WO2017115939A1 - Method for preparing straight-chain polyglycerol - Google Patents

Method for preparing straight-chain polyglycerol Download PDF

Info

Publication number
WO2017115939A1
WO2017115939A1 PCT/KR2016/005415 KR2016005415W WO2017115939A1 WO 2017115939 A1 WO2017115939 A1 WO 2017115939A1 KR 2016005415 W KR2016005415 W KR 2016005415W WO 2017115939 A1 WO2017115939 A1 WO 2017115939A1
Authority
WO
WIPO (PCT)
Prior art keywords
glycerol
selectivity
yield
reaction
main catalyst
Prior art date
Application number
PCT/KR2016/005415
Other languages
French (fr)
Korean (ko)
Inventor
이현주
김민수
이상득
이제승
한태열
박서경
Original Assignee
한국과학기술연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국과학기술연구원 filed Critical 한국과학기술연구원
Publication of WO2017115939A1 publication Critical patent/WO2017115939A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/02Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides
    • B01J31/12Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides containing organo-metallic compounds or metal hydrides
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C29/00Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring
    • C07C29/128Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by alcoholysis
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C29/00Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring
    • C07C29/132Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by reduction of an oxygen containing functional group
    • C07C29/136Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by reduction of an oxygen containing functional group of >C=O containing groups, e.g. —COOH
    • C07C29/14Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by reduction of an oxygen containing functional group of >C=O containing groups, e.g. —COOH of a —CHO group
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C29/00Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring
    • C07C29/48Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by oxidation reactions with formation of hydroxy groups
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C31/00Saturated compounds having hydroxy or O-metal groups bound to acyclic carbon atoms
    • C07C31/18Polyhydroxylic acyclic alcohols
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C31/00Saturated compounds having hydroxy or O-metal groups bound to acyclic carbon atoms
    • C07C31/18Polyhydroxylic acyclic alcohols
    • C07C31/22Trihydroxylic alcohols, e.g. glycerol
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C31/00Saturated compounds having hydroxy or O-metal groups bound to acyclic carbon atoms
    • C07C31/18Polyhydroxylic acyclic alcohols
    • C07C31/24Tetrahydroxylic alcohols, e.g. pentaerythritol

Definitions

  • the present invention relates to a method capable of carrying out the reaction in an environmentally friendly manner without using a solvent and to produce a linear polyglycerol with high yield and high selectivity.
  • Biodiesel which has been actively researched and produced as a substitute for fossil fuels such as petroleum, coal and natural gas, which has recently been limited in its limited amount, is mainly produced by transesterification of triglyceride and methanol contained in vegetable oil. And glycerol is produced as a by-product ( Angew. Chem. Int. Ed. 2007, 46, 4434).
  • polyglycerol is utilized in various fields.
  • diglycerol (DG) and triglycerol (TG) which are linear polyglycerols, are used for esterification with fatty acids and transesterification with fatty acid esters.
  • DG diglycerol
  • TG triglycerol
  • the pharmaceutical, cosmetics, and food industry is used as a high-quality emulsifier to control the balance of lipophilic and hydrophilic, and is used in various fields such as fabric softeners, wetting agents, thickeners, defoamers, dispersants and lubricants.
  • the method for producing the linear polyglycerol is a method for recovering from the remaining residue after distillation of glycerin, a method for producing by dehydrating condensation reaction of glycerol, a method for producing by desalting the glycerol and epichlorohydrin after polymerization and hydrolysis, And a method of adding glycidol to glycerin using an alkali catalyst such as sodium hydroxide or amine or an acidic catalyst such as acetic acid.
  • alkali catalyst such as sodium hydroxide or amine
  • an acidic catalyst such as acetic acid
  • European Patent Publication No. 03984 discloses a method for preparing diglycerol by reacting glycerol and glycidol (or epichlorohydrin) Is disclosed.
  • the reaction proposed in the above patent has low selectivity to the product, and when epichlorohydrin is used, there is a problem in that a large amount of chlorine ions contained in the product must be removed after the reaction.
  • epichlorohydrin when glycidol is used, there is an advantage that chlorine ions are not included in the product, but there is a problem that the economical efficiency is relatively low due to the high price of glycidol which is a reactant.
  • US Patent No. 3,637, 774 discloses a method for producing glycerol from a linear glycerol polymer using an alkali catalyst such as caustic soda. Specifically, a method is disclosed in which a glycerol polymer is prepared using an alkali catalyst under anhydrous solvent of 100 ° C. or higher, diluted with the addition of water, and then decolorized by adding a bleaching agent below 100 ° C.
  • the above technology has a high content of the cyclic glycerol polymer in the product, making it difficult to separate and purify the linear glycerol polymer, increase the production cost, and reduce the yield of the linear glycerol polymer.
  • Japanese Patent Application Laid-Open No. 5-001291 discloses a method for adding glycidol at a temperature of 115 to 125 ° C by adding phosphoric acid as a catalyst to glycerol or a glycerol polymer
  • Japanese Patent Application Laid-open No. 7-216082 Discloses a method of condensation polymerization of glycerol while boiling the reaction mixture at a temperature of 200 to 270 DEG C in the presence of an alkali catalyst.
  • Japanese Patent Laid-Open No. 2002-030144 discloses glycerin in glycerol without an initiator in the presence of an alkali metal halide.
  • international patent WO2004 / 048304 discloses a method of sequentially adding a phosphate-based acidic catalyst and glycidol to glycerol.
  • the above techniques require expensive glycidol or have a high content of cyclic glycerol polymer, which makes it difficult to separate and purify the linear glycerol polymer.
  • U.S. Patent No. 6,620,904 discloses a reaction of glycerol at a temperature of 230 ° C. and 150 mmHg for 15 hours using 0.1 wt% of calcium hydroxide (Ca (OH) 2 ) as a catalyst to maintain 43 wt% of glycerol and 33 wt% It is disclosed that diglycerol, 14 wt% triglycerol, linear polyglycerol of 7 wt% or more of tetraglycerol and 2.3 wt% of cyclic polyglycerol have been obtained.
  • Ca (OH) 2 calcium hydroxide
  • the technology can reduce the reaction time by reducing the reaction temperature by reducing the reaction temperature compared to the conventional method by promoting the reaction by removing the reaction by-product water through a reduced pressure.
  • the product is distilled off under conditions of 200 ° C. and 4 mmHg, there is a problem that by-products such as cyclic polyglycerols increase due to the high reactivity of the catalyst remaining in the product.
  • An object of the present invention is to provide a method that can be carried out in an environmentally friendly method without using a solvent and can be produced a linear polyglycerol with high yield and high selectivity.
  • Method for producing a linear polyglycerol of the present invention for achieving the above object may comprise the step of producing a linear polyglycerol by reacting glycerol under a main catalyst which is an acetate salt containing an alkali metal cation and an acetate anion. .
  • the basicity (pK b ) of the main catalyst may be 9 to 10.
  • a promoter which is an inorganic salt including an alkali metal cation and an inorganic anion may be added.
  • the linear polyglycerol may be diglycerol, triglycerol and glycerol mixed with them.
  • the alkali metal cation contained in the main catalyst and the promoter is a group consisting of lithium (Li + ) cation, sodium (Na + ) cation, potassium (K + ) cation, rubidium (Rb + ) cation, and cesium (Cs + ) cation. It may be at least one selected from.
  • Inorganic anions contained in the promoter are hydrogen phosphite (HP (H) O 3 ⁇ ), hydrogen phosphate (HPO 4 2- ), dihydrogen phosphate (H 2 PO 4 ⁇ ), sulfite (HSO 3 ⁇ ), and It may be at least one member selected from the group consisting of - hydrogen sulphate (HSO 4).
  • the main catalyst may be added in 0.1 to 0.9 moles per 1 mole of glycerol.
  • the promoter may be added in an amount of 0.1 to 5 moles based on 1 mole of the main catalyst.
  • the glycerol may be subjected to an etherification reaction at 200 to 290 ° C. for 1 to 6 hours under a main catalyst or a mixed catalyst of a main catalyst and a cocatalyst.
  • the method for producing the linear polyglycerol of the present invention is an environmentally friendly method without using a solvent, and by suppressing side reactions by using a main catalyst showing high activity and a promoter controlling the activity of the main catalyst, diglycerol and tri
  • the yield and selectivity of glycerol can be increased.
  • the polyglycerol of tetra or more is difficult to use industrially due to poor physical properties, the smaller the amount produced, the better.
  • the production method of the present invention can significantly reduce the amount of polyglycerol produced by tetra or more. As the amount of polyglycerol produced by tetra or more, which is the byproduct, is significantly reduced, the selectivity to diglycerol and triglycerol is excellent and high yield is obtained.
  • the present invention does not use expensive reaction raw materials such as epichlorohydrin and glycidol, thereby lowering the manufacturing cost, and does not need to neutralize hydrogen chloride, a byproduct having strong acidity and corrosion resistance, generated after the reaction.
  • the stability of the process can also be improved.
  • the present invention can be carried out by an environmentally friendly method without using a solvent, and relates to a method for producing a linear polyglycerol with high yield and high selectivity.
  • linear polyglycerol examples include diglycerol, triglycerol, and mixed glycerol, which can be applied to various industrial places.
  • glycerol used in the reaction of the present invention is a by-product generated in the production process of biodiesel.
  • the method for producing a linear polyglycerol of the present invention includes the step of reacting glycerol under a main catalyst or a mixed catalyst of a main catalyst and a cocatalyst to produce a linear polyglycerol.
  • a main catalyst having a relatively lower basicity and a proton donor cocatalyst than a conventional catalyst etherification of glycerol may be performed to selectively generate diglycerol and triglycerol, and by-products such as tetraglycerol Production can be significantly reduced.
  • the main catalyst is a weak base material having a basicity (pK b ) of 9 to 10, specifically an acetate salt in which an alkali metal cation and an acetate anion are mixed.
  • pK b basicity
  • the strong base material (pK b ⁇ 1) is used as the main catalyst, the yields of diglycerol and triglycerol are low, and even if a cocatalyst is added, the yield is not improved.
  • the alkali metal cation includes at least one selected from the group consisting of lithium (Li + ) cations, sodium (Na + ) cations, potassium (K + ) cations, rubidium (Rb + ) cations, and cesium (Cs + ) cations.
  • Li + lithium
  • Na + sodium
  • K + potassium
  • Rb + rubidium
  • Cs + cesium
  • the main catalyst is used in an amount of 0.1 to 0.9 moles, preferably 0.2 to 0.6 moles per 1 mole of glycerol.
  • the content of the main catalyst is less than the lower limit, the etherification may not be performed, and when the content of the main catalyst is greater than the upper limit, a large amount of by-products such as tetraglycerol may be generated.
  • the promoter is a material used to control the reactivity of the main catalyst, and is an inorganic salt mixed with an alkali metal cation and an inorganic anion.
  • the alkali metal cation includes at least one selected from the group consisting of lithium (Li + ) cations, sodium (Na + ) cations, potassium (K + ) cations, rubidium (Rb + ) cations, and cesium (Cs + ) cations. Can be. When other cations such as alkaline earth metals or transition metals other than the alkali metal cations are used as the cations, the reactivity of the main catalyst may not be controlled and a large amount of by-products may be generated.
  • the inorganic anions include hydrogen phosphite (HP (H) O 3 ⁇ ), hydrogen phosphate (HPO 4 2- ), dihydrogen phosphate (H 2 PO 4 ⁇ ), sulfite (HSO 3 ⁇ ), and hydrogen sulfate And at least one selected from the group consisting of (HSO 4 ⁇ ).
  • Chloride anions instead of the inorganic anion as the anion, bromide anion, iodide anion, nitrate anion, BF 4 -, PF 6 - , AlCl 4 -, Al 2 Cl 7 -, AcO -, TfO - the other anions such as (trifluoromethanesulfonate) When used, they fail to weaken the bond between the product and the alkali metal cation, resulting in much higher byproducts compared to diglycerol and triglycerol.
  • the promoter is used in an amount of 0.1 to 5 moles, preferably 0.2 to 1.5 moles, with respect to 1 mole of the main catalyst.
  • the content of the cocatalyst is less than the lower limit, a large amount of by-products may be generated, and when the content of the cocatalyst is higher than the upper limit, it may interfere with the etherification reaction of glycerol.
  • the etherification reaction carried out in the preparation of the linear polyglycerol according to the present invention is carried out at 200 to 290 ° C. and 1 to 6 hours at 1 atmosphere. Specifically, the reaction is carried out for 6 hours when the reaction temperature is 260 °C, the reaction is carried out for 2 hours when the reaction temperature is 280 °C.
  • reaction temperature and the reaction time is less than the lower limit, the etherification reaction may not be performed, and when the reaction temperature is exceeded, a large amount of by-products may be generated.
  • the etherification reaction of the present invention may be used both in the synthesis process commonly used in the art, for example, a batch process using a reactor equipped with a stirrer and a continuous process using a bubble column.
  • glycerol is reacted under a main catalyst or a mixed catalyst of a main catalyst and a cocatalyst according to [Scheme 1] to form diglycerol, and the formed diglycerol is represented by the following [Scheme 2] ] To react with glycerol under the main catalyst or a mixed catalyst of the main catalyst and the promoter to form triglycerol.
  • the hydroxyl group of the first glycerol has a strong interaction with the cation of the alkali metal of the main catalyst
  • the hydroxyl group of the second glycerol is the cation Easily attack the first glycerol combined with the etherification reaction proceeds to produce diglycerol
  • water is generated as a by-product of the reaction.
  • the reaction product diglycerol is present in a strongly bonded state surrounding the alkali metal, and in this state reacts with the third glycerol to produce triglycerol.
  • glycerol may be continuously added to the reaction products (diglycerol and triglycerol) to promote the production of by-products having a large molecular weight greater than tetraglycerol. It is inhibited by weakening the bond between (diglycerol and triglycerol) and the alkali metal cation to inhibit the reaction of the reaction products (diglycerol and triglycerol) with glycerol. This improves the selectivity of diglycerol and triglycerol.
  • the basicity of sodium hydroxy main catalyst (pK b) is 0.2, and the basicity (pK b) of the primary hydroxy group of potassium catalyst is 0.5.
  • glycerol (30 g, 0.33 mole) and sodium hydroxide (0.064 g, 0.0016 mole) or potassium hydroxide (0.090 g, 0.0016 mole) were added to the cocatalyst sodium or potassium hydrogensulfate. After the addition, the Dean-Stark apparatus and the condenser were mounted and reacted under reflux at atmospheric pressure.
  • Table 1 below is a table showing the conversion, yield and selectivity of the reaction products for diglycerol (DG) and triglycerol (TG) produced according to the method of Comparative Examples 1-8.
  • Table 2 below is a table showing the conversion, yield and selectivity of the reaction products for diglycerol (DG) and triglycerol (TG) produced according to the method of Comparative Example 9-16.
  • Example 1-11 Main catalyst (sodium acetate) _ Omit catalyst
  • Glycerol (30 g, 0.33 mol) and sodium acetate (0.13 g, 0.0016 mol) were added to a 100 mL 2-neck flask, and Dean-Stark apparatus and a condenser were mounted, followed by reaction under reflux at atmospheric pressure.
  • the basicity (pK b ) of the sodium acetate main catalyst is 9.25.
  • the acidity (pK a ) of the sodium hydrogensulfate promoter is 1.99.
  • Table 3 shows the conversion, yield and selectivity of the reaction products for diglycerol (DG) and triglycerol (TG) produced according to the method of Examples 1-11.
  • Example 3 As shown in Table 3, according to Examples 1 to 11 of the present invention, it was confirmed that the yield and selectivity of diglycerol and triglycerol are excellent, and the yield and selectivity of high molecular weight glycerol or higher as a byproduct is low. In particular, according to the conditions of Example 6, Example 7, and Example 10 it was confirmed that the yield and selectivity of the diglycerol and triglycerol is more excellent.
  • Examples 1 to 11 of the present invention was confirmed that the yield and selectivity of the diglycerol and triglycerol is superior to the comparative examples 1 to 8 using the strong base main catalyst, the yield and selectivity of the by-products are low.
  • Table 4 shows the conversion, yield and selectivity of the reaction products for diglycerol (DG) and triglycerol (TG) produced according to the method of Examples 12-19.
  • the yield and selectivity of diglycerol and triglycerol are superior to those of Examples 1 to 11 without using a promoter, and high by-product tetra or higher. It was confirmed that the yield and selectivity of the molecular weight glycerol were low. In particular, according to the conditions of Examples 28, 32 and 33, it was confirmed that the yield and selectivity of the diglycerol and triglycerol is more excellent.
  • Examples 12 to 19 of the present invention was confirmed that the yield and selectivity of the diglycerol and triglycerol is superior to the comparative examples 9 to 16, and the yield and selectivity of the by-products are low.
  • Example 20-29 Main catalyst (potassium acetate) _ Omit catalyst
  • Glycerol (30 g, 0.33 mol) and potassium acetate (0.16 g, 0.0016 mol) were added to a 100 mL 2-neck flask, and Dean-Stark apparatus and a condenser were mounted and reacted under reflux at atmospheric pressure.
  • the basicity (pK b ) of the potassium acetate main catalyst is 9.24.
  • the acidity (pK a ) of the potassium hydrogensulfate promoter is 2.0.
  • Table 5 shows the conversion, yield and selectivity of the reaction products for diglycerol (DG) and triglycerol (TG) produced according to the method of Examples 20-29.
  • Examples 20 to 29 of the present invention was confirmed that the yield and selectivity of the diglycerol and triglycerol is superior to the comparative examples 1 to 8 using the strong base main catalyst, the yield and selectivity of the by-products are low.
  • Table 6 below shows the conversion, yield and selectivity of reaction products for diglycerol (DG) and triglycerol (TG) produced according to the methods of Examples 30-37.
  • the yield and selectivity of diglycerol and triglycerol are superior to those of Examples 20 to 29 without using a promoter, and high by-product tetra or higher. It was confirmed that the yield and selectivity of the molecular weight glycerol were low. In particular, according to the conditions of Examples 30, 34 and 35, it was confirmed that the yield and selectivity of diglycerol and triglycerol is more excellent.
  • Examples 30 to 37 of the present invention was confirmed that the yield and selectivity of the diglycerol and triglycerol is superior to the comparative examples 9 to 16, and the yield and selectivity of the by-products are low.
  • the present invention using the weak base material as the main catalyst has better yield and selectivity of diglycerol and triglycerol than the case of using a strong base as the main catalyst, and has a lower yield and selectivity of higher molecular weight glycerol than by-product tetra.
  • the straight-chain polyglycerol of the present invention can be used in various fields such as cosmetics, pharmaceuticals, paints, food additives.

