WO2017114417A1 - Dump truck - Google Patents

Dump truck Download PDF

Info

Publication number
WO2017114417A1
WO2017114417A1 PCT/CN2016/112653 CN2016112653W WO2017114417A1 WO 2017114417 A1 WO2017114417 A1 WO 2017114417A1 CN 2016112653 W CN2016112653 W CN 2016112653W WO 2017114417 A1 WO2017114417 A1 WO 2017114417A1
Authority
WO
WIPO (PCT)
Prior art keywords
gear
axle
assembly
shaft
dump truck
Prior art date
Application number
PCT/CN2016/112653
Other languages
French (fr)
Inventor
Huiyue LIU
Chupeng QUAN
Jia Wei
Hailong WEI
Original Assignee
Byd Company Limited
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN201511030807.0A external-priority patent/CN105984278B/en
Priority claimed from CN201521138862.7U external-priority patent/CN205468311U/en
Application filed by Byd Company Limited filed Critical Byd Company Limited
Publication of WO2017114417A1 publication Critical patent/WO2017114417A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K1/00Arrangement or mounting of electrical propulsion units
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60BVEHICLE WHEELS; CASTORS; AXLES FOR WHEELS OR CASTORS; INCREASING WHEEL ADHESION
    • B60B35/00Axle units; Parts thereof ; Arrangements for lubrication of axles
    • B60B35/12Torque-transmitting axles
    • B60B35/14Torque-transmitting axles composite or split, e.g. half- axles; Couplings between axle parts or sections
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60BVEHICLE WHEELS; CASTORS; AXLES FOR WHEELS OR CASTORS; INCREASING WHEEL ADHESION
    • B60B35/00Axle units; Parts thereof ; Arrangements for lubrication of axles
    • B60B35/12Torque-transmitting axles
    • B60B35/16Axle housings
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G5/00Resilient suspensions for a set of tandem wheels or axles having interrelated movements
    • B60G5/04Resilient suspensions for a set of tandem wheels or axles having interrelated movements with two or more pivoted arms, the movements of which are resiliently interrelated, e.g. the arms being rigid
    • B60G5/047Resilient suspensions for a set of tandem wheels or axles having interrelated movements with two or more pivoted arms, the movements of which are resiliently interrelated, e.g. the arms being rigid at least one arm being resilient, e.g. a leafspring
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G5/00Resilient suspensions for a set of tandem wheels or axles having interrelated movements
    • B60G5/04Resilient suspensions for a set of tandem wheels or axles having interrelated movements with two or more pivoted arms, the movements of which are resiliently interrelated, e.g. the arms being rigid
    • B60G5/053Resilient suspensions for a set of tandem wheels or axles having interrelated movements with two or more pivoted arms, the movements of which are resiliently interrelated, e.g. the arms being rigid a leafspring being used as equilibration unit between two axle-supporting units
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K17/00Arrangement or mounting of transmissions in vehicles
    • B60K17/04Arrangement or mounting of transmissions in vehicles characterised by arrangement, location, or kind of gearing
    • B60K17/043Transmission unit disposed in on near the vehicle wheel, or between the differential gear unit and the wheel
    • B60K17/046Transmission unit disposed in on near the vehicle wheel, or between the differential gear unit and the wheel with planetary gearing having orbital motion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K17/00Arrangement or mounting of transmissions in vehicles
    • B60K17/04Arrangement or mounting of transmissions in vehicles characterised by arrangement, location, or kind of gearing
    • B60K17/06Arrangement or mounting of transmissions in vehicles characterised by arrangement, location, or kind of gearing of change-speed gearing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K17/00Arrangement or mounting of transmissions in vehicles
    • B60K17/04Arrangement or mounting of transmissions in vehicles characterised by arrangement, location, or kind of gearing
    • B60K17/12Arrangement or mounting of transmissions in vehicles characterised by arrangement, location, or kind of gearing of electric gearing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K17/00Arrangement or mounting of transmissions in vehicles
    • B60K17/04Arrangement or mounting of transmissions in vehicles characterised by arrangement, location, or kind of gearing
    • B60K17/16Arrangement or mounting of transmissions in vehicles characterised by arrangement, location, or kind of gearing of differential gearing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K17/00Arrangement or mounting of transmissions in vehicles
    • B60K17/36Arrangement or mounting of transmissions in vehicles for driving tandem wheels
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G2204/00Indexing codes related to suspensions per se or to auxiliary parts
    • B60G2204/10Mounting of suspension elements
    • B60G2204/19Mounting of transmission differential
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G2300/00Indexing codes relating to the type of vehicle
    • B60G2300/02Trucks; Load vehicles
    • B60G2300/026Heavy duty trucks
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K11/00Arrangement in connection with cooling of propulsion units
    • B60K11/02Arrangement in connection with cooling of propulsion units with liquid cooling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K1/00Arrangement or mounting of electrical propulsion units
    • B60K2001/001Arrangement or mounting of electrical propulsion units one motor mounted on a propulsion axle for rotating right and left wheels of this axle
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K1/00Arrangement or mounting of electrical propulsion units
    • B60K2001/003Arrangement or mounting of electrical propulsion units with means for cooling the electrical propulsion units
    • B60K2001/006Arrangement or mounting of electrical propulsion units with means for cooling the electrical propulsion units the electric motors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60YINDEXING SCHEME RELATING TO ASPECTS CROSS-CUTTING VEHICLE TECHNOLOGY
    • B60Y2200/00Type of vehicle
    • B60Y2200/10Road Vehicles
    • B60Y2200/14Trucks; Load vehicles, Busses
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60YINDEXING SCHEME RELATING TO ASPECTS CROSS-CUTTING VEHICLE TECHNOLOGY
    • B60Y2200/00Type of vehicle
    • B60Y2200/10Road Vehicles
    • B60Y2200/14Trucks; Load vehicles, Busses
    • B60Y2200/142Heavy duty trucks

Definitions

  • Embodiments of the present disclosure relates to the field of construction vehicles, and specifically, to a dump truck.
  • a power motor, a transmission, a transmission shaft, and a vehicle axle are all disposed separately, and power is transmitted stage by stage, resulting in a lot of transmission sections, a long transmission link, low transmission efficiency, a large volume, and difficult arrangement.
  • volumes of power motors and transmissions are usually relatively large, axles withstand large torque, it is difficult to ensure connection strength between vehicle axles and transmissions, and there is room for improvement.
  • the present disclosure aims at resolving one of the technical problems in the related art to some extent.
  • the present disclosure proposes a dump truck having a driving axle assembly that has a small volume, a high integration degree, and stable transmission.
  • a dump truck includes a frame; a first axle assembly; a second axle assembly, where the second axle assembly and the first axle assembly are disposed along a front-rear direction in a spaced manner, the second axle assembly includes two vehicle axle assemblies that are disposed along the front-rear direction in a spaced manner, each of the vehicle axle assemblies includes an axle case assembly, the axle case assembly includes an axle case component and two half axles, and the two half axles are located inside the axle case component; at least one of the two vehicle axle assemblies is an electric drive axle assembly, the electric drive axle assembly further includes an electric power assembly and a suspension apparatus, the electric power assembly includes a power motor, a transmission, and a differential, the transmission has a transmission case, the power motor is fixed to the transmission case, the differential is supported on the transmission case, the differential is located inside the axle case component, the transmission case is fixed to the axle case component, the transmission includes a plurality of transmission shafts, the plurality of transmission shafts is sequentially disposed from the top to the bottom
  • At least one of vehicle axle assemblies of a second axle assembly is configured to be an electric drive axle assembly having a compact structure, a short transmission link, high transmission efficiency, and easy arrangement, so that the dump truck implements a stable and environmental friendly driving process that has zero emission, zero pollution, and low noise;
  • a frame is connected to each vehicle axle assembly through a suspension system, so that the dump truck is more comfortable, a plurality of transmission shafts is sequentially disposed from the top to the bottom to greatly shorten a distance from a center of mass of an electric power assembly to a center of the axle case assembly, so that relative torque from the electric power assembly to the axle case assembly is reduced, a connection is stable, and transmission is more stable.
  • Fig. 1 is a schematic structural diagram of a second axle assembly and a frame according to an embodiment of the present disclosure
  • Fig. 2 is a top view of Fig. 1;
  • Fig. 3 is a schematic structural diagram of a second axle assembly according to an embodiment of the present disclosure.
  • Fig. 4 is a top view of Fig. 3;
  • Fig. 5 is a schematic structural diagram of Fig. 3 from a bottom view point
  • Fig. 6 is a schematic structural diagram of an electric drive axle assembly according to an embodiment of the present disclosure.
  • Fig. 7 is a sectional view of Fig. 6;
  • Fig. 8 is an enlarged view of part E in Fig. 7;
  • Fig. 9 is a schematic structural diagram of an axle case assembly according to an embodiment of the present disclosure.
