), Axin, etc. It may be abnormal.
  • Wnt protein families e.g., human origin; Wnt1, Wnt2, Wnt2B, Wnt3, Wnt3A, Wnt4, Wnt5A, Wnt5B, Wnt6, Wnt7A, Wnt7B, Wnt8A, W
  • the Wnt signaling inhibitor may be a DKK protein (such as DKK1), XAV939 (CAS Number 284028-89-3; 3,5,7,8-Tetrahydro-2- [4- (trifluoromethyl) phenyl] -4H-thiopyrano [ 4,3-d] pyrimidin-4-one), PRI-724 (CAS Number: 847591-62-2; (6S, 9aS) -N-benzyl-6- (4-hydroxybenzyl) -8- (naphthalen-1 -ylmethyl) -4,7-dioxooctahydro-1H-pyrazino [1,2-a] pyrimidine-1-carboxamide), CWP232291, 2,4-Diamino-quinazoline, FJ9 (chemical structure: ), LGK974 (CAS Number: 1243244-14-5; 2 ', 3-dimethyl-N- [5- (2-pyrazinyl) -2-pyridinyl]-[
  • a "c-Met inhibitor” may be any substance that recognizes and / or binds to and degrades, inhibits expression or inhibits function of c-Met.
  • the c-Met inhibitor may be at least one selected from the group consisting of anti-c-Met antibodies, antigen-binding fragments thereof, small molecule c-Met inhibitors, and the like.
  • the small molecule c-Met inhibitor is crizotinib (PF-02341066; 3-((R) -1- (2,6-dichloro-3-fluorophenyl) ethoxy) -5- (1- (piperidin-4- yl) -1H-pyrazol-4-yl) pyridin-2-amine), cabozantinib; XL-184; N- (4- (6,7-dimethoxyquinolin-4-yloxy) phenyl) -N- ( 4-fluorophenyl) cyclopropane-1,1-dicarboxamide), forretinib; N- (3-fluoro-4- (6-methoxy-7- (3-morpholinopropoxy) quinolin-4-yloxy) phenyl) -N- (4-fluorophenyl) cyclopropane-1,1-dicarboxamide), PHA-665752 ((R, Z) -5- (2,6-dichlorobenz
  • imidazo [1,2, -alpha] pyridine derivative is one having the structure of Formula 1 or Formula 2 as shown in "ACS Med. Chem. Lett. 2015, 6, pp.507-512".
  • the anti-c-Met antibody or antigen-binding fragment thereof may be any antibody or antigen-binding fragment thereof that recognizes c-Met as an antigen.
  • the antigen binding fragment may be selected from the group consisting of scFv, (scFv) 2, scFv-Fc, Fab, Fab 'and F (ab') 2 of the antibody.
  • the anti-c-Met antibody may be any antibody or antigen-binding fragment thereof that specifically binds to c-Met to induce intracellular migration and degradation.
  • the anti-c-Met antibody may be to recognize a specific site of c-Met, such as a specific site in the SEMA domain as an epitope.
  • the "c-Met protein” refers to receptor tyrosine kinase that binds to hepatocyte growth factor.
  • the c-Met protein may be from any species, eg, from a primate such as human c-Met (eg NP_000236), monkey c-Met (eg Macaca mulatta, NP_001162100), or mouse c- Or from rodents such as Met (eg NP — 032617.2), rat c-Met (eg NP — 113705.1), and the like.
  • the protein includes, for example, a polypeptide encoded by a nucleotide sequence provided in GenBank Aceession Number NM_000245, or a protein encoded by a polypeptide sequence provided in GenBank Aceession Number NM_000236, or an extracellular domain thereof.
  • Receptor tyrosine kinase c-Met is involved in various mechanisms, for example, cancer development, cancer metastasis, cancer cell migration, cancer cell infiltration, neovascularization process, and the like.
  • C-Met a receptor for hepatocyte growth factor, is divided into three parts: extracellular site, transmembrane site, and intracellular site.
  • extracellular site the ⁇ - and ⁇ -subunits are separated by disulfide bonds.
  • link form it consists of the HGF binding domain, the SEMA domain, the PSI domain (plexin-semaphorins-integrin homology domain), and the IPT domain (immunoglobulin-like fold shared by plexins and transcriptional factors domain).
  • the SEMA domain of the c-Met protein may have an amino acid sequence of SEQ ID NO: 79, and is a domain existing at an extracellular site of c-Met and corresponds to a site to which HGF binds.
  • epitope is an antigenic determinant and is understood to mean a portion of an antigen recognized by an antibody.
  • the epitope is the 106th site in a site comprising five or more contiguous amino acids in the SEMA domain (SEQ ID NO: 79) of the c-Met protein, eg, the SEMA domain (SEQ ID NO: 79) of the c-Met protein.
  • SEMA domain SEQ ID NO: 79
  • To 124 th may include the contiguous 5 to 19 amino acids located in SEQ ID NO: 71.
  • the epitope may be composed of 5 to 19 consecutive amino acids including SEQ ID NO: 73 (EEPSQ) of the amino acid sequence of SEQ ID NO: 71, for example, SEQ ID NO: 71, SEQ ID NO: 72 or SEQ ID NO: 73 It may be a polypeptide having.
  • the epitope having the amino acid sequence of SEQ ID NO: 72 corresponds to the outermost position of the loop site between the domains of propeller structure 2 and 3 in the SEMA domain of c-Met protein, and the amino acid sequence of SEQ ID NO: 73
  • the epitope having is the site to which the antibody or antigen binding fragment according to one embodiment most specifically binds.
  • the anti-c-Met antibody may specifically bind to an epitope comprising 5 to 19 consecutive amino acids comprising SEQ ID NO: 73 (EEPSQ) in the amino acid sequence of SEQ ID NO: 71, eg, a sequence.
  • an antibody or antigen binding fragment that specifically binds to an epitope having the amino acid sequence of SEQ ID NO: 71, SEQ ID NO: 72, or SEQ ID NO: 73.
  • the anti-c-Met antibody the anti-c-Met antibody
  • Consecutive 8 to 19 comprising CDR-H1 having the amino acid sequence of SEQ ID NO: 4, the amino acid sequence of SEQ ID NO: 5, the amino acid sequence of SEQ ID NO: 2, or the third to tenth amino acids within the amino acid sequence of SEQ ID NO: 2 CDR-H2 having an amino acid sequence consisting of four amino acids, and the amino acid sequence of SEQ ID NO: 6, the amino acid sequence of SEQ ID NO: 85, or a contiguous 6 to 6 amino acid including the first to sixth amino acids in the amino acid sequence of SEQ ID NO: 85; At least one heavy chain complementarity determining region (CDR) selected from the group consisting of CDR-H3 having an amino acid sequence of 13 amino acids, or a heavy chain variable region comprising said at least one heavy chain complementarity determining region;
  • CDR heavy chain complementarity determining region
  • CDR-L1 having an amino acid sequence of the amino acid sequence of SEQ ID NO: 7, CDR-L2 having an amino acid sequence of SEQ ID NO: 8, and an amino acid sequence of SEQ ID NO: 9, SEQ ID NO: 15, amino acid sequence of SEQ ID NO: 86, or SEQ ID NO: 89
  • SEQ ID NO: 4 to SEQ ID NO: 9 is an amino acid sequence represented by the general formulas (I) to (VI), respectively:
  • Trp-Xaa 11 -Ser-Xaa 12 -Arg-Val-Xaa 13 SEQ ID NO: 8
  • Xaa 1 is absent or Pro or Ser
  • Xaa 2 is Glu or Asp
  • Xaa 3 is Asn or Lys
  • Xaa 4 is Ala or Val
  • Xaa 5 is Asn or Thr
  • Xaa 6 is Ser or Thr
  • Xaa 7 is His, Arg, Gln or Lys
  • Xaa 8 is Ser or Trp
  • Xaa 9 is His or Gln
  • Xaa 10 is Lys or Asn
  • Xaa 11 is Ala or Gly
  • Xaa 12 is Thr or Lys
  • Xaa 13 is Ser or Pro
  • Xaa 14 is Gly, Ala or Gln
  • Xaa 15 is Arg, His, Ser, Ala, Gly or Lys
  • Xaa 16 is Leu, Tyr, Phe or Met.
  • the CDR-H1 may have an amino acid sequence selected from the group consisting of SEQ ID NO: 1, SEQ ID NO: 22, SEQ ID NO: 23 and SEQ ID NO: 24.
  • the CDR-H2 may have an amino acid sequence selected from the group consisting of SEQ ID NO: 2, SEQ ID NO: 25, and SEQ ID NO: 26.
  • the CDR-H3 may have an amino acid sequence selected from the group consisting of SEQ ID NO: 3, SEQ ID NO: 27, SEQ ID NO: 28, and SEQ ID NO: 85.
  • the CDR-L1 may have an amino acid sequence selected from the group consisting of SEQ ID NO: 10, SEQ ID NO: 29, SEQ ID NO: 30, SEQ ID NO: 31, SEQ ID NO: 32, SEQ ID NO: 33, and SEQ ID NO: 106.
  • the CDR-L2 may have an amino acid sequence selected from the group consisting of SEQ ID NO: 11, SEQ ID NO: 34, SEQ ID NO: 35, and SEQ ID NO: 36.
  • the CDR-L3 may have an amino acid sequence selected from the group consisting of SEQ ID NO: 12, SEQ ID NO: 13, SEQ ID NO: 14, SEQ ID NO: 15, SEQ ID NO: 16, SEQ ID NO: 37, SEQ ID NO: 86, and SEQ ID NO: 89.
  • the antibody or antigen-binding fragment is a polypeptide having an amino acid sequence selected from the group consisting of SEQ ID NO: 1, SEQ ID NO: 22, SEQ ID NO: 23 and SEQ ID NO: 24 (CDR-H1), SEQ ID NO: 2, SEQ ID NO: 25, and a polypeptide having an amino acid sequence selected from the group consisting of SEQ ID NO: 26 (CDR-H2), and a poly having an amino acid sequence selected from the group consisting of SEQ ID NO: 3, SEQ ID NO: 27, SEQ ID NO: 28, and SEQ ID NO: 85
  • a heavy chain variable region comprising a peptide (CDR-H3); And polypeptide (CDR-L1), SEQ ID NO: 11, SEQ ID NO: 10, SEQ ID NO: 29, SEQ ID NO: 30, SEQ ID NO: 31, SEQ ID NO: 32, SEQ ID NO: 33, and SEQ ID NO: 106;
  • the heavy chain variable region is SEQ ID NO: 17, SEQ ID NO: 74, SEQ ID NO: 87, SEQ ID NO: 90, SEQ ID NO: 91, SEQ ID NO: 92, SEQ ID NO: 93 or An amino acid sequence of SEQ ID NO: 94, wherein the light chain variable region is SEQ ID NO: 109, SEQ ID NO: 18, SEQ ID NO: 19, SEQ ID NO: 20, SEQ ID NO: 21, SEQ ID NO: 75, SEQ ID NO: 88, SEQ ID NO: 95, SEQ ID NO: 96 , SEQ ID NO: 97, SEQ ID NO: 98, SEQ ID NO: 99 or may include the amino acid sequence of SEQ ID NO: 107.
  • Animal-derived antibodies that are produced by immunizing a desired antigen with an immunized animal are generally capable of immunorejection upon administration to humans for therapeutic purposes, and chimeric antibodies have been developed to suppress such rejection.
  • Chimeric antibodies are obtained by replacing the constant region of an animal-derived antibody causing an anti-isotype reaction with the constant region of a human antibody using genetic engineering methods. Chimeric antibodies have been significantly improved in anti-isotype responses compared to animal derived antibodies, but still contain adverse effects on potential anti-idiotypic reactions due to the presence of animal-derived amino acids in the variable region. Doing. Humanized antibodies have been developed to ameliorate these side effects. It is produced by implanting a complementary region determining region (CDR), which plays an important role in antigen binding, among the variable regions of chimeric antibodies in the human antibody framework.
  • CDR complementary region determining region
  • CDR grafting technology for producing humanized antibody is to select an optimized human antibody that can best accept the CDR region of an animal-derived antibody.
  • structure analysis and molecular modeling techniques are used to select an optimized human antibody that can best accept the CDR region of an animal-derived antibody.
  • amino acids that are located in the skeleton of an animal-derived antibody and affect antigen binding.
  • additional antibody engineering techniques to restore antigen binding capacity is essential.
  • the antibody may be a mouse derived antibody, a mouse-human chimeric antibody, a humanized antibody, or a human derived antibody.
  • the antibody or antigen-binding fragment thereof may be isolated in vivo or non-naturally occurring (ie, not naturally present).
  • the antibody or antigen-binding fragment thereof may be prepared recombinantly or synthetically.
  • a complete antibody is a structure having two full length light chains and two full length heavy chains, each of which is linked by heavy and disulfide bonds.
  • the constant region of the antibody is divided into a heavy chain constant region and a light chain constant region, and the heavy chain constant region has a gamma ( ⁇ ), mu ( ⁇ ), alpha ( ⁇ ), delta ( ⁇ ) and epsilon ( ⁇ ) type, and a subclass.
  • the constant regions of the light chains have kappa ( ⁇ ) and lambda ( ⁇ ) types.
  • variable chain refers to the variable region domain V H and the three constant region domains C H1 , C H2 and C H3 and hinges, comprising an amino acid sequence having a variable region sequence sufficient to confer specificity to the antigen. It is interpreted to include both the full length heavy chain including the hinge and fragments thereof.
  • light chain refers to both the full-length light chain and fragment thereof comprising the variable region domain V L and the constant region domain C L comprising an amino acid sequence having sufficient variable region sequence to confer specificity to the antigen. It is interpreted to include.
  • complementarity determining region refers to the amino acid sequences of the hypervariable regions of the heavy and light chains of immunoglobulins.
  • the heavy and light chains may each comprise three CDRs (CDRH1, CDRH2, CDRH3 and CDRL1, CDRL2, CDRL3).
  • the CDRs can provide key contact residues for the antibody to bind antigen or epitope.
  • the term “specifically binds” or “specifically recognized” is the same as commonly known to those skilled in the art, and the antigen and the antibody specifically interact with each other to perform an immunological response. Means that.
  • antigen binding fragment refers to a portion of a polypeptide that includes a portion to which an antigen can bind, as a fragment thereof for the entire structure of an immunoglobulin.
  • the antigen binding fragment may be, but is not limited to, scFv, (scFv) 2 , Fab, Fab 'or F (ab') 2 .
  • Fab of the antigen-binding fragment has one antigen-binding site in a structure having a variable region of the light and heavy chains, a constant region of the light chain and a first constant region of the heavy chain (C H1 ).
  • F (ab ') 2 antibodies are produced when the cysteine residues of the hinge region of Fab' form disulfide bonds. Recombinant techniques for generating Fv fragments with minimal antibody fragments in which Fv has only heavy and variable chain regions are well known in the art.
  • Double-chain Fv is a non-covalent bond in which the heavy chain variable region and the light chain variable region are linked, and the single-chain Fv is generally shared by the variable region of the heavy chain and the short chain variable region through a peptide linker. It may be linked by bond or directly at the C-terminus to form a dimer-like structure such as a double chain Fv.
  • the peptide linker may be a polypeptide consisting of 1 to 100 or 2 to 50 arbitrary amino acids, and the amino acid type included therein is not limited.
  • the antigen binding fragments can be obtained using proteolytic enzymes (e.g., restriction digestion of the entire antibody with papain can yield Fab and cleavage with pepsin can yield F (ab ') 2 fragment). It can be produced through genetic recombination technology.
  • proteolytic enzymes e.g., restriction digestion of the entire antibody with papain can yield Fab and cleavage with pepsin can yield F (ab ') 2 fragment. It can be produced through genetic recombination technology.
  • the previously defined CDR or light chain variable region and heavy chain variable region of the anti-c-Met antibody are immunoglobulins of all subtypes (eg, IgA, IgD, IgE, And (eg, light chain constant region and heavy chain constant region) derived from IgG (IgG1, IgG2, IgG3, IgG4), IgM, and the like.
  • flankinge region refers to a region included in the heavy chain of an antibody, which exists between CH1 and CH2 regions, and which functions to provide flexibility of the antigen binding site in the antibody.
  • the animal-derived IgG1 hinge When an animal-derived antibody undergoes chimerization, the animal-derived IgG1 hinge is replaced with a human IgG1 hinge, but the animal-derived IgG1 hinge is shorter than the human IgG1 hinge and has a disulfide bond between two heavy chains. Disulfide bonds are reduced from three to two, resulting in different rigidity of the hinges.
  • modification of the hinge region can increase the antigen binding efficiency of the humanized antibody. Deletion, addition or substitution of amino acids for modifying the amino acid sequence of the hinge region is well known to those skilled in the art.
  • the anti-c-Met antibody or antigen-binding fragment comprises a hinge region in which the amino acid sequence is modified by deletion, addition or substitution of one or more amino acids.
  • the antibody may comprise a hinge region having an amino acid sequence of SEQ ID NO: 100, SEQ ID NO: 101, SEQ ID NO: 102, SEQ ID NO: 103, or SEQ ID NO: 104, or a hinge region having an amino acid sequence of SEQ ID NO: 105 (unmodified human hinge). Area). More specifically, the hinge region may have an amino acid sequence of SEQ ID NO: 100 or SEQ ID NO: 101.
  • the anti-c-Met antibody may be a monoclonal antibody that specifically binds to an extracellular region of the c-Met protein produced in a hybridoma cell with accession number KCLRF-BP-00220. (See Korean Patent Publication No. 2011-0047698; which document is incorporated herein by reference).
  • the anti-c-Met antibody may include all of the antibodies defined in Korean Patent Publication No. 2011-0047698.
  • the light chain constant region and the heavy chain constant region except for the previously defined CDR region or the light chain variable region and the heavy chain variable region of the anti-c-Met antibody may be the light chain constant region and the heavy chain constant region of all subtypes of immunoglobulins.
  • the anti-c-Met antibody the anti-c-Met antibody
  • the amino acid sequence of SEQ ID NO: 62 (wherein the first to seventeenth amino acid sequences are signal peptides), the amino acid sequence of the 18th to 462th sequences of SEQ ID NO: 62, and the amino acid sequence of SEQ ID NO: 64 (from the first The 17th amino acid sequence is the signal peptide) or the 18th to 461th amino acid sequence of SEQ ID NO: 64, the amino acid sequence of SEQ ID NO: 66 (wherein the 1st to 17th amino acid sequences are signal peptide), And a heavy chain comprising an amino acid sequence selected from the group consisting of the 18th to 460th amino acid sequences of SEQ ID 66; And
  • the amino acid sequence of SEQ ID NO: 68 (the amino acid sequence of 1st to 20th among them is a signal peptide), the amino acid sequence of the 21st to 240th amino acids of SEQ ID NO: 68, and the amino acid sequence of SEQ ID NO: 70 (from 1st of these)
  • a light chain comprising an amino acid sequence selected from the group consisting of the amino acid sequence of the 20th amino acid sequence), the 21st to 240th amino acid sequence of SEQ ID 70, and the amino acid sequence of SEQ ID 108
  • the anti-c-Met antibody for example, the anti-c-Met antibody,
  • a heavy chain comprising the amino acid sequence of SEQ ID NO: 62 or the amino acid sequence of the 18th to 462th sequence of SEQ ID NO: 62 and a light chain comprising the amino acid sequence of SEQ ID NO: 68 or the amino acid sequence of the 21st to 240th amino acids of SEQ ID NO: 68;
  • Antibody comprising;
  • a heavy chain comprising the amino acid sequence of SEQ ID NO: 64 or the amino acid sequence of the 18th to 461th sequences of SEQ ID NO: 64 and a light chain comprising the amino acid sequence of SEQ ID NO: 68 or the amino acid sequence of the 21st to 240th amino acids of SEQ ID NO: 68;
  • Antibody comprising;
  • a heavy chain comprising the amino acid sequence of SEQ ID NO: 66 or the amino acid sequence of the 18th to 460th sequence of SEQ ID NO: 66 and a light chain comprising the amino acid sequence of SEQ ID NO: 68 or the amino acid sequence of the 21st to 240th amino acids of SEQ ID NO: 68;
  • Antibody comprising;
  • a heavy chain comprising the amino acid sequence of SEQ ID NO: 62 or the amino acid sequence of the 18th to 462th sequence of SEQ ID NO: 62 and a light chain comprising the amino acid sequence of SEQ ID NO: 70 or the amino acid sequence of the 21st to 240th amino acids of SEQ ID NO: 70;
  • Antibody comprising;
  • a heavy chain comprising the amino acid sequence of SEQ ID NO: 64 or the amino acid sequence of the 18th to 461th sequence of SEQ ID NO: 64 and a light chain comprising the amino acid sequence of SEQ ID NO: 70 or the amino acid sequence of the 21st to 240th amino acids of SEQ ID NO: 70;
  • Antibody comprising; or
  • a heavy chain comprising the amino acid sequence of SEQ ID NO: 66 or the amino acid sequence of the 18th to 460th sequence of SEQ ID NO: 66 and a light chain comprising the amino acid sequence of the amino acid sequence of SEQ ID NO: 70 or the 21st to 240th amino acid sequence of SEQ ID NO: 70; Containing antibody
  • An antibody comprising a heavy chain comprising the amino acid sequence of SEQ ID NO: 62 or the amino acid sequence of the 18th to 462th sequence of SEQ ID NO: 62 and a light chain comprising the amino acid sequence of SEQ ID NO: 108;
  • An antibody comprising a heavy chain comprising the amino acid sequence of SEQ ID NO: 64 or the amino acid sequence of the 18th to 461th sequences of SEQ ID NO: 64 and a light chain comprising the amino acid sequence of SEQ ID NO: 108;
  • An antibody comprising a heavy chain comprising the amino acid sequence of SEQ ID NO: 66 or the amino acid sequence of the 18th to 460th sequence of SEQ ID NO: 66 and a light chain comprising the amino acid sequence of SEQ ID NO: 108
  • the polypeptide having the amino acid sequence of SEQ ID NO: 70 is a light chain consisting of a human kappa constant region
  • the polypeptide having the amino acid sequence of SEQ ID NO: 68 is 36 times (kabat numbering) in the polypeptide having the amino acid sequence of SEQ ID NO: 70
  • histidine is a form of polypeptide substituted with tyrosine. Due to the substitution, the yield of the antibody according to one embodiment may be increased.
  • the polypeptide having the amino acid sequence of SEQ ID NO: 108 is located at position 27e by kabat numbering in the polypeptide having the 21st to 240th amino acid sequence except for the 1st to 20th signal peptides among the amino acid sequences of SEQ ID NO: 68 serine (Ser) of position 32 according to kabat numbering (in SEQ ID NO: 108; inside CDR-L1) is substituted with tryptophan (Trp), and because of this substitution, the activity of the antibody according to one embodiment (eg, binding affinity for c-Met, c-Met degrading activity and Akt phosphorylation inhibitory activity, etc.) may be further enhanced.
  • the activity of the antibody according to one embodiment eg, binding affinity for c-Met, c-Met degrading activity and Akt phosphorylation inhibitory activity, etc.
  • the anti-c-Met antibody may be an anti-c-Met antibody comprising a light chain complementarity determining region of SEQ ID NO: 106, a light chain variable region of SEQ ID NO: 107, or a light chain of SEQ ID NO: 108.
  • the c-Met inhibitor may be applied (administered) together with a pharmaceutically acceptable carrier, and the pharmaceutically acceptable carrier, which is commonly used in the formulation of drugs, includes lactose, dextrose, sucrose, sorbitol , Mannitol, starch, acacia rubber, calcium phosphate, alginate, gelatin, calcium silicate, microcrystalline cellulose, polyvinylpyrrolidone, cellulose, water, syrup, methyl cellulose, methylhydroxybenzoate, propylhydroxybenzoate , Talc, magnesium stearate, mineral oil and the like may be one or more selected from the group, but is not limited thereto.
  • the pharmaceutically acceptable carrier which is commonly used in the formulation of drugs, includes lactose, dextrose, sucrose, sorbitol , Mannitol, starch, acacia rubber, calcium phosphate, alginate, gelatin, calcium silicate, microcrystalline cellulose, polyvinylpyrrolidone, cellulose, water
  • the c-Met inhibitor further includes at least one selected from the group consisting of diluents, excipients, lubricants, wetting agents, sweeteners, flavoring agents, emulsifiers, suspending agents, preservatives, etc., which are commonly used in the manufacture of pharmaceutical compositions, in addition to the above components. can do.
  • the c-Met inhibitor may be administered orally or parenterally.
  • parenteral administration it can be administered by intravenous injection, subcutaneous injection, intramuscular injection, intraperitoneal injection, endothelial administration, topical administration, intranasal administration, pulmonary administration or rectal administration.
  • oral administration because proteins or peptides are digested, oral compositions should be formulated to coat the active agent or to protect it from degradation in the stomach.
  • the c-Met inhibitor may be administered by any device in which the active agent may migrate to the target cell.
  • pharmaceutically effective amount refers to an amount in which a drug can produce a pharmaceutically meaningful effect.
  • the pharmaceutically effective amount of a c-Met inhibitor for a single dose depends on factors such as the formulation method, mode of administration, patient's age, weight, sex, morbidity, food, time of administration, interval of administration, route of administration, rate of excretion and response to response. It can be prescribed in various ways.
  • the pharmaceutically effective amount of the c-Met inhibitor for single administration may range from 0.001 to 100 mg / kg, or from 0.02 to 10 mg / kg, but is not limited thereto.
  • Pharmaceutically effective amounts for single administration may be formulated into one formulation in unit dosage form, may be formulated in appropriate quantities, or may be prepared within a multi-dose container.
  • c-Met inhibitors can be used for the prevention and / or treatment of cancer and / or cancer metastasis.
  • the cancer may be associated with overexpression and / or abnormal activation of c-Met and may be solid or hematological cancer.
  • the cancer may be squamous cell carcinoma, small cell lung cancer, non-small cell lung cancer, lung adenocarcinoma, lung squamous cell carcinoma, peritoneal cancer, skin cancer, skin or intraocular melanoma, rectal cancer, anal muscle cancer, esophageal cancer, small intestine cancer, endocrine Adenocarcinoma, parathyroid cancer, adrenal cancer, soft tissue sarcoma, urethral cancer, chronic or acute leukemia, lymphocyte lymphoma, hepatocellular carcinoma, gastrointestinal cancer, gastric cancer, pancreatic cancer, glioblastoma, cervical cancer, ovarian cancer, liver cancer, bladder cancer, liver tumor, breast cancer, colon cancer , Colon cancer, endometrial or uterine cancer, salivary gland cancer, kidney cancer, prostate cancer, vulva cancer, thyroid cancer, head and neck cancer, brain cancer, osteosarcoma, etc.
  • cancers may be one or more selected from the group, but is not limited thereto.
  • Such cancers include primary cancer as well as metastatic cancer.
  • the cancer may be a cancer (eg, solid cancer such as gastric cancer, lung cancer, kidney cancer, etc.) resistant to existing c-Met inhibitors, such as anti-c-Met antibodies.
  • the cancer may be gastric cancer or gastric cancer resistant to c-Met inhibitors such as anti-c-Met antibodies.
  • the prophylactic and / or therapeutic effect of the cancer includes not only the effect of inhibiting the growth of cancer cells, but also the effect of inhibiting migration, invasion, metastasis and the like, thereby inhibiting the exacerbation of the cancer. .
  • 1 is a graph showing the relative cell viability (%) of anti-c-Met antibody against gastric cancer cell lines MKN45, SNU5, and Hs746T according to the concentration of anti-c-Met antibody (ug / ml).
  • FIG. 2 is a graph showing the relative cell viability (%) of anti-c-Met antibodies against gastric cancer cell lines NCI-N87, SNU668, MKN74, and NUGC4, depending on the concentration of anti-c-Met antibody (ug / ml).
  • FIG. 3 is a graph showing the relative cell viability (%) of crizotinib against gastric cancer cell lines MKN45, Hs746T, SNU668, and MKN74 according to the concentration of crizotinib (nM).
  • FIG. 4 is a graph showing the relative cell viability (%) of PHA665752 against gastric cancer cell lines MKN45, Hs746T, SNU668, and MKN74 according to the concentration (nM) of PHA665752.
  • FIG. 5 is a graph showing DKK1 gene expression levels in gastric cancer cell lines (“blue: efficacy group”: HS746T, MNK45, SNU5; “red: ineffective group”: MNK74, NUGC4, NCIN87, SNU688 in the figure).
  • FIG. 6 is a graph showing the expression levels of DKK1 genes of the reactive cell line (effective group) and the non-reactive cell line (ineffective group) with respect to the anti-c-Met antibody in the expression level results of FIG. 5.
  • Figure 7 is a graph showing the results of measuring the DKK1 gene expression level by RT-PCR in gastric cancer cell line.
  • FIG. 8 is a graph showing the results of measuring the DKK1 protein expression level in the gastric cancer cell line by ELISA.
  • Figure 9 is a graph showing the cancer cell proliferation inhibitory effect of the anti-c-Met antibody to DKK1 siRNA-treated gastric cancer patient-derived cells.
  • FIG. 10 is a graph showing the cancer cell proliferation inhibitory effect when the anti-c-Met antibody and the Wnt signaling inhibitor are administered in combination to the gastric cancer cell line induced anti-c-Met antibody resistance.
  • mice each had 100 ⁇ g of human c-Met / Fc fusion protein (R & D Systems) equivalent to a complete Freund's adjuvant.
  • human c-Met / Fc fusion protein R & D Systems
  • mice obtained with sufficient amounts of antibodies were selected, and the following cell fusion process was performed.
  • the obtained splenocytes 1x10 8 and myeloma cells (Sp2 / 0) 1x10 8 were mixed and centrifuged to precipitate the cells.
  • the centrifuged precipitate was slowly dispersed, treated with 45% (w / v) polyethylene glycol (PEG) (1 mL) contained in the culture medium (DMEM), maintained at 37 ° C. for 1 minute, and then culture medium. 1 ml (DMEM) was added. Thereafter, 10 ml of culture medium (DMEM) was added for 1 minute, left for 5 minutes in water at 37 ° C., and centrifuged again at 50 ml.
  • PEG polyethylene glycol
  • the cell precipitate was resuspended in a separation medium (HAT medium) at about 1 ⁇ 2 ⁇ 10 5 / ml, aliquoted in 96 ml well plates, and cultured in a 37 ° C. carbon dioxide incubator to prepare a hybridoma cell group.
  • HAT medium a separation medium
  • Human c-Met / Fc fusion protein and human Fc protein were used as antigens to select hybridoma cells that specifically react with c-Met protein among the hybridoma cell groups prepared in Reference Example 1.1.2. Screened through ELISA assay method.
  • hybridoma cell lines that do not bind to human Fc but secrete antibodies with high specificity only to human c-Met protein were repeatedly selected. Limiting dilution of the hybridoma cell line obtained through repeated screening yielded a final clone of one hybridoma cell line producing monoclonal antibody.
  • the final screened monoclonal antibody-producing hybridomas were deposited on October 6, 2009 with the Korea Cell Line Research Foundation, located in Yeongun-dong, Jongno-gu, Seoul, under the Treaty of Budapest, and received accession number KCLRF-BP-00220 (Korea See Publication 2011-0047698).
  • the hybridoma cells obtained in Reference Example 1.1.3 were cultured in serum-free medium, and monoclonal antibodies were produced and purified from the culture.
  • the hybridoma cells cultured in 50 ml of culture medium (DMEM) medium containing 10% (v / v) FBS were centrifuged, and the cell precipitates were washed two or more times with 20 ml PBS to remove FBS.
  • the cell precipitate was resuspended in 50 ml of culture medium (DMEM) medium, and then cultured in a 37 ° C. carbon dioxide incubator for 3 days.
  • the cells producing the antibody were removed by centrifugation, and the culture medium in which the antibodies were secreted was separated and stored at 4 ° C. or collected immediately and used for separation and purification of the antibody.
  • a protein aggregation filter (Amicon) was used. Purified antibody was stored by substituting the supernatant with PBS for use in subsequent examples.
  • mouse antibodies are highly likely to show immunogenicity when injected into humans for therapeutic purposes.
  • mutations related to antigen binding from the mouse antibody AbF46 produced in Reference Example 1.1.4 above may be solved.
  • a chimeric antibody chAbF46 was constructed in which the constant region except for the variable region was substituted with the sequence of the human IgG1 antibody.
  • the nucleotide sequence corresponding to the heavy chain is 'EcoRI-signal sequence-VH-NheI-CH-TGA-XhoI' (SEQ ID NO: 38), and the nucleotide sequence corresponding to the light chain is 'EcoRI-signal sequence-VL-BsiWI-CL-TGA'
  • SEQ ID NO: 39 Each gene was designed to be composed of -XhoI '(SEQ ID NO: 39).
  • the DNA fragment (SEQ ID NO: 38) having the nucleotide sequence corresponding to the heavy chain was added to the pOptiVEC TM -TOPO TA Cloning Kit included in the OptiCHO TM Antibody Express Kit (Cat no.
  • the constructed vectors were amplified using Qiagen Maxiprep kit (Cat no. 12662), respectively, and the temporary expression was Freestyle TM. This was done using the MAX 293 Expression System (invitrogen).
  • the cell line used was 293 F cells, and cultured by suspension culture using FreeStyle TM 293 Expression Medium as a medium. The cells were prepared at a concentration of 5x10 5 cells / ml one day before the temporary expression, and then after 24 hours, the cells were temporarily expressed when the number of cells reached 1x10 6 cells / ml.
  • the cultured cells were centrifuged to obtain 100 ml of supernatant, respectively, and purified using AKTA Prime (GE healthcare).
  • Protein A column (GE healthcare, 17-0405-03) was installed in AKTA Prime, and the culture solution was flowed at a flow rate of 5 ml / min, and then eluted with IgG elution buffer (Thermo Scientific, 21004).
  • the obtained eluate was exchanged with PBS buffer to finally purify the chimeric antibody AbF46 (hereinafter referred to as chAbF46).
  • VH gene of the mouse antibody AbF46 purified in Reference Example 1.2 above through Ig Blast (http://www.ncbi.nlm.nih.gov/igblast/)
  • Ig Blast http://www.ncbi.nlm.nih.gov/igblast/
  • CDR-H1, CDR-H2, CDR-H3 of mouse antibody AbF46 were defined as Kabat numbering
  • the CDR portion of mouse antibody AbF46 was defined as It was designed to be introduced into the framework of VH3-71.
  • amino acids 30 S ⁇ T
  • 48 V ⁇ L
  • 73 D ⁇ N
  • 78 T ⁇ L
  • H1 mutated the amino acids 83 R ⁇ K
  • 84 A ⁇ T
  • H4-heavy the framework sequence of human antibody was found. As a result, Kabat numbering was defined using the most stable VH3 subtype known to be similar to that of AbF46 antibody. CDR-H1, CDR-H2, CDR-H3 of the mouse antibody AbF46 were introduced. This established H4-heavy (SEQ ID NO: 42).
  • H1-light SEQ ID NO: 43
  • H2-light SEQ ID NO: 44
  • mouse antibody AbF46 via Ig Blast http://www.ncbi.nlm.nih.gov/igblast/
  • Ig Blast http://www.ncbi.nlm.nih.gov/igblast/
  • VK4-1 had 75% homology at the amino acid level
  • CDR-L1, CDR-L2, CDR-L3 of mouse antibody AbF46 were defined as Kabat numbering
  • the CDR portion of mouse antibody AbF46 was defined as It was designed to be introduced into the backbone of VK4-1.
  • H3-light SEQ ID NO: 45
  • Blast http://www.ncbi.nlm.nih.gov/igblast/
  • VK2-40 was selected in addition to VK4-1.
  • CDR-L1, CDR-L2, CDR-L3 of the mouse antibody AbF46 was defined as Kabat numbering, and the CDR of the mouse antibody AbF46 was determined.
  • the part was designed to be introduced into the backbone of VK4-1.
  • H3-light was constructed by back-mutating three amino acids 36 (Y ⁇ H), 46 (L ⁇ M), and 49 (Y ⁇ I).
  • H4-light For the design of H4-light (SEQ ID NO: 46), we found the framework sequences of human antibodies and found that CDR-L1 of mouse antibody AbF46, defined by Kabat numbering, using the most known Vk1 subtype, CDR-L2, CDR-L3 were introduced. At this time, H4-light was constructed by further back-mutation of three amino acids 36 (Y ⁇ H), 46 (L ⁇ M), 49 (Y ⁇ I).
  • the constructed vectors were amplified using Qiagen Maxiprep kit (Cat no. 12662), respectively, and the temporary expression was Freestyle TM. This was done using the MAX 293 Expression System (invitrogen).
  • the cell line used was 293 F cells, and cultured by suspension culture using FreeStyle TM 293 Expression Medium as a medium. The cells were prepared at a concentration of 5x10 5 cells / ml one day before the temporary expression, and then after 24 hours, the cells were temporarily expressed when the number of cells reached 1x10 6 cells / ml.
  • the cultured cells were centrifuged to take 100 ml of each supernatant, and purified using AKTA Prime (GE healthcare). Protein A column (GE healthcare, 17-0405-03) was installed in AKTA Prime, and the culture solution was flowed at a flow rate of 5 ml / min, and then eluted with IgG elution buffer (Thermo Scientific, 21004). This was exchanged with PBS buffer to finally purify the humanized antibody AbF46 (hereinafter referred to as huAbF46). Meanwhile, the heavy and light chain combinations of the humanized antibody huAbF46 used in the following examples are H4-heavy (SEQ ID NO: 42) and H4-light (SEQ ID NO: 46).
  • Genes for constructing the scFv of the huAbF46 antibody were designed using the heavy and light chain variable regions of the huAbF46 antibody.
  • Each heavy and light chain variable region was in the form of 'VH-linker-VL' and the linker was designed to have an amino acid sequence of 'GLGGLGGGGSGGGGSGGSSGVGS' (SEQ ID NO: 54).
  • the polynucleotide encoding the scFv of the huAbF46 antibody thus designed (SEQ ID NO: 55) was synthesized by Bioneer, and a vector for expressing it was shown in SEQ ID NO: 56.
  • CDRs Six complementarity determining regions (CDRs) were defined by 'Kabat numbering' from the mouse antibody AbF46 prepared above for affinity maturation of the huAbF46 antibody, and each CDR is shown in Table 1 below. .
  • CDR Amino acid sequence CDR-H1 DYYMS (SEQ ID NO: 1) CDR-H2 FIRNKANGYTTEYSASVKG (SEQ ID NO: 2) CDR-H3 DNWFAY (SEQ ID NO: 3) CDR-L1 KSSQSLLASGNQNNYLA (SEQ ID NO: 10) CDR-L2 WASTRVS (SEQ ID NO: 11) CDR-L3 QQSYSAPLT (SEQ ID NO: 12)
  • Primers were prepared as follows to introduce random sequences of antibody CDRs. Conventional random sequence introduction method using N codon to introduce the same ratio of bases (25% A, 25% G, 25% C, 25% T) to the site to be mutated, but in this example huAbF46 antibody To introduce a random base into the CDRs of the 85% of the first and second nucleotides of the wild-type nucleotides were preserved and 5% of the remaining three bases were introduced. In addition, primers were designed such that the third nucleotide was introduced equally (33% G, 33% C, 33% T).
  • Construction of the antibody library gene by random sequence introduction of CDRs was performed using primers prepared in the same manner as in Reference Example 1.5.1. Using the polynucleotide containing the scFv of the huAbF46 antibody as a template, two PCR fragments were prepared, and through the overlap extension PCR method, the scFv library of the huAbF46 antibody mutated only the desired CDRs, respectively. Libraries were constructed to target each of the six CDRs prepared by securing the gene.
  • the prepared library was found to bind the wild type and c-Met of each library, each library showed a tendency to lower the binding capacity to c-Met than the wild type, but the binding capacity to some c-Met Remaining mutations were identified.
  • the gene sequence of scFv was analyzed from each individual clone.
  • the obtained gene sequences are shown in Table 2, respectively, and these were converted into IgG forms.
  • four antibodies produced from L3-1, L3-2, L3-3, L3-5 were selected for subsequent experiments.
  • the polynucleotides encoding the heavy chains of the four selected antibodies consist of 'EcoRI-signal sequence-VH-NheI-CH-XhoI' (SEQ ID NO: 38), and the heavy chains do not alter the amino acid of the antibody after affinity maturation.
  • the heavy chain of huAbF46 antibody was used as it was.
  • the hinge region was replaced with the U6-HC7 hinge (SEQ ID NO: 57), not the hinge of human IgG1.
  • the light chains were designed to be composed of 'EcoRI-signal sequence-VL-BsiWI-CL-XhoI' to synthesize genes, and the polynucleotides encoding the light chain variable regions of the four antibodies selected after affinity maturation (sequences). No. 58 to SEQ ID NO: 61) were synthesized by BIONIA. Subsequently, the DNA fragment (SEQ ID NO: 38) having the nucleotide sequence corresponding to the heavy chain was added to the pOptiVEC TM -TOPO TA Cloning Kit included in the OptiCHO TM Antibody Express Kit (Cat no.
  • pcDNA TM 3.3 -TOPO DNA fragment having a nucleotide sequence corresponding to the light chain (TA fragment containing L3-1 derived CDR-L3: SEQ ID NO: 58, including CDR-L3 derived from L3-2) in TA Cloning Kit (Cat no. 8300-01) DNA fragment comprising SEQ ID NO: 59, L3-3-derived CDR-L3 DNA fragment: SEQ ID NO: 60, L3-5-derived CDR-L3 DNA fragment: SEQ ID NO: 61) by EcoRI (NEB, R0101S) By cloning with the XhoI (NEB, R0146S) restriction enzyme, a vector was constructed for expression of affinity matured antibodies.
  • the constructed vectors were amplified using Qiagen Maxiprep kit (Cat no. 12662), respectively, and the temporary expression was Freestyle TM. This was done using the MAX 293 Expression System (invitrogen).
  • the cell line used was 293 F cells, and cultured by suspension culture using FreeStyle TM 293 Expression Medium as a medium. The cells were prepared at a concentration of 5x10 5 cells / ml one day before the temporary expression, and then after 24 hours, the cells were temporarily expressed when the number of cells reached 1x10 6 cells / ml.
  • the cultured cells were centrifuged to take 100 ml of each supernatant, and purified using AKTA Prime (GE healthcare). Protein A column (GE healthcare, 17-0405-03) was installed in AKTA Prime, and the culture solution was flowed at a flow rate of 5 ml / min, and then eluted with IgG elution buffer (Thermo Scientific, 21004). It was exchanged with PBS buffer to finally produce four types of antibodies (hereinafter, huAbF46-H4-A1 (from L3-1), huAbF46-H4-A2 (from L3-2), huAbF46-H4-A3 (L3-). 3), and huAbF46-H4-A5 (named from L3-5)).
  • huAbF46-H4-A1 from L3-1
  • huAbF46-H4-A2 from L3-2
  • huAbF46-H4-A3 L3-
  • the hinge region of huAbF46-H4-A1 which was determined to have the highest binding affinity with c-Met and the lowest degree of Akt phosphorylation and c-Met differentiation.
  • an antibody was prepared in which the constant region and the hinge region were substituted.
  • a polynucleotide encoding the polypeptide consisting of the heavy chain variable region of huAbF46-H4-A1, the U6-HC7 hinge and the IgG1 constant region of human (SEQ ID NO: 62), huAbF46- Polynucleotide encoding the polypeptide consisting of the heavy chain variable region of H4-A1, the human IgG2 hinge and the human IgG1 constant region (SEQ ID NO: 64) (SEQ ID NO: 65), the heavy chain variable region of huAbF46-H4-A1, human IgG2 Polynucleotide encoding the polypeptide consisting of a hinge and a human IgG2 constant region (SEQ ID NO: 66) (SEQ ID NO: 67), a light chain variable region of huAbF46-H4-A1 where histidine 36 is substituted with tyrosine and a human kappa constant region
  • the DNA fragment having the nucleotide sequence corresponding to the heavy chain was added to the pOptiVEC TM -TOPO TA Cloning Kit included in the OptiCHO TM Antibody Express Kit (Cat no. 12762-019) of Invitrogen, pcDNA TM 3.3-TOPO
  • a DNA fragment having a nucleotide sequence corresponding to the light chain was inserted into a TA Cloning Kit (Cat no. 8300-01) to construct a vector for expression of the antibody.
  • the constructed vectors were amplified using Qiagen Maxiprep kit (Cat no. 12662), respectively, and the temporary expression was Freestyle TM. This was done using the MAX 293 Expression System (invitrogen).
  • the cell line used was 293 F cells, and cultured by suspension culture using FreeStyle TM 293 Expression Medium as a medium. The cells were prepared at a concentration of 5x10 5 cells / ml one day before the temporary expression, and after 24 hours, the cells were temporarily expressed when the number of cells reached 1x10 6 cells / ml.
  • the cultured cells were centrifuged to take 100 ml of each supernatant, and purified using AKTA Prime (GE healthcare). Protein A column (GE healthcare, 17-0405-03) was installed in AKTA Prime, and the culture solution was flowed at a flow rate of 5 ml / min, and then eluted with IgG elution buffer (Thermo Scientific, 21004). Finally, three antibodies (huAbF46-H4-A1 (U6-HC7), huAbF46-H4-A1 (IgG2 hinge), huAbF46-H4-A1 (IgG2 Fc)) were purified.
  • huAbF46-H4-A1 (IgG2 Fc) was selected for the anti-c-Met antibody according to the present invention and used in the following examples, and for convenience, the antibody was named L3-1Y / IgG2.
  • MKN45 JCRB0254, JCRB
  • SNU5 CRL-5973, ATCC
  • Hs746T HTB-135, ATCC
  • MKN74 JCRB0255, JCRB
  • NUGC4 JCRB0834, JCRB
  • NCI-N87 CL-5822, ATCC
  • SNU668 (00668, KCLB) were dispensed into a 96-well plate in 5000 quantities each, and after 24 hours antibody (L3-1Y / IgG2) was added to 0 ug (microgram) / ml, 0.00064 ug / ml, 0.0032 ug / ml, 0.016 ug / ml, 0.08 ug / ml, 0.4 ug / ml, or 2 ug / ml (MKN45, SNU5, and Hs746T), 0 ug / ml, 0.08 ug / m
  • FIG. 1 MKN45, SNU5, and Hs746T
  • FIG. 2 NCI-N87, SNU668, NUGC4, and MKN74
  • L3-1Y / IgG2 inhibits cancer cell growth by MKN45, SNU5, and Hs746T cell lines, whereas MKN74, NUGC4, NCI-N87, and SNU668 cell lines do not exhibit this effect. You can check it. Therefore, gastric cancer cell lines MKN45, SNU5 and Hs746T were classified into L3-1Y / IgG2 efficacy group, MKN74, NUGC4, NCI-N87, and SNU668 into L3-1Y / IgG2 ineffective group.
  • crizotinib (Clezotinib; Selleckchem, S1068) and PHA-665752 (Selleckchem, S1070) were used to determine the anticancer efficacy It was.
  • MKN45 JCRB0254, JCRB
  • Hs746T Hs746T
  • MKN74 JCRB0255, JCRB
  • SNU668 (00668, KCLB) were each dispensed in a 96-well plate in 5000 quantities, and after 24 hours crizotinib or PHA665752 was treated in amounts of 0 nM, 8 nM, 16 nM, 31 nM, 63 nM, 125 nM, 250 nM, 500 nM, 1000 nM, or 2000 nM. 72 hours after the antibody treatment, cell number change was measured by CellTiter Glo assay (Promega, G7573).
  • DKK1 gene expression levels of the 38 gastric cancer cell lines are shown in FIG. 5 (blue: L3-1Y / IgG2 efficacy group; red: L3-1Y / IgG2 ineffective group).
  • the gene expression level shown in FIG. 5 is a value measured using the Affymetrix U133plus2.0 platform, and the y axis represents the average value of DKK1 gene expression levels of 38 cell lines obtained through a Gene Expression Omnibus (GEO) database.
  • GEO Gene Expression Omnibus
  • the expression level of the DKK1 gene was high in the L3-1Y / IgG2 efficacy group, and it was verified by RT-PCR. DKK1 gene expression level was measured by measuring mRNA level, and the expression level was measured using the following primers.
  • DKK1 gene expression levels were measured for L3-1Y / IgG2 agonist MKN45, Hs746T, SNU and L3-1Y / IgG2 ineffective group NUGC4, NCIN87.
  • QPCR for the expression level measurement consists of cell seeding, RNA extraction, cDNA synthesis, RT-PCR reaction. First, to extract RNA, each cell was aliquoted at a concentration of 10 6 cells / plate in a 60 mm dish and incubated for 2 days. After 2 days, RNA was extracted using RNeasy Mini kit (Qiagen, # 74106), and extracted to RNase free DW 50 ul (microliter) during RNA extraction.
  • the primer sequence is as follows.
  • Step 1 95, 10 min; Step 2 (45 cycles): Step 2-1: 95 ° C., 10 sec; Step 2-2: 60, 20 sec; Step 2-3: 72, 20 sec; Step 3: 95, 5 sec; Step 4: 65, 1 min; Step 5: 95, continuous (every 5); Step 6: 40, 10 sec.
  • the expression level of the DKK1 protein was high in the anti-c-Met antibody potency group by ELISA (R & D, DY1906).
  • DKK1 protein expression levels were measured for anti-c-Met antibody potency group MKN45, Hs746T and ineffective group SNU668, NUGC4. 250000 gastric cancer cells were dispensed in a 60 mm dish and incubated for 4 days. After 4 days, the culture solution was filtered with a 2 um filter, followed by ELISA. At this time, the number of remaining cells was measured to calculate DKK1 expression according to unit cells. As shown in FIG. 8, DKK1 expression was high in the anti-c-Met antibody potency group, and DKK1 expression was low in the ineffective group. It can be seen that it is consistent with the gene expression of Example 4, it can be seen that the expression of DKK1 can be measured not only by the gene but also by the protein.
  • DKK1 siRNA (ThermoFisher, L-003843-01-0005) was used to control DKK1 gene expression levels, and siGENOME Non-Targeting siRNA Pool # 2 (ThermoFisher, D-001206-14-20) was used as a control.
  • RNAiMAX in Opti-MEM in A tube with 0.3 ul RNAiMax (transfection reagent, 13778-150, Invitrogen) diluted with Opti-MEM (GIBCO) in 96 well plate and final concentration of 20 nM.
  • Opti-MEM Opti-MEM
  • the siRNA was diluted in Opti-MEM, the solution of the B tube was mixed with the A tube, incubated for 5 minutes, and incubated at room temperature for 15 minutes.
  • the total volume of the diluted RNAiMax and siRNA was 25 ul.
  • 80 ul of the cells diluted with RPMI1640 medium (GIBCO) containing 10% FBS were seeded into 5000 wells of gastric cancer patient-derived cells per 96 wells.
  • the cultured cells were treated with L3-1Y / IgG2 antibodies at concentrations of 0.0, 4.0, 20.0 and 100.0 ug / ml.
  • DKK1 is a Wnt antagonist
  • Wnt signaling when DKK1 expression is high, Wnt signaling is suppressed.
  • Wnt signaling may be activated by decreasing DKK1 expression.
  • Wnt signaling may be one cause when resistance to anti-c-Met antibodies is induced.
  • MKN45 gastric cancer cell line that is resistant to L3-1Y / IgG2 antibody.
  • the procedure for the production of resistance-resistant MKN45 gastric cancer cell line was as follows: MKN45 cells (JCRB, JCRB0254) were treated with L3-1Y antibody for more than 3 months with increasing throughput. Throughput of L3-1Y / IgG2 antibody was increased from the initial treatment concentration of 1 ug / ml to 10 ug / ml until resistance appeared.
  • MKN45 gastric cancer cells obtained resistance to the L3-1Y / IgG2 antibody obtained were seeded in 96 wells so that 5000 cells per well. After 24 hours, the cells were treated with L3-1Y / IgG2 antibody or co-treated with L3-1Y / IgG2 antibody with XAV939. Since XAV939 is ineffective in MKN45 gastric cancer cells, it was fixed at 10 uM (micromole), the highest concentration used in general, and various concentrations (0, 0.08, 0.40, 2.00, and 10.00 ug /) for L3-1Y / IgG2 antibodies. ml). 72 hours after the antibody treatment, cell number change was measured by CellTiter Glo assay (Promega, G7573).
  • the obtained result is shown in FIG. As shown in FIG. 10, when only L3-1Y / IgG2 antibody was treated (- ⁇ -), no cell proliferation inhibitory effect was observed. Thus, the obtained MKN45 gastric cancer cells were resistant to L3-1Y / IgG2 antibody. It can be confirmed that obtained. When the L3-1Y / IgG2 resistance obtained MKN45 gastric cancer cells were treated with the L3-1Y / IgG2 antibody together with the Wnt inhibitor XAV939 (- ⁇ -), a significant cell proliferation inhibitory effect was observed. These results show that the anti-c-Met antibody can be reduced or overcome by co-administration with the anti-c-Met antibody.

