WO2017115877A1 - Image-forming device - Google Patents

Image-forming device Download PDF

Info

Publication number
WO2017115877A1
WO2017115877A1 PCT/JP2016/089234 JP2016089234W WO2017115877A1 WO 2017115877 A1 WO2017115877 A1 WO 2017115877A1 JP 2016089234 W JP2016089234 W JP 2016089234W WO 2017115877 A1 WO2017115877 A1 WO 2017115877A1
Authority
WO
WIPO (PCT)
Prior art keywords
filter
dust
image forming
belt
fan
Prior art date
Application number
PCT/JP2016/089234
Other languages
French (fr)
Japanese (ja)
Inventor
浩二 野島
Original Assignee
キヤノン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2016243805A external-priority patent/JP6643220B2/en
Application filed by キヤノン株式会社 filed Critical キヤノン株式会社
Priority to EP16881851.6A priority Critical patent/EP3399372B1/en
Priority to KR1020187020955A priority patent/KR101993567B1/en
Priority to CN201680076809.XA priority patent/CN108475035B/en
Publication of WO2017115877A1 publication Critical patent/WO2017115877A1/en
Priority to US16/009,724 priority patent/US10955798B2/en

Links

Images

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G15/00Apparatus for electrographic processes using a charge pattern
    • G03G15/20Apparatus for electrographic processes using a charge pattern for fixing, e.g. by using heat
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G21/00Arrangements not provided for by groups G03G13/00 - G03G19/00, e.g. cleaning, elimination of residual charge