  • Fig. 10 is a schematic structural diagram of an electric power assembly according to an embodiment of the present disclosure.
  • Fig. 11 is a schematic diagram of an internal structure of a transmission according to an embodiment of the present disclosure.
  • Fig. 12 is a side view of Fig. 11;
  • Fig. 13 is a schematic structural diagram of a power takeoff according to an embodiment of the present disclosure.
  • Fig. 14 is a schematic diagram of a transmission structure of a dump truck according to an embodiment of the present disclosure.
  • Fig. 15 is a schematic view of a dump truck according to an embodiment of the present disclosure.
  • a dump truck 10000 according to an embodiment of the present disclosure is described below by referring to Fig. 1 to Fig. 15.
  • the dump truck 10000 according to the embodiment of the present disclosure includes a frame 400, a first axle assembly 300, a second axle assembly 1000, and a suspension system 500.
  • the first axle assembly 300 and the second axle assembly 1000 are disposed along a front-rear direction of the dump truck 10000 in a spaced manner.
  • the first axle assembly 300 is a front vehicle axle assembly of the dump truck 10000
  • the second axle assembly 1000 is a rear vehicle axle assembly of the dump truck 10000.
  • the second axle assembly 1000 includes two vehicle axle assemblies that are disposed along the front-rear direction of the dump truck 10000 in a spaced manner.
  • each of the vehicle axle assemblies includes an axle case assembly 102
  • the axle case assembly 102 includes an axle case component 21 and two half axles 22, and the two half axles 22 are located inside the axle case component 21.
  • At least one of the two vehicle axle assemblies is an electric drive axle assembly 100, that is, one of the two vehicle axle assemblies may be the electric drive axle assembly 100, and the other one may be a driven axle; or the two vehicle axle assemblies are both electric drive axle assemblies 100.
  • each vehicle axle assembly can drive the dump truck 10000 to run, so that the second axle assembly 1000 is a drive axle and is powerful, and the dump truck 10000 can adapt to a level road and a slope with good comprehensive economic efficiency.
  • the two electric drive axle assemblies 100 are disposed in such a way that a first electric drive axle assembly 100 is formed by rotating a second electric drive axle assembly 100 about an axis in an up-down direction that is perpendicular to the front-rear direction by 180°. That is, the first electric drive axle assembly 100 is a rear drive axle, the second electric drive axle assembly 100 is a middle drive axle, and the second electric drive axle assembly 100 is formed by rotating the first electric drive axle assembly 100 around an axis in the up-down direction that is perpendicular to the front-rear direction by 180°.
  • the second axle assembly 1000 has a more compact structure, a convenient arrangement, a high space utilization ratio and even load distribution.
  • the two electric drive axle assemblies 100 may be completely identical, so that the middle drive axle and the rear drive axle can be in common use, so as to reduce production and manufacturing costs. Certainly, in some other embodiments of the present disclosure, the two electric drive axle assemblies 100 may be slightly different.
  • the dump truck 10000 may further include two motor controllers, the two motor controllers have one-to-one correspondences with the two electric drive axle assemblies 100, and each motor controller individually controls a power motor 11 of the corresponding electric drive axle assembly 100.
  • the two electric drive axle assemblies 100 individually work without mutual interference and respectively controlled by the two motor controllers, and a rotation speed of the power motor 11 is adjusted by means of an accurate control unit, thereby implementing real-time synchronization.
  • the two electric drive axle assemblies 100 can individually work, even though one electric drive axle assembly 100 cannot work, the other electric drive axle assembly 100 also can drive the whole vehicle to run, and there are two individual power sources, namely, the two independent power motors 11, which make the power of the whole vehicle stronger.
  • the electric drive axle assembly 100 drives the driven axle so as to make the dump truck 10000 to run, and the have a simple structure is simple and simple arrangement.
  • the electric drive axle assembly 100 includes an electric power assembly 101 and an axle case assembly 102.
  • the electric power assembly 101 includes a power motor 11, a transmission 12, and a differential 13.
  • the axle case assembly 102 includes an axle case component 21 and two half axles 22. The two half axles 22 and the differential 13 are all located inside the axle case component 21.
  • the transmission 12 has a transmission case 121
  • the power motor 11 is fixed onto the transmission case 121
  • the differential 13 is supported on the transmission case 121
  • the transmission case 121 is fixed onto the axle case component 21.
  • the power motor 11 may be fixed onto the transmission case 121 through a thread connecting member
  • the transmission case 121 may be fixed onto the axle case component 21 through a thread connecting member
  • the differential 13 is supported on the transmission case 121 through a bearing.
  • the transmission case 121 may serve as a mounting carrier for the power motor 11, and the transmission case 121 is a connecting component between the electric power assembly 101 and the axle case assembly 102, so as to integrate the power motor 11, the transmission 12, the differential 13 and the axle case assembly 102 together.
  • the electric drive axle assembly 100 has a compact structure, simple assembly, reduced mass, a small volume, and a small occupied space, can be conveniently arranged on the dump truck 1000 with a shorten transmission link, a small transmission loss and high transmission efficiency.
  • the transmission 12 includes a plurality of transmission shafts, where the plurality of transmission shafts is sequentially disposed from the top to the bottom, thereby greatly shortening a distance from the centroid of the electric power assembly 101 to the center of the axle case assembly 102, so that torque from the electric power assembly 101 to the axle case assembly 102 is reduced, the connection is reliably, and the transmission is more stable.
  • the electric drive axle assembly 100 may further include a suspension apparatus, and the suspension apparatus is connected between the electric power assembly 101 and the frame 400. That is, the electric power assembly 101 is not completely borne by the axle case assembly 102, and the electric power assembly 101 is also connected to the frame 400 through the suspension apparatus, so that torque generated by a centroid shift of the electric power assembly 101 to the axle case assembly 102 can be effectively balanced.
  • Such arrangement of the electric drive axle assembly 100 is more beneficial to a dump truck 10000 whose electric power assembly 101 has a large volume and whose power motor 11 has large power, so as to preferably satisfy running requirements of the heavy load-type dump truck 10000.
  • the suspension apparatus may be connected between an end, distal from the axle case assembly 102, of the transmission case 121 and the frame 400, so as to facilitate balancing torque caused by the centroid shift of the electric power assembly 101 to the axle case assembly 102, so that mounting of the electric power assembly 101 and the axle case assembly 102 is more stable.
  • the suspension apparatus may include two vibration absorbers, and the two vibration absorbers may be symmetrically disposed on left and right sides of the transmission case 121.
  • the frame 400 may include a cross beam, an end of the vibration absorber is mounted to the cross beam, and the other end of the vibration absorber is mounted to the transmission case 121.
  • the electric drive axle assembly 100 can effectively reduce an impact, approach beat synchronization between the electric power assembly 101 and the axle case assembly 102 as much as possible, and almost reduce torque between the electric power assembly 101 and the axle case assembly 102 to zero, thereby ensuring reliability of a connection therebetween and ensuring stability of power transmission, so that use of the whole electric drive axle assembly 100 is more reliable and safer.
  • Each vehicle axle assembly is connected to the frame 400 through the suspension system 500. That is, the suspension system 500 is a connecting component between the frame 400 and each vehicle axle assembly, so that influence on the whole vehicle caused by vibrations of the drive system of the dump truck 10000 is greatly reduced, and comfortableness of the whole vehicle is improved.
  • At least one of two vehicle axle assemblies of a second axle assembly 1000 is configured to be an electric drive axle assembly having a compact structure, a short transmission link, high transmission efficiency, and easy arrangement, so that the dump truck 10000 implements a stable and environmental friendly driving process that has zero emission, zero pollution, and low noise; and a frame 400 is connected to each vehicle axle assembly through a suspension system 500, so that the dump truck is more comfortable.
  • a plurality of transmission shafts is sequentially disposed from the top to the bottom to greatly shorten a distance from the centroid of the electric power assembly 101 to the center of axle case assembly 102, so that torque from the electric power assembly 101 to the axle case assembly 102 is reduced, the connection is reliable, and the transmission is more stable.
  • a dump truck 10000 according to an embodiment of the present disclosure is described in detail below by referring to Fig. 1 to Fig. 15. As shown in Fig. 15, the dump truck 10000 includes a frame 400, a first axle assembly 300, a second axle assembly 1000, and a suspension system 500.
  • the first axle assembly 300 and the second axle assembly 1000 are disposed along a front-rear direction of the dump truck 10000 in a spaced manner, the second axle assembly 1000 includes two vehicle axle assemblies, at least one of the two vehicle axle assemblies is an electric drive axle assembly 100, and each of the vehicle axle assemblies is connected to the frame 400 through the suspension system 500.
  • the suspension system 500 includes two elastic members 50 that are disposed along a left-right direction in a spaced manner, a balance shaft assembly 51, and a first thrust rod group and a second thrust rod group that are disposed along an up-down direction in a spaced manner.