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Immunology (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Molecular Biology (AREA)
  • Medicinal Chemistry (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Microbiology (AREA)
  • Biochemistry (AREA)
  • Oncology (AREA)
  • Genetics & Genomics (AREA)
  • Biomedical Technology (AREA)
  • Analytical Chemistry (AREA)
  • Hematology (AREA)
  • Zoology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Urology & Nephrology (AREA)
  • Physics & Mathematics (AREA)
  • Wood Science & Technology (AREA)
  • Biophysics (AREA)
  • Biotechnology (AREA)
  • Pathology (AREA)
  • Hospice & Palliative Care (AREA)
  • Mycology (AREA)
  • General Physics & Mathematics (AREA)
  • Food Science & Technology (AREA)
  • General Engineering & Computer Science (AREA)
  • Cell Biology (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Epidemiology (AREA)
  • Animal Behavior & Ethology (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)

Abstract

Provided are: a biomarker DKK1 for predicting efficacy of a c-Met inhibitor; and a composition for predicting efficacy of a C-Met inhibitor and/or selecting a subject to which the c-Met inhibitor is applied, the composition containing a material for detecting DKK1.

Description

C-MET 저해제의 효능 예측을 위한 바이오마커 DKKBiomarker DKK for Predicting Efficacy of C-MET Inhibitor
c-Met 저해제의 효능 예측을 위한 바이오마커 DKK (Dickkopf-related protein) 및 DKK의 검출 물질을 포함하는 c-Met 저해제의 효능 예측 및/또는 c-Met 저해제의 적용 대상 선별을 위한 조성물이 제공된다.Provided are compositions for predicting the efficacy of a c-Met inhibitor comprising biomarkers DKK (Dickkopf-related protein) for detecting the efficacy of a c-Met inhibitor and / or for selecting a subject for application of a c-Met inhibitor. .
바이오마커(Biomarker)란 외부적인 영향으로 인해 생명체 내부에서 유발된 변화를 알아낼 수 있는 지표를 의미하며, 암, 뇌졸중, 치매 등 각종 질병을 진단하거나 특정 치료제의 효능을 예측하거나 모니터링하기 위한 용도로 연구가 활발해 지고 있다. 약물 개발과 관련한 바이오마커로는 약물의 생체 내 작용여부를 확인하기 위한 효능 검정 마커 (Pharmacodynamic marker; PD 마커), 생체 내 투여이전에 약물의 반응성을 미리 예측하여 투여할 수 있는 효능 예측 마커(Predictive marker) 등이 있다. 이러한 marker의 활용은 약물의 임상전략을 수립하는데 도움이 되는데, 가령 약물의 작용을 통해 효능이 예상되는 효능 예측 마커의 경우에는 환자 선별 과정에 활용하여 보다 효과적인 약물 치료가 가능하게 하며, 효능 검증 마커의 경우에는 약물이 개별 환자에서 잘 작용하고 있는지 여부 및/또는 저항성 획득 여부 등을 모니터링하여 보다 효과적인 치료 전략을 수립할 수 있도록 한다. 또한, 효능 예측 마커가 없는 경우라도, 효능 검정 마커가 존재한다면 약물 치료에 있어서 개별 환자의 약물에 대한 반응을 좀 더 초기에 모니터링 가능하기 때문에, 약물의 효능이 나타나는 군과 그렇지 않은 군의 조기 선별을 가능하게 하여, 결론적으로 보다 효과적이고 성공적인 약물 치료가 가능하게 한다. 또한, 효과 검증 마커는 투여농도에 따른 약물 반응성 정도를 모니터링 하여 약물의 적정 투여량 산정의 지표로도 이용 가능하다.Biomarker is an indicator that can identify changes caused inside the living body due to external influences, and is used to diagnose various diseases such as cancer, stroke, and dementia, or to predict or monitor the efficacy of certain therapeutic agents. Is getting active. Biomarkers related to drug development include pharmacodynamic markers (PD markers) for confirming the in vivo activity of drugs, and predictive efficacy markers for predicting drug reactivity prior to in vivo administration. markers). The use of these markers helps to establish the clinical strategy of the drug. For example, the efficacy predictive markers, which are expected to be effective through the action of the drug, can be used in the patient selection process to enable more effective drug treatment. In this case, more effective treatment strategies can be established by monitoring whether the drug is working well in individual patients and / or whether resistance is achieved. In addition, even in the absence of efficacy predictive markers, the presence of efficacy assay markers allows for early monitoring of individual patient responses to drugs in drug treatment, so that early screening of groups with and without drug efficacy is indicated. To enable a more effective and successful drug treatment. In addition, the effect verification marker can be used as an index for estimating the appropriate dose of drug by monitoring the degree of drug reactivity according to the concentration of administration.
한편, 암은 현재까지 주요 사망원인중의 하나이다. 의료기술의 발달로 암의 치료 기술에 눈에 뛰는 변화가 오고 있지만, 5년 생존률 수치는 지난 20년 동안 10%정도 향상에 그쳤을 뿐이다. 이는 암의 급속한 성장, 전이 등의 특성으로 적정시기의 진단과 치료가 어렵기 때문이라고 할 수 있다. 적절한 바이오마커를 암 치료에 도입함으로써, 암의 특성을 파악하여 적절한 치료제를 적기에 사용할 수 있는 기회를 증대시켜 암 치료의 성공률을 크게 높일 수 있다. 가령, 동일한 폐암 환자라도 폐암 분류별, 유전자별, 분비하는 단백질별 특성이 상이하고 이에 따른 적합한 치료제도 상이하다. 따라서 특정 치료제를 사용하는 화학요법에 있어서, 상기 치료제에 상응하는 바이오마커가 존재한다면, 시행착오를 줄이고 성공 확률을 보다 높일 수 있다. 이러한 취지로 항암 치료제의 효능 예측 또는 검정을 위한 바이오마커 탐색이 매우 중요하며, 적합한 바이오마커가 성공적으로 도출된다면, 항암제의 효용과 가치 및 이를 사용하는 치료의 성공률을 크게 상승시킬 수 있을 것이다.Cancer is one of the leading causes of death to date. Advances in medical technology are bringing notable changes in cancer treatment technology, but the five-year survival rate has only improved by 10% over the past 20 years. This is because the rapid growth and metastasis of cancer is difficult to diagnose and treat at the proper time. By incorporating appropriate biomarkers into cancer treatments, the success of cancer treatments can be greatly increased by increasing the chance of identifying the characteristics of the cancer and using the appropriate treatment in a timely manner. For example, even in the same lung cancer patients, the characteristics of lung cancer classification, gene, and secreted protein are different, and accordingly, appropriate treatment is also different. Therefore, in chemotherapy using a specific therapeutic agent, if a biomarker corresponding to the therapeutic agent is present, trial and error can be reduced and the probability of success can be increased. For this purpose, the search for biomarkers for predicting or testing efficacy of anticancer drugs is very important, and if a suitable biomarker is successfully derived, the efficacy and value of anticancer drugs and the success rate of treatment using the same may be greatly increased.
한편, c-Met은 간세포 성장 인자 (hepatocyte growth factor, HGF)의 수용체이며, HGF는 c-Met 수용체 티로신 키나제의 세포외 부위에 결합하여 다양한 정상세포와 종양세포에서 분열, 운동, 형태발생, 혈관형성을 유발하는 사이토카인의 일종이다. c-Met은 세포 표면에 존재하는 대표적인 수용체 티로신 키나제(receptor tyrosine kinase)로, 그 자체가 암유발 유전자이며, 때로는 리간드인 HGF와 상관 없이도 암발생, 암전이, 암세포 이동, 암세포 침습, 신생혈관 생성 등과 같은 종양과 관련된 여러 가지 기작에 관여하기 때문에 최근 항암 치료의 타겟으로 주목받는 단백질이며, c-Met의 작용을 저해하는 항체 등의 표적 치료제의 개발이 진행되고 있다. Meanwhile, c-Met is a receptor for hepatocyte growth factor (HGF), and HGF binds to the extracellular site of c-Met receptor tyrosine kinase, resulting in division, movement, morphogenesis, and blood vessels in various normal and tumor cells. It is a type of cytokine that causes formation. c-Met is a representative receptor tyrosine kinase on the surface of the cell, which itself is a cancer-causing gene and sometimes cancer development, cancer metastasis, cancer cell migration, cancer cell invasion, neovascularization, regardless of the ligand HGF. Since it is involved in various mechanisms related to tumors, etc., it is a protein recently attracting attention as a target of anticancer treatment, and development of a target therapeutic agent such as an antibody that inhibits the action of c-Met is in progress.
이와 같이 개발된 c-Met 표적 치료제를 이용한 치료의 효능을 보다 증진시키고 성공 가능성을 높이기 위하여, 상기 치료제의 효능을 예측 또는 검정하여 상기 치료제의 적용이 적합한 환자의 선별하여 보다 효과적인 치료 전략을 수립하는데 적용 가능한 바이오마커의 개발이 요구된다.In order to further enhance the efficacy of the treatment with the developed c-Met targeted therapeutic agent and increase the probability of success, the efficacy of the therapeutic agent is predicted or assayed to select patients who are suitable for application of the therapeutic agent to establish a more effective treatment strategy. There is a need for the development of applicable biomarkers.
일 예는 DKK 단백질 (Dickkopf-related protein) 및 이들을 암호화하는 유전자로 이루어진 군에서 선택된 1종 이상을 포함하는 c-Met 저해제의 효능 예측 및/또는 c-Met 저해제의 적용 대상 선별 및/또는 c-Met 저해제 투여 후의 효능 모니터링을 위한 바이오마커를 제공한다.One example is to predict the efficacy of a c-Met inhibitor comprising one or more selected from the group consisting of a DKK protein (Dickkopf-related protein) and genes encoding them and / or to select and / or apply c-Met inhibitors. Biomarkers for efficacy monitoring following Met inhibitor administration are provided.
다른 예는 DKK 단백질 및 이들을 암호화하는 유전자로 이루어진 군에서 선택된 1종 이상의 c-Met 저해제의 효능 예측 및/또는 c-Met 저해제의 적용 대상 선별 및/또는 c-Met 저해제 투여 후의 효능 모니터링에 사용하기 위한 용도를 제공한다.Another example is for use in predicting the efficacy of one or more c-Met inhibitors selected from the group consisting of DKK proteins and genes encoding them and / or selecting subjects for application of c-Met inhibitors and / or monitoring efficacy after administration of c-Met inhibitors. Provides a use for
다른 예는 DKK 단백질 및 이들을 암호화하는 유전자로 이루어진 군에서 선택된 1종 이상과 상호작용하는 물질을 포함하는 c-Met 저해제의 효능 예측 및/또는 c-Met 저해제의 적용 대상 선별 및/또는 c-Met 저해제 투여 후의 효능 모니터링을 위한 조성물, 및 키트를 제공한다.Other examples include predicting the efficacy of c-Met inhibitors and / or screening subjects for c-Met inhibitors and / or c-Met comprising a substance that interacts with one or more selected from the group consisting of DKK proteins and genes encoding them. Compositions, and kits, for monitoring efficacy after administration of an inhibitor are provided.
다른 예는 DKK 단백질 및 이들을 암호화하는 유전자로 이루어진 군에서 선택된 1종 이상과 상호작용하는 물질의 c-Met 저해제의 효능 예측 및/또는 c-Met 저해제의 적용 대상 선별 및/또는 c-Met 저해제 투여 후의 효능 모니터링에 사용하기 위한 용도를 제공한다.Other examples include predicting the efficacy of a c-Met inhibitor of a substance interacting with one or more selected from the group consisting of DKK proteins and genes encoding them and / or screening for and / or administering a c-Met inhibitor. Provides use for use in later efficacy monitoring.
다른 예는 생물 시료 내의 DKK 단백질 및 이들을 암호화하는 유전자로 이루어진 군에서 선택된 1종 이상의 존재 여부 및/또는 수준을 측정하는 단계를 포함하는, c-Met 저해제의 효능 예측 방법 및/또는 c-Met 저해제의 적용 대상 선별 방법 및/또는 c-Met 저해제 투여 후의 효능 모니터링 방법, 또는 c-Met 저해제의 효능 예측 및/또는 c-Met 저해제의 적용 대상 선별 및/또는 c-Met 저해제 투여 후의 효능 모니터링을 위한 정보를 제공하는 방법을 제공한다. Another example includes measuring the presence and / or level of one or more selected from the group consisting of DKK proteins and genes encoding them in a biological sample, and / or c-Met inhibitors. Screening methods for applying and / or monitoring efficacy after administration of c-Met inhibitors, or predicting efficacy of c-Met inhibitors and / or screening for application of c-Met inhibitors and / or monitoring efficacy after administration of c-Met inhibitors Provide a way to provide information.
다른 예는 c-Met 저해제 및 Wnt 신호화 저해제를 포함하는 암의 예방 또는 치료용 조성물을 제공한다. 다른 예는 c-Met 저해제 및 Wnt 신호화 저해제를 포함하는 약학 조성물의 암의 예방 또는 치료, 또는 암의 예방 또는 치료용 약학 조성물의 제조를 위한 용도를 제공한다. 상기 암은 c-Met 저해제에 대한 저항성을 갖는 암일 수 있다. Another example provides a composition for the prevention or treatment of cancer comprising a c-Met inhibitor and a Wnt signaling inhibitor. Another example provides the use of a pharmaceutical composition comprising a c-Met inhibitor and a Wnt signaling inhibitor for the prevention or treatment of cancer, or for the manufacture of a pharmaceutical composition for the prevention or treatment of cancer. The cancer may be a cancer having resistance to c-Met inhibitors.
다른 예는 상기 선별된 환자에게 c-Met 저해제를 투여하는 단계를 포함하는, 암의 에방 또는 치료 방법을 제공한다. Another example provides a method for the prevention or treatment of cancer comprising administering a c-Met inhibitor to the selected patient.
다른 예는 c-Met 저해제 및 Wnt 신호화 저해제를 투여하는 단계를 포함하는, 암의 예방 또는 치료 방법을 제공한다. 상기 암은 c-Met 저해제에 대한 저항성을 갖는 암일 수 있다. Another example provides a method of preventing or treating cancer, comprising administering a c-Met inhibitor and a Wnt signaling inhibitor. The cancer may be a cancer having resistance to c-Met inhibitors.
다른 예는 c-Met 저해제 및 Wnt 저해제를 포함하는 c-Met 저해제에 대한 저항성 저감용 약학 조성물을 제공한다. 다른 예는 c-Met 저해제 및 Wnt 저해제를 포함하는 약학 조성물의 c-Met 저해제에 대한 저항성 저감에 사용하기 위한 용도를 제공한다. 다른 예는 c-Met 저해제 및 Wnt 저해제를 투여하는 단계를 포함하는, c-Met 저해제에 대한 저항성 저감 방법을 제공한다.Another example provides a pharmaceutical composition for reducing resistance to a c-Met inhibitor including a c-Met inhibitor and a Wnt inhibitor. Another example provides the use of the pharmaceutical composition comprising a c-Met inhibitor and a Wnt inhibitor for use in reducing resistance to a c-Met inhibitor. Another example provides a method of reducing resistance to a c-Met inhibitor, comprising administering a c-Met inhibitor and a Wnt inhibitor.
c-Met 저해제의 효능을 예측할 수 있는 마커로서 DKK 단백질 (Dickkopf-related protein, 예컨대 DKK1) 및/또는 이를 암호화하는 유전자의 용도가 제공된다. 항 c-Met 항체 등의 c-Met 저해제에 대한 반응성이 우수한 환자, 즉 c-Met 저해제의 효능이 잘 발휘되는 환자의 경우, c-Met이 발현되고 DKK 단백질 (예컨대, DKK1) 수준 및/또는 이를 암호화하는 유전자의 발현 수준이 높다는 것을 확인하였다. 이와 같은 DKK (예컨대, DKK1)의 수준은 암호화 유전자 수준뿐 아니라 혈청으로 분비되는 단백질 수준에서도 측정 가능하다. DKK proteins (Dickkopf-related proteins such as DKK1) and / or genes encoding them are provided as markers that can predict the efficacy of c-Met inhibitors. Patients who are highly responsive to c-Met inhibitors, such as anti-c-Met antibodies, i.e. patients who are well efficacious of c-Met inhibitors, express c-Met and express DKK protein (eg, DKK1) levels and / or It was confirmed that the expression level of the gene encoding this is high. Such levels of DKK (eg, DKK1) can be measured not only at the level of coding genes but also at the level of protein secreted into the serum.
일 예에서, 항 c-Met 항체가 작용하는 위암 세포의 경우 DKK1 양이 증가되어 있음을 확인하였으며, DKK1 양이 높고 항 c-Met 항체 효능이 존재하는 위암 세포주에 DKK1 양을 siRNA를 통해 낮추어 주면 항 c-Met 항체 효능이 감소됨을 보았다. 이와 같이 DKK 단백질 수준 또는 유전자 발현 수준이 항 c-Met 항체 효능에 영향을 미침을 확인하여, DKK1의 c-Met 저해제 효능 마커로서의 적용 가능성을 확인하였다.In one example, it was confirmed that the amount of DKK1 is increased in gastric cancer cells to which the anti-c-Met antibody acts, and if the amount of DKK1 is lowered through siRNA in gastric cancer cell lines with high DKK1 and anti-c-Met antibody efficacy It has been shown that anti-c-Met antibody efficacy is reduced. As such, it was confirmed that DKK protein level or gene expression level affected anti-c-Met antibody potency, thereby confirming the applicability of DKK1 as a c-Met inhibitor potency marker.
이에, DKK 단백질 및 이들을 암호화하는 유전자로 이루어진 군에서 선택된 1종 이상의 c-Met 저해제의 효능을 미리 예측하거나, 및/또는 c-Met 저해제의 적용이 적절한 환자를 선별하거나, 및/또는 c-Met 저해제 투여 후의 효능을 모니터링하기 위한 마커로서의 용도가 제공된다.Thus, predicting the efficacy of one or more c-Met inhibitors selected from the group consisting of DKK proteins and genes encoding them, and / or selecting patients for whom the application of c-Met inhibitors is appropriate, and / or c-Met Use is provided as a marker for monitoring efficacy after administration of an inhibitor.
본 명세서에서, 상기 c-Met 저해제의 효능은 c-Met 저해제의 c-Met 억제 (c-Met의 세포내 이동 및/또는 분해 등) 효과, c-Met 관련 질병, 예컨대 암의 예방, 개선, 경감, 및/또는 치료 효과 등을 의미하는 것으로, 암의 경우, 암세포 또는 암조직의 감소, 암세포 또는 암조직의 사멸, 암전이와 관련된 암세포의 이동 및/또는 침투의 억제 등의 효과를 의미할 수 있다. In the present specification, the efficacy of the c-Met inhibitors includes the effects of c-Met inhibition (such as intracellular migration and / or degradation of c-Met) of c-Met inhibitors, prevention, improvement of c-Met related diseases such as cancer, Means to alleviate, and / or therapeutic effects, and in the case of cancer, may mean effects such as reduction of cancer cells or cancer tissues, death of cancer cells or cancer tissues, inhibition of migration and / or penetration of cancer cells associated with cancer metastasis. Can be.
본 명세서에서, 'c-Met 저해제 투여 후의 효능 모니터링'이라 함은 c-Met 저해제가 투여된 환자에서 소망하는 효능, 예컨대, c-Met 억제 (c-Met의 세포내 이동 및/또는 분해 등) 효능, c-Met 관련 질병, 예컨대 암의 예방, 개선, 경감, 및/또는 치료 효능 (예컨대, 암의 경우, 암세포 또는 암조직의 감소, 암세포 또는 암조직의 사멸, 암전이와 관련된 암세포의 이동 및/또는 침투의 억제 등의 효능) 등을 발휘하는지 여부 및/또는 투여된 c-Met 저해제에 대한 저항성 발생 여부를 검정(또는 확인)하는 것을 의미할 수 있다.As used herein, 'efficacy monitoring after administration of a c-Met inhibitor' refers to a desired efficacy in a patient administered a c-Met inhibitor, such as c-Met inhibition (such as intracellular migration and / or degradation of c-Met). Efficacy, prevention, amelioration, alleviation, and / or treatment efficacy of c-Met related diseases such as cancer (eg, in the case of cancer, reduction of cancer cells or cancer tissues, death of cancer cells or cancer tissues, migration of cancer cells associated with cancer metastasis) And / or efficacy such as inhibition of penetration) and / or assay (or confirmation) of resistance to administered c-Met inhibitor.
DKK 단백질 (Dickkopf-related protein)은 Wnt 신호 경로의 길항체(저해제)로서 작용하는 단백질로서, DKK1 (Dickkopf-related protein 1), DKK2 (Dickkopf-related protein 2), DKK3 (Dickkopf-related protein 3) 등을 포함한다. 상기 DKK 단백질은 인간(Homo sapiens), 원숭이(Macaca mulatta) 등을 포함하는 영장류, 마우스(Mus musculus), 래트(Rattus norvegicus) 등을 포함하는 설치류 등의 포유류, 제브라피쉬(Danio rerio) 등의 어류, 개구리 (Xenopus laevis) 등의 양서류 등으로부터 유래한 것일 수 있다. 예컨대, DKK1은 인간 DKK1 (예컨대, NP_036374.1 (유전자: NM_012242.2) 등), 원숭이 DKK1 (예컨대, NP_001247454.1 (유전자: NM_001260525.1) 등), 마우스 DKK1 (예컨대, NP_034181.2 (유전자: NM_010051.3) 등), 래트 DKK1 (예컨대, NP_001099820.1 (유전자: NM_001106350.1); XP_003749137.1(유전자: XM_003749089.3) 등), 제브라피쉬 DKK1 (예컨대, XP_005173020.1(유전자: XM_005172963.1), NP_571078.1(유전자: NM_131003.1) 등), 개구리 DKK1 (예컨대, NP_001079061.1(유전자: NM_001085592.1) 등) 등으로 이루어진 군에서 선택된 것일 수 있으나, 이에 제한되는 것은 아니다. DKK2는 인간 DKK2 (예컨대, NP_055236.1 (유전자: NM_014421.2) 등), 원숭이 DKK2 (예컨대, XP_001085254.1(유전자: XM_001085254.2) 등), 마우스 DKK2 (예컨대, NP_064661.2 (유전자: NM_020265.4) 등), 래트 DKK2 (예컨대, NP_001099942.1(유전자: NM_001106472.1) 등), 제브라피쉬 DKK2 (예컨대, NP_001104679.1(유전자: NM_001111209.1) 등), 개구리 DKK2 (예컨대, NP_001079319.1(유전자: NM_001085850.1) 등) 등으로 이루어진 군에서 선택된 것일 수 있으나, 이에 제한되는 것은 아니다. DKK3는 인간 DKK3 (예컨대, NP_001018067.1 (유전자: NM_001018057.1) 등), 원숭이 DKK3 (예컨대, NP_001252678.1(유전자: NM_001265749.1) 등), 마우스 DKK3 (예컨대, NP_056629.1 (유전자: NM_015814.2) 등), 래트 DKK3 (예컨대, NP_612528.2(유전자: NM_138519.2), XP_006230071.1(유전자: XM_006230009.2) 등), 제브라피쉬 DKK3 (예컨대, NP_001083014.1(유전자: NM_001089545.1), NP_001152755.1(유전자: NM_001159283.1) 등), 개구리 DKK3 (예컨대, NP_001121290.1(유전자: NM_001127818.1) 등) 등으로 이루어진 군에서 선택된 것일 수 있으나, 이에 제한되는 것은 아니다.DKK protein (Dickkopf-related protein) is a protein that acts as an antagonist (inhibitor) of the Wnt signaling pathway, DKK1 (Dickkopf-related protein 1), DKK2 (Dickkopf-related protein 2), DKK3 (Dickkopf-related protein 3) And the like. The DKK protein is human ( Homo sapiens ), monkey ( Macaca Primates, including murat ), mice ( Mus musculus ), rats ( Rattus) mammals such as rodents including norvegicus ), fish such as zebrafish ( Danio rerio ), frogs ( Xenopus) laevis ) may be derived from amphibians and the like. For example, DKK1 may be a human DKK1 (eg NP_036374.1 (gene: NM_012242.2), etc.), monkey DKK1 (eg, NP_001247454.1 (gene: NM_001260525.1), etc.), mouse DKK1 (eg, NP_034181.2 (gene) : NM_010051.3), etc.), rat DKK1 (eg, NP_001099820.1 (gene: NM_001106350.1); XP_003749137.1 (gene: XM_003749089.3), etc.), zebrafish DKK1 (eg, XP_005173020.1 (gene: XM_005172963 .1), NP_571078.1 (gene: NM_131003.1), etc.), frog DKK1 (eg, NP_001079061.1 (gene: NM_001085592.1), etc.) and the like, but is not limited thereto. DKK2 includes human DKK2 (eg, NP_055236.1 (gene: NM_014421.2), etc.), monkey DKK2 (eg, XP_001085254.1 (gene: XM_001085254.2), etc.), mouse DKK2 (eg, NP_064661.2 (gene: NM_020265) .4) and the like), rat DKK2 (eg, NP_001099942.1 (gene: NM_001106472.1), etc.), zebrafish DKK2 (eg, NP_001104679.1 (gene: NM_001111209.1), etc.), frog DKK2 (eg, NP_001079319. 1 (gene: NM_001085850.1), etc.) but may be selected from the group consisting of, but is not limited thereto. DKK3 includes human DKK3 (eg, NP_001018067.1 (gene: NM_001018057.1), etc.), monkey DKK3 (eg, NP_001252678.1 (gene: NM_001265749.1), etc.), mouse DKK3 (eg, NP_056629.1 (gene: NM_015814) .2), etc.), rat DKK3 (e.g. NP_612528.2 (gene: NM_138519.2), XP_006230071.1 (gene: XM_006230009.2), etc.), zebrafish DKK3 (eg, NP_001083014.1 (gene: NM_001089545.1 ), NP_001152755.1 (gene: NM_001159283.1), etc., frog DKK3 (eg, NP_001121290.1 (gene: NM_001127818.1), etc.) and the like, but are not limited thereto.
일 구체예는 DKK 단백질 및 이를 암호화하는 유전자로 이루어진 군에서 선택된 1종 이상을 포함하는 c-Met 저해제의 효능 예측 및/또는 c-Met 저해제의 적용 대상 (또는 환자) 선별을 위한 바이오마커를 제공한다. One embodiment provides a biomarker for predicting the efficacy of a c-Met inhibitor comprising one or more selected from the group consisting of a DKK protein and a gene encoding the same and / or selecting a subject (or patient) for applying the c-Met inhibitor. do.
다른 예는 DKK 단백질 및 이를 암호화하는 유전자로 이루어진 군에서 선택된 1종 이상을 포함하는 c-Met 저해제 투여 후의 효능 모니터링을 위한 바이오마커를 제공한다. Another example provides a biomarker for efficacy monitoring after administration of a c-Met inhibitor comprising one or more selected from the group consisting of DKK proteins and genes encoding them.
다른 예는 DKK 단백질 및 이를 암호화하는 유전자로 이루어진 군에서 선택된 1종 이상의 포함하는 c-Met 저해제의 효능 예측 및/또는 c-Met 저해제의 적용 대상 (또는 환자) 선별에 사용하기 위한 용도를 제공한다.Another example provides a use for predicting the efficacy of a c-Met inhibitor comprising one or more selected from the group consisting of a DKK protein and a gene encoding the same and / or for selecting a subject (or patient) for applying the c-Met inhibitor. .
다른 예는 DKK 단백질 및 이를 암호화하는 유전자로 이루어진 군에서 선택된 1종 이상의 c-Met 저해제 투여 후의 효능 모니터링에 사용하기 위한 용도를 제공한다. Another example provides a use for monitoring efficacy after administration of one or more c-Met inhibitors selected from the group consisting of DKK proteins and genes encoding them.
다른 예는 DKK 단백질 및 이를 암호화하는 유전자로 이루어진 군에서 선택된 1종 이상과 상호작용하는 물질을 포함하는 c-Met 저해제의 효능 예측 및/또는 c-Met 저해제의 적용 대상(환자) 선별을 위한 조성물 및 키트를 제공한다.Another example is a composition for predicting the efficacy of a c-Met inhibitor and / or for selecting a subject (patient) to apply a c-Met inhibitor comprising a substance that interacts with one or more selected from the group consisting of a DKK protein and a gene encoding the same. And kits.
다른 예는 DKK 단백질 및 이를 암호화하는 유전자로 이루어진 군에서 선택된 1종 이상과 상호작용하는 물질을 포함하는 c-Met 저해제 투여 후의 효능 모니터링을 위한 조성물 및 키트를 제공한다. Another example provides compositions and kits for monitoring efficacy after administration of a c-Met inhibitor comprising a substance that interacts with one or more selected from the group consisting of DKK proteins and genes encoding them.
다른 예는 DKK 단백질 및 이를 암호화하는 유전자로 이루어진 군에서 선택된 1종 이상과 상호작용하는 물질의 c-Met 저해제의 효능 예측 및/또는 c-Met 저해제의 적용 대상(환자) 선별에 사용하기 위한 용도를 제공한다.Another example is for use in predicting the efficacy of a c-Met inhibitor of a substance interacting with at least one selected from the group consisting of a DKK protein and a gene encoding the same and / or selecting a subject (patient) to apply the c-Met inhibitor. To provide.
다른 예는 DKK 단백질 및 이를 암호화하는 유전자로 이루어진 군에서 선택된 1종 이상의 c-Met 저해제 투여 후의 효능 모니터링에 사용하기 위한 용도를 제공한다. Another example provides a use for monitoring efficacy after administration of one or more c-Met inhibitors selected from the group consisting of DKK proteins and genes encoding them.
다른 예는 생물 시료 내의 DKK 단백질 및 이를 암호화하는 유전자로 이루어진 군에서 선택된 1종 이상의 수준을 측정하는 단계를 포함하는 c-Met 저해제의 효능 예측 방법, c-Met 저해제의 효능 예측을 위한 정보를 제공하는 방법, c-Met 저해제의 적용 대상(환자)의 선별 방법, 또는 c-Met 저해제의 적용 대상(환자)의 선별을 위한 정보를 제공하는 방법을 제공한다. Another example provides a method for predicting the efficacy of a c-Met inhibitor, and providing information for predicting the efficacy of a c-Met inhibitor, the method comprising measuring at least one level selected from the group consisting of DKK protein and a gene encoding the same in a biological sample. The present invention provides a method for screening a subject (patient) to be applied to a c-Met inhibitor, or a method for providing information for selecting a subject (patient) to be applied to a c-Met inhibitor.
앞서 설명한 바와 같이, 생물 시료 내의 DKK 단백질 및 이를 암호화하는 유전자로 이루어진 군에서 선택된 1종 이상의 수준이 높은 경우는 상기 생물 시료에 c-Met 저해제가 작용하는데 필요한 DKK가 존재하여, c-Met 저해제가 잘 작용할 수 있는 것을 의미하는 것일 수 있다. 그러므로, 상기 c-Met 저해제의 효능 예측 또는 c-Met 저해제의 적용 대상 선별 방법에 있어서, 생물 시료 내의 DKK 단백질 및 이를 암호화하는 유전자로 이루어진 군에서 선택된 1종 이상의 수준이 높은 경우, 상기 생물 시료 또는 상기 생물 시료가 유래하는 환자에서 상기 c-Met 저해제가 효능을 발휘할 것으로 판단(예측)하거나, 상기 생물 시료 또는 상기 생물 시료가 유래하는 환자를 c-Met 저해제의 적용 대상으로 판단할 수 있다. 따라서, 상기 c-Met 저해제의 효능 예측 또는 효능 예측을 위한 정보를 제공하는 방법은, 상기 DKK 단백질 및 이를 암호화하는 유전자로 이루어진 군에서 선택된 1종 이상의 수준을 측정하는 단계 이후에, 상기 생물 시료 내의 DKK 단백질 및 이를 암호화하는 유전자로 이루어진 군에서 선택된 1종 이상의 수준이 높은 경우, 상기 생물 시료 또는 상기 생물 시료가 유래하는 환자에서 상기 c-Met 저해제가 효능을 발휘할 것으로 판단(예측)하는 단계를 추가로 포함할 수 있다. 또한, 상기 c-Met 저해제의 적용 대상의 선별 방법 또는 c-Met 저해제의 적용 대상의 선별을 위한 정보를 제공하는 방법은, 상기 DKK 단백질 및 이를 암호화하는 유전자로 이루어진 군에서 선택된 1종 이상의 수준을 측정하는 단계 이후에, 상기 생물 시료 내의 DKK 단백질 및 이를 암호화하는 유전자로 이루어진 군에서 선택된 1종 이상의 수준이 높은 경우, 상기 생물 시료 또는 상기 생물 시료가 유래하는 환자를 상기 c-Met 저해제를 적용하기에 적절한 대상으로 판단하는 단계를 추가로 포함할 수 있다. As described above, when the level of one or more selected from the group consisting of DKK protein in the biological sample and the gene encoding the same is high, DKK necessary for the c-Met inhibitor to act in the biological sample, so that the c-Met inhibitor It may mean that it can work well. Therefore, in the method for predicting the efficacy of the c-Met inhibitor or the screening method of applying the c-Met inhibitor, when the level of one or more selected from the group consisting of DKK protein and gene encoding the biological sample, the biological sample or The c-Met inhibitor may be determined (predicted) to be effective in the patient from which the biological sample is derived, or the biological sample or the patient from which the biological sample is derived may be judged as an application target of the c-Met inhibitor. Therefore, the method of providing information for predicting the efficacy or predicting the efficacy of the c-Met inhibitor, after the step of measuring at least one level selected from the group consisting of the DKK protein and the gene encoding the same, in the biological sample If the level of one or more selected from the group consisting of DKK protein and the gene encoding it is high, the step of determining (predicting) the c-Met inhibitor will be effective in the biological sample or the patient from which the biological sample is derived. It can be included as. In addition, the method of selecting a target of the application of c-Met inhibitor or the method of providing information for the selection of the target of application of c-Met inhibitor, the level of one or more selected from the group consisting of the DKK protein and the gene encoding the same. After the measuring step, if the level of one or more selected from the group consisting of DKK protein and the gene encoding the biological sample in the biological sample, applying the c-Met inhibitor to the biological sample or the patient from which the biological sample is derived The method may further include determining an appropriate target.
다른 예는 생물 시료 내의 DKK 단백질 및 이를 암호화하는 유전자로 이루어진 군에서 선택된 1종 이상의 수준을 측정하는 단계를 포함하는 c-Met 저해제 투여 후의 효능 모니터링 방법 또는 c-Met 저해제 투여 후의 효능 모니터링을 위한 정보를 제공하는 방법을 제공한다. Another example is a method for monitoring efficacy after administration of a c-Met inhibitor or information for monitoring efficacy after administration of a c-Met inhibitor comprising measuring at least one level selected from the group consisting of DKK protein and a gene encoding the same in a biological sample. Provides a way to provide.
생물 시료 내의 DKK 단백질 및 이를 암호화하는 유전자로 이루어진 군에서 선택된 1종 이상의 수준이 높은 경우는 상기 생물 시료에 c-Met 저해제가 작용하는데 필요한 DKK이 존재하여, c-Met 저해제가 잘 작용할 수 있는 것을 의미하는 것일 수 있다. 그러므로, 상기 c-Met 저해제 투여 후의 효능 모니터링 방법에 있어서, 생물 시료 내의 DKK 단백질 및 이를 암호화하는 유전자로 이루어진 군에서 선택된 1종 이상의 수준이 높은 경우, 상기 생물 시료 또는 상기 생물 시료가 유래하는 환자에서 상기 c-Met 저해제가 효능을 발휘하고 있는 것으로 판단(검정)할 수 있다. 따라서, 상기 c-Met 저해제 투여 후의 효능 모니터링 방법은, 상기 DKK 단백질 및 이를 암호화하는 유전자로 이루어진 군에서 선택된 1종 이상의 수준을 측정하는 단계 이후에, 상기 생물 시료 내의 DKK 단백질 및 이를 암호화하는 유전자로 이루어진 군에서 선택된 1종 이상의 수준이 높은 경우, 상기 생물 시료 또는 상기 생물 시료가 유래하는 환자에서 상기 c-Met 저해제가 효능을 발휘하고 있는 것으로 판단(검정)하는 단계를 추가로 포함할 수 있다. If the level of one or more selected from the group consisting of DKK protein in the biological sample and the gene encoding the same is high, DKK necessary for the c-Met inhibitor to act in the biological sample, the c-Met inhibitor may work well It may be meant. Therefore, in the method for monitoring efficacy after administration of the c-Met inhibitor, when one or more levels selected from the group consisting of DKK protein in a biological sample and a gene encoding the same are high, the biological sample or a patient from which the biological sample is derived It can be judged (assay) that the c-Met inhibitor is exhibiting efficacy. Therefore, the method for monitoring efficacy after administration of the c-Met inhibitor, after measuring at least one level selected from the group consisting of the DKK protein and the gene encoding the same, the DKK protein in the biological sample and the gene encoding the same When the level of one or more selected from the group consisting of high, the biological sample or the patient from which the biological sample may further comprise determining (testing) that the c-Met inhibitor is effective.
상기 마커, 조성물, 키트 및 방법에 있어서, 상기 DKK 단백질은 DKK1, 예컨대, 인간 DKK1일 수 있고, 이를 암호화하는 유전자는 DKK1 유전자, 예컨대, 인간 DKK1 유전자일 수 있다.In the markers, compositions, kits, and methods, the DKK protein may be DKK1, eg, human DKK1, and the gene encoding it may be a DKK1 gene, eg, a human DKK1 gene.
본 명세서에 사용된 바로서, "DKK 단백질 (예컨대 DKK1) 및/또는 이를 암호화하는 유전자로 이루어진 군에서 선택된 1종 이상의 수준이 높다"함은 다음과 같은 기준으로 판단될 수 있다 As used herein, "at least one level selected from the group consisting of DKK proteins (such as DKK1) and / or genes encoding them" may be determined based on the following criteria.
(1) DKK 단백질 및/또는 이를 암호화하는 유전자가 존재하거나, 적용하고자 하는 c-Met 저해제가 효능을 발휘하지 못하는 환자로부터 분리된 생물 시료 또는 c-Met 저해제가 효능을 발휘하지 못하는 생물 시료(비교 기준 시료; 예컨대, MKN74 (JCRB0255, JCRB) 위암 세포주, NUGC4 (JCRB0834, JCRB) 위암 세포주, NCI-N87 (CRL-5822, ATCC) 위암 세포주, SNU668 (00668, KCLB) 위암 세포주, H1373 (ATCC, CRL-5866) 폐암 세포주, HCC1806 (ATCC, CRL-2335) 유방암 세포주, Caki-1 (ATCC, HTB-46) 신장암 세포주, SKBR3 (ATCC, HTB-30) 유방암 세포주, BT474 (ATCC, HTB-20) 유방암 세포주, HT-29 (ATCC, HTB-38) 대장암 세포주, LoVo (ATCC, CCL-229) 대장암 세포주, HCT116 (ATCC, CCL-247) 대장암 세포주, SW620 (ATCC, CCL-227) 대장암 세포주, Ls174T (ATCC, CL-188) 대장암 세포주, 또는 c-Met 저해제의 반복적 또는 지속적 투여에 의하여 이에 대한 저항성이 발생한 세포주, 등)와 비교하여 DKK 단백질 양 및/또는 이를 암호화하는 유전자 (DNA, cDNA 또는 mRNA)의 양이 많은 경우를 의미하는 것일 수 있다. 상기 비교 기준 시료는 생체로부터 분리되거나 인공적으로 배양된 세포, 조직, 또는 이의 배양물일 수 있다. 이 경우, 상기 효능 예측 방법, 대상 선별 방법, 및/또는 효능 모니터링 방법은 상기 판단하는 단계 이전에 상기 비교 기준 시료의 DKK 단백질 및/또는 이를 암호화하는 유전자 수준을 측정하는 단계를 추가로 포함할 수 있다. 또한, 상기 방법들의 판단하는 단계는 생물 시료의 DKK 단백질 및 이를 암호화하는 유전자로 이루어진 군에서 선택된 1종 이상의 수준을 비교 기준 시료의 DKK 단백질 및 이를 암호화하는 유전자로 이루어진 군에서 선택된 1종 이상의 수준과 비교하는 단계 및 i) 생물 시료 내의 DKK 단백질 및 이를 암호화하는 유전자로 이루어진 군에서 선택된 1종 이상의 수준이 비교 기준 시료보다 높은 경우, 상기 생물 시료 또는 상기 생물 시료가 유래하는 환자에서 c-Met 저해제가 효능을 발휘할 것으로 판단 (예측), 상기 환자를 c-Met 저해제를 적용하기에 적합한 대상으로 판단, 또는 c-Met 저해제가 효능을 발휘하고 있는 것으로 판단(검정)하는 단계, 또는 ii) 생물 시료 내의 DKK 단백질 및 이를 암호화하는 유전자로 이루어진 군에서 선택된 1종 이상의 수준이 비교 기준 시료보다 낮은 경우, 상기 생물 시료 또는 상기 생물 시료가 유래하는 환자에서 c-Met 저해제가 효능을 발휘하지 못할 것으로 판단 (예측), 상기 환자를 c-Met 저해제를 적용하기에 적합하지 않은 대상으로 판단, 또는 c-Met 저해제가 효능을 발휘하지 못하고 있는 것으로 판단(검정)하 단계를 포함할 수 있다. (1) A biological sample isolated from a patient in which a DKK protein and / or a gene encoding the same is present or the c-Met inhibitor to be applied is ineffective, or a biological sample in which the c-Met inhibitor is ineffective (comparison) Reference samples; for example, MKN74 (JCRB0255, JCRB) gastric cancer cell line, NUGC4 (JCRB0834, JCRB) gastric cancer cell line, NCI-N87 (CRL-5822, ATCC) gastric cancer cell line, SNU668 (00668, KCLB) gastric cancer cell line, H1373 (ATCC, CRL Lung cancer cell line, HCC1806 (ATCC, CRL-2335) breast cancer cell line, Caki-1 (ATCC, HTB-46) kidney cancer cell line, SKBR3 (ATCC, HTB-30) breast cancer cell line, BT474 (ATCC, HTB-20) Breast Cancer Cell Line, HT-29 (ATCC, HTB-38) Colon Cancer Cell Line, LoVo (ATCC, CCL-229) Colon Cancer Cell Line, HCT116 (ATCC, CCL-247) Colon Cancer Cell Line, SW620 (ATCC, CCL-227) Colon Resistance to cancer cells, Ls174T (ATCC, CL-188) colorectal cancer cell lines, or by repeated or continuous administration of c-Met inhibitors In comparison with the cell line, and so on) may be to the amount of the gene (DNA, cDNA or mRNA) encoding DKK of protein and / or it means the number of cases. The comparative reference sample may be a cell, tissue, or a culture thereof, isolated from a living body or artificially cultured. In this case, the efficacy prediction method, subject screening method, and / or efficacy monitoring method may further comprise the step of measuring the level of DKK protein and / or gene encoding the comparative reference sample prior to the determining step. have. In addition, the determining of the methods may include one or more levels selected from the group consisting of DKK protein of a biological sample and a gene encoding the same, and one or more levels selected from the group consisting of DKK protein of a comparative reference sample and a gene encoding the same. The step of comparing and i) at least one level selected from the group consisting of a DKK protein in the biological sample and a gene encoding the same, the c-Met inhibitor in the biological sample or in the patient from which the biological sample is derived. Judging efficacy (prediction), judging the patient as a subject suitable for applying a c-Met inhibitor, or judging that the c-Met inhibitor is efficacious (testing), or ii) in a biological sample One or more levels selected from the group consisting of DKK proteins and genes encoding them are compared If it is lower than the sample, it is determined that the c-Met inhibitor will not be effective in the biological sample or the patient from which the biological sample is derived (predicted), and the patient is determined to be not suitable for applying the c-Met inhibitor. Or, determining that the c-Met inhibitor is not effective.
(2) 다른 방법으로, DKK 단백질에 대한 통상의 항체(ab61034, Abcam) 를 사용하는 통상의 면역조직화학검사(IHC)로 측정하여 "-" 내지 "+1", 에컨대, "-", "0" 또는 "+1"의 값이 얻어지는 경우를 Negative로 판단하고, 그 이상의 값 ("+1" 초과), 예컨대 +2 또는 +3이 얻어지는 경우를 Positive로 판단할 수 있는데, Positive인 경우 생물 시료 내에 DKK 단백질의 수준이 높은 경우로 볼 수 있다. 따라서, DKK 단백질에 대한 통상의 항체를 사용하는 통상의 면역조직화학검사(IHC)로 측정하여 +2 또는 +3이 얻어지는 경우, DKK 단백질의 수준이 높다고 판단할 수 있다. 이 경우, 상기 효능 예측 방법, 대상 선별 방법, 및/또는 효능 모니터링 방법의 생물 시료의 DKK 단백질 수준을 측정하는 단계는 DKK 단백질에 대한 통상의 항체를 사용하는 면역조직화학검사에 의하여 수행될 수 있으며, 상기 판단하는 단계는 i) 상기 면역조직화학검사 결과 +2 또는 +3의 값이 얻어지는 경우, 상기 생물 시료 또는 상기 생물 시료가 유래하는 환자에서 c-Met 저해제가 효능을 발휘할 것으로 판단 (예측), 상기 환자를 c-Met 저해제를 적용하기에 적합한 대상으로 판단, 또는 c-Met 저해제가 효능을 발휘하고 있는 것으로 판단(검정)하는 단계, 또는 ii) 상기 면역조직화학검사 결과 -, 0 또는 +1의 값이 얻어지는 경우, 상기 생물 시료 또는 상기 생물 시료가 유래하는 환자에서 c-Met 저해제가 효능을 발휘하지 못할 것으로 판단 (예측), 상기 환자를 c-Met 저해제를 적용하기에 적합하지 않은 대상으로 판단, 또는 c-Met 저해제가 효능을 발휘하지 못하고 있는 것으로 판단(검정)하는 단계를 포함할 수 있다.(2) alternatively, "-" to "+1", e.g., "-", as measured by conventional immunohistochemistry (IHC) using conventional antibodies against DKK proteins (ab61034, Abcam); Negative can be determined as a case where a value of "0" or "+1" is obtained, and a case where a higher value (greater than "+1"), for example, +2 or +3 is obtained, can be determined as positive. High levels of DKK protein in biological samples. Therefore, when +2 or +3 is obtained by conventional immunohistochemistry (IHC) using a conventional antibody against DKK protein, it can be judged that the level of DKK protein is high. In this case, the step of measuring the DKK protein level of the biological sample of the efficacy prediction method, subject screening method, and / or efficacy monitoring method may be performed by immunohistochemistry using conventional antibodies to the DKK protein, In the determining step, i) when a value of +2 or +3 is obtained as a result of the immunohistochemistry, it is determined that the c-Met inhibitor will be effective in the biological sample or the patient from which the biological sample is derived (prediction). Judging the patient as a suitable subject to apply the c-Met inhibitor, or determining (testing) that the c-Met inhibitor is effective, or ii) the result of the immunohistochemistry-, 0 or + If a value of 1 is obtained, it is determined that the c-Met inhibitor will not be effective in the biological sample or the patient from which the biological sample is derived (prediction), the patient c-Met Determining that the subject is not suitable for applying the inhibitor, or determining (testing) that the c-Met inhibitor is not effective.