Definitions

  • the present invention relates to an image forming apparatus that forms a toner image on a recording material.
  • This image forming apparatus is used as a copying machine, a printer, a facsimile, and a multifunction machine having a plurality of these functions.
  • An electrophotographic image forming apparatus forms an image on a recording material using toner containing a release agent.
  • the image forming apparatus includes a fixing device that heats and presses a recording material carrying a toner image to fix the image on the recording material.
  • the image forming apparatus described in Japanese Patent Laid-Open No. 2013-190651 has a configuration for collecting ultrafine particles generated by heating a toner containing a release agent. However, with this configuration, there is room for improvement in properly removing the generated fine particles.
  • An object of the present invention is to provide an image forming apparatus capable of appropriately removing fine particles caused by a release agent contained in a toner.
  • the present invention includes an image forming unit that forms an image on a recording material using a toner containing a release agent; A heating rotator and a pressure rotator that form a nip portion for fixing an image formed on the recording material by the image forming unit; A duct for discharging air taken in from the vicinity of the inlet of the nip portion through the intake port; A filter that is provided in a ventilation path of the duct and collects fine particles caused by a release agent; A fan for drawing air into the duct, When the distance between the intake port and the heating rotator is d (mm), the area of the filter is Fs (cm 2 ), and the air passing velocity in the filter is Fv (cm / s), the following is satisfied: It is characterized by. [The invention's effect]
  • the fine particles caused by the release agent contained in the toner can be appropriately removed.
  • FIG. 1A is a view showing how dust is collected in the vicinity of the fixing device
  • FIG. 1B is a view showing how the trailing edge of the sheet is splashed.
  • FIG. 2A is a perspective view of the periphery of the fixing device
  • FIG. 2B is a diagram illustrating a sheet passing position in the vicinity of the fixing device.
  • FIG. 3A is an exploded perspective view of the duct unit
  • FIG. 3B is a diagram illustrating a state in which the duct unit operates.
  • FIG. 4 is a diagram showing the configuration of the image forming apparatus.
  • FIG. 5A is a diagram illustrating a cross section of the fixing unit
  • FIG. 5B is a diagram illustrating a state in which the belt unit is disassembled.
  • FIG. 6A is a diagram showing a sheet near the nip portion of the fixing unit
  • FIG. 6B is a diagram showing a layer configuration of the belt
  • FIG. 6C is a diagram showing a layer configuration of the pressure roller.
  • FIG. 7 is a view showing a pressure mechanism of the belt unit.
  • FIG. 8A is a diagram for explaining the coalescence phenomenon of dust D
  • FIG. 8B is a schematic diagram for explaining the adhesion phenomenon of dust D.
  • FIG. 9A is a graph showing the relationship between the elapsed time of image formation processing and the amount of dust D generation in Verification Example 1
  • FIG. 9B is the relationship between the elapsed time of image formation processing and the amount of dust D generation in Verification Example 2. It is a graph which shows.
  • FIG. 10A is a diagram illustrating a state of a wax adhesion region on the fixing belt that expands as the fixing process proceeds
  • FIG. 10B is a diagram illustrating a relationship between a wax adhesion region and a dust D generation region. is there.
  • FIG. 11 is a diagram for explaining the flow of airflow around the fixing belt.
  • FIG. 12 is a diagram showing the relationship between the control circuit and each component.
  • FIG. 13 is a flowchart for explaining fan control.
  • FIG. 14A is a sequence diagram of the thermistor TH
  • FIG. 14B is a sequence diagram of the first fan
  • FIG. 14C is a sequence diagram of the second fan
  • FIG. 14D is a sequence diagram of the third fan.
  • (a) is a first graph for explaining the effect of air flow control
  • (b) is a second graph for explaining the effect of air flow control
  • (c) is a third graph for explaining the effect of air flow control
  • Graph (d) is a fourth graph for explaining the effect of air volume control.
  • (a) is a graph showing the suction air volume Q (L / min) required when the target value of the dust reduction rate ⁇ is 50%
  • (b) is the target value of the dust reduction rate ⁇ of 60%. It is a graph which shows the suction
  • FIG. 18 is a graph showing the relationship between the distance d (mm) between the belt surface and the filter and the suction air volume Q (L / min).
  • FIG. 19 is a graph showing the relationship between the distance d (mm) between the belt surface and the filter and the filter area Fs (cm 2 ).
  • FIG. 20 is a diagram showing an example in which the filter is arranged inside the duct.
  • FIG. 21 is a diagram showing the relationship between the arrangement of the filter unit and the radiant heat.
  • FIG. 22 is a diagram showing the relationship between the arrangement of the filter unit and the radiant heat.
  • FIG. 23 is a diagram showing the relationship between the arrangement of the filter unit and the radiant heat.
  • FIG. 24A is a diagram illustrating the relationship between the filter passing wind speed, the filter dust filtration rate, and the filter ventilation resistance
  • FIG. 24B is a diagram illustrating the relationship between the filter passing wind speed and the filter area.
  • FIG. 4 is a diagram illustrating the configuration of the image forming apparatus.
  • FIG. 12 is a block diagram showing the relationship between the control circuit and each component.
  • the printer 1 forms an image in an image forming unit using an electrophotographic process, transfers the image to a sheet in a transfer unit, and fixes the image on the sheet P by heating the sheet on which the image has been transferred in a fixing unit. It is a device to let you.
  • the printer 1 used in the description of this embodiment is a four-color full-color multifunction printer (color image forming apparatus) using an electrophotographic process.
  • the printer 1 may be a monochrome multifunction printer or a single function printer. Hereinafter, it demonstrates in detail using figures.
  • the printer 1 includes a control circuit A that controls each component in the apparatus.
  • the control circuit A is an electric circuit including a calculation unit such as a CPU and a storage unit such as a ROM.
  • the control circuit A functions as a control unit that performs various controls when the CPU reads a program stored in a ROM or the like.
  • the control circuit A is electrically connected to various components such as an external information terminal (not shown) such as a personal computer, an input device B such as the image reader 2, and an operation panel (not shown), and exchanges signal information. Is possible.
  • the control circuit A controls the various components in the apparatus based on the image signal input from the input apparatus B to form an image on the sheet P.
  • the sheet P is a recording material (paper) on which an image is formed.
  • Examples of the sheet P include plain paper, cardboard, OHP sheet, coated paper, label paper, and the like.
  • the printer 1 includes first to fourth image forming stations 5Y, 5M, 5C, and 5K (hereinafter referred to as stations) as image forming units 5 that form toner images.
  • the stations 5Y, 5M, 5C, and 5K are provided side by side from the left side to the right side as shown in FIG.
  • the stations 5Y, 5M, 5C, and 5K have substantially the same configuration except that the color of the toner used is different. Therefore, when the detailed configuration of the stations 5Y, 5M, 5C, and 5K is described, the station 5K is described as an example.
  • the station 5K includes a rotating drum type electrophotographic photosensitive member (hereinafter referred to as a drum) 6 as an image carrier on which an image is formed. Further, the station 5K includes a cleaning member 41 as a process unit that acts on the drum 6, a developing unit 9, and a charging roller (not shown).
  • the first station 5Y accommodates yellow (Y) developer (hereinafter referred to as toner) in the toner accommodating chamber of the developing unit 9.
  • the second station 5M stores magenta (M) toner in the toner storage chamber of the developing unit 9.
  • the third station 5C stores cyan (C) toner in the toner storage chamber of the developing unit 9.
  • the fourth station 5 ⁇ / b> K stores black (K) toner in the toner storage chamber of the developing unit 9.
  • a laser scanner unit 8 as an image information exposure unit for the drum 6 is disposed below the image forming unit 5.
  • An intermediate transfer belt unit 10 (hereinafter referred to as a transfer unit) is provided above the image forming unit 5.
  • the transfer unit 10 includes an intermediate transfer belt (hereinafter referred to as a belt) 10c and a driving roller 10a that drives the intermediate transfer belt 10c.
  • the first to fourth primary transfer rollers 11 are arranged in parallel inside the belt 10c. Each primary transfer roller 11 is disposed to face the drum 6 of each station.
  • each drum 6 of the image forming unit is in contact with the lower surface of the belt 10 c at the position of each primary transfer roller 11. This contact portion is called a primary transfer portion.
  • the driving roller 10a is a roller that rotationally drives the belt 10c, and a secondary transfer roller 12 is disposed outside the portion of the belt 10c that is backed up by the driving roller 10a.
  • the belt 10c is in contact with a secondary transfer roller 12 as a transfer unit, and this contact portion is referred to as a secondary transfer portion 12a.
  • a transfer belt cleaning device 10d is disposed outside the portion of the belt 10c backed up by the tension roller 10b.
  • a cassette 3 for storing sheets P is disposed under the laser scanner unit 8.
  • the sheet P stored in the cassette P absorbs moisture according to the state of the outside air. A sheet having a higher moisture absorption generates more water vapor when heated.
  • the printer 1 is provided with a sheet conveyance path (vertical path) Q for conveying the sheet P picked up from the cassette 3 upward.
  • a roller pair of a feeding roller 4a and a retard roller 4b, a registration roller pair 4c, a secondary transfer roller 12, a fixing device 103, and a discharge roller pair 14 are arranged in order from the lower side to the upper side.
  • a discharge tray 16 is disposed below the image reader 2.
  • the control circuit A When the printer 1 performs an image forming operation, the control circuit A performs the following control.
  • the control circuit A rotates the drums 6 of the first to fourth stations 5Y, 5M, 5C, and 5K in a clockwise direction in the drawing at a predetermined speed in accordance with the image formation timing.
  • the control circuit A controls the driving of the driving roller 10a so that the belt 10c rotates in a direction corresponding to the rotational speed of the drum 6 and in a forward rotation direction with respect to the rotational direction of the drum 6. Further, the control circuit A operates the laser scanner unit 8 and a charging roller (not shown).
  • the printer 1 forms a full-color image as follows.
  • a charging roller uniformly charges the surface of the drum 6 to a predetermined polarity and potential.
  • the laser scanner unit 8 scans and exposes the surface of the drum 6 using a laser beam modulated in accordance with image information signals of Y, M, C, and K colors.
  • image information signals of Y, M, C, and K colors e.g., Y, M, C, and K colors.
  • an electrostatic latent image corresponding to the corresponding color is formed on the surface of each drum 6.
  • the formed electrostatic latent image is developed as a toner image by the developing unit 9.
  • the toner images of each color of YMCK formed as described above are synthesized by being primarily transferred onto the belt 10c in order in the primary transfer portion.
  • a full-color unfixed toner image is formed on the belt 10c by combining four color toner images of Y color + M color + C color + K color.
  • the unfixed toner image is conveyed to the transfer unit 12a by the rotation of the belt 10c.
  • the surface of the drum 6 after the toner image is primarily transferred to the belt 10 c is cleaned by the cleaning member 41.
  • the sheet P in the cassette 3 is fed by one sheet by the feeding roller 4a and the retard roller 4b and conveyed to the registration roller pair 4c.
  • the sheet P is conveyed to the secondary transfer portion in synchronization with the toner image on the registration roller pair 4c belt 10c.
  • the secondary transfer roller 12 is applied with a secondary transfer bias having a polarity opposite to the normal charging polarity of the toner. For this reason, when the sheet P is nipped and conveyed by the secondary transfer portion, the four-color toner images on the belt 10c are secondarily transferred onto the sheet P all at once.
  • FIG. 5A is a view showing a cross section of the fixing unit.
  • FIG. 5B is a diagram illustrating a state where the belt unit is disassembled.
  • the fixing device 103 is a low heat capacity fixing device that fixes a toner image onto a sheet P using a small-diameter fixing belt 105 (hereinafter referred to as a belt) heated by a heater 101a.
  • the fixing device 103 includes a fixing belt unit 101 (referred to as a fixing unit) including a belt 105 as a rotating body, a pressure roller 102 as a rotating body, a planar heater 101a as a heating unit, and a housing 100. And. As shown in FIG.
  • the housing 100 is provided with a sheet inlet 400 and a sheet outlet 500, and the sheet P can pass through the nip portion 101 b between the fixing unit 101 and the pressure roller 102. it can.
  • the sheet inlet 400 is disposed below the sheet outlet 500 in the gravitational direction, the sheet P is conveyed upward from below in the gravitational direction.
  • This configuration is referred to as a vertical path configuration.
  • a plurality of rollers 100a made of a thin plate-shaped rotating disk are provided side by side in the direction of the rotation axis of the belt 105.
  • the roller 100a suppresses the toner from adhering to the housing 100 by guiding the sheet P that is out of the conveyance path.
  • a guide member 15 that guides the conveyance of the sheet through the nip portion 101b is provided on the downstream side of the sheet outlet 500 in the conveyance direction of the sheet P.
  • the downstream side in the transport direction of the sheet P is referred to as the downstream side
  • the upstream side in the transport direction of the sheet P is referred to as the upstream side.
  • the fixing unit 101 is a fixing unit that abuts against a pressure roller 102 described later, forms a nip portion 101b with the pressure roller 102, and fixes the toner image on the sheet P at the nip portion 101b. As shown in FIGS. 5A and 5B, the fixing unit 101 is an assembly composed of a plurality of members.
  • the fixing unit 101 includes a planar heater 101a, a heater holder 104 that holds the heater 101a, and a pressure stay 104a that supports the heater holder 104. Further, the fixing unit 101 includes an endless belt 105 and flanges 106L and 106R that hold one end side and the other end side of the belt 105 in the width direction.
  • the heater 101 a is a heating member that contacts the inner surface of the belt 105 and heats the belt 105.
  • a ceramic heater that generates heat when energized is used as the heater 101a.
  • the ceramic heater includes a thin and thin ceramic substrate and a resistance layer provided on the surface of the substrate.
  • the ceramic heater is a low-heat capacity heater that quickly generates heat by energizing the resistance layer.
  • the heater holder 104 is a holding member that holds the heater 101a.
  • the holder 104 of the present embodiment has a semicircular cross section and regulates the shape of the belt 105 in the circumferential direction. It is desirable to use a heat resistant resin as the material of the holder 104.
  • the pressure stay 104a is a member that uniformly presses the heater 101a and the holder 104 against the belt 105 in the longitudinal direction. It is desirable that the pressure stay 104a be made of a material that is not easily bent even when a high pressure is applied.
  • SUS304 which is stainless steel, is used as the material of the pressure stay 104a.
  • a thermistor TH as a temperature sensor is provided on the pressure stay 104a. The thermistor TH outputs a signal corresponding to the temperature of the belt 105 to the control circuit A.
  • the belt 105 is a rotating body that contacts the sheet P and applies heat to the sheet P.
  • the belt 105 is a cylindrical (endless) belt, and has flexibility as a whole.
  • the belt 105 is provided so as to cover the heater 101a, the heater holder 104, and the pressure stay 104a from the outside.
  • the flanges 106L and 106R are a pair of members that rotatably hold the end portion of the belt 105 in the longitudinal direction. As shown in FIG. 2, each of the flanges 106L and 106R includes a flange portion 106a, a backup portion 106b, and a pressed portion 106c.
  • the flange portion 106 a is a portion that receives the end face of the belt 105 and restricts the movement of the belt 105 in the thrust direction, and has an outer shape larger than the diameter of the belt 105.
  • the backup unit 106 b is a part that holds the inner surface of the fixing belt and maintains the cylindrical shape of the belt 105.
  • the pressed portion 106c is provided on the outer surface side of the flange portion 106a and receives a pressing force by pressure springs 108L and 108R (see FIG. 7) described later. (2-2-1) Configuration of fixing belt
  • FIG. 6A is a view showing the sheet conveyed to the vicinity of the nip portion of the fixing unit.
  • FIG. 6B is a diagram showing the layer structure of the belt.
  • FIG. 6C is a diagram showing a layer configuration of the pressure roller 102.
  • the belt 105 of this embodiment is composed of a plurality of layers. More specifically, the belt 105 includes an endless (cylindrical) base layer 105a, a primer layer 105b, an elastic layer 105c, and a release layer 105d in order from the inside to the outside.
  • the base layer 105 a is a layer for ensuring the strength of the belt 105.
  • the base layer 105a is a base layer made of metal such as SUS (stainless steel), and has a thickness of about 30 ⁇ m so as to withstand thermal stress and mechanical stress.
  • the primer layer 105b is a layer for bonding the base layer 105a and the elastic layer 105c.
  • the primer layer is formed by applying a primer with a thickness of about 5 ⁇ m on the base layer 105a.
  • the elastic layer 105c is deformed when the toner image is pressed into contact with the nip portion 101b, and serves to bring the release layer 105d into close contact with the toner image.
  • heat-resistant rubber can be used as the elastic layer 105c.
  • the release layer 105 d is a layer having a function of preventing toner and paper powder from adhering to the belt 105.
  • a fluororesin such as a PFA resin excellent in releasability and heat resistance can be used.
  • the thickness of the release layer 105d in this embodiment is 20 ⁇ m in consideration of heat transfer properties. (2-3) Configuration of pressure roller and pressure method
  • FIG. 6 is a figure which shows the layer structure of the pressure roller 102.
  • the pressure roller 102 is a nip forming member that contacts the outer peripheral surface of the belt 105 and forms a nip with the belt 105.
  • the pressure roller 102 of this embodiment is a roller member composed of a plurality of layers. More specifically, the pressure roller 102 includes a metal (aluminum or iron) cored bar 102a, an elastic layer 102b formed of silicon rubber or the like, and a release layer 102c that covers the elastic layer 102b.
  • the release layer 102c is a tube made of a fluorine-based resin such as PFA and is bonded onto the elastic layer 102b.
  • one end of the cored bar 102a is rotatably supported by the side plate 107L via a bearing 113.
  • the other end side of the cored bar 102a is rotatably supported by the side plate 107R via a bearing 113.
  • a portion of the pressure roller 102 having the elastic layer 102b and the release layer 102c is located between the side plate 107L and the side plate 107R.
  • the other end of the metal core 102a is connected to a gear G.
  • the gear G is driven by a drive motor (not shown), the pressure roller 102 is rotationally driven.
  • the fixing unit 101 is supported by the side plate 107L and the side plate 107R so as to be slidable in the direction of approaching and separating from the pressure roller 102.
  • the flanges 106L and 106R are provided so as to fit into the guide grooves of the side plate 107L and the side plate 107R.
  • the pressed portions 106c of the flanges 106L and 106R are pressed with a predetermined pressing force T in the direction toward the pressure roller 102 by the pressure springs 108L and 108R supported by the spring support portions 109R and 109L.
  • the flanges 106 ⁇ / b> L and 106 ⁇ / b> R, the pressure stay 104 a, and the heater holder 104 are biased in the direction of the pressure roller 102 by the pressing force T.
  • the side having the heater 101 a faces the pressure roller 102. Therefore, the heater 101a presses the belt 105 toward the pressure roller 102.
  • the belt 105 and the pressure roller 102 are deformed, and a nip portion 101b (see FIG. 6) is formed between the belt 105 and the pressure roller 102.
  • the pressure roller 102 rotates while the fixing unit 101 and the pressure roller 102 are in close contact with each other, a rotational torque acts on the belt 105 by the frictional force between the belt 105 and the pressure roller 102 in the nip portion 101b. .
  • the belt 105 rotates following the pressure roller 102 (R105).
  • the rotation speed of the belt 105 substantially corresponds to the rotation speed of the pressure roller 102.
  • the pressure roller 102 has a function as a drive roller that rotationally drives the belt 105.
  • the fixing device 103 performs a fixing process during the image forming process.
  • the control circuit A controls a driving motor (not shown) to rotate the pressure roller 102 in the rotation direction R102 (FIG. 1A) at a predetermined speed, and the belt 105 is driven to rotate.
  • control circuit A starts energizing the heater 101a via a power supply circuit (not shown).
  • the heater 101 a that has generated heat due to this energization applies heat to the sliding belt 105.
  • the control circuit A controls the power supplied to the heater 101a based on a signal output from the thermistor TH so that the temperature of the belt 105 becomes the target temperature TP.
  • the target temperature TP ((a) in FIG. 14) of this example is about 170 ° C.
  • control circuit A controls each component to convey the sheet P carrying the toner image S to the fixing device 103.
  • the sheet P conveyed to the fixing device 103 is nipped and conveyed by the nip portion 101b.
  • the heat of the heater 101 a is applied via the belt 105.
  • the unfixed toner image S is melted by the heat of the heater 101a and fixed on the sheet P by the pressure applied to the nip portion 101b.
  • the sheet P that has passed through the nip portion 101 b is guided to the discharge roller pair 14 by the guide member 15 and discharged onto the discharge tray 16 by the discharge roller pair 14.
  • the above-described process is called a fixing process.
  • the fixing device 103 fixes the toner image on the sheet by bringing the high-temperature belt 105 into contact with the sheet P.
  • a part of the toner S may be transferred (attached) to the belt during the fixing process. This is called an offset phenomenon. Since the offset phenomenon causes image defects, it is desirable to solve this.
  • wax release agent
  • the toner S is configured so that the internal wax dissolves and exudes when heated. Therefore, when a fixing process is performed on the image formed with the toner S, the surface of the belt 105 is covered with the dissolved wax.
  • the belt 105 whose surface is covered with wax makes it difficult for the toner S to adhere due to the releasing action of the wax.
  • a compound containing a wax molecular structure in addition to pure wax, a compound containing a wax molecular structure is called a wax.
  • a wax a compound in which a resin molecule of a toner reacts with a wax molecular structure such as a hydrocarbon chain is also referred to as a wax.
  • a mold release agent you may use the substance which has mold release effects, such as silicone oil, besides wax.
  • a wax that dissolves instantaneously at the nip portion 101b and exudes from the toner S can be used.
  • paraffin wax having a melting point Tm of 75 ° C. was used while the target temperature Tp was 170 ° C.
  • the wax melts, some of the wax is vaporized (volatilized). This is considered to be because the size of molecular components contained in the wax varies. That is, the wax contains a low molecular component having a short chain and a low boiling point, and a high molecular component having a long chain and a high boiling point, and it is considered that the low molecular component having a low boiling point is vaporized first.
  • fine particles of about several nm to several hundred nm are generated. However, it is assumed that most of the generated fine particles have a particle size of several nm to several tens of nm.
  • This dust D is a wax component having adhesiveness and easily adheres to various parts of the internal configuration of the printer 1.
  • the dust D is carried to the periphery of the guide member 15 and the discharge roller pair 14 due to the rising air flow caused by the heat of the fixing device 103, the wax adheres to the guide member 15 and the discharge roller pair 14 and the volume is fixed. There is a risk that. If the guide member 15 or the discharge roller pair 14 is soiled with wax, the wax adheres to the sheet P and causes image defects. (3-2) Particles (dust) generated from wax during fixing processing
  • the properties of dust caused by wax include the property of increasing the particle size at high temperatures and the property of increasing the particle size of dust D to surrounding solids.
  • FIG. 8A is a diagram for explaining the dust coalescence phenomenon.
  • FIG. 8B is a schematic diagram for explaining the dust adhesion phenomenon.
  • a volatile substance 21a is generated from the high boiling point substance 20.
  • the volatile material 21a comes into contact with normal temperature air, it immediately becomes below the boiling point temperature, condenses in the air, and changes into fine particles 21b having a particle diameter of about several nanometers to several tens of nanometers. This phenomenon is the same as the phenomenon in which when water vapor falls below the dew point temperature, it becomes minute water droplets and generates mist.
  • the aggregation / particulation of gas in the air is more likely to be inhibited as the air temperature is higher. This is because the higher the air temperature, the higher the gas vapor pressure, and the easier it is for gas molecules to maintain a gaseous state. Therefore, the number of fine particles 21b generated decreases as the air temperature increases.
  • the gas present in the air is likely to gather around the already generated fine particles 21b and aggregate. This is because the energy required for the gas molecules to agglomerate around the microparticles 21b is lower than the energy required for the gas molecules to aggregate and newly generate the microparticles 21b. is there.
  • the fine particles 21b are moving in the air by Brownian motion, it is known that they collide with each other and grow into fine particles 21c having a larger particle diameter. This growth is promoted as the fine particles 21b move more actively, in other words, as the air temperature is in a higher temperature state (Brownian motion becomes stronger).
  • the fine particles generated from the belt 105 increase in particle size and decrease in number as the space temperature near the belt 105 increases.
  • the increase in the size of the fine particles gradually slows down and stops when the fine particles become a certain size or more. This is presumably because Brownian motion becomes inactive when the size of the particles increases due to coalescence, and the collision frequency between particles decreases.
  • the dust D has two properties, that is, coalescence is promoted at a high temperature and the particle size is increased, and that the particle size is easily adhered to a peripheral object.
  • the ease of coalescence of the dust D depends on the component, temperature, and concentration of the dust D. For example, the higher the concentration of the dust D, the higher the collision probability between the dusts D, and the lower the viscosity of the dust D, the easier it is for the dusts D to merge. (3-2-2) Location where dust D is generated
  • FIG. 10A is a diagram illustrating a state of the wax adhesion region on the fixing belt that expands as the fixing process proceeds.
  • FIG. 10B is a diagram showing the relationship between the wax adhesion region and the dust D generation region.
  • FIG. 11 is a diagram illustrating the flow of airflow around the fixing belt.
  • the amount of dust D generated from the fixing device 103 is larger on the upstream side of the nip portion 101b than on the downstream side of the nip portion 101b.
  • the mechanism will be described below.
  • the surface (release layer 105d) of the belt 105 immediately after passing through the nip portion 101b is deprived of heat by the sheet P, its temperature is lowered to about 100 ° C.
  • the temperature of the inner surface / back surface (base layer 105a) of the belt 105 is kept high by contact with the heater 101a. Therefore, after the belt 105 passes through the nip portion 101b, the heat of the base layer 105a maintained at a high temperature is transmitted to the release layer 105d via the primer layer 105b and the elastic layer 105c. Therefore, the temperature of the surface of the belt 105 (release layer 105d) rises after passing through the nip portion 101b in the process of rotating in the R105 direction (FIG. 10), and reaches the maximum near the inlet side of the nip portion 101b. Reach temperature.
  • the wax that exudes from the toner S on the sheet P intervenes at the interface between the belt 105 and the toner image when the fixing process is performed. Thereafter, a part of the wax adheres to the belt 105.
  • FIG. 10A when a part of the front end side of the sheet P passes through the nip portion 101b, the wax transferred from the toner S to the belt 105 exists in the region 135a. In this region, since the temperature of the belt 105 is low and the wax is difficult to volatilize, dust D is hardly generated.
  • the wax is in a state of being present on substantially the entire circumference (135b) of the belt 105.
  • FIG. 9A is a graph for explaining the relationship between the elapsed time of the image forming process in Test 1 and the amount of dust D generated.
  • FIG. 9B is a graph for explaining the relationship between the elapsed time of the image forming process in Test 2 and the amount of dust D generated.
  • Test 1 nothing is done during the image forming process, and the air at the sheet entrance 400 (near the nip) is warmed.
  • Test 2 outside air is blown near the sheet inlet 400 during the image forming process so that the air at the sheet inlet 400 (near the nip portion) is cooled.
  • the amount of dust D generated in Test 1 increases immediately after the start of the image forming process and gradually decreases after reaching a peak after about 100 seconds.
  • the reason that the amount of dust D generated has decreased with the passage of time is that the temperature around the belt 105 increases as the image forming process proceeds.
  • the amount of dust D generated in Test 2 increases more rapidly than Test 1 immediately after the start of the image forming process, and reaches a peak after about 20 seconds. At this time, the amount of dust D generated from the start of the image forming process until 200 seconds has elapsed is 2 to 5 times that of Test 1 in Test 2.
  • the dust D is likely to be generated in the vicinity of the sheet entrance 400. Therefore, it is desirable for the image forming apparatus to remove the dust D in the vicinity of the sheet entrance 400.
  • FIG. 1 (a) is a figure explaining the arrangement position of a filter unit.
  • FIG. 1B is a view for explaining the state of the trailing edge of the sheet and the shape of the filter unit.
  • FIG. 2A is a perspective view of the configuration around the fixing device.
  • FIG. 2B is a diagram illustrating a sheet passing position around the fixing device.
  • FIG. 3A is an exploded perspective view of the filter unit.
  • FIG. 3B is a diagram illustrating how the filter unit operates.
  • FIG. 12 is a block diagram showing the relationship between the control circuit and each component.
  • FIG. 13 is a flowchart for controlling each fan.
  • FIG. 14A is a sequence diagram of the thermistor in the first embodiment.
  • FIG. 14B is a sequence diagram of the first fan in the first embodiment.
  • FIG. 14A is a sequence diagram of the thermistor in the first embodiment.
  • FIG. 14C is a sequence diagram of the second fan in the first embodiment.
  • FIG. 14D is a sequence diagram of the third fan in the first embodiment.
  • FIG. 15A is a first graph illustrating the effect of air volume control.
  • FIG. 15B is a second graph illustrating the effect of air volume control.
  • FIG. 15C is a third graph illustrating the effect of air volume control.
  • FIG. 15D is a fourth graph illustrating the effect of air volume control.
  • FIG. 18 is a graph showing the relationship between the distance d (mm) between the belt 105 and the filter unit air inlet and the suction air volume Q necessary to achieve a predetermined ⁇ .
  • FIG. 19 is a graph showing the relationship between the distance d (mm) and the required area Fs (cm 2 ) of the filter 51.
  • the filter unit 50 is located between the fixing unit 101 and the transfer unit 10 in the sheet P conveyance direction, as shown in FIG. Alternatively, it is located between the nip portion 101b of the fixing device 103 and the transfer portion 12a of the transfer unit in the conveyance direction of the sheet P.
  • the filter unit 50 collects the dust D on the filter 51 by drawing the air containing the dust D into the filter 51, which is a non-woven filter provided at the intake port 52a, as shown in FIG.
  • the filter unit 50 includes a filter 51, a first fan 61 that is an air intake unit for sucking air, and air in the vicinity of the seat inlet 400 so that the air passes through the filter 51. And a duct 52 for guiding.
  • the first fan 61 is an intake portion for sucking air in the vicinity of the seat inlet 400 to the outside of the apparatus.
  • the first fan 61 is provided in an area outside the sheet P passing area in the longitudinal direction of the fixing unit 101.
  • the first fan is provided in a region outside the nip 101 b in the longitudinal direction of the fixing unit 101.
  • the first fan 61 includes an intake port 61a and an exhaust port 61b, and generates an air flow from the intake port 61a toward the exhaust port 61b.
  • the intake port 61a is connected to the exhaust port 52e of the duct 52 and is an opening for sucking air in the duct 52.
  • the exhaust port 61b is provided toward the outside of the printer 1 and is an opening for discharging the air sucked from the intake port 61a toward the outside of the apparatus.
  • a blower fan is used as the first fan 61.
  • the blower fan is characterized by high static pressure, and even if there is a ventilation resistor like the filter 51, a constant air volume (intake volume) can be secured.
  • the duct 52 is a guide unit for guiding the air in the vicinity of the sheet inlet 400 toward the outside of the apparatus.
  • the duct 52 includes an intake port 52a in the vicinity of the seat inlet 400 and an exhaust port 52e apart from the vicinity of the seat inlet 400.
  • the intake port 52a is an opening located between the nip portion 101b and the secondary transfer roller 12, and is provided to face the nip portion side. With such a configuration, the intake port 52a can receive the dust D carried by the airflow F3 as shown in FIG.
  • the exhaust port 52e is provided on the side surface opposite to the air intake port 52a among the plurality of side surfaces of the duct 52 outside the air intake port 52a in the longitudinal direction. As described above, the exhaust port 52e is connected to the intake port 61a.
  • the filter 51 can be attached to the duct 52 so as to cover the intake port 52a.
  • the duct 52 includes an edge 52c of the intake port 52a and a rib 52b including a curved portion 52d.
  • the filter 51 is fixed to the duct 52 so as to be supported by the edge portion 52c and the rib 52b, the air inlet 52a is covered with the filter 51.
  • the filter 51 of this embodiment is adhered to the edge portion 52c and the rib 52b without a gap by a heat-resistant adhesive. Therefore, the air passing through the intake port 52a always passes through the filter 51. Further, the filter 51 of this embodiment is bonded along the curved portion 52d of the edge portion 52c.
  • the duct 52 holds the filter 51 in a curved state.
  • the filter 51 is curved in a direction in which the central portion in the short direction is separated from the nip portion 101b.
  • the central portion of the filter 51 in the short direction protrudes toward the inside of the duct 52.
  • the arrangement position of the filter 51 is not limited to the intake port 52a.
  • the filter 51 may be provided at a position deeper than the intake port 58 of the duct 57 by a predetermined length H (for example, 3 mm). If it is provided in a deep position, it is possible to reduce the risk of an operator inadvertently touching and damaging the filter 51 when performing work such as disassembly maintenance. However, from the viewpoint of reducing the size of the filter unit, it is better to provide the filter 51 at the intake port as shown in FIG.
  • the position of the filter 51 should be determined depending on whether protection of the filter 51 or downsizing of the filter unit is prioritized.
  • the ventilation path inside the duct 57 is at least one of the length range A that is the ventilation path length in the direction perpendicular to the plane of FIG. 20 (in the direction of the rotation axis of the belt 105) in the region from the intake port 58 to the filter 51. Part overlaps the range B of the image forming area in the same direction.
  • Wf described later corresponds to the length range A
  • Wp-max described later corresponds to the length range B. Since dust is generated from the wax transferred from the toner image formed on the sheet P to the belt 105, at least a part of the length range A that is a range in which dust can be reliably sucked overlaps with the length range B. Need to be.
  • the length range A is set to 350 mm, but the length range A is 200 mm which is a standard maximum image width of a frequently used A4 size sheet (the longitudinal direction of the A4 size sheet is made to coincide with the conveyance direction). If it is over). By doing so, it is possible to effectively reduce dust under actual use conditions.
  • the length range A is further increased, not only can the sheet of a larger size be accommodated, but even if the dust diffuses outside the image forming area due to the surrounding airflow or the like, the dust is reliably collected by the filter 51. be able to. However, if the length range A is too long, the filter 51 sucks clean air outside the dust generation region, thereby reducing the dust suction efficiency of the filter unit. From the above considerations, the upper limit of the length range A is the maximum image width of the maximum size sheet that can be used in a general electrophotographic printer, plus the length of the area where dust may diffuse outside. It turns out that it should just be set to the value.
  • the maximum image width is 287 mm obtained by excluding a blank area (non-image area) of about 5 mm from the lateral width of 297 mm of the A3 size sheet
  • dust is diffused to a position about 100 mm away from the outside.
  • the length range A may be appropriately selected from the range of 200 mm to 500 mm in consideration of the size of the sheet to be used and the degree of dust diffusion due to airflow.
  • the length range A is preferably set to be equal to or larger than the width of the minimum width recording material that can be used in the image forming apparatus.
  • the filter 51 has a shape extending in the longitudinal direction of the belt 105. By adopting such a shape, the air passing velocity at the air inlet 52a of the duct is uniform in the longitudinal direction. Can be.
  • the filter 51 which is a ventilation resistor
  • the entire back region of the filter 51 can be maintained at a constant negative pressure. That is, the negative pressures at the points 53a, 53b, and 53c shown in FIG. 3B are substantially the same value. This is because the ventilation resistance of the filter 51 is much larger than the ventilation resistance in the duct 52. If the negative pressures at the points 53a, 53b and 53c are at the same level, the wind speed of the air F4 sucked into the filter 51 is made uniform over the entire surface of the filter 51. As a result of the uniform wind speed, the filter unit 50 can efficiently collect the dust D generated from the belt 105 (with a minimum air volume).
  • the filter 51 is a filter member for filtering (collecting and removing) the dust D from the air passing through the intake port 52a.
  • the filter 51 is preferably an electrostatic nonwoven fabric filter.
  • the electrostatic nonwoven fabric filter is a non-woven fabric formed of fibers that retain static electricity, and can filter dust D with high efficiency.
  • the electrostatic nonwoven fabric filter has higher filtration performance as the fiber density is higher, but on the other hand, pressure loss tends to increase. This relationship is the same when the thickness of the electrostatic nonwoven fabric is increased. Moreover, if the charging strength (static strength) of the fiber is increased, the filtration performance can be improved while keeping the pressure loss constant. It is desirable that the thickness and fiber density of the electrostatic nonwoven fabric and the charging strength of the fibers are appropriately set according to the filtration performance required for the filter.
  • the electrostatic nonwoven fabric used for the filter 51 of this example has a fiber density, thickness, and charging strength so that the ventilation resistance is about 90 Pa and the filtration rate of dust is about 80% when the passing wind speed is 15 cm / s. Is set.
  • the charging strength has a technical upper limit, and the performance of the electrostatic nonwoven fabric is adjusted by changing the fiber density and thickness.
  • the dust filtration rate can be further increased by increasing the fiber density and thickness.
  • the ventilation resistance becomes high, and it becomes impossible to secure a sufficient air volume with the pressure generated by a standard blower fan used in an office machine or the like.
  • the fiber density and thickness are reduced, the airflow resistance is lowered, and a fan that is less expensive and has a low generated pressure can be used.
  • the dust filtration rate also decreases, which makes it impractical. Further, if the airflow resistance is excessively lowered, unevenness in the longitudinal direction is likely to occur in the wind speed of the air passing through the filter 51.
  • the ventilation resistance is preferably at least 50 Pa.
  • the specifications centered on the above numerical values that is, those having a ventilation resistance (Pa) in the range of 50 to 130 and a dust filtration rate of 60% to 90% at a passing wind speed of 15 cm / s are suitable for use. I can say that.
  • the electrostatic nonwoven fabric When trying to filter the toner in the exhaust air, the electrostatic nonwoven fabric is used with a ventilation resistance of 10 Pa or less at a passing wind speed of 10 cm / s. Therefore, it can be said that the filter 51 of this embodiment uses an electrostatic nonwoven fabric having a relatively large ventilation resistance.
  • the passing wind speed Fv of air passing through the filter 51 will be described.
  • the faster the passing wind speed the greater the amount of air wind per unit time passing through the filter 51, and the dust can be reliably collected.
  • the passing wind speed is too high, the temperature of the air in the vicinity of the sheet inlet 400 is lowered, and as a result, the amount of dust D generated is increased.
  • the increase in the passing wind speed brings about an increase in ventilation resistance of the filter 51 and a decrease in dust filtration rate.
  • the passing air speed is desirably suppressed to 30 cm / s or less at the maximum, and is desirably at least 5 cm / s or more from the viewpoint of securing the air flow rate.
  • the passing wind speed Fv (cm / s) is preferably 5 or more and 30 or less. In this example, it is a substantially intermediate value between 30 cm / s and 5 cm / s, and the passing air speed setting value is set to a wind speed of 15 cm / s, which is the most balanced from the viewpoint of securing the air volume and filter performance and suppressing the generation amount of dust D.
  • the air velocity of the air passing through the filter 51 and the airflow resistance of the filter 51 described above were measured with a multi-nozzle fan air flow measuring device F-401 (Tsukubarika Seiki).
  • the dust filtration rate of the filter 51 was determined by measuring the dust concentration upstream and downstream of the filter 51 using Fast Mobility Particle Sizer (FMPS) manufactured by TSI. The difference between the upstream and downstream concentration is divided by the upstream concentration, and the numerical value expressed as a percentage is the dust filtration rate. (4-1-2) Filter length
  • the filter 51 has a long and narrow shape with the direction perpendicular to the sheet conveying direction (the rotational axis direction of the belt 105 serving as a rotating body) as a longitudinal direction.
  • An area indicated by hatching on the sheet P in FIG. 2B is an area Wp-max (corresponding to the above-described length range B) in which an image can be formed when the sheet P having a predetermined width size is used. .
  • an image is formed on the back side of the sheet P visible in FIG.
  • the region Wp-max is a region that is equal to or smaller than the width size of the sheet P. In this area, a toner image is formed on the sheet P.
  • the length Wf of the filter 51 shown in FIG. 2 (b) must have a length equivalent to the length range A, and is set to a length exceeding Wp-max.
  • the fixing device 103 conveys the sheet P with reference to the center in the width direction of the belt 105. Therefore, in the region Wp-max of the sheet size that is frequently used, dust D is likely to be generated regardless of the sheet width size.
  • the length Wf of the filter 51 needs to exceed the region Wp-max of the sheet size that is frequently used. As a result, Wf preferably exceeds the standard maximum image width of 200 mm (when the longitudinal direction of the A4 size sheet coincides with the transport direction) of the frequently used A4 size sheet.
  • the area and position of the filter 51 are important parameters that determine the amount of dust reduction by the filter 51.
  • the filter 51 may be brought close to the belt 105 where dust is generated to suck the dust more effectively, and the area Fs (cm 2 ) of the filter 51 may be increased.
  • the filter ventilation resistance decreases and the dust filtration rate increases. This is because if the passing wind speed Fv is reduced, the moving speed of the dust contained in the air is also lowered, so that the dust is easily caught by the fibers of the electrostatic nonwoven fabric constituting the filter. As shown in FIG.
  • the passing wind speed Fv is inversely proportional to the filter area Fs (cm 2 ). That is, as the filter area Fs increases, the passing wind speed Fv decreases and the filter ventilation resistance also decreases. If the filter ventilation resistance decreases, the air volume Q (L / min) of air sucked into the filter when the same fan is used increases, and more dust can be drawn into the filter 51. Furthermore, the dust filtration rate of the filter 51 increases as the passing wind speed Fv decreases. That is, dust generated from the printer 1 can be reduced as the filter area Fs is increased.
  • the relationship between the area and position of the filter and the amount of dust reduction by the filter will be explained in more detail, and a formula for determining the area and position of the filter will be derived.
  • FIG. 17A and FIG. 17B show the relationship between the suction air volume Q of the filter unit 50 and the dust reduction rate ⁇ obtained by experiments.
  • the dust reduction rate ⁇ is expressed by the following equation using a dust amount Do generated from the printer 1 when the filter 51 is not used and a dust amount De reduced by using the filter 51.
  • ⁇ (%) De ⁇ Do ⁇ 100
  • ⁇ ⁇ 50% is a numerical value serving as an index when considering a dust reduction target by a filter. This is because many electrophotographic printers can effectively prevent problems such as image defects due to dust contamination inside the apparatus if the dust is reduced by about 50%. However, some printers may not be able to obtain a sufficient effect unless ⁇ ⁇ 60%. Therefore, in this example, the required suction air volume Q when ⁇ ⁇ 60% is estimated in FIG. 17B. Yes.
  • the filter 51 used in the experiment has a ventilation resistance of about 90 Pa when the passing wind speed is 15 cm / s, and a dust filtration rate of about 80%.
  • the suction air volume Q is preferably 200 L / min or less.
  • the filter area Fs (cm 2 ) is determined.
  • the filter area Fs (cm 2 ) is determined by the filter passing wind speed Fv (cm / s).
  • Q (L / min) Fs (cm 2 ) ⁇ Fv (cm / s) ⁇ 1000 ⁇ 60.
  • Fs (cm 2 ) Q (L / min) ⁇ Fv (cm / s) ⁇ 1000 ⁇ 60.
  • FIG. 19 is a graph showing the range of the above formula.
  • Fs and d may be set so as to fall within the range 1 in the figure.
  • Fs and d may be set so as to fall within the range 2 in the figure.
  • the value of d has a limit that requires attention. If the filter 51 and the belt 105 are too close to each other, the filter 51 may be thermally deteriorated by radiation from the belt 105, and the filtration performance may be reduced. Therefore, it is desirable that the filter 51 is disposed at an appropriate distance with respect to the nip portion 101b.
  • the distance d (shortest distance) between the filter 51 and the belt 105 is preferably 5 or more and 100 or less. (4-1-4) Curved surface shape of the filter
  • the filter 51 when the filter 51 is disposed in the vicinity of the belt 105, the distance between the filter 51 and the conveyed sheet P is also reduced. Therefore, when the conveyance of the sheet P is disturbed, there is a possibility that the intake surface 51a of the filter 51 and the sheet P come into contact with each other. When the filter 51 and the sheet P come into contact with each other, the toner image on the sheet P may be disturbed. Further, the filter 51 may be damaged by the sheet P, and the dust D recovery efficiency may be reduced.
  • trailing edge splashing of the sheet P As the above-mentioned disturbance of the conveyance of the sheet P, there is a phenomenon called trailing edge splashing of the sheet P.
  • the trailing edge splash is a phenomenon in which the trailing edge Pend is greatly displaced in the direction V in the drawing when the trailing edge Pend of the sheet P nipped and conveyed by the nip portion 101b and the transfer portion 12a passes through the transfer portion 12a.
  • the trailing edge splash is likely to occur when the original shape of the sheet P is deformed (curled). Further, even when the sheet P is thin paper with low rigidity, the sheet P is deformed along the shape of the nip portion 101b, so that trailing edge splash is likely to occur.
  • the filter 51 is arranged as shown in FIG. 1A in order to deal with this rear end splash.
  • the end on the downstream side in the sheet conveying direction of the end portion in the short direction of the filter 51 is the nip portion 101b than the end on the upstream side in the sheet conveying direction of the end portion in the short direction of the filter 51.
  • the transfer section 12a are separated from the transport path when they are connected by a straight line.
  • the surface area of the filter 51 can be increased in a limited space.
  • the dust D and the filter 51 are easily brought into contact with each other, so that the dust D recovery efficiency is improved.
  • the air volume of the first fan 61 when the air volume of the first fan 61 is large, a large amount of air can be sucked, while the temperature of the air in the vicinity of the sheet inlet 400 is easily lowered. That is, if the air volume of the first fan 61 is large, a large amount of dust can be collected, while a large amount of dust D is easily generated. Therefore, in order to reduce the dust D efficiently by the filter unit 50, it is desirable to keep the air volume of the first fan 61 appropriately.
  • the collection of the dust D by the suction of the first fan 61 is referred to as a dust collection action
  • the increase in the amount of dust generated by the suction of the first fan 61 is referred to as a dust increase action.
  • a test was conducted to verify the relationship between the air volume of the first fan 61 and the amount of dust D generated.
  • the amount of dust D discharged from the printer during the image forming process is measured.
  • the printer 1 installed in the chamber is caused to execute an image forming process, and the exhaust of the printer is acquired.
  • the exhausted air is sampled with a nanoparticle size distribution measuring instrument, and the amount of dust D discharged is measured.
  • This test is performed a plurality of times with different air volumes of the first fan 61 during the image forming process.
  • a plurality of tests are referred to as Test A, Test B, Test C, and Test D.
  • test A the amount of dust D discharged out of the fixing device is measured with the first fan 61 operating at full speed during the image forming process.
  • test B the amount of dust D discharged outside the fixing device is measured with the first fan 61 stopped during the image forming process.
  • test C the amount of dust D discharged out of the fixing device is measured while the first fan is operating at the minimum speed at which the first fan can operate normally (speed that is 7% of the total air flow rate) during the image forming process. To do.
  • test D the amount of dust D discharged out of the fixing device is measured while the first fan is operated at a speed that is 20% of the total air flow rate during the image forming process.
  • FIG. 15B shows the relationship between the elapsed time after the start of printing in Test A and Test B and the amount of dust D generated.
  • FIG. 15B shows the relationship between the elapsed time after the start of printing in test B and test C and the amount of dust D generated.
  • FIG. 15C shows the relationship between the elapsed time after the start of printing in test C and test D and the amount of dust D generated.
  • FIG. 15D shows the relationship between the elapsed time after the start of printing and the amount of dust D generated in Test B and Example (E).
  • (A) shows the relationship between the elapsed time from the start of the image forming process in test A and the amount of dust D discharged.
  • (B) shows the relationship between the elapsed time from the start of the image forming process in test B and the amount of dust D discharged.
  • (C) shows the relationship between the elapsed time from the start of the image forming process in test C and the amount of dust D discharged.
  • (D) shows the relationship between the elapsed time from the start of the image forming process in test D and the amount of dust D discharged.
  • (B) exceeds the dust discharge amount of (C) in the entire period after the start of printing. This means that in (B), the dust recovery action always exceeds the dust increase action.
  • (D) exceeds the dust discharge amount of (C) until 90 seconds after the start of printing, and the dust discharge amount becomes substantially equal for a while after that. Then, after about 150 seconds from the start of printing, (D) is below the dust discharge amount of (C).
  • the first fan 61 is operated with an air volume of 7% until 90 seconds (predetermined time) after starting printing, and the first fan 61 is operated with an air volume of 20% from 150 seconds after starting printing. It can be seen that the amount of dust D discharged can be further reduced. That is, it is desirable to operate the first fan 61 with a small air volume at the initial stage after the start of printing and to increase the air volume of the first fan 61 over time. Based on the above-described result, the air volume control of the first fan 61 is performed in this embodiment. As shown in FIG. 14B, in the present embodiment, the first fan 61 is operated at an air volume of 7% until 90 seconds after the start of printing.
  • This air volume is equal to or higher than the air volume when the fan 61 is rotated at the minimum speed (more than the intake air volume) and is 10% or less of the air volume when the fan 61 is rotated at the maximum speed.
  • the first fan 61 is operated with an air flow of 20%.
  • the first fan 61 is operated at 100% after 390 seconds from the start of printing.
  • (E) shows the relationship between the elapsed time from the start of the image forming process and the amount of dust D discharged in this embodiment.
  • the discharge amount of the dust D is a half or less compared with the test B in a present Example. That is, in this embodiment, the amount of dust D discharged can be halved in the period from the start of image formation to 600 seconds.
  • the space C is a space area downstream of the fixing device 103 and upstream of the discharge roller 14 in the sheet conveyance direction.
  • the humidity in the space C is high, dew condensation is likely to occur, so that water droplets are likely to adhere on the guide member 15. If a water droplet on the guide member 15 adheres to the conveyed sheet P, an image defect occurs.
  • the second fan 62 is a fan for preventing the condensation on the guide member 15.
  • the second fan 62 reduces the humidity of the space C by drawing air into the machine from the outside of the printer 1 and blowing the air to the guide member 15. Specifically, when air is blown from the second fan 62, the water vapor in the vicinity of the guide member 15 diffuses around the space C, so that a local increase in humidity in the vicinity of the guide member 15 is suppressed. Even when only the second fan 62 is used, it is possible to suppress the period of the degree of condensation on the guide member 15. However, since the discharge destination of the water vapor is only the gap generated around the discharge roller pair 14, the humidity in the space C gradually increases. Therefore, in this embodiment, the water vapor expelled from the space C by the blowing from the second fan 62 is discharged to the outside by the third fan 63.
  • the third fan 63 generates an air flow 63a around the fixing device 103 as shown in FIG.
  • the third fan 63 serves to discharge water vapor and hot air in the space C to the outside by the air flow 63a.
  • the third fan 63 sucks out the dust D in the vicinity of the nip portion 101b of the belt 105 and may discharge it outside the apparatus without passing through the filter.
  • a separate filter may be provided downstream of the third fan 63.
  • exhaust is hindered by the ventilation resistance of the filter, so that it becomes difficult to sufficiently exhaust the heat and water vapor in the space C to the outside of the machine.
  • the air flow in the printer 1 is adjusted so that the dust D can be prevented from being drawn toward the third fan 63.
  • the air flow in the printer 1 is adjusted such that the air pressure in the downstream side in the sheet conveying direction from the fixing device 103 is higher than the air pressure in the upstream side in the sheet conveying direction from the fixing device 103. It is adjusting. Even if the air flow adjustment described above is performed, not a little dust D is drawn into the third fan 63, so that the third fan is generated at the beginning of the image forming process where the amount of dust D generated is large (see FIG. 9B). The operation of 63 is suppressed and the discharge of dust D is suppressed. Then, when the image forming process proceeds and the generation of dust D is reduced, the third fan 63 is operated, and the water vapor and hot air in the space C are discharged outside the apparatus.
  • the period during which the operation of the third fan 63 is suppressed is a period that does not cause a thermal problem in the printer 1. Since the components in the image forming apparatus are not yet sufficiently heated at the beginning of the image forming process, there is no problem even if the heat is not exhausted within a few minutes. Further, as described above, dew condensation can be prevented only by the second fan 62 for a period of about several minutes. (4-3) Control flow
  • the dust D is likely to be generated in the vicinity of the sheet entrance 400. However, some dust D may be generated in the vicinity of the sheet outlet 500. In addition, a part of the dust D existing in the vicinity of the fixing device 103 may be conveyed to the space C on the downstream side of the fixing device 103 in the sheet conveying direction as the sheet P is conveyed. Alternatively, a part of the dust D generated in the vicinity of the sheet inlet 400 may be carried to the space C by thermal convection.
  • Such a part of the dust D is difficult to be collected by the filter unit 50 and is attached to a member on the downstream side in the sheet conveying direction from the fixing device 103 or discharged outside the apparatus.
  • the downstream member in the sheet conveying direction include the guide member 15 and the discharge roller pair 14.
  • image defects are caused. Therefore, when collecting the dust D using the filter unit 50, it is desirable to contain the dust D in the vicinity of the filter unit 50 in order to increase the collection efficiency. In other words, it is desirable to adjust the air flow in the image forming apparatus so that the dust D does not go to the downstream side in the sheet conveying direction from the fixing device 103.
  • the second fan 62 and the third fan 63 are controlled during the continuous image forming process.
  • Each fan is desirably controlled appropriately in accordance with the temperature state around the fixing device 103.
  • the temperature state around the fixing device 103 is estimated based on how much time has elapsed from the start of printing, and the first period, the second period, and the third period of the image forming process are estimated.
  • the fan control is different for each.
  • the first period is a period from when the image forming process is started until a first predetermined time (for example, 90 seconds) is reached.
  • a first predetermined time for example, 90 seconds
  • the first period is a period from when the first sheet P in the continuous image forming process passes through the nip portion 101b until a predetermined time is reached.
  • the second period is a period from when the first predetermined time elapses until the second work time (for example, 360 seconds) is reached.
  • the third period is a period after the second predetermined time has elapsed.
  • the elapsed time from the start of the printer is measured by the timer unit provided in the control circuit A.
  • the method for acquiring the elapsed time from the start of printing is not limited to the timer unit.
  • the control circuit A may acquire the elapsed time from the start of printing based on a counter unit that counts the number of processed sheets P. Therefore, the period from when the image forming process is started to when the first predetermined number of sheets (for example, 75 sheets) P is subjected to the image forming process may be defined as the first period. In other words, the period from when the first sheet P of the continuous image forming process passes through the nip portion 101b to when the first predetermined number of sheets (for example, 75 sheets) passes through the nip portion 101b is the first period.
  • a period from when the image forming process is performed on the first predetermined number of sheets P to when the second predetermined number of sheets (for example, 300 sheets) is subjected to the image forming process may be defined as the second period.
  • a period after the image forming process is performed on the second predetermined number of sheets P may be set as the third period.
  • the control circuit A is. It is not necessary to acquire the elapsed time from the start of printing.
  • S107 is executed, and when the detected temperature becomes a second predetermined temperature higher than the first predetermined temperature It is sufficient to execute S109.
  • the second fan 62 functions as a blower for blowing air to the space C above the fixing device 103
  • the third fan 63 sucks air from the space C above the fixing device 103 and the image forming apparatus. It functions as an air blowing part (exhaust part) that discharges to the outside.
  • FIG. 16A is a sequence diagram of the thermistor TH in the second embodiment.
  • FIG. 16B is a sequence diagram of the first fan in the second embodiment.
  • FIG. 16C is a sequence diagram of the second fan in the second embodiment.
  • FIG. 16D is a sequence diagram of the third fan in the second embodiment.
  • control circuit A executes a control program (S101).
  • control circuit A When the control circuit A receives the print command signal, it proceeds to step S103 (S102). When the control circuit A acquires the output signal of the thermistor TH and the detected temperature is not higher than a predetermined temperature (for example, 100 ° C.) (YES), the control circuit A proceeds to step S104 and starts from the predetermined temperature (for example, 100 ° C.). If it is higher (NO), the process proceeds to S112 (S103).
  • a predetermined temperature for example, 100 ° C.
  • S103 is a step of determining whether or not the inside of the printer 1 is cooled, in particular, whether or not the ambient temperature of the fixing device 103 is cooled. That is, the control circuit A functions as an acquisition unit that acquires information on the ambient temperature of the fixing device 103 from the thermistor TH.
  • control circuit A may obtain information on the ambient temperature of the fixing device 103 from other than the thermistor TH. For example, when there is a temperature sensor that can detect the ambient temperature of the fixing device 103, the control circuit A may acquire information from this temperature sensor.
  • the control circuit A sets the second fan 62 and the third fan 63 to 100 (%) which is the full-speed air volume at the start of printing. Then, the control circuit A stops the operations of the second fan 62 and the third fan 63 after the end of printing (S112).
  • the ambient temperature of the fixing device 103 is considered to be sufficiently high. Therefore, since the amount of dust D generated is small, the first fan 61 is not operated in this embodiment. However, the first fan 61 may be operated in order to collect minutely generated dust D. At this time, it is preferable that the air volume of the first fan 61 is 100 (%) of the full-speed air volume because the collection efficiency of the dust D is high.
  • the temperature detected by the thermistor TH is lower than 100 ° C. at the start of printing, it is considered that the ambient temperature around the fixing device 103 is low. When the ambient temperature around the fixing device 103 is low, condensation is likely to occur in the guide member 15 when printing is started, and dust D is likely to occur. Therefore, it is required to solve each of these problems.
  • control circuit A sets the air volume of the first fan 61 to 7 (%) and the air volume of the second fan to 100 (%) (S104, S105).
  • control circuit A proceeds to S107 (S106). If not (NO), the control circuit A maintains the air volume of each fan.
  • the control circuit A sets the air volume of the first fan 61 to 20 (%) and the third fan 63 to 100 (%). At this time, if the air volume of the third fan 63 exceeds the sum of the air volume of the first fan 61 and the air volume of the second fan 62, the dust D becomes the third fan 63. Will be drawn into. Therefore, in this embodiment, the air volume of the second fan is maintained at “100”, The air volume of the third fan 63 is set to be lower than the sum of the air volume of the first fan 61 and the air volume of the second fan 62.
  • the second fan blows with an air volume larger than the air volume of the difference between the air volume of the third fan and the air volume of the first fan. I do.
  • control circuit A advances the step to S109 (S108). If not (NO), the control circuit A maintains the air volume of each fan.
  • control circuit A advances the process to S109 (S108). If not (NO), the control circuit A maintains the air volume of each fan.
  • control circuit A sets the air volume of the first fan 61 to 100 (%) and proceeds to S110 (S109).
  • control circuit A stops the first fan, the second fan, and the third fan (S111).
  • the second fan 62 having a large air volume is always operated at full speed during the image forming process. Therefore, the space C is always in a positive pressure state. Therefore, the dust D from the sheet entrance 400 does not easily flow into the space C.
  • the third fan is operated during the execution of the image forming process. However, since the air volume of the third fan 63 is equal to or less than the sum of the air volume of the second fan 62 and the first fan 61, the space C can be maintained at a positive pressure.
  • the air volume of the third fan at the start of printing is set to 0 (OFF).
  • the air volume of the third fan may be set to 50 (%). Good.
  • the space C can be set to a positive pressure. In addition, by doing this, it is possible to reliably prevent condensation around the guide member 15 and at the same time to further suppress the temperature rise of the peripheral device of the fixing device 103.
  • the air volume of the first fan 61 is smaller than that of the second fan 62 and smaller than that of the third fan 63.
  • the air volume when the first fan 61 is operated at 100% is 5 l / s
  • the air volume when operated at 7% is 0.5 l / s.
  • the air volume when the second fan 62 is operated at 100% is 10 l / s.
  • the air volume when the third fan is operated at 100% is 10 l / s.
  • the control circuit A can control the dust D from flowing into the space C by controlling the second fan 62 and the third fan 63.
  • inhalation is performed uniformly along the longitudinal direction of the nip portion 101b in the vicinity of the nip portion 101b, and the dust D can be efficiently collected.
  • the air at the end portion in the longitudinal direction of the nip portion 101b can be reliably sucked, and the dust D at the end portion in the longitudinal direction of the nip portion 101b can be reliably collected.
  • the air in the vicinity of the belt 105 is sucked so as not to be overcooled, and the generation of dust D can be suppressed.
  • the dust D can be efficiently collected according to the temperature in the vicinity of the belt 105.
  • the dust D is sealed in the vicinity of the sheet inlet 400 of the fixing device 103, and the filter unit 50 can efficiently collect the dust D.
  • FIG. 21 is a diagram illustrating the relationship between the arrangement of the filter units and the radiant heat E in the second embodiment.
  • FIG. 22 is a diagram showing the relationship between the arrangement of the filter units and the radiant heat E in the first modification.
  • FIG. 23 is a diagram showing the relationship between the arrangement of the filter units and the radiant heat E in Modification 2.
  • Example 1 in order to improve the recovery efficiency of dust D, the air inlet 52a and the filter 51 of the duct 52 are directed toward the nip portion 101b (belt 105).
  • the intake port 52a of the duct 52 is directed toward the transfer unit 12a, thereby suppressing the filter 51 from being heated excessively.
  • the printer 1 of the second embodiment is the same as that of the first embodiment except that the arrangement of the filter unit 50 is different. Therefore, the same code
  • this nonwoven fabric may be thermally deteriorated in a high temperature environment.
  • the thermal deterioration of the filter 51 is promoted, the life of the filter 51 is reduced, and therefore it is required to replace the filter with high frequency.
  • the filter 51 is replaced at a high frequency, not only labor for replacement occurs, but also the running cost increases. Therefore, it is desirable that the filter 51 is not heated too much.
  • the filter 51 is intended to collect the dust D from the air in the vicinity of the sheet inlet 400, and has sufficient heat resistance against the air temperature in the vicinity of the sheet inlet 400. Therefore, the lifetime reduction of the filter 51 is not rapidly accelerated only by the heat of the air in the vicinity of the sheet inlet 400.
  • the radiant heat E is heat that is directly transmitted in the form of electromagnetic waves from a high-temperature solid surface to a low-temperature fixed surface. Since the filter 51 is located in the vicinity of the fixing unit 101 which is a heat source, the influence of the radiant heat E from the fixing unit 101 is large.
  • the intake surface 51a of the filter 51 becomes a high temperature state by the radiant heat E irradiated from the fixing unit 101 in addition to the temperature rise due to the heat of the air near the sheet inlet 400.
  • the life of the filter 51 is improved by reducing the radiant heat E from the fixing unit 101 to the filter 51.
  • the member that radiates the radiant heat E most strongly is the belt 105 having the highest temperature. Radiant heat E radiated from the belt 105 diffuses radially from every point on the surface layer of the fixing belt 105. Therefore, in order to reduce the temperature rise of the filter 51, the filter 51 may be arranged at a position where the radiant heat E from the belt 105 is not irradiated onto the intake surface 51a.
  • the air inlet 52a of the duct 52 is arranged facing the transfer portion 12a side (transfer roller 12 side). Since the filter 51 is provided so as to cover the intake port 52a, the surface of the filter 51 faces the transfer portion 12a side (transfer roller 12 side) in the configuration described above. The space between the belt 105 and the filter 51 is blocked by the duct 52.
  • a contact point between the suction surface 51a and the upper wall of the duct is referred to as M1, and a contact point between the suction surface 51a and the lower wall of the duct is referred to as N1.
  • a contact point with the surface layer of the belt 105 when the line M1-N1 connecting M1 and N1 is extended to the surface layer of the fixing belt 105 is referred to as L1.
  • the position of the contact L1 is preferably within the range of the region 135d.
  • the region 135d is a fourth region when the fixing belt 105 is divided into four regions in the circumferential direction and counted from the nip portion 101b along the rotation direction.
  • the line L1-N1 is a tangent to the belt 105 at the contact L1.
  • the radiant heat E from the belt 105 does not travel toward the intake surface 51a. Therefore, the temperature rise of the filter 51 can be suppressed.
  • the angle of the air inlet 52a may be made steep so that the extended line of the line M1-N1 does not intersect the belt 105. Even in such a configuration, the radiant heat E from the belt 105 does not go to the filter 51.
  • the angle of the intake port 52a may be further steep to block the radiant heat E 'from the pressure roller 102.
  • a contact point with the surface layer of the pressure roller 102 when the line M1-N1 is extended to the surface layer of the pressure roller 102 is referred to as L2.
  • the position of the contact L1 is preferably within the range of the region 135d.
  • the region 135e is a third region when the pressure roller 102 is divided into four regions in the circumferential direction and counted from the nip portion 101b along the rotational direction.
  • the line L2-N1 is a tangent line of the pressure roller 102 at the contact point L2. In such a configuration, the radiant heat E of the belt 105 and the radiant heat E ′ from the pressure roller 102 do not travel toward the intake surface 51a. Therefore, the temperature rise of the filter 51 can be suppressed.
  • the filter 51 is not necessarily inclined with respect to the sheet conveying direction.
  • the filter 51 may be arranged in parallel with the conveyance direction of the sheet P. In this case, it is desirable to provide a shielding portion 55 in the duct 52 so that the radiant heat E does not face the filter 51.
  • the end of the filter 51 and the upper wall of the duct on the conveyance surface side is referred to as M3, and the contact point between the filter 51 and the lower wall of the duct is referred to as N3.
  • a contact point with the surface layer of the belt 105 when the line M3-N3 connecting M3 and N3 is extended to the surface layer of the fixing belt 105 is referred to as L3.
  • the position of the contact L3 is preferably within the range of the region 135d.
  • the line L3-N3 is a tangent line of the belt 105 at the contact point L3. In such a configuration, the radiant heat E from the belt 105 does not travel toward the intake surface 51a. Therefore, the temperature rise of the filter 51 can be suppressed.
  • the temperature rise of the filter 51 can be suppressed. According to the present embodiment, it is possible to suppress a decrease in the lifetime of the filter 51. According to the present embodiment, the replacement frequency of the filter can be reduced.
  • the configuration of the first embodiment is preferable in that the dust D can be reliably collected.
  • the intake surface 51a of the filter 51 does not have to be a curved surface.
  • the intake surface 51a has a flat shape and dust D can be collected.
  • another filter such as a honeycomb filter may be used instead of the nonwoven fabric filter.
  • the dust D may be collected by the filter 51 after being charged by the charging device.
  • the arrangement configuration of the filter 51 is not limited to that described in the embodiment.
  • two or more filters 51 may be installed at both longitudinal ends of the belt 105.
  • the filter 51 may be installed on the pressure roller side with respect to the sheet conveyance path.
  • the fixing device 103 is not limited to a configuration that conveys a sheet in a vertical path.
  • the fixing device 103 may be configured to convey a sheet in a horizontal path or obliquely.
  • the heating rotator for heating the toner image on the sheet is not limited to the belt 105.
  • the heating rotator may be a roller or a belt unit in which a belt is stretched between a plurality of rollers. .
  • the configuration of Example 1 in which the surface of the heating rotator becomes hot and dust D is likely to be generated can achieve a greater effect.
  • the nip forming member that forms the nip portion with the heating rotator is not limited to the pressure roller 102.
  • a belt unit in which a belt is stretched between a plurality of rollers may be used.
  • the heating source for heating the heating rotator is not limited to a ceramic heater such as the heater 101a.
  • the heating source may be a halogen heater.
  • the heating rotator may be directly heated by electromagnetic induction. Even in such a configuration, dust D is likely to be generated in the vicinity of the sheet entrance 400, and therefore the configuration of the first embodiment can be applied.
  • the image forming apparatus described using the printer 1 as an example is not limited to an image forming apparatus that forms a full-color image, but may be an image forming apparatus that forms a monochrome image.
  • the image forming apparatus can be implemented in various applications such as a copying machine, a FAX, and a multifunction machine having a plurality of these functions in addition to necessary equipment, equipment, and housing structure.
  • an image forming apparatus capable of appropriately removing fine particles caused by a release agent contained in a toner.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Fixing For Electrophotography (AREA)
  • Control Or Security For Electrophotography (AREA)