  • each of the elastic members 50 includes at least one layer of a leaf spring, and preferably, each of the elastic members 50 includes a plurality of layers of leaf springs, and the plurality of layers of leaf springs is disposed in a stacking manner from the top to the bottom.
  • a front end of the first elastic member 50 on the left side is connected to a left end of the axle case component 21 of the vehicle axle assembly located in the front
  • a rear end of the first elastic member 50 on the left side is connected to a left end of the axle case component 21 of the vehicle axle assembly located in the rear
  • the first elastic member 50 on the left side is located above the two axle case components 21.
  • a front end of the second elastic member 50 on the right side is connected to a right end of the axle case component 21 of the vehicle axle assembly located in the front
  • a rear end of the second elastic member 50 on the right side is connected to a right end of the axle case component 21 of the vehicle axle assembly located in the rear
  • the second elastic member 50 on the right side is located above the two axle case components 21.
  • the axle case component 21 is disposed completely below the elastic member 50, that is, the axle case assembly 102 and the electric power assembly 101 are both located below the elastic member 50 (the leaf spring) , so that influence on the whole vehicle caused by the vibrations of the electric power assembly 101 is greatly reduced, comfortableness of the whole vehicle is improved, and a driving process is stable and environmental friendly and has zero emission, zero pollution, and low noise.
  • the balance shaft assembly 51 is fixed to the frame 400, and the balance shaft assembly 51 is located between the two vehicle axle assemblies in a front-rear direction, that is, the two vehicle axle assemblies are respectively located on two sides of the balance shaft assembly 51, and the middle of each of the elastic members 50 is fixed to the balance shaft assembly 51, that is, the balance shaft assembly 51 may serve as a connecting component between each of the elastic members 50 and the frame 400.
  • the middle of the first elastic member 50 on the left side is fixed to a left end of the balance shaft assembly 51
  • the middle of the second elastic member 50 on the right side is fixed to a right end of the balance shaft assembly 51.
  • each of the elastic members 50 is fixed more firmly, that is, two ends of each of the elastic members 50 are respectively fixed to end portions on the same side of the two axle case components 21, and the middle of each of the elastic members 50 is fixed onto a corresponding end of the balance shaft assembly 51.
  • each of the elastic members 50 includes at least one layer of a leaf spring, the middle of each of the elastic members 50 is fixed to the balance shaft assembly 51 through a U-bolt 52, that is, at least one layer of a leaf spring is fixed to a corresponding end of the balance shaft assembly 51 through the U-bolt 52.
  • each of the elastic members 50 is fixed to a corresponding end of a balance shaft assembly through two U-bolts 52 that are spaced in a front-rear direction.
  • a first thrust rod group includes two first subgroups that are symmetrically disposed in a front-rear direction, the two first subgroups have one-to-one correspondences with the two axle case components 21, each of the first subgroups includes a plurality of first thrust rods 53, and each of the first thrust rods 53 is connected between the frame 400 and a corresponding axle case component 21.
  • a second thrust rod group includes two second subgroups that are symmetrically disposed in a front-rear direction, the two second subgroups have one-to-one correspondences with the two axle case components 21, each of the second subgroups includes a plurality of second thrust rods 54, and each of the second thrust rods 54 is connected between the balance shaft assembly 51 and a corresponding axle case component 21.
  • any first thrust rod 53 in the first thrust rod group is connected between the frame 400 and a corresponding axle case component 21
  • any second thrust rod 54 in the second thrust rod group is connected between the balance shaft assembly 51 and a corresponding axle case component 21.
  • the first thrust rod group is located above the second thrust rod group, a first end of each first thrust rod 53 is connected to the middle of a corresponding axle case component 21.
  • the first end of each first thrust rod 53 is connected to the middle of the corresponding axle case component 21 through a first thrust rod axle case mounting seat 552, the first thrust rod axle case mounting seat 552 is fixed to the middle of the axle case component 21, and the first thrust rod axle case mounting seat 552 is located above the axle case component 21.
  • each first thrust rod 53 is connected to the frame 400 through a first thrust rod frame mounting seat 551, the first thrust rod frame mounting seat 551 is fixed to the frame 400, and the first thrust rod frame mounting seat 551 is located between the two axle case components 21.
  • each first thrust rod 53 separately corresponds to one first thrust rod axle case mounting seat 552 and one first thrust rod frame mounting seat 551.
  • a front end of the first thrust rod 53 in the first subgroup located in the front is connected to the middle of the front axle case component 21 through the first thrust rod axle case mounting seat 552, and a rear end of the first thrust rod 53 in the first subgroup located in the front is connected to the frame 400 through the first thrust rod frame mounting seat 551; and a rear end of the first thrust rod 53 in the first subgroup located in the rear is connected to the middle of the rear axle case component 21 through the first thrust rod axle case mounting seat 552, and a front end of the first thrust rod 53 in the first subgroup located in the rear is connected to the frame 400 through the first thrust rod frame mounting seat 551.
  • first end of each of the first thrust rods 53 is located on an inner side of the second end of the same first thrust rod 53, that is, the first thrust rods 53 each are obliquely disposed, and the first thrust rod 53 in the first subgroup located in the front extends outward from the front to the rear, and the first thrust rod 53 in the first subgroup located in the rear extends inward from the front to the rear.
  • the first thrust rod frame mounting seat 551 is fixed to an inner side of the frame 400, so that the structure of the suspension system 500 is more compact and can be more conveniently connected and assembled.
  • the frame 400 may include two longitudinal beams that are disposed along a left-right direction in a spaced manner, the first thrust rod frame mounting seat 551 on the left side is located on an inner side of the longitudinal beam located on the left side, and the first thrust rod frame mounting seat 551 on the right side is located on an inner side of the longitudinal beam on the right side.
  • each first subgroup includes two first thrust rods 53, there are two first thrust rod axle case mounting seats 552 that correspond to each first subgroup, and the two first thrust rod 53 are connected to the two first thrust rod axle case mounting seats 552 in a one-to-one correspondence manner; and there are two first thrust rod frame mounting seats 551 that correspond to each first subgroup, and second ends of the two first thrust rods 53 have one-to-one correspondences with the two first thrust rod frame mounting seats 551.
  • the two first thrust rod axle case mounting seats 552 that correspond to the two first thrust rods 53 of each first subgroup are integrated into one first thrust rod V-shaped axle case mounting seat 556.
  • one first thrust rod frame mounting seat 551 that is connected to the rear end of the first thrust rod 53 on the left side of the first subgroup located in the front and one first thrust rod frame mounting seat 551 that is connected to the front end of the first thrust rod 53 on the left side of the first subgroup located in the rear may be integrally formed, and one first thrust rod frame mounting seat 551 that is connected to the rear end of the first thrust rod 53 on the right side of the first subgroup located in the front and one first thrust rod frame mounting seat 551 that is connected to the front end of the first thrust rod 53 on the right side of the first subgroup located in the rear may be integrally formed.
  • the two first thrust rod frame mounting seats 551 that are integrally formed have structures that have high strength and are assembled with the frame 400 more easily.
  • the integrated first thrust rod frame mounting seats 551 may be fixed onto the frame 400 through thread connecting members.
  • the first thrust rod group is located above the second thrust rod group, a first end of each second thrust rod 54 is connected to an end portion of a corresponding axle case component 21, for example, a first end of each second thrust rod 54 is connected to the end portion of the corresponding axle case component 21 through a second thrust rod axle case mounting seat 554, the second thrust rod axle case mounting seat 554 is fixed onto the end portion of the axle case component 21, and the second thrust rod axle case mounting seat 554 is located below the corresponding axle case component 21.
  • a second end of the second thrust rod 54 is connected to the balance shaft assembly 51 through a second thrust rod balance shaft mounting seat 553, the second thrust rod balance shaft mounting seat 553 is fixed to an end portion of the balance shaft assembly 51, and an end portion of an axle case component 21 and the end portion of the balance shaft assembly 51 which correspond to the same second thrust rod 54 are located on the same side of the second axle assembly 1000.
  • each second thrust rod 54 separately corresponds to one second thrust rod axle case mounting seat 554 and one second thrust rod balance shaft mounting seat 553, a front end of the second thrust rod 54 on the left side in the second subgroup located in the front is connected to a left end portion of the axle case component 21 in the front through the second thrust rod axle case mounting seat 554, and a front end of the second thrust rod 54 on the right side in the second subgroup located in the front is connected to a right end portion of the axle case component 21 in the front through the second thrust rod axle case mounting seat 554; and a rear end of the second thrust rod 54 on the left side in the second subgroup located in the front is connected to a left end portion of the balance shaft assembly 51 through the second thrust rod balance shaft mounting seat 553, and a rear end of the second thrust rod 54 on the right side in the second subgroup located in the front is connected to a right end portion of the balance shaft assembly 51 through the second thrust rod balance shaft mounting seat 553.