Abstract

The present invention relates to a method for preparing straight-chain polyglycerol, the method comprising a step for producing straight-chain polyglycerol by a reaction of glycerol under a main catalyst and a co-catalyst, and thus, the reaction can be performed by an eco-friendly method without using a solvent. In addition, straight-chain polyglycerol, especially, diglycerol and triglycerol, can be produced at high yield and high selectivity by suppressing a side reaction using the co-catalyst capable of controlling high activity of the main catalyst.

Description

직쇄형 폴리글리세롤의 제조방법Process for producing linear polyglycerol
본 발명은 용매를 사용하지 않는 친환경적인 방법으로 반응을 수행할 수 있으며 높은 수율 및 높은 선택도로 직쇄형 폴리글리세롤을 제조할 수 있는 방법에 관한 것이다.The present invention relates to a method capable of carrying out the reaction in an environmentally friendly manner without using a solvent and to produce a linear polyglycerol with high yield and high selectivity.
21세기 들어 환경오염, 지구 온난화, 화석 연료 고갈 등의 문제가 심화되고 있으며, 이를 해결하기 위한 연구에 많은 관심이 집중되고 있다. 최근에 부존량이 한정되어 있는 석유, 석탄 및 천연가스 등의 화석 연료를 대체할 수 있는 물질로서 활발한 연구와 생산이 이루어지고 있는 바이오 디젤은 주로 식물성 기름에 포함된 트리글리세리드와 메탄올의 에스테르 교환 반응을 통하여 제조되고, 부산물로 글리세롤이 생산된다(Angew. Chem. Int. Ed. 2007, 46, 4434).In the 21st century, environmental pollution, global warming, and fossil fuel depletion have intensified, and much attention has been focused on research to solve this problem. Biodiesel, which has been actively researched and produced as a substitute for fossil fuels such as petroleum, coal and natural gas, which has recently been limited in its limited amount, is mainly produced by transesterification of triglyceride and methanol contained in vegetable oil. And glycerol is produced as a by-product ( Angew. Chem. Int. Ed. 2007, 46, 4434).
상기 바이오 디젤은 그 사용량이 점차 증가함에 따라 바이오 디젤 생산공정의 부산물인 글리세롤의 생산량도 비례하여 증가하고 있다. 그 결과, 생산되는 글리세롤의 양이 소비되는 양보다 훨씬 많아 남는 글리세롤을 폐기물로 처리해야 할 정도로 글리세롤의 과생산 문제가 대두되고 있다. 이에 상기 과생산되는 글리세롤을 기반으로 하는 고부가가치의 유도체에 대한 연구가 최근 활발하게 진행되고 있다. As the amount of the biodiesel is gradually increased, the amount of glycerol which is a by-product of the biodiesel production process also increases proportionally. As a result, there is a problem of overproduction of glycerol such that the amount of glycerol produced is much higher than the amount consumed, so that the remaining glycerol has to be disposed of as waste. Accordingly, research on high value-added derivatives based on the over-produced glycerol has been actively conducted in recent years.
상기 글리세롤의 유도체중에서 폴리글리세롤은 다양한 분야에서 활용이 되는데, 이중에서 직쇄형 폴리글리세롤인 디글리세롤(DG)과 트리글리세롤(TG)은 지방산과의 에스테르화 반응 및 지방산 에스테르와의 트랜스에스테르화 반응의 원료로 사용되어 알키드 수지를 제조하는데 사용된다. 또한 제약, 화장품 및 식품 산업 등에서 친유성과 친수성의 균형을 조절하는 고급 유화제로 사용될 뿐만 아니라, 섬유 유연제, 습윤제, 증점제, 소포제, 분산제 및 윤활제 등 다양한 분야에 활용되고 있다. Among the derivatives of glycerol, polyglycerol is utilized in various fields. Among them, diglycerol (DG) and triglycerol (TG), which are linear polyglycerols, are used for esterification with fatty acids and transesterification with fatty acid esters. Used as a raw material to prepare alkyd resins. In addition, the pharmaceutical, cosmetics, and food industry is used as a high-quality emulsifier to control the balance of lipophilic and hydrophilic, and is used in various fields such as fabric softeners, wetting agents, thickeners, defoamers, dispersants and lubricants.
상기 직쇄형 폴리글리세린을 제조하는 방법은 글리세린을 증류하고 남은 잔류분으로부터 회수하는 방법, 글리세롤을 탈수 축합 반응시켜 제조하는 방법, 글리세롤과 에피클로로히드린을 중합 및 가수분해 후 탈염시켜 제조하는 방법, 수산화나트륨이나 아민 등의 알칼리 촉매 또는 아세트산 등의 산성 촉매를 이용하여 글리시돌을 글리세린에 부가하는 방법 등이 있다. 그러나 이러한 방법들은 반응의 선택성이 낮아 저분자량의 고리형 화합물 또는 고분자량의 직쇄형 폴리글리세롤 등이 생성되어 생산물의 물성이 열화되고, 고가의 원료를 사용함으로 인한 제조비용의 상승 등의 문제점이 있다. The method for producing the linear polyglycerol is a method for recovering from the remaining residue after distillation of glycerin, a method for producing by dehydrating condensation reaction of glycerol, a method for producing by desalting the glycerol and epichlorohydrin after polymerization and hydrolysis, And a method of adding glycidol to glycerin using an alkali catalyst such as sodium hydroxide or amine or an acidic catalyst such as acetic acid. However, these methods have low selectivity of the reaction, resulting in low molecular weight cyclic compounds or high molecular weight linear polyglycerols, resulting in deterioration of the physical properties of the product and increase in manufacturing costs due to the use of expensive raw materials. .
상기 디글리세롤(DG) 또는 트리글리세롤(TG)의 제조방법을 구체적으로 설명하면, 유럽공개특허 제033984호에서는 글리세롤과 글리시돌(또는 에피클로로히드린)을 반응시켜 디글리세롤을 제조하는 방법이 개시되어 있다. 그러나, 상기 특허에서 제시하고 있는 반응은 생성물에 대한 선택성이 낮고, 에피클로로히드린을 이용하는 경우에는 반응 후 생성물에 함유된 다량의 염소 이온을 제거해야 하는 문제가 있다. 또한, 글리시돌을 사용하는 경우에는 생성물에 염소 이온이 포함되지 않는다는 장점은 있으나, 반응물인 글리시돌의 높은 가격으로 경제성이 상대적으로 매우 낮다는 문제점이 있다.When explaining a method for producing the diglycerol (DG) or triglycerol (TG) in detail, European Patent Publication No. 03984 discloses a method for preparing diglycerol by reacting glycerol and glycidol (or epichlorohydrin) Is disclosed. However, the reaction proposed in the above patent has low selectivity to the product, and when epichlorohydrin is used, there is a problem in that a large amount of chlorine ions contained in the product must be removed after the reaction. In addition, when glycidol is used, there is an advantage that chlorine ions are not included in the product, but there is a problem that the economical efficiency is relatively low due to the high price of glycidol which is a reactant.
이와 같은 문제점을 개선하기 위하여, 미국등록특허 제3,637,774호에는 가성소다 등의 알칼리 촉매를 사용하여 글리세롤을 직쇄형 글리세롤 중합체로 제조하는 방법이 개시되어 있다. 구체적으로, 100 ℃이상의 무수용매 하에서 알칼리 촉매를 사용하여 글리세롤 중합체를 제조하고, 물을 첨가하여 희석한 후 100 ℃이하에서 탈색제를 첨가하여 탈색하는 방법이 개시되어 있다. 그러나 상기 기술은 생성물 중에서 고리형 글리세롤 중합체의 함량이 높아 직쇄형 글리세롤 중합체의 분리 및 정제가 어렵고, 생산비용이 증가할 뿐만 아니라 직쇄형 글리세롤 중합체의 수율이 감소하는 문제점이 있다.In order to improve such a problem, US Patent No. 3,637, 774 discloses a method for producing glycerol from a linear glycerol polymer using an alkali catalyst such as caustic soda. Specifically, a method is disclosed in which a glycerol polymer is prepared using an alkali catalyst under anhydrous solvent of 100 ° C. or higher, diluted with the addition of water, and then decolorized by adding a bleaching agent below 100 ° C. However, the above technology has a high content of the cyclic glycerol polymer in the product, making it difficult to separate and purify the linear glycerol polymer, increase the production cost, and reduce the yield of the linear glycerol polymer.
또한, 일본특허공고 평5-001291호에는 글리세롤 또는 글리세롤 중합체에 인산을 촉매로 첨가하여 115 내지 125 ℃의 온도에서 글리시돌을 부가 반응시키는 방법이 개시되어 있고, 일본특허공고 평7-216082호에는 알칼리 촉매의 존재하에서 200 내지 270 ℃의 온도로 반응 혼합물을 비등시키면서 글리세롤을 축중합시키는 방법이 개시되어 있으며, 일본특허공개 제2002-030144호에는 알칼리 금속 할로겐화물의 존재하에서 개시제 없이 글리세롤에 글리시돌만을 첨가하여 반응시키는 방법이 개시되어 있을 뿐만 아니라, 국제특허 WO2004/048304호에는 글리세롤에 인산계 산성 촉매와 글리시돌을 순차적으로 첨가하는 방법이 개시되어 있다. 상기 기술들은 앞에서 기술한 기존의 방법들과 마찬가지로 고가의 글리시돌을 필요로 하거나, 고리형 글리세롤 중합체의 함량이 높아 직쇄형 글리세롤 중합체의 분리 및 정제가 어려운 문제가 있다. In addition, Japanese Patent Application Laid-Open No. 5-001291 discloses a method for adding glycidol at a temperature of 115 to 125 ° C by adding phosphoric acid as a catalyst to glycerol or a glycerol polymer, and Japanese Patent Application Laid-open No. 7-216082 Discloses a method of condensation polymerization of glycerol while boiling the reaction mixture at a temperature of 200 to 270 DEG C in the presence of an alkali catalyst. Japanese Patent Laid-Open No. 2002-030144 discloses glycerin in glycerol without an initiator in the presence of an alkali metal halide. In addition to the method of reacting by addition of only sidol, international patent WO2004 / 048304 discloses a method of sequentially adding a phosphate-based acidic catalyst and glycidol to glycerol. Like the conventional methods described above, the above techniques require expensive glycidol or have a high content of cyclic glycerol polymer, which makes it difficult to separate and purify the linear glycerol polymer.
또한, 미국등록특허 제6,620,904호에는 수산화칼슘(Ca(OH)2) 0.1 wt%를 촉매로 사용하여 글리세롤을 230 ℃, 150 mmHg의 조건에서 15시간 반응시켜 43 wt%의 글리세롤 잔량, 33 wt%의 디글리세롤, 14 wt%의 트리글리세롤, 7 wt%의 테트라글리세롤 이상의 직쇄형 폴리글리세롤 및 2.3 wt%의 고리형 폴리글리세롤이 수득되었다고 개시되어 있다. 상기 기술은 감압을 통해 반응 부산물인 물을 제거하여 반응을 촉진함으로써 기존의 방법에 비해 반응 온도를 낮추어 생성물의 변색과 냄새를 감소시키는 동시에 반응 시간을 단축할 수 있다. 그러나, 생성물을 200 ℃, 4 mmHg의 조건으로 증류하여 반응물인 글리세롤을 제거하는 동안, 생성물에 잔존하는 촉매의 높은 반응성으로 인해 고리형 폴리글리세롤 등의 부산물이 증가하는 문제점이 있다.In addition, U.S. Patent No. 6,620,904 discloses a reaction of glycerol at a temperature of 230 ° C. and 150 mmHg for 15 hours using 0.1 wt% of calcium hydroxide (Ca (OH) 2 ) as a catalyst to maintain 43 wt% of glycerol and 33 wt% It is disclosed that diglycerol, 14 wt% triglycerol, linear polyglycerol of 7 wt% or more of tetraglycerol and 2.3 wt% of cyclic polyglycerol have been obtained. The technology can reduce the reaction time by reducing the reaction temperature by reducing the reaction temperature compared to the conventional method by promoting the reaction by removing the reaction by-product water through a reduced pressure. However, while the product is distilled off under conditions of 200 ° C. and 4 mmHg, there is a problem that by-products such as cyclic polyglycerols increase due to the high reactivity of the catalyst remaining in the product.