(3) 다른 방법으로, DKK1 유전자의 mRNA 발현을 Affymetrix U133 Plus 2.0 어레이로 측정하였을 때 mRNA 발현 수준이 약 9.61 이상인 경우, 상기 c-Met 저해제가 상기 생물 시료 또는 상기 생물 시료가 유래하는 환자에서 효과를 나타낼 수 있을 것으로 예측할 수 있다. (3) Alternatively, when the mRNA expression of the DKK1 gene is measured in an Affymetrix U133 Plus 2.0 array and the mRNA expression level is about 9.61 or more, the c-Met inhibitor is effective in the biological sample or the patient from which the biological sample is derived. It can be predicted that.
(4) 또한, DKK1 유전자의 mRNA 발현 수준을 다른 유전자의 mRNA 발현 수준 대비하여 나타내어, 상기 c-Met 저해제의 효과를 예측 할 수 있다. 예컨대, (4) In addition, the mRNA expression level of the DKK1 gene is expressed relative to the mRNA expression level of other genes, thereby predicting the effect of the c-Met inhibitor. for example,
i) GAPDH 유전자의 평균 mRNA 발현 수준 대비 DKK1 유전자의 mRNA 발현 수준(DKK1 유전자의 mRNA 발현 수준/GAPDH 유전자의 평균 mRNA 발현 수준)이 약 0.66 이상이면, c-Met 저해제가 상기 생물 시료 또는 상기 생물 시료가 유래하는 환자에서 효과를 나타낼 수 있을 것으로 예측하거나; i) If the mRNA expression level of the DKK1 gene (the mRNA expression level of the DKK1 gene / the average mRNA expression level of the GAPDH gene) is greater than or equal to about 0.66, the c-Met inhibitor may be used in the biological sample or the biological sample. Predicted to be effective in patients from which is derived;
ii) HPRT1 유전자의 평균 mRNA 발현 수준 대비 DKK1 유전자의 mRNA 발현 수준(DKK1 유전자의 mRNA 발현 수준/HPRT1 유전자의 평균 mRNA 발현 수준)이 약 0.78 이상이면, c-Met 저해제가 상기 생물 시료 또는 상기 생물 시료가 유래하는 환자에서 효과를 나타낼 수 있을 것으로 예측하거나;ii) if the mRNA expression level of the DKK1 gene (the mRNA expression level of the DKK1 gene / the average mRNA expression level of the HPRT1 gene) is greater than about 0.78, the c-Met inhibitor may be used in the biological sample or the biological sample. Predicted to be effective in patients from which is derived;
iii) 10개 유전자 (EEF1A1, RPL23, TPT1, HUWE1, MATR3, SRSF3, HNRNPC, SMARCA4, WDR90, 및 TUT1)의 mRNA 발현 수준의 평균 대비 DKK1 유전자의 mRNA 발현 수준(DKK1 유전자의 mRNA 발현 수준/상기 10개 유전자 mRNA 발현 수준의 평균)이 약 1.05 이상이면 c-Met 저해제가 상기 생물 시료 또는 상기 생물 시료가 유래하는 환자에서 효과를 나타낼 수 있을 것으로 예측할 수 있다.iii) mRNA expression level of DKK1 gene (mRNA expression level of DKK1 gene / 10 above the mean of mRNA expression levels of 10 genes (EEF1A1, RPL23, TPT1, HUWE1, MATR3, SRSF3, HNRNPC, SMARCA4, WDR90, and TUT1) An average of dog gene mRNA expression levels) is greater than or equal to about 1.05 and it can be predicted that the c-Met inhibitor may be effective in the biological sample or in the patient from which the biological sample is derived.
상기 DKK 단백질 (예컨대, DKK1 단백질) 또는 이를 암호화하는 유전자 (예컨대, DKK1 유전자)의 수준은 상기 단백질 또는 유전자와 상호작용하는 물질을 이용하는 통상적인 모든 단백질 또는 유전자 분석 방법에 의하여 측정될 수 있다. 상기 DKK 단백질 (예컨대, DKK1 단백질) 또는 이를 암호화하는 유전자 (예컨대, DKK1 유전자)와 상호작용하는 물질은 상기 DKK 단백질 (예컨대, DKK1 단백질) 또는 DKK 유전자 (예컨대, DKK1 유전자)에 특이적으로 결합하는 화학 물질(chemical, small molecule), 단백질, 펩타이드, 핵산 분자(폴리뉴클레오타이드, 올리고뉴클레오타이드, 등) 등으로 이루어진 군에서 선택된 1종 이상일 수 있다. 예컨대, 상기 DKK 단백질 (예컨대, DKK1 단백질) 또는 이를 암호화하는 유전자 (예컨대, DKK1 유전자)와 상호작용하는 물질은 DKK 단백질 (예컨대, DKK1 단백질)에 특이적으로 결합하는 화합물, 항체, 압타머, 및 DKK 유전자 (예컨대, DKK1 유전자)의 전부 또는 일부에 결합하는 핵산 분자(예컨대, 프라이머, 프로브, 앱타머 등) 등으로 이루어진 군에서 선택된 1종 이상일 수 있다. The level of the DKK protein (eg, DKK1 protein) or gene encoding it (eg, DKK1 gene) can be measured by any conventional protein or gene analysis method using a substance that interacts with the protein or gene. A substance that interacts with the DKK protein (eg, DKK1 protein) or a gene encoding it (eg, DKK1 gene) binds specifically to the DKK protein (eg, DKK1 protein) or DKK gene (eg, DKK1 gene). It may be at least one selected from the group consisting of chemical (small) molecules, proteins, peptides, nucleic acid molecules (polynucleotides, oligonucleotides, etc.). For example, a substance that interacts with the DKK protein (eg, DKK1 protein) or a gene encoding it (eg, DKK1 gene) may be a compound, antibody, aptamer, and the like that specifically binds to the DKK protein (eg, DKK1 protein). It may be one or more selected from the group consisting of nucleic acid molecules (eg, primers, probes, aptamers, etc.) that bind to all or part of the DKK gene (eg, DKK1 gene).
예컨대, 상기 DKK 단백질 (예컨대, DKK1 단백질)의 수준은 상기 DKK 단백질 (예컨대, DKK1 단백질)에 특이적으로 결합하는 화합물, 항체, 압타머 등을 이용하는 통상적인 효소 반응, 형광, 발광 및/또는 방사선 검출을 통하여 측정될 수 있으며, 구체적으로, 면역크로마토그래피(Immunochromatography), 면역조직화학염색, 효소결합 면역흡착 분석(enzyme linked immunosorbent assay: ELISA), 방사선 면역측정법(radioimmunoassay: RIA), 효소 면역분석(enzyme immunoassay: EIA), 형광면역분석(Floresence immunoassay: FIA), 발광면역분석(luminescence immunoassay: LIA), 웨스턴블라팅(Western blotting), 마이크로어레이법, 등으로 이루어진 군으로부터 선택된 방법에 의하여 측정될 수 있으나, 이에 제한되는 것은 아니다. For example, the level of the DKK protein (eg, DKK1 protein) can be determined by conventional enzymatic reactions, fluorescence, luminescence and / or radiation using compounds, antibodies, aptamers, etc. that specifically bind to the DKK protein (eg, DKK1 protein). It can be measured by detection, and specifically, immunochromatography, immunohistochemical staining, enzyme linked immunosorbent assay (ELISA), radioimmunoassay (RIA), enzyme immunoassay (RIA). enzyme immunoassay (EIA), fluorescence immunoassay (FIA), luminescence immunoassay (LIA), Western blotting, microarray, and the like. However, it is not limited thereto.
또한 상기 DKK 유전자 (예컨대, DKK1 유전자) (DNA, cDNA 또는 mRNA)의 수준은 통상의 유전자 분석 방법을 이용하여 측정할 수 있으며, 예컨대 상기 유전자와 혼성화 가능한 프라이머, 프로브, 또는 앱타머를 사용하는 통상적인 유전자 분석 방법, 예컨대, 폴리머레이즈 연쇄 반응법 (PCR; 예컨대 qPCR, real-time PCR 등), FISH(fluorescent in situ hybridization), 마이크로어레이법, 등을 이용하여 측정할 수 있으나, 이에 제한되는 것은 아니다. 일 구체예에서, 상기 프라이머는 DKK 유전자 (예컨대, DKK1 유전자) (전장 DNA, cDNA, 또는 mRNA)의 염기서열 중 연속하는 5 내지 1000bp 예컨대 10 내지 500bp, 20 내지 200bp, 또는 50 내지 200bp의 유전자 단편을 검출할 수 있는 것으로, 상기 유전자 단편의 3'-말단 및 5'-말단 각각의 연속하는 5 내지 100bp, 예컨대, 5 내지 50bp, 5 내지 30bp, 또는 10 내지 25bp 부위와 혼성화 가능한 (예컨대, 상보적인) 염기서열을 포함하는 프라이머쌍일 수 있다. 상기 프로브 또는 앱타머는 총 길이가 5 내지 100 bp, 5 내지 50bp, 5 내지 30bp, 또는 5 내지 25bp인 것일 수 있으며, DKK1을 암호화하는 유전자 (전장 DNA, cDNA, 또는 mRNA)의 염기서열 중 연속하는 5 내지 100 bp, 5 내지 50bp, 5 내지 30bp, 또는 5 내지 25bp의 유전자 단편과 결합 가능 또는 혼성화 가능한 (예컨대, 상보적) 염기서열을 갖는 것일 수 있다. 상기 '결합 가능'하다 함은 상기 유전자 부위와 공유 결합 등의 화학적 및/또는 물리적 결합에 의하여 결합할 수 있음을 의미할 수 있고, 상기 '혼성화 가능'하다 함은 상기 유전자 부위의 염기서열과 80% 이상, 예컨대 90% 이상, 95% 이상, 98% 이상, 99% 이상, 또는 100%의 서열 상보성을 가짐으로써 상보적 결합이 가능함을 의미할 수 있다. In addition, the level of the DKK gene (eg, DKK1 gene) (DNA, cDNA or mRNA) can be measured using conventional genetic analysis methods, for example using a primer, probe, or aptamer that is hybridizable with the gene. Phosphorus gene analysis methods, such as polymerase chain reaction method (PCR; such as qPCR, real-time PCR, etc.), fluorescent in situ hybridization (FISH), microarray method, etc. can be measured, but is not limited thereto. no. In one embodiment, the primer is a gene fragment of consecutive 5 to 1000 bp, such as 10 to 500 bp, 20 to 200 bp, or 50 to 200 bp in the sequence of the DKK gene (eg, DKK1 gene) (full length DNA, cDNA, or mRNA). Is capable of detecting (eg, complementary to) the contiguous 5-100 bp, eg, 5-50 bp, 5-30 bp, or 10-25 bp region of each of the 3'- and 5'-ends of the gene fragment. Primer pairs), including the base sequence. The probe or aptamer may have a total length of 5 to 100 bp, 5 to 50 bp, 5 to 30 bp, or 5 to 25 bp, and is continuous in the base sequence of a gene (full length DNA, cDNA, or mRNA) encoding DKK1. 5 to 100 bp, 5 to 50 bp, 5 to 30 bp, or 5 to 25 bp gene fragment may be one having a sequence capable of binding or hybridizing (eg, complementary). The term 'combinable' may mean that the gene may be bound to the gene site by chemical and / or physical bonds such as covalent bonds, and the term “hybridization possible” may refer to the nucleotide sequence of the gene site. By complementary binding may be achieved by having at least%, such as at least 90%, at least 95%, at least 98%, at least 99%, or at least 100% of sequence complementarity.
상기 c-Met 저해제의 효능 예측 방법 및/또는 c-Met 저해제의 적용 대상의 선별 방법 및/또는 c-Met 저해제 투여 후의 효능 모니터링 방법에 있어서, 상기 생물 시료 내의 DKK 단백질 (예컨대, DKK1 단백질) 및 이를 암호화하는 유전자로 이루어진 군에서 선택된 1종 이상의 수준을 측정하는 단계는, 임의로 i) 생물 시료를 준비하는 단계; ii) 상기 생물 시료에 DKK 단백질 (예컨대, DKK1 단백질) 및 이를 암호화하는 유전자로 이루어진 군에서 선택된 1종 이상과 상호작용하는 물질을 처리(첨가)하여 반응시키는 단계; 및 iii) 상기 얻어진 반응물을 분석하여 DKK 단백질 (예컨대, DKK1 단백질) 및 이를 암호화하는 유전자로 이루어진 군에서 선택된 1종 이상을 정량하는 단계를 포함할 수 있다. 상기 단계 i)의 생물 시료를 준비하는 단계는 환자로부터 생물 시료를 얻는(분리하는) 단계 또는 환자로부터 분리된 생물 시료를 입수하는 단계를 포함하는 것일 수 있다. 상기 단계 ii)에서 상기 상호작용하는 물질은 DKK 단백질 (예컨대 DKK1 단백질) 및/또는 DKK (예컨대 DKK1) 유전자에 특이적으로 결합하는 화학 물질(chemical, small molecule), 단백질, 펩타이드, 핵산 분자(폴리뉴클레오타이드, 올리고뉴클레오타이드, 등) 등으로 이루어진 군에서 선택된 1종 이상일 수 있다. 예컨대, 상기 상호작용하는 물질은 DKK 단백질 (예컨대 DKK1 단백질)에 특이적으로 결합하는 화합물 (small molecule), 항체, 앱타머, 또는 DKK 단백질 (예컨대 DKK1 단백질)을 암호화하는 유전자의 일부 또는 전부에 결합하는 폴리뉴클레오타이드 (예컨대, 프라이머, 프로브, 앱타머 등), 등일 수 있으며, 이들은 형광 물질, 발색 물질 등의 표지 물질로 표지되거나 표지되지 않은 것일 수 있다. 상기 단계 iii)에서, 상기 반응물은 단계 ii)에서 얻어진 DKK 단백질 (예컨대 DKK1 단백질) 및/또는 DKK (예컨대 DKK1) 유전자로 이루어진 군에서 선택된 1종 이상 및 이와 상호작용하는 물질이 상호작용(결합)하여 생성된 복합체(complex)일 수 있으며, 상기 정량하는 단계는 상기 생성된 복합체를 정량하거나, 상기 복합체에 표지된 표지 물질을 측정하거나, 상기 복합체를 시료로부터 분리한 후, 이로부터 DKK 단백질 (예컨대 DKK1 단백질) 및/또는 DKK (예컨대 DKK1) 유전자를 다시 분리하여 분리된 DKK 단백질 (예컨대 DKK1 단백질) 및/또는 DKK (예컨대 DKK1) 유전자를 정량하는 단계를 포함하는 것일 수 있다. 상기 DKK 단백질의 정량은 통상적인 단백질 정량 방법, 예컨대, 면역크로마토그래피(Immunochromatography), 면역조직화학염색, 효소결합 면역흡착 분석(enzyme linked immunosorbent assay: ELISA), 방사선 면역측정법(radioimmunoassay: RIA), 효소 면역분석(enzyme immunoassay: EIA), 형광면역분석(Floresence immunoassay: FIA), 발광면역분석(luminescence immunoassay: LIA), 웨스턴블라팅(Western blotting), 마이크로어레이법, 등으로 이루어진 군으로부터 선택된 방법에 의하여 수행될 수 있으나, 이에 제한되는 것은 아니다. DKK 유전자의 정량은 통상적인 유전자 정량 방법, 예컨대, 폴리머레이즈 연쇄 반응법 (PCR; 예컨대 qPCR, real-time PCR 등), FISH(fluorescent in situ hybridization), 마이크로어레이법 등으로 이루어진 군에서 선택된 방법에 의하여 수행될 수 있으나, 이에 제한되는 것은 아니다.A method for predicting the efficacy of the c-Met inhibitor and / or a method for selecting a target of the c-Met inhibitor and / or a method for monitoring the efficacy after administration of the c-Met inhibitor, wherein the DKK protein (eg, DKK1 protein) in the biological sample and Measuring one or more levels selected from the group consisting of genes encoding them may optionally include: i) preparing a biological sample; ii) reacting the biological sample by treating (adding) and reacting a substance interacting with at least one selected from the group consisting of DKK protein (eg, DKK1 protein) and a gene encoding the same; And iii) analyzing the obtained reactant to quantify one or more selected from the group consisting of DKK protein (eg, DKK1 protein) and genes encoding the same. Preparing the biological sample of step i) may include obtaining (separating) a biological sample from the patient or obtaining a biological sample separated from the patient. In step ii) the interacting substance is a chemical, small molecule, protein, peptide, nucleic acid molecule (poly) that specifically binds to a DKK protein (such as DKK1 protein) and / or a DKK (such as DKK1) gene. Nucleotides, oligonucleotides, etc.), and the like. For example, the interacting agent binds to some or all of a small molecule, antibody, aptamer, or gene encoding a DKK protein (such as DKK1 protein) that specifically binds to a DKK protein (such as DKK1 protein). Polynucleotides (eg, primers, probes, aptamers, etc.), and the like, which may or may not be labeled with a labeling material such as a fluorescent material or a coloring material. In step iii), the reactant interacts (binds) with at least one selected from the group consisting of DKK protein (such as DKK1 protein) and / or DKK (such as DKK1) gene obtained in step ii) and a substance interacting with it. And the quantifying step may be performed by quantifying the generated complex, measuring a labeled substance labeled on the complex, or separating the complex from a sample, and then extracting the DKK protein (eg, And re-isolating the DKK1 protein) and / or the DKK (eg DKK1) gene to quantify the isolated DKK protein (eg DKK1 protein) and / or DKK (eg DKK1) gene. Quantification of the DKK protein is conventional protein quantification methods, such as immunochromatography, immunohistochemical staining, enzyme linked immunosorbent assay (ELISA), radioimmunoassay (RIA), enzyme By immunoassay (EIA), fluorescence immunoassay (FIA), luminescence immunoassay (LIA), Western blotting, microarray, etc. It may be performed, but is not limited thereto. Quantification of the DKK gene is carried out in a conventional gene quantification method such as polymerase chain reaction (PCR; such as qPCR, real-time PCR, etc.), FISH (fluorescent in situ hybridization), microarray method, etc. It may be performed by, but is not limited thereto.
또한, 상기 효능 예측 방법 및/또는 대상 선별 방법은 상기 판단하는 단계 이후에, c-Met 저해제가 효능을 나타낼 것으로 판단 (예측)된 환자 또는 c-Met 저해제를 적용하기에 적합한 것으로 판단된 환자에게 c-Met 저해제의 약학적 유효량을 투여하는 단계를 추가로 포함할 수 있다. 또한, 상기 모니터링 방법은 상기 판단하는 단계 이후에, c-Met 저해제가 효능을 발휘하고 있는 것으로 판단 (검정)된 환자에게 c-Met 저해제의 약학적 유효량을 투여하는 단계, 또는 c-Met 저해제가 효능을 발휘하지 못하고 있는 것으로 판단 (검정)된 환자에게 c-Met 저해제의 투여를 중단하는 단계를 추가로 포함할 수 있다. In addition, the method for predicting efficacy and / or subject selection may be performed after the step of judging to a patient judged (predicted) that the c-Met inhibitor will exhibit efficacy or to a patient determined to be suitable for applying the c-Met inhibitor. The method may further comprise administering a pharmaceutically effective amount of a c-Met inhibitor. In addition, the monitoring method is a step of administering a pharmaceutically effective amount of a c-Met inhibitor to a patient judged (tested) that the c-Met inhibitor is effective after the step of determining, or the c-Met inhibitor is Discontinuing administration of the c-Met inhibitor to the patient judged (black) to be ineffective.
본 명세서에서, 상기 c-Met 저해제의 적용 대상은 c-Met 저해제를 사용하는 치료법을 적용하기에 적합한 환자를 의미하는 것으로, 모든 포유류, 예컨대 인간, 원숭이 등의 영장류, 마우스, 래트 등의 설치류일 수 있고, 예컨대 암환자일 수 있다. 상기 생물 시료는 c-Met 저해제를 적용하고자 하는 모든 환자(예컨대, 인간, 원숭이 등의 영장류, 마우스, 래트 등의 설치류 등을 포함하는 포유류), 예컨대 암환자, 또는 상기 환자로부터 분리되거나 인공적으로 배양된 세포, 조직, 체액 (예컨대, 혈액, 혈청, 소변, 타액 등) 등일 수 있으며, 예컨대 혈액 또는 혈청일 수 있다. In the present specification, the subject of application of the c-Met inhibitor refers to a patient suitable for applying a therapy using the c-Met inhibitor, and all mammals, such as primates such as humans and monkeys, rodents such as mice and rats. Can be, for example, cancer patients. The biological sample is isolated or artificially cultured from all patients (e.g., mammals including primates such as humans, monkeys, rodents, mice, rats, etc.), such as cancer patients, or the patient to which the c-Met inhibitor is to be applied. Cells, tissues, body fluids (eg, blood, serum, urine, saliva, etc.), and the like, for example, blood or serum.
한편, c-Met 저해제가 효능을 발휘하기 위해서는 표적 물질인 c-Met 고발현 조건 (일정 수준 이상 존재)이 충족될 것이 전제될 수 있다. On the other hand, in order for the c-Met inhibitor to be effective, it may be assumed that the target material, c-Met high expression conditions (present a certain level or more) is satisfied.
따라서, 상기 c-Met 저해제의 효능 예측용 조성물 (또는 키트), 효능 모니터링용 조성물 (또는 키트), 또는 적용 대상 선별용 조성물 (또는 키트)은 c-Met 및 이를 암호화하는 유전자(예컨대, 전장 DNA, cDNA, mRNA 등)로 이루어진 군에서 선택된 1종 이상과 상호작용 하는 물질을 추가로 포함할 수 있다. 상기 c-Met 및/또는 이를 암호화하는 유전자와 상호작용하는 물질은 상기 c-Met 및/또는 이를 암호화하는 유전자에 특이적으로 결합하는 화학 물질(chemical, small molecule), 단백질, 펩타이드, 핵산 분자(폴리뉴클레오타이드, 올리고뉴클레오타이드, 등) 등으로 이루어진 군에서 선택된 1종 이상일 수 있다. 예컨대, 상기 c-Met 및/또는 이를 암호화하는 유전자와 상호작용하는 물질은 c-Met에 특이적으로 결합하는 화합물, 항체, 압타머, 및 c-Met 유전자의 전부 또는 일부에 결합하는 핵산 분자(예컨대, 프라이머, 프로브, 앱타머 등) 등으로 이루어진 군에서 선택된 1종 이상일 수 있다. Accordingly, the composition (or kit) for predicting the efficacy of the c-Met inhibitor, the composition (or kit) for monitoring the efficacy, or the composition (or kit) for selecting a target to be applied is c-Met and a gene encoding the same (eg, full-length DNA). , cDNA, mRNA, etc.) may further include a substance that interacts with one or more selected from the group consisting of. Substances that interact with the c-Met and / or genes encoding the same may include chemical, small molecules, proteins, peptides, nucleic acid molecules (specifically binding to the c-Met and / or genes encoding the same). Polynucleotides, oligonucleotides, and the like), and the like. For example, a substance that interacts with the c-Met and / or a gene encoding the c-Met may include a compound, an antibody, an aptamer, and a nucleic acid molecule that binds to all or part of a c-Met gene. For example, it may be one or more selected from the group consisting of primers, probes, aptamers, and the like.
또한, 상기 c-Met 저해제의 효능 예측 방법, 효능 모니터링 방법, 또는 적용 대상 선별 방법은 환자로부터 얻어진 생물 시료의 c-Met 단백질 수준 및/또는 이를 암호화하는 유전자 (예컨대, 전장 DNA, cDNA, mRNA 등)의 수준을 측정하는 단계를 추가로 포함할 수 있다. 상기 시료의 c-Met 단백질 수준 또는 이를 암호화하는 유전자 (예컨대, 전장 DNA, cDNA, mRNA 등)의 수준을 측정하는 단계는 앞서 설명한 DKK 단백질 및/또는 이를 암호화하는 유전자의 수준을 측정하는 단계와의 순서에 있어서 제한이 없으며, 상기 두 측정 단계는 동시에 또는 순서에 관계없이 순차적으로 수행될 수 있다. 그 구체적인 측정 방법은 앞서 기재한 DKK 단백질 및/또는 이를 암호화하는 유전자의 수준을 측정하는 방법과 같다. 예컨대, 통상적인 웨스턴 블라팅 방법을 사용하여, 상기 생물시료 (예컨대, 암세포 또는 암조직)으로부터 얻어진 전체 세포내 단백질 일정량 (예컨대, 10ug(microgram))을 로딩하고, 필름에 일정시간 (예컨대, 30초 정도) 노출시 band가 검출되는 경우, c-Met 고발현이 인정되어, c-Met 저해제를 사용하는 치료가 효능을 나타낼 수 있는 전제 요건이 충족되었다고 판단할 수 있다. 또 다른 구체예에서, Affymetrix U133 Plus 2.0 어레이를 사용하여 제조자 설명서에 따라서 mRNA 수준을 측정한 결과, 생물 시료 내 c-Met의 mRNA 수준이 약 13.5 이상, 약 13.6 이상 또는 약 13.78 이상인 경우, c-Met 고발현이 인정되어, c-Met 저해제를 사용하는 치료가 효능을 나타낼 수 있는 전제 요건이 충족되었다고 판단할 수 있다. 이와 같은 c-Met의 고발현 특성을 갖는 암세포는 주로 폐암, 유방암, 뇌암, 위암, 간암, 신장암 등의 암세포일 수 있으나, 다른 종류의 암세포라도 하여도 환자 개개인의 특성에 따라서 c-Met 발현량이 높은 경우도 c-Met 저해제를 이용하는 치료 대상에 포함될 수 있다. In addition, the method for predicting the efficacy of the c-Met inhibitor, the method for monitoring the efficacy, or the method for screening an application may include c-Met protein levels and / or genes encoding the same (eg, full-length DNA, cDNA, mRNA, etc.) in a biological sample obtained from a patient. The method may further include measuring the level of c). Determining the c-Met protein level of the sample or the level of genes encoding the same (eg, full-length DNA, cDNA, mRNA, etc.) is the same as the step of measuring the level of the DKK protein and / or the gene encoding the same as described above There is no limitation in order, and the two measuring steps may be performed simultaneously or sequentially in any order. The specific measuring method is the same as the method of measuring the level of the DKK protein described above and / or the gene encoding the same. For example, using a conventional western blotting method, a certain amount of total intracellular protein (e.g., 10 ug (microgram)) obtained from the biological sample (e.g., cancer cells or cancer tissues) is loaded, and the film is elapsed for a certain time (e.g., 30). When bands are detected upon exposure, c-Met high expression is recognized, indicating that treatment with c-Met inhibitors has met the prerequisites for efficacy. In another embodiment, mRNA levels are measured according to manufacturer's instructions using an Affymetrix U133 Plus 2.0 array and c-Met in the biological sample has an mRNA level of at least about 13.5, at least about 13.6, or at least about 13.78, Met high expression is recognized, and it can be determined that treatment with c-Met inhibitors has met the prerequisites for efficacy. The cancer cells having high expression characteristics of c-Met may be cancer cells such as lung cancer, breast cancer, brain cancer, stomach cancer, liver cancer, kidney cancer, etc., but c-Met expression according to the characteristics of individual patients may be other types of cancer cells. High doses can also be included in the treatment target using c-Met inhibitors.
다른 구체예에서, 상기 c-Met 저해제의 효능 예측 또는 모니터링 방법 또는 c-Met 저해제의 적용 대상 선별 방법에서 사용된 생물 시료는 환자로부터 얻어진 조직, 세포, 또는 체액 (혈액, 혈청, 소변, 타액 등)일 수 있으며, 예컨대, c-Met 발현량이 높은, 예컨대, Affymetrix U133 Plus 2.0 어레이를 이용한 측정 결과 c-Met 수준이 약 13.5 이상, 약 13.6 이상 또는 약 13.78 이상인 조직, 세포, 또는 체액 (혈액, 혈청, 소변, 타액 등)일 수 있다. In another embodiment, the biological sample used in the method for predicting or monitoring the efficacy of the c-Met inhibitor or the screening method for applying the c-Met inhibitor is a tissue, cell, or body fluid (blood, serum, urine, saliva, etc.) obtained from a patient. Tissue, cells, or body fluids (blood, blood, or the like) that have a high c-Met expression level, such as, for example, a c-Met level of at least about 13.5, at least about 13.6, or at least about 13.78, as measured using an Affymetrix U133 Plus 2.0 array. Serum, urine, saliva, etc.).
다른 예는 DKK 단백질 (예컨대 DKK1) 및/또는 이를 암호화하는 유전자로 이루어진 군에서 선택된 1종 이상의 수준이 높은 대상에게 c-Met 저해제를 투여하는 단계를 포함하는 c-Met 억제 (또는 분해) 방법을 제공한다. Another example is a method of inhibiting c-Met (or degradation) comprising administering a c-Met inhibitor to at least one high level subject selected from the group consisting of DKK proteins (such as DKK1) and / or genes encoding the same. to provide.
다른 예는 DKK 단백질 (예컨대 DKK1) 및/또는 이를 암호화하는 유전자로 이루어진 군에서 선택된 1종 이상의 수준이 높은 대상에게 c-Met 저해제를 투여하는 단계를 포함하는 암의 치료 방법을 제공한다. Another example provides a method of treating cancer comprising administering a c-Met inhibitor to one or more high-level subjects selected from the group consisting of DKK proteins (such as DKK1) and / or genes encoding them.
DKK 단백질 (예컨대 DKK1) 및/또는 이를 암호화하는 유전자로 이루어진 군에서 선택된 1종 이상의 수준이 높다함은 앞서 설명한 바와 같이 판단될 수 있다.One or more levels selected from the group consisting of DKK proteins (eg DKK1) and / or genes encoding them may be determined as described above.
상기 DKK 단백질 (예컨대 DKK1) 및 이를 암호화하는 유전자로 이루어진 군에서 선택된 1종 이상의 수준이 높은 환자는 앞서 설명한 c-Met 저해제의 적용 대상 선별 조성물, 키트 및/또는 방법에 의하여 선별된 대상일 수 있다. 따라서, 상기 c-Met 억제 방법 또는 암의 치료 방법은 상기 투여 단계 이전에 상기 항 c-Met 항체 적용 대상을 선별하는 단계를 추가로 포함할 수 있으며, 그 구체적 방법 및 단계를 앞서 설명한 바와 같다. One or more high-level patients selected from the group consisting of the DKK protein (eg, DKK1) and genes encoding the same may be subjects selected by the selected compositions, kits and / or methods to which the c-Met inhibitor described above is applied. . Therefore, the c-Met inhibition method or the method of treating cancer may further comprise the step of selecting the anti-c-Met antibody application target prior to the administering step, the specific methods and steps as described above.
보다 구체적으로, 상기 c-Met 억제 방법 또는 암의 예방 및/또는 치료 방법은,More specifically, the c-Met inhibition method or a method for preventing and / or treating cancer,
c-Met 저해제의 적용 대상을 확인하는 단계; 및identifying a target of the c-Met inhibitor; And
상기 c-Met 저해제의 적용 대상에게 c-Met 저해제의 약학적 유효량을 투여하는 단계Administering a pharmaceutically effective amount of a c-Met inhibitor to a subject to which the c-Met inhibitor is applied
를 포함할 수 있다. It may include.
다른 구체예에서, 상기 c-Met 억제 방법 또는 암의 예방 및/또는 치료 방법은, In another embodiment, the method of inhibiting c-Met or the method of preventing and / or treating cancer,
생물 시료 내의 DKK 단백질 (예컨대 DKK1) 및/또는 이를 암호화하는 유전자로 이루어진 군에서 선택된 1종 이상의 수준을 측정하여 c-Met 저해제의 적용 대상을 선별하는 단계;Selecting at least one level of c-Met inhibitor by measuring one or more levels selected from the group consisting of DKK proteins (eg, DKK1) and / or genes encoding them in a biological sample;
상기 선별된 c-Met 저해제의 적용 대상에게 c-Met 저해제의 약학적 유효량을 투여하는 단계Administering a pharmaceutically effective amount of a c-Met inhibitor to a subject to which the selected c-Met inhibitor is applied
를 포함할 수 있다.It may include.
이 때, 상기 c-Met 저해제의 투여 조건 예컨대, 투여량, 투여 간격, 및/또는 투여 회수는 상기 c-Met 저해제의 효능 검정 방법에서 판단된 c-Met 저해제의 적절한 투여 조건일 수 있다.At this time, the administration conditions of the c-Met inhibitor, such as the dosage, the interval of administration, and / or the number of administrations may be appropriate administration conditions of the c-Met inhibitor determined in the efficacy assay method of the c-Met inhibitor.
한편, DKK1은 Wnt 길항제이므로 DKK1 발현이 높은 경우 Wnt 신호화가 억제되어 있고, DKK1 발현량을 낮추면 Wnt signaling이 활성화될 수 있다. 항 c-Met 항체와 같은 c-Met 저해제에 대한 저항성이 유도된 경우 Wnt 신호화(signaling)의 활성화가 하나의 원인이 될 수 있으므로, 항 c-Met 항체와 같은 c-Met 저해제를 Wnt 신호화 저해제와 함께 사용함으로써 항 c-Met 항체와 같은 c-Met 저해제에 대한 저항성을 극복할 수 있다 (도 5 참조).On the other hand, since DKK1 is a Wnt antagonist, when DKK1 expression is high, Wnt signaling is suppressed. When DKK1 expression is decreased, Wnt signaling may be activated. If resistance to c-Met inhibitors such as anti-c-Met antibodies is induced, activation of Wnt signaling may be one cause, so Wnt signaling of c-Met inhibitors such as anti-c-Met antibodies Use with inhibitors can overcome resistance to c-Met inhibitors such as anti-c-Met antibodies (see FIG. 5).
따라서, 본 발명의 다른 예는 c-Met 저해제 및 Wnt 신호화 저해제를 유효성분으로 포함하는 c-Met 저해제에 대한 저항성 극복 또는 저감 (개선)을 위한 병용 투여용 약학 조성물을 제공한다. 다른 예는 c-Met 저해제 및 Wnt 신호화 저해제를 유효성분으로 포함하는 암의 예방 및/또는 치료를 위한 병용 투여용 약학 조성물을 제공한다. 상기 암은 c-Met 저해제, 예컨대 항 c-Met 항체에 대하여 내재적 또는 지속적 투여에 의한 획득 저항성을 갖는 암일 수 있다.Accordingly, another embodiment of the present invention provides a pharmaceutical composition for concomitant administration for overcoming or reducing (improving) resistance to a c-Met inhibitor including an c-Met inhibitor and a Wnt signaling inhibitor as an active ingredient. Another example provides a pharmaceutical composition for concomitant administration for the prevention and / or treatment of cancer comprising a c-Met inhibitor and a Wnt signaling inhibitor as an active ingredient. The cancer may be a cancer having acquired resistance by intrinsic or sustained administration to a c-Met inhibitor, such as an anti-c-Met antibody.
일 구체예에서, 상기 병용 투여용 약학 조성물은 c-Met 저해제의 약학적 유효량 및 Wnt 신호화 저해제의 약학적 유효량이 혼합된 혼합제를 포함하는 두 약물의 동시 투여를 위한 형태일 수 있다. 다른 구체예에서, 상기 병용 투여용 약학 조성물은 c-Met 저해제의 약학적 유효량 및 Wnt 신호화 저해제의 약학적 유효량이 각각 제제화되어 동시적 또는 순차적으로 투여되기 위한 형태일 수 있다. 이 경우, 상기 병용 투여용 약학 조성물은 유효 성분으로 c-Met 저해제의 약학적 유효량을 포함하는 제1 약학 조성물 및 유효성분으로 Wnt 신호화 저해제의 약학적 유효량을 포함하는 제2 약학 조성물을 포함하는 동시적 또는 순차적 투여를 위한 병용 투여용 약학 조성물일 수 있다. 순차적 투여의 경우 그 순서는 서로 바뀌어도 무방하다.In one embodiment, the pharmaceutical composition for concomitant administration may be in the form for simultaneous administration of two drugs, including a mixture of a pharmaceutically effective amount of a c-Met inhibitor and a pharmaceutically effective amount of a Wnt signaling inhibitor. In another embodiment, the pharmaceutical composition for concomitant administration may be in a form for formulating a pharmaceutically effective amount of a c-Met inhibitor and a pharmaceutically effective amount of a Wnt signaling inhibitor, respectively, to be administered simultaneously or sequentially. In this case, the pharmaceutical composition for concomitant administration comprises a first pharmaceutical composition comprising a pharmaceutically effective amount of a c-Met inhibitor as an active ingredient and a second pharmaceutical composition comprising a pharmaceutically effective amount of a Wnt signaling inhibitor as an active ingredient. It may be a pharmaceutical composition for concomitant administration for simultaneous or sequential administration. In the case of sequential administration, the order may be interchanged.
다른 예는 c-Met 저해제의 약학적 유효량을 포함하는 제1 약학 조성물, Wnt 신호화 저해제의 약학적 유효량을 포함하는 제2 약학 조성물, 및 포장 용기를 포함하는, c-Met 저해제에 대한 저항성 극복 또는 저감 (개선)을 위한 키트를 제공한다. 다른 예는 c-Met 저해제의 약학적 유효량을 포함하는 제1 약학 조성물, Wnt 신호화 저해제의 약학적 유효량을 포함하는 제2 약학 조성물, 및 포장 용기를 포함하는, 암의 예방 및/또는 치료용 키트를 제공한다. 상기 암은 c-Met 저해제, 예컨대 항 c-Met 항체에 대하여 내재적 또는 지속적 투여에 의한 획득 저항성을 갖는 암일 수 있다.Another example overcomes resistance to c-Met inhibitors, including a first pharmaceutical composition comprising a pharmaceutically effective amount of a c-Met inhibitor, a second pharmaceutical composition comprising a pharmaceutically effective amount of a Wnt signaling inhibitor, and a packaging container Or kits for abatement (improvement). Another example is for the prevention and / or treatment of cancer comprising a first pharmaceutical composition comprising a pharmaceutically effective amount of a c-Met inhibitor, a second pharmaceutical composition comprising a pharmaceutically effective amount of a Wnt signaling inhibitor, and a packaging container Provide the kit. The cancer may be a cancer having acquired resistance by intrinsic or sustained administration to a c-Met inhibitor, such as an anti-c-Met antibody.
다른 예는 c-Met 저해제 및 Wnt 신호화 저해제를 암의 예방 및/또는 치료를 필요로 하는 환자에게 병용 투여하는 단계를 포함하는 c-Met 저해제에 대한 저항성 극복 또는 저감 (개선) 방법을 제공한다. 또 다른 예는 c-Met 저해제 및 Wnt 신호화 저해제를 암의 예방 및/또는 치료를 필요로 하는 환자에게 병용 투여하는 단계를 포함하는 암의 예방 및/또는 치료 방법을 제공한다. 상기 암은 c-Met 저해제, 예컨대 항 c-Met 항체에 대하여 내재적 또는 지속적 투여에 의한 획득 저항성을 갖는 암일 수 있다. 상기 방법은 투여하는 단계 이전에, c-Met 저해제에 대한 저항성 극복 또는 저감 (개선) 또는 암의 예방 및/또는 치료를 필요로 하는 환자를 확인하는 단계를 추가로 포함할 수 있다. Another example provides a method of overcoming or reducing (improving) resistance to a c-Met inhibitor comprising co-administering a c-Met inhibitor and a Wnt signaling inhibitor to a patient in need of prophylaxis and / or treatment of cancer. . Another example provides a method of preventing and / or treating cancer comprising co-administering a c-Met inhibitor and a Wnt signaling inhibitor to a patient in need thereof. The cancer may be a cancer having acquired resistance by intrinsic or sustained administration to a c-Met inhibitor, such as an anti-c-Met antibody. The method may further comprise identifying, prior to administering, the patient in need of overcoming or reducing (improving) resistance to the c-Met inhibitor or preventing and / or treating cancer.
한 구체예에서, 상기 병용 투여는 c-Met 저해제와 Wnt 신호화 저해제를 혼합한 혼합제를 투여함으로써 수행될 수 있다. 다른 구체예에서, 상기 병용 투여는 c-Met 저해제를 투여하는 제1 단계 및 Wnt 신호화 저해제를 투여하는 제2 단계를 동시에 또는 순차적으로 수행하는 것일 수 있다. 순차적으로 투여하는 경우 그 순서는 서로 바뀌어도 무방하다. In one embodiment, the combination administration may be carried out by administering a mixture of c-Met inhibitors and Wnt signaling inhibitors. In another embodiment, the combination administration may be performed simultaneously or sequentially with the first step of administering the c-Met inhibitor and the second step of administering the Wnt signaling inhibitor. When sequentially administered, the order may be interchanged.
일 구체예에서, 상기 Wnt 신호화 저해제는 Wnt 신호화 경로에 관여하는 단백질 및/또는 이들을 암호화하는 유전자의 발현 및/또는 기능을 억제하는 모든 물질일 수 있으며, 예컨대, Wnt 신호화 경로에 관여하는 단백질에 특이적으로 결합 및/또는 작용하는 항체, 압타머, 소분자 화합물 (small molecule), Wnt 신호화 경로에 관여하는 단백질을 암호화하는 유전자에 특이적으로 결합하는 안티센스 올리고뉴클레오타이드, siRNA (small interfering RNA), shRNA (small hairpin RNA), miRNA (microRNA), 등으로 이루어진 군에서 선택된 1종 이상일 수 있다. 상기 Wnt 신호화 경로에 관여하는 단백질은 Wnt 단백질 패밀리 (예컨대, 인간 유래; Wnt1, Wnt2, Wnt2B, Wnt3, Wnt3A, Wnt4, Wnt5A, Wnt5B, Wnt6, Wnt7A, Wnt7B, Wnt8A, Wnt8B, Wnt9A, Wnt9B, Wnt10A, Wnt10B, Wnt11, Wnt16 등), 리포프로테인 수용체-관련 단백질 (lipoprotein receptor-related protein; LRP), Frizzled (Fz) family receptor, DSH(phosphoprotein Dishevelled), 액신(Axin) 등으로 이루어진 군에서 선택된 1종 이상일 수 있다. 예컨대, 상기 Wnt 신호화 저해제는 DKK 단백질 (예컨대 DKK1), XAV939 (CAS Number 284028-89-3; 3,5,7,8-Tetrahydro-2-[4-(trifluoromethyl)phenyl]-4H-thiopyrano[4,3-d]pyrimidin-4-one), PRI-724 (CAS Number: 847591-62-2; (6S,9aS)-N-benzyl-6-(4-hydroxybenzyl)-8-(naphthalen-1-ylmethyl)-4,7-dioxooctahydro-1H-pyrazino[1,2-a]pyrimidine-1-carboxamide), CWP232291, 2,4-Diamino-quinazoline, FJ9 (화학구조:
Figure PCTKR2016015043-appb-I000001
), LGK974 (CAS Number: 1243244-14-5; 2',3-dimethyl-N-[5-(2-pyrazinyl)-2-pyridinyl]-[2,4'-bipyridine]-5-acetamide), G007-LK (CAS number: 1380672-07-0 (G007-LK, E-isomer) 또는 1380672-82-1 (E or Z isomer); (E)-4-(5-(2-(4-(2-chlorophenyl)-5-(5-(methylsulfonyl)pyridin-2-yl)-4H-1,2,4-triazol-3-yl)vinyl)-1,3,4-oxadiazol-2-yl)benzonitrile), Pyrvinium, Foxy-5 (펩타이드: N-Formyl-MDGCEL; 서열번호 110), OMP-54F28 (Fzd8-Fc; 서열번호 111), OMP-18R5 (vantictumab), OTSA101 (Chimeric humanized mAb against FZD10; US 2013/0230521 A1)등으로 이루어진 군에서 선택된 1종 이상일 수 있으나, 이에 제한되는 것은 아니다.
In one embodiment, the Wnt signaling inhibitor may be any substance that inhibits the expression and / or function of proteins involved in the Wnt signaling pathway and / or genes encoding them, such as, for example, those involved in the Wnt signaling pathway. Antibodies, aptamers, small molecules that specifically bind and / or act on proteins, antisense oligonucleotides that specifically bind to genes encoding proteins involved in the Wnt signaling pathway, and small interfering RNA ), shRNA (small hairpin RNA), miRNA (microRNA), and the like. The proteins involved in the Wnt signaling pathway are Wnt protein families (e.g., human origin; Wnt1, Wnt2, Wnt2B, Wnt3, Wnt3A, Wnt4, Wnt5A, Wnt5B, Wnt6, Wnt7A, Wnt7B, Wnt8A, Wnt8B, Wnt9A, Wnt9B, Wnt10A) , Wnt10B, Wnt11, Wnt16, etc.), lipoprotein receptor-related protein (LRP), Frizzled (Fz) family receptor, DSH (phosphoprotein Dishevelled), Axin, etc. It may be abnormal. For example, the Wnt signaling inhibitor may be a DKK protein (such as DKK1), XAV939 (CAS Number 284028-89-3; 3,5,7,8-Tetrahydro-2- [4- (trifluoromethyl) phenyl] -4H-thiopyrano [ 4,3-d] pyrimidin-4-one), PRI-724 (CAS Number: 847591-62-2; (6S, 9aS) -N-benzyl-6- (4-hydroxybenzyl) -8- (naphthalen-1 -ylmethyl) -4,7-dioxooctahydro-1H-pyrazino [1,2-a] pyrimidine-1-carboxamide), CWP232291, 2,4-Diamino-quinazoline, FJ9 (chemical structure:
Figure PCTKR2016015043-appb-I000001
), LGK974 (CAS Number: 1243244-14-5; 2 ', 3-dimethyl-N- [5- (2-pyrazinyl) -2-pyridinyl]-[2,4'-bipyridine] -5-acetamide), G007-LK (CAS number: 1380672-07-0 (G007-LK, E-isomer) or 1380672-82-1 (E or Z isomer); (E) -4- (5- (2- (4- ( 2-chlorophenyl) -5- (5- (methylsulfonyl) pyridin-2-yl) -4H-1,2,4-triazol-3-yl) vinyl) -1,3,4-oxadiazol-2-yl) benzonitrile ), Pyrvinium, Foxy-5 (peptide: N- Formyl-MDGCEL; SEQ ID NO: 110), OMP-54F28 (Fzd8-Fc; SEQ ID NO: 111), OMP-18R5 (vantictumab), OTSA101 (Chimeric humanized mAb against FZD10; US 2013/0230521 A1) may be one or more selected from the group consisting of, but is not limited thereto.
본 명세서에서 사용되는 "c-Met 저해제"는 c-Met를 인식 및/또는 결합하여 이를 분해하거나 발현을 억제하거나 기능을 저해하는 모든 물질일 수 있다. 예컨대, 상기 c-Met 저해제는 항 c-Met 항체, 이의 항원 결합 단편, 소분자 c-Met 저해제 등으로 이루어진 군에서 선택된 1종 이상일 수 있다. As used herein, a "c-Met inhibitor" may be any substance that recognizes and / or binds to and degrades, inhibits expression or inhibits function of c-Met. For example, the c-Met inhibitor may be at least one selected from the group consisting of anti-c-Met antibodies, antigen-binding fragments thereof, small molecule c-Met inhibitors, and the like.
상기 소분자 c-Met 저해제는 크리조티닙(crizotinib; PF-02341066; 3-((R)-1-(2,6-dichloro-3-fluorophenyl)ethoxy)-5-(1-(piperidin-4-yl)-1H-pyrazol-4-yl)pyridin-2-amine), 카보잔티닙(cabozantinib; XL-184; N-(4-(6,7-dimethoxyquinolin-4-yloxy)phenyl)-N-(4-fluorophenyl)cyclopropane-1,1-dicarboxamide), 포레티닙(foretinib; N-(3-fluoro-4-(6-methoxy-7-(3-morpholinopropoxy)quinolin-4-yloxy)phenyl)-N-(4-fluorophenyl)cyclopropane-1,1-dicarboxamide), PHA-665752((R,Z)-5-(2,6-dichlorobenzylsulfonyl)-3-((3,5-dimethyl-4-(2-(pyrrolidin-1-ylmethyl)pyrrolidine-1-carbonyl)-1H-pyrrol-2-yl)methylene)indolin-2-one), SU11274((Z)-N-(3-chlorophenyl)-3-((3,5-dimethyl-4-(1-methylpiperazine-4-carbonyl)-1H-pyrrol-2-yl)methylene)-N-methyl-2-oxoindoline-5-sulfonamide), SGX-523(6-(6-(1-methyl-1H-pyrazol-4-yl)-[1,2,4]triazolo[4,3-b]pyridazin-3-ylthio)quinoline), PF-04217903(2-(4-(3-(quinolin-6-ylmethyl)-3H-[1,2,3]triazolo[4,5-b]pyrazin-5-yl)-1H-pyrazol-1-yl)ethanol), EMD 1214063(Benzonitrile, 3-[1,6-Dihydro-1-[[3-[5-[(1-Methyl-4-Piperidinyl)Methoxy]-2-PyriMidinyl]Phenyl]Methyl]-6-Oxo-3-Pyridazinyl]), 골바티닙(Golvatinib; N-(2-fluoro-4-((2-(4-(4-methylpiperazin-1-yl)piperidine-1-carboxamido)pyridin-4-yl)oxy)phenyl)-N-(4-fluorophenyl)cyclopropane-1,1-dicarboxamide), INCB28060(capmatinib; 2-fluoro-N-methyl-4-(7-(quinolin-6-ylmethyl)imidazo[1,2-b][1,2,4]triazin-2-yl)benzamide), MK-2461(N-((2R)-1,4-Dioxan-2-ylmethyl)-N-methyl-N'-[3-(1-methyl-1H-pyrazol-4-yl)-5-oxo-5H-benzo[4,5]cyclohepta[1,2-b]pyridin-7-yl]sulfamide), 티반티닙(tivantinib; ARQ 197; (3R,4R)-3-(5,6-Dihydro-4H-pyrrolo[3,2,1-ij]quinolin-1-yl)-4-(1H-indol-3-yl)pyrrolidine-2,5-dione), NVP-BVU972(6-[[6-(1-Methyl-1H-pyrazol-4-yl)imidazo[1,2-b]pyridazin-3-yl]methyl]quinoline), AMG458({1-(2-hydroxy-2-methylpropyl)-N-[5-(7-methoxyquinolin-4-yloxy)pyridin-2-yl]-5-met hyl-3-oxo-2-phenyl-2,3-dihydro-1H-pyrazole-4-carboxamide}), BMS 794833(N-(4-((2-amino-3-chloropyridin-4-yl)oxy)-3-fluorophenyl)-5-(4-fluorophenyl)-4-oxo-1,4-dihydropyridine-3-carboxamide), BMS 777607(N-[4-[(2-Amino-3-chloropyridin-4-yl)oxy]-3-fluorophenyl]-4-ethoxy-1-(4-fluorophenyl)-2-oxo-1,2-dihydropyridine-3-carboxamide), MGCD-265(N-(3-Fluoro-4-(2-(1-methyl-1H-imidazol-4-yl)thieno[3,2-b]pyridin-7-yloxy)phenylcarbamothioyl)-2-phenylacetamide), AMG-208(7-Methoxy-4-[(6-phenyl-1,2,4-triazolo[4,3-b]pyridazin-3-yl)methoxy]quinoline), BMS-754807((2S)-1-[4-[(5-Cyclopropyl-1H-pyrazol-3-yl)amino]pyrrolo[2,1-f][1,2,4]triazin-2-yl]-N-(6-fluoro-3-pyridinyl)-2-methyl-2-pyrrolidinecarboxamide), JNJ-38877605(6-[Difluoro[6-(1-methyl-1H-pyrazol-4-yl)-1,2,4-triazolo[4,3-b]pyridazin-3-yl]methyl]quinoline), 이미다조[1,2,-알파]피리딘 유도체(imidazo[1,2-a]pyridine derivatives; ACS Med. Chem. Lett. 2015, 6, pp.507-512 참조), AMG-337 (