  • a rear end of the second thrust rod 54 on the left side in the second subgroup located in the rear is connected to a left end portion of the axle case component 21 in the rear through the second thrust rod axle case mounting seat 554, and a rear end of the second thrust rod 54 on the right side in the second subgroup located in the rear is connected to a right end portion of the axle case component 21 in the rear through the second thrust rod axle case mounting seat 554; and a front end of the second thrust rod 54 on the left side in the second subgroup located in the rear is connected to a left end portion of the balance shaft assembly 51 through the second thrust rod balance shaft mounting seat 553, and a front end of the second thrust rod 54 on the right side in the second subgroup located in the rear is connected to a right end portion of the balance shaft assembly 51 through the second thrust rod balance shaft mounting seat 553.
  • each of the second thrust rods 54 is located on an inner side of the first end of the same second thrust rod 54, that is, the second thrust rods 54 each are obliquely disposed, and the second thrust rod 54 in the second subgroup located in the front extends inward from the front to the rear, and the second thrust rod 54 in the second subgroup located in the rear extends outward from the front to the rear.
  • each second subgroup includes two second thrust rods 54, and there are two second thrust rod axle case mounting seats 554 that correspond to the second subgroup.
  • two elastic member mounting seats 555 that are disposed in a left-right direction in a spaced manner are respectively fixed to two ends of the axle case component 21 corresponding to the second subgroup, the two elastic member mounting seats 555 have one-to-one correspondences with the two second thrust rod axle case mounting seats 554, each of the second thrust rod axle case mounting seats 554 is fixed below the corresponding elastic member mounting seat 555, and each of the second thrust rod balance shaft mounting seats 553 is fixed below the balance shaft assembly 51.
  • one elastic member mounting seat 555 is fixed onto the left end of the axle case component 21 corresponding to the second subgroup, the corresponding second thrust rod axle case mounting seat 554 on the left end is fixed below the elastic member mounting seat 555 on the left end, and one second thrust rod balance shaft mounting seat 553 is fixed below the left end of the balance shaft assembly 51 corresponding to the second subgroup; and one elastic member mounting seat 555 is fixed onto the right end of the axle case component 21 corresponding to the second subgroup, the corresponding second thrust rod axle case mounting seat 554 on the right end is fixed below the elastic member mounting seat 555 on the right end, and one second thrust rod balance shaft mounting seat 553 is fixed below the right end of the balance shaft assembly 51 corresponding to the second subgroup.
  • the second thrust rod group is completely disposed below the first thrust rod group, so that the top and the bottom of the vehicle axle assembly are both fixed to the frame 400.
  • positions of the frame 400 and the vehicle axle assembly can be relatively fixed, the force carrying is more balanced, the load distribution is more even, and the whole arrangement of the dump truck 10000 is optimized.
  • each first thrust rod 53 and two ends of each second thrust rod 54 all have a rubber ball hinge structure, so that joints between each first thrust rod 53 and the frame 400, between each first thrust rod 53 and the vehicle axle assembly, between each second thrust rod 54 and the balance shaft assembly 51, and between each second thrust rod 54 and the vehicle axle assembly have flexibility to some extent, a favorable vibration absorption effect, and convenient connection.
  • two vehicle axle assemblies are both electric drive axle assemblies 100, and one electric drive axle assembly 100 is formed after rotating the other electric drive axle assembly 100 by 180°, so that the middle drive axle and the rear drive axle can be in common use, only one vehicle axle assembly needs to be developed, and with regard to four first thrust rods 53 of the first thrust rod group and four second thrust rods 54 of the second thrust rod group, only one state needs to be developed for each, which greatly lowers development costs.
  • the electric drive axle assembly 100 integrates the power motor 11, the transmission 12, and the axle case assembly 102 together and has a compact structure and high transmission efficiency, and the second axle assembly 1000 of the dump truck 10000 completely uses an electric drive manner, has a high energy utilization ratio, a high response speed, and has stronger power performance.
  • the whole power portion of the dump truck 10000 is located below the elastic member 50, that is, the vibration source of the whole vehicle is disposed below the elastic member 50, after vibration absorption performed by the suspension system 500, the vibration is weaken, the comfortableness of the whole vehicle is greatly improved, and a plurality of components (for example, the vehicle axle assembly, the first thrust rod 53, and the second thrust rod 54) can be in common use, so that development costs are low.
  • the two vehicle axle assemblies are both electric drive axle assemblies 100
  • the two electric drive axle assemblies 100 can work synchronously or individually, so that even though one electric drive axle assembly 100 cannot work, the other electric drive axle assembly 100 can also drive the whole vehicle to run, and the two independent power sources make the power of the whole vehicle stronger.
  • the electric drive axle assembly 100 includes an electric power assembly 101, an axle case assembly 102 and a suspension apparatus.
  • the electric power assembly 101 may be fixed to the axle case assembly 102 through a plurality of bolts, so as to be integrated as an electric drive axle assembly 100.
  • the electric power assembly 101 includes a power motor 11, a transmission 12, a differential 13, and an electrohydraulic gear shift actuating module 15, where the transmission 12 has a transmission case 121.
  • the power motor 11 may be fixed onto the transmission case 121 through a plurality of bolts, and the plurality of bolts is circumferentially disposed around the power motor 11 in a spaced manner.
  • the power motor 11 may be a permanent magnet synchronous motor.
  • the power motor 11 is externally connected to a power supply through a three-phase cable, so as to implement driving of the power motor 11.
  • the power motor 11 includes an active cooling structure.
  • the active cooling structure is configured to actively cool the power motor 11.
  • the active cooling structure includes a coolant circulation passage 111 that is configured to cool the power motor 11, where the coolant circulates inside the coolant circulation passage 111 to cool the power motor 11.
  • the coolant circulation passage 111 has an inlet A and an outlet B, and the coolant may enter the coolant circulation passage 111 through the inlet A and be output through the outlet B after the coolant performs heat exchange with the power motor 11.
  • the power motor 11 can be prevented from overheating, which indirectly improves efficiency, the power motor 11 is prevented from being burned out, and the power motor 11 can satisfy requirements for operation with large power at a high rotation speed for a long time, can preferably match an operation working condition of the dump truck 10000, and can be used in the whole series of vehicles from a light vehicle to a heavy vehicle.
  • the active cooling structure may further include a coolant drive member, the coolant drive member is disposed to the coolant circulation passage 111 to drive the coolant to flow inside the coolant circulation passage 111.
  • the coolant drive member may be a cooling oil pump.
  • the coolant circulation passage 111 may also be connected to a coolant located outside the electric drive axle assembly 100, that is, the coolant may be introduced from the outside, that is, the coolant circulation passage 111 of the active cooling structure may share the coolant drive member with a coolant circulation passage of another component on the dump truck.
  • the transmission case 121 of the transmission 12 may be fixed to the axle case component 21 of the axle case assembly 102 though a bolt.
  • the axle case component 21 includes an axle case 210 and a case cover 213.
  • the middle of the axle case 210 is provided with a differential accommodation space whose two side end faces are both open, the case cover 213 is detachably mounted to the axle case 210 to seal a first open side end face in the middle of the axle case 210, and the transmission case 121 is fixed onto a second open side end face in the middle of the axle case 210.
  • the case cover 213 may be detachably mounted to the axle case 210 through a thread connecting member, and specifically, as shown in Fig. 6, Fig. 7, and Fig. 9, the thread connecting member is a bolt 403, and the case cover 213 may be connected to the first open side end face in the middle of the axle case 210 in a threaded manner through the plurality of bolts 403 that are circumferentially disposed around the case cover 213 in a spaced manner.
  • the case cover 213 is detachably mounted to the axle case 210, so that the electric power assembly 101 can be mounted more conveniently and has a simple fixing structure and convenient operation.
  • a case cover 213 on the first side end face in the middle of the axle case 210 is manufactured to be of an assembly type, which can effectively reduce difficulty in assembly of the electric power assembly 101 and the two half axles 22 and facilitates maintenance of the differential 13.
  • the electric drive axle assembly 100 further includes a plurality of bolts 401, the transmission case 121 is provided with a plurality of threaded holes, the axle case 210 is provided with a plurality of through holes having one-to-one correspondences with the plurality of threaded holes, the plurality of bolts has one-to-one correspondences with the plurality of through holes, and each of the bolts penetrates through the corresponding through hole to be fixed into the corresponding threaded hole, so as to fix the transmission case 121 onto the second open side end face in the middle of the axle case 210.
  • the plurality of threaded holes is disposed in the transmission case 121, and the plurality of through holes is disposed in the axle case 210, so that in the situation of ensuring connection strength, the volume of the transmission 12 may be reduced as much as possible, and the structure is more compact.