Abstract

Provided is an image-forming device with which it is possible to appropriately remove fine particles caused by a release agent contained in a toner. The formula holds, where d is the distance between the intake port of a duct and a heating belt (mm), Fs is the surface area of a nonwoven cloth filter (cm2), and Fv is the speed at which air passes through the nonwoven filter (cm/s).

Description

画像形成装置Image forming apparatus
 本発明は、記録材にトナー像を形成する画像形成装置に関する。この画像形成装置は、複写機、プリンタ、ファクシミリ、及びこれらの機能を複数備えた複合機等として用いられる。 The present invention relates to an image forming apparatus that forms a toner image on a recording material. This image forming apparatus is used as a copying machine, a printer, a facsimile, and a multifunction machine having a plurality of these functions.
 電子写真式の画像形成装置は、離型剤を含有するトナーを用いて記録材に画像を形成する。また、画像形成装置はトナーの画像を担持した記録材を加熱・加圧して記録材に画像を定着させる定着装置を備えている。 An electrophotographic image forming apparatus forms an image on a recording material using toner containing a release agent. The image forming apparatus includes a fixing device that heats and presses a recording material carrying a toner image to fix the image on the recording material.
 特開2013−190651公報に記載の画像形成装置では、離型剤を含有するトナーが加熱されて生じる超微粒子を回収するための構成を備えている。
 しかしながら、この構成では、発生した微粒子を適切に除去するにあたり、改善の余地がある。
The image forming apparatus described in Japanese Patent Laid-Open No. 2013-190651 has a configuration for collecting ultrafine particles generated by heating a toner containing a release agent.
However, with this configuration, there is room for improvement in properly removing the generated fine particles.
 本発明の目的は、トナーに含有される離型剤に起因する微粒子を適切に除去することができる画像形成装置を提供することである。
[課題を解決するための手段]
An object of the present invention is to provide an image forming apparatus capable of appropriately removing fine particles caused by a release agent contained in a toner.
[Means for solving problems]
 本発明は、離型剤を含有するトナーを用いて記録材に画像を形成する画像形成部と、
 前記画像形成部により記録材に形成された画像を定着するためのニップ部を形成する加熱回転体及び加圧回転体と、
 前記ニップ部の入口近傍から吸気口を介して取り込んだエアを排出するダクトと、
 前記ダクトの通気経路に設けられ離型剤に起因する微粒子を回収するフィルタと、
 前記ダクト内にエアを引き込むためのファンと、を有し、
 前記吸気口と前記加熱回転体の間隔をd(mm)、前記フィルタの面積をFs(cm)、前記フィルタにおけるエアの通過風速をFv(cm/s)としたとき、以下を満足することを特徴とするものである。
Figure JPOXMLDOC01-appb-I000003
[発明の効果]
The present invention includes an image forming unit that forms an image on a recording material using a toner containing a release agent;
A heating rotator and a pressure rotator that form a nip portion for fixing an image formed on the recording material by the image forming unit;
A duct for discharging air taken in from the vicinity of the inlet of the nip portion through the intake port;
A filter that is provided in a ventilation path of the duct and collects fine particles caused by a release agent;
A fan for drawing air into the duct,
When the distance between the intake port and the heating rotator is d (mm), the area of the filter is Fs (cm 2 ), and the air passing velocity in the filter is Fv (cm / s), the following is satisfied: It is characterized by.
Figure JPOXMLDOC01-appb-I000003
[The invention's effect]
 本発明によれば、トナーに含有される離型剤に起因する微粒子を適切に除去することができる。 According to the present invention, the fine particles caused by the release agent contained in the toner can be appropriately removed.
 図1において、(a)は定着装置近傍においてダストを回収する様子を示す図、(b)はシートの後端ハネの様子を示す図である。 1A is a view showing how dust is collected in the vicinity of the fixing device, and FIG. 1B is a view showing how the trailing edge of the sheet is splashed.
 図2において、(a)は定着装置周辺の斜視図、(b)は定着装置の周辺におけるシートの通過位置を示す図である。 2A is a perspective view of the periphery of the fixing device, and FIG. 2B is a diagram illustrating a sheet passing position in the vicinity of the fixing device.
 図3において、(a)はダクトユニットを分解した斜視図、(b)はダクトユニットが動作する様子を示す図である。 3A is an exploded perspective view of the duct unit, and FIG. 3B is a diagram illustrating a state in which the duct unit operates.
 図4は 画像形成装置の構成を示す図である。 FIG. 4 is a diagram showing the configuration of the image forming apparatus.
 図5において、(a)は定着ユニットの断面を示す図、(b)はベルトユニットを分解した様子を示す図である。 5A is a diagram illustrating a cross section of the fixing unit, and FIG. 5B is a diagram illustrating a state in which the belt unit is disassembled.
 図6において、(a)は定着ユニットのニップ部近傍のシートを示す図、(b)はベルトの層構成を示す図、(c)は加圧ローラの層構成を示す図である。 6A is a diagram showing a sheet near the nip portion of the fixing unit, FIG. 6B is a diagram showing a layer configuration of the belt, and FIG. 6C is a diagram showing a layer configuration of the pressure roller.
 図7はベルトユニットの加圧機構を示す図である。 FIG. 7 is a view showing a pressure mechanism of the belt unit.
 図8において、(a)はダストDの合体現象を説明するための図、(b)はダストDの付着現象を説明する模式図である。 8A is a diagram for explaining the coalescence phenomenon of dust D, and FIG. 8B is a schematic diagram for explaining the adhesion phenomenon of dust D.
 図9において、(a)は検証例1における画像形成処理の経過時間とダストD発生量の関係を示すグラフ、(b)は検証例2における画像形成処理の経過時間とダストD発生量の関係を示すグラフである。 9A is a graph showing the relationship between the elapsed time of image formation processing and the amount of dust D generation in Verification Example 1, and FIG. 9B is the relationship between the elapsed time of image formation processing and the amount of dust D generation in Verification Example 2. It is a graph which shows.
 図10において、(a)は定着処理の進行に伴い拡大する定着ベルト上のワックス付着領域の様子を示す図、(b)は、ワックスの付着領域とダストDの発生領域の関係を示す図である。 10A is a diagram illustrating a state of a wax adhesion region on the fixing belt that expands as the fixing process proceeds, and FIG. 10B is a diagram illustrating a relationship between a wax adhesion region and a dust D generation region. is there.
 図11は定着ベルトの周辺の気流の流れを説明する図である。 FIG. 11 is a diagram for explaining the flow of airflow around the fixing belt.
 図12は制御回路と各構成の関連を示す図である。 FIG. 12 is a diagram showing the relationship between the control circuit and each component.
 図13はファンの制御を説明するフローチャートである。 FIG. 13 is a flowchart for explaining fan control.
 図14において、(a)はサーミスタTHのシーケンス図、(b)は第一ファンのシーケンス図、(c)は第二ファンのシーケンス図、(d)は第三ファンのシーケンス図である。 14A is a sequence diagram of the thermistor TH, FIG. 14B is a sequence diagram of the first fan, FIG. 14C is a sequence diagram of the second fan, and FIG. 14D is a sequence diagram of the third fan.
 図15において、(a)は風量制御の効果を説明する第1のグラフ、(b)は風量制御の効果を説明する第2のグラフ、(c)は風量制御の効果を説明する第3のグラフ、(d)は風量制御の効果を説明する第4のグラフである。 In FIG. 15, (a) is a first graph for explaining the effect of air flow control, (b) is a second graph for explaining the effect of air flow control, and (c) is a third graph for explaining the effect of air flow control. Graph (d) is a fourth graph for explaining the effect of air volume control.
 図16において、(a)はサーミスタのシーケンス図、(b)は第一ファンのシーケンス図、(c)は第二ファンのシーケンス図、(d)は第三ファンのシーケンス図である。 16, (a) is a sequence diagram of the thermistor, (b) is a sequence diagram of the first fan, (c) is a sequence diagram of the second fan, and (d) is a sequence diagram of the third fan.
 図17において、(a)はダスト低減率αの目標値を50%とした場合に必要な吸引風量Q(L/min)を示すグラフ、(b)はダスト低減率αの目標値を60%とした場合に必要な吸引風量Q(L/min)を示すグラフである。 In FIG. 17, (a) is a graph showing the suction air volume Q (L / min) required when the target value of the dust reduction rate α is 50%, and (b) is the target value of the dust reduction rate α of 60%. It is a graph which shows the suction | attraction air volume Q (L / min) required in the case of setting.
 図18はベルト表面とフィルタ間の距離d(mm)と吸引風量Q(L/min)の関係を示すグラフである。 FIG. 18 is a graph showing the relationship between the distance d (mm) between the belt surface and the filter and the suction air volume Q (L / min).
 図19はベルト表面とフィルタ間の距離d(mm)とフィルタ面積Fs(cm)の関係を示すグラフである。 FIG. 19 is a graph showing the relationship between the distance d (mm) between the belt surface and the filter and the filter area Fs (cm 2 ).
 図20はフィルタをダクトの内部に配置した例を示す図である。 FIG. 20 is a diagram showing an example in which the filter is arranged inside the duct.
 図21はフィルタユニットの配置と輻射熱の関係を示す図である。 FIG. 21 is a diagram showing the relationship between the arrangement of the filter unit and the radiant heat.
 図22はフィルタユニットの配置と輻射熱の関係を示す図である。 FIG. 22 is a diagram showing the relationship between the arrangement of the filter unit and the radiant heat.
 図23はフィルタユニットの配置と輻射熱の関係を示す図である。 FIG. 23 is a diagram showing the relationship between the arrangement of the filter unit and the radiant heat.
 図24において、(a)はフィルタ通過風速とフィルタのダスト濾過率、フィルタ通気抵抗の関係を示す図、(b)はフィルタ通過風速とフィルタ面積の関係を示す図である。 24A is a diagram illustrating the relationship between the filter passing wind speed, the filter dust filtration rate, and the filter ventilation resistance, and FIG. 24B is a diagram illustrating the relationship between the filter passing wind speed and the filter area.
 以下、本発明に関して実施例を用いて詳細に説明する。なお、特段の断りがない限り、本発明の思想の範囲内において、実施例に記載された各種構成を他の公知の構成に置き換えてもよい。 Hereinafter, the present invention will be described in detail using examples. Unless otherwise specified, the various configurations described in the embodiments may be replaced with other known configurations within the scope of the idea of the present invention.
(1)画像形成装置の全体構成 (1) Overall configuration of image forming apparatus
 本実施例の特徴部分を説明する前に、画像形成装置の全体構成について説明する。図4は画像形成装置の構成を示す図である。図12は制御回路と各構成の関係を示すブロック図である。プリンタ1は、電子写真プロセスを用いる画像形成部で画像を形成し、この画像を転写部にてシートに転写し、画像が転写されたシートを定着部で加熱することでシートPに画像を定着させる装置である。本実施例の説明で用いるプリンタ1は、電子写真プロセスを用いた4色フルカラーのマルチファンクションプリンタ(カラー画像形成装置)である。なお、プリンタ1は、モノクロのマルチファンクションプリンタやシングルファンクションプリンタであってもよい。以下、図を用いて詳細に説明する。 Before describing the features of the present embodiment, the overall configuration of the image forming apparatus will be described. FIG. 4 is a diagram illustrating the configuration of the image forming apparatus. FIG. 12 is a block diagram showing the relationship between the control circuit and each component. The printer 1 forms an image in an image forming unit using an electrophotographic process, transfers the image to a sheet in a transfer unit, and fixes the image on the sheet P by heating the sheet on which the image has been transferred in a fixing unit. It is a device to let you. The printer 1 used in the description of this embodiment is a four-color full-color multifunction printer (color image forming apparatus) using an electrophotographic process. The printer 1 may be a monochrome multifunction printer or a single function printer. Hereinafter, it demonstrates in detail using figures.
 プリンタ1は、装置内の各構成を制御する制御回路Aを備えている。制御回路Aは、CPU等の演算部やROM等の記憶部を備えた電気回路である。制御回路Aは、ROM等に記憶されたプログラムをCPUが読みだすことで各種制御を行う制御部として機能する。制御回路Aは、パーソナルコンピュータ等の外部情報端末(不図示)やイメージリーダ2等の入力装置B、及び操作パネル(不図示)等の各種構成と電気的に接続されており、信号情報のやり取りが可能である。制御回路Aは、入力装置Bから入力された画像信号に基づき装置内の各種構成を統括的に制御してシートP上に画像を形成させる。 The printer 1 includes a control circuit A that controls each component in the apparatus. The control circuit A is an electric circuit including a calculation unit such as a CPU and a storage unit such as a ROM. The control circuit A functions as a control unit that performs various controls when the CPU reads a program stored in a ROM or the like. The control circuit A is electrically connected to various components such as an external information terminal (not shown) such as a personal computer, an input device B such as the image reader 2, and an operation panel (not shown), and exchanges signal information. Is possible. The control circuit A controls the various components in the apparatus based on the image signal input from the input apparatus B to form an image on the sheet P.
 シートPは、その表面に画像が形成される記録材(用紙)である。シートPの例としては普通紙・厚紙・OHPシート・コート紙・ラベル紙等が挙げられる。 The sheet P is a recording material (paper) on which an image is formed. Examples of the sheet P include plain paper, cardboard, OHP sheet, coated paper, label paper, and the like.
 図4に示すように、プリンタ1はトナー画像を形成する画像形成部5として第1から第4の4つの画像形成ステーション5Y、5M、5C、5K(以下、ステーションと記す)を備えている。ステーション5Y、5M、5C、5Kは、図4に示すように左側から右側にかけて並べて設けられている。 As shown in FIG. 4, the printer 1 includes first to fourth image forming stations 5Y, 5M, 5C, and 5K (hereinafter referred to as stations) as image forming units 5 that form toner images. The stations 5Y, 5M, 5C, and 5K are provided side by side from the left side to the right side as shown in FIG.
 各ステーション5Y、5M、5C、5Kは、用いるトナーの色が異なる以外はほぼ同様に構成されている。そのため、ステーション5Y、5M、5C、5Kの詳細構成について説明する場合はステーション5Kを例に説明する。ステーション5Kは、画像が形成される像担持体としての回転ドラム型の電子写真感光体(以下、ドラムと記す)6を有する。また、ステーション5Kは、このドラム6に作用するプロセス手段としてのクリーニング部材41、現像ユニット9、帯電ローラ(不図示)を有している。 The stations 5Y, 5M, 5C, and 5K have substantially the same configuration except that the color of the toner used is different. Therefore, when the detailed configuration of the stations 5Y, 5M, 5C, and 5K is described, the station 5K is described as an example. The station 5K includes a rotating drum type electrophotographic photosensitive member (hereinafter referred to as a drum) 6 as an image carrier on which an image is formed. Further, the station 5K includes a cleaning member 41 as a process unit that acts on the drum 6, a developing unit 9, and a charging roller (not shown).
 第1のステーション5Yは現像ユニット9のトナー収容室内にイエロー(Y)色の現像剤(以下、トナーと記す)を収容している。第2のステーション5Mは現像ユニット9のトナー収容室内にマゼンタ(M)色のトナーを収容している。第3のステーション5Cは現像ユニット9のトナー収容室内にシアン(C)色のトナーを収容している。第4のステーション5Kは現像ユニット9のトナー収容室内にブラック(K)色のトナーを収容している。 The first station 5Y accommodates yellow (Y) developer (hereinafter referred to as toner) in the toner accommodating chamber of the developing unit 9. The second station 5M stores magenta (M) toner in the toner storage chamber of the developing unit 9. The third station 5C stores cyan (C) toner in the toner storage chamber of the developing unit 9. The fourth station 5 </ b> K stores black (K) toner in the toner storage chamber of the developing unit 9.
 画像形成部5の下側にはドラム6に対する画像情報露光手段としてのレーザースキャナユニット8が配置されている。また画像形成部5の上側には、中間転写ベルトユニット10(以下転写ユニットと呼ぶ)が設けられている。 A laser scanner unit 8 as an image information exposure unit for the drum 6 is disposed below the image forming unit 5. An intermediate transfer belt unit 10 (hereinafter referred to as a transfer unit) is provided above the image forming unit 5.
 転写ユニット10は、中間転写ベルト(以下、ベルトと記す)10cとそれを駆動する駆動ローラ10a有する。また、ベルト10cの内側には第1から第4の4つの一次転写ローラ11が平行に配設されている。各一次転写ローラ11は各ステーションのドラム6に対向して配置されている。 The transfer unit 10 includes an intermediate transfer belt (hereinafter referred to as a belt) 10c and a driving roller 10a that drives the intermediate transfer belt 10c. The first to fourth primary transfer rollers 11 are arranged in parallel inside the belt 10c. Each primary transfer roller 11 is disposed to face the drum 6 of each station.
 画像形成部の各ドラム6は上面部分が各一次転写ローラ11の位置においてベルト10cの下面に接している。この接触部分を一次転写部と呼ぶ。 The upper surface of each drum 6 of the image forming unit is in contact with the lower surface of the belt 10 c at the position of each primary transfer roller 11. This contact portion is called a primary transfer portion.
 駆動ローラ10aはベルト10cを回転駆動するローラであり、ベルト10cのうち駆動ローラ10aによりバックアップされた部分の外側には二次転写ローラ12が配設されている。ベルト10cは転写手段である二次転写ローラ12と接触しており、この接触部分を二次転写部12aと呼ぶ。ベルト10cのうちテンションローラ10bによってバックアップされた部分の外側には転写ベルトクリーニング装置10dが配設されている。レーザースキャナユニット8の下部には、シートPを収納するカセット3が配設されている。カセットPに収納されたシートPは、外気の状態にあわせて吸湿を行う。吸湿量の多いシートほど加熱された際に多くの水蒸気を発生させる。 The driving roller 10a is a roller that rotationally drives the belt 10c, and a secondary transfer roller 12 is disposed outside the portion of the belt 10c that is backed up by the driving roller 10a. The belt 10c is in contact with a secondary transfer roller 12 as a transfer unit, and this contact portion is referred to as a secondary transfer portion 12a. A transfer belt cleaning device 10d is disposed outside the portion of the belt 10c backed up by the tension roller 10b. Under the laser scanner unit 8, a cassette 3 for storing sheets P is disposed. The sheet P stored in the cassette P absorbs moisture according to the state of the outside air. A sheet having a higher moisture absorption generates more water vapor when heated.
 図4に示すように、プリンタ1には、カセット3からピックアップされたシートPを上方へ搬送するシート搬送路(縦パス)Qが配設されている。このシート搬送路Qは、下側から上側に順に、給送ローラ4aとリタードローラ4bとのローラ対、レジストローラ対4c、二次転写ローラ12、定着装置103、排出ローラ対14が配設されている。またイメージリーダ2の下方は排出トレイ16が配置されている。
(1−1)画像形成装置の画像形成シーケンス
As shown in FIG. 4, the printer 1 is provided with a sheet conveyance path (vertical path) Q for conveying the sheet P picked up from the cassette 3 upward. In this sheet conveyance path Q, a roller pair of a feeding roller 4a and a retard roller 4b, a registration roller pair 4c, a secondary transfer roller 12, a fixing device 103, and a discharge roller pair 14 are arranged in order from the lower side to the upper side. ing. A discharge tray 16 is disposed below the image reader 2.
(1-1) Image forming sequence of image forming apparatus
 プリンタ1が画像形成動作を行う場合、制御回路Aは次のような制御を行う。制御回路Aは、画像形成タイミングに合わせて第1から第4のステーション5Y、5M、5C、5Kのドラム6を図中時計方向に所定の速度で回転駆動させる。制御回路Aは、ドラム6の回転速度に応じた速度且つドラム6の回転方向に対して順回転する方向にベルト10cが回転するように駆動ローラ10aの駆動を制御する。また、制御回路Aはレーザースキャナユニット8や帯電ローラ(不図示)を作動させる。 When the printer 1 performs an image forming operation, the control circuit A performs the following control. The control circuit A rotates the drums 6 of the first to fourth stations 5Y, 5M, 5C, and 5K in a clockwise direction in the drawing at a predetermined speed in accordance with the image formation timing. The control circuit A controls the driving of the driving roller 10a so that the belt 10c rotates in a direction corresponding to the rotational speed of the drum 6 and in a forward rotation direction with respect to the rotational direction of the drum 6. Further, the control circuit A operates the laser scanner unit 8 and a charging roller (not shown).
 上述した制御が行われることで、プリンタ1は次にようにしてフルカラー画像を形成する。 By performing the above-described control, the printer 1 forms a full-color image as follows.
 まず、帯電ローラ(不図示)はドラム6の表面を所定の極性・電位に均一に帯電させる。次に、レーザースキャナユニット8は、Y・M・C・Kの各色の画像情報信号に応じて変調されたレーザービームを用いてドラム6の表面を走査露光する。こうして、各ドラム6の表面には、対応色応じた静電潜像が形成される。形成された静電潜像は現像ユニット9によりトナー像として現像される。上記のように形成されたYMCK各色のトナー像は、一次転写部において、ベルト10c上に順に重ねて一次転写されることで合成される。こうして、ベルト10c上にはY色+M色+C色+K色の4色のトナー像が合成されたフルカラーの未定着トナー像が形成される。そしてこの未定着トナー像はベルト10cの回転により転写部12aに搬送される。ベルト10cにトナー像を一次転写した後のドラム6の表面はクリーニング部材41によりクリーニングされる。 First, a charging roller (not shown) uniformly charges the surface of the drum 6 to a predetermined polarity and potential. Next, the laser scanner unit 8 scans and exposes the surface of the drum 6 using a laser beam modulated in accordance with image information signals of Y, M, C, and K colors. Thus, an electrostatic latent image corresponding to the corresponding color is formed on the surface of each drum 6. The formed electrostatic latent image is developed as a toner image by the developing unit 9. The toner images of each color of YMCK formed as described above are synthesized by being primarily transferred onto the belt 10c in order in the primary transfer portion. Thus, a full-color unfixed toner image is formed on the belt 10c by combining four color toner images of Y color + M color + C color + K color. The unfixed toner image is conveyed to the transfer unit 12a by the rotation of the belt 10c. The surface of the drum 6 after the toner image is primarily transferred to the belt 10 c is cleaned by the cleaning member 41.
 一方、カセット3内のシートPは、給送ローラ4aとリタードローラ4bによって1枚分給送されてレジストローラ対4cへ搬送される。レジストローラ対4cベルト10c上のトナー像と同期を取ってシートPを二次転写部へと搬送する。二次転写ローラ12は、トナーの正規の帯電極性とは逆極性の二次転写バイアスが印加されている。そのため、シートPが二次転写部に挟持搬送されると、ベルト10c上の4色トナー像はシートP上に一括して二次転写される。 On the other hand, the sheet P in the cassette 3 is fed by one sheet by the feeding roller 4a and the retard roller 4b and conveyed to the registration roller pair 4c. The sheet P is conveyed to the secondary transfer portion in synchronization with the toner image on the registration roller pair 4c belt 10c. The secondary transfer roller 12 is applied with a secondary transfer bias having a polarity opposite to the normal charging polarity of the toner. For this reason, when the sheet P is nipped and conveyed by the secondary transfer portion, the four-color toner images on the belt 10c are secondarily transferred onto the sheet P all at once.
 二次転写部から搬送されたシートPがベルト10cから分離されて定着装置103へ搬送されると、トナー像はシートP上に熱定着される。定着装置103から搬送されたシートPは、ガイド部材15と排出ローラ対14を経て排出トレイ16に排出される。シートPに対するトナー像が二次転写された後にベルト10cの表面に残留した残トナーは、転写ベルトクリーニング装置10dによりベルト表面から除去される。
(2)定着装置
When the sheet P conveyed from the secondary transfer unit is separated from the belt 10c and conveyed to the fixing device 103, the toner image is thermally fixed on the sheet P. The sheet P conveyed from the fixing device 103 is discharged to the discharge tray 16 through the guide member 15 and the discharge roller pair 14. The residual toner remaining on the surface of the belt 10c after the toner image on the sheet P is secondarily transferred is removed from the belt surface by the transfer belt cleaning device 10d.
(2) Fixing device
 次に定着装置103と、定着装置103の近傍で発生するダストDについて説明する。
(2−1)定着装置103
Next, the fixing device 103 and dust D generated in the vicinity of the fixing device 103 will be described.
(2-1) Fixing device 103
 図5(a)は定着ユニットの断面を示す図である。図5(b)はベルトユニットを分解した様子を示す図である。本実施例における定着装置103は、ヒータ101aによって加熱された小径の定着ベルト105(以後ベルトと呼ぶ)を用いてトナー画像をシートPに定着させる低熱容量な定着装置である。定着装置103は、回転体としてのベルト105を備えた定着ベルトユニット101(定着ユニットと呼ぶ)と、回転体としての加圧ローラ102と、加熱部としての面状のヒータ101aと、筐体100とを備えている。図5の(a)に示すように筐体100にはシート入口400とシート出口500が設けられており、定着ユニット101と加圧ローラ102の間のニップ部101bにシートPが通過させることができる。本実施例では、シート入口400がシート出口500よりも重力方向下方に配置されているため、シートPが重力方向下方から上方に向けて搬送される。この構成を縦パス構成と称する。 FIG. 5A is a view showing a cross section of the fixing unit. FIG. 5B is a diagram illustrating a state where the belt unit is disassembled. The fixing device 103 according to the present exemplary embodiment is a low heat capacity fixing device that fixes a toner image onto a sheet P using a small-diameter fixing belt 105 (hereinafter referred to as a belt) heated by a heater 101a. The fixing device 103 includes a fixing belt unit 101 (referred to as a fixing unit) including a belt 105 as a rotating body, a pressure roller 102 as a rotating body, a planar heater 101a as a heating unit, and a housing 100. And. As shown in FIG. 5A, the housing 100 is provided with a sheet inlet 400 and a sheet outlet 500, and the sheet P can pass through the nip portion 101 b between the fixing unit 101 and the pressure roller 102. it can. In this embodiment, since the sheet inlet 400 is disposed below the sheet outlet 500 in the gravitational direction, the sheet P is conveyed upward from below in the gravitational direction. This configuration is referred to as a vertical path configuration.
 シート入口400には、薄板状の回転円板からなるコロ100aが、ベルト105の回転軸方向に複数並べて設けられている。コロ100aは、搬送パスから外れたシートPを案内することで筐体100にトナーが付着することを抑制している。 At the sheet entrance 400, a plurality of rollers 100a made of a thin plate-shaped rotating disk are provided side by side in the direction of the rotation axis of the belt 105. The roller 100a suppresses the toner from adhering to the housing 100 by guiding the sheet P that is out of the conveyance path.
 シート出口500よりもシートPの搬送方向の下流側には、ニップ部101bを通過してシートの搬送をガイドするガイド部材15(案内部材)が設けられている。以後の説明において、シートPの搬送方向下流側を下流側と呼び、シートPの搬送方向上流側を上流側と呼ぶ。
(2−2)定着ユニット101の構成
A guide member 15 (guide member) that guides the conveyance of the sheet through the nip portion 101b is provided on the downstream side of the sheet outlet 500 in the conveyance direction of the sheet P. In the following description, the downstream side in the transport direction of the sheet P is referred to as the downstream side, and the upstream side in the transport direction of the sheet P is referred to as the upstream side.
(2-2) Configuration of the fixing unit 101
 定着ユニット101は、後述する加圧ローラ102に当接して加圧ローラ102との間にニップ部101bを形成し、ニップ部101bにおいてトナー画像をシートPに定着させる定着ユニットである。定着ユニット101は、図5(a)・図5(b)に示すように、複数の部材で構成された組み立て体である。 The fixing unit 101 is a fixing unit that abuts against a pressure roller 102 described later, forms a nip portion 101b with the pressure roller 102, and fixes the toner image on the sheet P at the nip portion 101b. As shown in FIGS. 5A and 5B, the fixing unit 101 is an assembly composed of a plurality of members.
 定着ユニット101は、面状のヒータ101aと、ヒータ101aを保持するヒータホルダ104と、ヒータホルダ104を支持する加圧ステー104aと、を備えている。更に、定着ユニット101は、エンドレス状のベルト105と、ベルト105の幅方向一端側と他端側を保持するフランジ106L・106Rと、を備えている。 The fixing unit 101 includes a planar heater 101a, a heater holder 104 that holds the heater 101a, and a pressure stay 104a that supports the heater holder 104. Further, the fixing unit 101 includes an endless belt 105 and flanges 106L and 106R that hold one end side and the other end side of the belt 105 in the width direction.
 ヒータ101aは、ベルト105の内面に当接してベルト105を加熱する加熱部材である。本実施例ではヒータ101aとして、通電によって発熱するセラミックヒータを用いている。セラミックヒータは、細長で薄板状のセラミック基板と、この基板面に具備された抵抗層と、を備えており、抵抗層に通電することで全体が速やかに発熱する低熱容量のヒータである。 The heater 101 a is a heating member that contacts the inner surface of the belt 105 and heats the belt 105. In this embodiment, a ceramic heater that generates heat when energized is used as the heater 101a. The ceramic heater includes a thin and thin ceramic substrate and a resistance layer provided on the surface of the substrate. The ceramic heater is a low-heat capacity heater that quickly generates heat by energizing the resistance layer.
 ヒータホルダ104は、ヒータ101aを保持する保持部材である。本実施例のホルダ104は、横断面が半円弧状をしており、ベルト105の周方向の形状を規制している。ホルダ104の材料には耐熱性の樹脂を用いることが望ましい。 The heater holder 104 is a holding member that holds the heater 101a. The holder 104 of the present embodiment has a semicircular cross section and regulates the shape of the belt 105 in the circumferential direction. It is desirable to use a heat resistant resin as the material of the holder 104.
 加圧ステー104aは、ヒータ101a及びホルダ104を長手方向で均一にベルト105に押し当てる部材である。加圧ステー104aは高い加圧力がかかっても撓みにくい材質であることが望ましい。本実施例では加圧ステー104aの材質としてステンレス鋼であるSUS304を用いた。加圧ステー104a上には温度センサとしてのサーミスタTHが設けられている。サーミスタTHはベルト105の温度に応じた信号を制御回路Aに出力する。 The pressure stay 104a is a member that uniformly presses the heater 101a and the holder 104 against the belt 105 in the longitudinal direction. It is desirable that the pressure stay 104a be made of a material that is not easily bent even when a high pressure is applied. In this embodiment, SUS304, which is stainless steel, is used as the material of the pressure stay 104a. A thermistor TH as a temperature sensor is provided on the pressure stay 104a. The thermistor TH outputs a signal corresponding to the temperature of the belt 105 to the control circuit A.
 ベルト105は、シートPに接触してシートPに熱を付与する回転体である。ベルト105は、円筒状(エンドレス状)のベルトであり、全体的に可撓性を有している。ベルト105は、ヒータ101a、ヒータホルダ104、加圧ステー104aを外側から覆うように設けられている。 The belt 105 is a rotating body that contacts the sheet P and applies heat to the sheet P. The belt 105 is a cylindrical (endless) belt, and has flexibility as a whole. The belt 105 is provided so as to cover the heater 101a, the heater holder 104, and the pressure stay 104a from the outside.
 フランジ106L・106Rはベルト105の長手方向端部を回転可能に保持する一対の部材である。フランジ106L・106Rは、図2に示すように、それぞれ、フランジ部106aとバックアップ部106bと被押圧部106cとを有する。フランジ部106aはベルト105の端面を受け止めてベルト105のスラスト方向への移動を規制する部分であり、ベルト105の径よりもより大きな外形をしている。バックアップ部106bは、定着ベルト内面を保持してベルト105の円筒形状を保つ部分である。被押圧部106cはフランジ部106aの外面側に設けられており、後述する加圧バネ108Lと108R(図7参照)による押圧力を受ける。
(2−2−1)定着ベルトの構成
The flanges 106L and 106R are a pair of members that rotatably hold the end portion of the belt 105 in the longitudinal direction. As shown in FIG. 2, each of the flanges 106L and 106R includes a flange portion 106a, a backup portion 106b, and a pressed portion 106c. The flange portion 106 a is a portion that receives the end face of the belt 105 and restricts the movement of the belt 105 in the thrust direction, and has an outer shape larger than the diameter of the belt 105. The backup unit 106 b is a part that holds the inner surface of the fixing belt and maintains the cylindrical shape of the belt 105. The pressed portion 106c is provided on the outer surface side of the flange portion 106a and receives a pressing force by pressure springs 108L and 108R (see FIG. 7) described later.
(2-2-1) Configuration of fixing belt
 図6(a)は定着ユニットのニップ部近傍まで搬送されたシートを示す図である。図6(b)はベルトの層構成を示す図である。図6(c)は加圧ローラ102の層構成を示す図である。 FIG. 6A is a view showing the sheet conveyed to the vicinity of the nip portion of the fixing unit. FIG. 6B is a diagram showing the layer structure of the belt. FIG. 6C is a diagram showing a layer configuration of the pressure roller 102.
 本実施例のベルト105は、複数の層によって構成されている。詳細に述べるとベルト105は、内側から外側に順に、エンドレス(円筒状)の基層105aと、プライマ層105bと、弾性層105cと、離型層105dを備えている。 The belt 105 of this embodiment is composed of a plurality of layers. More specifically, the belt 105 includes an endless (cylindrical) base layer 105a, a primer layer 105b, an elastic layer 105c, and a release layer 105d in order from the inside to the outside.
 基層105aはベルト105の強度を確保するための層である。基層105aはSUS(ステンレス)等の金属製のベース層であり、熱ストレスと機械的ストレスに耐えられるように、30μm程度の厚みを有している。 The base layer 105 a is a layer for ensuring the strength of the belt 105. The base layer 105a is a base layer made of metal such as SUS (stainless steel), and has a thickness of about 30 μm so as to withstand thermal stress and mechanical stress.
 プライマ層105bは、基層105aと弾性層105cを接着するための層である。プライマ層は基層105aの上に、プライマを5μm程度の厚みで塗布することによって形成されている。 The primer layer 105b is a layer for bonding the base layer 105a and the elastic layer 105c. The primer layer is formed by applying a primer with a thickness of about 5 μm on the base layer 105a.
 弾性層105cは、ニップ部101bにてトナー画像を圧接する際に変形して離型層105dをトナー画像に密着させる役目を果たす。弾性層105cとしては耐熱ゴムを用いることができる。 The elastic layer 105c is deformed when the toner image is pressed into contact with the nip portion 101b, and serves to bring the release layer 105d into close contact with the toner image. As the elastic layer 105c, heat-resistant rubber can be used.
 離型層105dは、トナーや紙粉がベルト105に付着することを防止する機能を有する層である。離型層105dとしては離型性と耐熱性に優れたPFA樹脂等のフッ素樹脂を用いることができる。本実施例の離型層105dの厚さは伝熱性を考慮して20μmである。
(2−3)加圧ローラの構成と加圧方法
The release layer 105 d is a layer having a function of preventing toner and paper powder from adhering to the belt 105. As the release layer 105d, a fluororesin such as a PFA resin excellent in releasability and heat resistance can be used. The thickness of the release layer 105d in this embodiment is 20 μm in consideration of heat transfer properties.
(2-3) Configuration of pressure roller and pressure method
 図6の(c)は加圧ローラ102の層構成を示す図である。加圧ローラ102は、ベルト105の外周面に当接してベルト105との間にニップを形成するニップ形成部材である。本実施例の加圧ローラ102は、複数の層によって構成されたローラ部材である。詳細に述べると、加圧ローラ102は、金属(アルミや鉄)の芯金102aと、シリコンゴム等で形成された弾性層102b、弾性層102bを被覆する離型層102cを有している。離型層102cはPFA等のフッ素系樹脂を材料するチューブであり弾性層102b上に接着されている。 (C) of FIG. 6 is a figure which shows the layer structure of the pressure roller 102. FIG. The pressure roller 102 is a nip forming member that contacts the outer peripheral surface of the belt 105 and forms a nip with the belt 105. The pressure roller 102 of this embodiment is a roller member composed of a plurality of layers. More specifically, the pressure roller 102 includes a metal (aluminum or iron) cored bar 102a, an elastic layer 102b formed of silicon rubber or the like, and a release layer 102c that covers the elastic layer 102b. The release layer 102c is a tube made of a fluorine-based resin such as PFA and is bonded onto the elastic layer 102b.
 図7に示すように、芯金102aの一端側は軸受113を介して側板107Lに回転可能に支持されている。芯金102aの他端側は軸受113を介して側板107Rに回転可能に支持されている。このとき、加圧ローラ102のうち、弾性層102bと離型層102cを有する部分は、側板107Lと側板107Rの間に位置する。 As shown in FIG. 7, one end of the cored bar 102a is rotatably supported by the side plate 107L via a bearing 113. The other end side of the cored bar 102a is rotatably supported by the side plate 107R via a bearing 113. At this time, a portion of the pressure roller 102 having the elastic layer 102b and the release layer 102c is located between the side plate 107L and the side plate 107R.
 芯金102aの他端側はギアGに接続されており、ギアGが駆動モータ(不図示)から駆動を受けると加圧ローラ102は回転駆動する。 The other end of the metal core 102a is connected to a gear G. When the gear G is driven by a drive motor (not shown), the pressure roller 102 is rotationally driven.
 定着ユニット101は、加圧ローラ102対して近接離間する方向にスライド移動できるように側板107Lと側板107Rに支持されている。詳細には、フランジ106Lと106Rが側板107Lと側板107Rのガイド溝に嵌め合わさるように設けられている。そして、バネ支持部109Rと109Lに支持された加圧バネ108Lと108Rにより、フランジ106Lと106Rの被押圧部106cは、加圧ローラ102に向かう方向に所定の押圧力Tで押圧されている。 The fixing unit 101 is supported by the side plate 107L and the side plate 107R so as to be slidable in the direction of approaching and separating from the pressure roller 102. Specifically, the flanges 106L and 106R are provided so as to fit into the guide grooves of the side plate 107L and the side plate 107R. The pressed portions 106c of the flanges 106L and 106R are pressed with a predetermined pressing force T in the direction toward the pressure roller 102 by the pressure springs 108L and 108R supported by the spring support portions 109R and 109L.
 押圧力Tにより、フランジ106L・106R、加圧ステー104a、ヒータホルダ104の全体が加圧ローラ102の方向に付勢される。ここで、定着ユニット101はヒータ101aを有する側が加圧ローラ102を向いている。そのため、ヒータ101aは、ベルト105を加圧ローラ102に向けて押圧する。このような構成により、ベルト105及び加圧ローラ102が変形し、ベルト105と加圧ローラ102との間にニップ部101b(図6参照)が形成される。 The flanges 106 </ b> L and 106 </ b> R, the pressure stay 104 a, and the heater holder 104 are biased in the direction of the pressure roller 102 by the pressing force T. Here, in the fixing unit 101, the side having the heater 101 a faces the pressure roller 102. Therefore, the heater 101a presses the belt 105 toward the pressure roller 102. With such a configuration, the belt 105 and the pressure roller 102 are deformed, and a nip portion 101b (see FIG. 6) is formed between the belt 105 and the pressure roller 102.
 このように、定着ユニット101と加圧ローラ102が密着した状態で加圧ローラ102が回転すると、ニップ部101bにおけるベルト105と加圧ローラ102との摩擦力により、ベルト105に回転トルクが作用する。ベルト105は、加圧ローラ102に対して従動回転(R105)する。このときのベルト105の回転速度は、加圧ローラ102の回転速度にほぼ対応している。つまり本実施例では、加圧ローラ102は、ベルト105を回転駆動する駆動ローラとしての機能を担っている。 As described above, when the pressure roller 102 rotates while the fixing unit 101 and the pressure roller 102 are in close contact with each other, a rotational torque acts on the belt 105 by the frictional force between the belt 105 and the pressure roller 102 in the nip portion 101b. . The belt 105 rotates following the pressure roller 102 (R105). At this time, the rotation speed of the belt 105 substantially corresponds to the rotation speed of the pressure roller 102. In other words, in this embodiment, the pressure roller 102 has a function as a drive roller that rotationally drives the belt 105.
 なおこのとき、ベルト105の内周面とヒータ101aが摺動するため、ベルト105の内面にグリスを塗布して摺動抵抗を低減することが望ましい。
(2−4)定着処理
At this time, since the inner circumferential surface of the belt 105 and the heater 101a slide, it is desirable to apply grease to the inner surface of the belt 105 to reduce sliding resistance.
(2-4) Fixing process
 上述した構成を用いて定着装置103は画像形成処理中に定着処理を行う。定着処理を行う際、制御回路Aは駆動モータ(不図示)を制御して、加圧ローラ102を回転方向R102(図1(a))に所定の速度で回転駆動させ、ベルト105を従動回転させる。 Using the configuration described above, the fixing device 103 performs a fixing process during the image forming process. When performing the fixing process, the control circuit A controls a driving motor (not shown) to rotate the pressure roller 102 in the rotation direction R102 (FIG. 1A) at a predetermined speed, and the belt 105 is driven to rotate. Let
 また、制御回路Aは電源回路(不図示)を介してヒータ101aに通電を開始する。この通電により発熱したヒータ101aは、摺動するベルト105に対して熱を付与する。こうして熱を付与されたベルト105は次第に高温になっていく。このベルト105の温度が目標温度TPとなるように、制御回路AはサーミスタTHの出力する信号に基づいてヒータ101aへの供給電力を制御する。本実施例の目標温度TP(図14の(a))は約170℃である。 Further, the control circuit A starts energizing the heater 101a via a power supply circuit (not shown). The heater 101 a that has generated heat due to this energization applies heat to the sliding belt 105. Thus, the belt 105 to which heat is applied gradually becomes high temperature. The control circuit A controls the power supplied to the heater 101a based on a signal output from the thermistor TH so that the temperature of the belt 105 becomes the target temperature TP. The target temperature TP ((a) in FIG. 14) of this example is about 170 ° C.