따라서, 종래의 방법과 달리, 에피클로로히드린이나 글리시돌과 같은 고가의 원료 및 강염기성 촉매를 사용하지 않으면서 높은 수율과 선택성으로 디글리세롤 및 트리글리세롤을 제조할 수 있는 방법이 요구되고 있다. Therefore, unlike the conventional method, there is a need for a method capable of producing diglycerol and triglycerol with high yield and selectivity without using expensive raw materials such as epichlorohydrin or glycidol and strong base catalysts. .
본 발명의 목적은 용매를 사용하지 않는 친환경적인 방법으로 반응을 수행할 수 있으며 높은 수율 및 높은 선택도로 직쇄형 폴리글리세롤을 제조할 수 있는 방법을 제공하는데 있다.An object of the present invention is to provide a method that can be carried out in an environmentally friendly method without using a solvent and can be produced a linear polyglycerol with high yield and high selectivity.
상기한 목적을 달성하기 위한 본 발명의 직쇄형 폴리글리세롤의 제조방법은 알칼리 금속 양이온 및 아세테이트 음이온을 포함하는 아세테이트염인 주촉매 하에서 글리세롤을 반응시켜 직쇄형 폴리글리세롤을 생성하는 단계를 포함할 수 있다.Method for producing a linear polyglycerol of the present invention for achieving the above object may comprise the step of producing a linear polyglycerol by reacting glycerol under a main catalyst which is an acetate salt containing an alkali metal cation and an acetate anion. .
상기 주촉매의 염기도(pKb)는 9 내지 10일 수 있다.The basicity (pK b ) of the main catalyst may be 9 to 10.
상기 반응시 알칼리 금속 양이온 및 무기 음이온을 포함하는 무기염인 조촉매를 추가할 수 있다.In the reaction, a promoter which is an inorganic salt including an alkali metal cation and an inorganic anion may be added.
상기 직쇄형 폴리글리세롤은 디글리세롤, 트리글리세롤 및 이들이 혼합된 글리세롤일 수 있다.The linear polyglycerol may be diglycerol, triglycerol and glycerol mixed with them.
상기 주촉매 및 조촉매에 함유되는 알칼리 금속 양이온은 리튬(Li+) 양이온, 소듐(Na+) 양이온, 칼륨(K+) 양이온, 루비듐(Rb+) 양이온 및 세슘(Cs+) 양이온으로 이루어진 군에서 선택된 1종 이상일 수 있다.The alkali metal cation contained in the main catalyst and the promoter is a group consisting of lithium (Li + ) cation, sodium (Na + ) cation, potassium (K + ) cation, rubidium (Rb + ) cation, and cesium (Cs + ) cation. It may be at least one selected from.
상기 조촉매에 함유되는 무기 음이온은 수소포스파이트(HP(H)O3 -), 수소포스페이트(HPO4 2-), 이수소포스페이트(H2PO4 -), 설파이트(HSO3 -) 및 수소설페이트(HSO4 -)로 이루어진 군에서 선택된 1종 이상일 수 있다.Inorganic anions contained in the promoter are hydrogen phosphite (HP (H) O 3 ), hydrogen phosphate (HPO 4 2- ), dihydrogen phosphate (H 2 PO 4 ), sulfite (HSO 3 ), and It may be at least one member selected from the group consisting of - hydrogen sulphate (HSO 4).
상기 주촉매는 글리세롤 1몰에 대하여 0.1 내지 0.9 몰로 첨가될 수 있다.The main catalyst may be added in 0.1 to 0.9 moles per 1 mole of glycerol.
상기 조촉매는 주촉매 1 몰에 대하여 0.1 내지 5 몰로 첨가될 수 있다.The promoter may be added in an amount of 0.1 to 5 moles based on 1 mole of the main catalyst.
상기 글리세롤은 주촉매 또는 주촉매와 조촉매의 혼합촉매 하에서 200 내지 290 ℃ 및 1 내지 6시간 동안 에테르화 반응이 수행될 수 있다.The glycerol may be subjected to an etherification reaction at 200 to 290 ° C. for 1 to 6 hours under a main catalyst or a mixed catalyst of a main catalyst and a cocatalyst.
본 발명의 직쇄형 폴리글리세롤을 제조하는 방법은 용매를 사용하지 않는 친환경적인 방법이며, 높은 활성을 보이는 주촉매와 상기 주촉매의 활성을 조절하는 조촉매를 사용함으로써 부반응을 억제하여 디글리세롤 및 트리글리세롤의 수율 및 선택도를 높일 수 있다. 또한, 테트라 이상의 폴리글리세롤은 물성이 나빠 산업적으로 이용하기 어려우므로 생성되는 양이 소량일수록 좋은데, 본 발명의 제조방법에 따르면 테트라 이상의 폴리글리세롤 생성량을 현저히 줄일 수 있다. 상기 부산물인 테트라 이상의 폴리글리세롤 생성량이 현저히 줄어듦에 따라 디글리세롤 및 트리글리세롤에 대한 선택성이 우수해지고 높은 수율을 보인다.The method for producing the linear polyglycerol of the present invention is an environmentally friendly method without using a solvent, and by suppressing side reactions by using a main catalyst showing high activity and a promoter controlling the activity of the main catalyst, diglycerol and tri The yield and selectivity of glycerol can be increased. In addition, since the polyglycerol of tetra or more is difficult to use industrially due to poor physical properties, the smaller the amount produced, the better. The production method of the present invention can significantly reduce the amount of polyglycerol produced by tetra or more. As the amount of polyglycerol produced by tetra or more, which is the byproduct, is significantly reduced, the selectivity to diglycerol and triglycerol is excellent and high yield is obtained.
또한, 본 발명은 에피클로로히드린과 글리시돌과 같은 고가의 반응원료를 사용하지 않아 제조단가를 낮출 수 있고, 반응 후 생성되는 강산성 및 강부식성을 갖는 부산물인 염화수소를 중화할 필요가 없어 공정을 단순화할 수 있을 뿐만 아니라, 공정의 안정성 또한 개선할 수 있다.In addition, the present invention does not use expensive reaction raw materials such as epichlorohydrin and glycidol, thereby lowering the manufacturing cost, and does not need to neutralize hydrogen chloride, a byproduct having strong acidity and corrosion resistance, generated after the reaction. In addition to simplifying the process, the stability of the process can also be improved.
본 발명은 용매를 사용하지 않는 친환경적인 방법으로 반응을 수행할 수 있으며, 높은 수율 및 높은 선택도로 직쇄형 폴리글리세롤을 제조할 수 있는 방법에 관한 것이다.The present invention can be carried out by an environmentally friendly method without using a solvent, and relates to a method for producing a linear polyglycerol with high yield and high selectivity.
상기 직쇄형 폴리글리세롤로는 산업적으로 다양한 곳에 적용할 수 있는 디글리세롤, 트리글리세롤 및 이들이 혼합된 글리세롤을 들 수 있다. 또한, 본 발명의 반응에 이용되는 글리세롤은 바이오 디젤의 생산 공정에서 발생된 부산물이다.Examples of the linear polyglycerol include diglycerol, triglycerol, and mixed glycerol, which can be applied to various industrial places. In addition, glycerol used in the reaction of the present invention is a by-product generated in the production process of biodiesel.
이하, 본 발명을 상세하게 설명한다. EMBODIMENT OF THE INVENTION Hereinafter, this invention is demonstrated in detail.
본 발명의 직쇄형 폴리글리세롤을 제조하는 방법은 글리세롤을 주촉매 또는 주촉매와 조촉매의 혼합촉매 하에서 반응시켜 직쇄형 폴리글리세롤을 생성하는 단계를 포함한다. 예컨대, 종래 촉매에 비하여 염기도가 상대적으로 낮은 주촉매와 양성자 주개물질인 조촉매를 이용함으로써 글리세롤이 에테르화 반응이 수행되어 디글리세롤 및 트리글리세롤을 선택적으로 생성할 수 있으며, 테트라글리세롤 등의 부산물의 생성을 현저히 감소시킬 수 있다.The method for producing a linear polyglycerol of the present invention includes the step of reacting glycerol under a main catalyst or a mixed catalyst of a main catalyst and a cocatalyst to produce a linear polyglycerol. For example, by using a main catalyst having a relatively lower basicity and a proton donor cocatalyst than a conventional catalyst, etherification of glycerol may be performed to selectively generate diglycerol and triglycerol, and by-products such as tetraglycerol Production can be significantly reduced.
상기 주촉매는 염기도(pKb)가 9 내지 10인 약염기 물질로서, 구체적으로 알칼리 금속 양이온과 아세테이트 음이온이 혼합된 아세테이트염이다. 주촉매로 강염기 물질(pKb < 1)을 사용하는 경우에는 디글리세롤 및 트리글리세롤의 수율이 낮으며, 조촉매를 추가하더라도 상기 수율이 향상되지 않는다.The main catalyst is a weak base material having a basicity (pK b ) of 9 to 10, specifically an acetate salt in which an alkali metal cation and an acetate anion are mixed. When the strong base material (pK b <1) is used as the main catalyst, the yields of diglycerol and triglycerol are low, and even if a cocatalyst is added, the yield is not improved.
상기 알칼리 금속 양이온으로는 리튬(Li+) 양이온, 소듐(Na+) 양이온, 칼륨(K+) 양이온, 루비듐(Rb+) 양이온 및 세슘(Cs+) 양이온으로 이루어진 군에서 선택된 1종 이상을 들 수 있다. 양이온으로 상기 알칼리 금속 양이온이 아닌 알칼리토금속이나 전이 금속 등 다른 양이온을 사용하는 경우에는 글리세롤에 대한 에테르화 반응이 원활히 수행되지 않을 수 있으며, 반응이 수행되더라도 테트라글리세롤 등의 부산물이 다량 생성될 수 있다.The alkali metal cation includes at least one selected from the group consisting of lithium (Li + ) cations, sodium (Na + ) cations, potassium (K + ) cations, rubidium (Rb + ) cations, and cesium (Cs + ) cations. Can be. When other cations such as alkaline earth metals or transition metals other than the alkali metal cations are used as the cations, etherification of glycerol may not be performed smoothly, and even by reaction, a large amount of byproducts such as tetraglycerol may be generated. .
또한, 상기 아세테이트 음이온 대신 클로라이드 음이온, 브로마이드 음이온, 요오드 음이온, 니트레이트 음이온, 피클로레이트 음이온, 에탄 설포네이트 음이온 및 메탄 설포네이트 음이온 등 다른 음이온을 사용하는 경우에는 에테르화 반응이 전혀 수행되지 않거나 원활히 수행되지 않을 수 있다. In addition, when other anions such as chloride anion, bromide anion, iodine anion, nitrate anion, picchlorate anion, ethane sulfonate anion and methane sulfonate anion are used instead of the acetate anion, the etherification reaction is not performed at all or smoothly. It may not be performed.
상기 주촉매는 글리세롤 1 몰에 대하여 0.1 내지 0.9 몰, 바람직하게는 0.2 내지 0.6 몰로 이용된다. 주촉매의 함량이 상기 하한치 미만인 경우에는 에테르화 반응이 수행되지 않을 수 있으며, 상기 상한치 초과인 경우에는 테트라글리세롤 등의 부산물이 다량 생성될 수 있다.The main catalyst is used in an amount of 0.1 to 0.9 moles, preferably 0.2 to 0.6 moles per 1 mole of glycerol. When the content of the main catalyst is less than the lower limit, the etherification may not be performed, and when the content of the main catalyst is greater than the upper limit, a large amount of by-products such as tetraglycerol may be generated.
상기 조촉매는 주촉매의 반응성을 조절하기 위하여 사용되는 물질로서, 알칼리 금속 양이온과 무기 음이온이 혼합된 무기염이다. The promoter is a material used to control the reactivity of the main catalyst, and is an inorganic salt mixed with an alkali metal cation and an inorganic anion.
상기 알칼리 금속 양이온으로는 리튬(Li+) 양이온, 소듐(Na+) 양이온, 칼륨(K+) 양이온, 루비듐(Rb+) 양이온 및 세슘(Cs+) 양이온으로 이루어진 군에서 선택된 1종 이상을 들 수 있다. 양이온으로 상기 알칼리 금속 양이온이 아닌 알칼리토금속이나 전이 금속 등 다른 양이온을 사용하는 경우에는 주촉매의 반응성을 조절할 수 없어 부산물이 다량 생성될 수 있다.The alkali metal cation includes at least one selected from the group consisting of lithium (Li + ) cations, sodium (Na + ) cations, potassium (K + ) cations, rubidium (Rb + ) cations, and cesium (Cs + ) cations. Can be. When other cations such as alkaline earth metals or transition metals other than the alkali metal cations are used as the cations, the reactivity of the main catalyst may not be controlled and a large amount of by-products may be generated.