  • two half axles sleeves 23 may be respectively fixed onto two ends (namely, the left end and the right end) of the axle case component 21 in a welding manner.
  • the axle case assembly 102 may further include two wheel reducers 20, two hub assemblies 24, two brakes 25, and two brake mounting plates 214, where each of the hub assemblies 24 is rotatably mounted to a corresponding half axle sleeve 23, the two half axles sleeves 23 are fitted over two half axles 22 in a one-to-one correspondence manner, the two wheel reducers 20 have one-to-one correspondences with the two hub assemblies 24, an input end of each of the wheel reducers 20 is connected to the corresponding half axle 22, and an output end of each of the wheel reducers 20 is connected to the corresponding hub assembly 24.
  • the wheel reducer 20 is a planet gear reducer.
  • the planet gear reducer includes a sun gear 202, a planet gear 203, and an inner gear ring 204, where the sun gear 202 is fixed onto the half axle 22, so as to rotate synchronously with the half axle 22, the planet gear 203 is engaged with the sun gear 202 and the inner gear ring 204, and the inner gear ring 204 is fixed to the corresponding half axle sleeve 23 through an inner gear ring support 205.
  • the volume is small, the transmission efficiency is high, and the speed reduction range is broad.
  • the wheel reducer 20 includes a wheel reducer case 201, the wheel reducer case 201 may be fixed onto the hub assembly 24, so that the volume of the axle case assembly 102 is further reduced, the structure is compact, and the space is saved.
  • the planet gear reducer may further include a retainer ring 206, and the retainer ring 206 is sandwiched between the inner gear ring support 205 and the inner gear ring 204 in a radial direction, so as to stop the inner gear ring 204 in the radial direction, thereby preferably ensuring accuracy in assembly of the wheel reducer 20 and the hub assembly 24.
  • the two brakes 25 have one-to-one correspondences with the two hub assemblies 24, that is, one brake 25 corresponds to one hub assembly 24, so as to brake the hub assembly 24.
  • the two brake mounting plates 214 are respectively fixed to two ends of the axle case component 21 in a welding manner (and specifically, the two brake mounting plates 214 may be respectively fixed onto the two half axle sleeves 23 in a welding manner, the two half axle sleeves 23 may be respectively fixed onto the two ends of the axle case component 21 in a welding manner)
  • the two brakes 25 are fixed onto the two brake mounting plates 214 in a one-to-one correspondence manner through thread connecting members respectively
  • brake drums 251 of the two brakes 25 are fixed to the two hub assemblies 24 in a one-to-one correspondence manner.
  • the axle case assembly 102 may further include two axial stopper sets 27, and the two axial stopper sets 27 have one-to-one correspondences with the two hub assemblies 24, that is, one axial stopper set 27 corresponds to one hub assembly 24 to axially stop the hub assembly 24.
  • Each inner gear ring support 205 is fitted over the corresponding half axle sleeve 23 through a spline structure, and each axial stopper set 27 includes a stop nut 271 and a locking sheet 272.
  • the stop nut 271 and the locking sheet 272 are both fitted over the corresponding half axle sleeve 23, and the stop nut 271 is connected to the corresponding half axle sleeve 23 in a threaded manner, so as to tightly press the corresponding inner gear ring support 205 and the corresponding hub assembly 24 between the locking sheet 272 and the brake drum 251 of the corresponding brake 25.
  • the two wheel reducers 20, the two hub assemblies 24, the two half axles sleeves 23, the two brakes 25, the two brake mounting plates 214, the two axial stopper sets 27, and the two half axles 22 all have one-to-one correspondences and are respectively symmetrically located on the left and right ends of the axle case component 21 in a width direction of the vehicle.
  • the left end is used as an example below to describe connection relationships and position relationships of the wheel reducer 20, the hub assembly 24, the half axle sleeve 23, the brake 25, the brake mounting plate 214 and the axial stopper set 27.
  • the left end of the axle case component 21 is provided with one half axle sleeve 23 in a welding manner, the hub assembly 24 on the left end is rotatably mounted to the half axle sleeve 23 on the left end, and the half axle sleeve 23 on the left end is fitted over the half axle 22 on the left side.
  • the hub assembly 24 is a part of a wheel, and rotation of the hub assembly 24 can implement rotation of the wheel. More specifically, as shown in Fig.
  • a right end of the half axle 22 on the left end is connected to the differential 13 through a spline, the half axle 22 on the left end transmits power output by the differential 13 to an input end of the wheel reducer 20 on the left end, and after speed reduction performed by the wheel reducer 20 on the left end, the power is transmitted from an output end of the wheel reducer 20 on the left end to the hub assembly 24 on the left and then drives the wheel to rotate.
  • the brake 25 on the left end corresponding to the hub assembly 24 on the left end is mounted to the brake mounting plate 214 on the left end, the brake mounting plate 214 on the left end is fixed onto the left end of the axle case component 21, the brake drum 251 of the brake 25 on the left end is also fixed onto the hub assembly 24 on the left end to rotate together with the hub assembly 24.
  • the brake mounting plate 214 may be fitted over and fixedly welded to the axle case 210 of the axle case component 21, the brake 25 on the left end is fixed to the brake mounting plate 214 on the left end through a thread connecting member, and the brake drum 251 of the brake 25 on the left end may be fixed to the hub assembly 24 on the left end through a bolt 405, where there are a plurality of thread connecting members and a plurality of bolts 405.
  • the brake 25 on a corresponding end is located between the brake mounting plate 214 on the corresponding end and the hub assembly 24 on the corresponding end.
  • the axial stopper set 27 corresponding to the hub assembly 24 on the left end is a left end set, the stop nut 271 of the left end set and the locking sheet 272 of the left end set are both fitted over the half axle sleeve 23 on the left end, and the stop nut 271 of the left end set is connected to the half axle sleeve 23 on the left end in a screwed manner to tightly press the inner gear ring support 205 on the left end and the hub assembly 24 on the left end between the locking sheet 272 on the left end and the brake drum 251 of the brake 25 on the left end.
  • the hub assembly 24 may perform axial locking by means of cooperation of the stop nut 271 and the brake drum 251 of the brake 25, and similarly, the wheel reducer 20 may also perform axial locking by means of cooperation of the stop nut 271 and the brake drum 251 of the brake 25.
  • the wheel reducer case 201, the brake drum 251 of the brake 25, and a part of the hub assembly 24 are fixed together through bolts 405.
  • each hub assembly 24 is rotatably fitted over the corresponding half axle sleeve 23 through a hub bearing 241, and the axial stopper set 27 can adjust a clearance of the hub bearing 241.
  • connection relationships and position relationships of the wheel reducer 20, the hub assembly 24, the half axle sleeve 23, the brake 25, the brake mounting plate 214 and the axial stopper set 27 on the right end which are not further described in detail.
  • the electric power assembly 101 may also include an electrohydraulic gear shift actuating module 15, where the electrohydraulic gear shift actuating module 15 is configured to control the transmission 12, and the electrohydraulic gear shift actuating module 15 is mounted to the transmission case 121.
  • a sensor and a precise flow valve that match the electrohydraulic gear shift actuating module 15 are mounted to the electrohydraulic gear shift actuating module 15, an external electronic control unit makes a response by means of a collected signal and can accurately control a gear shift speed and a gear shift time point of the transmission 12, so that the transmission 12 shifts the gear smoothly, has a high response speed and favorable controllability, and can relieve driving fatigue.
  • the differential lock mechanism is mounted to the transmission 12, and the differential lock mechanism is configured to selectively lock one of the two half axles 22 and a differential case of the differential 13 that integrates with an electric drive axle.
  • a working principle of the differential lock mechanism is that when a driving wheel slips, the differential case and the half axle 22 are locked together to make the differential 13 lose a differential function, so as to transfer entire torque to a driving wheel on the other side, which is very important to a construction vehicle that runs on a muddy road and that is likely to slip.
  • the differential 13 can enable the differential function or disable the differential function according to different traveling conditions of the vehicle, which is particularly applicable to the dump truck that runs in a severe working condition.
  • the dump truck has strong power, and the differential lock mechanism is integrated with the transmission 12, the structure is complete, the mounting is firm, the working is stable, and the reliability is high, so that the electric drive axle assembly 100 has higher reliability and a more rounded function.
  • the transmission includes a transmission power input portion and a transmission power output portion.
  • the transmission power input portion is directly connected to a motor output shaft of the power motor, the transmission power output portion is constructed to adapt to output power from the transmission power input portion to the differential, and the power is output through the differential to a wheel of the dump truck to drive the dump truck to travel.
  • the differential 13 may be supported on the transmission case 121 through a differential bearing.
  • the electric power assembly 101 may further include a power takeoff 14, and the power takeoff 14 includes a power takeoff input end and a power takeoff output end.