 ベルト105が目標温度TPまで加熱されると、制御回路Aは各構成を制御してトナー画像Sを担持したシートPを定着装置103へと搬送させる。定着装置103に搬送されたシートPはニップ部101bによって挟持搬送される。 When the belt 105 is heated to the target temperature TP, the control circuit A controls each component to convey the sheet P carrying the toner image S to the fixing device 103. The sheet P conveyed to the fixing device 103 is nipped and conveyed by the nip portion 101b.
 シートPはニップ部101bにおいて挟持搬送される過程で、ヒータ101aの熱がベルト105を介して付与される。未定着トナー画像Sはヒータ101aの熱によって溶融され、ニップ部101bにかかっている圧力によってシートPに定着される。ニップ部101bを通過したシートPは、ガイド部材15によって排出ローラ対14に案内され排出ローラ対14によって排出トレイ16上に排出される。本実施例では上述した工程を定着処理と呼ぶ。
(3)ダストDの発生
In the process where the sheet P is nipped and conveyed in the nip portion 101 b, the heat of the heater 101 a is applied via the belt 105. The unfixed toner image S is melted by the heat of the heater 101a and fixed on the sheet P by the pressure applied to the nip portion 101b. The sheet P that has passed through the nip portion 101 b is guided to the discharge roller pair 14 by the guide member 15 and discharged onto the discharge tray 16 by the discharge roller pair 14. In the present embodiment, the above-described process is called a fixing process.
(3) Generation of dust D
 次に、トナーSに含有された離型剤(以下、ワックスと称する)に起因する超微粒子(以下、ダストDと称する)の発生と、ダストDの性質について説明する。
(3−1)トナーSに含有されるワックス
Next, generation of ultrafine particles (hereinafter referred to as dust D) caused by a release agent (hereinafter referred to as wax) contained in the toner S and properties of the dust D will be described.
(3-1) Wax contained in toner S
 上述したように定着装置103は、シートPに高温のベルト105を接触させることでシートにトナー画像を定着させている。このような構成を用いて定着処理を行う場合、定着処理時に一部のトナーSがベルトに転移(付着)してしまうことがある。これをオフセット現象と呼ぶ。オフセット現象は画像不良の原因となるためこれを解決することが望ましい。 As described above, the fixing device 103 fixes the toner image on the sheet by bringing the high-temperature belt 105 into contact with the sheet P. When the fixing process is performed using such a configuration, a part of the toner S may be transferred (attached) to the belt during the fixing process. This is called an offset phenomenon. Since the offset phenomenon causes image defects, it is desirable to solve this.
 そこで本実施例では、トナー画像の形成に用いるトナーSにワックス(離型剤)を内包させている。このトナーSは、加熱されると内部のワックスが溶解して染み出す構成となっている。そのため、このトナーSによって形成された画像に定着処理を施すと、溶解したワックスによってベルト105の表面が覆われる。表面がワックスによって覆われたベルト105は、ワックスの離型作用により、トナーSが付着し難くなる。 Therefore, in this embodiment, wax (release agent) is included in the toner S used for forming the toner image. The toner S is configured so that the internal wax dissolves and exudes when heated. Therefore, when a fixing process is performed on the image formed with the toner S, the surface of the belt 105 is covered with the dissolved wax. The belt 105 whose surface is covered with wax makes it difficult for the toner S to adhere due to the releasing action of the wax.
 なお、本実施例では純粋なワックスの他に、ワックスの分子構造を含んだ化合物をワックスと呼んでいる。例えば、トナーの樹脂分子と炭化水素鎖等のワックス分子構造が反応した化合物もワックスと称する。また、離型剤としては、ワックスの他にシリコンオイル等の離型作用を有する物質を用いてもよい。 In this embodiment, in addition to pure wax, a compound containing a wax molecular structure is called a wax. For example, a compound in which a resin molecule of a toner reacts with a wax molecular structure such as a hydrocarbon chain is also referred to as a wax. Moreover, as a mold release agent, you may use the substance which has mold release effects, such as silicone oil, besides wax.
 ワックスは、ベルト105が目標温度Tpに維持されている場合、ニップ部101bにおいて瞬時に溶解してトナーSから染み出すものを用いることができる。本実施例では、目標温度Tpが170℃であるのに対して、融点Tmが75℃であるパラフィンワックスを用いた。 As the wax, when the belt 105 is maintained at the target temperature Tp, a wax that dissolves instantaneously at the nip portion 101b and exudes from the toner S can be used. In this example, paraffin wax having a melting point Tm of 75 ° C. was used while the target temperature Tp was 170 ° C.
 なお、ワックスが溶融する際、一部のワックスは気化(揮発)してしまう。これは、ワックスが含有する分子成分の大きさにバラつきがあるためであると考えられる。つまり、ワックスには、鎖が短く沸点の低い低分子成分と、鎖が長く沸点の高い高分子成分が含まれており、沸点の低い低分子成分が先に気化すると考えられる。 Note that when the wax melts, some of the wax is vaporized (volatilized). This is considered to be because the size of molecular components contained in the wax varies. That is, the wax contains a low molecular component having a short chain and a low boiling point, and a high molecular component having a long chain and a high boiling point, and it is considered that the low molecular component having a low boiling point is vaporized first.
 気化(ガス化)したワックス成分が空気中で冷やされると、数nm~数百nm程度の微粒子(ダストD)が発生する。但し、発生する微粒子の多くは数nm~数十nmの粒径であると推察される。 When the vaporized (gasified) wax component is cooled in the air, fine particles (dust D) of about several nm to several hundred nm are generated. However, it is assumed that most of the generated fine particles have a particle size of several nm to several tens of nm.
 このダストDは粘着性を有するワックス成分であり、プリンタ1の内部構成の各所に付着しやすい。例えば、定着装置103の熱に起因する上昇気流によってダストDがガイド部材15や排出ローラ対14の周辺まで運ばれた場合、ガイド部材15や排出ローラ対14にワックスが付着・体積し、固着してしまう虞がある。ガイド部材15や排出ローラ対14がワックスで汚れていると、シートPにワックスが付着して画像不良の発生原因となる。
(3−2)定着処理に伴いワックスから発生する粒子(ダスト)
This dust D is a wax component having adhesiveness and easily adheres to various parts of the internal configuration of the printer 1. For example, when the dust D is carried to the periphery of the guide member 15 and the discharge roller pair 14 due to the rising air flow caused by the heat of the fixing device 103, the wax adheres to the guide member 15 and the discharge roller pair 14 and the volume is fixed. There is a risk that. If the guide member 15 or the discharge roller pair 14 is soiled with wax, the wax adheres to the sheet P and causes image defects.
(3-2) Particles (dust) generated from wax during fixing processing
 本願発明者等の検討によれば、上述したダストDの多くは定着装置103のシートのシート入口(図1)の近傍に存在することが分かった。また、ダストDは、気温が高い状況では大粒径化して近傍部材に付着しやすくなることが分かった。以下、詳細に説明する。
(3−2−1)ダストの性質
According to the study by the inventors of the present application, it has been found that most of the dust D described above exists in the vicinity of the sheet entrance (FIG. 1) of the sheet of the fixing device 103. Further, it was found that the dust D has a large particle size and easily adheres to neighboring members when the temperature is high. Details will be described below.
(3-2-1) Properties of dust
 ワックスに起因するダストの性質として、高温下で大粒径化する性質と、大粒径化したダストDが周辺の固形物に付着する性質が挙げられる。図8(a)はダストの合体現象を説明するための図である。図8(b)はダストの付着現象を説明する模式図である。 The properties of dust caused by wax include the property of increasing the particle size at high temperatures and the property of increasing the particle size of dust D to surrounding solids. FIG. 8A is a diagram for explaining the dust coalescence phenomenon. FIG. 8B is a schematic diagram for explaining the dust adhesion phenomenon.
 図8(a)に示すように、加熱源20aの上に沸点が150~200℃の高沸点物質20を置き、200℃前後に加熱すると、高沸点物質20から揮発物21aが発生する。揮発物21aは常温空気に触れると直ちに沸点温度以下となって空気中で凝縮し、数nm~数十nm程度の粒径の微小微粒子21bに変化する。この現象は、水蒸気が露点温度を下回ると、微小水滴になって霧を発生させる現象と同じものである。 As shown in FIG. 8A, when a high boiling point substance 20 having a boiling point of 150 to 200 ° C. is placed on the heating source 20a and heated to around 200 ° C., a volatile substance 21a is generated from the high boiling point substance 20. When the volatile material 21a comes into contact with normal temperature air, it immediately becomes below the boiling point temperature, condenses in the air, and changes into fine particles 21b having a particle diameter of about several nanometers to several tens of nanometers. This phenomenon is the same as the phenomenon in which when water vapor falls below the dew point temperature, it becomes minute water droplets and generates mist.
 この時、気中におけるガスの凝集/粒子化は、気中温度が高いほど阻害され易い。これは気中温度が高いほどガスの蒸気圧が上がり、ガス分子は気体状態を維持し易いからである。そのため、気中温度が高くなるにつれて微小微粒子21bの生成個数は少なくなっていく。 At this time, the aggregation / particulation of gas in the air is more likely to be inhibited as the air temperature is higher. This is because the higher the air temperature, the higher the gas vapor pressure, and the easier it is for gas molecules to maintain a gaseous state. Therefore, the number of fine particles 21b generated decreases as the air temperature increases.
 また、気中に存在するガスは既に生成された微小微粒子21bの周りに集まって凝集し易い。これは、ガス分子が凝集して新たに微小微粒子21bを生成するのに必要なエネルギーに比べて、ガス分子が微小微粒子21bの周囲に凝集するのに必要なエネルギーの方が、より低いためである。 Also, the gas present in the air is likely to gather around the already generated fine particles 21b and aggregate. This is because the energy required for the gas molecules to agglomerate around the microparticles 21b is lower than the energy required for the gas molecules to aggregate and newly generate the microparticles 21b. is there.
 また、微小微粒子21bは、ブラウン運動により空気中を移動しているため、互いに衝突して合体し、より大きな粒径の微粒子21cに成長することが知られている。この成長は、微小微粒子21bが活発に移動すればするほど、言い換えると気中温度が高温状態(ブラウン運動が強くなる)にあればあるほど、促進される。結果として、ベルト105から発生する微粒子は、ベルト105近辺の空間温度が高いほどの粒径が大きくなり且つ個数が減少する。なお微粒子の大型化は、微粒子が一定サイズ以上になると次第に鈍化して止まる。これは、合体によって微粒子が大型化するとブラウン運動が不活発になり、粒子同士の衝突頻度が減るためだと推定される。 Further, since the fine particles 21b are moving in the air by Brownian motion, it is known that they collide with each other and grow into fine particles 21c having a larger particle diameter. This growth is promoted as the fine particles 21b move more actively, in other words, as the air temperature is in a higher temperature state (Brownian motion becomes stronger). As a result, the fine particles generated from the belt 105 increase in particle size and decrease in number as the space temperature near the belt 105 increases. The increase in the size of the fine particles gradually slows down and stops when the fine particles become a certain size or more. This is presumably because Brownian motion becomes inactive when the size of the particles increases due to coalescence, and the collision frequency between particles decreases.
 次に、図8(b)を用いて、微粒子の付着について説明する。微小微粒子21bとこれより大きな微粒子21cを含んだ空気αが、気流22に沿って壁23に向かった場合、微小微粒子21bよりも大きな 微粒子21cの方が壁23に付着しやすい。 Next, the adhesion of fine particles will be described with reference to FIG. When the air α including the fine particles 21b and the fine particles 21c larger than the fine particles 21b travels toward the wall 23 along the air flow 22, the fine particles 21c larger than the fine particles 21b are more likely to adhere to the wall 23.
 これは、微粒子21cの方が慣性力が大きく、壁23に勢いよく衝突するためであると推定される。従って、ベルト105の近傍の雰囲気を高温に保ってダストDの大粒径化を促進すればするほど、ダストDは定着装置内の構成(大半はベルト105)に付着しやすくなる。そのため、ダストDの大粒径化を促進されているほど結果的にダストDは定着装置外に拡散され難くなる。 This is presumed to be because the fine particles 21c have a larger inertial force and collide with the wall 23 vigorously. Therefore, as the atmosphere in the vicinity of the belt 105 is kept at a high temperature to promote the increase in the particle size of the dust D, the dust D is more likely to adhere to the configuration in the fixing device (mostly the belt 105). For this reason, the dust D is more difficult to diffuse out of the fixing device as the particle size of the dust D is promoted.
 このように、ダストDは高温下で合体が促進されて大粒径化する性質と、大粒径化によって周辺物体に付着し易くなるという二つの性質を持っている。なおダストDの合体のし易さは、ダストDの成分と温度、濃度に依存する。例えば、ダストDの濃度が高いほどダストD同士の衝突確率が上がり、ダストDの粘度が低いほどダストD同士は合体し易くなる。
(3−2−2)ダストDの発生箇所
As described above, the dust D has two properties, that is, coalescence is promoted at a high temperature and the particle size is increased, and that the particle size is easily adhered to a peripheral object. Note that the ease of coalescence of the dust D depends on the component, temperature, and concentration of the dust D. For example, the higher the concentration of the dust D, the higher the collision probability between the dusts D, and the lower the viscosity of the dust D, the easier it is for the dusts D to merge.
(3-2-2) Location where dust D is generated
 次に、ダストDの発生箇所について、図10と図11に基づいて説明する。図10(a)は定着処理の進行に伴い拡大する定着ベルト上のワックス付着領域の様子を示す図である。図10(b)は、ワックスの付着領域とダストDの発生領域の関係を示す図である。図11は定着ベルトの周辺の気流の流れを説明する図である。 Next, the location where dust D is generated will be described with reference to FIGS. FIG. 10A is a diagram illustrating a state of the wax adhesion region on the fixing belt that expands as the fixing process proceeds. FIG. 10B is a diagram showing the relationship between the wax adhesion region and the dust D generation region. FIG. 11 is a diagram illustrating the flow of airflow around the fixing belt.
 本発明者等が検証したところ、定着装置103から発生するダストDは、ニップ部101bの下流側よりもニップ部101bの上流側において発生量が多いことが分かった。以下そのメカニズムについて説明する。 As a result of verification by the inventors, it has been found that the amount of dust D generated from the fixing device 103 is larger on the upstream side of the nip portion 101b than on the downstream side of the nip portion 101b. The mechanism will be described below.
 ニップ部101bを通過した直後のベルト105の表面(離型層105d)はシートPによって熱を奪われているため、その温度は100℃程度まで低下している。一方で、ベルト105の内面・裏面(基層105a)の温度はヒータ101aとの接触によって高温に保たれている。そのためベルト105がニップ部101bを通過した後、高温に保たれた基層105aの熱が、プライマ層105bと弾性層105cを経由して離型層105dに伝わっていく。その為、ベルト105の表面(離型層105d)の温度は、R105方向(図10)に回転する過程で、ニップ部101bを通過した後に上昇してゆき、ニップ部101bの入口側付近で最高温度に達する。 Since the surface (release layer 105d) of the belt 105 immediately after passing through the nip portion 101b is deprived of heat by the sheet P, its temperature is lowered to about 100 ° C. On the other hand, the temperature of the inner surface / back surface (base layer 105a) of the belt 105 is kept high by contact with the heater 101a. Therefore, after the belt 105 passes through the nip portion 101b, the heat of the base layer 105a maintained at a high temperature is transmitted to the release layer 105d via the primer layer 105b and the elastic layer 105c. Therefore, the temperature of the surface of the belt 105 (release layer 105d) rises after passing through the nip portion 101b in the process of rotating in the R105 direction (FIG. 10), and reaches the maximum near the inlet side of the nip portion 101b. Reach temperature.
 一方、シートP上のトナーSから染み出したワックスは、定着処理が行われるときにベルト105とトナー像の界面に介在する。その後、ワックスの一部はベルト105に付着する。図10(a)に示すようにシートPの先端側の一部がニップ部101bを通過した段階では、トナーSからベルト105に移行したワックスは領域135aに存在している。この領域ではベルト105の温度が低くワックスが揮発し難いためダストDはほとんど発生しない。シートPがニップ部101bを進行すると、ワックスはベルト105の略全周(135b)に存在した状態となる。このうち、領域135cではベルトが高温になっているため、ワックスが揮発し易い。そして、領域135cから揮発したワックスが凝縮するとダストDが発生する。そのため、領域135cの近傍、すなわちニップ部101bの入口付近(上流側)には多くのダストDが存在する。 On the other hand, the wax that exudes from the toner S on the sheet P intervenes at the interface between the belt 105 and the toner image when the fixing process is performed. Thereafter, a part of the wax adheres to the belt 105. As shown in FIG. 10A, when a part of the front end side of the sheet P passes through the nip portion 101b, the wax transferred from the toner S to the belt 105 exists in the region 135a. In this region, since the temperature of the belt 105 is low and the wax is difficult to volatilize, dust D is hardly generated. As the sheet P advances through the nip portion 101b, the wax is in a state of being present on substantially the entire circumference (135b) of the belt 105. Among these, in the region 135c, since the belt is at a high temperature, the wax tends to volatilize. Then, dust D is generated when the volatilized wax from the region 135c condenses. Therefore, a lot of dust D exists in the vicinity of the region 135c, that is, in the vicinity of the inlet of the nip portion 101b (upstream side).
 また、ニップ部101bの入口付近のダストDは、図11に示すエアフローによって矢印W方向に拡散していく。詳細に説明すると次の通りである。図11に示すように、ベルト105がR105方向に回転していると、ベルト105の表面付近にはR105方向に沿ったエアフローF1が発生する。また、シートPがX方向に沿って搬送されるとシートPの搬送方向Xに沿ったエアフローF2が発生する。ニップ部101bの近傍においてエアフローF1とエアフローF2が衝突すると、ニップ部101bから離れていく方向(W方向)に沿ってエアフローF3が発生する。
(3−2−3)検証
Further, the dust D near the entrance of the nip portion 101b is diffused in the direction of arrow W by the air flow shown in FIG. This will be described in detail as follows. As shown in FIG. 11, when the belt 105 rotates in the R105 direction, an air flow F1 along the R105 direction is generated near the surface of the belt 105. Further, when the sheet P is transported along the X direction, an air flow F2 along the transport direction X of the sheet P is generated. When the airflow F1 and the airflow F2 collide in the vicinity of the nip portion 101b, an airflow F3 is generated along a direction away from the nip portion 101b (W direction).
(3-2-3) Verification
 次にダストDの発生量と温度の関係について検証すべく試験を行った。図9(a)は、試験1における画像形成処理の経過時間とダストD発生量の関係を説明するグラフである。 Next, a test was conducted to verify the relationship between the amount of dust D generated and the temperature. FIG. 9A is a graph for explaining the relationship between the elapsed time of the image forming process in Test 1 and the amount of dust D generated.
 図9(b)は、試験2における画像形成処理の経過時間とダストD発生量の関係を説明するグラフである。 FIG. 9B is a graph for explaining the relationship between the elapsed time of the image forming process in Test 2 and the amount of dust D generated.
 試験では、プリンタ1による画像形成処理中にシート入口400近傍のエアをサンプリングし、ナノ粒子粒径分布計測器を用いて粒子の個数濃度を計測する。 In the test, air in the vicinity of the sheet inlet 400 is sampled during the image forming process by the printer 1, and the number density of particles is measured using a nanoparticle size distribution measuring instrument.
 ここで、試験1では画像形成処理中に何も手を加えず、シート入口400(ニップ部近傍)のエアが暖まるようしている。試験2では、画像形成処理中にシート入口400近傍に外気を吹き付け、シート入口400(ニップ部近傍)のエアが冷めるようにしている。 Here, in Test 1, nothing is done during the image forming process, and the air at the sheet entrance 400 (near the nip) is warmed. In Test 2, outside air is blown near the sheet inlet 400 during the image forming process so that the air at the sheet inlet 400 (near the nip portion) is cooled.
 図9(a)に示すように、試験1におけるダストDの発生量は、画像形成処理の開始直後に上昇し、約100秒後にピークになった後は徐々に低下していく。図9(a)において、時間の経過とともにダストDの発生量が低下している理由は、画像形成処理の進行に伴いベルト105の周辺の気温が上昇していくためである。 As shown in FIG. 9A, the amount of dust D generated in Test 1 increases immediately after the start of the image forming process and gradually decreases after reaching a peak after about 100 seconds. In FIG. 9A, the reason that the amount of dust D generated has decreased with the passage of time is that the temperature around the belt 105 increases as the image forming process proceeds.
 図9(b)に示すように、試験2におけるダストDの発生量は、画像形成処理の開始直後に試験1よりも急激に上昇し約20秒後にピークを迎えていることがわかる。このとき、画像形成処理の開始から200秒経過後までのダストDの発生量は、試験2において試験1の2~5倍である。 As shown in FIG. 9B, it can be seen that the amount of dust D generated in Test 2 increases more rapidly than Test 1 immediately after the start of the image forming process, and reaches a peak after about 20 seconds. At this time, the amount of dust D generated from the start of the image forming process until 200 seconds has elapsed is 2 to 5 times that of Test 1 in Test 2.
 一方で画像形成処理が開始して300秒を超えると、試験1と試験2のダストD発生量に大きな差は生じていない。これは、定着装置103の熱によって加熱された周辺のユニット(不図示)が、シート入口400に向かう外気を事前に暖めるからだと推定される。 On the other hand, when the image forming process starts and exceeds 300 seconds, there is no significant difference in the amount of dust D generated in Test 1 and Test 2. This is presumed to be because peripheral units (not shown) heated by the heat of the fixing device 103 warm the outside air toward the sheet inlet 400 in advance.
 上述したように、ダストDはシート入口400の近傍において発生しやすい。そのため、画像形成装置は、シート入口400の近傍においてダストDを除去することが望ましい。 As described above, the dust D is likely to be generated in the vicinity of the sheet entrance 400. Therefore, it is desirable for the image forming apparatus to remove the dust D in the vicinity of the sheet entrance 400.
 また、シート入口400のエアが冷めているとダストDが発生しやすくなる。そのため、プリンタ1はシート入口400のエアを冷まさず、ダストDの発生を抑制することが望ましい。また、上述したようにダストDは画像形成処理の開始直後の一定期間において顕著に発生する。そのため、プリンタ1は画像形成処理の開始直後にダストDを効率良く回収(濾過)することが望まれる。
(4)ダストDの回収方法
Further, when the air at the sheet entrance 400 is cooled, dust D is likely to be generated. Therefore, it is desirable that the printer 1 suppresses the generation of dust D without cooling the air at the sheet entrance 400. Further, as described above, the dust D is remarkably generated in a certain period immediately after the start of the image forming process. Therefore, it is desired that the printer 1 efficiently collects (filters) the dust D immediately after the start of the image forming process.
(4) Dust D recovery method
 以上で述べたダストDの性質を踏まえて、ダストDの回収方法を説明する。初めにダストDを濾過するフィルタユニット50の構成と動作を説明し、次にフィルタユニット50近辺からのダストDの流出を抑制するエアフロー構成を説明する。最後にエアフローの動作シーケンスを説明する。 Based on the properties of dust D described above, a method for collecting dust D will be described. First, the configuration and operation of the filter unit 50 that filters the dust D will be described, and then the airflow configuration that suppresses the outflow of the dust D from the vicinity of the filter unit 50 will be described. Finally, the air flow operation sequence will be described.
 図1(a)はフィルタユニットの配置位置を説明する図である。図1(b)はシートの後端ハネの様子とフィルタユニットの形状を説明する図である。図2(a)は定着装置周辺の構成を並べて斜視した図である。図2(b)は定着装置の周辺におけるシートの通過位置を示す図である。図3(a)はフィルタユニットを分解して斜視した図である。図3(b)はフィルタユニットが動作する様子を示す図である。図12は、制御回路と各構成の関係を示すブロック図である。図13は各ファンを制御するためのフローチャートである。図14(a)は実施例1におけるサーミスタのシーケンス図である。図14(b)は実施例1における第一ファンのシーケンス図である。図14(c)は実施例1における第二ファンのシーケンス図である。図14(d)実施例1における第三ファンのシーケンス図である。図15(a)は風量制御の効果を説明する第1のグラフである。図15(b)は風量制御の効果を説明する第2のグラフである。図15(c)は風量制御の効果を説明する第3のグラフである。図15(d)は風量制御の効果を説明する第4のグラフである。図17(a)はフィルタユニットの吸引風量Q(L/min)とフィルタユニットの作動によって低減されたダストの割合α(%)の関係、及びα=50%以上とするときに必要な吸引風量Qを示すグラフである。図17(b)はα=60%以上とするときに必要な吸引風量Qを示す。図18は、ベルト105とフィルタユニット吸気口の距離d(mm)と、所定のαを達成するために必要な吸引風量Qの関係を示すグラフである。図19は距離d(mm)と、フィルタ51の必要面積Fs(cm)との関係を示すグラフである。
(4−1)フィルタユニットの構成
Fig.1 (a) is a figure explaining the arrangement position of a filter unit. FIG. 1B is a view for explaining the state of the trailing edge of the sheet and the shape of the filter unit. FIG. 2A is a perspective view of the configuration around the fixing device. FIG. 2B is a diagram illustrating a sheet passing position around the fixing device. FIG. 3A is an exploded perspective view of the filter unit. FIG. 3B is a diagram illustrating how the filter unit operates. FIG. 12 is a block diagram showing the relationship between the control circuit and each component. FIG. 13 is a flowchart for controlling each fan. FIG. 14A is a sequence diagram of the thermistor in the first embodiment. FIG. 14B is a sequence diagram of the first fan in the first embodiment. FIG. 14C is a sequence diagram of the second fan in the first embodiment. FIG. 14D is a sequence diagram of the third fan in the first embodiment. FIG. 15A is a first graph illustrating the effect of air volume control. FIG. 15B is a second graph illustrating the effect of air volume control. FIG. 15C is a third graph illustrating the effect of air volume control. FIG. 15D is a fourth graph illustrating the effect of air volume control. FIG. 17A shows the relationship between the suction air volume Q (L / min) of the filter unit and the dust ratio α (%) reduced by the operation of the filter unit, and the suction air volume required when α = 50% or more. It is a graph which shows Q. FIG. 17B shows the suction air volume Q required when α = 60% or more. FIG. 18 is a graph showing the relationship between the distance d (mm) between the belt 105 and the filter unit air inlet and the suction air volume Q necessary to achieve a predetermined α. FIG. 19 is a graph showing the relationship between the distance d (mm) and the required area Fs (cm 2 ) of the filter 51.
(4-1) Configuration of filter unit
 フィルタユニット50は、図1(a)に示すように、シートPの搬送方向において定着ユニット101と、転写ユニット10の間に位置している。あるいは、シートPの搬送方向において定着装置103のニップ部101bと、転写手段の転写部12aの間に位置している。 The filter unit 50 is located between the fixing unit 101 and the transfer unit 10 in the sheet P conveyance direction, as shown in FIG. Alternatively, it is located between the nip portion 101b of the fixing device 103 and the transfer portion 12a of the transfer unit in the conveyance direction of the sheet P.
 フィルタユニット50は、図1(a)に示すようにダストDを含むエアを、吸気口52aに設けた不織布フィルタであるフィルタ51に引き込むことによって、ダストDをフィルタ51上に回収する。図2と図3に示すようにフィルタユニット50は、フィルタ51と、エアを吸引するための吸気部である第一ファン61と、シート入口400近傍のエアがフィルタ51を通過するようにエアを案内するダクト52と、を有している。 The filter unit 50 collects the dust D on the filter 51 by drawing the air containing the dust D into the filter 51, which is a non-woven filter provided at the intake port 52a, as shown in FIG. As shown in FIGS. 2 and 3, the filter unit 50 includes a filter 51, a first fan 61 that is an air intake unit for sucking air, and air in the vicinity of the seat inlet 400 so that the air passes through the filter 51. And a duct 52 for guiding.
 第一ファン61はシート入口400近傍のエアを機外に吸引するための吸気部である。第一ファン61は、定着ユニット101の長手方向において、シートPの通過領域よりも外側の領域に設けられている。また、第一ファンは、定着ユニット101の長手方向において、ニップ101bよりも外側の領域に設けられている。第一ファン61は吸気口61aと排気口61bを備えており、吸気口61aから排気口61bに向けてエアフローを発生させる。吸気口61aは、ダクト52の排気口52eに接続されダクト52内のエアを吸引するための開口である。排気口61bは、プリンタ1の外側に向けて設けられ、吸気口61aから吸引したエアを機外に向けて排出するための開口である。 The first fan 61 is an intake portion for sucking air in the vicinity of the seat inlet 400 to the outside of the apparatus. The first fan 61 is provided in an area outside the sheet P passing area in the longitudinal direction of the fixing unit 101. The first fan is provided in a region outside the nip 101 b in the longitudinal direction of the fixing unit 101. The first fan 61 includes an intake port 61a and an exhaust port 61b, and generates an air flow from the intake port 61a toward the exhaust port 61b. The intake port 61a is connected to the exhaust port 52e of the duct 52 and is an opening for sucking air in the duct 52. The exhaust port 61b is provided toward the outside of the printer 1 and is an opening for discharging the air sucked from the intake port 61a toward the outside of the apparatus.
 本実施例では第一ファン61としてブロワファンを用いている。ブロワファンは高静圧を特徴としており、フィルタ51のような通気抵抗体があっても一定の風量(吸気量)を確保することができる。 In this embodiment, a blower fan is used as the first fan 61. The blower fan is characterized by high static pressure, and even if there is a ventilation resistor like the filter 51, a constant air volume (intake volume) can be secured.
 ダクト52は、シート入口400近傍のエアを機外に向けて案内するための案内部である。ダクト52は、シート入口400近傍の吸気口52aと、シート入口400近傍から離れた排気口52eを備えている。 The duct 52 is a guide unit for guiding the air in the vicinity of the sheet inlet 400 toward the outside of the apparatus. The duct 52 includes an intake port 52a in the vicinity of the seat inlet 400 and an exhaust port 52e apart from the vicinity of the seat inlet 400.
 吸気口52aはニップ部101bと二次転写ローラ12の間に位置する開口であり、ニップ部側を向くように設けられている。このような構成により、吸気口52aはエアフローF3によって運ばれてくるダストDを図1のように受け止めることができる。 The intake port 52a is an opening located between the nip portion 101b and the secondary transfer roller 12, and is provided to face the nip portion side. With such a configuration, the intake port 52a can receive the dust D carried by the airflow F3 as shown in FIG.
 排気口52eは、吸気口52aよりもその長手方向の外側において、ダクト52の複数の側面のうち吸気口52aとは反対側の側面に設けられている。上述したように排気口52eは吸気口61aに接続されている。 The exhaust port 52e is provided on the side surface opposite to the air intake port 52a among the plurality of side surfaces of the duct 52 outside the air intake port 52a in the longitudinal direction. As described above, the exhaust port 52e is connected to the intake port 61a.
 また、ダクト52は吸気口52aを覆うようにフィルタ51を取り付け可能である。詳細には、ダクト52は吸気口52aの縁部52cと、湾曲部52dを備えるリブ52bと、を備えている。縁部52cとリブ52bによって支持されるように、フィルタ51をダクト52に固定すると、吸気口52aはフィルタ51によって覆われる。本実施例のフィルタ51は、耐熱性接着剤によって縁部52c及びリブ52bに隙間なく接着されている。そのため、吸気口52aを通過するエアがフィルタ51を必ず通過する。また本実施例のフィルタ51は縁部52cの湾曲部52dに沿って接着されている。換言すると、ダクト52は、フィルタ51を湾曲させた状態で保持している。このとき、フィルタ51は、その短手方向の中央部がニップ部101bから離間する方向に湾曲している。換言すると、フィルタ51はその短手方向の中央部がダクト52の内側に向かって突出している。
なお、フィルタ51の配置位置は吸気口52aには限られない。たとえば図20に示すように、フィルタ51が、ダクト57の吸気口58よりも所定長さH(例えば3mm)だけ奥まった位置に設けられていてもよい。奥まった位置に設ければ、分解メンテナンス等の作業をするときに、作業者が不用意にフィルタ51に触れて損傷させる危険を低減できる。ただし、フィルタユニットのサイズを小型化する観点からは、図1に示すように吸気口にフィルタ51を設けた方が良い。フィルタ51の位置は、フィルタ51の保護とフィルタユニットの小型化のどちらを優先するかによって決められるべきである。
Further, the filter 51 can be attached to the duct 52 so as to cover the intake port 52a. Specifically, the duct 52 includes an edge 52c of the intake port 52a and a rib 52b including a curved portion 52d. When the filter 51 is fixed to the duct 52 so as to be supported by the edge portion 52c and the rib 52b, the air inlet 52a is covered with the filter 51. The filter 51 of this embodiment is adhered to the edge portion 52c and the rib 52b without a gap by a heat-resistant adhesive. Therefore, the air passing through the intake port 52a always passes through the filter 51. Further, the filter 51 of this embodiment is bonded along the curved portion 52d of the edge portion 52c. In other words, the duct 52 holds the filter 51 in a curved state. At this time, the filter 51 is curved in a direction in which the central portion in the short direction is separated from the nip portion 101b. In other words, the central portion of the filter 51 in the short direction protrudes toward the inside of the duct 52.
The arrangement position of the filter 51 is not limited to the intake port 52a. For example, as shown in FIG. 20, the filter 51 may be provided at a position deeper than the intake port 58 of the duct 57 by a predetermined length H (for example, 3 mm). If it is provided in a deep position, it is possible to reduce the risk of an operator inadvertently touching and damaging the filter 51 when performing work such as disassembly maintenance. However, from the viewpoint of reducing the size of the filter unit, it is better to provide the filter 51 at the intake port as shown in FIG. The position of the filter 51 should be determined depending on whether protection of the filter 51 or downsizing of the filter unit is prioritized.
 このときダクト57の内部の通気経路は、吸気口58からフィルタ51に至る領域において、図20の紙面垂直方向(ベルト105の回転軸線方向)の通気経路長さである長さ範囲Aの少なくとも一部が、同方向における画像形成領域の範囲Bと重複する。この関係は図1のように吸気口52aにフィルタ51を装着した場合も同様である。図2(b)を用いて説明すると、後述するWfが長さ範囲Aに相当し、同じく後述するWp−maxが長さ範囲Bに相当する。ダストはシートP上に形成されたトナー画像からベルト105に移行したワックスから発生するため、ダストを確実に吸引できる範囲である長さ範囲Aの少なくとも一部が、長さ範囲Bと重複している必要がある。 At this time, the ventilation path inside the duct 57 is at least one of the length range A that is the ventilation path length in the direction perpendicular to the plane of FIG. 20 (in the direction of the rotation axis of the belt 105) in the region from the intake port 58 to the filter 51. Part overlaps the range B of the image forming area in the same direction. This relationship is the same when the filter 51 is attached to the intake port 52a as shown in FIG. 2B, Wf described later corresponds to the length range A, and Wp-max described later corresponds to the length range B. Since dust is generated from the wax transferred from the toner image formed on the sheet P to the belt 105, at least a part of the length range A that is a range in which dust can be reliably sucked overlaps with the length range B. Need to be.
 本実施例では、長さ範囲Aを350mmとしているが、長さ範囲Aが使用頻度の高いA4サイズシートの標準的な最大画像幅である200mm(A4サイズシートの長手方向を搬送方向に一致させた時)を超えていれば良い。そうすることによって、実際の使用条件において効果的にダスト低減を図ることができる。 In this embodiment, the length range A is set to 350 mm, but the length range A is 200 mm which is a standard maximum image width of a frequently used A4 size sheet (the longitudinal direction of the A4 size sheet is made to coincide with the conveyance direction). If it is over). By doing so, it is possible to effectively reduce dust under actual use conditions.
 一方で長さ範囲Aをさらに長くすれば、より大きなサイズのシートに対応できるだけでなく、ダストが周辺のエアフロー等によって画像形成領域の外側に拡散した場合でも、ダストをフィルタ51によって確実に回収することができる。しかし長さ範囲Aを長くすぎると、フィルタ51はダスト発生領域の外側にあるクリーンなエアを吸引してしまい、フィルタユニットのダスト吸引効率を低下させてしまう。以上の考察より、長さ範囲Aの上限は、一般的な電子写真式プリンタにおいて使用可能な最大サイズシートの最大画像幅に、その外側にダストが拡散する可能性がある領域の長さを足した値にすれば良いとわかる。 On the other hand, if the length range A is further increased, not only can the sheet of a larger size be accommodated, but even if the dust diffuses outside the image forming area due to the surrounding airflow or the like, the dust is reliably collected by the filter 51. be able to. However, if the length range A is too long, the filter 51 sucks clean air outside the dust generation region, thereby reducing the dust suction efficiency of the filter unit. From the above considerations, the upper limit of the length range A is the maximum image width of the maximum size sheet that can be used in a general electrophotographic printer, plus the length of the area where dust may diffuse outside. It turns out that it should just be set to the value.
 例えば、A3サイズシートの短手方向幅297mmから端部の空白領域(非画像領域)約5mmを除いた287mmを最大画像幅とした場合、その外側に約100mm離れた位置までダストが拡散すると仮定する。その場合、長さ範囲Aの上限は、287mmに200mm(=100mm×2)を足した値である487mmに若干の余裕を持たせた500mmとするのが適切である。 For example, assuming that the maximum image width is 287 mm obtained by excluding a blank area (non-image area) of about 5 mm from the lateral width of 297 mm of the A3 size sheet, it is assumed that dust is diffused to a position about 100 mm away from the outside. To do. In that case, it is appropriate that the upper limit of the length range A is 500 mm with a slight margin added to 487 mm which is a value obtained by adding 200 mm (= 100 mm × 2) to 287 mm.
 以上をまとめると、長さ範囲Aは、使用するシートのサイズとエアフローによるダストの拡散程度を考慮して、200mm~500mmの範囲から適宜選択されれば良いとわかる。ただし、様々なサイズの記録材の使用を想定し、長さ範囲Aは、画像形成装置に使用可能な最小幅の記録材の幅以上に設定するのが好ましい。
以上で述べたように、フィルタ51はベルト105の長手方向に延伸する形状を有しているが、このような形状とすることにより、ダクトの吸気口52aにおけるエアの通過風速を長手方向で均一にすることができる。換言すると、吸気口52aに通気抵抗体であるフィルタ51を配置することで、フィルタ51の背面領域の全域を一定の負圧に保つことができる。すなわち図3の(b)に示すポイント53aと53bと53cの負圧は、略同じ値になっている。これは、フィルタ51の通気抵抗が、ダクト52内の通気抵抗よりも格段に大きいためである。ポイント53aと53bと53cの負圧が同レベルであれば、フィルタ51に吸引されるエアF4の風速は、フィルタ51の全面にわたって均一化される。風速が均一化された結果、フィルタユニット50は、ベルト105から発生するダストDを効率良く(最小限の風量で)回収することができる。
In summary, it can be understood that the length range A may be appropriately selected from the range of 200 mm to 500 mm in consideration of the size of the sheet to be used and the degree of dust diffusion due to airflow. However, assuming the use of recording materials of various sizes, the length range A is preferably set to be equal to or larger than the width of the minimum width recording material that can be used in the image forming apparatus.
As described above, the filter 51 has a shape extending in the longitudinal direction of the belt 105. By adopting such a shape, the air passing velocity at the air inlet 52a of the duct is uniform in the longitudinal direction. Can be. In other words, by arranging the filter 51, which is a ventilation resistor, at the intake port 52a, the entire back region of the filter 51 can be maintained at a constant negative pressure. That is, the negative pressures at the points 53a, 53b, and 53c shown in FIG. 3B are substantially the same value. This is because the ventilation resistance of the filter 51 is much larger than the ventilation resistance in the duct 52. If the negative pressures at the points 53a, 53b and 53c are at the same level, the wind speed of the air F4 sucked into the filter 51 is made uniform over the entire surface of the filter 51. As a result of the uniform wind speed, the filter unit 50 can efficiently collect the dust D generated from the belt 105 (with a minimum air volume).
 フィルタユニット50による吸気量が小さいと、ベルト105の近傍に流れ込むエアの量も小さくなる。そのため、ベルト105の近傍のエアの温度低下を小さくすることができる。その結果、ダストDの発生を抑制することができる。また、ベルト105の温度低下を抑えられるため省エネにも有利である。
(4−1−1)フィルタの性質
When the amount of intake air by the filter unit 50 is small, the amount of air flowing into the vicinity of the belt 105 is also small. Therefore, the temperature drop of the air near the belt 105 can be reduced. As a result, generation of dust D can be suppressed. Further, since the temperature drop of the belt 105 can be suppressed, it is advantageous for energy saving.
(4-1-1) Filter properties
 フィルタ51は、吸気口52aを通過するエアからダストDを濾過(回収、除去)するための濾過部材である。ワックスに起因するダストDを回収する場合、フィルタ51は、静電不織布フィルタであることが望ましい。静電不織布フィルタとは静電気を保持した繊維を不織布状に形成したもので、ダストDを高効率で濾過することができる。 The filter 51 is a filter member for filtering (collecting and removing) the dust D from the air passing through the intake port 52a. When collecting the dust D caused by the wax, the filter 51 is preferably an electrostatic nonwoven fabric filter. The electrostatic nonwoven fabric filter is a non-woven fabric formed of fibers that retain static electricity, and can filter dust D with high efficiency.