또한, 상기 무기 음이온으로는 수소포스파이트(HP(H)O3 -), 수소포스페이트(HPO4 2-), 이수소포스페이트(H2PO4 -), 설파이트(HSO3 -) 및 수소설페이트(HSO4 -)로 이루어진 군에서 선택된 1종 이상을 들 수 있다. 음이온으로 상기 무기 음이온이 아닌 클로라이드 음이온, 브로마이드 음이온, 요오드 음이온, 니트레이트 음이온, BF4 -, PF6 -, AlCl4 -, Al2Cl7 -, AcO-, TfO-(trifluoromethanesulfonate) 등 다른 음이온을 사용하는 경우에는 생성물과 알칼리 금속 양이온 간의 결합을 약화시키지 못하여 디글리세롤 및 트리글리세롤에 비해 부산물이 훨씬 과량으로 생성된다.In addition, the inorganic anions include hydrogen phosphite (HP (H) O 3 ), hydrogen phosphate (HPO 4 2- ), dihydrogen phosphate (H 2 PO 4 ), sulfite (HSO 3 ), and hydrogen sulfate And at least one selected from the group consisting of (HSO 4 ). Chloride anions instead of the inorganic anion as the anion, bromide anion, iodide anion, nitrate anion, BF 4 -, PF 6 - , AlCl 4 -, Al 2 Cl 7 -, AcO -, TfO - the other anions such as (trifluoromethanesulfonate) When used, they fail to weaken the bond between the product and the alkali metal cation, resulting in much higher byproducts compared to diglycerol and triglycerol.
상기 조촉매는 주촉매 1 몰에 대하여 0.1 내지 5 몰, 바람직하게는 0.2 내지 1.5 몰로 이용된다. 조촉매의 함량이 상기 하한치 미만인 경우에는 부산물이 다량 생성될 수 있으며, 상기 상한치 초과인 경우에는 글리세롤의 에테르화 반응을 방해할 수 있다. The promoter is used in an amount of 0.1 to 5 moles, preferably 0.2 to 1.5 moles, with respect to 1 mole of the main catalyst. When the content of the cocatalyst is less than the lower limit, a large amount of by-products may be generated, and when the content of the cocatalyst is higher than the upper limit, it may interfere with the etherification reaction of glycerol.
본 발명에 따른 직쇄형 폴리글리세롤을 제조시 수행되는 에테르화 반응은 1 기압하에서 200 내지 290 ℃ 및 1 내지 6시간 동안 진행된다. 구체적으로, 반응온도가 260 ℃인 경우에는 6시간 동안 반응이 수행되고, 반응온도가 280 ℃인 경우에는 2시간 동안 반응이 수행된다.The etherification reaction carried out in the preparation of the linear polyglycerol according to the present invention is carried out at 200 to 290 ° C. and 1 to 6 hours at 1 atmosphere. Specifically, the reaction is carried out for 6 hours when the reaction temperature is 260 ℃, the reaction is carried out for 2 hours when the reaction temperature is 280 ℃.
반응온도 및 반응시간이 상기 하한치 미만인 경우에는 에테르화 반응이 수행되지 않을 수 있으며, 상기 상한치 초과인 경우에는 부산물이 다량 생성될 수 있다. When the reaction temperature and the reaction time is less than the lower limit, the etherification reaction may not be performed, and when the reaction temperature is exceeded, a large amount of by-products may be generated.
본 발명의 에테르화 반응은 당분야에서 일반적으로 사용되는 합성 공정, 예를 들어 교반기가 설치된 반응기를 이용한 회분식 공정과 버블 칼럼(bubble column)을 이용한 연속 공정 등이 모두 이용될 수 있다. The etherification reaction of the present invention may be used both in the synthesis process commonly used in the art, for example, a batch process using a reactor equipped with a stirrer and a continuous process using a bubble column.
본 발명의 직쇄형 폴리글리세롤을 제조하는 방법은 글리세롤을 하기 [반응식 1]에 따라 주촉매 또는 주촉매와 조촉매의 혼합촉매 하에서 반응시켜 디글리세롤을 형성하며, 상기 형성된 디글리세롤은 하기 [반응식 2]에 따라 주촉매 또는 주촉매와 조촉매의 혼합촉매 하에서 글리세롤과 반응되어 트리글리세롤을 형성한다.In the method for preparing a linear polyglycerol of the present invention, glycerol is reacted under a main catalyst or a mixed catalyst of a main catalyst and a cocatalyst according to [Scheme 1] to form diglycerol, and the formed diglycerol is represented by the following [Scheme 2] ] To react with glycerol under the main catalyst or a mixed catalyst of the main catalyst and the promoter to form triglycerol.
[반응식 1]Scheme 1
Figure PCTKR2016005415-appb-I000001
Figure PCTKR2016005415-appb-I000001
[반응식 2]Scheme 2
Figure PCTKR2016005415-appb-I000002
Figure PCTKR2016005415-appb-I000002
구체적으로, 본 발명의 직쇄형 폴리글리세롤(디글리세롤 및 트리글리세롤)을 제조하는 방법은 제1 글리세롤의 히드록시기가 주촉매의 알칼리 금속의 양이온과 강한 상호작용을 하고, 제2 글리세롤의 히드록시기가 상기 양이온과 결합한 제1 글리세롤을 쉽게 공격하게 되어 에테르화 반응이 진행됨으로써 디글리세롤이 생성되며, 상기 반응에 의한 부산물로 물이 생성된다. 또한, 상기 반응 생성물인 디글리세롤은 알칼리 금속을 둘러싸듯 강하게 결합된 상태로 존재하며, 이러한 상태로 제3 글리세롤과 반응하여 트리글리세롤을 생성한다. Specifically, in the method for producing the linear polyglycerol (diglycerol and triglycerol) of the present invention, the hydroxyl group of the first glycerol has a strong interaction with the cation of the alkali metal of the main catalyst, the hydroxyl group of the second glycerol is the cation Easily attack the first glycerol combined with the etherification reaction proceeds to produce diglycerol, water is generated as a by-product of the reaction. In addition, the reaction product diglycerol is present in a strongly bonded state surrounding the alkali metal, and in this state reacts with the third glycerol to produce triglycerol.
상기 반응이 진행되는 동안 반응 생성물(디글리세롤 및 트리글리세롤)에 글리세롤이 계속 추가되어 테트라글리세롤 이상의 큰 분자량을 갖는 부산물의 생성이 촉진될 수 있는데, 상기 큰 분자량 부산물의 생성은 조촉매에 의해 반응 생성물(디글리세롤 및 트리글리세롤)과 알칼리 금속 양이온 간의 결합을 약화시켜 상기 반응 생성물(디글리세롤 및 트리글리세롤)과 글리세롤의 반응을 저해함으로써 억제된다. 이에 따라 디글리세롤과 트리글리세롤의 선택성이 향상된다.As the reaction proceeds, glycerol may be continuously added to the reaction products (diglycerol and triglycerol) to promote the production of by-products having a large molecular weight greater than tetraglycerol. It is inhibited by weakening the bond between (diglycerol and triglycerol) and the alkali metal cation to inhibit the reaction of the reaction products (diglycerol and triglycerol) with glycerol. This improves the selectivity of diglycerol and triglycerol.
이하, 본 발명의 이해를 돕기 위하여 바람직한 실시예를 제시하나, 하기 실시예는 본 발명을 예시하는 것일 뿐 본 발명의 범주 및 기술사상 범위 내에서 다양한 변경 및 수정이 가능함은 당업자에게 있어서 명백한 것이며, 이러한 변형 및 수정이 첨부된 특허청구범위에 속하는 것도 당연한 것이다.Hereinafter, preferred examples are provided to aid the understanding of the present invention, but the following examples are merely for exemplifying the present invention, and it will be apparent to those skilled in the art that various changes and modifications can be made within the scope and spirit of the present invention. It is natural that such variations and modifications fall within the scope of the appended claims.
비교예 1-8.Comparative Example 1-8. 주촉매(소듐 또는 포타슘 히드록사이드)_ 조촉매 생략Main catalyst (sodium or potassium hydroxide) _ Omitted cocatalyst
100 mL 2-neck 플라스크에 글리세롤(30 g, 0.33 몰)과 소듐 히드록사이드 (0.064 g, 0.0016 몰) 또는 포타슘 히드록사이드(0.090 g, 0.0016 몰)를 넣고 Dean-Stark 기구와 컨덴서를 장착한 후 상압에서 환류하면서 반응시켰다.Into a 100 mL 2-neck flask with glycerol (30 g, 0.33 mole) and sodium hydroxide (0.064 g, 0.0016 mole) or potassium hydroxide (0.090 g, 0.0016 mole) with a Dean-Stark instrument and condenser After the reaction at reflux at atmospheric pressure.
상기 소듐 히드록시기 주촉매의 염기도(pKb)는 0.2이고, 상기 포타슘 히드록시기 주촉매의 염기도(pKb)는 0.5이다.The basicity of sodium hydroxy main catalyst (pK b) is 0.2, and the basicity (pK b) of the primary hydroxy group of potassium catalyst is 0.5.
비교예 9-16. 주촉매(소듐 또는 포타슘 히드록사이드) + 조촉매(소듐 또는 포타슘 수소설페이트)Comparative Example 9-16. Main catalyst (sodium or potassium hydroxide) + cocatalyst (sodium or potassium hydrogensulfate)
100 mL 2-neck 플라스크에 글리세롤(30 g, 0.33 몰)과 소듐 히드록사이드 (0.064 g, 0.0016 몰) 또는 포타슘 히드록사이드(0.090 g, 0.0016 몰)를 넣고 조촉매인 소듐 또는 포타슘 수소설페이트를 첨가한 후 Dean-Stark 기구와 컨덴서를 장착한 후 상압에서 환류하면서 반응시켰다. In a 100 mL 2-neck flask, glycerol (30 g, 0.33 mole) and sodium hydroxide (0.064 g, 0.0016 mole) or potassium hydroxide (0.090 g, 0.0016 mole) were added to the cocatalyst sodium or potassium hydrogensulfate. After the addition, the Dean-Stark apparatus and the condenser were mounted and reacted under reflux at atmospheric pressure.
상기 소듐 수소설페이트 조촉매의 산도(pKa)는 1.99이고, 상기 포타슘 수소설페이트 조촉매의 산도(pKa)는 2.0이다.Sodium hydrogen sulfate, the pH of the co-catalyst (pK a) is 1.99, and the potassium hydrogen sulfate (pK a) the pH of the co-catalyst is 2.0.
시험예 1.Test Example 1.
상기 반응이 끝난 후 액체 크로마토그래피(HPLC)를 이용하여 글리세롤의 전환율, 반응 생성물의 수율 및 선택도를 하기 수학식에 따라 산출한다. After the reaction is completed, the conversion of glycerol, the yield of the reaction product, and the selectivity are calculated by using liquid chromatography (HPLC) according to the following equation.
수학식 1
Figure PCTKR2016005415-appb-M000001
Equation 1
Figure PCTKR2016005415-appb-M000001
수학식 2
Figure PCTKR2016005415-appb-M000002
Equation 2
Figure PCTKR2016005415-appb-M000002
수학식 3
Figure PCTKR2016005415-appb-M000003
Equation 3
Figure PCTKR2016005415-appb-M000003
수학식 4
Figure PCTKR2016005415-appb-M000004
Equation 4
Figure PCTKR2016005415-appb-M000004
수학식 5
Figure PCTKR2016005415-appb-M000005
Equation 5
Figure PCTKR2016005415-appb-M000005
수학식 6
Figure PCTKR2016005415-appb-M000006
Equation 6
Figure PCTKR2016005415-appb-M000006
수학식 7
Figure PCTKR2016005415-appb-M000007
Equation 7
Figure PCTKR2016005415-appb-M000007
하기 [표 1]은 비교예 1-8의 방법에 따라 생성된 디글리세롤(DG) 및 트리글리세롤(TG)에 대한 전환율, 반응 생성물의 수율 및 선택도를 나타낸 표이다.Table 1 below is a table showing the conversion, yield and selectivity of the reaction products for diglycerol (DG) and triglycerol (TG) produced according to the method of Comparative Examples 1-8.
표 1
비교예 촉매 온도 (℃) 시간 (h) 글리세롤 전환율 DG 수율 (선택도) TG 수율 (선택도) DG + TG수율 (선택도) 테트라글리세롤 이상 수율(선택도)
1 소듐 히드록사이드 220 6 12.3 7.6 (61.8) - (-) 7.6 (61.8) 4.7 (38.2)
2 소듐 히드록사이드 240 6 52.1 19.6 (37.6) 11.0 (21.1) 30.6 (58.7) 21.5 (41.3)
3 소듐 히드록사이드 260 6 77.3 18.9 (24.5) 15.1 (19.5) 34.0 (44.0) 43.3 (56.0)
4 소듐 히드록사이드 280 2 82.1 28.2 (34.3) 17.1 (20.8) 45.3 (55.1) 36.8 (44.9)
5 포다슘 히드록사이드 220 6 16.2 7.8 (48.1) 1.7 (10.5) 9.5 (58.6) 6.7 (41.4)
6 포다슘 히드록사이드 240 6 57.6 22.4 (38.9) 10.7 (18.6) 33.1 (57.5) 24.5 (42.5)
7 포다슘 히드록사이드 260 6 81.9 15.5 (18.9) 11.9 (14.5) 27.4 (33.4) 54.5 (66.6)
8 포다슘 히드록사이드 280 2 89.7 24.3 (27.1) 16.2 (18.1) 40.5 (45.2) 49.2 (54.8)
Table 1