  • the power takeoff input end is configured to move in cooperation with at least one of the transmission power input portion and the transmission power output portion. That is, the power takeoff input end may be configured to move in cooperation with the transmission power input portion, the power takeoff input end may also be configured to move in cooperation with the transmission power output portion, and the power takeoff input end may also be configured to move in cooperation with the transmission power input portion and at the same time, move in cooperation with the transmission power output portion.
  • the wording "move in cooperation" indicates that actions of two components have a driving-driven relationship, and an action of one component actuates an action of the other component.
  • the power takeoff output end is configured to be selectively joined to the power takeoff input end to output the power from the power takeoff input end. That is, when the power takeoff output end is joined to the power takeoff input end, the power takeoff output end may output the power from the power takeoff input end to a to-be-driven apparatus 16.
  • the power takeoff 14 is fixed onto the transmission case 121, that is, the power takeoff 14 is integrated onto the transmission case 121, so that the structure of the electric power assembly 101 is more compact.
  • the power takeoff 14 may include a power takeoff case 141, and the power takeoff case 141 is connected to the transmission case 121, or the power takeoff case 141 and the transmission case 121 are integrally formed.
  • the power of the power motor 11 is output to a wheel of the dump truck through the transmission power input portion, the transmission power output portion and the differential 13 in sequence, so as to drive the dump truck to run.
  • a part of the power of the power motor 11 is output to the wheel of the dump truck through the transmission power input portion, the transmission power output portion and the differential 13 in sequence.
  • Another part of the power of the power motor 11 is output to the to-be-driven apparatus 16 through at least one of the transmission power input portion and the transmission power output portion, the power takeoff input end and the power takeoff output end in sequence.
  • the to-be-driven apparatus 16 is an oil pump
  • the oil pump can be driven by the power takeoff 14 to generate high-pressure hydraulic oil to provide a power source for a truck bed lifting mechanism of the dump truck and the like, thereby satisfying other requirements for power of the whole vehicle.
  • the electric drive axle assembly 100 for a dump truck by means of disposing a power takeoff 14, power can be output to a mechanism that has a demand, so as to satisfy more market requirements, so that the electric drive axle assembly 100 is more practical.
  • the power takeoff input end moves in cooperation with at least one of the transmission power input portion and the transmission power output portion, there are a few transmission components, the transmission efficiency is high, a fault occurrence rate can be reduced, and manufacturing costs are lowered.
  • the power takeoff input end may include a power takeoff gear k3
  • the power takeoff output end may include a power takeoff shaft V, and as shown in Fig. 13, the power takeoff shaft V may be supported by the power takeoff case 141 through a power takeoff bearing 142.
  • the power takeoff gear k3 is freely fitted over the power takeoff shaft V, that is, the power takeoff gear k3 may rotate relative to the power takeoff shaft V, that is, when the power takeoff gear k3 rotates, the power takeoff shaft V may not rotate.
  • the power takeoff 14 may also include a power takeoff synchronizer S3, and the power takeoff synchronizer S3 is configured to selectively synchronize the power takeoff gear k3 with the power takeoff shaft V. That is, when the to-be-driven apparatus 16 needs power, the power takeoff synchronizer S3 synchronizes the power takeoff gear k3 with the power takeoff shaft V, so that the power takeoff shaft V outputs the power that is output by the power takeoff gear k3 to the to-be-driven apparatus 16. When the to-be-driven apparatus 16 does not power, the power takeoff gear k3 is separated from the power takeoff shaft V, and the power takeoff gear k3 may be idling around the power takeoff shaft V.
  • the plurality of transmission shafts may include a first shaft I, a second shaft II, a third shaft III, and a fourth shaft IV.
  • the first shaft I, the second shaft II, the third shaft III and the fourth shaft IV are all supported on the transmission case 121 through a bearing.
  • the first shaft I, the second shaft II, the third shaft III and the fourth shaft IV all extend long a width direction of the dump truck, the width direction of the dump truck is the left-right direction of the dump truck, and the power motor 11 may be disposed to the right side of transmission case 121.
  • the first shaft I is connected to a motor output shaft VI of the power motor 11, for example, as shown in Fig. 11, the first shaft I may be connected to the motor output shaft VI through a spline structure, specifically, the first shaft I has an inner spline, and the motor output shaft VI has an outer spline that fits with the inner spline. Certainly, the first shaft I may also be connected to the motor output shaft VI through a shaft coupling. With regard to the electric power assembly 101 according to the embodiment of the present disclosure, by means of directly connecting the motor output shaft VI of the power motor 11 to the first shaft I, a transmission link is short, and a structure is simple.
  • an input gear q is fixed onto the first shaft I, that is, the input gear q may rotate synchronously with the first shaft I
  • an idle gear q' is fixed onto the second shaft II, that is, the idle gear q'may rotate synchronously with the second shaft II
  • the idle gear q' is engaged with the input gear q.
  • the third shaft III includes a first shaft segment III-1 and a second shaft segment III-2 that are coaxially disposed, and the second shaft segment III-2 is configured to be selectively joined to the first shaft segment III-1, that is, the second shaft segment III-2 may be joined to the first shaft segment III-1 to rotate synchronously with the first shaft segment III-1, and the second shaft segment III-2 and the first shaft segment III-1 may also separately rotate.
  • one end of the first shaft segment III-1 is fitted over the second shaft segment III-2, that is, one end, proximal to the first shaft segment III-1, of the second shaft segment III-2 is supported by the first shaft segment III-1, and the first shaft segment III-1 is also supported by the transmission case 121.
  • the first shaft segment III-1 is a hollow shaft and has a bearing hole
  • the end, proximal to the first shaft segment III-1, of the second shaft segment III-2 is supported inside the bearing hole (namely, an inner circumferential wall of the first shaft segment III-1) of the first shaft segment III-1 through a bearing B1
  • the first shaft segment III-1 (namely, an outer circumferential wall of the first shaft segment III-1) is also supported by the transmission case 121 through a bearing B2
  • the bearing B1 includes a pair of conical roller bearings located on one end of the bearing of the second shaft segment III-2
  • the bearing B2 includes two cylinder roller bearings located on two ends of the first shaft segment III-1 separately.
  • a first gear k1 is fixed onto the first shaft segment III-1, that is, the first gear k1 may rotate synchronously with the first shaft segment III-1, when the first shaft segment III-1 is not joined to the second shaft segment III-2, the first gear k1 can freely rotate relative to the second shaft segment III-2, and when the first shaft segment III-1 is joined to the second shaft segment III-2, the first gear k1 may also rotate synchronously with the second shaft segment III-2.
  • the first gear k1 is engaged with the idle gear q', and a plurality of gear driven gears is freely fitted over the second shaft segment III-2, that is, the gear driven gear may rotate relative to the second shaft segment III-2, that is, when the gear driven gear rotates, the second shaft segment III-2 may not rotate.
  • a second gear k2 and a plurality of gear driving gears are fixed onto the fourth shaft IV, that is, the second gear k2 may rotate synchronously with the fourth shaft IV, and each of the plurality of gear driving gears may rotate synchronously with the fourth shaft IV.
  • the second gear k2 is engaged with the first gear k1, and the plurality of gear driving gears is engaged with the plurality of gear driven gears in a one-to-one correspondence manner.
  • the third shaft III and the fourth shaft IV have various lengths and structures, and on the third shaft III and the fourth shaft IV, there may be different numbers of pairs of engaged gears, so that the transmission 12 has output of more gears.
  • an output gear z is also fixed onto the second shaft segment III-2, that is, the output gear z may rotate synchronously with the second shaft segment III-2, the output gear z may be engaged with a differential driven gear z'of the differential 13, so that power output by the power motor 11 is transferred to the differential 13 through the transmission 12 and drives the half axles 22 and the wheel through the differential 13 to make the dump truck run.
  • the input gear q, the idle gear q', the first gear k1, the second gear k2, the plurality of gear driving gears, and the plurality of gear driven gears are all helical gears.
  • the output gear z is also a helical gear.
  • the transmission gears of the electric power assembly 101 are all helical gears, and the whole transmission 12 has stable transmission, low noise, high transmission efficiency, and large transmission torque.
  • the plurality of gear driven gears includes a first-gear driven gear 1', a second-gear driven gear 2'and a third-gear driven gear 3'.
  • the plurality of gear driving gears includes a first-gear driving gear 1, a second-gear driving gear 2 and a third-gear driving gear 3, where the first-gear driven gear 1'is engaged with the first-gear driving gear 1, the second-gear driven gear 2'is engaged with the second-gear driving gear 2, and the third-gear driven gear 3'is engaged with the third-gear driving gear 3.
  • the transmission power output portion may further include a first-fourth-gear synchronizer S1 and a second-third-gear synchronizer S2.
  • the first-fourth-gear synchronizer S1 is configured to selectively join one of the first shaft segment III-1 and the first-gear driven gear 1'to the second shaft segment III-2.