Figure PCTKR2016015043-appb-I000002
), DE605 (Oncotarget, Vol. 6, No. 14 pp.12340-12356 참조), 또는 이들의 약학적으로 허용 가능한 염 등으로 이루어진 군에서 선택된 1종 이상일 수 있다.
The small molecule c-Met inhibitor is crizotinib (PF-02341066; 3-((R) -1- (2,6-dichloro-3-fluorophenyl) ethoxy) -5- (1- (piperidin-4- yl) -1H-pyrazol-4-yl) pyridin-2-amine), cabozantinib; XL-184; N- (4- (6,7-dimethoxyquinolin-4-yloxy) phenyl) -N- ( 4-fluorophenyl) cyclopropane-1,1-dicarboxamide), forretinib; N- (3-fluoro-4- (6-methoxy-7- (3-morpholinopropoxy) quinolin-4-yloxy) phenyl) -N- (4-fluorophenyl) cyclopropane-1,1-dicarboxamide), PHA-665752 ((R, Z) -5- (2,6-dichlorobenzylsulfonyl) -3-((3,5-dimethyl-4- (2- ( pyrrolidin-1-ylmethyl) pyrrolidine-1-carbonyl) -1H-pyrrol-2-yl) methylene) indolin-2-one), SU11274 ((Z) -N- (3-chlorophenyl) -3-((3, 5-dimethyl-4- (1-methylpiperazine-4-carbonyl) -1H-pyrrol-2-yl) methylene) -N-methyl-2-oxoindoline-5-sulfonamide), SGX-523 (6- (6- ( 1-methyl-1H-pyrazol-4-yl)-[1,2,4] triazolo [4,3-b] pyridazin-3-ylthio) quinoline), PF-04217903 (2- (4- (3- ( quinolin-6-ylmethyl) -3H- [1,2,3] triazolo [4,5-b] pyrazin-5-yl) -1H-pyrazol-1-yl) ethanol), EMD 1214063 (Benzonitrile, 3- [ 1,6-Di hydro-1-[[3- [5-[(1-Methyl-4-Piperidinyl) Methoxy] -2-PyriMidinyl] Phenyl] Methyl] -6-Oxo-3-Pyridazinyl]), Golvatinib; N- (2-fluoro-4-((2- (4- (4-methylpiperazin-1-yl) piperidine-1-carboxamido) pyridin-4-yl) oxy) phenyl) -N- (4-fluorophenyl) cyclopropane -1,1-dicarboxamide), INCB28060 (capmatinib; 2-fluoro-N-methyl-4- (7- (quinolin-6-ylmethyl) imidazo [1,2-b] [1,2,4] triazin-2 -yl) benzamide), MK-2461 (N-((2R) -1,4-Dioxan-2-ylmethyl) -N-methyl-N '-[3- (1-methyl-1H-pyrazol-4-yl ) -5-oxo-5H-benzo [4,5] cyclohepta [1,2-b] pyridin-7-yl] sulfamide), tivantinib; ARQ 197; (3R, 4R) -3- (5, 6-Dihydro-4H-pyrrolo [3,2,1-ij] quinolin-1-yl) -4- (1H-indol-3-yl) pyrrolidine-2,5-dione), NVP-BVU972 (6- [ [6- (1-Methyl-1H-pyrazol-4-yl) imidazo [1,2-b] pyridazin-3-yl] methyl] quinoline), AMG458 ({1- (2-hydroxy-2-methylpropyl)- N- [5- (7-methoxyquinolin-4-yloxy) pyridin-2-yl] -5-met hyl-3-oxo-2-phenyl-2,3-dihydro-1H-pyrazole-4-carboxamide}), BMS 794833 (N- (4-((2-amino-3-chloropyridin-4-yl) oxy) -3-fluorophenyl) -5- (4-fluorophenyl) -4-oxo-1,4-dihydropyridine-3- carboxamide), BMS 777607 (N- [4-[(2-Amino-3-chloropyridin-4-yl) oxy] -3-fluorophenyl] -4-ethoxy-1- (4-fluorophenyl) -2- oxo-1,2-dihydropyridine-3-carboxamide), MGCD-265 (N- (3-Fluoro-4- (2- (1-methyl-1H-imidazol-4-yl) thieno [3,2-b] pyridin-7-yloxy) phenylcarbamothioyl) -2-phenylacetamide), AMG-208 (7-Methoxy-4-[(6-phenyl-1,2,4-triazolo [4,3-b] pyridazin-3-yl) methoxy] quinoline), BMS-754807 ((2S) -1- [4-[(5-Cyclopropyl-1H-pyrazol-3-yl) amino] pyrrolo [2,1-f] [1,2,4] triazin -2-yl] -N- (6-fluoro-3-pyridinyl) -2-methyl-2-pyrrolidinecarboxamide), JNJ-38877605 (6- [Difluoro [6- (1-methyl-1H-pyrazol-4-yl) ) -1,2,4-triazolo [4,3-b] pyridazin-3-yl] methyl] quinoline), imidazo [1,2-a] pyridine derivatives ; ACS Med. Chem. Lett. 2015, 6, pp.507-512), AMG-337 (
Figure PCTKR2016015043-appb-I000002
), DE605 (see Oncotarget, Vol. 6, No. 14 pp.12340-12356), or a pharmaceutically acceptable salt thereof, and the like.
예컨대, 상기 이미다조[1,2,-알파]피리딘 유도체는 "ACS Med. Chem. Lett. 2015, 6, pp.507-512 "에 나타난 바와 같이 다음의 구조식 1 또는 구조식 2의 구조를 갖는 것일 수 있다:For example, the imidazo [1,2, -alpha] pyridine derivative is one having the structure of Formula 1 or Formula 2 as shown in "ACS Med. Chem. Lett. 2015, 6, pp.507-512". Can:
구조식 1 Structural Formula 1
Figure PCTKR2016015043-appb-I000003
Figure PCTKR2016015043-appb-I000003
Figure PCTKR2016015043-appb-I000004
Figure PCTKR2016015043-appb-I000004
구조식 2 Structural Formula 2
Figure PCTKR2016015043-appb-I000005
Figure PCTKR2016015043-appb-I000005
Figure PCTKR2016015043-appb-I000006
Figure PCTKR2016015043-appb-I000006
상기 항 c-Met 항체 또는 이의 항원 결합 단편은 c-Met을 항원으로 인식하는 모든 항체 또는 그의 항원 결합 단편일 수 있다. 상기 항원 결합 단편은 항체의 scFv, (scFv)2, scFv-Fc, Fab, Fab' 및 F(ab')2로 이루어진 군에서 선택되는 것일 수 있다. The anti-c-Met antibody or antigen-binding fragment thereof may be any antibody or antigen-binding fragment thereof that recognizes c-Met as an antigen. The antigen binding fragment may be selected from the group consisting of scFv, (scFv) 2, scFv-Fc, Fab, Fab 'and F (ab') 2 of the antibody.
예컨대, 상기 항 c-Met 항체는 c-Met에 특이적으로 결합하여 세포내 이동(internalization) 및 분해(degradation)를 유도하는 모든 항체 또는 그의 항원 결합 단편일 수 있다. 상기 항 c-Met 항체는 c-Met의 특정 부위, 예컨대 SEMA 도메인 내의 특정 부위를 에피토프로 인식하는 것일 수 있다. For example, the anti-c-Met antibody may be any antibody or antigen-binding fragment thereof that specifically binds to c-Met to induce intracellular migration and degradation. The anti-c-Met antibody may be to recognize a specific site of c-Met, such as a specific site in the SEMA domain as an epitope.
상기 "c-Met 단백질"은 간세포 성장 인자와 결합하는 수용체 티로신 카이네이즈를 의미한다. 상기 c-Met 단백질은 모든 종에서 유래하는 것일 수 있으며, 예컨대, 인간 c-Met (예컨대, NP_000236), 원숭이 c-Met (예컨대, Macaca mulatta, NP_001162100) 등과 같은 영장류 유래의 것, 또는 마우스 c-Met (예컨대, NP_032617.2), 래트 c-Met (예컨대, NP_113705.1) 등과 같은 설치류 유래의 것 등일 수 있다. 상기 단백질은 예를 들면, GenBank Aceession Number NM_000245에 제공된 뉴클레오티드 서열에 의해 암호화된 폴리펩티드, 또는 GenBank Aceession Number NM_000236에 제공된 폴리펩티드 서열에 의해 암호화된 단백질, 또는 그의 세포외 도메인을 포함한다. 수용체 티로신 키나제 c-Met은 예를 들면, 암발생, 암전이, 암세포 이동, 암세포 침투, 신생혈관 생성 과정 등의 여러 가지 기작에 관여한다.The "c-Met protein" refers to receptor tyrosine kinase that binds to hepatocyte growth factor. The c-Met protein may be from any species, eg, from a primate such as human c-Met (eg NP_000236), monkey c-Met (eg Macaca mulatta, NP_001162100), or mouse c- Or from rodents such as Met (eg NP — 032617.2), rat c-Met (eg NP — 113705.1), and the like. The protein includes, for example, a polypeptide encoded by a nucleotide sequence provided in GenBank Aceession Number NM_000245, or a protein encoded by a polypeptide sequence provided in GenBank Aceession Number NM_000236, or an extracellular domain thereof. Receptor tyrosine kinase c-Met is involved in various mechanisms, for example, cancer development, cancer metastasis, cancer cell migration, cancer cell infiltration, neovascularization process, and the like.
HGF(Hepatocyte growth factor)의 수용체인 c-Met은 세포외 부위, 막투과 부위, 세포내 부위의 세 부분으로 구분되며, 세포외 부위의 경우, 이황화 결합에 의해 α-소단위체와 β-소단위체가 연결된 형태로 HGF 결합 도메인인 SEMA 도메인, PSI 도메인(plexin-semaphorins-integrin homology domain) 및 IPT 도메인(immunoglobulin-like fold shared by plexins and transcriptional factors domain)으로 이루어진다. c-Met 단백질의 SEMA 도메인은 서열번호 79의 아미노산 서열을 갖는 것일 수 있으며, c-Met의 세포외 부위에 존재하는 도메인으로서, HGF가 결합하는 부위에 해당한다. SEMA 도메인 중에서 특정 부위, 예컨대, 106번째부터 124번째까지에 해당하는 서열번호 71의 아미노산 서열을 갖는 영역은 c-Met 단백질의 SEMA 도메인 내의 에피토프 중 2번과 3번 프로펠러 도메인 사이의 루프(loop) 부위에 해당하며, 본 발명에서 제안되는 항 c-Met 항체의 에피토프로 작용할 수 있다.C-Met, a receptor for hepatocyte growth factor, is divided into three parts: extracellular site, transmembrane site, and intracellular site. In the extracellular site, the α- and β-subunits are separated by disulfide bonds. In linked form, it consists of the HGF binding domain, the SEMA domain, the PSI domain (plexin-semaphorins-integrin homology domain), and the IPT domain (immunoglobulin-like fold shared by plexins and transcriptional factors domain). The SEMA domain of the c-Met protein may have an amino acid sequence of SEQ ID NO: 79, and is a domain existing at an extracellular site of c-Met and corresponds to a site to which HGF binds. A region having an amino acid sequence of SEQ ID NO: 71 corresponding to a specific site in the SEMA domain, for example, 106 to 124, is a loop between propeller domains 2 and 3 of the epitopes in the SEMA domain of the c-Met protein. Corresponds to the site, and can act as the epitope of the anti-c-Met antibody proposed in the present invention.
용어, "에피토프(epitope)"는 항원 결정 부위(antigenic determinant)로서, 항체에 의해 인지되는 항원의 일부분을 의미하는 것으로 해석된다. 일 구체예에 따르면, 상기 에피토프는 c-Met 단백질의 SEMA 도메인(서열번호 79) 내의 연속하는 5개 이상의 아미노산을 포함하는 부위, 예컨대, c-Met 단백질의 SEMA 도메인(서열번호 79) 내의 106번째부터 124번째까지에 해당하는 서열번호 71 내에 위치하는 연속하는 5개 내지 19개의 아미노산을 포함하는 것일 수 있다. 예컨대, 상기 에피토프는 서열번호 71의 아미노산 서열 중 서열번호 73(EEPSQ)을 포함하여 연속하는 5 내지 19개의 아미노산으로 이루어진 것일 수 있으며, 예컨대, 서열번호 71, 서열번호 72 또는 서열번호 73의 아미노산 서열을 갖는 폴리펩티드일 수 있다. The term “epitope” is an antigenic determinant and is understood to mean a portion of an antigen recognized by an antibody. According to one embodiment, the epitope is the 106th site in a site comprising five or more contiguous amino acids in the SEMA domain (SEQ ID NO: 79) of the c-Met protein, eg, the SEMA domain (SEQ ID NO: 79) of the c-Met protein. To 124 th may include the contiguous 5 to 19 amino acids located in SEQ ID NO: 71. For example, the epitope may be composed of 5 to 19 consecutive amino acids including SEQ ID NO: 73 (EEPSQ) of the amino acid sequence of SEQ ID NO: 71, for example, SEQ ID NO: 71, SEQ ID NO: 72 or SEQ ID NO: 73 It may be a polypeptide having.
상기 서열번호 72의 아미노산 서열을 갖는 에피토프는 c-Met 단백질의 SEMA 도메인 내의 2번과 3번 프로펠러 구조의 도메인 사이의 루프 부위 중 가장 바깥으로 위치한 부위에 해당하며, 상기 서열번호 73의 아미노산 서열을 갖는 에피토프는 일 구체예에 따른 항체 또는 항원 결합 단편이 가장 특이적으로 결합하는 부위이다.The epitope having the amino acid sequence of SEQ ID NO: 72 corresponds to the outermost position of the loop site between the domains of propeller structure 2 and 3 in the SEMA domain of c-Met protein, and the amino acid sequence of SEQ ID NO: 73 The epitope having is the site to which the antibody or antigen binding fragment according to one embodiment most specifically binds.
따라서, 항 c-Met 항체는 서열번호 서열번호 71의 아미노산 서열 중 서열번호 73(EEPSQ)을 포함하는 연속하는 5 내지 19개의 아미노산을 포함하는 에피토프에 특이적으로 결합하는 것일 수 있으며, 예컨대, 서열번호 71, 서열번호 72, 또는 서열번호 73의 아미노산 서열을 갖는 에피토프에 특이적으로 결합하는 항체 또는 항원 결합 단편일 수 있다.Accordingly, the anti-c-Met antibody may specifically bind to an epitope comprising 5 to 19 consecutive amino acids comprising SEQ ID NO: 73 (EEPSQ) in the amino acid sequence of SEQ ID NO: 71, eg, a sequence. Or an antibody or antigen binding fragment that specifically binds to an epitope having the amino acid sequence of SEQ ID NO: 71, SEQ ID NO: 72, or SEQ ID NO: 73.
일 구체예에 따르면, 상기 항 c-Met 항체는,According to one embodiment, the anti-c-Met antibody,
서열번호 4의 아미노산 서열을 갖는 CDR-H1, 서열번호 5의 아미노산 서열, 서열번호 2의 아미노산 서열, 또는 서열번호 2의 아미노산 서열 내의 3번째부터 10번째까지의 아미노산을 포함하는 연속하는 8 내지 19개의 아미노산으로 이루어진 아미노산 서열을 갖는 CDR-H2, 및 서열번호 6의 아미노산 서열, 서열번호 85의 아미노산 서열, 또는 서열번호 85의 아미노산 서열 내의 1번째부터 6번째까지의 아미노산을 포함하는 연속하는 6 내지 13개의 아미노산으로 이루어진 아미노산 서열을 갖는 CDR-H3으로 이루어진 군에서 선택된 하나 이상의 중쇄 상보성 결정 영역(CDR), 또는 상기 하나 이상의 중쇄 상보성 결정 영역을 포함하는 중쇄 가변 부위; Consecutive 8 to 19 comprising CDR-H1 having the amino acid sequence of SEQ ID NO: 4, the amino acid sequence of SEQ ID NO: 5, the amino acid sequence of SEQ ID NO: 2, or the third to tenth amino acids within the amino acid sequence of SEQ ID NO: 2 CDR-H2 having an amino acid sequence consisting of four amino acids, and the amino acid sequence of SEQ ID NO: 6, the amino acid sequence of SEQ ID NO: 85, or a contiguous 6 to 6 amino acid including the first to sixth amino acids in the amino acid sequence of SEQ ID NO: 85; At least one heavy chain complementarity determining region (CDR) selected from the group consisting of CDR-H3 having an amino acid sequence of 13 amino acids, or a heavy chain variable region comprising said at least one heavy chain complementarity determining region;
서열번호 7의 아미노산 서열의 아미노산 서열을 갖는 CDR-L1, 서열번호 8의 아미노산 서열을 갖는 CDR-L2, 및 서열번호 9의 아미노산 서열, 서열번호 15, 서열번호 86의 아미노산 서열, 또는 서열번호 89의 아미노산 서열 내의 1번째부터 9번째까지의 아미노산을 포함하는 9 내지 17개의 아미노산으로 이루어진 아미노산 서열을 갖는 CDR-L3으로 이루어진 군에서 선택된 하나 이상의 경쇄 상보성 결정 영역 또는 상기 하나 이상의 경쇄 상보성 결정 영역을 포함하는 경쇄 가변 부위; CDR-L1 having an amino acid sequence of the amino acid sequence of SEQ ID NO: 7, CDR-L2 having an amino acid sequence of SEQ ID NO: 8, and an amino acid sequence of SEQ ID NO: 9, SEQ ID NO: 15, amino acid sequence of SEQ ID NO: 86, or SEQ ID NO: 89 At least one light chain complementarity determining region or at least one light chain complementarity determining region selected from the group consisting of CDR-L3 having an amino acid sequence consisting of 9 to 17 amino acids comprising the first to ninth amino acids in the amino acid sequence of Light chain variable region;
상기 중쇄 상보성 결정영역 및 경쇄 상보성 결정영역의 조합; 또는 A combination of the heavy chain complementarity determining region and the light chain complementarity determining region; or
상기 중쇄 가변 부위 및 경쇄 가변 부위의 조합Combination of the heavy chain variable region and light chain variable region
을 포함하는 것일 수 있다. It may be to include.
상기 서열번호 4 내지 서열번호 9는 각각 하기 일반식 Ⅰ 내지 일반식 Ⅵ으로 표시되는 아미노산 서열이다:SEQ ID NO: 4 to SEQ ID NO: 9 is an amino acid sequence represented by the general formulas (I) to (VI), respectively:
일반식 ⅠFormula Ⅰ
Xaa1-Xaa2-Tyr-Tyr-Met-Ser (서열번호 4),Xaa 1 -Xaa 2 -Tyr-Tyr-Met-Ser (SEQ ID NO: 4),
일반식 ⅡFormula II
Arg-Asn-Xaa3-Xaa4-Asn-Gly-Xaa5-Thr (서열번호 5),Arg-Asn-Xaa 3 -Xaa 4 -Asn-Gly-Xaa 5 -Thr (SEQ ID NO: 5),
일반식 ⅢFormula III
Asp-Asn-Trp-Leu-Xaa6-Tyr (서열번호 6),Asp-Asn-Trp-Leu-Xaa 6 -Tyr (SEQ ID NO: 6),
일반식 ⅣFormula IV
Lys-Ser-Ser-Xaa7-Ser-Leu-Leu-Ala-Xaa8-Gly-Asn-Xaa9-Xaa10-Asn-Tyr-Leu-Ala (서열번호 7)Lys-Ser-Ser-Xaa 7 -Ser-Leu-Leu-Ala-Xaa 8 -Gly-Asn-Xaa 9 -Xaa 10 -Asn-Tyr-Leu-Ala (SEQ ID NO: 7)
일반식 ⅤGeneral Formula Ⅴ
Trp-Xaa11-Ser-Xaa12-Arg-Val-Xaa13 (서열번호 8)Trp-Xaa 11 -Ser-Xaa 12 -Arg-Val-Xaa 13 (SEQ ID NO: 8)
일반식 ⅥGeneral formula Ⅵ
Xaa14-Gln-Ser-Tyr-Ser-Xaa15-Pro-Xaa16-Thr (서열번호 9)Xaa 14 -Gln-Ser-Tyr-Ser-Xaa 15 -Pro-Xaa 16 -Thr (SEQ ID NO: 9)
상기 일반식 Ⅰ에서, Xaa1은 존재하지 않거나 Pro 또는 Ser이고, Xaa2는 Glu 또는 Asp이며, In Formula I, Xaa 1 is absent or Pro or Ser, Xaa 2 is Glu or Asp,
상기 일반식 Ⅱ에서, Xaa3은 Asn 또는 Lys이며, Xaa4는 Ala 또는 Val이고, Xaa5는 Asn 또는 Thr이며, In Formula II, Xaa 3 is Asn or Lys, Xaa 4 is Ala or Val, Xaa 5 is Asn or Thr,
상기 일반식 Ⅲ에서, Xaa6은 Ser 또는 Thr이고,In Formula III, Xaa 6 is Ser or Thr,
상기 일반식 Ⅳ에서, Xaa7은 His, Arg, Gln 또는 Lys이고, Xaa8은 Ser 또는 Trp이고, Xaa9은 His 또는 Gln이며, Xaa10는 Lys 또는 Asn이고, In Formula IV, Xaa 7 is His, Arg, Gln or Lys, Xaa 8 is Ser or Trp, Xaa 9 is His or Gln, Xaa 10 is Lys or Asn,
상기 일반식 Ⅴ에서, Xaa11은 Ala 또는 Gly이며, Xaa12은 Thr 또는 Lys이고, Xaa13는 Ser 또는 Pro이며, In Formula V, Xaa 11 is Ala or Gly, Xaa 12 is Thr or Lys, Xaa 13 is Ser or Pro,
상기 일반식 Ⅵ에서, Xaa14은 Gly, Ala 또는 Gln이고, Xaa15는 Arg, His, Ser, Ala, Gly 또는 Lys이며, Xaa16는 Leu, Tyr, Phe 또는 Met이다.In Formula VI, Xaa 14 is Gly, Ala or Gln, Xaa 15 is Arg, His, Ser, Ala, Gly or Lys, and Xaa 16 is Leu, Tyr, Phe or Met.
일 구체예에서, 상기 CDR-H1은 서열번호 1, 서열번호 22, 서열번호 23 및 서열번호 24로 이루어진 군에서 선택된 아미노산 서열을 갖는 것일 수 있다. 상기 CDR-H2는 서열번호 2, 서열번호 25, 및 서열번호 26으로 이루어진 군에서 선택된 아미노산 서열을 갖는 것일 수 있다. 상기 CDR-H3는 서열번호 3, 서열번호 27, 서열번호 28, 및 서열번호 85로 이루어진 군에서 선택된 아미노산 서열을 갖는 것일 수 있다. In one embodiment, the CDR-H1 may have an amino acid sequence selected from the group consisting of SEQ ID NO: 1, SEQ ID NO: 22, SEQ ID NO: 23 and SEQ ID NO: 24. The CDR-H2 may have an amino acid sequence selected from the group consisting of SEQ ID NO: 2, SEQ ID NO: 25, and SEQ ID NO: 26. The CDR-H3 may have an amino acid sequence selected from the group consisting of SEQ ID NO: 3, SEQ ID NO: 27, SEQ ID NO: 28, and SEQ ID NO: 85.
상기 CDR-L1은 서열번호 10, 서열번호 29, 서열번호 30, 서열번호 31, 서열번호 32, 서열번호 33 및 서열번호 106으로 이루어진 군에서 선택된 아미노산 서열을 갖는 것일 수 있다. 상기 CDR-L2는 서열번호 11, 서열번호 34, 서열번호 35, 및 서열번호 36으로 이루어진 군에서 선택된 아미노산 서열을 갖는 것일 수 있다. 상기 CDR-L3은 서열번호 12, 서열번호 13, 서열번호 14, 서열번호 15, 서열번호 16, 서열번호 37, 서열번호 86, 및 서열번호 89로 이루어진 군에서 선택된 아미노산 서열을 갖는 것일 수 있다. The CDR-L1 may have an amino acid sequence selected from the group consisting of SEQ ID NO: 10, SEQ ID NO: 29, SEQ ID NO: 30, SEQ ID NO: 31, SEQ ID NO: 32, SEQ ID NO: 33, and SEQ ID NO: 106. The CDR-L2 may have an amino acid sequence selected from the group consisting of SEQ ID NO: 11, SEQ ID NO: 34, SEQ ID NO: 35, and SEQ ID NO: 36. The CDR-L3 may have an amino acid sequence selected from the group consisting of SEQ ID NO: 12, SEQ ID NO: 13, SEQ ID NO: 14, SEQ ID NO: 15, SEQ ID NO: 16, SEQ ID NO: 37, SEQ ID NO: 86, and SEQ ID NO: 89.
일 구체예에서, 상기 항체 또는 항원 결합 단편은 서열번호 1, 서열번호 22, 서열번호 23 및 서열번호 24로 이루어진 군에서 선택된 아미노산 서열을 갖는 폴리펩타이드(CDR-H1), 서열번호 2, 서열번호 25, 및 서열번호 26으로 이루어진 군에서 선택된 아미노산 서열을 갖는 폴리펩타이드(CDR-H2), 및 서열번호 3, 서열번호 27, 서열번호 28, 및 서열번호 85으로 이루어진 군에서 선택된 아미노산 서열을 갖는 폴리펩타이드(CDR-H3)를 포함하는 중쇄 가변 부위; 및 서열번호 10, 서열번호 29, 서열번호 30, 서열번호 31, 서열번호 32, 서열번호 33 및 서열번호 106으로 이루어진 군에서 선택된 아미노산 서열을 갖는 폴리펩타이드(CDR-L1), 서열번호 11, 서열번호 34, 서열번호 35, 및 서열번호 36으로 이루어진 군에서 선택된 아미노산 서열을 갖는 폴리펩타이드(CDR-L2), 및 서열번호 12, 서열번호 13, 서열번호 14, 서열번호 15, 서열번호 16, 서열번호 37, 서열번호 86, 및 서열번호 89로 이루어진 군에서 선택된 아미노산 서열을 갖는 폴리펩타이드(CDR-L3)를 포함하는 경쇄 가변 부위를 포함하는 것일 수 있다.In one embodiment, the antibody or antigen-binding fragment is a polypeptide having an amino acid sequence selected from the group consisting of SEQ ID NO: 1, SEQ ID NO: 22, SEQ ID NO: 23 and SEQ ID NO: 24 (CDR-H1), SEQ ID NO: 2, SEQ ID NO: 25, and a polypeptide having an amino acid sequence selected from the group consisting of SEQ ID NO: 26 (CDR-H2), and a poly having an amino acid sequence selected from the group consisting of SEQ ID NO: 3, SEQ ID NO: 27, SEQ ID NO: 28, and SEQ ID NO: 85 A heavy chain variable region comprising a peptide (CDR-H3); And polypeptide (CDR-L1), SEQ ID NO: 11, SEQ ID NO: 10, SEQ ID NO: 29, SEQ ID NO: 30, SEQ ID NO: 31, SEQ ID NO: 32, SEQ ID NO: 33, and SEQ ID NO: 106; A polypeptide (CDR-L2) having an amino acid sequence selected from the group consisting of SEQ ID NO: 34, SEQ ID NO: 35, and SEQ ID NO: 36, and SEQ ID NO: 12, SEQ ID NO: 13, SEQ ID NO: 14, SEQ ID NO: 15, SEQ ID NO: 16, sequence It may comprise a light chain variable region comprising a polypeptide (CDR-L3) having an amino acid sequence selected from the group consisting of SEQ ID NO: 37, SEQ ID NO: 86, and SEQ ID NO: 89.
일 구체예에 따르면, 항 c-Met 항체 또는 항원 결합 단편에서, 상기 중쇄 가변 부위는 서열번호 17, 서열번호 74, 서열번호 87, 서열번호 90, 서열번호 91, 서열번호 92, 서열번호 93 또는 서열번호 94의 아미노산 서열을 포함하고, 상기 경쇄 가변 부위는 서열번호 109, 서열번호 18, 서열번호 19, 서열번호 20, 서열번호 21, 서열번호 75, 서열번호 88, 서열번호 95, 서열번호 96, 서열번호 97, 서열번호 98, 서열번호 99 또는 서열번호 107의 아미노산 서열을 포함하는 것일 수 있다.According to one embodiment, in the anti-c-Met antibody or antigen-binding fragment, the heavy chain variable region is SEQ ID NO: 17, SEQ ID NO: 74, SEQ ID NO: 87, SEQ ID NO: 90, SEQ ID NO: 91, SEQ ID NO: 92, SEQ ID NO: 93 or An amino acid sequence of SEQ ID NO: 94, wherein the light chain variable region is SEQ ID NO: 109, SEQ ID NO: 18, SEQ ID NO: 19, SEQ ID NO: 20, SEQ ID NO: 21, SEQ ID NO: 75, SEQ ID NO: 88, SEQ ID NO: 95, SEQ ID NO: 96 , SEQ ID NO: 97, SEQ ID NO: 98, SEQ ID NO: 99 or may include the amino acid sequence of SEQ ID NO: 107.
원하는 항원을 피면역 동물에게 면역시켜 생산하는 동물 유래 항체는 일반적으로 치료 목적으로 인간에 투여 시 면역거부반응이 일어날 수 있으며, 이러한 면역거부반응을 억제하고자 키메릭 항체(chimeric antibody)가 개발되었다. 키메릭 항체는 유전공학적 방법을 이용하여 항-아이소타입(anti-isotype) 반응의 원인이 되는 동물 유래 항체의 불변영역을 인간 항체의 불변영역으로 치환한 것이다. 키메릭 항체는 동물 유래 항체에 비하여 항-아이소타입 반응에 있어서 상당 부분 개선되었으나, 여전히 동물 유래 아미노산들이 가변 부위에 존재하고 있어 잠재적인 항-이디오타입(anti-idiotypic) 반응에 대한 부작용을 내포하고 있다. 이러한 부작용을 개선하고자 개발된 것이 인간화 항체(humanized antibody)이다. 이는 키메릭 항체의 가변 부위 중 항원의 결합에 중요한 역할을 하는 CDR(complementaritiy determining regions) 부위를 인간 항체 골격(framework)에 이식하여 제작된다. Animal-derived antibodies that are produced by immunizing a desired antigen with an immunized animal are generally capable of immunorejection upon administration to humans for therapeutic purposes, and chimeric antibodies have been developed to suppress such rejection. Chimeric antibodies are obtained by replacing the constant region of an animal-derived antibody causing an anti-isotype reaction with the constant region of a human antibody using genetic engineering methods. Chimeric antibodies have been significantly improved in anti-isotype responses compared to animal derived antibodies, but still contain adverse effects on potential anti-idiotypic reactions due to the presence of animal-derived amino acids in the variable region. Doing. Humanized antibodies have been developed to ameliorate these side effects. It is produced by implanting a complementary region determining region (CDR), which plays an important role in antigen binding, among the variable regions of chimeric antibodies in the human antibody framework.
인간화 항체를 제작하기 위한 CDR 이식(grafting) 기술에 있어서 가장 중요한 것은 동물 유래 항체의 CDR 부위를 가장 잘 받아들일 수 있는 최적화된 인간 항체를 선정하는 것이며, 이를 위하여 항체 데이터베이스의 활용, 결정구조(crystal structure)의 분석, 분자모델링 기술 등이 활용된다. 그러나, 최적화된 인간 항체 골격에 동물 유래 항체의 CDR 부위를 이식할지라도 동물 유래 항체의 골격에 위치하면서 항원 결합에 영향을 미치는 아미노산이 존재하는 경우가 있기 때문에, 항원 결합력이 보존되지 못하는 경우가 상당수 존재하므로, 항원 결합력을 복원하기 위한 추가적인 항체 공학 기술의 적용은 필수적이라고 할 수 있다.The most important aspect of CDR grafting technology for producing humanized antibody is to select an optimized human antibody that can best accept the CDR region of an animal-derived antibody. structure analysis and molecular modeling techniques. However, even when the CDR region of an animal-derived antibody is implanted into an optimized human antibody skeleton, there are many amino acids that are located in the skeleton of an animal-derived antibody and affect antigen binding. As such, the application of additional antibody engineering techniques to restore antigen binding capacity is essential.
일 구체예에 따르면, 상기 항체는 마우스 유래 항체, 마우스-인간 키메릭 항체, 인간화 항체, 또는 인간 유래 항체일 수 있다. 상기 항체 또는 이의 항원 결합 단편은 생체에서 분리된 것 또는 비자연적으로 발생한 것 (즉, 자연적으로 존재하지 않는 것)일 수 있다. 상기 항체 또는 이의 항원 결합 단편은 재조합적 또는 합성적으로 제조된 것일 수 있다.According to one embodiment, the antibody may be a mouse derived antibody, a mouse-human chimeric antibody, a humanized antibody, or a human derived antibody. The antibody or antigen-binding fragment thereof may be isolated in vivo or non-naturally occurring (ie, not naturally present). The antibody or antigen-binding fragment thereof may be prepared recombinantly or synthetically.
완전한 항체는 2개의 전장(full length) 경쇄 및 2개의 전장 중쇄를 가지는 구조이며 각각의 경쇄는 중쇄와 이황화 결합으로 연결되어 있다. 항체의 불변영역은 중쇄 불변영역과 경쇄 불변영역으로 나뉘어지며, 중쇄 불변영역은 감마(γ), 뮤(μ), 알파(α), 델타(δ) 및 엡실론(ε) 타입을 가지고, 서브클래스로 감마1(γ1), 감마2(γ2), 감마3(γ3), 감마4(γ4), 알파1(α1) 및 알파2(α2)를 가진다. 경쇄의 불변영역은 카파(κ) 및 람다(λ) 타입을 가진다. A complete antibody is a structure having two full length light chains and two full length heavy chains, each of which is linked by heavy and disulfide bonds. The constant region of the antibody is divided into a heavy chain constant region and a light chain constant region, and the heavy chain constant region has a gamma (γ), mu (μ), alpha (α), delta (δ) and epsilon (ε) type, and a subclass. Gamma 1 (γ1), gamma 2 (γ2), gamma 3 (γ3), gamma 4 (γ4), alpha 1 (α1) and alpha 2 (α2). The constant regions of the light chains have kappa (κ) and lambda (λ) types.
용어, "중쇄(heavy chain)"는 항원에 특이성을 부여하기 위해 충분한 가변 부위 서열을 갖는 아미노산 서열을 포함하는 가변 부위 도메인 VH 및 3개의 불변영역 도메인 CH1, CH2 및 CH3과 힌지(hinge)를 포함하는 전장 중쇄 및 이의 단편을 모두 포함하는 의미로 해석된다. 또한, 용어 "경쇄(light chain)"는 항원에 특이성을 부여하기 위한 충분한 가변 부위 서열을 갖는 아미노산 서열을 포함하는 가변 부위 도메인 VL 및 불변영역 도메인 CL을 포함하는 전장 경쇄 및 이의 단편을 모두 포함하는 의미로 해석된다. The term "heavy chain" refers to the variable region domain V H and the three constant region domains C H1 , C H2 and C H3 and hinges, comprising an amino acid sequence having a variable region sequence sufficient to confer specificity to the antigen. It is interpreted to include both the full length heavy chain including the hinge and fragments thereof. In addition, the term “light chain” refers to both the full-length light chain and fragment thereof comprising the variable region domain V L and the constant region domain C L comprising an amino acid sequence having sufficient variable region sequence to confer specificity to the antigen. It is interpreted to include.
용어, "CDR(complementarity determining region)"은 면역글로불린의 중쇄 및 경쇄의 고가변 부위(hypervariable region)의 아미노산 서열을 의미한다. 중쇄 및 경쇄는 각각 3개의 CDR을 포함할 수 있다(CDRH1, CDRH2, CDRH3 및 CDRL1, CDRL2, CDRL3). 상기 CDR은 항체가 항원 또는 에피토프에 결합하는 데 있어서 주요한 접촉 잔기를 제공할 수 있다. 한편, 본 명세서에 있어서, 용어, "특이적으로 결합" 또는 "특이적으로 인식"은 당업자에게 통상적으로 공지되어 있는 의미와 동일한 것으로서, 항원 및 항체가 특이적으로 상호작용하여 면역학적 반응을 하는 것을 의미한다.The term "complementarity determining region" refers to the amino acid sequences of the hypervariable regions of the heavy and light chains of immunoglobulins. The heavy and light chains may each comprise three CDRs (CDRH1, CDRH2, CDRH3 and CDRL1, CDRL2, CDRL3). The CDRs can provide key contact residues for the antibody to bind antigen or epitope. Meanwhile, in the present specification, the term "specifically binds" or "specifically recognized" is the same as commonly known to those skilled in the art, and the antigen and the antibody specifically interact with each other to perform an immunological response. Means that.
용어, "항원 결합 단편"은 면역글로불린 전체 구조에 대한 그의 단편으로, 항원이 결합할 수 있는 부분을 포함하는 폴리펩타이드의 일부를 의미한다. 일 구체예에서, 상기 항원 결합 단편은 scFv, (scFv)2, Fab, Fab' 또는 F(ab')2일 수 있으나, 이에 한정하지 않는다. 상기 항원 결합 단편 중 Fab는 경쇄 및 중쇄의 가변 부위와 경쇄의 불변영역 및 중쇄의 첫 번째 불변영역(CH1)을 가지는 구조로 1개의 항원 결합 부위를 가진다. The term “antigen binding fragment” refers to a portion of a polypeptide that includes a portion to which an antigen can bind, as a fragment thereof for the entire structure of an immunoglobulin. In one embodiment, the antigen binding fragment may be, but is not limited to, scFv, (scFv) 2 , Fab, Fab 'or F (ab') 2 . Fab of the antigen-binding fragment has one antigen-binding site in a structure having a variable region of the light and heavy chains, a constant region of the light chain and a first constant region of the heavy chain (C H1 ).
Fab'는 중쇄 CH1 도메인의 C-말단에 하나 이상의 시스테인 잔기를 포함하는 힌지 영역(hinge region)을 가진다는 점에서 Fab와 차이가 있다. Fab 'differs from Fab in that it has a hinge region comprising one or more cysteine residues at the C-terminus of the heavy chain C H1 domain.
F(ab')2 항체는 Fab'의 힌지 영역의 시스테인 잔기가 디설파이드 결합을 이루면서 생성된다. Fv는 중쇄 가변 부위 및 경쇄 가변 부위만을 가지고 있는 최소의 항체조각으로 Fv 단편을 생성하는 재조합 기술은 당업계에 널리 공지되어 있다. F (ab ') 2 antibodies are produced when the cysteine residues of the hinge region of Fab' form disulfide bonds. Recombinant techniques for generating Fv fragments with minimal antibody fragments in which Fv has only heavy and variable chain regions are well known in the art.
이중쇄 Fv(two-chain Fv)는 비공유 결합으로 중쇄 가변 부위와 경쇄 가변 부위가 연결되어 있고 단쇄 Fv(single-chain Fv)는 일반적으로 펩타이드 링커를 통하여 중쇄의 가변 부위와 단쇄의 가변 부위가 공유 결합으로 연결되거나 또는 C-말단에서 바로 연결되어 있어서 이중쇄 Fv와 같이 다이머와 같은 구조를 이룰 수 있다. 상기 펩타이드 링커는 1 내지 100개 또는 2 내지 50개의 임의의 아미노산으로 이루어진 폴리펩타이드일 수 있으며, 그 포함된 아미노산 종류는 제한이 없다.Double-chain Fv is a non-covalent bond in which the heavy chain variable region and the light chain variable region are linked, and the single-chain Fv is generally shared by the variable region of the heavy chain and the short chain variable region through a peptide linker. It may be linked by bond or directly at the C-terminus to form a dimer-like structure such as a double chain Fv. The peptide linker may be a polypeptide consisting of 1 to 100 or 2 to 50 arbitrary amino acids, and the amino acid type included therein is not limited.
상기 항원 결합 단편은 단백질 가수분해 효소를 이용해서 얻을 수 있고(예를 들어, 전체 항체를 파파인으로 제한 절단하면 Fab를 얻을 수 있고 펩신으로 절단하면 F(ab')2 단편을 얻을 수 있다), 유전자 재조합 기술을 통하여 제작할 수 있다.The antigen binding fragments can be obtained using proteolytic enzymes (e.g., restriction digestion of the entire antibody with papain can yield Fab and cleavage with pepsin can yield F (ab ') 2 fragment). It can be produced through genetic recombination technology.
상기 항 c-Met 항체의 앞서 정의된 CDR 부위 또는 경쇄 가변 부위와 중쇄 가변 부위를 제외한 부위 (예컨대, 경쇄 불변영역과 중쇄 불변영역)은 모든 서브타입의 면역글로불린(예컨대, IgA, IgD, IgE, IgG (IgG1, IgG2, IgG3, IgG4), IgM 등)으로부터 유래하는 것 (예컨대, 경쇄 불변영역과 중쇄 불변영역)일 수 있다. The previously defined CDR or light chain variable region and heavy chain variable region of the anti-c-Met antibody (e.g., light chain constant region and heavy chain constant region) are immunoglobulins of all subtypes (eg, IgA, IgD, IgE, And (eg, light chain constant region and heavy chain constant region) derived from IgG (IgG1, IgG2, IgG3, IgG4), IgM, and the like.
용어 "힌지 영역(hinge region)"은 항체의 중쇄에 포함되어 있는 영역으로서, CH1 및 CH2 영역 사이에 존재하며, 항체 내 항원 결합 부위의 유연성(flexibility)를 제공하는 기능을 하는 영역을 의미한다. The term “hinge region” refers to a region included in the heavy chain of an antibody, which exists between CH1 and CH2 regions, and which functions to provide flexibility of the antigen binding site in the antibody.
동물 유래 항체가 키메릭화(chimerization) 과정을 거치게 되면, 동물 유래의 IgG1 힌지는 인간 IgG1 힌지로 치환되지만, 동물 유래 IgG1 힌지는 인간 IgG1 힌지에 비하여 그 길이가 짧고, 두 개의 중쇄 사이의 이황화결합(disulfide bond)이 3개에서 2개로 감소하여 힌지의 경직성(rigidity)이 서로 상이한 효과를 보이게 된다. 따라서, 힌지 영역의 변형(modification)은 인간화 항체의 항원 결합 효율성을 증가시킬 수 있다. 상기 힌지 영역의 아미노산 서열을 변형시키기 위한 아미노산의 결실, 부가 또는 치환 방법은 당업자에게 잘 알려져 있다.When an animal-derived antibody undergoes chimerization, the animal-derived IgG1 hinge is replaced with a human IgG1 hinge, but the animal-derived IgG1 hinge is shorter than the human IgG1 hinge and has a disulfide bond between two heavy chains. Disulfide bonds are reduced from three to two, resulting in different rigidity of the hinges. Thus, modification of the hinge region can increase the antigen binding efficiency of the humanized antibody. Deletion, addition or substitution of amino acids for modifying the amino acid sequence of the hinge region is well known to those skilled in the art.
이에, 본 발명의 일 구체예에서, 항원 결합 효율성을 증진시키기 위하여, 상기 항 c-Met 항체 또는 항원 결합 단편은 하나 이상의 아미노산이 결실, 부가 또는 치환되어 아미노산 서열이 변형된 힌지 영역을 포함하는 것일 수 있다. 예를 들어, 상기 항체는 서열번호 100, 서열번호 101, 서열번호 102, 서열번호 103 또는 서열번호 104의 아미노산 서열을 갖는 힌지 영역, 또는 서열번호 105의 아미노산 서열을 갖는 힌지 영역(비변형 인간 힌지 영역)을 포함하는 것일 수 있다. 보다 구체적으로, 상기 힌지 영역은 서열번호 100 또는 서열번호 101의 아미노산 서열을 갖는 것일 수 있다.Thus, in one embodiment of the present invention, to enhance antigen binding efficiency, the anti-c-Met antibody or antigen-binding fragment comprises a hinge region in which the amino acid sequence is modified by deletion, addition or substitution of one or more amino acids. Can be. For example, the antibody may comprise a hinge region having an amino acid sequence of SEQ ID NO: 100, SEQ ID NO: 101, SEQ ID NO: 102, SEQ ID NO: 103, or SEQ ID NO: 104, or a hinge region having an amino acid sequence of SEQ ID NO: 105 (unmodified human hinge). Area). More specifically, the hinge region may have an amino acid sequence of SEQ ID NO: 100 or SEQ ID NO: 101.
일 구체예에서, 항 c-Met 항체는 수탁번호 KCLRF-BP-00220인 하이브리도마 세포에서 생산되는, c-Met 단백질의 세포외 부위(extracellular region)에 특이적으로 결합하는 단일클론 항체일 수 있다 (대한민국 공개특허 제2011-0047698호 참조; 상기 문헌은 본 명세서에 참조로서 포함됨). 상기의 항 c-Met 항체는 대한민국 공개특허 제2011-0047698호에 정의된 항체를 모두 포함할 수 있다.In one embodiment, the anti-c-Met antibody may be a monoclonal antibody that specifically binds to an extracellular region of the c-Met protein produced in a hybridoma cell with accession number KCLRF-BP-00220. (See Korean Patent Publication No. 2011-0047698; which document is incorporated herein by reference). The anti-c-Met antibody may include all of the antibodies defined in Korean Patent Publication No. 2011-0047698.
상기 항 c-Met 항체의 앞서 정의된 CDR 부위 또는 경쇄 가변 부위와 중쇄 가변 부위를 제외한 경쇄 불변영역과 중쇄 불변영역은 모든 서브타입의 면역글로불린의 경쇄 불변영역과 중쇄 불변영역일 수 있다. The light chain constant region and the heavy chain constant region except for the previously defined CDR region or the light chain variable region and the heavy chain variable region of the anti-c-Met antibody may be the light chain constant region and the heavy chain constant region of all subtypes of immunoglobulins.
일 구체예에 따르면, 상기 항 c-Met 항체는, According to one embodiment, the anti-c-Met antibody,
서열번호 62의 아미노산 서열 (이 중에서 1번째부터 17번째까지의 아미노산 서열은 시그널 펩타이드임), 서열번호 62의 18번째부터 462번째까지의 아미노산 서열, 서열번호 64의 아미노산 서열 (이 중에서 1번째부터 17번째까지의 아미노산 서열은 시그널 펩타이드임) 또는 서열번호 64의 18번째부터 461번째까지의 아미노산 서열, 서열번호 66의 아미노산 서열 (이 중에서 1번째부터 17번째까지의 아미노산 서열은 시그널 펩타이드임), 및 서열번호 66의 18번째부터 460번째까지의 아미노산 서열로 이루어진 군에서 선택된 아미노산 서열을 포함하는 중쇄; 및The amino acid sequence of SEQ ID NO: 62 (wherein the first to seventeenth amino acid sequences are signal peptides), the amino acid sequence of the 18th to 462th sequences of SEQ ID NO: 62, and the amino acid sequence of SEQ ID NO: 64 (from the first The 17th amino acid sequence is the signal peptide) or the 18th to 461th amino acid sequence of SEQ ID NO: 64, the amino acid sequence of SEQ ID NO: 66 (wherein the 1st to 17th amino acid sequences are signal peptide), And a heavy chain comprising an amino acid sequence selected from the group consisting of the 18th to 460th amino acid sequences of SEQ ID 66; And
서열번호 68의 아미노산 서열 (이 중에서 1번째부터 20번째까지의 아미노산 서열은 시그널 펩타이드임), 서열번호 68의 21번째부터 240번째까지의 아미노산 서열, 서열번호 70의 아미노산 서열 (이 중에서 1번째부터 20번째까지의 아미노산 서열은 시그널 펩타이드임), 서열번호 70의 21번째부터 240번째까지의 아미노산 서열, 및 서열번호 108의 아미노산 서열로 이루어진 군에서 선택된 아미노산 서열을 포함하는 경쇄The amino acid sequence of SEQ ID NO: 68 (the amino acid sequence of 1st to 20th among them is a signal peptide), the amino acid sequence of the 21st to 240th amino acids of SEQ ID NO: 68, and the amino acid sequence of SEQ ID NO: 70 (from 1st of these) A light chain comprising an amino acid sequence selected from the group consisting of the amino acid sequence of the 20th amino acid sequence), the 21st to 240th amino acid sequence of SEQ ID 70, and the amino acid sequence of SEQ ID 108
를 포함하는 것일 수 있다.It may be to include.
예컨대, 상기 항-c-Met 항체는,For example, the anti-c-Met antibody,
서열번호 62의 아미노산 서열 또는 서열번호 62의 18번째부터 462번째까지의 아미노산 서열을 포함하는 중쇄 및 서열번호 68의 아미노산 서열 또는 서열번호 68의 21번째부터 240번째까지의 아미노산 서열을 포함하는 경쇄를 포함하는 항체;A heavy chain comprising the amino acid sequence of SEQ ID NO: 62 or the amino acid sequence of the 18th to 462th sequence of SEQ ID NO: 62 and a light chain comprising the amino acid sequence of SEQ ID NO: 68 or the amino acid sequence of the 21st to 240th amino acids of SEQ ID NO: 68; Antibody comprising;
서열번호 64의 아미노산 서열 또는 서열번호 64의 18번째부터 461번째까지의 아미노산 서열을 포함하는 중쇄 및 서열번호 68의 아미노산 서열 또는 서열번호 68의 21번째부터 240번째까지의 아미노산 서열을 포함하는 경쇄를 포함하는 항체; A heavy chain comprising the amino acid sequence of SEQ ID NO: 64 or the amino acid sequence of the 18th to 461th sequences of SEQ ID NO: 64 and a light chain comprising the amino acid sequence of SEQ ID NO: 68 or the amino acid sequence of the 21st to 240th amino acids of SEQ ID NO: 68; Antibody comprising;
서열번호 66의 아미노산 서열 또는 서열번호 66의 18번째부터 460번째까지의 아미노산 서열을 포함하는 중쇄 및 서열번호 68의 아미노산 서열 또는 서열번호 68의 21번째부터 240번째까지의 아미노산 서열을 포함하는 경쇄를 포함하는 항체;A heavy chain comprising the amino acid sequence of SEQ ID NO: 66 or the amino acid sequence of the 18th to 460th sequence of SEQ ID NO: 66 and a light chain comprising the amino acid sequence of SEQ ID NO: 68 or the amino acid sequence of the 21st to 240th amino acids of SEQ ID NO: 68; Antibody comprising;
서열번호 62의 아미노산 서열 또는 서열번호 62의 18번째부터 462번째까지의 아미노산 서열을 포함하는 중쇄 및 서열번호 70의 아미노산 서열 또는 서열번호 70의 21번째부터 240번째까지의 아미노산 서열을 포함하는 경쇄를 포함하는 항체; A heavy chain comprising the amino acid sequence of SEQ ID NO: 62 or the amino acid sequence of the 18th to 462th sequence of SEQ ID NO: 62 and a light chain comprising the amino acid sequence of SEQ ID NO: 70 or the amino acid sequence of the 21st to 240th amino acids of SEQ ID NO: 70; Antibody comprising;
서열번호 64의 아미노산 서열 또는 서열번호 64의 18번째부터 461번째까지의 아미노산 서열을 포함하는 중쇄 및 서열번호 70의 아미노산 서열 또는 서열번호 70의 21번째부터 240번째까지의 아미노산 서열을 포함하는 경쇄를 포함하는 항체; 또는 A heavy chain comprising the amino acid sequence of SEQ ID NO: 64 or the amino acid sequence of the 18th to 461th sequence of SEQ ID NO: 64 and a light chain comprising the amino acid sequence of SEQ ID NO: 70 or the amino acid sequence of the 21st to 240th amino acids of SEQ ID NO: 70; Antibody comprising; or
서열번호 66의 아미노산 서열 또는 서열번호 66의 18번째부터 460번째까지의 아미노산 서열을 포함하는 중쇄 및 서열번호 70 또는 서열번호 70의 21번째부터 240번째까지의 아미노산 서열의 아미노산 서열을 포함하는 경쇄를 포함하는 항체A heavy chain comprising the amino acid sequence of SEQ ID NO: 66 or the amino acid sequence of the 18th to 460th sequence of SEQ ID NO: 66 and a light chain comprising the amino acid sequence of the amino acid sequence of SEQ ID NO: 70 or the 21st to 240th amino acid sequence of SEQ ID NO: 70; Containing antibody
서열번호 62의 아미노산 서열 또는 서열번호 62의 18번째부터 462번째까지의 아미노산 서열을 포함하는 중쇄 및 서열번호 108의 아미노산 서열을 포함하는 경쇄를 포함하는 항체; An antibody comprising a heavy chain comprising the amino acid sequence of SEQ ID NO: 62 or the amino acid sequence of the 18th to 462th sequence of SEQ ID NO: 62 and a light chain comprising the amino acid sequence of SEQ ID NO: 108;