 静電不織布フィルタは、繊維が高密度であるほど濾過性能が高いが、半面、圧力損失が大きくなりやすい。この関係は静電不織布の厚さを厚くした場合も同様である。また繊維の帯電強度(静電気の強さ)を高くすれば、圧力損失を一定にしたまま濾過性能を向上させることができる。静電不織布の厚さと繊維密度、及び繊維の帯電強度は、フィルタに求められる濾過性能に応じて適宜設定することが望ましい。本実施例のフィルタ51に用いられる静電不織布は、通過風速が15cm/sのときにおける通気抵抗が約90Pa、ダストの濾過率が80%程度になるように、繊維密度と厚さ、帯電強度が設定されている。なお帯電強度は技術的に上限があり、静電不織布の性能を調整するときは繊維密度と厚さを変えることによって行う。たとえば繊維密度と厚さを上げる等すればダストの濾過率をさらに高めることができる。しかしその場合は通気抵抗が高くなってしまい、事務機等で使う標準的なブロワファンの発生圧力では十分な風量を確保できなくなる。一方で繊維密度と厚さを下げる等すれば通気抵抗が下がり、より安価で発生圧力の低いファンを使用できるようになるが、ダストの濾過率も下がってしまうので実用的でなくなってしまう。さらに通気抵抗が過度に下がってしまうと、フィルタ51を通過するエアの風速について長手方向でムラが生じ易くなってしまう。具体的には、第一ファンに近い個所ではエアの通過風速が速くなり、遠い個所では遅くなってダストを回収できなくなる。通気抵抗は少なくとも50Pa以上であるのが好ましい。以上に述べた要因、すなわち静電不織布の帯電処理技術の水準、標準的なブロワファンの使用、フィルタ51の通過エア風速の均一化を考慮すれば、使用すべき静電不織布のスペック範囲がおのずと決まってくる。前述の数値を中心としたスペック、すなわち通過風速15cm/sにおける通気抵抗(Pa)が50以上130以下、ダスト濾過率が60%以上90%以下の範囲にあるものが、使用に適しているといえる。 The electrostatic nonwoven fabric filter has higher filtration performance as the fiber density is higher, but on the other hand, pressure loss tends to increase. This relationship is the same when the thickness of the electrostatic nonwoven fabric is increased. Moreover, if the charging strength (static strength) of the fiber is increased, the filtration performance can be improved while keeping the pressure loss constant. It is desirable that the thickness and fiber density of the electrostatic nonwoven fabric and the charging strength of the fibers are appropriately set according to the filtration performance required for the filter. The electrostatic nonwoven fabric used for the filter 51 of this example has a fiber density, thickness, and charging strength so that the ventilation resistance is about 90 Pa and the filtration rate of dust is about 80% when the passing wind speed is 15 cm / s. Is set. The charging strength has a technical upper limit, and the performance of the electrostatic nonwoven fabric is adjusted by changing the fiber density and thickness. For example, the dust filtration rate can be further increased by increasing the fiber density and thickness. However, in that case, the ventilation resistance becomes high, and it becomes impossible to secure a sufficient air volume with the pressure generated by a standard blower fan used in an office machine or the like. On the other hand, if the fiber density and thickness are reduced, the airflow resistance is lowered, and a fan that is less expensive and has a low generated pressure can be used. However, the dust filtration rate also decreases, which makes it impractical. Further, if the airflow resistance is excessively lowered, unevenness in the longitudinal direction is likely to occur in the wind speed of the air passing through the filter 51. Specifically, the air passing speed increases at locations close to the first fan, and becomes slower at locations far away, making it impossible to collect dust. The ventilation resistance is preferably at least 50 Pa. Considering the factors described above, that is, the level of electrostatic nonwoven fabric charging technology, the use of a standard blower fan, and the uniform air velocity of the air passing through the filter 51, the specification range of the electrostatic nonwoven fabric to be used is naturally It will be decided. The specifications centered on the above numerical values, that is, those having a ventilation resistance (Pa) in the range of 50 to 130 and a dust filtration rate of 60% to 90% at a passing wind speed of 15 cm / s are suitable for use. I can say that.
 なお、排気エア中のトナーを濾過しようとした場合、静電不織布は通過風速が10cm/sにおいて通気抵抗が10Pa以下で用いられる。したがって、本実施例のフィルタ51は通気抵抗が比較的大きな静電不織布を用いていると言える。 When trying to filter the toner in the exhaust air, the electrostatic nonwoven fabric is used with a ventilation resistance of 10 Pa or less at a passing wind speed of 10 cm / s. Therefore, it can be said that the filter 51 of this embodiment uses an electrostatic nonwoven fabric having a relatively large ventilation resistance.
 次に、フィルタ51を通過するエアの通過風速Fvについて述べる。通過風速が速ければ速いほどフィルタ51を通過する単位時間あたりのエア風量は多くなり、ダストを確実に回収できるようになる。しかしながら通過風速が速すぎると、シート入口400の近傍のエアの温度を低下させ、その結果としてダストDの発生量を増やしてしまう。さらに通過風速の上昇は、フィルタ51の通気抵抗上昇と、ダスト濾過率低下をもたらす。
そのため、通過風速は最大でも30cm/s以下に抑えることが望ましく、エア風量を確保する観点からは少なくとも5cm/s以上にすることが望ましい。つまり、通過風速Fv(cm/s)は、5以上30以下にするのが好ましい。本例では30cm/sと5cm/sの略中間値であり、風量とフィルタ性能の確保、ダストDの発生量抑制の観点から最もバランスのとれた風速15cm/sを通過風速設定値としている。
以上述べたフィルタ51を通過するエアの風速及びフィルタ51の通気抵抗は、マルチノズルファン風量測定装置 F−401(ツクバリカセイキ)により測定した。フィルタ51のダスト濾過率はフィルタ51の上流と下流のダスト濃度をTSI社Fast Mobility Particle Sizer(FMPS)を用いて測定することにより求めた。上流と下流の濃度差を上流の濃度で割って、百分率で表現した数値がダストの濾過率である。
(4−1−2)フィルタの長さ
Next, the passing wind speed Fv of air passing through the filter 51 will be described. The faster the passing wind speed, the greater the amount of air wind per unit time passing through the filter 51, and the dust can be reliably collected. However, if the passing wind speed is too high, the temperature of the air in the vicinity of the sheet inlet 400 is lowered, and as a result, the amount of dust D generated is increased. Further, the increase in the passing wind speed brings about an increase in ventilation resistance of the filter 51 and a decrease in dust filtration rate.
For this reason, the passing air speed is desirably suppressed to 30 cm / s or less at the maximum, and is desirably at least 5 cm / s or more from the viewpoint of securing the air flow rate. That is, the passing wind speed Fv (cm / s) is preferably 5 or more and 30 or less. In this example, it is a substantially intermediate value between 30 cm / s and 5 cm / s, and the passing air speed setting value is set to a wind speed of 15 cm / s, which is the most balanced from the viewpoint of securing the air volume and filter performance and suppressing the generation amount of dust D.
The air velocity of the air passing through the filter 51 and the airflow resistance of the filter 51 described above were measured with a multi-nozzle fan air flow measuring device F-401 (Tsukubarika Seiki). The dust filtration rate of the filter 51 was determined by measuring the dust concentration upstream and downstream of the filter 51 using Fast Mobility Particle Sizer (FMPS) manufactured by TSI. The difference between the upstream and downstream concentration is divided by the upstream concentration, and the numerical value expressed as a percentage is the dust filtration rate.
(4-1-2) Filter length
 フィルタ51は、図2(a)と図2(b)に示すように、シート搬送方向と直交する方向(回転体であるベルト105の回転軸方向)を長手とする細長い形状をしている。図2(b)のシートP上に斜線で示した領域は、所定の幅サイズのシートPを使用した場合の画像形成が可能な領域Wp−max(前述の長さ範囲Bに相当)である。なお、実際には図2(b)で見えているシートPの裏面側に画像が形成される。図2(b)に示すように、領域Wp−maxはシートPの幅サイズ以下の領域である。この領域においてシートP上にトナー画像が形成され、この領域において、ベルト105にワックスが付着し、この領域においてダストDが発生する。
そのため、前述したようにダクト52の通気経路は、ベルト105の回転軸方向の長さ範囲Aの少なくとも一部が、同方向における画像形成領域の長さ範囲B、すなわちWp−maxと重複していなければならない。そのため図2(b)に示すフィルタ51の長さWfは、長さ範囲Aと同等の長さを有していなければならず、Wp−maxを上回る長さに設定されている。
As shown in FIGS. 2A and 2B, the filter 51 has a long and narrow shape with the direction perpendicular to the sheet conveying direction (the rotational axis direction of the belt 105 serving as a rotating body) as a longitudinal direction. An area indicated by hatching on the sheet P in FIG. 2B is an area Wp-max (corresponding to the above-described length range B) in which an image can be formed when the sheet P having a predetermined width size is used. . In practice, an image is formed on the back side of the sheet P visible in FIG. As illustrated in FIG. 2B, the region Wp-max is a region that is equal to or smaller than the width size of the sheet P. In this area, a toner image is formed on the sheet P. In this area, wax adheres to the belt 105, and dust D is generated in this area.
Therefore, as described above, in the ventilation path of the duct 52, at least a part of the length range A in the rotation axis direction of the belt 105 overlaps with the length range B of the image forming region in the same direction, that is, Wp-max. There must be. Therefore, the length Wf of the filter 51 shown in FIG. 2 (b) must have a length equivalent to the length range A, and is set to a length exceeding Wp-max.
 ところで、本実施例の定着装置103は、ベルト105の幅方向の中央を基準にシートPを搬送する。そのため、使用頻度の高いシートサイズの領域Wp−maxでは、シートの幅サイズによらずダストDが発生し易い。ダストDを効率良く回収するためには、フィルタ51の長さWfは使用頻度の高いシートサイズの領域Wp−maxを上回る必要がある。その結果、Wfは好ましくは使用頻度の高いA4サイズシートの標準的な最大画像幅200mm(A4サイズシートの長手方向を搬送方向に一致させた時)を超えていることが望ましい。
(4−1−3)フィルタの面積と位置
By the way, the fixing device 103 according to the present exemplary embodiment conveys the sheet P with reference to the center in the width direction of the belt 105. Therefore, in the region Wp-max of the sheet size that is frequently used, dust D is likely to be generated regardless of the sheet width size. In order to efficiently collect the dust D, the length Wf of the filter 51 needs to exceed the region Wp-max of the sheet size that is frequently used. As a result, Wf preferably exceeds the standard maximum image width of 200 mm (when the longitudinal direction of the A4 size sheet coincides with the transport direction) of the frequently used A4 size sheet.
(4-1-3) Filter area and position
 フィルタ51の面積と位置は、フィルタ51によるダストの低減量を決める重要パラメータである。ダストを多く低減したいときは、フィルタ51をダスト発生箇所であるベルト105に近接させてダストをより効果的に吸引するとともに、フィルタ51の面積Fs(cm)をより大きくすれば良い。図24(a)に示すようにフィルタのエア通過風速Fvが小さくなればなるほど、フィルタ通気抵抗は下がり、ダスト濾過率は上昇する。通過風速Fvが小さくなれば、エアに含まれるダストの移動速度も下がるため、ダストはフィルタを構成する静電不織布の繊維にキャッチされやすくなる為である。また図24(b)に示すように、通過風速Fvはフィルタの面積Fs(cm)と反比例の関係にある。すなわち、フィルタ面積Fsが大きくなれば通過風速Fvが下がり、フィルタ通気抵抗も下がる。フィルタ通気抵抗が下がれば、同じファンを用いた時にフィルタに吸引されるエアの風量Q(L/min)が増加して、より多くのダストをフィルタ51に引き込むことができる。さらに通過風速Fvの低下とともにフィルタ51のダスト濾過率が上昇する。つまりプリンタ1から発生するダストは、フィルタ面積Fsを大きくすればするほど低減できるわけである。以下、フィルタの面積と位置、フィルタによるダスト低減量の関係をより詳細に解説し、フィルタの面積と位置を決める数式を導出する。 The area and position of the filter 51 are important parameters that determine the amount of dust reduction by the filter 51. When it is desired to reduce the amount of dust, the filter 51 may be brought close to the belt 105 where dust is generated to suck the dust more effectively, and the area Fs (cm 2 ) of the filter 51 may be increased. As shown in FIG. 24A, as the air passing wind speed Fv of the filter decreases, the filter ventilation resistance decreases and the dust filtration rate increases. This is because if the passing wind speed Fv is reduced, the moving speed of the dust contained in the air is also lowered, so that the dust is easily caught by the fibers of the electrostatic nonwoven fabric constituting the filter. As shown in FIG. 24B, the passing wind speed Fv is inversely proportional to the filter area Fs (cm 2 ). That is, as the filter area Fs increases, the passing wind speed Fv decreases and the filter ventilation resistance also decreases. If the filter ventilation resistance decreases, the air volume Q (L / min) of air sucked into the filter when the same fan is used increases, and more dust can be drawn into the filter 51. Furthermore, the dust filtration rate of the filter 51 increases as the passing wind speed Fv decreases. That is, dust generated from the printer 1 can be reduced as the filter area Fs is increased. In the following, the relationship between the area and position of the filter and the amount of dust reduction by the filter will be explained in more detail, and a formula for determining the area and position of the filter will be derived.
 図17(a)と図17(b)は、実験によって求めたフィルタユニット50の吸引風量Qとダスト低減率αの関係を示している。ダスト低減率αは、フィルタ51を用いない時にプリンタ1から発生するダスト量Doと、フィルタ51を用いることによって低減されるダスト量Deにより、以下式にて表わされる。
 α(%)=De÷Do×100
FIG. 17A and FIG. 17B show the relationship between the suction air volume Q of the filter unit 50 and the dust reduction rate α obtained by experiments. The dust reduction rate α is expressed by the following equation using a dust amount Do generated from the printer 1 when the filter 51 is not used and a dust amount De reduced by using the filter 51.
α (%) = De ÷ Do × 100
 図17(a)と図17(b)より、吸引風量Qが上昇すれば、ダスト低減率αも上昇することがわかる。これは、吸引風量Qの上昇に伴い、ベルト105から発生したダストDがフィルタ51により多く引き込まれる為である。
また、フィルタの長さ(ベルト105回転軸方向長さ)Wf(mm)と、ベルト105とフィルタ51の間の距離d(mm)に応じて、図中に3本の線(Line.A、Line.B、Line.C)を引いている。距離dは、図20に示すように、ベルト105の表面と、ダクト57の吸気口58の中心57c(吸気口の端部57aと57bの中点)の間の距離を意味する。なお、図1の例でいうと、図20の中心57cが図1の中心50dに相当し、端部57aと57bはそれぞれ50bと50cに相当する。
図17のLine.AとLine.Bを比較すると、Wfはともに350mmであり、dがそれぞれ20mm、35mmとなっている。d=20であるLine.Aは、d=35であるLine.Bを上回っているが、これはフィルタ51がベルト105に近くなればなるほどベルト105から発生するダストを効果的に吸引できるためである。
Line.Cは、フィルタ51の長さWfを、画像形成領域の長さより短い40mmとした時のラインである。Line.Cの条件ではベルト105上のダスト発生領域(画像が通過してトナーのワックスが付着する領域)の中央部分だけをフィルタ51に吸引しているため、Line.CはLine.AとLine.Bを大きく下回る。
また、図17(a)はα≧50%とした場合に必要な吸引風量Qが、d=20mm(Line.A)の時は16.3L/min以上、d=35mm(Line.B)の時は35L/min以上であることを意味している。図17(b)はα≧60%とした場合に必要な吸引風量Qが、d=20mm(Line.A)の時は35L/min以上、d=35mm(Line.B)の時は78.4L/min以上であることを意味している。α≧50%は、フィルタによるダスト低減目標を考える際の指標となる数値である。
多くの電子写真式プリンタは、ダストを50%程度低減すれば、装置内部のダスト汚れに起因する画像不良等の問題を効果的に防ぐことができる為である。ただし一部のプリンタはα≧60%としないと十分な効果を得られない場合もあるので、本例ではα≧60%とした場合に必要な吸引風量Qを図17(b)で見積もっている。なお実験に用いたフィルタ51は、通過風速15cm/sのときの通気抵抗が約90Paであり、ダスト濾過率が約80%である。
次に図18について説明する。図18は、目標とするダスト低減率αを達成するために必要な吸引風量Q(L/min)と距離d(mm)の関係を、図17(a)と図17(b)のデータに基づいてプロットしたものである。α=50%を目標とする場合、d=20の時はQ=16.5であり、d=35の時はQ=35である。これらを結んだ線はQ=1.25×d−8.67により表わされる。同様にα=60%を目標とする場合、Q=2.89×d−22.9となる。そしてαを50%以上、又は60%以上としたいときは、Qをより大きくすれば良いので以下の関係が成立する。
α≧50%:1.25×d(mm)−8.67≦Q(L/min)
α≧60%:2.89×d(mm)−22.9≦Q(L/min)
なお吸引風量Qは、大きくしすぎるとベルト105の表面の熱を過度に奪ってしまう。熱が過度に奪われると、その分、制御回路Aはヒータ101aに電力を投入するのでプリンタ1全体の消費電力を増やしてしまう。消費電力抑制の観点から、吸引風量Qは200L/min以下とするのが良い。この条件を上記式に加えると以下式を得ることができる。
α≧50%:1.25×d(mm)−8.67≦Q(L/min)≦200
α≧60%:2.89×d(mm)−22.9≦Q(L/min)≦200
次に、フィルタ面積Fs(cm)を決定する。フィルタ面積Fs(cm)は、フィルタ通過風速Fv(cm/s)によって決まる。
 Q(L/min)=Fs(cm)×Fv(cm/s)÷1000×60。
 Fs(cm)=Q(L/min)÷Fv(cm/s)×1000÷60。
From FIG. 17A and FIG. 17B, it can be seen that if the suction air volume Q increases, the dust reduction rate α also increases. This is because more dust D generated from the belt 105 is drawn into the filter 51 as the suction air volume Q increases.
Depending on the length of the filter (belt 105 rotation axis direction length) Wf (mm) and the distance d (mm) between the belt 105 and the filter 51, three lines (Line.A, Line.B, Line.C). As shown in FIG. 20, the distance d means the distance between the surface of the belt 105 and the center 57c of the air inlet 58 of the duct 57 (the midpoint between the air inlet ends 57a and 57b). In the example of FIG. 1, the center 57c in FIG. 20 corresponds to the center 50d in FIG. 1, and the end portions 57a and 57b correspond to 50b and 50c, respectively.
Line. Of FIG. A and Line. Comparing B, Wf is 350 mm and d is 20 mm and 35 mm, respectively. Line.d = 20. A is Line. This is because the dust generated from the belt 105 can be sucked more effectively as the filter 51 becomes closer to the belt 105.
Line. C is a line when the length Wf of the filter 51 is 40 mm, which is shorter than the length of the image forming area. Line. Under the condition C, only the central part of the dust generation area (area where the image passes and the toner wax adheres) on the belt 105 is sucked into the filter 51. C is Line. A and Line. B is far below B.
In FIG. 17A, the suction air flow rate Q required when α ≧ 50% is 16.3 L / min or more when d = 20 mm (Line A), and d = 35 mm (Line B). Time means 35 L / min or more. FIG. 17 (b) shows that the required suction air volume Q when α ≧ 60% is 35 L / min or more when d = 20 mm (Line. A), and 78. When d = 35 mm (Line. B). It means 4 L / min or more. α ≧ 50% is a numerical value serving as an index when considering a dust reduction target by a filter.
This is because many electrophotographic printers can effectively prevent problems such as image defects due to dust contamination inside the apparatus if the dust is reduced by about 50%. However, some printers may not be able to obtain a sufficient effect unless α ≧ 60%. Therefore, in this example, the required suction air volume Q when α ≧ 60% is estimated in FIG. 17B. Yes. The filter 51 used in the experiment has a ventilation resistance of about 90 Pa when the passing wind speed is 15 cm / s, and a dust filtration rate of about 80%.
Next, FIG. 18 will be described. FIG. 18 shows the relationship between the suction air volume Q (L / min) and the distance d (mm) necessary for achieving the target dust reduction rate α in the data of FIGS. 17 (a) and 17 (b). Based on the plot. When α = 50% is targeted, Q = 16.5 when d = 20 and Q = 35 when d = 35. A line connecting them is represented by Q = 1.25 × d−8.67. Similarly, when α = 60% is targeted, Q = 2.89 × d−22.9. When α is desired to be 50% or more, or 60% or more, Q can be increased, and the following relationship is established.
α ≧ 50%: 1.25 × d (mm) −8.67 ≦ Q (L / min)
α ≧ 60%: 2.89 × d (mm) −22.9 ≦ Q (L / min)
If the suction air volume Q is too large, the heat of the surface of the belt 105 is excessively taken away. If the heat is taken away excessively, the control circuit A increases the power consumption of the entire printer 1 because the control circuit A supplies power to the heater 101a. From the viewpoint of power consumption suppression, the suction air volume Q is preferably 200 L / min or less. When this condition is added to the above equation, the following equation can be obtained.
α ≧ 50%: 1.25 × d (mm) −8.67 ≦ Q (L / min) ≦ 200
α ≧ 60%: 2.89 × d (mm) −22.9 ≦ Q (L / min) ≦ 200
Next, the filter area Fs (cm 2 ) is determined. The filter area Fs (cm 2 ) is determined by the filter passing wind speed Fv (cm / s).
Q (L / min) = Fs (cm 2 ) × Fv (cm / s) ÷ 1000 × 60.
Fs (cm 2 ) = Q (L / min) ÷ Fv (cm / s) × 1000 ÷ 60.
 前述したQの範囲を記述する式を、上記式によってFsを用いた式に書き直せば、フィルタの位置と面積を決定する下記式を得ることができる。
α≧50%:
Figure JPOXMLDOC01-appb-I000004
 α≧60%:
Figure JPOXMLDOC01-appb-I000005
By rewriting the above-described formula describing the Q range into a formula using Fs by the above formula, the following formula for determining the position and area of the filter can be obtained.
α ≧ 50%:
Figure JPOXMLDOC01-appb-I000004
α ≧ 60%:
Figure JPOXMLDOC01-appb-I000005
 ここで、通過風速Fvを15cm/sとすれば、Fsは以下式により表現される。
 α≧50%:
Figure JPOXMLDOC01-appb-I000006
 α≧60%:
Figure JPOXMLDOC01-appb-I000007
Here, if the passing wind speed Fv is 15 cm / s, Fs is expressed by the following equation.
α ≧ 50%:
Figure JPOXMLDOC01-appb-I000006
α ≧ 60%:
Figure JPOXMLDOC01-appb-I000007
 図19は、上記式の範囲をグラフに表したものである。ダスト濾過率αを50%以上としたい場合は、Fsとdを図中の範囲1に入るように設定すれば良い。ダスト濾過率αを60%以上としたい場合は、Fsとdを図中の範囲2に入るように設定すれば良い。
なお上記式によって決まるdの範囲とは別に、dの値には注意を要する制限がある。フィルタ51とベルト105を近づけ過ぎると、ベルト105からの輻射によりフィルタ51が熱的に劣化し、濾過性能が低下してしまう虞がある。そのため、フィルタ51は、ニップ部101bに対して適度な距離に配置されていることが望ましい。具体的には、フィルタ51とベルト105の間隔d(最短距離)は5以上100以下であることが望ましい。
(4−1−4)フィルタの曲面形状
FIG. 19 is a graph showing the range of the above formula. In order to set the dust filtration rate α to 50% or more, Fs and d may be set so as to fall within the range 1 in the figure. If the dust filtration rate α is desired to be 60% or more, Fs and d may be set so as to fall within the range 2 in the figure.
Apart from the range of d determined by the above formula, the value of d has a limit that requires attention. If the filter 51 and the belt 105 are too close to each other, the filter 51 may be thermally deteriorated by radiation from the belt 105, and the filtration performance may be reduced. Therefore, it is desirable that the filter 51 is disposed at an appropriate distance with respect to the nip portion 101b. Specifically, the distance d (shortest distance) between the filter 51 and the belt 105 is preferably 5 or more and 100 or less.
(4-1-4) Curved surface shape of the filter
 上述したように、フィルタ51をベルト105の近傍に配置した場合、フィルタ51と搬送されるシートPとの距離も近くなる。そのためシートPの搬送が乱れた場合にフィルタ51の吸気面51aとシートPが接触する虞がある。フィルタ51とシートPが接触すると、シートP上のトナー画像が乱れる虞がある。また、シートPによってフィルタ51が傷つき、ダストDの回収効率が低下する虞がある。 As described above, when the filter 51 is disposed in the vicinity of the belt 105, the distance between the filter 51 and the conveyed sheet P is also reduced. Therefore, when the conveyance of the sheet P is disturbed, there is a possibility that the intake surface 51a of the filter 51 and the sheet P come into contact with each other. When the filter 51 and the sheet P come into contact with each other, the toner image on the sheet P may be disturbed. Further, the filter 51 may be damaged by the sheet P, and the dust D recovery efficiency may be reduced.
 そこで、本実施例ではシートPとフィルタ51の接触を抑制する工夫を行っている。 Therefore, in this embodiment, a device for suppressing the contact between the sheet P and the filter 51 is performed.
 前述したシートPの搬送の乱れとしてはシートPの後端ハネという現象が挙げられる。後端ハネは、ニップ部101bと転写部12aによって挟持搬送されるシートPの後端Pendが転写部12aを通過したときに、後端Pendが図中Vの方向に大きく変位する現象である。 As the above-mentioned disturbance of the conveyance of the sheet P, there is a phenomenon called trailing edge splashing of the sheet P. The trailing edge splash is a phenomenon in which the trailing edge Pend is greatly displaced in the direction V in the drawing when the trailing edge Pend of the sheet P nipped and conveyed by the nip portion 101b and the transfer portion 12a passes through the transfer portion 12a.
 後端ハネは、もともとのシートPの形状が変形(カール)していた場合に生じ易い。また、シートPが剛性の低い薄紙である場合もニップ部101bの形状に沿ってシートPが変形するため後端ハネが生じやすい。 The trailing edge splash is likely to occur when the original shape of the sheet P is deformed (curled). Further, even when the sheet P is thin paper with low rigidity, the sheet P is deformed along the shape of the nip portion 101b, so that trailing edge splash is likely to occur.
 この後端ハネに対処すべく本実施例ではフィルタ51を図1(a)のように配置している。すなわち、フィルタ51の短手方向の端部のうちシート搬送方向の下流側の端部は、フィルタ51の短手方向の端部のうちシート搬送方向の上流側の端部よりも、ニップ部101bと転写部12aを直線で結んだときの搬送経路から離れている。このような構成により、転写部12aを通過したシートPの後端部Pendが搬送の進行とともにV方向へしだいに大きく変位したとしても、フィルタ51とシートPが接触し難くなる。本実施例では、シートPの搬送路から離間する方向にフィルタ51が湾曲している。このような構成により、後端ハネに対処しながらもベルト105とフィルタ51の間隔を近距離に保っている。 In this embodiment, the filter 51 is arranged as shown in FIG. 1A in order to deal with this rear end splash. In other words, the end on the downstream side in the sheet conveying direction of the end portion in the short direction of the filter 51 is the nip portion 101b than the end on the upstream side in the sheet conveying direction of the end portion in the short direction of the filter 51. And the transfer section 12a are separated from the transport path when they are connected by a straight line. With such a configuration, even if the trailing end Pend of the sheet P that has passed through the transfer portion 12a is gradually displaced in the V direction as the conveyance progresses, the filter 51 and the sheet P are difficult to contact. In this embodiment, the filter 51 is curved in a direction away from the conveyance path of the sheet P. With such a configuration, the distance between the belt 105 and the filter 51 is kept at a short distance while dealing with the trailing edge splash.
 また、フィルタ51をこのような曲面形状にした場合、限られたスペースの中でフィルタ51の表面積を増大させることができる。フィルタ51の表面積が増えるとダストDとフィルタ51が接触しやすくなるため、ダストDの回収効率が向上する。
(4−2)エアフロー構成
Further, when the filter 51 has such a curved surface shape, the surface area of the filter 51 can be increased in a limited space. When the surface area of the filter 51 is increased, the dust D and the filter 51 are easily brought into contact with each other, so that the dust D recovery efficiency is improved.
(4-2) Airflow configuration
 次にプリンタ内のエアフローについて説明する。ダストDを効率良く回収する場合、プリンタ内のエアフロー、特に定着装置103の周辺のエアフローについて適切に制御することが望ましい。以下、定着装置103の周辺のエアフローに関わる構成について詳細に説明する。
(4−2−1)第一ファン
Next, the air flow in the printer will be described. In order to efficiently collect the dust D, it is desirable to appropriately control the air flow in the printer, particularly the air flow around the fixing device 103. Hereinafter, a configuration related to the air flow around the fixing device 103 will be described in detail.
(4-2-1) First fan
 上述したように、第一ファン61の風量が多いとエアを多く吸引できる一方で、シート入口400の近傍のエアの温度を低下させやすい。すなわち、第一ファン61の風量が多いとダストを多く回収できる一方で多くのダストDを発生させやすい。そのため、フィルタユニット50によってダストDを効率よく低減させるには、第一ファン61の風量を適切に保つことが望ましい。以後、第一ファン61による吸気によってダストDが回収されることをダスト回収作用と呼び、第一ファン61の吸気によって、ダストの発生量が増加することをダスト増大作用と呼ぶ。 As described above, when the air volume of the first fan 61 is large, a large amount of air can be sucked, while the temperature of the air in the vicinity of the sheet inlet 400 is easily lowered. That is, if the air volume of the first fan 61 is large, a large amount of dust can be collected, while a large amount of dust D is easily generated. Therefore, in order to reduce the dust D efficiently by the filter unit 50, it is desirable to keep the air volume of the first fan 61 appropriately. Hereinafter, the collection of the dust D by the suction of the first fan 61 is referred to as a dust collection action, and the increase in the amount of dust generated by the suction of the first fan 61 is referred to as a dust increase action.
 ここで、第一ファン61の風量とダストDの発生量の関係について検証すべく試験をおこなった。試験では、画像形成処理中にプリンタから排出されるダストDの量を測定する。詳細には、チャンバ内に設置されたプリンタ1に画像形成処理を実行させ、プリンタの全排気を取得する。そして、排気されたエアをナノ粒子粒径分布計測器でサンプリングしダストDの排出量を測定する。この試験を、画像形成処理中の第一ファン61の風量をそれぞれ異ならせて複数回行う。ここでは複数通り行われた試験を、試験A、試験B、試験C、試験Dと呼ぶ。 Here, a test was conducted to verify the relationship between the air volume of the first fan 61 and the amount of dust D generated. In the test, the amount of dust D discharged from the printer during the image forming process is measured. Specifically, the printer 1 installed in the chamber is caused to execute an image forming process, and the exhaust of the printer is acquired. Then, the exhausted air is sampled with a nanoparticle size distribution measuring instrument, and the amount of dust D discharged is measured. This test is performed a plurality of times with different air volumes of the first fan 61 during the image forming process. Here, a plurality of tests are referred to as Test A, Test B, Test C, and Test D.
 試験Aでは、画像形成処理中に第一ファン61を全速で作動させた状態で、定着装置外に排出されるダストDの量を計測する。試験Bでは、画像形成処理中に第一ファン61を停止させた状態で、定着装置外に排出されるダストDの量を計測する。試験Cでは、画像形成処理中に第1のファンを正常動作可能な最小速度(全速風量の7%となる速度)で作動させた状態で、定着装置外に排出されるダストDの量を計測する。試験Dでは、画像形成処理中に第1のファンを全速風量の20%となる速度で作動させた状態で、定着装置外に排出されるダストDの量を計測する。 In test A, the amount of dust D discharged out of the fixing device is measured with the first fan 61 operating at full speed during the image forming process. In test B, the amount of dust D discharged outside the fixing device is measured with the first fan 61 stopped during the image forming process. In test C, the amount of dust D discharged out of the fixing device is measured while the first fan is operating at the minimum speed at which the first fan can operate normally (speed that is 7% of the total air flow rate) during the image forming process. To do. In test D, the amount of dust D discharged out of the fixing device is measured while the first fan is operated at a speed that is 20% of the total air flow rate during the image forming process.
 試験Aと試験Bにおけるプリント開始後の経過時間とダストD発生量の関係について、図15(b)に示す。試験Bと試験Cにおけるプリント開始後の経過時間とダストDの発生量の関係について、図15(b)に示す。試験Cと試験Dにおけるプリント開始後の経過時間とダストDの発生量の関係について、図15(C)に示す。試験Bと本実施例(E)におけるプリント開始後経過時間とダストDの発生量の関係について、図15(D)に示す。 FIG. 15B shows the relationship between the elapsed time after the start of printing in Test A and Test B and the amount of dust D generated. FIG. 15B shows the relationship between the elapsed time after the start of printing in test B and test C and the amount of dust D generated. FIG. 15C shows the relationship between the elapsed time after the start of printing in test C and test D and the amount of dust D generated. FIG. 15D shows the relationship between the elapsed time after the start of printing and the amount of dust D generated in Test B and Example (E).
 (A)は、試験Aにおける画像形成処理開始からの経過時間とダストDの排出量の関係を示している。(B)は、試験Bにおける画像形成処理開始からの経過時間とダストDの排出量の関係を示している。(C)は、試験Cにおける画像形成処理開始からの経過時間とダストDの排出量の関係を示している。(D)は、試験Dにおける画像形成処理開始からの経過時間とダストDの排出量の関係を示している。 (A) shows the relationship between the elapsed time from the start of the image forming process in test A and the amount of dust D discharged. (B) shows the relationship between the elapsed time from the start of the image forming process in test B and the amount of dust D discharged. (C) shows the relationship between the elapsed time from the start of the image forming process in test C and the amount of dust D discharged. (D) shows the relationship between the elapsed time from the start of the image forming process in test D and the amount of dust D discharged.
 図15(a)によれば、プリント開始後約70秒までは(A)が(B)のダスト排出量を上回っており、その後は(A)が(B)のダスト排出量を下回っている。これは、プリント開始後約70秒までは、ダスト増大作用がダスト回収作用を上回っていることを意味する。上述したように第一ファン61の風量が小さいほどダスト増大作用は小さくなる。そのため、第一ファン61の風量を試験Aの状態から下げていけば、いずれプリント開始初期におけるダスト回収作用がダスト増大作用を上回るはずである。 According to FIG. 15A, until about 70 seconds after the start of printing, (A) exceeds the dust discharge amount of (B), and thereafter (A) falls below the dust discharge amount of (B). . This means that the dust increasing action exceeds the dust collecting action until about 70 seconds after the start of printing. As described above, the dust increasing action decreases as the air volume of the first fan 61 decreases. Therefore, if the air volume of the first fan 61 is lowered from the state of the test A, the dust collecting action at the initial stage of printing should eventually exceed the dust increasing action.
 本発明者等の検討したところ、第一ファン61の風量を全速風量の10%(フィルタ51におけるエアの通過風速は5cm/s)まで低下させた時、プリント開始初期におけるダスト回収作用がダスト増大作用を上回ることができた。 As a result of studies by the present inventors, when the air flow rate of the first fan 61 is reduced to 10% of the total air flow rate (the air passing air velocity in the filter 51 is 5 cm / s), the dust collecting action at the initial stage of printing increases the dust. We were able to surpass the action.
 図15(b)によれば、プリント開始後の全期間において(B)が(C)のダスト排出量を上回っている。これは、(B)においてダスト回収作用がダスト増大作用を常に上回っていることを意味する。 According to FIG. 15B, (B) exceeds the dust discharge amount of (C) in the entire period after the start of printing. This means that in (B), the dust recovery action always exceeds the dust increase action.
 図15(c)によれば、プリント開始後90秒までは(D)が(C)のダスト排出量を上回っており、その後しばらくの間はダスト排出量がほぼ同等となる。そしてプリント開始後150秒を過ぎたあたりから(D)が(C)のダスト排出量を下回っている。 According to FIG. 15C, (D) exceeds the dust discharge amount of (C) until 90 seconds after the start of printing, and the dust discharge amount becomes substantially equal for a while after that. Then, after about 150 seconds from the start of printing, (D) is below the dust discharge amount of (C).
 このことから、プリント開始後90秒(所定時間)までは第一ファン61を7%の風量で動作させ、プリント開始後150秒からは第一ファン61を20%の風量で動作させることで、ダストDの排出量をより低減できることが分かる。つまり、プリント開始後の初期は第一ファン61を少ない風量で動作させ、時間経過とともに第一ファン61の風量を増加させることが望ましい。上述した結果をもとに、本実施例では第一ファン61の風量制御を行う。図14(b)に示すように、本実施例ではプリント開始後90秒までは、第一ファン61を7%の風量で動作させている。この風量は、ファン61を最小の速度で回転させた場合の風量以上(吸気量以上)で且つファン61を最大の速度で回転させた場合の風量の10%以下の風量である。プリント開始後90秒から390秒までは第一ファン61を20%の風量で動作させている。プリント開始後390秒以降は第一ファン61を100%で動作させている。(E)は、本実施例における画像形成処理開始からの経過時間とダストDの排出量の関係を示している。 From this, the first fan 61 is operated with an air volume of 7% until 90 seconds (predetermined time) after starting printing, and the first fan 61 is operated with an air volume of 20% from 150 seconds after starting printing. It can be seen that the amount of dust D discharged can be further reduced. That is, it is desirable to operate the first fan 61 with a small air volume at the initial stage after the start of printing and to increase the air volume of the first fan 61 over time. Based on the above-described result, the air volume control of the first fan 61 is performed in this embodiment. As shown in FIG. 14B, in the present embodiment, the first fan 61 is operated at an air volume of 7% until 90 seconds after the start of printing. This air volume is equal to or higher than the air volume when the fan 61 is rotated at the minimum speed (more than the intake air volume) and is 10% or less of the air volume when the fan 61 is rotated at the maximum speed. From 90 seconds to 390 seconds after the start of printing, the first fan 61 is operated with an air flow of 20%. The first fan 61 is operated at 100% after 390 seconds from the start of printing. (E) shows the relationship between the elapsed time from the start of the image forming process and the amount of dust D discharged in this embodiment.
 図15(d)によれば、本実施例では試験Bと比べてダストDの排出量が半分以下となっている。すなわち、本実施例では画像形成の開始初期から600秒経過するまでの間においてダストDの排出量を半減することができた。
(4−2−2)第二ファン及び第三ファン
According to FIG.15 (d), the discharge amount of the dust D is a half or less compared with the test B in a present Example. That is, in this embodiment, the amount of dust D discharged can be halved in the period from the start of image formation to 600 seconds.
(4-2-2) Second fan and third fan
 水分を含むシートPが定着装置103で加熱されると、シートPからは水蒸気が発生する。この水蒸気によって、空間Cは湿度が高い状態になる。空間Cは、シート搬送方向において定着装置103よりも下流側で且つ排出ローラ14よりも上流側の空間領域である。空間Cの湿度が高いと結露が発生し易いため、ガイド部材15上には水滴が付着しやすい。搬送されてきたシートPにガイド部材15上の水滴が付着すると画像不良の発生を招く。 When the sheet P containing moisture is heated by the fixing device 103, water vapor is generated from the sheet P. Due to the water vapor, the space C is in a high humidity state. The space C is a space area downstream of the fixing device 103 and upstream of the discharge roller 14 in the sheet conveyance direction. When the humidity in the space C is high, dew condensation is likely to occur, so that water droplets are likely to adhere on the guide member 15. If a water droplet on the guide member 15 adheres to the conveyed sheet P, an image defect occurs.
 そのため、シートPから発生する水蒸気によって空間Cの湿度が高くなった場合、この湿度を低下させることが望ましい。 Therefore, when the humidity of the space C is increased by the water vapor generated from the sheet P, it is desirable to reduce this humidity.
 第二ファン62はガイド部材15に結露が発生することを防止するためのファンである。 The second fan 62 is a fan for preventing the condensation on the guide member 15.
 第二ファン62はプリンタ1の外部からエアを機内に引き込んで、ガイド部材15にエアを吹き付けることで、空間Cの湿度を低下させる。詳細には、第二ファン62からエアが吹き付けにより、ガイド部材15近傍の水蒸気が空間Cの周囲に拡散するため、ガイド部材15近傍の局所的な湿度上昇が抑制される。第二ファン62のみを用いる場合であっても、ガイド部材15における結露を有る程度の期間は抑制できる。しかしながら、水蒸気の排出先が排出ローラ対14の周囲に生じた隙間のみとなるので、空間Cにおける湿度は次第に上昇してしまう。そこで本実施例では、第二ファン62からの吹き付けによって空間Cから追い出された水蒸気を第三ファン63によって機外に排出している。 The second fan 62 reduces the humidity of the space C by drawing air into the machine from the outside of the printer 1 and blowing the air to the guide member 15. Specifically, when air is blown from the second fan 62, the water vapor in the vicinity of the guide member 15 diffuses around the space C, so that a local increase in humidity in the vicinity of the guide member 15 is suppressed. Even when only the second fan 62 is used, it is possible to suppress the period of the degree of condensation on the guide member 15. However, since the discharge destination of the water vapor is only the gap generated around the discharge roller pair 14, the humidity in the space C gradually increases. Therefore, in this embodiment, the water vapor expelled from the space C by the blowing from the second fan 62 is discharged to the outside by the third fan 63.
 第三ファン63は、図2の(a)に示すように、定着装置103の周辺にエアフロー63aを生じさせる。第三ファン63は、エアフロー63aによって空間Cの水蒸気と熱気を機外に排出する役目を果たす。一方で、第三ファン63は、ベルト105のニップ部101bの近傍にあるダストDを吸い出して、フィルタを経由せずに機外に排出してしまう虞がある。 The third fan 63 generates an air flow 63a around the fixing device 103 as shown in FIG. The third fan 63 serves to discharge water vapor and hot air in the space C to the outside by the air flow 63a. On the other hand, the third fan 63 sucks out the dust D in the vicinity of the nip portion 101b of the belt 105 and may discharge it outside the apparatus without passing through the filter.
 第三ファン63によって画像形成装置外に排出されるダストDを低減するために、第三ファン63の下流に別途フィルタを設けてもよい。しかしながら、第三ファン63にフィルタを付けると、フィルタの通気抵抗によって排気が妨げられるため、空間Cの熱と水蒸気を機外に十分に排出することが困難となる。 In order to reduce dust D discharged from the image forming apparatus by the third fan 63, a separate filter may be provided downstream of the third fan 63. However, if a filter is attached to the third fan 63, exhaust is hindered by the ventilation resistance of the filter, so that it becomes difficult to sufficiently exhaust the heat and water vapor in the space C to the outside of the machine.