  • the second shaft segment III-2 may be joined to the first shaft segment III-1 through the first-fourth-gear synchronizer S1 to rotate synchronously with the first shaft segment III-1, or the second shaft segment III-2 may be joined to the first-gear driven gear 1'through the first-fourth-gear synchronizer S1 to enable the second shaft segment III-2 to rotate synchronously with the first-gear driven gear 1', or the second shaft segment III-2 may be located at an intermediate position, which is neither joined to the first shaft segment III-1, nor joined to the first-gear driven gear 1'.
  • the second-third-gear synchronizer S2 is configured to selectively join one of the second-gear driven gear 2'and the third-gear driven gear 3'to the second shaft segment III-2. That is, the second shaft segment III-2 may be joined to the second-gear driven gear 2'through the second-third-gear synchronizer S2 to enable the second shaft segment III-2 to rotate synchronously with the second-gear driven gear 2', or the second shaft segment III-2 may be joined to the third-gear driven gear 3'through the second-third-gear synchronizer S2 to enable the second shaft segment III-2 to rotate synchronously with the third-gear driven gear 3', or the second shaft segment III-2 may be located at an intermediate position, which is neither joined to the second-gear driven gear 2', nor joined to the third-gear driven gear 3'.
  • the output gear z is located between the first-gear driven gear 1'and the second-gear driven gear 2'. Hence, the structure of the transmission 12 is more compact.
  • a four-gear transmission 12 two ends of the first shaft I are supported by the transmission case 121 through paired conical roller bearings, the idle gear q'is connected to the second shaft II through fitting of inner and outer spline structures, the second shaft II is supported by the transmission case 121 through paired conical roller bearings on two ends, the third-gear driven gear 3', the second-gear driven gear 2'and the first-gear driven gear 1'are connected to the second shaft segment III-2 through fittings of the bearings, and the second-third-gear synchronizer S2, the first-fourth-gear synchronizer S1 and the output gear z are connected to the second shaft segment III-2 through fitting of a spline structure.
  • the second gear k2 is connected to the fourth shaft IV through fitting of a spline structure, and the third-gear driving gear 3, the second-gear driving gear 2 and the first-gear driving gear 1 are all connected to the fourth shaft IV through fitting of the spline structure.
  • the differential driven gear z' may be fixedly mounted to the differential 13 through a thread connecting manner or in a welding form to drive the differential 13 to rotate.
  • the present disclosure provides a four-gear transmission 12, which has a high speed ratio, large torque, stronger power performance, and preferable control performance and can satisfy use requirements of a heavy duty vehicle.
  • first and second are used merely for the purpose of description, but shall not be construed as indicating or implying relative importance or implicitly indicating a number of the indicated technical feature.
  • the feature defined with “first” and “second” may explicitly or implicitly include at least one of the features.
  • a plurality of means at least two, for example, two or three.
  • connection may be a fixed connection, or may be a detachable connection or an integral connection; a connection may be a mechanical connection, or may be an electrical connection; a connection may be a mechanical connection, or may be an electrical connection, or may be used for intercommunication; a connection may be a direct connection, or may be an indirect connection via an intermediate medium, or may be communication between interiors of two elements or an interaction relationship between two elements, unless otherwise explicitly defined. It may be appreciated by those of ordinary skill in the art that the specific meanings of the aforementioned terms in the present disclosure can be understood depending on specific situations.
  • a first feature being “above” or “below” a second feature may be that the first and second features are in direct contact or that the first and second features in indirect contact by means of an intermediate medium.
  • the first feature being “over” , “above” or “on the top of” a second feature may be that the first feature is over or above the second feature or merely indicates that the horizontal height of the first feature is higher than that of the second feature.
  • the first feature being “underneath” , “below” or “on the bottom of” a second feature may be that the first feature is underneath or below the second feature or merely indicates that the horizontal height of the first feature is lower than that of the second feature.
  • a description of a reference term such as “an embodiment” , “some embodiments” , “examples” , “specific examples” , or “some examples” means that a specific feature, structure, material, or characteristic that is described with reference to the embodiment or the example is included in at least one embodiment or example of the present disclosure.
  • exemplary descriptions of the foregoing terms do not necessarily refer to a same embodiment or example.
  • the described specific feature, structure, material, or characteristic may be combined in a proper manner in any one or more embodiments or examples.
  • those skilled in the art can joint and combine different embodiments or examples described in the description and features of different embodiments or examples.

Abstract

A dump truck (10000) includes a frame (400), a first axle assembly (300), a second axle assembly (1000) and a suspension system (500). The second axle assembly (1000) and the first axle assembly (300) are disposed along a front-rear direction in a spaced manner; the second axle assembly (1000) includes two vehicle axle assemblies; at least one of the two vehicle axle assemblies is an electric drive axle assembly (100); the electric drive axle assembly further includes an electric power assembly (101) and a suspension apparatus; the electric power assembly (101) includes a power motor (11), a transmission (12), and a differential (13); the suspension apparatus is connected between the electric power assembly (101) and a frame (400) and each of the vehicle axle assemblies is connected to the frame (400) through the suspension system (500). The dump truck has a compact structure and stable transmission, and is environmental friendly.

Description

DUMP TRUCK
CROSS-REFERENCE TO RELATED APPLICATIONS
This application claims priority to and benefits of Chinese Patent Application Nos. 201511030807.0 and 201521138862.7, both filed with the State Intellectual Property Office of P.R. China on December 31, 2015. The entire contents of the above-identified applications are incorporated herein by reference.
FIELD
Embodiments of the present disclosure relates to the field of construction vehicles, and specifically, to a dump truck.
BACKGROUND
In the related art, a power motor, a transmission, a transmission shaft, and a vehicle axle are all disposed separately, and power is transmitted stage by stage, resulting in a lot of transmission sections, a long transmission link, low transmission efficiency, a large volume, and difficult arrangement. In particular, with regard to some dump trucks, in order to satisfy requirements for high power, volumes of power motors and transmissions are usually relatively large, axles withstand large torque, it is difficult to ensure connection strength between vehicle axles and transmissions, and there is room for improvement.
SUMMARY
The present disclosure aims at resolving one of the technical problems in the related art to some extent. Hence, the present disclosure proposes a dump truck having a driving axle assembly that has a small volume, a high integration degree, and stable transmission.
In embodiments of the present disclosure, a dump truck includes a frame; a first axle assembly; a second axle assembly, where the second axle assembly and the first axle assembly are disposed along a front-rear direction in a spaced manner, the second axle assembly includes two vehicle axle assemblies that are disposed along the front-rear direction in a spaced manner, each of  the vehicle axle assemblies includes an axle case assembly, the axle case assembly includes an axle case component and two half axles, and the two half axles are located inside the axle case component; at least one of the two vehicle axle assemblies is an electric drive axle assembly, the electric drive axle assembly further includes an electric power assembly and a suspension apparatus, the electric power assembly includes a power motor, a transmission, and a differential, the transmission has a transmission case, the power motor is fixed to the transmission case, the differential is supported on the transmission case, the differential is located inside the axle case component, the transmission case is fixed to the axle case component, the transmission includes a plurality of transmission shafts, the plurality of transmission shafts is sequentially disposed from the top to the bottom, and the suspension apparatus is connected between the electric power assembly and the frame; and a suspension system, where each of the vehicle axle assemblies is connected to the frame through the suspension system.
With regard to the dump truck in the embodiments of the present disclosure, at least one of vehicle axle assemblies of a second axle assembly is configured to be an electric drive axle assembly having a compact structure, a short transmission link, high transmission efficiency, and easy arrangement, so that the dump truck implements a stable and environmental friendly driving process that has zero emission, zero pollution, and low noise; a frame is connected to each vehicle axle assembly through a suspension system, so that the dump truck is more comfortable, a plurality of transmission shafts is sequentially disposed from the top to the bottom to greatly shorten a distance from a center of mass of an electric power assembly to a center of the axle case assembly, so that relative torque from the electric power assembly to the axle case assembly is reduced, a connection is stable, and transmission is more stable.
BRIEF DESCRIPTION OF THE DRAWINGS
Fig. 1 is a schematic structural diagram of a second axle assembly and a frame according to an embodiment of the present disclosure;
Fig. 2 is a top view of Fig. 1;
Fig. 3 is a schematic structural diagram of a second axle assembly according to an embodiment of the present disclosure;
Fig. 4 is a top view of Fig. 3;
Fig. 5 is a schematic structural diagram of Fig. 3 from a bottom view point;
Fig. 6 is a schematic structural diagram of an electric drive axle assembly according to an embodiment of the present disclosure;
Fig. 7 is a sectional view of Fig. 6;
Fig. 8 is an enlarged view of part E in Fig. 7;
Fig. 9 is a schematic structural diagram of an axle case assembly according to an embodiment of the present disclosure;
Fig. 10 is a schematic structural diagram of an electric power assembly according to an embodiment of the present disclosure;
Fig. 11 is a schematic diagram of an internal structure of a transmission according to an embodiment of the present disclosure;
Fig. 12 is a side view of Fig. 11;
Fig. 13 is a schematic structural diagram of a power takeoff according to an embodiment of the present disclosure.