서열번호 64의 아미노산 서열 또는 서열번호 64의 18번째부터 461번째까지의 아미노산 서열을 포함하는 중쇄 및 서열번호 108의 아미노산 서열을 포함하는 경쇄를 포함하는 항체; 및 An antibody comprising a heavy chain comprising the amino acid sequence of SEQ ID NO: 64 or the amino acid sequence of the 18th to 461th sequences of SEQ ID NO: 64 and a light chain comprising the amino acid sequence of SEQ ID NO: 108; And
서열번호 66의 아미노산 서열 또는 서열번호 66의 18번째부터 460번째까지의 아미노산 서열을 포함하는 중쇄 및 서열번호 108의 아미노산 서열을 포함하는 경쇄를 포함하는 항체An antibody comprising a heavy chain comprising the amino acid sequence of SEQ ID NO: 66 or the amino acid sequence of the 18th to 460th sequence of SEQ ID NO: 66 and a light chain comprising the amino acid sequence of SEQ ID NO: 108
로 이루어진 군에서 선택된 것일 수 있다.It may be selected from the group consisting of.
한편, 상기 서열번호 70의 아미노산 서열을 갖는 폴리펩티드는 인간의 카파 불변영역으로 이루어진 경쇄이며, 서열번호 68의 아미노산 서열을 갖는 폴리펩티드는 상기 서열번호 70의 아미노산 서열을 갖는 폴리펩티드에서 36번 (kabat numbering에 따름, 서열번호 68 내의 62번째 아미노산 위치) 히스티딘 (histidine)이 티로신 (tyrosine)으로 치환된 형태의 폴리펩티드이다. 상기 치환으로 인하여, 일 구체예에 따른 항체의 생산량이 증가될 수 있다. 또한 상기 서열번호 108의 아미노산 서열을 갖는 폴리펩티드는 상기 서열번호 68의 아미노산 서열 중 1번째부터 20번째까지의 시그널 펩타이드를 제외한 21번째부터 240번째까지의 아미노산 서열을 갖는 폴리펩티드에서 kabat numbering에 의한 27e 위치(kabat numbering에 따름, 서열번호 108 내 32번째 위치; CDR-L1 내부)의 세린(Ser)이 트립토판(Trp)으로 치환된 것으로, 상기 치환으로 인하여, 일 구체예에 따른 항체의 활성(예컨대, c-Met에 대한 결합친화도, c-Met 분해 활성 및 Akt 인산화 억제 활성 등)이 보다 증진될 수 있다.On the other hand, the polypeptide having the amino acid sequence of SEQ ID NO: 70 is a light chain consisting of a human kappa constant region, the polypeptide having the amino acid sequence of SEQ ID NO: 68 is 36 times (kabat numbering) in the polypeptide having the amino acid sequence of SEQ ID NO: 70 According to the 62nd amino acid position in SEQ ID NO: 68) histidine is a form of polypeptide substituted with tyrosine. Due to the substitution, the yield of the antibody according to one embodiment may be increased. Also, the polypeptide having the amino acid sequence of SEQ ID NO: 108 is located at position 27e by kabat numbering in the polypeptide having the 21st to 240th amino acid sequence except for the 1st to 20th signal peptides among the amino acid sequences of SEQ ID NO: 68 serine (Ser) of position 32 according to kabat numbering (in SEQ ID NO: 108; inside CDR-L1) is substituted with tryptophan (Trp), and because of this substitution, the activity of the antibody according to one embodiment (eg, binding affinity for c-Met, c-Met degrading activity and Akt phosphorylation inhibitory activity, etc.) may be further enhanced.
일 구체예에서, 상기 항 c-Met 항체는 서열번호 106의 경쇄 상보성결정영역, 서열번호 107의 경쇄 가변 부위, 또는 서열번호 108의 경쇄를 포함하는 항 c-Met 항체일 수 있다.In one embodiment, the anti-c-Met antibody may be an anti-c-Met antibody comprising a light chain complementarity determining region of SEQ ID NO: 106, a light chain variable region of SEQ ID NO: 107, or a light chain of SEQ ID NO: 108.
상기 c-Met 저해제는 약학적으로 허용 가능한 담체와 함께 적용 (투여)될 수 있으며, 상기 약학적으로 허용 가능한 담체는, 약물의 제제화에 통상적으로 이용되는 것으로서, 락토스, 덱스트로스, 수크로스, 솔비톨, 만니톨, 전분, 아카시아 고무, 인산 칼슘, 알기네이트, 젤라틴, 규산 칼슘, 미세결정성 셀룰로스, 폴리비닐피롤리돈, 셀룰로스, 물, 시럽, 메틸 셀룰로스, 메틸히드록시벤조에이트, 프로필히드록시벤조에이트, 활석, 스테아르산 마그네슘, 미네랄 오일 등으로 이루어진 군에서 선택된 1종 이상일 수 있으나, 이에 한정되는 것은 아니다. 상기 c-Met 저해제는 상기 성분들 이외에 약학 조성물 제조에 통상적으로 사용되는 희석제, 부형제, 윤활제, 습윤제, 감미제, 향미제, 유화제, 현탁제, 보존제 등으로 이루어진 군에서 선택된 1종 이상을 추가로 포함할 수 있다.The c-Met inhibitor may be applied (administered) together with a pharmaceutically acceptable carrier, and the pharmaceutically acceptable carrier, which is commonly used in the formulation of drugs, includes lactose, dextrose, sucrose, sorbitol , Mannitol, starch, acacia rubber, calcium phosphate, alginate, gelatin, calcium silicate, microcrystalline cellulose, polyvinylpyrrolidone, cellulose, water, syrup, methyl cellulose, methylhydroxybenzoate, propylhydroxybenzoate , Talc, magnesium stearate, mineral oil and the like may be one or more selected from the group, but is not limited thereto. The c-Met inhibitor further includes at least one selected from the group consisting of diluents, excipients, lubricants, wetting agents, sweeteners, flavoring agents, emulsifiers, suspending agents, preservatives, etc., which are commonly used in the manufacture of pharmaceutical compositions, in addition to the above components. can do.
상기 c-Met 저해제는 경구 또는 비경구로 투여할 수 있다. 비경구 투여인 경우에는 정맥내 주입, 피하 주입, 근육 주입, 복강 주입, 내피 투여, 국소 투여, 비내 투여, 폐내 투여 또는 직장내 투여 등으로 투여할 수 있다. 경구 투여시, 단백질 또는 펩타이드는 소화가 되기 때문에 경구용 조성물은 활성 약제를 코팅하거나 위에서의 분해로부터 보호되도록 제형화 되어야 한다. 또한, 상기 c-Met 저해제는 활성 물질이 표적 세포로 이동할 수 있는 임의의 장치에 의해 투여될 수 있다.The c-Met inhibitor may be administered orally or parenterally. In the case of parenteral administration, it can be administered by intravenous injection, subcutaneous injection, intramuscular injection, intraperitoneal injection, endothelial administration, topical administration, intranasal administration, pulmonary administration or rectal administration. In oral administration, because proteins or peptides are digested, oral compositions should be formulated to coat the active agent or to protect it from degradation in the stomach. In addition, the c-Met inhibitor may be administered by any device in which the active agent may migrate to the target cell.
본 명세서에 있어서 "약학적 유효량"은 약물이 약학적으로 의미있는 효과를 나타낼 수 있는 양을 의미한다. 1회 투여를 위한 c-Met 저해제의 약학적 유효량은 제제화 방법, 투여 방식, 환자의 연령, 체중, 성, 병적 상태, 음식, 투여 시간, 투여 간격, 투여 경로, 배설 속도 및 반응 감응성과 같은 요인들에 따라서 다양하게 처방될 수 있다. 예컨대, 1회 투여를 위한 상기 c-Met 저해제의 약학적 유효량은 0.001 내지 100mg/kg, 또는 0.02 내지 10mg/kg 범위일 수 있으나, 이에 제한되는 것은 아니다. 상기 1회 투여를 위한 약학적 유효량은 단위 용량 형태로 하나의 제제로 제제화되거나, 적절하게 분량하여 제제화되거나, 다용량 용기 내에 내입시켜 제조될 수 있다. As used herein, "pharmaceutically effective amount" refers to an amount in which a drug can produce a pharmaceutically meaningful effect. The pharmaceutically effective amount of a c-Met inhibitor for a single dose depends on factors such as the formulation method, mode of administration, patient's age, weight, sex, morbidity, food, time of administration, interval of administration, route of administration, rate of excretion and response to response. It can be prescribed in various ways. For example, the pharmaceutically effective amount of the c-Met inhibitor for single administration may range from 0.001 to 100 mg / kg, or from 0.02 to 10 mg / kg, but is not limited thereto. Pharmaceutically effective amounts for single administration may be formulated into one formulation in unit dosage form, may be formulated in appropriate quantities, or may be prepared within a multi-dose container.
본 발명에서 c-Met 저해제는 암 및/또는 암전이의 예방 및/또는 치료에 사용될 수 있다. 상기 암은 c-Met의 과발현 및/또는 비정상적인 활성화와 관련된 것일 수 있으며, 고형암 또는 혈액암일 수 있다. 예컨대, 상기 암은 편평상피세포암, 소세포폐암, 비소세포폐암, 폐의 선암, 폐의 편평상피암, 복막암, 피부암, 피부 또는 안구내 흑색종, 직장암, 항문부근암, 식도암, 소장암, 내분비선암, 부갑상선암, 부신암, 연조직 육종, 요도암, 만성 또는 급성 백혈병, 림프구 림프종, 간세포암, 위장암, 위암, 췌장암, 교아종, 경부암, 난소암, 간암, 방광암, 간종양, 유방암, 결장암, 대장암, 자궁내막 또는 자궁암, 침샘암, 신장암, 전립선암, 음문암, 갑상선암, 두경부암, 뇌암, 골육종 등으로 이루어진 군에서 선택된 1종 이상일 수 있으나, 이에 제한되는 것은 아니다. 상기 암은 원발성 암뿐 아니라 전이성 암도 포함한다. 또한 상기 암은 기존의 c-Met 저해제, 예컨대 항 c-Met 항체에 대하여 저항성을 갖는 암 (예컨대, 위암, 폐암, 신장암 등의 고형암)일 수 있다. 일 예에서, 상기 암은 위암, 또는 c-Met 저해제, 예컨대 항 c-Met 항체에 대하여 저항성을 갖는 위암일 수 있다In the present invention c-Met inhibitors can be used for the prevention and / or treatment of cancer and / or cancer metastasis. The cancer may be associated with overexpression and / or abnormal activation of c-Met and may be solid or hematological cancer. For example, the cancer may be squamous cell carcinoma, small cell lung cancer, non-small cell lung cancer, lung adenocarcinoma, lung squamous cell carcinoma, peritoneal cancer, skin cancer, skin or intraocular melanoma, rectal cancer, anal muscle cancer, esophageal cancer, small intestine cancer, endocrine Adenocarcinoma, parathyroid cancer, adrenal cancer, soft tissue sarcoma, urethral cancer, chronic or acute leukemia, lymphocyte lymphoma, hepatocellular carcinoma, gastrointestinal cancer, gastric cancer, pancreatic cancer, glioblastoma, cervical cancer, ovarian cancer, liver cancer, bladder cancer, liver tumor, breast cancer, colon cancer , Colon cancer, endometrial or uterine cancer, salivary gland cancer, kidney cancer, prostate cancer, vulva cancer, thyroid cancer, head and neck cancer, brain cancer, osteosarcoma, etc. may be one or more selected from the group, but is not limited thereto. Such cancers include primary cancer as well as metastatic cancer. In addition, the cancer may be a cancer (eg, solid cancer such as gastric cancer, lung cancer, kidney cancer, etc.) resistant to existing c-Met inhibitors, such as anti-c-Met antibodies. In one example, the cancer may be gastric cancer or gastric cancer resistant to c-Met inhibitors such as anti-c-Met antibodies.
상기 암의 예방 및/또는 치료 효과는 암세포의 성장을 억제하는 효과뿐 아니라, 이동(migration), 침습(invasion), 전이(metastasis) 등을 억제하여 이로 인한 암의 악화를 억제하는 효과를 포함한다. The prophylactic and / or therapeutic effect of the cancer includes not only the effect of inhibiting the growth of cancer cells, but also the effect of inhibiting migration, invasion, metastasis and the like, thereby inhibiting the exacerbation of the cancer. .
본 발명을 통해서, 환자 개개인의 c-Met 저해제에 대한 반응성 (c-Met 저해제의 효능)을 미리 예측함으로써, c-Met 저해제를 이용한 효과적인 개별 맞춤 치료가 가능하고, c-Met 저해제 투여 후의 c-Met 저해제에 대한 반응성을 모니터링하여 c-Met 저해제의 투여 지속 여부를 판단함으로써, 보다 효율적인 치료 전략을 수립할 수 있다.Through the present invention, by predicting the reactivity (c-Met inhibitor efficacy) of each patient to the c-Met inhibitor in advance, it is possible to effectively tailor the individual treatment using the c-Met inhibitor, c-Met after administration of c-Met inhibitor By monitoring the responsiveness to Met inhibitors to determine whether c-Met inhibitors continue to be administered, more efficient treatment strategies can be established.
도 1은 위암세포주 MKN45, SNU5, 및 Hs746T에 대한 항 c-Met 항체의 효능 (relative cell viability; %)을 항 c-Met 항체의 농도(ug/ml)에 따라서 보여주는 그래프이다.1 is a graph showing the relative cell viability (%) of anti-c-Met antibody against gastric cancer cell lines MKN45, SNU5, and Hs746T according to the concentration of anti-c-Met antibody (ug / ml).
도 2는 위암세포주 NCI-N87, SNU668, MKN74, 및 NUGC4에 대한 항 c-Met 항체의 효능(relative cell viability; %)을 항 c-Met 항체의 농도(ug/ml)에 따라서 보여주는 그래프이다.FIG. 2 is a graph showing the relative cell viability (%) of anti-c-Met antibodies against gastric cancer cell lines NCI-N87, SNU668, MKN74, and NUGC4, depending on the concentration of anti-c-Met antibody (ug / ml).
도 3은 위암세포주 MKN45, Hs746T, SNU668, 및 MKN74에 대한 crizotinib의 효능(relative cell viability; %)을 crizotinib의 농도(nM)에 따라서 보여주는 그래프이다.3 is a graph showing the relative cell viability (%) of crizotinib against gastric cancer cell lines MKN45, Hs746T, SNU668, and MKN74 according to the concentration of crizotinib (nM).
도 4은 위암세포주 MKN45, Hs746T, SNU668, 및 MKN74에 대한 PHA665752의 효능(relative cell viability; %)을 PHA665752의 농도(nM)에 따라서 보여주는 그래프이다.4 is a graph showing the relative cell viability (%) of PHA665752 against gastric cancer cell lines MKN45, Hs746T, SNU668, and MKN74 according to the concentration (nM) of PHA665752.
도 5는 위암 세포주에서의 DKK1 유전자 발현 수준을 보여주는 그래프이다 (도면 중, "blue: 효능군": HS746T, MNK45, SNU5; "red: 비효능군": MNK74, NUGC4, NCIN87, SNU688).FIG. 5 is a graph showing DKK1 gene expression levels in gastric cancer cell lines (“blue: efficacy group”: HS746T, MNK45, SNU5; “red: ineffective group”: MNK74, NUGC4, NCIN87, SNU688 in the figure).
도 6은 도 5의 발현 수준 결과 중에서 항 c-Met 항체에 대하여 반응성 세포주 (효능군)와 비반응성 세포주(비효능군)의 DKK1 유전자의 발현량을 추출하여 보여주는 그래프이다.FIG. 6 is a graph showing the expression levels of DKK1 genes of the reactive cell line (effective group) and the non-reactive cell line (ineffective group) with respect to the anti-c-Met antibody in the expression level results of FIG. 5.
도 7은 위암 세포주에서 DKK1 유전자 발현 수준을 RT-PCR로 측정한 결과를 보여주는 그래프이다.Figure 7 is a graph showing the results of measuring the DKK1 gene expression level by RT-PCR in gastric cancer cell line.
도 8은 위암 세포주에서 DKK1 단백질 발현 수준을 ELISA로 측정한 결과를 보여주는 그래프이다.8 is a graph showing the results of measuring the DKK1 protein expression level in the gastric cancer cell line by ELISA.
도 9는 DKK1 siRNA 처리된 위암 환자유래세포에 대한 항 c-Met 항체의 암세포 증식 저해 효과를 보여주는 그래프이다.Figure 9 is a graph showing the cancer cell proliferation inhibitory effect of the anti-c-Met antibody to DKK1 siRNA-treated gastric cancer patient-derived cells.
도 10은 항 c-Met 항체 저항성이 유도된 위암 세포주에 항 c-Met 항체와 Wnt 신호화 저해제를 병용 투여한 경우의 암세포 증식 저해 효과를 보여주는 그래프이다.10 is a graph showing the cancer cell proliferation inhibitory effect when the anti-c-Met antibody and the Wnt signaling inhibitor are administered in combination to the gastric cancer cell line induced anti-c-Met antibody resistance.
이하 본 발명을 실시예 및 시험예를 통하여 더욱 상세히 설명한다. 그러나, 이들 실시예 및 시험예는 본 발명을 예시하기 위한 것으로, 본 발명을 제한하는 것으로 해석되어서는 아니 된다.Hereinafter, the present invention will be described in more detail with reference to Examples and Test Examples. However, these examples and test examples are for illustrating the present invention and should not be construed as limiting the present invention.
참고예Reference Example 1: 항 c-Met 항체의 제작 1: Construction of Anti-c-Met Antibody
1.1. c1.1. c -Met에 대한 마우스 항체 'Mouse Antibodies Against -Met '' AbF46AbF46 '의 생산Production
1.1.1.1. 1. 마우스의1. Mouse 면역화 Immunization
하이브리도마 세포주의 개발에 필요한 면역화 된 마우스를 얻기 위하여, 5마리의 마우스에 한 마리당 100 ㎍의 인간의 c-Met/Fc 융합 단백질(R&D Systems)과 동량의 완전 프로인드 어주번트(Freund's adjuvant)를 혼합하여 4-6 주된 BALB/c 마우스(Japan SLC, Inc.)의 복강 내에 주사하였다. 2주 후에 상기와 동일한 방법으로 상기 항원으로 사용된 인간의 c-Met/Fc 융합 단백질을 앞서 주사한 양의 절반인 50 ㎍을 동량의 불완전 프로인드 어주번트(incomplete Freund's adjuvant)과 혼합하여 마우스의 복강 내에 주사하였다. 일주일 후 마지막 부스팅(boosting)이 수행되고 3일 후에 상기 마우스의 꼬리에서 채혈하여 혈청을 얻은 뒤 1/1000로 PBS에 희석하여 ELISA로 c-Met을 인지하는 항체의 역가가 증가됨을 확인하였다. 상기의 결과로 항체의 양이 충분하게 얻어지는 마우스를 선별하여 하기의 세포융합과정을 수행하였다.To obtain the immunized mice required for the development of hybridoma cell lines, 5 mice each had 100 μg of human c-Met / Fc fusion protein (R & D Systems) equivalent to a complete Freund's adjuvant. Were mixed and injected intraperitoneally of 4-6 week old BALB / c mice (Japan SLC, Inc.). Two weeks later, 50 μg of the previous injection of the human c-Met / Fc fusion protein used as the antigen was mixed with the same amount of incomplete Freund's adjuvant in the same manner as above. Intraperitoneal injection. One week later, the last boosting (boosting) was performed 3 days after the blood was collected from the tail of the mouse to obtain a serum was diluted in PBS to 1/1000 to confirm that the titer of the antibody that recognizes c-Met by ELISA. As a result, mice obtained with sufficient amounts of antibodies were selected, and the following cell fusion process was performed.
1.1.1.1. 2. 세포2. Cell 융합 및  Fusion and 하이브리도마의Hybridoma 제조 Produce
세포융합 실험 3일 전에 50 ㎍의 PBS에 인간의 c-Met/Fc 융합 단백질 혼합물을 BALB/c 마우스(Japan SLC, Inc.)의 복강 내에 주사하고, 면역화 된 마우스를 마취한 후 몸통의 좌측에 위치한 비장(spleen)을 적출하였다. 적출한 비장을 메쉬로 갈아서 세포를 분리하고, 배양 배지(DMEM, GIBCO, Invitrogen)와 혼합하여 비장세포 현탁액을 만들었다. 상기 현탁액을 원심분리하여 세포층을 회수하였다. 상기 얻어진 비장세포 1x108 개와 골수종세포(Sp2/0) 1x108 개를 혼합한 다음, 원심분리하여 세포를 침전시켰다. 상기 원심분리된 침전물을 천천히 분산시키고, 배양 배지(DMEM)에 들어있는 45%(w/v) 폴리에틸렌글리콜(PEG)(1 ㎖)을 처리하고, 37 ℃에서 1분 동안 유지시킨 후, 배양 배지(DMEM) 1 ㎖을 첨가하였다. 이후 배양배지(DMEM) 10 ㎖을 1분 동안 첨가하고, 37℃의 물에서 5분 동안 방치한 후 50 ㎖로 맞추어 다시 원심분리하였다. 세포 침전물을 분리 배지(HAT 배지)에 1~2x105/㎖ 정도로 재현탁시키고, 96-웰(well) 플레이트에 0.1 ㎖씩 분주한 후 37℃ 이산화탄소 배양기에서 배양하여 하이브리도마 세포군을 제작하였다.Three days before the cell fusion experiment, 50 μg of PBS was injected with a mixture of human c-Met / Fc fusion protein intraperitoneally of BALB / c mice (Japan SLC, Inc.), and the anesthetized immunized mice were placed on the left side of the trunk. Located spleen was removed. Cells were isolated by grinding the spleens with a mesh and mixed with culture medium (DMEM, GIBCO, Invitrogen) to make a splenocyte suspension. The suspension was centrifuged to recover the cell layer. The obtained splenocytes 1x10 8 and myeloma cells (Sp2 / 0) 1x10 8 were mixed and centrifuged to precipitate the cells. The centrifuged precipitate was slowly dispersed, treated with 45% (w / v) polyethylene glycol (PEG) (1 mL) contained in the culture medium (DMEM), maintained at 37 ° C. for 1 minute, and then culture medium. 1 ml (DMEM) was added. Thereafter, 10 ml of culture medium (DMEM) was added for 1 minute, left for 5 minutes in water at 37 ° C., and centrifuged again at 50 ml. The cell precipitate was resuspended in a separation medium (HAT medium) at about 1 × 2 × 10 5 / ml, aliquoted in 96 ml well plates, and cultured in a 37 ° C. carbon dioxide incubator to prepare a hybridoma cell group.
1.1. 3. c -Met 단백질에 대한 단일클론 항체를 생산하는 하이브리도마 세포의 선별 1.1. 3. Screening for Hybridoma Cells Producing Monoclonal Antibodies to c- Met Protein
상기 참고예 1.1.2에서 제조된 하이브리도마 세포군 중에서 c-Met 단백질에만 특이적으로 반응하는 하이브리도마 세포를 선별하기 위하여 인간의 c-Met/Fc 융합 단백질과 인간의 Fc 단백질을 항원으로 이용한 ELISA 분석 방법을 통하여 스크리닝하였다. Human c-Met / Fc fusion protein and human Fc protein were used as antigens to select hybridoma cells that specifically react with c-Met protein among the hybridoma cell groups prepared in Reference Example 1.1.2. Screened through ELISA assay method.
마이크로타이터 플레이트에 인간의 c-Met/Fc 융합 단백질을 한 웰당 각각 50 ㎕ (2 ug/㎖)씩 가하여 플레이트 표면에 부착시키고, 반응하지 않은 항원은 세척하여 제거하였다. c-Met이 아닌 Fc에 결합되는 항체를 선별하여 제외시키기 위하여 인간의 Fc 단백질을 위와 동일한 방법으로 플레이트 표면에 부착시켰다. 50 μl (2 ug / ml) of each human c-Met / Fc fusion protein was added to the microtiter plate and attached to the plate surface, and unreacted antigens were washed out. Human Fc protein was attached to the plate surface in the same manner as above to select and exclude antibodies that bind to Fc but not c-Met.
상기 참고예 1.1.2에서 얻어진 하이브리도마 세포의 배양액을 상기 준비된 각각 웰에 50 ㎕씩을 가하여 1 시간 동안 반응시킨 후 인산 완충용액-트윈 20(TBST) 용액으로 충분히 세척하여 반응하지 않은 배양액을 제거하였다. 여기에 염소 항-마우스 IgG-호스래디쉬 퍼옥시다제(goat anti-mouse IgG-HRP)를 가하여 1 시간 동안 실온에서 반응시킨 다음, TBST 용액으로 충분히 세척하였다. 이어서 퍼옥시다제의 기질용액(OPD)을 가하여 반응시키고, 그 반응 정도는 ELISA Reader로 450 nm에서 흡광도를 측정하여 확인하였다.50 μl of each of the hybridoma cells obtained in Reference Example 1.1.2 was added to each of the prepared wells, followed by reaction for 1 hour, followed by sufficient washing with phosphate buffer-twin 20 (TBST) solution to remove unreacted culture. It was. To this was added goat anti-mouse IgG-horseradish peroxidase (goat anti-mouse IgG-HRP), reacted at room temperature for 1 hour, and then sufficiently washed with TBST solution. Subsequently, the substrate solution (OPD) of peroxidase was added to react, and the reaction degree was confirmed by measuring absorbance at 450 nm with an ELISA Reader.
위와 같은 반응 정도 확인에 의하여, 인간의 Fc에는 결합되지 않고, 인간의 c-Met 단백질에만 특이적으로 높은 결합력을 갖는 항체를 분비하는 하이브리도마 세포주들을 반복하여 선별하였다. 반복 선별을 통해 얻은 하이브리도마 세포주를 제한 희석(limiting dilution)하여 단일클론 항체를 생성하는 하이브리도마 세포주 1개의 클론을 최종적으로 얻었다. 최종 선별된 단일클론 항체 생산 하이브리도마를 2009년 10월 6일자로 부다페스트 조약 하의 국제기탁기관인 대한민국 서울 종로구 연건동에 소재하는 한국 세포주연구재단에 기탁하여 수탁번호 KCLRF-BP-00220를 부여받았다 (한국 공개특허 제2011-0047698 참조).By confirming the degree of reaction as described above, hybridoma cell lines that do not bind to human Fc but secrete antibodies with high specificity only to human c-Met protein were repeatedly selected. Limiting dilution of the hybridoma cell line obtained through repeated screening yielded a final clone of one hybridoma cell line producing monoclonal antibody. The final screened monoclonal antibody-producing hybridomas were deposited on October 6, 2009 with the Korea Cell Line Research Foundation, located in Yeongun-dong, Jongno-gu, Seoul, under the Treaty of Budapest, and received accession number KCLRF-BP-00220 (Korea See Publication 2011-0047698).
1.1.1.1. 4. 단일클론4. Monoclonal 항체의 생산 및 정제 Production and Purification of Antibodies
상기 참고예 1.1.3에서 얻은 하이브리도마 세포를 무혈청 배지에서 배양하고 배양액으로부터 단일클론 항체를 생산 정제하였다. The hybridoma cells obtained in Reference Example 1.1.3 were cultured in serum-free medium, and monoclonal antibodies were produced and purified from the culture.
먼저 10%(v/v) FBS가 포함된 배양 배지(DMEM) 배지 50 ㎖에서 배양된 상기 하이브리도마 세포를 원심분리하여 세포 침전물을 20 ㎖ PBS로 2회 이상 세척하여 FBS가 제거된 상태에서, 상기 세포 침전물을 배양 배지(DMEM) 배지 50 ㎖에 재현탁시킨 후, 3일 동안 37℃ 이산화탄소 배양기에서 배양하였다. First, the hybridoma cells cultured in 50 ml of culture medium (DMEM) medium containing 10% (v / v) FBS were centrifuged, and the cell precipitates were washed two or more times with 20 ml PBS to remove FBS. The cell precipitate was resuspended in 50 ml of culture medium (DMEM) medium, and then cultured in a 37 ° C. carbon dioxide incubator for 3 days.
이후, 원심분리하여, 항체를 생산하는 세포를 제거하고 항체들이 분비된 배양액을 분리하여, 4℃에 보관하거나 바로 모아서 항체의 분리 정제에 사용하였다. 친화성 칼럼(Protein G agarose column; Pharmacia, USA)을 장착한 AKTA 정제 기기(GE Healthcare)를 이용하여 상기 준비된 배양액 50 ㎖ 내지 300 ㎖로부터 항체를 순수 정제한 후, 단백질 응집용 필터(Amicon)를 사용하여 PBS로 상층액을 치환하여 정제된 항체를 보관하고, 이후의 실시예에 사용하였다.Subsequently, the cells producing the antibody were removed by centrifugation, and the culture medium in which the antibodies were secreted was separated and stored at 4 ° C. or collected immediately and used for separation and purification of the antibody. After purely purifying the antibody from 50 ml to 300 ml of the prepared culture medium using an AKTA purification apparatus (GE Healthcare) equipped with a Protein G agarose column (Pharmacia, USA), a protein aggregation filter (Amicon) was used. Purified antibody was stored by substituting the supernatant with PBS for use in subsequent examples.
1.2. c1.2. c -Met에 대한 For -Met 키메릭Chimeric 항체  Antibodies chAbF46의of chAbF46 제작 making
일반적으로 마우스 항체는 치료 목적으로 인간에게 주입되었을 때 면역거부반응(immunogenicity)을 보일 가능성이 높으므로, 이를 해결하기 위하여, 상기 참고예 1.1.4에서 제작된 마우스 항체 AbF46으로부터, 항원 결합에 관련된 변이 영역(variable region)을 제외한 불변영역(constant region)을 인간 IgG1 항체의 서열로 치환하는 키메릭 항체 chAbF46을 제작하였다.In general, mouse antibodies are highly likely to show immunogenicity when injected into humans for therapeutic purposes. To address this, mutations related to antigen binding from the mouse antibody AbF46 produced in Reference Example 1.1.4 above may be solved. A chimeric antibody chAbF46 was constructed in which the constant region except for the variable region was substituted with the sequence of the human IgG1 antibody.
중쇄에 해당하는 뉴클레오타이드 서열은 'EcoRI-signal sequence-VH-NheI-CH-TGA-XhoI'(서열번호 38)로, 경쇄에 해당하는 뉴클레오타이드 서열은 'EcoRI-signal sequence-VL- BsiWI-CL-TGA-XhoI'(서열번호 39)로 구성되도록 각각 디자인하여 유전자를 합성하였다. 이후, Invitrogen 사의 OptiCHOTM Antibody Express Kit (Cat no. 12762-019)에 포함되어 있는 pOptiVECTM-TOPO TA Cloning Kit에 상기 중쇄에 해당하는 뉴클레오타이드 서열을 갖는 DNA 절편(서열번호 38)을, pcDNATM3.3-TOPO TA Cloning Kit(Cat no. 8300-01)에 상기 경쇄에 해당하는 뉴클레오타이드 서열을 갖는 DNA 절편(서열번호 39)을 각각 EcoRI(NEB, R0101S)과 XhoI(NEB, R0146S) 제한 효소를 사용하여 클로닝함으로써, 키메릭 항체의 발현을 위한 중쇄를 포함하는 벡터 및 경쇄를 포함하는 벡터를 각각 구축하였다.The nucleotide sequence corresponding to the heavy chain is 'EcoRI-signal sequence-VH-NheI-CH-TGA-XhoI' (SEQ ID NO: 38), and the nucleotide sequence corresponding to the light chain is 'EcoRI-signal sequence-VL-BsiWI-CL-TGA' Each gene was designed to be composed of -XhoI '(SEQ ID NO: 39). Subsequently, the DNA fragment (SEQ ID NO: 38) having the nucleotide sequence corresponding to the heavy chain was added to the pOptiVEC -TOPO TA Cloning Kit included in the OptiCHO Antibody Express Kit (Cat no. 12762-019) of Invitrogen, pcDNA 3.3 -TOPO By cloning a DNA fragment (SEQ ID NO: 39) having a nucleotide sequence corresponding to the light chain in a TA Cloning Kit (Cat no. 8300-01) using EcoRI (NEB, R0101S) and XhoI (NEB, R0146S) restriction enzymes, respectively , Vectors comprising a heavy chain for expression of chimeric antibodies and vectors comprising a light chain were constructed, respectively.
상기 구축된 벡터는 각각 Qiagen Maxiprep kit (Cat no. 12662)을 이용하여 증폭되었으며, 임시발현은 FreestyleTM MAX 293 Expression System (invitrogen)을 이용하여 진행 되었다. 사용된 세포주는 293 F cell 이며, FreeStyle™ 293 Expression Medium를 배지로 사용하여 부유배양방식으로 배양되었다. 임시발현 하루 전 세포를 5x105cells/ml의 농도로 준비한 후, 24시간이 지난 뒤 cell수가 1x106cells/ml이 되었을 때 임시발현을 진행하였다. FreestyleTM MAX reagent (invitrogen)을 사용한 liposomal reagent법으로 형질도입(transfection)을 진행 하였으며, 15ml tube에 중쇄 DNA: 경쇄 DNA=1:1 의 비율로 DNA를 준비하여 OptiPro™ SFM (invtrogen) 2ml과 mix하고(A), 또 다른 15ml tube에 FreestyleTM MAX reagent 100㎕와 OptiPro™ SFM 2ml을 mix(B)한 후, (A)와 (B)을 mix하여 15분간 incubation 한 후, 하루 전에 준비한 세포에 혼합액을 천천히 섞어주었다. 형질도입 완료 후, 37 ℃, 80% humidity, 8% CO2, 130 rpm incubator에서 5일간 배양하였다. The constructed vectors were amplified using Qiagen Maxiprep kit (Cat no. 12662), respectively, and the temporary expression was Freestyle TM. This was done using the MAX 293 Expression System (invitrogen). The cell line used was 293 F cells, and cultured by suspension culture using FreeStyle ™ 293 Expression Medium as a medium. The cells were prepared at a concentration of 5x10 5 cells / ml one day before the temporary expression, and then after 24 hours, the cells were temporarily expressed when the number of cells reached 1x10 6 cells / ml. Transfection was performed by liposomal reagent method using Freestyle TM MAX reagent (invitrogen), and the DNA was prepared in a ratio of heavy chain DNA to light chain DNA = 1: 1 in a 15 ml tube and mixed with 2 ml of OptiPro ™ SFM (invtrogen). and (a), also after the other Freestyle TM MAX reagent 100㎕ with OptiPro ™ SFM 2ml mix (B) to the 15ml tube, then incubation 15 minutes to mix the (a) and (B), the cells prepared the day before The mixture was mixed slowly. After completion of the transduction, incubation for 5 days at 37 ℃, 80% humidity, 8% CO 2, 130 rpm incubator.
이후, 10%(v/v) FBS가 첨가된 DMEM 배지에서 37℃, 5% CO2 조건 하에서 5시간 동안 배양한 다음, FBS가 첨가되지 않은 DMEM 배지로 48시간 동안 37℃, 5% CO2 조건 하에서 배양하였다.Then, incubated in DMEM medium with 10% (v / v) FBS for 5 hours at 37 ° C. and 5% CO 2 conditions, then 37 ° C., 5% CO 2 for 48 hours in DMEM medium without FBS. Incubated under conditions.
상기 배양된 세포를 원심분리하여 상등액을 각각 100 ml 취하고, AKTA Prime (GE healthcare)를 이용하여 정제하였다. AKTA Prime에 Protein A 컬럼(GE healthcare, 17-0405-03)을 설치하고 배양액을 5 ml/min의 유속으로 흘려준 후, IgG elution buffer(Thermo Scientific, 21004)로 용출시켰다. 얻어진 용출물을 PBS 버퍼로 교환하여 최종적으로 키메릭 항체 AbF46(이하, chAbF46로 명명함)을 정제하였다. The cultured cells were centrifuged to obtain 100 ml of supernatant, respectively, and purified using AKTA Prime (GE healthcare). Protein A column (GE healthcare, 17-0405-03) was installed in AKTA Prime, and the culture solution was flowed at a flow rate of 5 ml / min, and then eluted with IgG elution buffer (Thermo Scientific, 21004). The obtained eluate was exchanged with PBS buffer to finally purify the chimeric antibody AbF46 (hereinafter referred to as chAbF46).
1.3. 키메릭1.3. Chimeric 항체  Antibodies chAbF46으로부터from chAbF46 인간화 항체  Humanized antibodies huAbF46의of huAbF46 제작 making
1.3.1.3. 1. 중쇄의1. of heavy chain 인간화(Heavy chain humanization) Heavy chain humanization
H1-heavy 및 H3-heavy 2종의 디자인을 위하여, 우선 Ig Blast (http://www.ncbi.nlm.nih.gov/igblast/)를 통하여 상기 참고예 1.2에서 정제된 마우스 항체 AbF46의 VH 유전자와 가장 상동성이 높은 인간의 생식선(germline) 유전자를 분석하였다. 그 결과, VH3-71이 아미노산 레벨에서 83%의 상동성을 가짐을 확인하였으며, 마우스 항체 AbF46의 CDR-H1, CDR-H2, CDR-H3를 Kabat numbering으로 정의하고, 마우스 항체 AbF46의 CDR 부분이 VH3-71의 골격(framework)에 도입되도록 디자인하였다. 이때, 30번(S→T), 48번(V→L), 73번(D→N), 78번(T→L) 아미노산은 원래 마우스 AbF46 항체의 아미노산 서열로 back-mutation 하였다. 이후, H1은 추가로 83번(R→K)과 84번(A→T) 아미노산에 돌연변이를 주어 최종적으로 H1-heavy(서열번호 40)와 H3-heavy(서열번호 41)를 구축하였다.For the design of H1-heavy and H3-heavy, first, the VH gene of the mouse antibody AbF46 purified in Reference Example 1.2 above through Ig Blast (http://www.ncbi.nlm.nih.gov/igblast/) The germline genes of humans with the highest homology with were analyzed. As a result, it was confirmed that VH3-71 had 83% homology at the amino acid level, CDR-H1, CDR-H2, CDR-H3 of mouse antibody AbF46 were defined as Kabat numbering, and the CDR portion of mouse antibody AbF46 was defined as It was designed to be introduced into the framework of VH3-71. At this time, amino acids 30 (S → T), 48 (V → L), 73 (D → N), and 78 (T → L) were back-mutated with the amino acid sequence of the original mouse AbF46 antibody. Afterwards, H1 mutated the amino acids 83 (R → K) and 84 (A → T) to finally construct H1-heavy (SEQ ID NO: 40) and H3-heavy (SEQ ID NO: 41).
H4-heavy의 디자인을 위하여 인간항체의 골격(framework) 서열을 찾아 본 결과, AbF46 항체의 마우스 골격 서열과 서열이 매우 유사함과 동시에, 기존의 가장 안정하다고 알려진 VH3 subtype을 사용하여 Kabat numbering으로 정의된 마우스 항체 AbF46의 CDR-H1, CDR-H2, CDR-H3를 도입하였다. 이를 통하여 H4-heavy (서열번호 42)를 구축하였다.For the design of H4-heavy, the framework sequence of human antibody was found. As a result, Kabat numbering was defined using the most stable VH3 subtype known to be similar to that of AbF46 antibody. CDR-H1, CDR-H2, CDR-H3 of the mouse antibody AbF46 were introduced. This established H4-heavy (SEQ ID NO: 42).
1.3.1.3. 2. 경쇄의2. light chain 인간화(Light chain humanization) Light chain humanization
H1-light(서열번호 43) 및 H2-light(서열번호 44) 2종의 디자인을 위하여, Ig Blast (http://www.ncbi.nlm.nih.gov/igblast/)를 통하여, 마우스 항체 AbF46의 VL 유전자와 가장 상동성이 높은 인간 생식선 유전자를 분석하였다. 그 결과, VK4-1이 아미노산 레벨에서 75%의 상동성을 가짐을 확인하였으며, 마우스 항체 AbF46의 CDR-L1, CDR-L2, CDR-L3를 Kabat numbering으로 정의하고, 마우스 항체 AbF46의 CDR부분이 VK4-1의 골격에 도입되도록 디자인하였다. 이때, H1-light는 36번(Y→H), 46번(L→M), 49번(Y→I) 3개의 아미노산을 back-mutation 하였으며, H2-light는 49번 아미노산(Y→I) 1개만을 back-mutation 하여 구축하였다.For the design of H1-light (SEQ ID NO: 43) and H2-light (SEQ ID NO: 44), mouse antibody AbF46 via Ig Blast (http://www.ncbi.nlm.nih.gov/igblast/) Human germline genes having the highest homology with the VL gene were analyzed. As a result, it was confirmed that VK4-1 had 75% homology at the amino acid level, CDR-L1, CDR-L2, CDR-L3 of mouse antibody AbF46 were defined as Kabat numbering, and the CDR portion of mouse antibody AbF46 was defined as It was designed to be introduced into the backbone of VK4-1. At this time, H1-light back-mutated three amino acids 36 (Y → H), 46 (L → M), 49 (Y → I), and H2-light 49 amino acid (Y → I) Only one was constructed by back-mutation.
H3-light(서열번호 45)의 디자인을 위하여, Blast (http://www.ncbi.nlm.nih.gov/igblast/)를 통하여 마우스 항체 AbF46의 VL 유전자와 가장 상동성이 높은 인간 생식선 유전자를 분석한 결과 중, 상기 VK4-1 이외에 VK2-40을 선정하였다. 마우스 항체 AbF46 VL과 VK2-40은 아미노산 레벨에서 61%의 상동성을 가짐을 확인하였으며, 마우스 항체 AbF46의 CDR-L1, CDR-L2, CDR-L3를 Kabat numbering으로 정의하고, 마우스 항체 AbF46의 CDR부분이 VK4-1의 골격에 도입되도록 디자인하였다. 이때, H3-light는 36번(Y→H), 46번(L→M), 49번(Y→I) 3개의 아미노산을 back-mutation 하여 구축하였다.For the design of H3-light (SEQ ID NO: 45), Blast (http://www.ncbi.nlm.nih.gov/igblast/) was used to identify a human germline gene with the highest homology with the VL gene of the mouse antibody AbF46. Among the analyzed results, VK2-40 was selected in addition to VK4-1. It was confirmed that the mouse antibodies AbF46 VL and VK2-40 had 61% homology at the amino acid level, CDR-L1, CDR-L2, CDR-L3 of the mouse antibody AbF46 was defined as Kabat numbering, and the CDR of the mouse antibody AbF46 was determined. The part was designed to be introduced into the backbone of VK4-1. In this case, H3-light was constructed by back-mutating three amino acids 36 (Y → H), 46 (L → M), and 49 (Y → I).
H4-light(서열번호 46)의 디자인을 위하여, 인간항체의 골격(framework) 서열을 찾아 본 결과, 기존의 가장 안정하다고 알려진 Vk1 subtype을 사용하여 Kabat numbering으로 정의된 마우스 항체 AbF46의 CDR-L1, CDR-L2, CDR-L3를 도입하였다. 이때, H4-light는 36번(Y→H), 46번(L→M), 49번(Y→I) 3개의 아미노산을 추가로 back-mutation 하여 구축하였다.For the design of H4-light (SEQ ID NO: 46), we found the framework sequences of human antibodies and found that CDR-L1 of mouse antibody AbF46, defined by Kabat numbering, using the most known Vk1 subtype, CDR-L2, CDR-L3 were introduced. At this time, H4-light was constructed by further back-mutation of three amino acids 36 (Y → H), 46 (L → M), 49 (Y → I).
이후, Invitrogen 사의 OptiCHOTM Antibody Express Kit (Cat no. 12762-019)에 포함되어 있는 pOptiVECTM-TOPO TA Cloning Kit에 상기 중쇄에 해당하는 뉴클레오타이드 서열을 갖는 DNA 절편(H1-heavy; 서열번호 47, H3-heavy; 서열번호 48, H4-heavy; 서열번호 49)을 pcDNATM3.3-TOPO TA Cloning Kit 에 상기 경쇄에 해당하는 뉴클레오타이드 서열을 갖는 DNA 절편(H1-light; 서열번호 50, H2-light; 서열번호 51, H3-light; 서열번호 52, H4-light; 서열번호 53)을 각각 EcoRI(NEB, R0101S)과 XhoI(NEB, R0146S) 제한 효소를 사용하여, 클로닝함으로써, 인간화 항체의 발현을 위한 벡터를 구축하였다.Subsequently, the DNA fragment having the nucleotide sequence corresponding to the heavy chain in pOptiVEC -TOPO TA Cloning Kit included in OptiCHO Antibody Express Kit (Cat no. 12762-019) manufactured by Invitrogen (H1-heavy; SEQ ID NO: 47, H3). -heavy; SEQ ID NO: 48, H4-heavy; SEQ ID NO: 49) for pcDNA 3.3-TOPO DNA fragments having the nucleotide sequence corresponding to the light chain (H1-light; SEQ ID NO: 50, H2-light; SEQ ID NO: 51, H3-light; SEQ ID NO: 52, H4-light; SEQ ID NO: 53), respectively, were added to the TA Cloning Kit. Cloning was performed using EcoRI (NEB, R0101S) and XhoI (NEB, R0146S) restriction enzymes to construct vectors for expression of humanized antibodies.
상기 구축된 벡터는 각각 Qiagen Maxiprep kit (Cat no. 12662)을 이용하여 증폭되었으며, 임시발현은 FreestyleTM MAX 293 Expression System (invitrogen)을 이용하여 진행 되었다. 사용된 세포주는 293 F cell 이며, FreeStyle™ 293 Expression Medium를 배지로 사용하여 부유배양방식으로 배양되었다. 임시발현 하루 전 세포를 5x105cells/ml의 농도로 준비한 후, 24시간이 지난 뒤 cell수가 1x106cells/ml이 되었을 때 임시발현을 진행하였다. FreestyleTM MAX reagent (invitrogen)을 사용한 liposomal reagent법으로 형질도입(transfection)을 진행 하였으며, 15ml tube에 중쇄 DNA: 경쇄 DNA=1:1 의 비율로 DNA를 준비하여 OptiPro™ SFM (invtrogen) 2ml과 mix하고(A), 또 다른 15ml tube에 FreestyleTM MAX reagent 100㎕와 OptiPro™ SFM 2ml을 mix(B)한 후, (A)와 (B)을 mix하여 15분간 incubation 한 후, 하루 전에 준비한 세포에 혼합액을 천천히 섞어주었다. 형질도입 완료 후, 37 ℃, 80% humidity, 8% CO2, 130 rpm incubator에서 5일간 배양하였다. The constructed vectors were amplified using Qiagen Maxiprep kit (Cat no. 12662), respectively, and the temporary expression was Freestyle TM. This was done using the MAX 293 Expression System (invitrogen). The cell line used was 293 F cells, and cultured by suspension culture using FreeStyle ™ 293 Expression Medium as a medium. The cells were prepared at a concentration of 5x10 5 cells / ml one day before the temporary expression, and then after 24 hours, the cells were temporarily expressed when the number of cells reached 1x10 6 cells / ml. Transfection was performed by liposomal reagent method using Freestyle TM MAX reagent (invitrogen), and the DNA was prepared in a ratio of heavy chain DNA to light chain DNA = 1: 1 in a 15 ml tube and mixed with 2 ml of OptiPro ™ SFM (invtrogen). and (a), also after the other Freestyle TM MAX reagent 100㎕ with OptiPro ™ SFM 2ml mix (B) to the 15ml tube, then incubation 15 minutes to mix the (a) and (B), the cells prepared the day before The mixture was mixed slowly. After completion of the transduction, incubation for 5 days at 37 ℃, 80% humidity, 8% CO 2, 130 rpm incubator.
상기 배양된 세포를 원심분리하여 상등액 각 100 ml을 취하고, AKTA Prime (GE healthcare)를 이용하여 정제하였다. AKTA Prime에 Protein A 컬럼(GE healthcare, 17-0405-03)을 설치하고 배양액을 5 ml/min의 유속으로 흘려준 후, IgG elution buffer(Thermo Scientific, 21004)로 용출하였다. 이를 PBS buffer로 교환하여 최종적으로 인간화 항체 AbF46(이하, huAbF46로 명명함)을 정제하였다. 한편, 이후 실시예에서 사용한 인간화 항체 huAbF46의 중쇄, 경쇄 조합은 H4-heavy (서열번호 42) 및 H4-light(서열번호 46)이다.The cultured cells were centrifuged to take 100 ml of each supernatant, and purified using AKTA Prime (GE healthcare). Protein A column (GE healthcare, 17-0405-03) was installed in AKTA Prime, and the culture solution was flowed at a flow rate of 5 ml / min, and then eluted with IgG elution buffer (Thermo Scientific, 21004). This was exchanged with PBS buffer to finally purify the humanized antibody AbF46 (hereinafter referred to as huAbF46). Meanwhile, the heavy and light chain combinations of the humanized antibody huAbF46 used in the following examples are H4-heavy (SEQ ID NO: 42) and H4-light (SEQ ID NO: 46).
1.4. huAbF461.4. huAbF46 항체의  Antibody scFvscFv 라이브러리 제작  Library Authoring
huAbF46 항체의 중쇄 가변 부위 및 경쇄 가변 부위를 이용하여 huAbF46 항체의 scFv를 제작하기 위한 유전자를 디자인하였다. 각각의 중쇄 가변 부위 및 경쇄 가변 부위를 'VH-링커-VL'의 형태가 되도록 하고, 상기 링커는 'GLGGLGGGGSGGGGSGGSSGVGS'(서열번호 54)의 아미노산 서열을 가지도록 디자인하였다. 이렇게 디자인된 huAbF46 항체의 scFv를 코딩하는 폴리뉴클레오타이드(서열번호 55)를 바이오니아에 의뢰하여 합성하였으며, 이를 발현시키기 위한 벡터를 서열번호 56에 나타내었다.Genes for constructing the scFv of the huAbF46 antibody were designed using the heavy and light chain variable regions of the huAbF46 antibody. Each heavy and light chain variable region was in the form of 'VH-linker-VL' and the linker was designed to have an amino acid sequence of 'GLGGLGGGGSGGGGSGGSSGVGS' (SEQ ID NO: 54). The polynucleotide encoding the scFv of the huAbF46 antibody thus designed (SEQ ID NO: 55) was synthesized by Bioneer, and a vector for expressing it was shown in SEQ ID NO: 56.
이후, 상기 벡터로부터 발현된 결과물을 분석하여, c-Met에 특이적인 결합력을 보임을 확인하였다.Then, expressed from the vector Analysis of the results, it was confirmed that showing a specific binding force to c-Met.
 