Comparative example catalyst Temperature (℃) Time (h) Glycerol conversion DG yield (selectivity) TG yield (selectivity) DG + TG yield (selectivity) Tetraglycerol or higher yield (selectivity)
One Sodium hydroxide 220 6 12.3 7.6 (61.8) -(-) 7.6 (61.8) 4.7 (38.2)
2 Sodium hydroxide 240 6 52.1 19.6 (37.6) 11.0 (21.1) 30.6 (58.7) 21.5 (41.3)
3 Sodium hydroxide 260 6 77.3 18.9 (24.5) 15.1 (19.5) 34.0 (44.0) 43.3 (56.0)
4 Sodium hydroxide 280 2 82.1 28.2 (34.3) 17.1 (20.8) 45.3 (55.1) 36.8 (44.9)
5 Potassium hydroxide 220 6 16.2 7.8 (48.1) 1.7 (10.5) 9.5 (58.6) 6.7 (41.4)
6 Potassium hydroxide 240 6 57.6 22.4 (38.9) 10.7 (18.6) 33.1 (57.5) 24.5 (42.5)
7 Potassium hydroxide 260 6 81.9 15.5 (18.9) 11.9 (14.5) 27.4 (33.4) 54.5 (66.6)
8 Potassium hydroxide 280 2 89.7 24.3 (27.1) 16.2 (18.1) 40.5 (45.2) 49.2 (54.8)
위 표 1에 나타낸 바와 같이, 주촉매로 강염기를 이용한 비교예 1 내지 8에 따르면 낮은 온도에서는 디글리세롤 및 트리글리세롤의 선택도는 우수하나 수율이 낮고, 높은 온도에서는 부산물인 테트라 이상의 고분자량 글리세롤의 수율 및 선택도가 높은 것을 확인하였다. As shown in Table 1, according to Comparative Examples 1 to 8 using a strong base as the main catalyst, the selectivity of diglycerol and triglycerol is excellent at low temperature, but the yield is low, and high molecular weight glycerol of tetra or higher which is a byproduct at high temperature. It was confirmed that the yield and selectivity were high.
하기 [표 2]는 비교예 9-16의 방법에 따라 생성된 디글리세롤(DG) 및 트리글리세롤(TG)에 대한 전환율, 반응 생성물의 수율 및 선택도를 나타낸 표이다.Table 2 below is a table showing the conversion, yield and selectivity of the reaction products for diglycerol (DG) and triglycerol (TG) produced according to the method of Comparative Example 9-16.
표 2
비교예 촉매 주촉매 1몰 대비 조촉매 몰 온도 (℃) 시간 (h) 글리세롤전환율 DG 수율 (선택도) TG 수율 (선택도) DG + TG수율 (선택도) 테트라글리세롤 이상 수율(선택도)
9 소듐 히드록사이드 NaHSO4 0.5 260 6 62.1 19.7 (31.7) 11.2 (18.0) 30.9 (49.7) 31.2 (50.3)
10 소듐 히드록사이드 NaHSO4 1 260 6 44.3 15.4 (34.8) 11.8 (26.6) 27.2 (61.4) 17.1 (38.6)
11 소듐 히드록사이드 NaHSO4 0.5 280 2 57.2 16.9 (29.5) 6.9 (12.1) 23.8 (41.6) 33.4 (58.4)
12 소듐 히드록사이드 NaHSO4 1 280 2 39.4 19.6 (49.7) 8.0 (20.3) 27.6 (70.0) 11.8 (30.0)
13 포타슘 히드록사이드 KHSO4 0.5 260 6 66.3 16.3 (24.6) 11.7 (17.6) 28.0 (42.2) 38.3 (57.8)
14 포타슘 히드록사이드 KHSO4 1 260 6 51.5 19.7 (38.3) 8.1 (15.7) 27.8 (54.0) 23.7 (46.0)
15 포타슘 히드록사이드 KHSO4 0.5 280 2 64.4 20.1 (31.2) 9.1 (14.1) 29.2 (45.3) 35.2 (54.7)
16 포타슘 히드록사이드 KHSO4 1 280 2 44.8 15.2 (33.9) 8.1 (18.1) 23.3 (52.0) 21.5 (48.0)
TABLE 2
Comparative example catalyst Cocatalyst mole to 1 mole of main catalyst Temperature (℃) Time (h) Glycerol Conversion DG yield (selectivity) TG yield (selectivity) DG + TG yield (selectivity) Tetraglycerol or higher yield (selectivity)
9 Sodium hydroxide NaHSO 4 0.5 260 6 62.1 19.7 (31.7) 11.2 (18.0) 30.9 (49.7) 31.2 (50.3)
10 Sodium hydroxide NaHSO 4 1 260 6 44.3 15.4 (34.8) 11.8 (26.6) 27.2 (61.4) 17.1 (38.6)
11 Sodium hydroxide NaHSO 4 0.5 280 2 57.2 16.9 (29.5) 6.9 (12.1) 23.8 (41.6) 33.4 (58.4)
12 Sodium hydroxide NaHSO 4 1 280 2 39.4 19.6 (49.7) 8.0 (20.3) 27.6 (70.0) 11.8 (30.0)
13 Potassium hydroxide KHSO 4 0.5 260 6 66.3 16.3 (24.6) 11.7 (17.6) 28.0 (42.2) 38.3 (57.8)
14 Potassium hydroxide KHSO 4 1 260 6 51.5 19.7 (38.3) 8.1 (15.7) 27.8 (54.0) 23.7 (46.0)
15 Potassium hydroxide KHSO 4 0.5 280 2 64.4 20.1 (31.2) 9.1 (14.1) 29.2 (45.3) 35.2 (54.7)
16 Potassium hydroxide KHSO 4 1 280 2 44.8 15.2 (33.9) 8.1 (18.1) 23.3 (52.0) 21.5 (48.0)
위 표 2에 나타낸 바와 같이, 비교예 9 내지 16에 따르면 조촉매의 첨가에 따라 글리세롤의 전환율 및 부산물인 테트라 이상의 고분자량 글리세롤의 수율 및 선택도는 감소되나 디글리세롤과 트리글리세롤의 수율 및 선택도에는 큰 영향이 없는 것을 확인하였다. 이러한 결과로부터 강염기 촉매에 대한 조촉매의 영향이 미미함을 알 수 있다.As shown in Table 2, according to Comparative Examples 9 to 16 according to the addition of the promoter, the conversion and selectivity of the high-molecular weight glycerol of tetra- or higher as a by-product is reduced, but the yield and selectivity of diglycerol and triglycerol are reduced. It was confirmed that there was no significant effect. These results show that the influence of the promoter on the strong base catalyst is insignificant.
실시예 1-11.Example 1-11. 주촉매(소듐아세테이트)_ 조촉매 생략Main catalyst (sodium acetate) _ Omit catalyst
100 mL 2-neck 플라스크에 글리세롤(30 g, 0.33 몰)과 소듐아세테이트(0.13 g, 0.0016 몰)를 넣고 Dean-Stark 기구와 컨덴서를 장착한 후 상압에서 환류하면서 반응시켰다. Glycerol (30 g, 0.33 mol) and sodium acetate (0.13 g, 0.0016 mol) were added to a 100 mL 2-neck flask, and Dean-Stark apparatus and a condenser were mounted, followed by reaction under reflux at atmospheric pressure.
상기 소듐아세테이트 주촉매의 염기도(pKb)는 9.25이다.The basicity (pK b ) of the sodium acetate main catalyst is 9.25.
실시예 12-19. 주촉매(소듐아세테이트) + 조촉매(소듐수소설페이트)Examples 12-19. Main catalyst (sodium acetate) + promoter (sodium hydrogen sulfate)
100 mL 2-neck 플라스크에 글리세롤(30 g, 0.33 몰)과 소듐아세테이트(0.11 g, 0.0016 몰)를 넣고 조촉매인 소듐수소설페이트를 첨가한 후 Dean-Stark 기구와 컨덴서를 장착한 후 상압에서 환류하면서 반응시켰다. Put glycerol (30 g, 0.33 mol) and sodium acetate (0.11 g, 0.0016 mol) in a 100 mL 2-neck flask, add sodium hydrogen sulphate as a promoter, mount Dean-Stark instrument and condenser, and reflux at normal pressure. Reacted.
상기 소듐 수소설페이트 조촉매의 산도(pKa)는 1.99이다.The acidity (pK a ) of the sodium hydrogensulfate promoter is 1.99.
시험예 2.Test Example 2.
상기 반응이 끝난 후 액체 크로마토그래피(HPLC)를 이용하여 글리세롤의 전환율, 반응 생성물의 수율 및 선택도를 상기 수학식에 따라 산출한다. After the reaction is completed, the conversion rate of glycerol, the yield and selectivity of the reaction product are calculated using liquid chromatography (HPLC) according to the above equation.
하기 [표 3]은 실시예 1-11의 방법에 따라 생성된 디글리세롤(DG) 및 트리글리세롤(TG)에 대한 전환율, 반응 생성물의 수율 및 선택도를 나타낸 표이다.Table 3 below shows the conversion, yield and selectivity of the reaction products for diglycerol (DG) and triglycerol (TG) produced according to the method of Examples 1-11.
표 3
실시예 온도 (℃) 시간 (h) 글리세롤 전환율 DG 수율 (선택도) TG 수율 (선택도) DG + TG수율 (선택도) 테트라글리세롤 이상 수율(선택도)
1 220 6 7.0 6.6 (94.3) - (-) 6.6 (94.3) 0.4 (5.7)
2 240 1 11.3 9.8 (86.7) - (-) 9.8 (86.7) 1.5 (13.3)
3 240 2 17.3 13.7 (79.2) - (-) 13.7 (79.2) 3.1 (20.8)
4 240 4 28.2 18.0 (63.8) 3.4 (12.1) 21.4 (75.9) 6.8 (24.1)
5 240 6 49.8 21.3 (42.8) 11.8 (23.7) 33.1 (66.5) 16.7 (33.5)
6 260 1 21.6 17.2 (79.6) 2.2 (10.2) 19.4 (89.8) 2.2 (10.2)
7 260 2 41.9 27.5 (65.6) 9.9 (23.6) 37.4 (89.2) 4.5 (10.8)
8 260 4 59.3 35.5 (59.9) 14.6 (24.6) 50.1 (84.5) 9.2 (15.5)
9 260 6 72.8 28.2 (38.7) 23.2 (31.9) 51.4 (70.6) 21.4 (29.4)
10 280 1 58.8 35.0 (59.4) 16.2 (27.6) 41.2 (87.0) 7.6 (23.0)
11 280 2 77.0 31.9 (41.5) 21.7 (28.1) 53.6 (69.6) 23.4 (30.4)
TABLE 3
Example Temperature (℃) Time (h) Glycerol conversion DG yield (selectivity) TG yield (selectivity) DG + TG yield (selectivity) Tetraglycerol or higher yield (selectivity)
One 220 6 7.0 6.6 (94.3) -(-) 6.6 (94.3) 0.4 (5.7)
2 240 One 11.3 9.8 (86.7) -(-) 9.8 (86.7) 1.5 (13.3)
3 240 2 17.3 13.7 (79.2) -(-) 13.7 (79.2) 3.1 (20.8)
4 240 4 28.2 18.0 (63.8) 3.4 (12.1) 21.4 (75.9) 6.8 (24.1)
5 240 6 49.8 21.3 (42.8) 11.8 (23.7) 33.1 (66.5) 16.7 (33.5)
6 260 One 21.6 17.2 (79.6) 2.2 (10.2) 19.4 (89.8) 2.2 (10.2)
7 260 2 41.9 27.5 (65.6) 9.9 (23.6) 37.4 (89.2) 4.5 (10.8)
8 260 4 59.3 35.5 (59.9) 14.6 (24.6) 50.1 (84.5) 9.2 (15.5)
9 260 6 72.8 28.2 (38.7) 23.2 (31.9) 51.4 (70.6) 21.4 (29.4)
10 280 One 58.8 35.0 (59.4) 16.2 (27.6) 41.2 (87.0) 7.6 (23.0)
11 280 2 77.0 31.9 (41.5) 21.7 (28.1) 53.6 (69.6) 23.4 (30.4)
위 표 3에 나타낸 바와 같이, 본 발명의 실시예 1 내지 11에 따르면 디글리세롤 및 트리글리세롤의 수율 및 선택도가 우수하며, 부산물인 테트라 이상의 고분자량 글리세롤의 수율 및 선택도가 낮은 것을 확인하였다. 특히, 실시예 6, 실시예 7 및 실시예 10의 조건에 따르면 디글리세롤 및 트리글리세롤의 수율 및 선택도가 더욱 우수한 것을 확인하였다. As shown in Table 3, according to Examples 1 to 11 of the present invention, it was confirmed that the yield and selectivity of diglycerol and triglycerol are excellent, and the yield and selectivity of high molecular weight glycerol or higher as a byproduct is low. In particular, according to the conditions of Example 6, Example 7, and Example 10 it was confirmed that the yield and selectivity of the diglycerol and triglycerol is more excellent.
더욱이, 본 발명의 실시예 1 내지 11은 강염기 주촉매를 사용한 비교예 1 내지 8에 비하여 디글리세롤 및 트리글리세롤의 수율 및 선택도가 우수하며, 부산물의 수율 및 선택도가 낮은 것을 확인하였다.Further, Examples 1 to 11 of the present invention was confirmed that the yield and selectivity of the diglycerol and triglycerol is superior to the comparative examples 1 to 8 using the strong base main catalyst, the yield and selectivity of the by-products are low.
하기 [표 4]는 실시예 12-19의 방법에 따라 생성된 디글리세롤(DG) 및 트리글리세롤(TG)에 대한 전환율, 반응 생성물의 수율 및 선택도를 나타낸 표이다.Table 4 below shows the conversion, yield and selectivity of the reaction products for diglycerol (DG) and triglycerol (TG) produced according to the method of Examples 12-19.
표 4
실시예 NaHSO4(주촉매 1몰 대비 몰) 온도 (℃) 시간 (h) 글리세롤전환율 DG 수율 (선택도) TG 수율 (선택도) DG + TG수율 (선택도) 테트라글리세롤 이상 수율(선택도)
12 0.5 260 6 65 34.9 (53.7) 19.8 (30.5) 54.7 (84.2) 10.3 (15.8)
13 0.25 280 2 89.7 18.4 (20.5) 19.9 (22.2) 38.3 (42.7) 51.4 (57.3)
14 0.3 280 2 88.5 21.5 (24.3) 18.8 (21.2) 40.3 (45.5) 48.2 (54.5)
15 0.4 280 2 77.9 21.5 (27.6) 17.6 (22.6) 39.1 (50.2) 38.8 (49.8)
16 0.5 280 2 72.5 38.2 (52.7) 24.1 (33.2) 62.3 (85.9) 10.2 (14.1)
17 1 280 2 54.5 34.8 (63.8) 14.3 (26.2) 49.1 (90.1) 5.4 (9.9)
18 0.5 280 2.5 74.6 34.2 (45.8) 21.8 (29.2) 56.0 (75.0) 18.6 (25.0)
19 0.5 280 3 77.7 29.8 (38.4) 22.3 (28.7) 52.1 (67.1) 25.6 (32.9)
Table 4
Example NaHSO 4 (mole relative to 1 mole of main catalyst) Temperature (℃) Time (h) Glycerol Conversion DG yield (selectivity) TG yield (selectivity) DG + TG yield (selectivity) Tetraglycerol or higher yield (selectivity)