 そこで本実施例では、ダストDが第三ファン63に向かって引き込まれることを抑制できるようにプリンタ1の機内のエアフローを調整している。具体的には、定着装置103よりもシート搬送方向の下流側の空間の気圧が、定着装置103よりもシート搬送方向の上流側の空間の気圧よりも高くなるように、プリンタ1内のエアフローの調整している。
また、上述したエアフローの調整を行っても少なからずダストDが第三ファン63に引き込まれるため、ダストDの発生量が多い画像形成処理の開始初期(図9(b)参照)では第三ファン63の動作を抑えてダストDの排出を抑制している。そして、画像形成処理が進行してダストDの発生が少なくなった時点で第三ファン63を作動させ、空間Cの水蒸気と熱気を機外に排出している。
Therefore, in this embodiment, the air flow in the printer 1 is adjusted so that the dust D can be prevented from being drawn toward the third fan 63. Specifically, the air flow in the printer 1 is adjusted such that the air pressure in the downstream side in the sheet conveying direction from the fixing device 103 is higher than the air pressure in the upstream side in the sheet conveying direction from the fixing device 103. It is adjusting.
Even if the air flow adjustment described above is performed, not a little dust D is drawn into the third fan 63, so that the third fan is generated at the beginning of the image forming process where the amount of dust D generated is large (see FIG. 9B). The operation of 63 is suppressed and the discharge of dust D is suppressed. Then, when the image forming process proceeds and the generation of dust D is reduced, the third fan 63 is operated, and the water vapor and hot air in the space C are discharged outside the apparatus.
 なお、第三ファン63の動作を抑制する期間は、プリンタ1に熱的な問題が生じない程度の期間である。画像形成処理の開始初期は画像形成装置内の各構成がまだ十分に加熱されていないため、数分程度であれば排熱が行われなくても問題がない。また、上述したように、数分程度の期間であれば第二ファン62のみで結露を防止できる。
(4−3)制御フロー
The period during which the operation of the third fan 63 is suppressed is a period that does not cause a thermal problem in the printer 1. Since the components in the image forming apparatus are not yet sufficiently heated at the beginning of the image forming process, there is no problem even if the heat is not exhausted within a few minutes. Further, as described above, dew condensation can be prevented only by the second fan 62 for a period of about several minutes.
(4-3) Control flow
 上述したように、ダストDはシート入口400の近傍において発生し易い。しかしながら、一部のダストDはシート出口500の近傍で発生する場合がある。また、定着装置103の近傍に存在する一部のダストDは、シートPの搬送に伴って定着装置103よりもシート搬送方向の下流側の空間Cに運ばれる場合がある。あるいは、シート入口400近傍で発生したダストDの一部が熱対流によって空間Cへと運ばれる場合がある。 As described above, the dust D is likely to be generated in the vicinity of the sheet entrance 400. However, some dust D may be generated in the vicinity of the sheet outlet 500. In addition, a part of the dust D existing in the vicinity of the fixing device 103 may be conveyed to the space C on the downstream side of the fixing device 103 in the sheet conveying direction as the sheet P is conveyed. Alternatively, a part of the dust D generated in the vicinity of the sheet inlet 400 may be carried to the space C by thermal convection.
 こうした一部のダストDはフィルタユニット50で回収することが難しく、定着装置103よりもシート搬送方向の下流側の部材に付着するか機外に排出されてしまう。シート搬送方向の下流側の部材としてはガイド部材15や、排出ローラ対14が挙げられる。これらの部材にダストDが付着した場合、画像不良の発生を招く。そのため、フィルタユニット50を用いてダストDを回収する場合、回収効率を高めるためにフィルタユニット50の近傍にダストDを封じ込めることが望ましい。換言すると、ダストDが定着装置103よりもシート搬送方向の下流側に向かわないように画像形成装置内のエアフローを調整することが望ましい。 Such a part of the dust D is difficult to be collected by the filter unit 50 and is attached to a member on the downstream side in the sheet conveying direction from the fixing device 103 or discharged outside the apparatus. Examples of the downstream member in the sheet conveying direction include the guide member 15 and the discharge roller pair 14. When dust D adheres to these members, image defects are caused. Therefore, when collecting the dust D using the filter unit 50, it is desirable to contain the dust D in the vicinity of the filter unit 50 in order to increase the collection efficiency. In other words, it is desirable to adjust the air flow in the image forming apparatus so that the dust D does not go to the downstream side in the sheet conveying direction from the fixing device 103.
 そこで、本実施例では、画像形成の連続処理中において、上述した第一ファン61の制御に加えて、第二ファン62と第三ファン63の制御を行っている。各ファンは、定着装置103の周辺の温度状態に応じて適切に制御されることが望ましい。本実施例では、プリント開始からどれだけ時間が経過したかに基づいて定着装置103の周辺の温度状態を推測し、画像形成処理の第1の期間と、第2の期間と、第3の期間においてそれぞれ異なるファン制御をおこなっている。 Therefore, in this embodiment, in addition to the control of the first fan 61 described above, the second fan 62 and the third fan 63 are controlled during the continuous image forming process. Each fan is desirably controlled appropriately in accordance with the temperature state around the fixing device 103. In this embodiment, the temperature state around the fixing device 103 is estimated based on how much time has elapsed from the start of printing, and the first period, the second period, and the third period of the image forming process are estimated. The fan control is different for each.
 第1の期間とは、画像形成処理が開始されてから第1の所定時間(例えば90秒)に達するまでの期間である。換言すると、第1の期間とは、画像形成の連続処理の最初のシートPがニップ部101bを通過してから所定時間に達するまでの期間である。 The first period is a period from when the image forming process is started until a first predetermined time (for example, 90 seconds) is reached. In other words, the first period is a period from when the first sheet P in the continuous image forming process passes through the nip portion 101b until a predetermined time is reached.
 第2の期間とは、第1の所定時間が経過してから第2の所手時間(例えば360秒)に達するまでの期間である。第3の期間とは、第2の所定時間が経過した後の期間である。本実施例では、制御回路Aが備えるタイマ部によってプリンタ開始からの経過時間を計測している。 The second period is a period from when the first predetermined time elapses until the second work time (for example, 360 seconds) is reached. The third period is a period after the second predetermined time has elapsed. In this embodiment, the elapsed time from the start of the printer is measured by the timer unit provided in the control circuit A.
 なお、プリント開始からの経過時間を取得する方法は、タイマ部には限られない。例えば、制御回路Aは、シートPの処理枚数をカウントするカウンタ部に基づいてプリント開始からの経過時間を取得してもよい。したがって、画像形成処理が開始されてから第1の所定枚数(例えば75枚)のシートPに画像形成処理を施すまでの期間を第1の期間として定めてもよい。換言すると、画像形成の連続処理の最初のシートPがニップ部101bを通過してから第1の所定枚数(例えば75枚)のシートPがニップ部101bを通過するまでの期間を第1の期間として定めてもよい。第1の所定枚数のシートPに画像形成処理を施してから第2の所定枚数(例えば300枚)のシートPに画像形成処理を施すまでの期間を第2の期間として定めてもよい。第2の所定枚数のシートPに画像形成処理を施してから後の期間を第3の期間として定めてもよい。 Note that the method for acquiring the elapsed time from the start of printing is not limited to the timer unit. For example, the control circuit A may acquire the elapsed time from the start of printing based on a counter unit that counts the number of processed sheets P. Therefore, the period from when the image forming process is started to when the first predetermined number of sheets (for example, 75 sheets) P is subjected to the image forming process may be defined as the first period. In other words, the period from when the first sheet P of the continuous image forming process passes through the nip portion 101b to when the first predetermined number of sheets (for example, 75 sheets) passes through the nip portion 101b is the first period. It may be determined as A period from when the image forming process is performed on the first predetermined number of sheets P to when the second predetermined number of sheets (for example, 300 sheets) is subjected to the image forming process may be defined as the second period. A period after the image forming process is performed on the second predetermined number of sheets P may be set as the third period.
 なお、定着装置103の周辺温度を検知できる温度センサがある場合は、定着装置103の周辺温度を推測しなくてよい。したがって、制御回路Aは。プリント開始からの経過時間を取得しなくてよい。このような温度センサがある場合、検知温度が第1の所定の温度となった場合にS107を実行し、検知温度が第1の所定の温度よりも高い第2の所定の温度となった場合にS109を実行すればよい。 If there is a temperature sensor that can detect the ambient temperature of the fixing device 103, the ambient temperature of the fixing device 103 does not have to be estimated. Therefore, the control circuit A is. It is not necessary to acquire the elapsed time from the start of printing. When there is such a temperature sensor, when the detected temperature becomes the first predetermined temperature, S107 is executed, and when the detected temperature becomes a second predetermined temperature higher than the first predetermined temperature It is sufficient to execute S109.
 なお、第二ファン62は定着装置103の上方の空間Cにエアを吹き付けるための送風部として機能し、第三ファン63は定着装置103の上方の空間Cからエアを吸引して画像形成装置の外部に排出する送風部(排気部)として機能する。 The second fan 62 functions as a blower for blowing air to the space C above the fixing device 103, and the third fan 63 sucks air from the space C above the fixing device 103 and the image forming apparatus. It functions as an air blowing part (exhaust part) that discharges to the outside.
 以下、図13と図16に基づいて各ファンの動作シーケンスの詳細を説明する。図16(a)は、実施例2におけるサーミスタTHのシーケンス図である。図16(b)は、実施例2における第一ファンのシーケンス図である。図16(c)は、実施例2における第二ファンのシーケンス図である。図16(d)は、実施例2における第三ファンのシーケンス図である。 Hereinafter, the details of the operation sequence of each fan will be described with reference to FIG. 13 and FIG. FIG. 16A is a sequence diagram of the thermistor TH in the second embodiment. FIG. 16B is a sequence diagram of the first fan in the second embodiment. FIG. 16C is a sequence diagram of the second fan in the second embodiment. FIG. 16D is a sequence diagram of the third fan in the second embodiment.
 プリンタ1の電源がONになる(電源が投入される)と制御回路Aは制御プログラムを実行する(S101)。 When the printer 1 is powered on (turned on), the control circuit A executes a control program (S101).
 制御回路Aはプリント命令信号を受信するとS103へとステップを進める(S102)。制御回路Aは、サーミスタTHの出力信号を取得してその検知温度が所定の温度(例えば100℃)以下である場合(YES)はS104へとステップを進め、所定の温度(例えば100℃)よりも高い場合(NO)はS112へとステップを進める(S103)。 When the control circuit A receives the print command signal, it proceeds to step S103 (S102). When the control circuit A acquires the output signal of the thermistor TH and the detected temperature is not higher than a predetermined temperature (for example, 100 ° C.) (YES), the control circuit A proceeds to step S104 and starts from the predetermined temperature (for example, 100 ° C.). If it is higher (NO), the process proceeds to S112 (S103).
 なお、S103は、プリンタ1の内部が冷えているかどうか、特に定着装置103の周辺気温が冷えているかどうかを判定するステップである。つまり、制御回路Aは、定着装置103の周辺気温に関する情報をサーミスタTHから取得する取得部として機能する。 Note that S103 is a step of determining whether or not the inside of the printer 1 is cooled, in particular, whether or not the ambient temperature of the fixing device 103 is cooled. That is, the control circuit A functions as an acquisition unit that acquires information on the ambient temperature of the fixing device 103 from the thermistor TH.
 なお、制御回路Aは、定着装置103の周辺温度に関する情報をサーミスタTH以外から取得してもよい。例えば、定着装置103の周辺気温を検知できる温度センサがある場合、制御回路Aはこの温度センサから情報を取得してもよい。 Note that the control circuit A may obtain information on the ambient temperature of the fixing device 103 from other than the thermistor TH. For example, when there is a temperature sensor that can detect the ambient temperature of the fixing device 103, the control circuit A may acquire information from this temperature sensor.
 ステップがS112に進むと、制御回路Aはプリント開始にともない第二ファン62と第三ファン63を全速風量である100(%)に設定する。そして、制御回路Aはプリント終了後に第二ファン62と第三ファン63の動作を停止させる(S112)。 When the step proceeds to S112, the control circuit A sets the second fan 62 and the third fan 63 to 100 (%) which is the full-speed air volume at the start of printing. Then, the control circuit A stops the operations of the second fan 62 and the third fan 63 after the end of printing (S112).
 プリント開始時にサーミスタTHの検知温度が100℃よりも高い場合は、定着装置103の周辺気温は十分に高いと考えられる。そのためダストDの発生量が少ないので、本実施例では第一ファン61を作動させていない。しかしながら、微小に発生するダストDを回収するために、第一ファン61を動作させても構わない。このとき、第一ファン61の風量が全速風量の100(%)であるとダストDの回収効率が高くて好ましい。
プリント開始時にサーミスタTHの検知温度が100℃よりも低い場合は、定着装置103の周辺気温が低いと考えられる。定着装置103の周辺気温が低いと、プリントを開始した際にガイド部材15において結露が発生しやすく、また、ダストDが発生しやすい。そのため、これらの課題をそれぞれ解決することが求められる。
If the detected temperature of the thermistor TH is higher than 100 ° C. at the start of printing, the ambient temperature of the fixing device 103 is considered to be sufficiently high. Therefore, since the amount of dust D generated is small, the first fan 61 is not operated in this embodiment. However, the first fan 61 may be operated in order to collect minutely generated dust D. At this time, it is preferable that the air volume of the first fan 61 is 100 (%) of the full-speed air volume because the collection efficiency of the dust D is high.
When the temperature detected by the thermistor TH is lower than 100 ° C. at the start of printing, it is considered that the ambient temperature around the fixing device 103 is low. When the ambient temperature around the fixing device 103 is low, condensation is likely to occur in the guide member 15 when printing is started, and dust D is likely to occur. Therefore, it is required to solve each of these problems.
 ステップがS104に進みプリントが開始されると、制御回路Aは第一ファン61の風量を7(%)に設定し、第二ファンの風量を100(%)に設定する(S104、S105)。 When the step proceeds to S104 and printing is started, the control circuit A sets the air volume of the first fan 61 to 7 (%) and the air volume of the second fan to 100 (%) (S104, S105).
 ステップがS105に進み、プリント開始から第1時間(例えば90秒)が経過すると(YES)、制御回路AはS107へとステップを進める(S106)。そうでない場合(NO)、制御回路Aは各ファンの風量を維持する。 When the step proceeds to S105 and a first time (for example, 90 seconds) has elapsed from the start of printing (YES), the control circuit A proceeds to S107 (S106). If not (NO), the control circuit A maintains the air volume of each fan.
 ステップがS107に進むと、制御回路Aは第一ファン61の風量を20(%)に設定し、第三ファン63を100(%)に設定する。このとき、第三ファン63の風量が、第一ファン61の風量と第二ファン62の風量の和を上回ると、ダストDが第三ファン63
に引き込まれてしまう。そこで本実施例では、第二ファンの風量を“100”に維持して、
第三ファン63の風量が、第一ファン61の風量と第二ファン62の風量の和を下回るようにしている。換言すると、第一ファン61による送風と第三ファン63による送風が並行して行われる場合、第二ファンは、第三ファンの風量と第一ファンの風量の差の風量よりも多い風量で送風を行う。
When the step proceeds to S107, the control circuit A sets the air volume of the first fan 61 to 20 (%) and the third fan 63 to 100 (%). At this time, if the air volume of the third fan 63 exceeds the sum of the air volume of the first fan 61 and the air volume of the second fan 62, the dust D becomes the third fan 63.
Will be drawn into. Therefore, in this embodiment, the air volume of the second fan is maintained at “100”,
The air volume of the third fan 63 is set to be lower than the sum of the air volume of the first fan 61 and the air volume of the second fan 62. In other words, when the air blow by the first fan 61 and the air blow by the third fan 63 are performed in parallel, the second fan blows with an air volume larger than the air volume of the difference between the air volume of the third fan and the air volume of the first fan. I do.
 プリント開始から第2時間(例えば90秒)が経過すると(YES)、制御回路AはステップをS109へと進める(S108)。そうでない場合(NO)、制御回路Aは各ファンの風量を維持する。 When a second time (for example, 90 seconds) elapses from the start of printing (YES), the control circuit A advances the step to S109 (S108). If not (NO), the control circuit A maintains the air volume of each fan.
 プリント開始から第3時間(例えば390秒)が経過すると(YES)、制御回路AはステップをS109へと進める(S108)。そうでない場合(NO)、制御回路Aは各ファンの風量を維持する。 When a third time (for example, 390 seconds) has elapsed from the start of printing (YES), the control circuit A advances the process to S109 (S108). If not (NO), the control circuit A maintains the air volume of each fan.
 ステップがS109に進むと、制御回路Aは、第一ファン61の風量を100(%)に設定しS110に進む(S109)。 When the step proceeds to S109, the control circuit A sets the air volume of the first fan 61 to 100 (%) and proceeds to S110 (S109).
 プリントが終了すると(S110)、制御回路Aは、第1のファンと第2のファンと第3のファンを停止させる(S111)。 When printing is completed (S110), the control circuit A stops the first fan, the second fan, and the third fan (S111).
 なお、画像形成処理の開始から10分程度が経過すると、ダストDの発生量が著しく少なくなる。そのため、S109の後でプリントが長期にわたって実行される場合、プリントの終了を待たずに第一ファン61の送風を停止(OFF)してもよい。 Note that when about 10 minutes have elapsed since the start of the image forming process, the amount of dust D generated is significantly reduced. Therefore, when printing is performed for a long time after S109, the blowing of the first fan 61 may be stopped (OFF) without waiting for the end of printing.
 本実施例では、画像形成処理の実行中において、風量の多い第二ファン62を常に全速で作動させている。したがって、空間Cは常に陽圧状態となっている。そのため、空間Cにはシート入口400からのダストDが流れ込みにくい。また、本実施例では画像形成処理の実行途中で第3のファンを作動させている。しかしながら、第三ファン63の風量は第二ファン62の風量と第一ファン61の和の風量以下であるため空間Cを陽圧に維持することができる。 In this embodiment, the second fan 62 having a large air volume is always operated at full speed during the image forming process. Therefore, the space C is always in a positive pressure state. Therefore, the dust D from the sheet entrance 400 does not easily flow into the space C. In the present embodiment, the third fan is operated during the execution of the image forming process. However, since the air volume of the third fan 63 is equal to or less than the sum of the air volume of the second fan 62 and the first fan 61, the space C can be maintained at a positive pressure.
 また、本実施例では、プリント開始時点における第三ファンの風量を0(OFF)に設定しているが、図16に示すように、第三ファンの風量を50(%)に設定してもよい。この場合であっても第三ファン63の風量は第二ファン62の風量と第一ファン61の和の風量以下であるため空間Cを陽圧にすることができる。また、こうすることで、ガイド部材15の周辺の結露を確実に防止すると同時に、定着装置103の周辺装置の温度上昇をさらに抑制することが可能である。 In this embodiment, the air volume of the third fan at the start of printing is set to 0 (OFF). However, as shown in FIG. 16, the air volume of the third fan may be set to 50 (%). Good. Even in this case, since the air volume of the third fan 63 is equal to or less than the sum of the air volume of the second fan 62 and the first fan 61, the space C can be set to a positive pressure. In addition, by doing this, it is possible to reliably prevent condensation around the guide member 15 and at the same time to further suppress the temperature rise of the peripheral device of the fixing device 103.
 第一ファン61の風量は第二ファン62の風量より小さく、第三ファン63の風量よりも小さい。本実施例では、第一ファン61を100%で作動させた場合の風量は5l/sであり、7%で作動させた場合の風量は0.5l/sである。第二ファン62を100%で作動させた場合の風量は10l/sである。第3のファンを100%で作動させた場合の風量は10l/sである。このように、第一ファン61を全速で動作させても第一ファン61の風量は第二ファン62及び第三ファン63の風量に比べて小さい。そのため、空間Cの気圧状態は、第二ファン62及び第三ファン63によって支配的に制御される。つまり、制御回路Aは第二ファン62及び第三ファン63を制御することで、空間CにダストDが流れることを抑制できる。 The air volume of the first fan 61 is smaller than that of the second fan 62 and smaller than that of the third fan 63. In this embodiment, the air volume when the first fan 61 is operated at 100% is 5 l / s, and the air volume when operated at 7% is 0.5 l / s. The air volume when the second fan 62 is operated at 100% is 10 l / s. The air volume when the third fan is operated at 100% is 10 l / s. Thus, even if the first fan 61 is operated at full speed, the air volume of the first fan 61 is smaller than the air volumes of the second fan 62 and the third fan 63. Therefore, the atmospheric pressure state of the space C is controlled predominantly by the second fan 62 and the third fan 63. In other words, the control circuit A can control the dust D from flowing into the space C by controlling the second fan 62 and the third fan 63.
 本実施例によれば、ニップ部101bの近傍において、ニップ部101bの長手方向に沿ってムラなく吸気を行い、ダストDを効率良く回収することができる。本実施例によれば、ニップ部101bの近傍において、吸気が局所的に強くなることを抑制し、定着ベルト105の局所的な温度低下を抑制できる。本実施例によれば、ニップ部101bの近傍において、ニップ部101bの長手方向端部側のエアを確実に吸気し、ニップ部101bの長手方向端部側のダストDを確実に回収できる。 According to the present embodiment, inhalation is performed uniformly along the longitudinal direction of the nip portion 101b in the vicinity of the nip portion 101b, and the dust D can be efficiently collected. According to this embodiment, it is possible to suppress the intake air from becoming locally strong in the vicinity of the nip portion 101b, and to suppress a local temperature drop of the fixing belt 105. According to the present embodiment, in the vicinity of the nip portion 101b, the air at the end portion in the longitudinal direction of the nip portion 101b can be reliably sucked, and the dust D at the end portion in the longitudinal direction of the nip portion 101b can be reliably collected.
 本実施例によれば、ベルト105の近傍のエアを冷まし過ぎないように吸気し、ダストDの発生を抑制できる。本実施例によれば、ベルト105の近傍の気温に応じて、ダストDの効率良く回収できる。 According to the present embodiment, the air in the vicinity of the belt 105 is sucked so as not to be overcooled, and the generation of dust D can be suppressed. According to the present embodiment, the dust D can be efficiently collected according to the temperature in the vicinity of the belt 105.
 本実施例によれば、画像形成装置内のエアフローを制御し、定着装置103の下流側にダストDが流出することを抑制できる。 According to this embodiment, it is possible to control the air flow in the image forming apparatus and suppress the dust D from flowing out to the downstream side of the fixing device 103.
 本実施例によれば、定着装置103のシート入口400の近傍にダストDを封じ込め、フィルタユニット50によって効率良くダストDを回収できる。 According to this embodiment, the dust D is sealed in the vicinity of the sheet inlet 400 of the fixing device 103, and the filter unit 50 can efficiently collect the dust D.
 次に、実施例2について説明する。図21は実施例2におけるフィルタユニットの配置と輻射熱Eの関係を示す図である。図22は変形例1におけるフィルタユニットの配置と輻射熱Eの関係を示す図である。図23は変形例2におけるフィルタユニットの配置と輻射熱Eの関係を示す図である。 Next, Example 2 will be described. FIG. 21 is a diagram illustrating the relationship between the arrangement of the filter units and the radiant heat E in the second embodiment. FIG. 22 is a diagram showing the relationship between the arrangement of the filter units and the radiant heat E in the first modification. FIG. 23 is a diagram showing the relationship between the arrangement of the filter units and the radiant heat E in Modification 2.
 実施例1では、ダストDの回収効率を向上させるため、ダクト52の吸気口52a及びフィルタ51をニップ部101b側(ベルト105側)に向けていた。一方、実施例2では、ダクト52の吸気口52aを転写部12a側に向けることで、フィルタ51が過剰に加熱されることを抑制している。実施例2のプリンタ1は、フィルタユニット50の配置が異なる点以外は実施例1と同様である。そのため同様の構成に関しては同様の符号を付し、詳細な説明を省略する。 In Example 1, in order to improve the recovery efficiency of dust D, the air inlet 52a and the filter 51 of the duct 52 are directed toward the nip portion 101b (belt 105). On the other hand, in the second embodiment, the intake port 52a of the duct 52 is directed toward the transfer unit 12a, thereby suppressing the filter 51 from being heated excessively. The printer 1 of the second embodiment is the same as that of the first embodiment except that the arrangement of the filter unit 50 is different. Therefore, the same code | symbol is attached | subjected about the same structure and detailed description is abbreviate | omitted.
 ダストDの回収に用いるフィルタ51としては不織布等が用いられるが、この不織布は高温環境下において熱的に劣化する場合がある。フィルタ51の熱的な劣化が促進されるとフィルタ51の寿命が低下するため、フィルタを高頻度で交換することが求められる。しかしながら、フィルタ51を高頻度で交換すると、交換の手間が発生するだけでなく、ランニングコストが増加してしまう。そのため、フィルタ51は加熱され過ぎないことが望ましい。 Although a nonwoven fabric or the like is used as the filter 51 used for collecting the dust D, this nonwoven fabric may be thermally deteriorated in a high temperature environment. When the thermal deterioration of the filter 51 is promoted, the life of the filter 51 is reduced, and therefore it is required to replace the filter with high frequency. However, if the filter 51 is replaced at a high frequency, not only labor for replacement occurs, but also the running cost increases. Therefore, it is desirable that the filter 51 is not heated too much.
 フィルタ51が温度上昇する原因の一つは、シート入口400近傍のエアの熱である。しかしながら、フィルタ51は、シート入口400近傍のエアからダストDを回収することを目的としており、シート入口400近傍の気温に対して十分な耐熱性を持っている。そのため、シート入口400近傍のエアの熱のみでフィルタ51の寿命低下が急激に促進されることはない。 One of the causes of the temperature rise of the filter 51 is the heat of air near the sheet inlet 400. However, the filter 51 is intended to collect the dust D from the air in the vicinity of the sheet inlet 400, and has sufficient heat resistance against the air temperature in the vicinity of the sheet inlet 400. Therefore, the lifetime reduction of the filter 51 is not rapidly accelerated only by the heat of the air in the vicinity of the sheet inlet 400.
 フィルタ51が温度上昇する原因のもう一つは、定着ユニット101からの輻射熱Eである。輻射熱Eとは、高温の固体表面から低温の固定表面に電磁波の形で直接伝わる熱のことである。フィルタ51は、熱源である定着ユニット101の近傍に位置しているため、定着ユニット101からの輻射熱Eの影響が大きい。 Another cause of the temperature rise of the filter 51 is radiant heat E from the fixing unit 101. The radiant heat E is heat that is directly transmitted in the form of electromagnetic waves from a high-temperature solid surface to a low-temperature fixed surface. Since the filter 51 is located in the vicinity of the fixing unit 101 which is a heat source, the influence of the radiant heat E from the fixing unit 101 is large.
 つまり、フィルタ51の吸気面51aは、シート入口400近傍のエアの熱による温度上昇に加え、定着ユニット101から照射される輻射熱Eによって高温状態となる。 That is, the intake surface 51a of the filter 51 becomes a high temperature state by the radiant heat E irradiated from the fixing unit 101 in addition to the temperature rise due to the heat of the air near the sheet inlet 400.
 そこで、本実施例では、定着ユニット101からフィルタ51への輻射熱Eを低減することで、フィルタ51の寿命を向上させる。 Therefore, in this embodiment, the life of the filter 51 is improved by reducing the radiant heat E from the fixing unit 101 to the filter 51.
 定着ユニット101において、輻射熱Eを最も強く放射する部材は、最も温度の高いベルト105である。ベルト105から放射される輻射熱Eは、定着ベルト105の表層のあらゆる点から放射状に拡散する。したがって、フィルタ51の温度上昇を低減するためには、ベルト105からの輻射熱Eが吸気面51aに照射されない位置にフィルタ51を配置すればよい。 In the fixing unit 101, the member that radiates the radiant heat E most strongly is the belt 105 having the highest temperature. Radiant heat E radiated from the belt 105 diffuses radially from every point on the surface layer of the fixing belt 105. Therefore, in order to reduce the temperature rise of the filter 51, the filter 51 may be arranged at a position where the radiant heat E from the belt 105 is not irradiated onto the intake surface 51a.
 そこで本実施例では、ダクト52の吸気口52aを転写部12a側(転写ローラ12側)に向けて配置している。フィルタ51は吸気口52aを覆うように設けられているため、上述した構成ではフィルタ51の表面が転写部12a側(転写ローラ12側)を向く。そして、ベルト105とフィルタ51間の空間がダクト52によって遮られる。 Therefore, in this embodiment, the air inlet 52a of the duct 52 is arranged facing the transfer portion 12a side (transfer roller 12 side). Since the filter 51 is provided so as to cover the intake port 52a, the surface of the filter 51 faces the transfer portion 12a side (transfer roller 12 side) in the configuration described above. The space between the belt 105 and the filter 51 is blocked by the duct 52.
 ベルト105とフィルタ51とダクト52の位置関係についた図21を用いて詳細に述べる。吸着面51aとダクト上壁との接点をM1、同じくダクト下壁との接点をN1と称する。M1とN1を結んだ線M1−N1を、定着ベルト105表層まで延伸させた際のベルト105表層との接点をL1と称する。輻射熱Eをフィルタ51に向かい難くするため、接点L1の位置は領域135dの範囲内にあることが望ましい。領域135dは、定着ベルト105を周方向に4つの領域に区切り、ニップ部101bから回転方向に沿って数えたときに4つ目となる領域である。 The positional relationship among the belt 105, the filter 51, and the duct 52 will be described in detail with reference to FIG. A contact point between the suction surface 51a and the upper wall of the duct is referred to as M1, and a contact point between the suction surface 51a and the lower wall of the duct is referred to as N1. A contact point with the surface layer of the belt 105 when the line M1-N1 connecting M1 and N1 is extended to the surface layer of the fixing belt 105 is referred to as L1. In order to make it difficult for the radiant heat E to go to the filter 51, the position of the contact L1 is preferably within the range of the region 135d. The region 135d is a fourth region when the fixing belt 105 is divided into four regions in the circumferential direction and counted from the nip portion 101b along the rotation direction.
 本実施例では、線L1−N1は接点L1におけるベルト105の接線である。このような構成では、ベルト105からの輻射熱Eが吸気面51aに向かわない。そのため、フィルタ51の温度上昇を抑制できる。 In this embodiment, the line L1-N1 is a tangent to the belt 105 at the contact L1. In such a configuration, the radiant heat E from the belt 105 does not travel toward the intake surface 51a. Therefore, the temperature rise of the filter 51 can be suppressed.
 なお、線M1−N1の延長線がベルト105と交差しないように、吸気口52aの角度をより急勾配にしてもよい。このような構成でもベルト105からの輻射熱Eはフィルタ51に向かわない。例えば、図22に示す変形例1のように吸気口52aの角度をさらに急勾配にして加圧ローラ102からの輻射熱E’を遮ってもよい。 It should be noted that the angle of the air inlet 52a may be made steep so that the extended line of the line M1-N1 does not intersect the belt 105. Even in such a configuration, the radiant heat E from the belt 105 does not go to the filter 51. For example, as in the first modification shown in FIG. 22, the angle of the intake port 52a may be further steep to block the radiant heat E 'from the pressure roller 102.
 線M1−N1を加圧ローラ102表層まで延伸させた際の加圧ローラ102表層との接点をL2と称する。輻射熱Eを吸気面51aに向かい難くするため、接点L1の位置は領域135dの範囲内にあることが望ましい。領域135eは、加圧ローラ102を周方向に4つの領域に区切り、ニップ部101bから回転方向に沿って数えたときに3つ目となる領域である。変形例1では、線L2−N1は接点L2における加圧ローラ102の接線である。このような構成では、ベルト105の輻射熱E及び加圧ローラ102からの輻射熱E’が吸気面51aに向かわない。そのため、フィルタ51の温度上昇を抑制できる。 A contact point with the surface layer of the pressure roller 102 when the line M1-N1 is extended to the surface layer of the pressure roller 102 is referred to as L2. In order to make it difficult for the radiant heat E to go to the intake surface 51a, the position of the contact L1 is preferably within the range of the region 135d. The region 135e is a third region when the pressure roller 102 is divided into four regions in the circumferential direction and counted from the nip portion 101b along the rotational direction. In the first modification, the line L2-N1 is a tangent line of the pressure roller 102 at the contact point L2. In such a configuration, the radiant heat E of the belt 105 and the radiant heat E ′ from the pressure roller 102 do not travel toward the intake surface 51a. Therefore, the temperature rise of the filter 51 can be suppressed.
 なお、フィルタ51は必ずしもシート搬送方向に対して傾斜させなくてもよい。例えば。図23に示す変形例2のように、シートPの搬送方向と並行となるようにフィルタ51を配置してもよい。この場合、フィルタ51に輻射熱Eが向かわないように、ダクト52に遮蔽部55を設けることが望ましい。 Note that the filter 51 is not necessarily inclined with respect to the sheet conveying direction. For example. As in Modification 2 shown in FIG. 23, the filter 51 may be arranged in parallel with the conveyance direction of the sheet P. In this case, it is desirable to provide a shielding portion 55 in the duct 52 so that the radiant heat E does not face the filter 51.
 フィルタ51とダクト上壁でかつ搬送面側の端部をM3、フィルタ51とダクト下壁との接点をN3と称する。M3とN3を結んだ線M3−N3を、定着ベルト105表層まで延伸させた際のベルト105表層との接点をL3と称する。輻射熱Eをフィルタ51に向かい難くするため、接点L3の位置は領域135dの範囲内にあることが望ましい。本実施例では、線L3−N3は接点L3におけるベルト105の接線である。このような構成では、ベルト105からの輻射熱Eが吸気面51aに向かわない。そのため、フィルタ51の温度上昇を抑制できる。 The end of the filter 51 and the upper wall of the duct on the conveyance surface side is referred to as M3, and the contact point between the filter 51 and the lower wall of the duct is referred to as N3. A contact point with the surface layer of the belt 105 when the line M3-N3 connecting M3 and N3 is extended to the surface layer of the fixing belt 105 is referred to as L3. In order to make it difficult for the radiant heat E to go to the filter 51, the position of the contact L3 is preferably within the range of the region 135d. In this embodiment, the line L3-N3 is a tangent line of the belt 105 at the contact point L3. In such a configuration, the radiant heat E from the belt 105 does not travel toward the intake surface 51a. Therefore, the temperature rise of the filter 51 can be suppressed.
 本実施例によれば、フィルタ51の温度上昇抑制できる。本実施例によればフィルタ51の寿命の低下を抑制できる。本実施例によれば、フィルタの交換頻度を低減できる。しかしながら、ダストDを確実に回収できる点において実施例1の構成が好ましい。
(その他の実施例)
According to this embodiment, the temperature rise of the filter 51 can be suppressed. According to the present embodiment, it is possible to suppress a decrease in the lifetime of the filter 51. According to the present embodiment, the replacement frequency of the filter can be reduced. However, the configuration of the first embodiment is preferable in that the dust D can be reliably collected.
(Other examples)
 以上、本発明について実施例を用いて説明したが、本発明は実施例に記載の構成に限られるものではない。実施例で例示した寸法等の数値は一例であって、本発明の効果が得られる範囲においては適宜設定してよい。また、本発明の効果が得られる範囲において実施例に記載の一部構成を同様の機能を有する他の構成に置き換えてもよい。 As mentioned above, although this invention was demonstrated using the Example, this invention is not restricted to the structure as described in an Example. Numerical values such as dimensions exemplified in the embodiments are examples, and may be appropriately set within a range where the effects of the present invention can be obtained. Moreover, you may replace the one part structure as described in an Example with the other structure which has the same function in the range with which the effect of this invention is acquired.
 フィルタ51の吸気面51aは曲面形状でなくてもよい、吸気面51aが平面形状であってダストDの回収は可能である。フィルタ51として、不織布フィルタではなくハニカムフィルタ等の別のフィルタを用いてもよい。フィルタ51として静電処理された不織布フィルタである静電フィルタを用いる場合、ダストDを帯電装置で帯電させてからフィルタ51で回収してもよい。フィルタ51の配置構成は実施例に記載のものには限られない。例えば、ベルト105の長手方向両端部に二つ以上のフィルタ51が設置されていても良い。フィルタ51は、シート搬送路に対して加圧ローラ側に設置されていても良い。 The intake surface 51a of the filter 51 does not have to be a curved surface. The intake surface 51a has a flat shape and dust D can be collected. As the filter 51, another filter such as a honeycomb filter may be used instead of the nonwoven fabric filter. When an electrostatic filter which is a nonwoven fabric filter subjected to electrostatic processing is used as the filter 51, the dust D may be collected by the filter 51 after being charged by the charging device. The arrangement configuration of the filter 51 is not limited to that described in the embodiment. For example, two or more filters 51 may be installed at both longitudinal ends of the belt 105. The filter 51 may be installed on the pressure roller side with respect to the sheet conveyance path.
 定着装置103は縦パスでシートを搬送する構成には限定されない。例えば定着装置103は横パスや斜めにシートを搬送する構成であっても良い。 The fixing device 103 is not limited to a configuration that conveys a sheet in a vertical path. For example, the fixing device 103 may be configured to convey a sheet in a horizontal path or obliquely.
 シート上のトナー画像を加熱する加熱回転体は、ベルト105には限られない、加熱回転体は、ローラであってもよく、複数のローラにベルトが架け渡されたベルトユニットであってもよい。しかしながら、加熱回転体の表面が高温となり、ダストDが発生し易い実施例1の構成の方が大きな効果を得ることができる。 The heating rotator for heating the toner image on the sheet is not limited to the belt 105. The heating rotator may be a roller or a belt unit in which a belt is stretched between a plurality of rollers. . However, the configuration of Example 1 in which the surface of the heating rotator becomes hot and dust D is likely to be generated can achieve a greater effect.
 加熱回転体とニップ部を形成するニップ形成部材は、加圧ローラ102には限られない。例えば、複数のローラにベルトが架け渡されたベルトユニットを用いてもよい。 The nip forming member that forms the nip portion with the heating rotator is not limited to the pressure roller 102. For example, a belt unit in which a belt is stretched between a plurality of rollers may be used.
 加熱回転体を加熱する加熱源は、ヒータ101aのようなセラミックヒータには限られない。例えば、加熱源はハロゲンヒータであってもよい。また加熱回転体を直接電磁誘導発熱させてもよい。このような構成であってもシート入り口400近傍でダストDが発生し易いため、実施例1の構成を適用できる。 The heating source for heating the heating rotator is not limited to a ceramic heater such as the heater 101a. For example, the heating source may be a halogen heater. Further, the heating rotator may be directly heated by electromagnetic induction. Even in such a configuration, dust D is likely to be generated in the vicinity of the sheet entrance 400, and therefore the configuration of the first embodiment can be applied.
 プリンタ1を例に説明した画像形成装置は、フルカラーの画像を形成する画像形成装置に限られず、モノクロの画像を形成する画像形成装置でもよい。また画像形成装置は、必要な機器、装備、筐体構造を加えて、複写機、FAX、及び、これらの機能を複数備えた複合機等、種々の用途で実施できる。 The image forming apparatus described using the printer 1 as an example is not limited to an image forming apparatus that forms a full-color image, but may be an image forming apparatus that forms a monochrome image. In addition, the image forming apparatus can be implemented in various applications such as a copying machine, a FAX, and a multifunction machine having a plurality of these functions in addition to necessary equipment, equipment, and housing structure.
 本発明によれば、トナーに含有される離型剤に起因する微粒子を適切に除去することができる画像形成装置が提供される。 According to the present invention, there is provided an image forming apparatus capable of appropriately removing fine particles caused by a release agent contained in a toner.
 12a 接触部
 15 ガイド部材
 50 フィルタユニット
 51 フィルタ
 52 ダクト
 52a 吸気口
 61 第一ファン
 62 第二ファン
 63 第三ファン
 101 定着ベルトユニット
 101a ヒータ
 101b ニップ部
 102 加圧ローラ
 103 定着装置
 105 定着ベルト
 400 シート入口
 500 シート出口
 TH サーミスタ
 A 制御回路
 Wp−max 最大画像幅
 P シート
 S トナー
α ダスト低減率
d ベルトとフィルタ間の距離
Fs フィルタ面積
12a contact portion 15 guide member 50 filter unit 51 filter 52 duct 52a air inlet 61 first fan 62 second fan 63 third fan 101 fixing belt unit 101a heater 101b nip portion 102 pressure roller 103 fixing device 105 fixing belt 400 sheet inlet 500 sheet exit TH thermistor A control circuit Wp-max maximum image width P sheet S toner α dust reduction rate d distance between belt and filter Fs filter area