1.5. 친화도1.5. Affinity 성숙(affinity maturation)을 위한 라이브러리 유전자의 제작 Construction of Library Genes for Affinity Maturation
1.5.1.5. 1. 표적1. Target CDR의CDR 선정 및  Selection and 프라이머primer 제작 making
huAbF46 항체의 친화도 성숙(affinity maturation)을 위하여 6개의 상보성 결정 부위(complementary determining region, CDR)를 상기 제작된 마우스 항체 AbF46으로부터 'Kabat numbering'에 의하여 정의하였으며, 각각의 CDR은 하기 표 1과 같다.Six complementarity determining regions (CDRs) were defined by 'Kabat numbering' from the mouse antibody AbF46 prepared above for affinity maturation of the huAbF46 antibody, and each CDR is shown in Table 1 below. .
CDRCDR 아미노산 서열Amino acid sequence
CDR-H1CDR-H1 DYYMS(서열번호 1)DYYMS (SEQ ID NO: 1)
CDR-H2CDR-H2 FIRNKANGYTTEYSASVKG(서열번호 2)FIRNKANGYTTEYSASVKG (SEQ ID NO: 2)
CDR-H3CDR-H3 DNWFAY(서열번호 3)DNWFAY (SEQ ID NO: 3)
CDR-L1CDR-L1 KSSQSLLASGNQNNYLA(서열번호 10)KSSQSLLASGNQNNYLA (SEQ ID NO: 10)
CDR-L2CDR-L2 WASTRVS(서열번호 11)WASTRVS (SEQ ID NO: 11)
CDR-L3CDR-L3 QQSYSAPLT(서열번호 12)QQSYSAPLT (SEQ ID NO: 12)
항체 CDR의 무작위 서열 도입을 위하여 다음과 같이 프라이머를 제작하였다. 기존의 무작위 서열 도입 방식은 돌연변이를 주고자 하는 부위에 동일한 비율의 염기 (25% A, 25% G, 25% C, 25% T)가 도입되도록 N 코돈을 이용하였으나, 본 실시예에서는 huAbF46 항체의 CDR에 무작위 염기를 도입하기 위하여, 각 CDR의 아미노산을 코딩하는 3개의 야생형(wild-type) 뉴클레오타이드 중 첫번째와 두번째 뉴클레오타이드의 85%는 그대로 보존하고, 나머지 3개의 염기를 각각 5%씩 도입하는 방식을 취하였다. 또한, 세 번째 뉴클레오타이드는 동일하게(33% G, 33% C, 33% T)가 도입되도록 프라이머를 디자인하였다. Primers were prepared as follows to introduce random sequences of antibody CDRs. Conventional random sequence introduction method using N codon to introduce the same ratio of bases (25% A, 25% G, 25% C, 25% T) to the site to be mutated, but in this example huAbF46 antibody To introduce a random base into the CDRs of the 85% of the first and second nucleotides of the wild-type nucleotides were preserved and 5% of the remaining three bases were introduced. In addition, primers were designed such that the third nucleotide was introduced equally (33% G, 33% C, 33% T).
1.5.1.5. 2. huAbF46HuAbF46 항체의 라이브러리 제작 및 c-Met에 대한 결합력 확인 Library Preparation of Antibodies and Confirmation of Avidity for c-Met
CDR의 무작위 서열 도입을 통한 항체 라이브러리 유전자의 구축은 상기 참고예 1.5.1과 같은 방법으로 제작된 프라이머를 이용하여 수행하였다. 주형으로 huAbF46 항체의 scFv를 포함하는 폴리뉴클레오타이드를 이용하여, 2개의 PCR 절편을 제작하고, 이를 중복 확장 중합효소연쇄반응(overlap extension PCR) 방법을 통하여, 원하는 CDR만 각각 돌연변이된 huAbF46 항체의 scFv 라이브러리 유전자를 확보하여 제작된 6개의 CDR을 각각 표적으로 하는 라이브러리들을 구축하였다.Construction of the antibody library gene by random sequence introduction of CDRs was performed using primers prepared in the same manner as in Reference Example 1.5.1. Using the polynucleotide containing the scFv of the huAbF46 antibody as a template, two PCR fragments were prepared, and through the overlap extension PCR method, the scFv library of the huAbF46 antibody mutated only the desired CDRs, respectively. Libraries were constructed to target each of the six CDRs prepared by securing the gene.
이렇게 제작된 라이브러리는 야생형과 각 라이브러리의 c-Met에 대한 결합력을 확인하였으며, 각각의 라이브러리는 야생형에 비하여 c-Met에 대한 결합력이 대부분 낮아지는 경향을 보였으나, 일부 c-Met에 대한 결합력이 유지되는 돌연변이들을 확인하였다.The prepared library was found to bind the wild type and c-Met of each library, each library showed a tendency to lower the binding capacity to c-Met than the wild type, but the binding capacity to some c-Met Remaining mutations were identified.
1.6. 제작된1.6. Made 라이브러리로부터  From the library 친화도가Affinity 개선된 항체의 선별 Improved Screening of Antibodies
상기 구축된 라이브러리로부터 c-Met에 대한 라이브러리의 결합력을 향상시킨 후, 각각의 개별 클론으로부터 scFv의 유전자 서열을 분석하였다. 확보된 유전자 서열은 각각 하기 표 2와 같으며, 이를 IgG 형태로 변환하였다. 하기 클론 중에서, L3-1, L3-2, L3-3, L3-5으로부터 생산된 4종의 항체를 선별하여 후속 실험을 수행하였다.After enhancing the binding capacity of the library to c-Met from the constructed library, the gene sequence of scFv was analyzed from each individual clone. The obtained gene sequences are shown in Table 2, respectively, and these were converted into IgG forms. Among the following clones, four antibodies produced from L3-1, L3-2, L3-3, L3-5 were selected for subsequent experiments.
클론 이름Clone name 도출된 라이브러리Derived library CDR 서열CDR sequence
H11-4H11-4 CDR-H1CDR-H1 PEYYMS(서열번호 22)PEYYMS (SEQ ID NO: 22)
YC151YC151 CDR-H1CDR-H1 PDYYMS(서열번호 23)PDYYMS (SEQ ID NO: 23)
YC193YC193 CDR-H1CDR-H1 SDYYMS(서열번호 24)SDYYMS (SEQ ID NO: 24)
YC244YC244 CDR-H2CDR-H2 RNNANGNT(서열번호 25)RNNANGNT (SEQ ID NO: 25)
YC321YC321 CDR-H2CDR-H2 RNKVNGYT(서열번호 26)RNKVNGYT (SEQ ID NO: 26)
YC354YC354 CDR-H3CDR-H3 DNWLSY(서열번호 27)DNWLSY (SEQ ID NO: 27)
YC374YC374 CDR-H3CDR-H3 DNWLTY(서열번호 28)DNWLTY (SEQ ID NO: 28)
L1-1L1-1 CDR-L1CDR-L1 KSSHSLLASGNQNNYLA(서열번호 29)KSSHSLLASGNQNNYLA (SEQ ID NO: 29)
L1-3L1-3 CDR-L1CDR-L1 KSSRSLLSSGNHKNYLA(서열번호 30)KSSRSLLSSGNHKNYLA (SEQ ID NO: 30)
L1-4L1-4 CDR-L1CDR-L1 KSSKSLLASGNQNNYLA(서열번호 31)KSSKSLLASGNQNNYLA (SEQ ID NO: 31)
L1-12L1-12 CDR-L1CDR-L1 KSSRSLLASGNQNNYLA(서열번호 32)KSSRSLLASGNQNNYLA (SEQ ID NO: 32)
L1-22L1-22 CDR-L1CDR-L1 KSSHSLLASGNQNNYLA(서열번호 33)KSSHSLLASGNQNNYLA (SEQ ID NO: 33)
L2-9L2-9 CDR-L2CDR-L2 WASKRVS(서열번호 34)WASKRVS (SEQ ID NO 34)
L2-12L2-12 CDR-L2CDR-L2 WGSTRVS(서열번호 35)WGSTRVS (SEQ ID NO 35)
L2-16L2-16 CDR-L2CDR-L2 WGSTRVP(서열번호 36)WGSTRVP (SEQ ID NO: 36)
L3-1L3-1 CDR-L3CDR-L3 QQSYSRPYT(서열번호 13)QQSYSRPYT (SEQ ID NO: 13)
L3-2L3-2 CDR-L3CDR-L3 GQSYSRPLT(서열번호 14)GQSYSRPLT (SEQ ID NO: 14)
L3-3L3-3 CDR-L3CDR-L3 AQSYSHPFS(서열번호 15)AQSYSHPFS (SEQ ID NO: 15)
L3-5L3-5 CDR-L3CDR-L3 QQSYSRPFT(서열번호 16)QQSYSRPFT (SEQ ID NO: 16)
L3-32L3-32 CDR-L3CDR-L3 QQSYSKPFT(서열번호 37)QQSYSKPFT (SEQ ID NO: 37)
1.7. 선별된1.7. Selected 항체의  Antibody IgG로의To IgG 변환 conversion
선별된 4종의 항체의 중쇄를 코딩하는 폴리뉴클레오타이드는 'EcoRI-signal sequence-VH-NheI-CH-XhoI'(서열번호 38)로 구성되며, 중쇄의 경우 친화도 성숙 후에 항체의 아미노산이 변경되지 않았으므로, huAbF46 항체의 중쇄를 그대로 사용하였다. 다만, 힌지 영역(hinge region)은 인간 IgG1의 힌지가 아닌 U6-HC7 힌지(서열번호 57) 로 치환하였다. 경쇄는 'EcoRI-signal sequence-VL-BsiWI-CL-XhoI'로 구성되도록 각각 디자인하여 유전자를 합성하였으며, 친화도 성숙 후에 선별된 상기 4종 항체의 경쇄 가변 부위를 포함하여 코딩하는 폴리뉴클레오타이드(서열번호 58 내지 서열번호 61)를 바이오니아에 의뢰하여 합성하였다. 이후, Invitrogen 사의 OptiCHOTM Antibody Express Kit (Cat no. 12762-019)에 포함되어 있는 pOptiVECTM-TOPO TA Cloning Kit에 상기 중쇄에 해당하는 뉴클레오타이드 서열을 갖는 DNA 절편(서열번호 38)을, pcDNATM3.3-TOPO TA Cloning Kit(Cat no. 8300-01)에 상기 경쇄에 해당하는 뉴클레오타이드 서열을 갖는 DNA 절편(L3-1 유래 CDR-L3를 포함하는 DNA 절편: 서열번호 58, L3-2 유래 CDR-L3를 포함하는 DNA 절편: 서열번호 59, L3-3 유래 CDR-L3를 포함하는 DNA 절편: 서열번호 60, L3-5 유래 CDR-L3를 포함하는 DNA 절편: 서열번호 61)을 각각 EcoRI(NEB, R0101S)과 XhoI(NEB, R0146S) 제한 효소를 사용하여 클로닝함으로써, 친화력 성숙된 항체의 발현을 위한 벡터를 구축하였다.The polynucleotides encoding the heavy chains of the four selected antibodies consist of 'EcoRI-signal sequence-VH-NheI-CH-XhoI' (SEQ ID NO: 38), and the heavy chains do not alter the amino acid of the antibody after affinity maturation. The heavy chain of huAbF46 antibody was used as it was. However, the hinge region was replaced with the U6-HC7 hinge (SEQ ID NO: 57), not the hinge of human IgG1. The light chains were designed to be composed of 'EcoRI-signal sequence-VL-BsiWI-CL-XhoI' to synthesize genes, and the polynucleotides encoding the light chain variable regions of the four antibodies selected after affinity maturation (sequences). No. 58 to SEQ ID NO: 61) were synthesized by BIONIA. Subsequently, the DNA fragment (SEQ ID NO: 38) having the nucleotide sequence corresponding to the heavy chain was added to the pOptiVEC -TOPO TA Cloning Kit included in the OptiCHO Antibody Express Kit (Cat no. 12762-019) of Invitrogen, pcDNA 3.3 -TOPO DNA fragment having a nucleotide sequence corresponding to the light chain (TA fragment containing L3-1 derived CDR-L3: SEQ ID NO: 58, including CDR-L3 derived from L3-2) in TA Cloning Kit (Cat no. 8300-01) DNA fragment comprising SEQ ID NO: 59, L3-3-derived CDR-L3 DNA fragment: SEQ ID NO: 60, L3-5-derived CDR-L3 DNA fragment: SEQ ID NO: 61) by EcoRI (NEB, R0101S) By cloning with the XhoI (NEB, R0146S) restriction enzyme, a vector was constructed for expression of affinity matured antibodies.
상기 구축된 벡터는 각각 Qiagen Maxiprep kit (Cat no. 12662)을 이용하여 증폭되었으며, 임시발현은 FreestyleTM MAX 293 Expression System (invitrogen)을 이용하여 진행 되었다. 사용된 세포주는 293 F cell 이며, FreeStyle™ 293 Expression Medium를 배지로 사용하여 부유배양방식으로 배양되었다. 임시발현 하루 전 세포를 5x105cells/ml의 농도로 준비한 후, 24시간이 지난 뒤 cell수가 1x106cells/ml이 되었을 때 임시발현을 진행하였다. FreestyleTM MAX reagent (invitrogen)을 사용한 liposomal reagent법으로 형질도입(transfection)을 진행 하였으며, 15ml tube에 중쇄 DNA: 경쇄 DNA=1:1 의 비율로 DNA를 준비하여 OptiPro™ SFM (invtrogen) 2ml과 mix하고(A), 또 다른 15ml tube에 FreestyleTM MAX reagent 100㎕와 OptiPro™ SFM 2ml을 mix(B)한 후, (A)와 (B)을 mix하여 15분간 incubation 한 후, 하루 전에 준비한 세포에 혼합액을 천천히 섞어주었다. 형질도입 완료 후, 37 ℃, 80% humidity, 8% CO2, 130 rpm incubator에서 5일간 배양하였다. The constructed vectors were amplified using Qiagen Maxiprep kit (Cat no. 12662), respectively, and the temporary expression was Freestyle TM. This was done using the MAX 293 Expression System (invitrogen). The cell line used was 293 F cells, and cultured by suspension culture using FreeStyle ™ 293 Expression Medium as a medium. The cells were prepared at a concentration of 5x10 5 cells / ml one day before the temporary expression, and then after 24 hours, the cells were temporarily expressed when the number of cells reached 1x10 6 cells / ml. Transfection was performed by liposomal reagent method using Freestyle TM MAX reagent (invitrogen), and the DNA was prepared in a ratio of heavy chain DNA to light chain DNA = 1: 1 in a 15 ml tube and mixed with 2 ml of OptiPro ™ SFM (invtrogen). and (a), also after the other Freestyle TM MAX reagent 100㎕ with OptiPro ™ SFM 2ml mix (B) to the 15ml tube, then incubation 15 minutes to mix the (a) and (B), the cells prepared the day before The mixture was mixed slowly. After completion of the transduction, incubation for 5 days at 37 ℃, 80% humidity, 8% CO 2, 130 rpm incubator.
상기 배양된 세포를 원심분리하여 상등액 각 100 ml을 취하고, AKTA Prime (GE healthcare)를 이용하여 정제하였다. AKTA Prime에 Protein A 컬럼(GE healthcare, 17-0405-03)을 설치하고 배양액을 5 ml/min의 유속으로 흘려준 후, IgG elution buffer(Thermo Scientific, 21004)로 용출하였다. 이를 PBS buffer로 교환하여 최종적으로 친화력 성숙된 4종의 항체(이하, huAbF46-H4-A1(L3-1 유래), huAbF46-H4-A2 (L3-2 유래), huAbF46-H4-A3 (L3-3 유래), 및 huAbF46-H4-A5(L3-5 유래)로 명명함)를 정제하였다. The cultured cells were centrifuged to take 100 ml of each supernatant, and purified using AKTA Prime (GE healthcare). Protein A column (GE healthcare, 17-0405-03) was installed in AKTA Prime, and the culture solution was flowed at a flow rate of 5 ml / min, and then eluted with IgG elution buffer (Thermo Scientific, 21004). It was exchanged with PBS buffer to finally produce four types of antibodies (hereinafter, huAbF46-H4-A1 (from L3-1), huAbF46-H4-A2 (from L3-2), huAbF46-H4-A3 (L3-). 3), and huAbF46-H4-A5 (named from L3-5)).
1.8. 불변영역 및/또는 1.8. Constant region and / or 힌지영역이Hinge area 치환된  Substituted huAbF46huAbF46 -H4-A1의 제조Preparation of -H4-A1
상기 참고예 1.7에서 선별된 4종의 항체 중에서, c-Met과의 결합친화도가 가장 높고, Akt 인산화 및 c-Met 분화 정도가 가장 낮은 것으로 측정된 huAbF46-H4-A1을 대상으로, 힌지영역 또는 불변영역 및 힌지영역이 치환된 항체를 제작하였다. Among the four antibodies selected in Reference Example 1.7, the hinge region of huAbF46-H4-A1, which was determined to have the highest binding affinity with c-Met and the lowest degree of Akt phosphorylation and c-Met differentiation, Alternatively, an antibody was prepared in which the constant region and the hinge region were substituted.
huAbF46-H4-A1의 중쇄 가변 부위, U6-HC7 힌지 및 인간의 IgG1 불변영역으로 이루어진 중쇄 및 huAbF46-H4-A1의 경쇄 가변 부위 및 인간의 카파(kappa) 불변영역으로 이루어진 경쇄로 이루어진 항체를 huAbF46-H4-A1(U6-HC7)으로; huAbF46-H4-A1의 중쇄 가변 부위, 인간의 IgG2 힌지 및 인간의 IgG1 불변영역으로 이루어진 중쇄 및 huAbF46-H4-A1의 경쇄 가변 부위 및 인간의 카파 불변영역으로 이루어진 경쇄로 이루어진 항체를 huAbF46-H4-A1(IgG2 hinge)로; huAbF46-H4-A1의 중쇄 가변 부위, 인간의 IgG2 힌지 및 인간의 IgG2 불변영역으로 이루어진 중쇄 및 huAbF46-H4-A1의 경쇄 가변 부위 및 인간의 카파 불변영역으로 이루어진 경쇄로 이루어진 항체를 huAbF46-H4-A1(IgG2 Fc)로 각각 명명하였다. 또한, 한편, 상기 3종의 항체는 생산량 증대를 위하여 인간의 카파 불변영역으로 이루어진 경쇄의 36번 히스티딘 (histidine)을 모두 티로신 (tyrosine)으로 치환하였다.An antibody consisting of a heavy chain consisting of a heavy chain variable region of huAbF46-H4-A1, a U6-HC7 hinge and a IgG1 constant region of human, and a light chain consisting of a light chain variable region of huAbF46-H4-A1 and a kappa constant region of human, was selected from huAbF46 -H4-A1 (U6-HC7); An antibody consisting of a heavy chain consisting of a heavy chain variable region of huAbF46-H4-A1, a human IgG2 hinge and a human IgG1 constant region, and a light chain consisting of a light chain variable region of huAbF46-H4-A1 and a human kappa constant region was selected from huAbF46-H4- With Al (IgG2 hinge); An antibody consisting of a heavy chain consisting of a heavy chain variable region of huAbF46-H4-A1, a human IgG2 hinge and a human IgG2 constant region, and a light chain consisting of a light chain variable region of huAbF46-H4-A1 and a human kappa constant region was selected from huAbF46-H4- Each named A1 (IgG2 Fc). On the other hand, the three antibodies were all substituted histidine No. 36 of the light chain consisting of the human kappa constant region in order to increase the production of tyrosine (tyrosine).
상기 3종 항체를 제작하기 위해, huAbF46-H4-A1의 중쇄 가변 부위, U6-HC7힌지 및 인간의 IgG1 불변영역으로 이루어진 폴리펩티드(서열번호 62)를 코딩하는 폴리뉴클레오티드(서열번호 63), huAbF46-H4-A1의 중쇄 가변 부위, 인간의 IgG2 힌지 및 인간의 IgG1 불변영역으로 이루어진 폴리펩티드(서열번호 64)를 코딩하는 폴리뉴클레오티드(서열번호 65), huAbF46-H4-A1의 중쇄 가변 부위, 인간의 IgG2 힌지 및 인간의 IgG2 불변영역으로 이루어진 폴리펩티드(서열번호 66)를 코딩하는 폴리뉴클레오티드(서열번호 67), 36번 히스티틴이 티로신으로 치환된 huAbF46-H4-A1의 경쇄 가변 부위 및 인간의 카파 불변영역으로 이루어진 폴리펩티드(서열번호 68)를 코딩하는 폴리뉴클레오티드(서열번호 69)를 바이오니아에 의뢰하여 합성하였다. 이후, Invitrogen 사의 OptiCHOTM Antibody Express Kit (Cat no. 12762-019)에 포함되어 있는 pOptiVECTM-TOPO TA Cloning Kit에 상기 중쇄에 해당하는 염기서열을 갖는 DNA 절편을, pcDNATM3.3-TOPO TA Cloning Kit(Cat no. 8300-01)에 상기 경쇄에 해당하는 염기서열을 갖는 DNA 절편을 삽입하여, 상기 항체의 발현을 위한 벡터를 구축하였다.To prepare the three antibodies, a polynucleotide encoding the polypeptide consisting of the heavy chain variable region of huAbF46-H4-A1, the U6-HC7 hinge and the IgG1 constant region of human (SEQ ID NO: 62), huAbF46- Polynucleotide encoding the polypeptide consisting of the heavy chain variable region of H4-A1, the human IgG2 hinge and the human IgG1 constant region (SEQ ID NO: 64) (SEQ ID NO: 65), the heavy chain variable region of huAbF46-H4-A1, human IgG2 Polynucleotide encoding the polypeptide consisting of a hinge and a human IgG2 constant region (SEQ ID NO: 66) (SEQ ID NO: 67), a light chain variable region of huAbF46-H4-A1 where histidine 36 is substituted with tyrosine and a human kappa constant region A polynucleotide (SEQ ID NO: 69) encoding a polypeptide consisting of (SEQ ID NO: 68) was submitted to Bioneer and synthesized. Subsequently, the DNA fragment having the nucleotide sequence corresponding to the heavy chain was added to the pOptiVEC -TOPO TA Cloning Kit included in the OptiCHO Antibody Express Kit (Cat no. 12762-019) of Invitrogen, pcDNA 3.3-TOPO A DNA fragment having a nucleotide sequence corresponding to the light chain was inserted into a TA Cloning Kit (Cat no. 8300-01) to construct a vector for expression of the antibody.
상기 구축된 벡터는 각각 Qiagen Maxiprep kit (Cat no. 12662)을 이용하여 증폭되었으며, 임시발현은 FreestyleTM MAX 293 Expression System (invitrogen)을 이용하여 진행 되었다. 사용된 세포주는 293 F cell 이며, FreeStyle™ 293 Expression Medium를 배지로 사용하여 부유배양방식으로 배양되었다. 임시발현 하루 전 세포를 5x105cells/ml의 농도로 준비한 후, 24시간이 지난 뒤 cell수가 1x106cells/ml이 되었을 때 임시발현을 진행하였다. FreestyleTM MAX reagent (invitrogen)을 사용한 liposomal reagent법으로 형질도입(transfection)을 진행 하였으며, 15ml tube에 중쇄 DNA: 경쇄 DNA=1:1 의 비율로 DNA를 준비하여 OptiPro™ SFM (invtrogen) 2ml과 mix하고(A), 또 다른 15ml tube에 FreestyleTM MAX reagent 100㎕와 OptiPro™ SFM 2ml을 mix(B)한 후, (A)와 (B)을 mix하여 15분간 incubation 한 후, 하루 전에 준비한 세포에 혼합액을 천천히 섞어주었다. 형질도입 완료 후, 37 ℃, 80% humidity, 8% CO2, 130 rpm incubator에서 5일간 배양하였다. The constructed vectors were amplified using Qiagen Maxiprep kit (Cat no. 12662), respectively, and the temporary expression was Freestyle TM. This was done using the MAX 293 Expression System (invitrogen). The cell line used was 293 F cells, and cultured by suspension culture using FreeStyle ™ 293 Expression Medium as a medium. The cells were prepared at a concentration of 5x10 5 cells / ml one day before the temporary expression, and after 24 hours, the cells were temporarily expressed when the number of cells reached 1x10 6 cells / ml. Transfection was performed by liposomal reagent method using Freestyle TM MAX reagent (invitrogen), and the DNA was prepared in a ratio of heavy chain DNA to light chain DNA = 1: 1 in a 15 ml tube and mixed with 2 ml of OptiPro ™ SFM (invtrogen). and (a), also after the other Freestyle TM MAX reagent 100㎕ with OptiPro ™ SFM 2ml mix (B) to the 15ml tube, then incubation 15 minutes to mix the (a) and (B), the cells prepared the day before The mixture was mixed slowly. After completion of the transduction, incubation for 5 days at 37 ℃, 80% humidity, 8% CO 2, 130 rpm incubator.
상기 배양된 세포를 원심분리하여 상등액 각 100 ml을 취하고, AKTA Prime (GE healthcare)를 이용하여 정제하였다. AKTA Prime에 Protein A 컬럼(GE healthcare, 17-0405-03)을 설치하고 배양액을 5 ml/min의 유속으로 흘려준 후, IgG elution buffer(Thermo Scientific, 21004)로 용출하였다. 이를 PBS buffer로 교환하여 최종적으로 3종의 항체(huAbF46-H4-A1(U6-HC7), huAbF46-H4-A1(IgG2 hinge), huAbF46-H4-A1(IgG2 Fc))를 정제하였다. 이 중에서 본 발명에 따른 항 c-Met 항체를 대표하여 huAbF46-H4-A1(IgG2 Fc)을 선택하여 하기의 실시예에 사용하였으며, 편의상 상기 항체를 L3-1Y/IgG2로 명명하였다.The cultured cells were centrifuged to take 100 ml of each supernatant, and purified using AKTA Prime (GE healthcare). Protein A column (GE healthcare, 17-0405-03) was installed in AKTA Prime, and the culture solution was flowed at a flow rate of 5 ml / min, and then eluted with IgG elution buffer (Thermo Scientific, 21004). Finally, three antibodies (huAbF46-H4-A1 (U6-HC7), huAbF46-H4-A1 (IgG2 hinge), huAbF46-H4-A1 (IgG2 Fc)) were purified. Among them, huAbF46-H4-A1 (IgG2 Fc) was selected for the anti-c-Met antibody according to the present invention and used in the following examples, and for convenience, the antibody was named L3-1Y / IgG2.
실시예Example 1: 위암 세포주의 항 c-Met 항체에 대한 효능 여부 확인  1: Confirmation of efficacy against anti-c-Met antibody in gastric cancer cell line
다양한 위암 세포주에서의 L3-1Y/IgG2에 대한 항암 효능 여부를 확인하였다.The anticancer efficacy of L3-1Y / IgG2 in various gastric cancer cell lines was confirmed.
구체적으로, MKN45 (JCRB0254, JCRB), SNU5 (CRL-5973, ATCC), Hs746T (HTB-135, ATCC), MKN74 (JCRB0255, JCRB), NUGC4 (JCRB0834, JCRB), NCI-N87 (CRL-5822, ATCC), 및 SNU668 (00668, KCLB)를 각각 5000개의 양으로 96-well plate에 분주하고, 24시간 후 항체(L3-1Y/IgG2)를 0 ug(microgram)/ml, 0.00064 ug/ml, 0.0032 ug/ml, 0.016 ug/ml, 0.08 ug/ml, 0.4 ug/ml, 또는 2 ug/ml (MKN45, SNU5, 및 Hs746T), 0 ug/ml, 0.08 ug/ml, 0.4 ug/ml, 2 ug/ml, 또는 10 ug/ml (NCI-N87 및 SNU668), 또는 0 ug/ml, 0.08 ug/ml, 0.04 ug/ml, 2 ug/ml, 10 ug/ml, 또는 50 ug/ml (NUGC4 및 MKN74)의 양으로 처리하였다. 항체 처리 후 72시간에 CellTiter Glo assay(Promega, G7573)를 통해 세포수 변화를 측정하였다. 이 방법은 살아있는 세포의 대사를 반영하는 ATP 양을 측정하는 방식이다. CellTiter Glo assay 내에는 세포 내의 ATP와 반응하면 luminoscence를 방출하는 기질이 첨가되어 있다. 이 luminoscence를 측정함으로써 살아있는 세포의 수를 정량할 수 있다. 상기 결과를 도 1 (MKN45, SNU5, 및 Hs746T) 및 도 2 (NCI-N87,SNU668, NUGC4, 및 MKN74)에 나타내었다. 도 1 및 도 2에서와 같이 MKN45, SNU5, 및 Hs746T 세포주에 대해서는 L3-1Y/IgG2에 의한 암세포 성장 억제 효능이 나타나는 반면, MKN74, NUGC4, NCI-N87, 및 SNU668 세포주에서는 이러한 효능이 나타나지 않음을 확인할 수 있다. 따라서, 위암 세포주 MKN45, SNU5 및 Hs746T는 L3-1Y/IgG2 효능군, MKN74, NUGC4, NCI-N87, 및 SNU668는 L3-1Y/IgG2 비효능군으로 분류하였다.Specifically, MKN45 (JCRB0254, JCRB), SNU5 (CRL-5973, ATCC), Hs746T (HTB-135, ATCC), MKN74 (JCRB0255, JCRB), NUGC4 (JCRB0834, JCRB), NCI-N87 (CRL-5822, ATCC), and SNU668 (00668, KCLB) were dispensed into a 96-well plate in 5000 quantities each, and after 24 hours antibody (L3-1Y / IgG2) was added to 0 ug (microgram) / ml, 0.00064 ug / ml, 0.0032 ug / ml, 0.016 ug / ml, 0.08 ug / ml, 0.4 ug / ml, or 2 ug / ml (MKN45, SNU5, and Hs746T), 0 ug / ml, 0.08 ug / ml, 0.4 ug / ml, 2 ug / ml, or 10 ug / ml (NCI-N87 and SNU668), or 0 ug / ml, 0.08 ug / ml, 0.04 ug / ml, 2 ug / ml, 10 ug / ml, or 50 ug / ml (NUGC4 and MKN74). 72 hours after the antibody treatment, cell number change was measured by CellTiter Glo assay (Promega, G7573). This method measures the amount of ATP that reflects the metabolism of living cells. Within the CellTiter Glo assay, a substrate is added that emits luminoscence upon reaction with ATP in the cell. By measuring this luminoscence, the number of living cells can be quantified. The results are shown in FIG. 1 (MKN45, SNU5, and Hs746T) and FIG. 2 (NCI-N87, SNU668, NUGC4, and MKN74). As shown in FIG. 1 and FIG. 2, L3-1Y / IgG2 inhibits cancer cell growth by MKN45, SNU5, and Hs746T cell lines, whereas MKN74, NUGC4, NCI-N87, and SNU668 cell lines do not exhibit this effect. You can check it. Therefore, gastric cancer cell lines MKN45, SNU5 and Hs746T were classified into L3-1Y / IgG2 efficacy group, MKN74, NUGC4, NCI-N87, and SNU668 into L3-1Y / IgG2 ineffective group.
실시예Example 2: 위암 세포주의 c-Met 저해제에 대한 효능 여부 확인  2: Validation of c-Met Inhibitors on Gastric Cancer Cell Lines
위의 위암 세포주에서의 L3-1Y/IgG2 외의 c-Met 저해제에 대한 반응성을 확인하기 위해 크리조티닙 (crizotinib; Selleckchem, S1068) 및 PHA-665752(Selleckchem, S1070)를 이용하여 항암 효능 여부를 확인하였다.To determine the responsiveness to c-Met inhibitors other than L3-1Y / IgG2 in the gastric cancer cell line, crizotinib (Clezotinib; Selleckchem, S1068) and PHA-665752 (Selleckchem, S1070) were used to determine the anticancer efficacy It was.
구체적으로, MKN45 (JCRB0254, JCRB), Hs746T (HTB-135, ATCC), MKN74 (JCRB0255, JCRB), 및 SNU668 (00668, KCLB)를 각각 5000개의 양으로 96-well plate에 분주하고, 24시간 후 crizotinib 혹은 PHA665752를 0 nM, 8 nM, 16 nM, 31 nM, 63 nM, 125 nM, 250 nM, 500 nM, 1000 nM, 또는 2000 nM의 양으로 처리하였다. 항체 처리 후 72시간에 CellTiter Glo assay(Promega, G7573)를 통해 세포수 변화를 측정하였다. 상기 결과를 도 3 (크리조티닙) 및 도 4 (PHA665752)에 나타내었다. 도 3 및 도 4에서와 같이 크리조티닙 및 PHA665752의 암세포 성장 억제 효능이 SNU668과 MKN74 세포주 대비 MKN45와 Hs746T 세포주에서 높음을 확인할 수 있다. 따라서 MKN45 및 Hs746T는 c-Met 저해제 효능군, SNU668 및 MKN74는 c-Met 저해제 비효능군으로 분류할 수 있다. Specifically, MKN45 (JCRB0254, JCRB), Hs746T (HTB-135, ATCC), MKN74 (JCRB0255, JCRB), and SNU668 (00668, KCLB) were each dispensed in a 96-well plate in 5000 quantities, and after 24 hours crizotinib or PHA665752 was treated in amounts of 0 nM, 8 nM, 16 nM, 31 nM, 63 nM, 125 nM, 250 nM, 500 nM, 1000 nM, or 2000 nM. 72 hours after the antibody treatment, cell number change was measured by CellTiter Glo assay (Promega, G7573). The results are shown in Figure 3 (Crizotinib) and Figure 4 (PHA665752). As shown in FIGS. 3 and 4, it can be seen that the cancer cell growth inhibitory effect of crizotinib and PHA665752 is higher in MKN45 and Hs746T cell lines than in SNU668 and MKN74 cell lines. Therefore, MKN45 and Hs746T can be classified into c-Met inhibitor agonist group, and SNU668 and MKN74 are c-Met inhibitor agonist group.
실시예Example 3: 위암 세포주에서  3: in gastric cancer cell line DKK1DKK1 발현량 측정  Expression level measurement
위암 세포주에서 DKK1 발현량과 항 c-Met 항체 효능 사이에 연관성이 있는지 확인하기 위해, CCLE (Cancer Cell Line Encyclopedia) database에서 위암 세포주 총 38종(도 5 참조)의 gene expression 정보를 분석하였다. In order to determine whether there is a correlation between DKK1 expression and anti-c-Met antibody efficacy in gastric cancer cell lines, gene expression information of 38 gastric cancer cell lines (see FIG. 5) was analyzed in a CCLE (Cancer Cell Line Encyclopedia) database.
항 c-Met 항체인 L3-1Y/IgG2가 효능을 보이는 세포주 MKN45, SNU5 및 Hs746T (L3-1Y/IgG2 효능군 (반응군); 실시예 1 참조)와 효능을 보이지 않는 세포주 MKN74, NUGC4, NCI-N87 및 SNU668 (L3-1Y/IgG2 비효능군 (비반응군); 실시예 1 참조)에서 발현 차이가 큰 유전자를 찾은 결과, DKK1 유전자가 가장 큰 발현량 차이를 보이는 것으로 발굴되었다. Cell lines MKN45, SNU5 and Hs746T (L3-1Y / IgG2 potency group (response group) with efficacy of anti-c-Met antibody L3-1Y / IgG2) (see Example 1) and ineffective cell lines MKN74, NUGC4, NCI When genes with large expression differences were found in -N87 and SNU668 (L3-1Y / IgG2 ineffective group (non-responder group); see Example 1), the DKK1 gene was found to show the largest difference in expression amount.
상기 38종 위암 세포주의 DKK1 유전자 발현 수준을 도 5에 나타내었다 (파란색: L3-1Y/IgG2 효능군; 붉은색: L3-1Y/IgG2 비효능군). 도 5에 나타난 유전자 발현 수준은 Affymetrix U133plus2.0 플랫폼을 사용하여 측정된 값이며, y축은 GEO (Gene Expression Omnibus) 데이터 베이스를 통하여 획득된 38종 세포주의 DKK1 유전자 발현 수준의 평균값을 나타낸다. 도 5에서 확인되는 바와 같이, L3-1Y/IgG2 효능군의 DKK1 발현 수준이 L3-1Y/IgG2 비효능군과 비교하여 현저히 높은 것을 알 수 있다. DKK1 gene expression levels of the 38 gastric cancer cell lines are shown in FIG. 5 (blue: L3-1Y / IgG2 efficacy group; red: L3-1Y / IgG2 ineffective group). The gene expression level shown in FIG. 5 is a value measured using the Affymetrix U133plus2.0 platform, and the y axis represents the average value of DKK1 gene expression levels of 38 cell lines obtained through a Gene Expression Omnibus (GEO) database. As can be seen in Figure 5, it can be seen that the DKK1 expression level of the L3-1Y / IgG2 efficacy group is significantly higher than the L3-1Y / IgG2 ineffective group.
도 5의 결과 중에서, L3-1Y/IgG2 효능군 (3개 세포주)과 L3-1Y/IgG2 비효능군 (4개 세포주)의 DKK1 유전자 발현 결과를 추출하여, 그 분포를 도 6에 나타내었다 (Resp: L3-1Y/IgG2 효능군; nonResp: L3-1Y/IgG2 비효능군). 도 5에 나타난 바와 같이, 효능군에서의 DKK1 유전자의 발현 수준이 비효능군보다 현저히 높음을 알 수 있다.In the results of FIG. 5, DKK1 gene expression results of the L3-1Y / IgG2 efficacy group (3 cell lines) and the L3-1Y / IgG2 ineffective group (4 cell lines) were extracted, and the distribution thereof is shown in FIG. 6 ( Resp: L3-1Y / IgG2 efficacy group; nonResp: L3-1Y / IgG2 ineffective group). As shown in Figure 5, it can be seen that the expression level of the DKK1 gene in the efficacy group is significantly higher than the ineffective group.
실시예Example 4: 항 c-Met 항체  4: anti-c-Met antibody 효능군과Efficacy group 비효능군에서의In the ineffective group DKK1DKK1 유전자 발현 검증 Gene Expression Verification
DKK1 유전자의 발현량이 L3-1Y/IgG2 효능군에서 높음을 RT-PCR을 통해 검증하였다. DKK1 유전자 발현량 측정은 mRNA level을 측정함으로써 수행되었고, 다음의 primer를 이용하여 발현량을 측정하였다.The expression level of the DKK1 gene was high in the L3-1Y / IgG2 efficacy group, and it was verified by RT-PCR. DKK1 gene expression level was measured by measuring mRNA level, and the expression level was measured using the following primers.
Sense, AGACCATTGACAACTACCAGCCGT (서열번호 112)Sense, AGACCATTGACAACTACCAGCCGT (SEQ ID NO: 112)
Antisense, GGAATACCCATCCAAGGTGCT (서열번호 113)Antisense, GGAATACCCATCCAAGGTGCT (SEQ ID NO: 113)
L3-1Y/IgG2 효능군 MKN45, Hs746T, SNU와 L3-1Y/IgG2 비효능군 NUGC4, NCIN87에 대해 DKK1 유전자 발현량을 측정하였다. 발현량 측정을 위한 qPCR은 cell seeding, RNA 추출, cDNA synthesis, RT-PCR reaction의 과정으로 이루어진다. 먼저 RNA를 추출하기 위해 각각의 세포를 60 mm dish에 106 cells/plate의 농도로 분주하고 2일간 배양하였다. 2일 후 RNeasy Mini kit (Qiagen, #74106)을 사용하여 RNA를 추출하며, RNA 추출시 RNase free DW 50 ul(microliter)에 추출하도록 하였다. 이 중 2~3 ug의 RNA를 Transcriptor First Strand cDNA synthesis kit (Roche, #04 896 866 001)를 이용하여 cDNA로 합성하였다. 이 때 manufacture's protocol을 따라 진행하였다. pPCR reaction은 LC480 SYBR Green I Master (Roche, #04 887 352 001)와 LightCycler® 480 Real-Time PCR System (Roche)을 사용하여 진행하였다. 샘플의 RNA 양을 보정하기 위한 internal control로는 HPRT1을 사용하며 primer sequence는 아래와 같다.DKK1 gene expression levels were measured for L3-1Y / IgG2 agonist MKN45, Hs746T, SNU and L3-1Y / IgG2 ineffective group NUGC4, NCIN87. QPCR for the expression level measurement consists of cell seeding, RNA extraction, cDNA synthesis, RT-PCR reaction. First, to extract RNA, each cell was aliquoted at a concentration of 10 6 cells / plate in a 60 mm dish and incubated for 2 days. After 2 days, RNA was extracted using RNeasy Mini kit (Qiagen, # 74106), and extracted to RNase free DW 50 ul (microliter) during RNA extraction. Two to three ug of RNA was synthesized by cDNA using a Transcriptor First Strand cDNA synthesis kit (Roche, # 04 896 866 001). At this time, it proceeded according to manufacture's protocol. pPCR reaction was performed using LC480 SYBR Green I Master (Roche, # 04 887 352 001) and LightCycler® 480 Real-Time PCR System (Roche). HPRT1 is used as an internal control to calibrate the amount of RNA in the sample. The primer sequence is as follows.
Sense, tgaccttgatttattttgcatacc (서열번호 114)Sense, tgaccttgatttattttgcatacc (SEQ ID NO: 114)
Antisense, cgagcaagacgttcagtcct (서열번호 115)Antisense, cgagcaagacgttcagtcct (SEQ ID NO: 115)
qPCR은 모든 primer에 대해 다음 과정을 따라 수행하였다. Step1: 95, 10 min; Step2 (45 cycles): Step 2-1: 95℃, 10 sec; Step 2-2: 60, 20 sec; Step 2-3: 72, 20 sec; Step3: 95, 5 sec; Step4: 65, 1 min; Step5: 95, continuous (every 5); Step6: 40, 10 sec.qPCR was performed according to the following procedure for all primers. Step 1: 95, 10 min; Step 2 (45 cycles): Step 2-1: 95 ° C., 10 sec; Step 2-2: 60, 20 sec; Step 2-3: 72, 20 sec; Step 3: 95, 5 sec; Step 4: 65, 1 min; Step 5: 95, continuous (every 5); Step 6: 40, 10 sec.
상기 얻어진 각 세포주의 DKK1 전사체 수준을 MKN45 세포(relative transcripts=1)에 대한 상대적인 양으로 도 7에 나타내었다. 도 7에서 확인할 수 있듯이, L3-1Y/IgG2 효능군 MKN45, Hs746T, SNU에서는 DKK1의 발현 수준이 현저히 증가해 있는 반면, L3-1Y/IgG2 비효능군 NUGC4, NCIN87에서는 DKK1이 거의 발현되지 않음을 알 수 있다. The DKK1 transcript levels of each cell line obtained above are shown in FIG. 7 relative to MKN45 cells (relative transcripts = 1). As can be seen in Figure 7, the expression level of DKK1 is significantly increased in the L3-1Y / IgG2 agonist group MKN45, Hs746T, SNU, while DKK1 is rarely expressed in the L3-1Y / IgG2 ineffective group NUGC4, NCIN87. Able to know.
실시예Example 5: 항 c-Met 항체  5: anti-c-Met antibody 효능군과Efficacy group 비효능군에서의In the ineffective group DKK1DKK1 단백질 발현 검증 Protein expression verification
DKK1 단백질의 발현량이 항 c-Met 항체 효능군에서 높음을 ELISA(R&D, DY1906)를 통해 검증하였다.The expression level of the DKK1 protein was high in the anti-c-Met antibody potency group by ELISA (R & D, DY1906).
항 c-Met 항체 효능군 MKN45, Hs746T와 비효능군 SNU668, NUGC4에 대해 DKK1 단백질 발현량을 측정하였다. 250000개의 위암 세포를 60 mm dish에 분주하고 4일간 배양하였다. 4일 후 배양액을 2 um filter로 filtering한 후 ELISA를 진행하였다. 이 때 남은 세포의 수를 측정하여 단위세포에 따른 DKK1 발현을 계산하였다. 도 8에서 보는 바와 같이, 항 c-Met 항체 효능군에서는 DKK1 발현이 높고 비효능군에서는 DKK1 발현이 낮다. 이는 실시예 4의 유전자 발현과 일치함을 알 수 있으며, DKK1 발현을 유전자 뿐만 아니라 단백질로도 측정이 가능함을 알 수 있다.DKK1 protein expression levels were measured for anti-c-Met antibody potency group MKN45, Hs746T and ineffective group SNU668, NUGC4. 250000 gastric cancer cells were dispensed in a 60 mm dish and incubated for 4 days. After 4 days, the culture solution was filtered with a 2 um filter, followed by ELISA. At this time, the number of remaining cells was measured to calculate DKK1 expression according to unit cells. As shown in FIG. 8, DKK1 expression was high in the anti-c-Met antibody potency group, and DKK1 expression was low in the ineffective group. It can be seen that it is consistent with the gene expression of Example 4, it can be seen that the expression of DKK1 can be measured not only by the gene but also by the protein.
실시예Example 6:  6: DKK1DKK1 발현 수준에 따른 항 c-Met 항체 효능 확인 Confirmation of anti-c-Met antibody efficacy according to expression level
DKK1 유전자 발현 수준이 항 c-Met 항체의 효능에 미치는 영향을 검증하기 위해, 환자유래 식도암(oesophageal cancer) 세포 (삼성서울병원 (대한민국, 서울) 이지연 교수에게 분양 받음)를 이용한 in vitro 효능 테스트를 진행하였다. To verify the effect of DKK1 gene expression levels on the efficacy of anti-c-Met antibodies, an in vitro efficacy test using patient-derived esophageal cancer cells (provided by Prof. Lee Ji-yeon, Samsung Medical Center, Seoul, Korea) Proceeded.
DKK1 유전자 발현 수준 조절을 위해 DKK1 siRNA(ThermoFisher, L-003843-01-0005)를 사용하였으며, 대조군으로는 siGENOME Non-Targeting siRNA Pool #2 (ThermoFisher, D-001206-14-20)를 사용하였다. 먼저 96 well plate에 Opti-MEM (GIBCO) 으로 희석한 0.3 ul RNAiMax (transfection reagent, 13778-150, Invitrogen)와 최종 농도 20 nM의 siRNA mixture(A tube에 RNAiMAX를 Opti-MEM에 희석, B tube에 siRNA를 Opti-MEM에 희석, B tube의 solution을 A tube에 섞고 5분 incubation)를 섞고 15분간 상온에서 incubation 하였다. 이 때 희석된 RNAiMax와 siRNA의 총 volume은 25 ul이 되도록 하였다. 이 96 well에 웰당 상기 위암환자유래세포가 5000개씩 들어가도록 10% FBS가 들어있는 RPMI1640 배지(GIBCO)로 희석한 세포를 80 ul씩 시딩하였다. 24시간 후, 상기 배양된 세포에 L3-1Y/IgG2 항체를 0.0, 4.0, 20.0 및 100.0ug/ml의 농도로 처리하였다.DKK1 siRNA (ThermoFisher, L-003843-01-0005) was used to control DKK1 gene expression levels, and siGENOME Non-Targeting siRNA Pool # 2 (ThermoFisher, D-001206-14-20) was used as a control. First, dilute RNAiMAX in Opti-MEM in A tube with 0.3 ul RNAiMax (transfection reagent, 13778-150, Invitrogen) diluted with Opti-MEM (GIBCO) in 96 well plate and final concentration of 20 nM. The siRNA was diluted in Opti-MEM, the solution of the B tube was mixed with the A tube, incubated for 5 minutes, and incubated at room temperature for 15 minutes. At this time, the total volume of the diluted RNAiMax and siRNA was 25 ul. 80 ul of the cells diluted with RPMI1640 medium (GIBCO) containing 10% FBS were seeded into 5000 wells of gastric cancer patient-derived cells per 96 wells. After 24 hours, the cultured cells were treated with L3-1Y / IgG2 antibodies at concentrations of 0.0, 4.0, 20.0 and 100.0 ug / ml.
상기 처리 후 72시간 후에 세포수 계수를 위해 CellTiter Glo(Promega, G7573)를 웰당 100 ul씩 넣고 상온에서 30분간 incubation 하였다. 세포 수는 발광 신호를 통해 계수하며 발광 신호는 Envision 2104 Multi-label Reader (Perkin Elmer)를 사용하여 기록하였다.72 hours after the treatment, CellTiter Glo (Promega, G7573) was added to 100 ul per well for counting the cells and incubated at room temperature for 30 minutes. Cell counts were counted through luminescence signals and luminescence signals were recorded using an Envision 2104 Multi-label Reader (Perkin Elmer).
상기 얻어진 결과를 도 9에 나타내었다 (siNEG: 대조군 siGENOME Non-Targeting siRNA Pool #2 처리군; siDKK1: DKK1 siRNA 처리군). 도 9에 나타난 바와 같이, DKK1 siRNA를 처리하여 DKK1 유전자의 발현을 낮춘 경우, L3-1Y/IgG2의 암세포 사멸 효능이 저해됨을 확인할 수 있다. 이를 통해 DKK1 유전자의 발현이 L3-1Y/IgG2 효능과 연관되어 있음을 알 수 있다.The obtained results are shown in FIG. 9 (siNEG: control siGENOME Non-Targeting siRNA Pool # 2 treatment group; siDKK1: DKK1 siRNA treatment group). As shown in FIG. 9, when the expression of the DKK1 gene was lowered by treating the DKK1 siRNA, the cancer cell killing effect of L3-1Y / IgG2 may be inhibited. This suggests that expression of the DKK1 gene is associated with L3-1Y / IgG2 efficacy.
실시예Example 7: 항 c-Met 항체에 대한 저항성이 유도된 경우  7: When resistance to anti-c-Met antibodies is induced WntWnt 저해제에 의한 저항성 극복 여부 확인 Determine whether to overcome resistance by inhibitor
DKK1은 Wnt antagonist이므로 DKK1 발현이 높은 경우 Wnt signaling이 억제되어 있고, DKK1 발현량을 낮추면 Wnt signaling이 활성화될 수 있다. 항 c-Met 항체에 대한 저항성이 유도된 경우 Wnt signaling이 하나의 원인이 될 수 있으므로 이를 증명하기 위해 Wnt inhibitor인 XAV939 (Selleckchem, S1180)가 항 c-Met 항체 저항성을 극복할 수 있는지 테스트해 보았다.Since DKK1 is a Wnt antagonist, when DKK1 expression is high, Wnt signaling is suppressed. Wnt signaling may be activated by decreasing DKK1 expression. Wnt signaling may be one cause when resistance to anti-c-Met antibodies is induced. To prove this, we tested whether the Wnt inhibitor XAV939 (Selleckchem, S1180) can overcome anti-c-Met antibody resistance. .
항 c-Met 항체의 반복 투여로 저항성이 유도된 경우에 DKK1 발현량이 어떻게 변화하는지 측정하기 위해, L3-1Y/IgG2의 반복 투여로 L3-1Y/IgG2 항체에 대해 저항성이 유도된 MKN45 위암 세포주를 이용하였다. 상기 저항성 획득 MKN45 위암 세포주의 제작 과정은 다음과 같다: MKN45 세포(JCRB, JCRB0254)에 L3-1Y 항체를 처리량을 늘리면서 3개월 이상 처리하였다. L3-1Y/IgG2 항체의 처리량은 초기 처리 농도 1 ug/ml부터 시작하여 저항성이 나타날 때까지 10 ug/ml까지 증가시켰다. To determine how DKK1 expression changes when repeated administration of anti-c-Met antibody is induced, repeated administration of L3-1Y / IgG2 results in a MKN45 gastric cancer cell line that is resistant to L3-1Y / IgG2 antibody. Was used. The procedure for the production of resistance-resistant MKN45 gastric cancer cell line was as follows: MKN45 cells (JCRB, JCRB0254) were treated with L3-1Y antibody for more than 3 months with increasing throughput. Throughput of L3-1Y / IgG2 antibody was increased from the initial treatment concentration of 1 ug / ml to 10 ug / ml until resistance appeared.
상기 얻어진 L3-1Y/IgG2 항체에 대해 저항성 획득 MKN45 위암 세포를 96 well에 웰당 5000개의 세포가 들어가도록 시딩하였다. 24시간 후, 상기 세포를 L3-1Y/IgG2 항체로 처리하거나, L3-1Y/IgG2 항체와 XAV939로 병용 처리하였다. XAV939의 경우 MKN45 위암 세포에서 효능이 없으므로 일반적으로 사용하는 최고 농도인 10 uM(micromole)로 고정하였으며, L3-1Y/IgG2 항체의 경우에는 다양한 농도 (0, 0.08, 0.40, 2.00, 및 10.00ug/ml)로 처리하였다. 항체 처리 72시간 후에 CellTiter Glo assay(Promega, G7573)를 통해 세포수 변화를 측정하였다.MKN45 gastric cancer cells obtained resistance to the L3-1Y / IgG2 antibody obtained were seeded in 96 wells so that 5000 cells per well. After 24 hours, the cells were treated with L3-1Y / IgG2 antibody or co-treated with L3-1Y / IgG2 antibody with XAV939. Since XAV939 is ineffective in MKN45 gastric cancer cells, it was fixed at 10 uM (micromole), the highest concentration used in general, and various concentrations (0, 0.08, 0.40, 2.00, and 10.00 ug /) for L3-1Y / IgG2 antibodies. ml). 72 hours after the antibody treatment, cell number change was measured by CellTiter Glo assay (Promega, G7573).
상기 얻어진 결과를 도 10에 나타내었다. 도 10에서 보여지는 바와 같이, L3-1Y/IgG2 항체만 처리한 경우 (-○-), 세포 증식 저해 효과가 나타나지 않는 것으로 나타나, 상기 얻어진 MKN45 위암 세포가 L3-1Y/IgG2 항체에 대한 저항성을 획득하였음을 확인할 수 있다. 상기 L3-1Y/IgG2 저항성 획득 MKN45 위암 세포에 L3-1Y/IgG2 항체와 함께 Wnt 저해제인 XAV939를 병용 처리한 경우 (-●-), 현저한 세포 증식 저해 효과가 관찰되었다. 이러한 결과는, 항 c-Met 항체와 Wnt 저해제와의 병용 투여를 통하여, 항 c-Met 항체에 대한 저항성을 저감 내지 극복할 수 있음을 보여주는 것이라고 할 수 있다.The obtained result is shown in FIG. As shown in FIG. 10, when only L3-1Y / IgG2 antibody was treated (-○-), no cell proliferation inhibitory effect was observed. Thus, the obtained MKN45 gastric cancer cells were resistant to L3-1Y / IgG2 antibody. It can be confirmed that obtained. When the L3-1Y / IgG2 resistance obtained MKN45 gastric cancer cells were treated with the L3-1Y / IgG2 antibody together with the Wnt inhibitor XAV939 (-●-), a significant cell proliferation inhibitory effect was observed. These results show that the anti-c-Met antibody can be reduced or overcome by co-administration with the anti-c-Met antibody.
Figure PCTKR2016015043-appb-I000007
Figure PCTKR2016015043-appb-I000007