12 0.5 260 6 65 34.9 (53.7) 19.8 (30.5) 54.7 (84.2) 10.3 (15.8)
13 0.25 280 2 89.7 18.4 (20.5) 19.9 (22.2) 38.3 (42.7) 51.4 (57.3)
14 0.3 280 2 88.5 21.5 (24.3) 18.8 (21.2) 40.3 (45.5) 48.2 (54.5)
15 0.4 280 2 77.9 21.5 (27.6) 17.6 (22.6) 39.1 (50.2) 38.8 (49.8)
16 0.5 280 2 72.5 38.2 (52.7) 24.1 (33.2) 62.3 (85.9) 10.2 (14.1)
17 One 280 2 54.5 34.8 (63.8) 14.3 (26.2) 49.1 (90.1) 5.4 (9.9)
18 0.5 280 2.5 74.6 34.2 (45.8) 21.8 (29.2) 56.0 (75.0) 18.6 (25.0)
19 0.5 280 3 77.7 29.8 (38.4) 22.3 (28.7) 52.1 (67.1) 25.6 (32.9)
위 표 4에 나타낸 바와 같이, 본 발명의 실시예 12 내지 19에 따르면 조촉매를 사용하지 않은 실시예 1 내지 11에 비하여 디글리세롤 및 트리글리세롤의 수율 및 선택도가 우수하며, 부산물인 테트라 이상의 고분자량 글리세롤의 수율 및 선택도가 낮은 것을 확인하였다. 특히, 실시예 28, 실시예 32 및 실시예 33의 조건에 따르면 디글리세롤 및 트리글리세롤의 수율 및 선택도가 더욱 우수한 것을 확인하였다.As shown in Table 4, according to Examples 12 to 19 of the present invention, the yield and selectivity of diglycerol and triglycerol are superior to those of Examples 1 to 11 without using a promoter, and high by-product tetra or higher. It was confirmed that the yield and selectivity of the molecular weight glycerol were low. In particular, according to the conditions of Examples 28, 32 and 33, it was confirmed that the yield and selectivity of the diglycerol and triglycerol is more excellent.
더욱이, 본 발명의 실시예 12 내지 19는 비교예 9 내지 16에 비하여 디글리세롤 및 트리글리세롤의 수율 및 선택도가 우수하며, 부산물의 수율 및 선택도가 낮은 것을 확인하였다.Furthermore, Examples 12 to 19 of the present invention was confirmed that the yield and selectivity of the diglycerol and triglycerol is superior to the comparative examples 9 to 16, and the yield and selectivity of the by-products are low.
실시예 20-29.Example 20-29. 주촉매(포타슘아세테이트)_ 조촉매 생략Main catalyst (potassium acetate) _ Omit catalyst
100 mL 2-neck 플라스크에 글리세롤(30 g, 0.33 몰)과 포타슘아세테이트(0.16 g, 0.0016 몰)를 넣고 Dean-Stark 기구와 컨덴서를 장착한 후 상압에서 환류하면서 반응시켰다. Glycerol (30 g, 0.33 mol) and potassium acetate (0.16 g, 0.0016 mol) were added to a 100 mL 2-neck flask, and Dean-Stark apparatus and a condenser were mounted and reacted under reflux at atmospheric pressure.
상기 포타슘아세테이트 주촉매의 염기도(pKb)는 9.24이다.The basicity (pK b ) of the potassium acetate main catalyst is 9.24.
실시예 30-37.Examples 30-37. 주촉매(포타슘아세테이트) + 조촉매(포타슘수소설페이트)Main catalyst (potassium acetate) + promoter (potassium hydrogen sulfate)
100 mL 2-neck 플라스크에 글리세롤(30 g, 0.33 몰)과 포타슘아세테이트(0.16 g, 0.0016 몰)를 넣고 조촉매인 포타슘수소설페이트를 첨가한 후 Dean-Stark 기구와 컨덴서를 장착한 후 상압에서 환류하면서 반응시켰다. Add glycerol (30 g, 0.33 mol) and potassium acetate (0.16 g, 0.0016 mol) to a 100 mL 2-neck flask, add potassium hydrogen sulphate as a promoter, equip Dean-Stark instrument and condenser, and reflux at atmospheric pressure. Reacted.
상기 포타슘 수소설페이트 조촉매의 산도(pKa)는 2.0이다.The acidity (pK a ) of the potassium hydrogensulfate promoter is 2.0.
시험예 3.Test Example 3.
상기 반응이 끝난 후 액체 크로마토그래피(HPLC)를 이용하여 글리세롤의 전환율, 반응 생성물의 수율 및 선택도를 상기 수학식에 따라 산출한다. After the reaction is completed, the conversion rate of glycerol, the yield and selectivity of the reaction product are calculated using liquid chromatography (HPLC) according to the above equation.
하기 [표 5]은 실시예 20-29의 방법에 따라 생성된 디글리세롤(DG) 및 트리글리세롤(TG)에 대한 전환율, 반응 생성물의 수율 및 선택도를 나타낸 표이다.Table 5 below shows the conversion, yield and selectivity of the reaction products for diglycerol (DG) and triglycerol (TG) produced according to the method of Examples 20-29.
표 5
실시예 온도 (℃) 시간 (h) 글리세롤 전환율 DG 수율 (선택도) TG 수율 (선택도) DG + TG수율 (선택도) 테트라글리세롤 이상 수율(선택도)
20 240 1 14.5 13.0 (89.7) - (-) 13.0 (89.7) 1.5 (10.3)
21 240 2 25.3 20.6 (81.4) - (-) 20.6 (81.4) 4.7 (18.6)
22 240 4 43.1 23.3 (54.1) 6.4 (14.8) 29.7 (68.9) 13.4 (31.1)
23 240 6 66.2 23.9 (36.1) 17.2 (26.0) 41.1 (62.1) 25.1 (37.9)
24 260 1 31.0 24.0 (77.4) 4.0 (12.9) 28.0 (90.3) 3.0 (9.7)
25 260 2 45.8 32.5 (71.0) 7.4 (16.1) 39.9 (87.1) 5.9 (12.9)
26 260 4 78.0 31.2 (40.0) 21.1 (27.1) 52.3 (67.1) 25.7 (32.9)
27 260 6 82.6 27.1 (32.8) 20.7 (25.1) 47.8 (57.9) 34.8 (42.1)
28 280 1 75.0 33.6 (44.8) 22.7 (30.3) 56.3 (75.1) 18.6 (24.9)
29 280 2 88.5 21.5 (24.3) 19.2 (21.7) 40.7 (46.0) 47.8 (54.0)
Table 5
Example Temperature (℃) Time (h) Glycerol conversion DG yield (selectivity) TG yield (selectivity) DG + TG yield (selectivity) Tetraglycerol or higher yield (selectivity)
20 240 One 14.5 13.0 (89.7) -(-) 13.0 (89.7) 1.5 (10.3)
21 240 2 25.3 20.6 (81.4) -(-) 20.6 (81.4) 4.7 (18.6)
22 240 4 43.1 23.3 (54.1) 6.4 (14.8) 29.7 (68.9) 13.4 (31.1)
23 240 6 66.2 23.9 (36.1) 17.2 (26.0) 41.1 (62.1) 25.1 (37.9)
24 260 One 31.0 24.0 (77.4) 4.0 (12.9) 28.0 (90.3) 3.0 (9.7)
25 260 2 45.8 32.5 (71.0) 7.4 (16.1) 39.9 (87.1) 5.9 (12.9)
26 260 4 78.0 31.2 (40.0) 21.1 (27.1) 52.3 (67.1) 25.7 (32.9)
27 260 6 82.6 27.1 (32.8) 20.7 (25.1) 47.8 (57.9) 34.8 (42.1)
28 280 One 75.0 33.6 (44.8) 22.7 (30.3) 56.3 (75.1) 18.6 (24.9)
29 280 2 88.5 21.5 (24.3) 19.2 (21.7) 40.7 (46.0) 47.8 (54.0)
위 표 5에 나타낸 바와 같이, 본 발명의 실시예 20 내지 29에 따르면 디글리세롤 및 트리글리세롤의 수율 및 선택도가 우수하며, 부산물인 테트라 이상의 고분자량 글리세롤의 수율 및 선택도가 낮은 것을 확인하였다. 특히, 실시예 24 및 실시예 25의 조건에 따르면 디글리세롤 및 트리글리세롤의 수율 및 선택도가 더욱 우수한 것을 확인하였다.As shown in Table 5, according to Examples 20 to 29 of the present invention, it was confirmed that the yield and selectivity of diglycerol and triglycerol are excellent, and the yield and selectivity of high molecular weight glycerol or higher as a byproduct is low. In particular, according to the conditions of Examples 24 and 25 it was confirmed that the yield and selectivity of the diglycerol and triglycerol is more excellent.
더욱이, 본 발명의 실시예 20 내지 29는 강염기 주촉매를 사용한 비교예 1 내지 8에 비하여 디글리세롤 및 트리글리세롤의 수율 및 선택도가 우수하며, 부산물의 수율 및 선택도가 낮은 것을 확인하였다.Further, Examples 20 to 29 of the present invention was confirmed that the yield and selectivity of the diglycerol and triglycerol is superior to the comparative examples 1 to 8 using the strong base main catalyst, the yield and selectivity of the by-products are low.
하기 [표 6]는 실시예 30-37의 방법에 따라 생성된 디글리세롤(DG) 및 트리글리세롤(TG)에 대한 전환율, 반응 생성물의 수율 및 선택도를 나타낸 표이다.Table 6 below shows the conversion, yield and selectivity of reaction products for diglycerol (DG) and triglycerol (TG) produced according to the methods of Examples 30-37.
표 6
실시예 KHSO4(주촉매 1몰 대비 몰) 온도 (℃) 시간 (h) 글리세롤전환율 DG 수율 (선택도) TG 수율 (선택도) DG + TG수율 (선택도) 테트라글리세롤 이상 수율(선택도)
30 0.5 260 6 39.6 30.4 (76.7) 8.7 (21.9) 39.1 (98.6) 0.5 (1.4)
31 0.25 280 2 90.3 20.4 (22.6) 20.9 (23.1) 41.3 (45.7) 49.0 (54.3)
32 0.3 280 2 84.7 26.1 (30.8) 21.5 (25.4) 47.6 (56.2) 37.1 (43.8)
33 0.4 280 2 76.4 33.2 (43.5) 21.4 (28.0) 54.6 (71.5) 21.8 (28.6)
34 0.5 280 2 73.2 36.2 (49.5) 26.7 (36.5) 62.9 (86.0) 10.3 (14.0)
35 1 280 2 48.2 29.4 (61.0) 11.9 (24.7) 41.3 (85.7) 6.9 (14.3)
36 0.5 280 2.5 67.5 32.6 (48.3) 20.0 (29.6) 52.6 (77.9) 14.9 (22.1)
37 0.5 280 3 82.4 29.1 (35.4) 22.5 (27.4) 41.6 (62.8) 30.7 (37.2)
Table 6
Example KHSO 4 (mole relative to 1 mole of main catalyst) Temperature (℃) Time (h) Glycerol Conversion DG yield (selectivity) TG yield (selectivity) DG + TG yield (selectivity) Tetraglycerol or higher yield (selectivity)
30 0.5 260 6 39.6 30.4 (76.7) 8.7 (21.9) 39.1 (98.6) 0.5 (1.4)
31 0.25 280 2 90.3 20.4 (22.6) 20.9 (23.1) 41.3 (45.7) 49.0 (54.3)
32 0.3 280 2 84.7 26.1 (30.8) 21.5 (25.4) 47.6 (56.2) 37.1 (43.8)
33 0.4 280 2 76.4 33.2 (43.5) 21.4 (28.0) 54.6 (71.5) 21.8 (28.6)
34 0.5 280 2 73.2 36.2 (49.5) 26.7 (36.5) 62.9 (86.0) 10.3 (14.0)
35 One 280 2 48.2 29.4 (61.0) 11.9 (24.7) 41.3 (85.7) 6.9 (14.3)
36 0.5 280 2.5 67.5 32.6 (48.3) 20.0 (29.6) 52.6 (77.9) 14.9 (22.1)
37 0.5 280 3 82.4 29.1 (35.4) 22.5 (27.4) 41.6 (62.8) 30.7 (37.2)
위 표 6에 나타낸 바와 같이, 본 발명의 실시예 30 내지 37에 따르면 조촉매를 사용하지 않은 실시예 20 내지 29에 비하여 디글리세롤 및 트리글리세롤의 수율 및 선택도가 우수하며, 부산물인 테트라 이상의 고분자량 글리세롤의 수율 및 선택도가 낮은 것을 확인하였다. 특히, 실시예 30과 실시예 34 및 실시예 35의 조건에 따르면 디글리세롤 및 트리글리세롤의 수율 및 선택도가 더욱 우수한 것을 확인하였다.As shown in Table 6, according to Examples 30 to 37 of the present invention, the yield and selectivity of diglycerol and triglycerol are superior to those of Examples 20 to 29 without using a promoter, and high by-product tetra or higher. It was confirmed that the yield and selectivity of the molecular weight glycerol were low. In particular, according to the conditions of Examples 30, 34 and 35, it was confirmed that the yield and selectivity of diglycerol and triglycerol is more excellent.
더욱이, 본 발명의 실시예 30 내지 37은 비교예 9 내지 16에 비하여 디글리세롤 및 트리글리세롤의 수율 및 선택도가 우수하며, 부산물의 수율 및 선택도가 낮은 것을 확인하였다.Further, Examples 30 to 37 of the present invention was confirmed that the yield and selectivity of the diglycerol and triglycerol is superior to the comparative examples 9 to 16, and the yield and selectivity of the by-products are low.
즉, 주촉매로 약염기 물질을 사용한 본 발명은 주촉매로 강염기를 사용한 경우보다 디글리세롤 및 트리글리세롤의 수율 및 선택도가 우수하며, 부산물인 테트라 이상의 고분자량 글리세롤의 수율 및 선택도가 낮았다.That is, the present invention using the weak base material as the main catalyst has better yield and selectivity of diglycerol and triglycerol than the case of using a strong base as the main catalyst, and has a lower yield and selectivity of higher molecular weight glycerol than by-product tetra.
본 발명의 직쇄현 폴리글리세롤은 화장품, 의약품, 도료, 식품 첨가제 등 다양한 분야에 활용이 가능하다.The straight-chain polyglycerol of the present invention can be used in various fields such as cosmetics, pharmaceuticals, paints, food additives.