Claims (10)

  1.  離型剤を含有するトナーを用いて記録材に画像を形成する画像形成部と、
     前記画像形成部により記録材に形成された画像を定着するためのニップ部を形成する加熱回転体及び加圧回転体と、
     前記ニップ部の入口近傍から吸気口を介して取り込んだエアを排出するダクトと、
     前記ダクトの通気経路に設けられ離型剤に起因する微粒子を回収するフィルタと、
     前記ダクト内にエアを引き込むためのファンと、を有し、
     前記吸気口と前記加熱回転体の間隔をd(mm)、前記フィルタの面積をFs(cm)、前記フィルタにおけるエアの通過風速をFv(cm/s)としたとき、以下を満足する画像形成装置。
    Figure JPOXMLDOC01-appb-I000001
    An image forming unit that forms an image on a recording material using a toner containing a release agent;
    A heating rotator and a pressure rotator that form a nip portion for fixing an image formed on the recording material by the image forming unit;
    A duct for discharging air taken in from the vicinity of the inlet of the nip portion through the intake port;
    A filter that is provided in a ventilation path of the duct and collects fine particles caused by a release agent;
    A fan for drawing air into the duct,
    An image satisfying the following when the distance between the air inlet and the heating rotator is d (mm), the area of the filter is Fs (cm 2 ), and the air passing velocity of the filter is Fv (cm / s) Forming equipment.
    Figure JPOXMLDOC01-appb-I000001
  2.  以下を満足する請求項1に記載の画像形成装置。
    Figure JPOXMLDOC01-appb-I000002
    The image forming apparatus according to claim 1, wherein:
    Figure JPOXMLDOC01-appb-I000002
  3.  前記d(mm)は5以上100以下である請求項1又は2に記載の画像形成装置。 The image forming apparatus according to claim 1, wherein the d (mm) is 5 or more and 100 or less.
  4.  前記Fv(cm/s)は5以上30以下である請求項1乃至3のいずれか1項に記載の画像形成装置。 The image forming apparatus according to any one of claims 1 to 3, wherein the Fv (cm / s) is 5 or more and 30 or less.
  5.  前記フィルタの通気抵抗(Pa)は50以上130以下である請求項1乃至4のいずれか1項に記載の画像形成装置。 The image forming apparatus according to claim 1, wherein a ventilation resistance (Pa) of the filter is 50 or more and 130 or less.
  6.  前記フィルタは前記吸気口に設けられている請求項1乃至5のいずれか1項に記載の画像形成装置。 6. The image forming apparatus according to claim 1, wherein the filter is provided in the intake port.
  7.  前記フィルタは、その短手方向の中央部が前記ダクトの内側に向けて突出した曲面形状を為している請求項6に記載の画像形成装置。 The image forming apparatus according to claim 6, wherein the filter has a curved shape in which a central portion in a short direction projects toward an inner side of the duct.
  8.  前記フィルタの幅は、前記画像形成装置に使用可能な最小幅の記録材の幅以上である請求項1及至7のいずれか1項に記載の画像形成装置。 The image forming apparatus according to any one of claims 1 to 7, wherein a width of the filter is equal to or larger than a width of a recording material having a minimum width usable in the image forming apparatus.
  9.  前記フィルタは静電不織布である請求項1乃至8のいずれか1項に記載の画像形成装置。 The image forming apparatus according to any one of claims 1 to 8, wherein the filter is an electrostatic nonwoven fabric.
  10.  前記吸気口は、記録材の搬送方向において、前記画像形成部により記録材に画像を形成する位置から、前記ニップ部に至るまでの範囲内に位置する請求項1乃至9のいずれか1項に記載の画像形成装置。 10. The air intake port according to claim 1, wherein the air intake port is located within a range from a position where an image is formed on the recording material by the image forming unit to the nip portion in the recording material conveyance direction. The image forming apparatus described.
PCT/JP2016/089234 2015-12-28 2016-12-27 Image-forming device WO2017115877A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP16881851.6A EP3399372B1 (en) 2015-12-28 2016-12-27 Image-forming device
KR1020187020955A KR101993567B1 (en) 2015-12-28 2016-12-27 The image forming apparatus
CN201680076809.XA CN108475035B (en) 2015-12-28 2016-12-27 Image forming apparatus with a plurality of image forming units
US16/009,724 US10955798B2 (en) 2015-12-28 2018-06-15 Image forming apparatus