Claims (25)

  1. DKK1 단백질 및 이를 암호화하는 유전자로 이루어진 군에서 선택된 1종 이상과 상호작용하는 물질을 포함하는 c-Met 저해제의 효능 예측용 조성물.A composition for predicting the efficacy of a c-Met inhibitor comprising a substance interacting with at least one selected from the group consisting of a DKK1 protein and a gene encoding the same.
  2. DKK1 단백질 및 이를 암호화하는 유전자로 이루어진 군에서 선택된 1종 이상과 상호작용하는 물질을 포함하는 c-Met 저해제의 적용 대상 선별용 조성물.A composition for selection of c-Met inhibitors to be applied comprising a substance interacting with at least one selected from the group consisting of a DKK1 protein and a gene encoding the same.
  3. DKK1 단백질 및 이를 암호화하는 유전자로 이루어진 군에서 선택된 1종 이상과 상호작용하는 물질을 포함하는 c-Met 저해제의 효능 모니터링용 조성물.A composition for monitoring the efficacy of a c-Met inhibitor comprising a substance interacting with at least one selected from the group consisting of a DKK1 protein and a gene encoding the same.
  4. 제1항 내지 제3항 중 어느 한 항에 있어서, 상기 상호작용하는 물질은 DKK1 단백질 및 이를 암호화하는 유전자로 이루어진 군에서 선택된 1종 이상과 결합하는 소분자 화학물질, 단백질, 펩타이드, 및 핵산 분자로 이루어진 군에서 선택된 1종 이상인, 조성물.The method of claim 1, wherein the interacting substance is a small molecule chemical, a protein, a peptide, or a nucleic acid molecule that binds to at least one selected from the group consisting of a DKK1 protein and a gene encoding the same. At least one selected from the group consisting of, the composition.
  5. 제1항 내지 제3항 중 어느 한 항에 있어서, c-Met 및 이를 암호화하는 유전자로 이루어진 군에서 선택된 1종 이상과 상호작용 하는 물질을 추가로 포함하는, 조성물.The composition of any one of claims 1 to 3, further comprising a substance that interacts with at least one selected from the group consisting of c-Met and genes encoding the same.
  6. 제1항 내지 제3항 중 어느 한 항에 있어서, 상기 c-Met 저해제는 항 c-Met 항체, 이의 항원 결합 단편, 및 소분자 c-Met 저해제로 이루어진 군에서 선택된 1종 이상인, 조성물.The composition of claim 1, wherein the c-Met inhibitor is at least one selected from the group consisting of anti c-Met antibodies, antigen binding fragments thereof, and small molecule c-Met inhibitors.
  7. 제6항에 있어서, 상기 소분자 c-Met 저해제는 크리조티닙, 카보잔티닙, 포레티닙, PHA-665752, SU11274, SGX-523, PF-04217903, EMD 1214063, 골바티닙, INCB28060, MK-2461, 티반티닙, NVP-BVU972, AMG458, BMS 794833, BMS 777607, MGCD-265, AMG-208, BMS-754807, JNJ-38877605, 이미다조[1,2,-알파]피리딘 유도체, AMG-337, DE605, 또는 이들의 약학적으로 허용 가능한 염 등으로 이루어진 군에서 선택된 1종 이상인, 조성물.The small molecule c-Met inhibitor according to claim 6, wherein the small molecule c-Met inhibitor is crizotinib, carbozantinib, poretinib, PHA-665752, SU11274, SGX-523, PF-04217903, EMD 1214063, golbatinib, INCB28060, MK-2461 , Tivantinib, NVP-BVU972, AMG458, BMS 794833, BMS 777607, MGCD-265, AMG-208, BMS-754807, JNJ-38877605, imidazo [1,2, -alpha] pyridine derivatives, AMG-337, DE605 Or one or more selected from the group consisting of pharmaceutically acceptable salts thereof, and the like.
  8. 제6항에 있어서, 상기 항 c-Met 항체 또는 이의 항원 결합 단편은 c-Met의 SEMA 도메인(서열번호 79) 내의 서열번호 73의 아미노산 서열을 포함하는 연속하는 5 내지 19개 아미노산 서열로 이루어진 에피토프에 결합하는 항 c-Met 항체 또는 이의 항원 결합 단편인, 조성물.The epitope of claim 6, wherein the anti-c-Met antibody or antigen-binding fragment thereof comprises a contiguous 5-19 amino acid sequence comprising the amino acid sequence of SEQ ID NO: 73 in the SEMA domain (SEQ ID NO: 79) of c-Met. An anti c-Met antibody or antigen binding fragment thereof that binds to a composition.
  9. 제8항에 있어서, 상기 항 c-Met 항체 또는 이의 항원 결합 단편은, The method of claim 8, wherein the anti-c-Met antibody or antigen-binding fragment thereof,
    서열번호 4의 아미노산 서열을 갖는 CDR-H1, 서열번호 5의 아미노산 서열, 서열번호 2의 아미노산 서열, 또는 서열번호 2의 아미노산 서열 내의 3번째부터 10번째까지의 아미노산을 포함하는 연속하는 8 내지 19개의 아미노산으로 이루어진 아미노산 서열을 갖는 CDR-H2, 및 서열번호 6의 아미노산 서열, 서열번호 85의 아미노산 서열, 또는 서열번호 85의 아미노산 서열 내의 1번째부터 6번째까지의 아미노산을 포함하는 연속하는 6 내지 13개의 아미노산으로 이루어진 아미노산 서열을 갖는 CDR-H3으로 이루어진 군에서 선택된 하나 이상의 중쇄 상보성 결정 영역(CDR), 또는 상기 하나 이상의 중쇄 상보성 결정 영역을 포함하는 중쇄 가변 부위; Consecutive 8 to 19 comprising CDR-H1 having the amino acid sequence of SEQ ID NO: 4, the amino acid sequence of SEQ ID NO: 5, the amino acid sequence of SEQ ID NO: 2, or the third to tenth amino acids within the amino acid sequence of SEQ ID NO: 2 CDR-H2 having an amino acid sequence consisting of four amino acids, and the amino acid sequence of SEQ ID NO: 6, the amino acid sequence of SEQ ID NO: 85, or a contiguous 6 to 6 amino acid including the first to sixth amino acids in the amino acid sequence of SEQ ID NO: 85; At least one heavy chain complementarity determining region (CDR) selected from the group consisting of CDR-H3 having an amino acid sequence of 13 amino acids, or a heavy chain variable region comprising said at least one heavy chain complementarity determining region;
    서열번호 7의 아미노산 서열의 아미노산 서열을 갖는 CDR-L1, 서열번호 8의 아미노산 서열을 갖는 CDR-L2, 및 서열번호 9의 아미노산 서열, 서열번호 15의 아미노산 서열, 서열번호 86의 아미노산 서열, 또는 서열번호 89의 아미노산 서열 내의 1번째부터 9번째까지의 아미노산을 포함하는 9 내지 17개의 아미노산으로 이루어진 아미노산 서열을 갖는 CDR-L3으로 이루어진 군에서 선택된 하나 이상의 경쇄 상보성 결정 영역 또는 상기 하나 이상의 경쇄 상보성 결정 영역을 포함하는 경쇄 가변 부위; CDR-L1 having an amino acid sequence of SEQ ID NO: 7, CDR-L2 having an amino acid sequence of SEQ ID NO: 8, and an amino acid sequence of SEQ ID NO: 9, an amino acid sequence of SEQ ID NO: 15, an amino acid sequence of SEQ ID NO: 86, or One or more light chain complementarity determining regions or one or more light chain complementarity determining regions selected from the group consisting of CDR-L3 having an amino acid sequence consisting of 9 to 17 amino acids comprising the first to ninth amino acids in the amino acid sequence of SEQ ID NO: 89; Light chain variable region comprising a region;
    상기 중쇄 상보성 결정영역 및 경쇄 상보성 결정영역의 조합; 또는 A combination of the heavy chain complementarity determining region and the light chain complementarity determining region; or
    상기 중쇄 가변 부위 및 경쇄 가변 부위의 조합Combination of the heavy chain variable region and light chain variable region
    을 포함하는 것인, 조성물.It comprises, composition.
  10. 환자로부터 분리된 생물 시료 내의 DKK1 및 이를 암호화하는 유전자로 이루어진 군에서 선택된 1종 이상의 수준을 측정하는 단계를 포함하는, c-Met 저해제의 효능 예측을 위한 정보를 제공하는 방법.A method of providing information for predicting efficacy of a c-Met inhibitor, comprising measuring at least one level selected from the group consisting of DKK1 and a gene encoding the same in a biological sample isolated from a patient.
  11. 환자로부터 분리된 생물 시료 내의 DKK1 및 이를 암호화하는 유전자로 이루어진 군에서 선택된 1종 이상의 수준을 측정하는 단계를 포함하는, c-Met 저해제의 효능 모니터링을 위한 정보를 제공하는 방법.A method of providing information for monitoring the efficacy of a c-Met inhibitor, comprising measuring at least one level selected from the group consisting of DKK1 and a gene encoding the same in a biological sample isolated from a patient.
  12. 환자로부터 분리된 생물 시료 내의 DKK1 및 이를 암호화하는 유전자로 이루어진 군에서 선택된 1종 이상의 수준을 측정하는 단계를 포함하는, c-Met 저해제의 적용 대상 선별을 위한 정보를 제공하는 방법.A method of providing information for selection of a subject to be applied to a c-Met inhibitor, comprising measuring at least one level selected from the group consisting of DKK1 and a gene encoding the same in a biological sample isolated from the patient.
  13. 제9항 내지 제12항 중 어느 한 항에 있어서, c-Met 및 이를 암호화하는 유전자로 이루어진 군에서 선택된 1종 이상의 수준을 측정하는 단계를 추가로 포함하는, 방법.The method of claim 9, further comprising measuring at least one level selected from the group consisting of c-Met and genes encoding the same.
  14. 제10항 내지 제12항 중 어느 한 항에 있어서, 상기 c-Met 저해제는 항 c-Met 항체, 이의 항원 결합 단편, 및 소분자 c-Met 저해제로 이루어진 군에서 선택된 1종 이상인, 방법.The method of claim 10, wherein the c-Met inhibitor is at least one selected from the group consisting of anti c-Met antibodies, antigen binding fragments thereof, and small molecule c-Met inhibitors.
  15. 제14항에 있어서, 상기 소분자 c-Met 저해제는 크리조티닙, 카보잔티닙, 포레티닙, PHA-665752, SU11274, SGX-523, PF-04217903, EMD 1214063, 골바티닙, INCB28060, MK-2461, 티반티닙, NVP-BVU972, AMG458, BMS 794833, BMS 777607, MGCD-265, AMG-208, BMS-754807, JNJ-38877605, 이미다조[1,2,-알파]피리딘 유도체, AMG-337, DE605, 또는 이들의 약학적으로 허용 가능한 염 등으로 이루어진 군에서 선택된 1종 이상인, 방법.15. The method according to claim 14, wherein the small molecule c-Met inhibitor is crizotinib, carbozantinib, forretinib, PHA-665752, SU11274, SGX-523, PF-04217903, EMD 1214063, golbatinib, INCB28060, MK-2461 , Tivantinib, NVP-BVU972, AMG458, BMS 794833, BMS 777607, MGCD-265, AMG-208, BMS-754807, JNJ-38877605, imidazo [1,2, -alpha] pyridine derivatives, AMG-337, DE605 Or at least one selected from the group consisting of pharmaceutically acceptable salts thereof, and the like.
  16. 제14항에 있어서, 상기 항 c-Met 항체 또는 이의 항원 결합 단편은 c-Met의 SEMA 도메인(서열번호 79) 내의 서열번호 73의 아미노산 서열을 포함하는 연속하는 5 내지 19개 아미노산 서열로 이루어진 에피토프에 결합하는 항 c-Met 항체 또는 이의 항원 결합 단편인, 방법.The epitope of claim 14, wherein said anti-c-Met antibody or antigen-binding fragment thereof is an epitope consisting of a contiguous 5-19 amino acid sequence comprising the amino acid sequence of SEQ ID NO: 73 in the SEMA domain (SEQ ID NO: 79) of c-Met. An anti c-Met antibody or antigen binding fragment thereof that binds thereto.
  17. 제16항에 있어서, 상기 항 c-Met 항체 또는 이의 항원 결합 단편은, The method of claim 16, wherein the anti-c-Met antibody or antigen-binding fragment thereof,
    서열번호 4의 아미노산 서열을 갖는 CDR-H1, 서열번호 5의 아미노산 서열, 서열번호 2의 아미노산 서열, 또는 서열번호 2의 아미노산 서열 내의 3번째부터 10번째까지의 아미노산을 포함하는 연속하는 8 내지 19개의 아미노산으로 이루어진 아미노산 서열을 갖는 CDR-H2, 및 서열번호 6의 아미노산 서열, 서열번호 85의 아미노산 서열, 또는 서열번호 85의 아미노산 서열 내의 1번째부터 6번째까지의 아미노산을 포함하는 연속하는 6 내지 13개의 아미노산으로 이루어진 아미노산 서열을 갖는 CDR-H3으로 이루어진 군에서 선택된 하나 이상의 중쇄 상보성 결정 영역(CDR), 또는 상기 하나 이상의 중쇄 상보성 결정 영역을 포함하는 중쇄 가변 부위; Consecutive 8 to 19 comprising CDR-H1 having the amino acid sequence of SEQ ID NO: 4, the amino acid sequence of SEQ ID NO: 5, the amino acid sequence of SEQ ID NO: 2, or the third to tenth amino acids within the amino acid sequence of SEQ ID NO: 2 CDR-H2 having an amino acid sequence consisting of four amino acids, and the amino acid sequence of SEQ ID NO: 6, the amino acid sequence of SEQ ID NO: 85, or a contiguous 6 to 6 amino acid including the first to sixth amino acids in the amino acid sequence of SEQ ID NO: 85; At least one heavy chain complementarity determining region (CDR) selected from the group consisting of CDR-H3 having an amino acid sequence of 13 amino acids, or a heavy chain variable region comprising said at least one heavy chain complementarity determining region;
    서열번호 7의 아미노산 서열의 아미노산 서열을 갖는 CDR-L1, 서열번호 8의 아미노산 서열을 갖는 CDR-L2, 및 서열번호 9의 아미노산 서열, 서열번호 15, 서열번호 86의 아미노산 서열, 또는 서열번호 89의 아미노산 서열 내의 1번째부터 9번째까지의 아미노산을 포함하는 9 내지 17개의 아미노산으로 이루어진 아미노산 서열을 갖는 CDR-L3으로 이루어진 군에서 선택된 하나 이상의 경쇄 상보성 결정 영역 또는 상기 하나 이상의 경쇄 상보성 결정 영역을 포함하는 경쇄 가변 부위; CDR-L1 having an amino acid sequence of the amino acid sequence of SEQ ID NO: 7, CDR-L2 having an amino acid sequence of SEQ ID NO: 8, and an amino acid sequence of SEQ ID NO: 9, SEQ ID NO: 15, amino acid sequence of SEQ ID NO: 86, or SEQ ID NO: 89 At least one light chain complementarity determining region or at least one light chain complementarity determining region selected from the group consisting of CDR-L3 having an amino acid sequence consisting of 9 to 17 amino acids comprising the first to ninth amino acids in the amino acid sequence of Light chain variable region;
    상기 중쇄 상보성 결정영역 및 경쇄 상보성 결정영역의 조합; 또는 A combination of the heavy chain complementarity determining region and the light chain complementarity determining region; or
    상기 중쇄 가변 부위 및 경쇄 가변 부위의 조합Combination of the heavy chain variable region and light chain variable region
    을 포함하는 것인, 방법.It comprises a.
  18. c-Met 저해제 및 Wnt 신호화 저해제를 포함하는, 암의 예방 또는 치료를 위한 병용 투여용 약학 조성물.A pharmaceutical composition for concomitant administration for the prevention or treatment of cancer, comprising a c-Met inhibitor and a Wnt signaling inhibitor.
  19. 제18항에 있어서, 상기 c-Met 저해제는 항 c-Met 항체, 이의 항원 결합 단편, 및 소분자 c-Met 저해제로 이루어진 군에서 선택된 1종 이상인, 약학 조성물.The pharmaceutical composition of claim 18, wherein the c-Met inhibitor is one or more selected from the group consisting of anti-c-Met antibodies, antigen binding fragments thereof, and small molecule c-Met inhibitors.
  20. 제19항에 있어서, 상기 소분자 c-Met 저해제는 크리조티닙, 카보잔티닙, 포레티닙, PHA-665752, SU11274, SGX-523, PF-04217903, EMD 1214063, 골바티닙, INCB28060, MK-2461, 티반티닙, NVP-BVU972, AMG458, BMS 794833, BMS 777607, MGCD-265, AMG-208, BMS-754807, JNJ-38877605, 이미다조[1,2,-알파]피리딘 유도체, AMG-337, DE605, 또는 이들의 약학적으로 허용 가능한 염 등으로 이루어진 군에서 선택된 1종 이상인, 약학 조성물.20. The method of claim 19, wherein the small molecule c-Met inhibitor is crizotinib, carbozantinib, forretinib, PHA-665752, SU11274, SGX-523, PF-04217903, EMD 1214063, galvatinib, INCB28060, MK-2461 , Tivantinib, NVP-BVU972, AMG458, BMS 794833, BMS 777607, MGCD-265, AMG-208, BMS-754807, JNJ-38877605, imidazo [1,2, -alpha] pyridine derivatives, AMG-337, DE605 Or at least one selected from the group consisting of pharmaceutically acceptable salts thereof, and the like.
  21. 제19항에 있어서, 상기 항 c-Met 항체 또는 이의 항원 결합 단편은 c-Met의 SEMA 도메인(서열번호 79) 내의 서열번호 73의 아미노산 서열을 포함하는 연속하는 5 내지 19개 아미노산 서열로 이루어진 에피토프에 결합하는 항 c-Met 항체 또는 이의 항원 결합 단편인, 약학 조성물.The epitope of claim 19, wherein said anti-c-Met antibody or antigen-binding fragment thereof is an epitope consisting of a contiguous 5-19 amino acid sequence comprising the amino acid sequence of SEQ ID NO: 73 in the SEMA domain (SEQ ID NO: 79) of c-Met. A pharmaceutical composition, which is an anti c-Met antibody or antigen binding fragment thereof.
  22. 제21항에 있어서, 상기 항 c-Met 항체 또는 이의 항원 결합 단편은, The method of claim 21, wherein the anti-c-Met antibody or antigen-binding fragment thereof,
    서열번호 4의 아미노산 서열을 갖는 CDR-H1, 서열번호 5의 아미노산 서열, 서열번호 2의 아미노산 서열, 또는 서열번호 2의 아미노산 서열 내의 3번째부터 10번째까지의 아미노산을 포함하는 연속하는 8 내지 19개의 아미노산으로 이루어진 아미노산 서열을 갖는 CDR-H2, 및 서열번호 6의 아미노산 서열, 서열번호 85의 아미노산 서열, 또는 서열번호 85의 아미노산 서열 내의 1번째부터 6번째까지의 아미노산을 포함하는 연속하는 6 내지 13개의 아미노산으로 이루어진 아미노산 서열을 갖는 CDR-H3으로 이루어진 군에서 선택된 하나 이상의 중쇄 상보성 결정 영역(CDR), 또는 상기 하나 이상의 중쇄 상보성 결정 영역을 포함하는 중쇄 가변 부위; Consecutive 8 to 19 comprising CDR-H1 having the amino acid sequence of SEQ ID NO: 4, the amino acid sequence of SEQ ID NO: 5, the amino acid sequence of SEQ ID NO: 2, or the third to tenth amino acids within the amino acid sequence of SEQ ID NO: 2 CDR-H2 having an amino acid sequence consisting of four amino acids, and the amino acid sequence of SEQ ID NO: 6, the amino acid sequence of SEQ ID NO: 85, or a contiguous 6 to 6 amino acid including the first to sixth amino acids in the amino acid sequence of SEQ ID NO: 85; At least one heavy chain complementarity determining region (CDR) selected from the group consisting of CDR-H3 having an amino acid sequence of 13 amino acids, or a heavy chain variable region comprising said at least one heavy chain complementarity determining region;
    서열번호 7의 아미노산 서열의 아미노산 서열을 갖는 CDR-L1, 서열번호 8의 아미노산 서열을 갖는 CDR-L2, 및 서열번호 9의 아미노산 서열, 서열번호 15, 서열번호 86의 아미노산 서열, 또는 서열번호 89의 아미노산 서열 내의 1번째부터 9번째까지의 아미노산을 포함하는 9 내지 17개의 아미노산으로 이루어진 아미노산 서열을 갖는 CDR-L3으로 이루어진 군에서 선택된 하나 이상의 경쇄 상보성 결정 영역 또는 상기 하나 이상의 경쇄 상보성 결정 영역을 포함하는 경쇄 가변 부위; CDR-L1 having an amino acid sequence of the amino acid sequence of SEQ ID NO: 7, CDR-L2 having an amino acid sequence of SEQ ID NO: 8, and an amino acid sequence of SEQ ID NO: 9, SEQ ID NO: 15, amino acid sequence of SEQ ID NO: 86, or SEQ ID NO: 89 At least one light chain complementarity determining region or at least one light chain complementarity determining region selected from the group consisting of CDR-L3 having an amino acid sequence consisting of 9 to 17 amino acids comprising the first to ninth amino acids in the amino acid sequence of Light chain variable region;
    상기 중쇄 상보성 결정영역 및 경쇄 상보성 결정영역의 조합; 또는 A combination of the heavy chain complementarity determining region and the light chain complementarity determining region; or
    상기 중쇄 가변 부위 및 경쇄 가변 부위의 조합Combination of the heavy chain variable region and light chain variable region
    을 포함하는 것인, 약학 조성물.It comprises, pharmaceutical composition.
  23. 제18항에 있어서, 상기 Wnt 신호화 저해제는 DKK1, XAV939, PRI-724, CWP232291, 2,4-Diamino-quinazoline, FJ9, LGK974, G007-LK, Pyrvinium, Foxy-5, OMP-54F28, OMP-18R5 (vantictumab), 및 OTSA101로 이루어진 군에서 선택된 1종 이상인, 약학 조성물.The method of claim 18, wherein the Wnt signaling inhibitor is DKK1, XAV939, PRI-724, CWP232291, 2,4-Diamino-quinazoline, FJ9, LGK974, G007-LK, Pyrvinium, Foxy-5, OMP-54F28, OMP- 18R5 (vantictumab), and OTSA101 is one or more selected from the group consisting of, the pharmaceutical composition.
  24. 제18항 내지 제23항 중 어느 한 항에 있어서, 상기 암은 항 c-Met 저해제에 대하여 저항성을 갖는 암인, 약학 조성물.The pharmaceutical composition of any one of claims 18-23, wherein the cancer is a cancer resistant to anti-c-Met inhibitors.
  25. 제18항 내지 제23항 중 어느 한 항에 있어서, 상기 암은 위암인, 약학 조성물.The pharmaceutical composition of claim 18, wherein the cancer is gastric cancer.
PCT/KR2016/015043 2015-12-28 2016-12-21 Biomarker dkk for predicting efficacy of c-met inhibitor WO2017116064A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020150187944A KR102553879B1 (en) 2015-12-28 2015-12-28 Biomarker DKK for predicting effect of c-Met inhibitor
KR10-2015-0187944 2015-12-28