Claims (9)

  1. 알칼리 금속 양이온 및 아세테이트 음이온을 포함하는 아세테이트염인 주촉매 하에서 글리세롤을 반응시켜 직쇄형 폴리글리세롤을 생성하는 단계를 포함하는 것을 특징으로 하는 직쇄형 폴리글리세롤의 제조방법.A method for producing a linear polyglycerol comprising the step of reacting glycerol under a main catalyst which is an acetate salt comprising an alkali metal cation and an acetate anion to produce a linear polyglycerol.
  2. 제1항에 있어서, 상기 주촉매의 염기도(pKb)는 9 내지 10인 것을 특징으로 하는 직쇄형 폴리글리세롤의 제조방법. The method according to claim 1, wherein the basic catalyst (pK b ) of the main catalyst is 9 to 10, characterized in that the production of linear polyglycerol.
  3. 제1항에 있어서, 상기 반응시 알칼리 금속 양이온 및 무기 음이온을 포함하는 무기염인 조촉매를 추가하는 것을 특징으로 하는 직쇄형 폴리글리세롤의 제조방법.The method of claim 1, wherein a cocatalyst, which is an inorganic salt containing an alkali metal cation and an inorganic anion, is added during the reaction.
  4. 제1항에 있어서, 상기 직쇄형 폴리글리세롤은 디글리세롤, 트리글리세롤 및 이들이 혼합된 글리세롤인 것을 특징으로 하는 직쇄형 폴리글리세롤의 제조방법.The method of claim 1, wherein the linear polyglycerol is a diglycerol, triglycerol and a method for producing a linear polyglycerol, characterized in that the mixed glycerol.
  5. 제1항 내지 제3항 중 어느 한 항에 있어서, 상기 알칼리 금속 양이온은 리튬(Li+) 양이온, 소듐(Na+) 양이온, 칼륨(K+) 양이온, 루비듐(Rb+) 양이온 및 세슘(Cs+) 양이온으로 이루어진 군에서 선택된 1종 이상인 것을 특징으로 하는 직쇄형 폴리글리세롤의 제조방법.The method of claim 1, wherein the alkali metal cation is a lithium (Li + ) cation, sodium (Na + ) cation, potassium (K + ) cation, rubidium (Rb + ) cation, and cesium (Cs). + ) A method for producing a linear polyglycerol, characterized in that at least one member selected from the group consisting of cations.
  6. 제3항에 있어서, 상기 조촉매에 함유되는 무기 음이온은 수소포스파이트(HP(H)O3 -), 수소포스페이트(HPO4 2-), 이수소포스페이트(H2PO4 -), 설파이트(HSO3 -) 및 수소설페이트(HSO4 -)로 이루어진 군에서 선택된 1종 이상인 것을 특징으로 하는 직쇄형 폴리글리세롤의 제조방법.The inorganic anion contained in the cocatalyst is hydrogen phosphite (HP (H) O 3 ), hydrogen phosphate (HPO 4 2- ), dihydrogen phosphate (H 2 PO 4 ), sulfite (HSO 3 -) and hydrogen sulphate (HSO 4 -) the method of linear polyglycerol, characterized in that at least one member selected from the group consisting of.
  7. 제1항에 있어서, 상기 주촉매는 글리세롤 1몰에 대하여 0.1 내지 0.9 몰로 첨가되는 것을 특징으로 하는 직쇄형 폴리글리세롤의 제조방법.The method according to claim 1, wherein the main catalyst is added in an amount of 0.1 to 0.9 moles per 1 mole of glycerol.
  8. 제3항에 있어서, 상기 조촉매는 주촉매 1 몰에 대하여 0.1 내지 5 몰로 첨가되는 것을 특징으로 하는 직쇄형 폴리글리세롤의 제조방법.The method of claim 3, wherein the cocatalyst is added in an amount of 0.1 to 5 mol based on 1 mol of the main catalyst.
  9. 제1항에 있어서, 상기 글리세롤은 200 내지 290 ℃ 및 1 내지 6시간 동안 에테르화 반응이 수행되는 것을 특징으로 하는 직쇄형 폴리글리세롤의 제조방법.The method of claim 1, wherein the glycerol is a method for producing a linear polyglycerol, characterized in that the etherification reaction is carried out for 200 to 290 ℃ and 1 to 6 hours.
PCT/KR2016/005415 2015-12-30 2016-05-23 Method for preparing straight-chain polyglycerol WO2017115939A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020150189496A KR101810646B1 (en) 2015-12-30 2015-12-30 A manufacturing method of linear polyglycerol
KR10-2015-0189496 2015-12-30