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2015255876 2015-12-28
JP2015-255876 2015-12-28
JP2016243805A JP6643220B2 (en) 2015-12-28 2016-12-15 Image forming device
JP2016-243805 2016-12-15

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/009,724 Continuation US10955798B2 (en) 2015-12-28 2018-06-15 Image forming apparatus

Publications (1)

Publication Number Publication Date
WO2017115877A1 true WO2017115877A1 (en) 2017-07-06

Family

ID=59224759

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/089234 WO2017115877A1 (en) 2015-12-28 2016-12-27 Image-forming device

Country Status (1)

Country Link
WO (1) WO2017115877A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019045120A1 (en) * 2017-08-29 2019-03-07 キヤノン株式会社 Image forming device
WO2019045119A1 (en) * 2017-08-29 2019-03-07 キヤノン株式会社 Image forming device
EP3474081A1 (en) * 2017-08-09 2019-04-24 Canon Kabushiki Kaisha Controlling amount of discharge of ultra fine particles discharged from image forming apparatus
TWI679124B (en) * 2018-12-11 2019-12-11 虹光精密工業股份有限公司 Feeding mechanism for business machine

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000061229A (en) * 1998-08-24 2000-02-29 Zeon Kasei Co Ltd Filter device for electrophotographic device
JP2014044238A (en) * 2012-08-24 2014-03-13 Canon Inc Image forming device
JP2015219448A (en) * 2014-05-20 2015-12-07 キヤノン株式会社 Control device and image forming apparatus

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000061229A (en) * 1998-08-24 2000-02-29 Zeon Kasei Co Ltd Filter device for electrophotographic device
JP2014044238A (en) * 2012-08-24 2014-03-13 Canon Inc Image forming device
JP2015219448A (en) * 2014-05-20 2015-12-07 キヤノン株式会社 Control device and image forming apparatus

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3474081A1 (en) * 2017-08-09 2019-04-24 Canon Kabushiki Kaisha Controlling amount of discharge of ultra fine particles discharged from image forming apparatus
US10591850B2 (en) 2017-08-09 2020-03-17 Canon Kabushiki Kaisha Image forming apparatus having a processor circuit that controls an amount of discharge of ultra fine particles discharged from the image forming apparatus, and related method
JP2022020841A (en) * 2017-08-29 2022-02-01 キヤノン株式会社 Image forming apparatus
WO2019045119A1 (en) * 2017-08-29 2019-03-07 キヤノン株式会社 Image forming device
JPWO2019045120A1 (en) * 2017-08-29 2020-10-15 キヤノン株式会社 Image forming device
JPWO2019045119A1 (en) * 2017-08-29 2020-10-22 キヤノン株式会社 Image forming device
US11022929B2 (en) 2017-08-29 2021-06-01 Canon Kabushiki Kaisha Image forming apparatus having guide for airflow through filter
WO2019045120A1 (en) * 2017-08-29 2019-03-07 キヤノン株式会社 Image forming device
US11300919B2 (en) 2017-08-29 2022-04-12 Canon Kabushiki Kaisha Image forming apparatus having guide for airflow to filter
US11835876B2 (en) 2017-08-29 2023-12-05 Canon Kabushiki Kaisha Image forming apparatus having removable duct and filter
US12105461B2 (en) 2017-08-29 2024-10-01 Canon Kabushiki Kaisha Image forming apparatus having removable fixing portion and filter holder
TWI679124B (en) * 2018-12-11 2019-12-11 虹光精密工業股份有限公司 Feeding mechanism for business machine
US11130644B2 (en) 2018-12-11 2021-09-28 Avision Inc. Feeding apparatus

Similar Documents

Publication Publication Date Title
JP6643220B2 (en) Image forming device
JP6202928B2 (en) Fixing device
EP2749963A2 (en) Image forming apparatus
WO2017115877A1 (en) Image-forming device
JP6676371B2 (en) Image forming device
JP6230325B2 (en) Fixing device
EP3299903B1 (en) Image forming apparatus
WO2020171241A1 (en) Image forming device
JP2017125976A (en) Image forming apparatus
JP2018045117A (en) Image forming apparatus
WO2019208834A1 (en) Image forming device
JP6614970B2 (en) Image forming apparatus
JP6362408B2 (en) Control device and image forming apparatus
JP2016057481A (en) Fixing device
JP6656020B2 (en) Image forming device
JP6708416B2 (en) Image forming device
JP6727915B2 (en) Image forming device
JP2012047790A (en) Image forming apparatus
JP2015184430A (en) fixing device
JP6173148B2 (en) Fixing device
JP2019012178A (en) Fixing device
JP2023020171A (en) Image forming apparatus
JP2015064519A (en) Fixing device
JP2024024836A (en) Fixing device and image forming apparatus including the same
JP2018136393A (en) Fixing device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16881851

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20187020955

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 1020187020955

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 2016881851

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2016881851

Country of ref document: EP

Effective date: 20180730