Publications (1)

Publication Number Publication Date
WO2017116064A1 true WO2017116064A1 (en) 2017-07-06

Family

ID=59225140

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2016/015043 WO2017116064A1 (en) 2015-12-28 2016-12-21 Biomarker dkk for predicting efficacy of c-met inhibitor

Country Status (2)

Country Link
KR (1) KR102553879B1 (en)
WO (1) WO2017116064A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20150082121A (en) * 2014-01-07 2015-07-15 삼성전자주식회사 Biomarker for predicting or monitoring effect of a c-Met inhibitor
KR20150088433A (en) * 2014-01-24 2015-08-03 삼성전자주식회사 Biomarker TFF1 for predicting effect of a c-Met inhibitor
KR20150130421A (en) * 2013-03-14 2015-11-23 온코메드 파마슈티칼스, 인크. Met-binding agents and uses thereof

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102338678B1 (en) * 2014-04-03 2021-12-13 삼성전자주식회사 Biomarker for predicting effect of an anti-c-Met antibody

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20150130421A (en) * 2013-03-14 2015-11-23 온코메드 파마슈티칼스, 인크. Met-binding agents and uses thereof
KR20150082121A (en) * 2014-01-07 2015-07-15 삼성전자주식회사 Biomarker for predicting or monitoring effect of a c-Met inhibitor
KR20150088433A (en) * 2014-01-24 2015-08-03 삼성전자주식회사 Biomarker TFF1 for predicting effect of a c-Met inhibitor

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
MARANO ET AL.: "C-Met Targeting in Advanced Gastric Cancer: An Open Challenge", CANCER LETTERS, vol. 365, no. 1, 28 August 2015 (2015-08-28), pages 30 - 36, XP029222875 *
STONE ET AL.: "EGFR and c-Met Inhibitors Are Effective in Reducing Tumorigenicity in Cancer", JOURNAL OF CARCINOGENESIS & MUTAGENESIS, vol. 5, no. 3, 5 May 2014 (2014-05-05), pages 1 - 9, XP055395766 *

Also Published As

Publication number Publication date
KR102553879B1 (en) 2023-07-07
KR20170077727A (en) 2017-07-06

Similar Documents

Publication Publication Date Title
WO2020076105A1 (en) Novel anti-c-kit antibody
JP4606739B2 (en) Novel anti-IGF-IR antibodies and uses thereof
CA2851135C (en) Anti c-met antibody and uses thereof
US11447551B2 (en) Binding molecules specific for claudin 18.2, compositions and methods thereof, for the treatment of cancer and other diseases
WO2013051878A2 (en) Antibody specifically binding to epitope in sema domain of c-met
US9567641B2 (en) Combination therapy for the treatment of cancer using an anti-C-met antibody
KR20170029490A (en) Notch pathway inhibition
JP7011939B2 (en) Human anti-FGFR4 antibody
US9572878B2 (en) Method of combination therapy using an EGFR antagonist and anti-c-Met antibody
US10378061B2 (en) Biomarker for predicting effect of an anti-c-Met antibody
US20140105902A1 (en) Use of lrig1 as a biomarker for identifying a subject for application of anti-c-met antibodies
US9213031B2 (en) Use of Cbl as biomarker for identifying subject suitable for treatment with anti-c-Met antibody
JP7235723B2 (en) Monoclonal antibody anti-FGFR4
WO2021091359A1 (en) Epitope of regulatory t cell surface antigen, and antibody specifically binding thereto
US9956244B2 (en) Biomarker Hsp90 for predicting effect of a c-Met inhibitor
CN111683680B (en) anti-RSPO 3 antibodies
US9850537B2 (en) Biomarker TFF1 for predicting effect of C-MET inhibitor
WO2016084993A1 (en) Novel egfrviii antibody and composition comprising same
WO2017116064A1 (en) Biomarker dkk for predicting efficacy of c-met inhibitor
EP2824113B1 (en) Biomarker for selecting a subject for application of an anti-c-met antibody
US10064939B2 (en) Combination therapy using c-Met inhibitor and IGF-1R inhibitor for c-Met inhibitor resistant cancers
WO2018080015A1 (en) Biomarker hgf for predicting efficacy of c-met inhibitor
US20140296097A1 (en) Marker for determing effects of anti-c-met antibody and method of determing effects of anti-c-met antibody using the marker
WO2015182796A1 (en) Composition for combination therapy comprising anti-her2 antibody and anti-c-met antibody
WO2022154472A1 (en) Novel antibody to cd55 and uses thereof

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16882016

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16882016

Country of ref document: EP

Kind code of ref document: A1