Publications (1)

Publication Number Publication Date
WO2017115939A1 true WO2017115939A1 (en) 2017-07-06

Family

ID=59224799

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2016/005415 WO2017115939A1 (en) 2015-12-30 2016-05-23 Method for preparing straight-chain polyglycerol

Country Status (2)

Country Link
KR (1) KR101810646B1 (en)
WO (1) WO2017115939A1 (en)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3968169A (en) * 1973-11-30 1976-07-06 The Procter & Gamble Company Process for preparing polyblycerol
US4551561A (en) * 1983-12-21 1985-11-05 Hoechst Aktiengesellschaft Process for the preparation of polyglycerols
US6620904B2 (en) * 2000-11-06 2003-09-16 Lonza Inc. Processes for preparing linear polyglycerols and polyglycerol esters
JP2007091823A (en) * 2005-09-27 2007-04-12 Mitsubishi Chemicals Corp Method for purifying polyglycerol, purified polyglycerol obtained by the method, and manufacturing method of fatty acid polyglyceride using the purified polyglycerol
KR20100041000A (en) * 2008-10-13 2010-04-22 한국화학연구원 The metal oxide catalyst for etherification reaction, the method thereof and the process for the production of linear polyglycerol using it
US20100240929A1 (en) * 2005-10-26 2010-09-23 Malaysian Palm Oil Board Process for preparing polymers of polyhydric alcohols
KR20130096772A (en) * 2010-10-25 2013-09-02 주식회사 케이씨아이 Metal oxide catalyst for etherification reaction, a method for preparing the same, and a method for the production of linear polyglycerol using the same
WO2015122770A1 (en) * 2014-02-13 2015-08-20 Clariant International Ltd. Preparation of polyglycerols

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007092407A2 (en) 2006-02-06 2007-08-16 Cargill, Incorporated Process for preparing polyglycerol and mixed ethers
JP2013136521A (en) 2011-12-28 2013-07-11 Kao Corp Method of producing polyglycerol

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3968169A (en) * 1973-11-30 1976-07-06 The Procter & Gamble Company Process for preparing polyblycerol
US4551561A (en) * 1983-12-21 1985-11-05 Hoechst Aktiengesellschaft Process for the preparation of polyglycerols
US6620904B2 (en) * 2000-11-06 2003-09-16 Lonza Inc. Processes for preparing linear polyglycerols and polyglycerol esters
JP2007091823A (en) * 2005-09-27 2007-04-12 Mitsubishi Chemicals Corp Method for purifying polyglycerol, purified polyglycerol obtained by the method, and manufacturing method of fatty acid polyglyceride using the purified polyglycerol
US20100240929A1 (en) * 2005-10-26 2010-09-23 Malaysian Palm Oil Board Process for preparing polymers of polyhydric alcohols
KR20100041000A (en) * 2008-10-13 2010-04-22 한국화학연구원 The metal oxide catalyst for etherification reaction, the method thereof and the process for the production of linear polyglycerol using it
KR20130096772A (en) * 2010-10-25 2013-09-02 주식회사 케이씨아이 Metal oxide catalyst for etherification reaction, a method for preparing the same, and a method for the production of linear polyglycerol using the same
WO2015122770A1 (en) * 2014-02-13 2015-08-20 Clariant International Ltd. Preparation of polyglycerols

Also Published As

Publication number Publication date
KR20170079195A (en) 2017-07-10
KR101810646B1 (en) 2017-12-20

Similar Documents

Publication Publication Date Title
JP3659109B2 (en) Co-production method of ethylene glycol and carbonate
CN101768141B (en) Method for preparing alpha-acetyl-gamma-butyrolactone
WO2011013880A2 (en) Method for preparing dialkyl carbonate
IE43223B1 (en) Production of dialkyl carbonate
CN101157670A (en) Method for synthesizing epichlorohydrin
CN112830907B (en) Method for preparing 5-hydroxymethylfurfural
CN101928389A (en) Method for preparing glycidol ether terminated propenol polyoxyethylene ether
CN115028606A (en) Preparation method of benzyl glycidyl ether
WO2014077465A1 (en) Method for preparing glycidol
WO2017115939A1 (en) Method for preparing straight-chain polyglycerol
CN105566257B (en) A kind of industrialized process for preparing of high-optical-purity acetyl group tetrahydrofuran
CN111995615A (en) Preparation method of cyclic sulfate
CN105439850A (en) Method for synthesizing triethylene glycol di-2-ethylhexoate
CN115772151A (en) Preparation method of 4-fluoro-1,3-dioxolane-2-one
JPH08333310A (en) Production of monomethylaminoethanol
CN103702987A (en) Method for producing alkyldiol monoglycidyl ether
CN108147950B (en) Preparation method of dipropylene glycol monomethyl monoallyl ether
CN107760445B (en) Method for catalyzing ester exchange reaction by using boehmite composite basic ionic liquid
WO2011007931A1 (en) Method of preparing chlorohydrins by reacting polyhydroxy aliphatic hydrocarbon with chlorination agent
CN116836147B (en) Preparation method and application of cyclic sulfate
CN103113231A (en) Synthetic method of diallyl diethylene glycol carbonate
JPH0522696B2 (en)
CN117777190A (en) Preparation method of tris (trimethylsilyl) phosphite
JP2545554B2 (en) Process for producing mono- and / or polyglycidyl compound
CN1064346C (en) Direct synthesis method of dimethyl carbonate

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16881892

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16881892

Country of ref document: EP

Kind code of ref document: A1