Fig. 14 is a schematic diagram of a transmission structure of a dump truck according to an embodiment of the present disclosure; and
Fig. 15 is a schematic view of a dump truck according to an embodiment of the present disclosure.
Reference numerals:
Dump truck 10000, second axle assembly 1000, electric drive axle assembly 100, electric power assembly 101, power motor 11, motor output shaft VI, coolant circulation passage 111, inlet A, outlet B, transmission 12, transmission case 121, first shaft I, second shaft II, third shaft III, first shaft segment III-1, second shaft segment III-2, fourth shaft IV, input gear q, idle gear q', first gear k1, second gear k2, first-gear driving gear 1, first-gear driven gear 1', second-gear driving gear 2, second-gear driven gear 2', third-gear driving gear 3, third-gear driven gear 3', output gear z, first-fourth-gear synchronizer S1, second-third-gear synchronizer S2, bearing B1, bearing B2, differential 13, differential driven gear z', power takeoff 14, power takeoff shaft V, power takeoff gear k3, power takeoff synchronizer S3, power takeoff case 141, power takeoff bearing 142, electrohydraulic gear shift actuating module 15, to-be-driven apparatus 16, axle case assembly 102, wheel reducer 20, wheel reducer case 201, sun gear 202, planet gear 203, inner gear ring 204, inner gear ring support 205, retainer ring 206, axle case assembly 21, axle case 210, case cover 213, brake mounting plate 214, half axle 22, half axle sleeve 23, hub assembly 24, hub bearing 241,  brake 25, brake drum 251, axial stopper set 27, stop nut 271, locking sheet 272, first axle assembly 300, frame 400, suspension system 500, elastic member 50, balance shaft assembly 51, U-bolt 52, first thrust rod 53, second thrust rod 54, first thrust rod frame mounting seat 551, first thrust rod axle case mounting seat 552, second thrust rod balance shaft mounting seat 553, second thrust rod axle case mounting seat 554, elastic member mounting seat 555, first thrust rod V-shaped axle case mounting seat 556, bolt 403, bolt 405, bolt 406.
DETAILED DESCRIPTION
Embodiments of the present disclosure are described in detail below, and examples of the embodiments are shown in accompanying drawings. The following embodiments described by referring to the accompanying drawings are illustrative, aim at explaining the present disclosure, and should not be interpreted as limitations to the present disclosure.
dump truck 10000 according to an embodiment of the present disclosure is described below by referring to Fig. 1 to Fig. 15. As shown in Fig. 1 to Fig. 15, the dump truck 10000 according to the embodiment of the present disclosure includes a frame 400, a first axle assembly 300, a second axle assembly 1000, and a suspension system 500.
The first axle assembly 300 and the second axle assembly 1000 are disposed along a front-rear direction of the dump truck 10000 in a spaced manner. For example, as shown in Fig. 15, the first axle assembly 300 is a front vehicle axle assembly of the dump truck 10000, and the second axle assembly 1000 is a rear vehicle axle assembly of the dump truck 10000.
As shown in Fig. 15, the second axle assembly 1000 includes two vehicle axle assemblies that are disposed along the front-rear direction of the dump truck 10000 in a spaced manner. As shown in Fig. 1 to Fig. 5, each of the vehicle axle assemblies includes an axle case assembly 102, the axle case assembly 102 includes an axle case component 21 and two half axles 22, and the two half axles 22 are located inside the axle case component 21.
At least one of the two vehicle axle assemblies is an electric drive axle assembly 100, that is, one of the two vehicle axle assemblies may be the electric drive axle assembly 100, and the other one may be a driven axle; or the two vehicle axle assemblies are both electric drive axle assemblies 100.
In an embodiment where the two vehicle axle assemblies are both electric drive axle assemblies 100, each vehicle axle assembly can drive the dump truck 10000 to run, so that the  second axle assembly 1000 is a drive axle and is powerful, and the dump truck 10000 can adapt to a level road and a slope with good comprehensive economic efficiency.
In an embodiment, the two electric drive axle assemblies 100 are disposed in such a way that a first electric drive axle assembly 100 is formed by rotating a second electric drive axle assembly 100 about an axis in an up-down direction that is perpendicular to the front-rear direction by 180°. That is, the first electric drive axle assembly 100 is a rear drive axle, the second electric drive axle assembly 100 is a middle drive axle, and the second electric drive axle assembly 100 is formed by rotating the first electric drive axle assembly 100 around an axis in the up-down direction that is perpendicular to the front-rear direction by 180°. Hence, the second axle assembly 1000 has a more compact structure, a convenient arrangement, a high space utilization ratio and even load distribution.
In an embodiment, the two electric drive axle assemblies 100 may be completely identical, so that the middle drive axle and the rear drive axle can be in common use, so as to reduce production and manufacturing costs. Certainly, in some other embodiments of the present disclosure, the two electric drive axle assemblies 100 may be slightly different.
Further, in the embodiment where the two vehicle axle assemblies are both electric drive axle assemblies 100, the dump truck 10000 may further include two motor controllers, the two motor controllers have one-to-one correspondences with the two electric drive axle assemblies 100, and each motor controller individually controls a power motor 11 of the corresponding electric drive axle assembly 100. Hence, the two electric drive axle assemblies 100 individually work without mutual interference and respectively controlled by the two motor controllers, and a rotation speed of the power motor 11 is adjusted by means of an accurate control unit, thereby implementing real-time synchronization. In addition, because the two electric drive axle assemblies 100 can individually work, even though one electric drive axle assembly 100 cannot work, the other electric drive axle assembly 100 also can drive the whole vehicle to run, and there are two individual power sources, namely, the two independent power motors 11, which make the power of the whole vehicle stronger.
In an embodiment where one of the two vehicle axle assemblies is an electric drive axle assembly 100, and the other one of the two vehicle axle assemblies is a driven axle, the electric drive axle assembly 100 drives the driven axle so as to make the dump truck 10000 to run, and the have a simple structure is simple and simple arrangement.
As shown in Fig. 6 to Fig. 14, the electric drive axle assembly 100 includes an electric power assembly 101 and an axle case assembly 102. The electric power assembly 101 includes a power motor 11, a transmission 12, and a differential 13. As shown in Fig. 6 to Fig. 9, the axle case assembly 102 includes an axle case component 21 and two half axles 22. The two half axles 22 and the differential 13 are all located inside the axle case component 21.
It could be understood that power output from the power motor 11 is transmitted to the differential 13 through speed changing and torque adjustment performed by the transmission 12, two output ends of the differential 13 output the power to the two half axles 22, and the two half axles 22 transmit the power to wheels connected thereto, so as to drive the dump truck 10000 to run.
As shown in Fig. 6 and Fig. 7, in the electric drive axle assembly 100 of the embodiment of the present disclosure, the transmission 12 has a transmission case 121, the power motor 11 is fixed onto the transmission case 121, the differential 13 is supported on the transmission case 121, and the transmission case 121 is fixed onto the axle case component 21. For example, in some embodiments of the present disclosure, the power motor 11 may be fixed onto the transmission case 121 through a thread connecting member, the transmission case 121 may be fixed onto the axle case component 21 through a thread connecting member, and the differential 13 is supported on the transmission case 121 through a bearing.
That is, in the electric drive axle assembly 100, the transmission case 121 may serve as a mounting carrier for the power motor 11, and the transmission case 121 is a connecting component between the electric power assembly 101 and the axle case assembly 102, so as to integrate the power motor 11, the transmission 12, the differential 13 and the axle case assembly 102 together.
By means of integrating the power motor 11, the transmission 12, the differential 13, and the axle case assembly 102 together, the electric drive axle assembly 100 according to the embodiment of the present disclosure has a compact structure, simple assembly, reduced mass, a small volume, and a small occupied space, can be conveniently arranged on the dump truck 1000 with a shorten transmission link, a small transmission loss and high transmission efficiency.
The transmission 12 includes a plurality of transmission shafts, where the plurality of transmission shafts is sequentially disposed from the top to the bottom, thereby greatly shortening a distance from the centroid of the electric power assembly 101 to the center of the axle case assembly 102, so that torque from the electric power assembly 101 to the axle case assembly 102  is reduced, the connection is reliably, and the transmission is more stable.
Further, the electric drive axle assembly 100 may further include a suspension apparatus, and the suspension apparatus is connected between the electric power assembly 101 and the frame 400. That is, the electric power assembly 101 is not completely borne by the axle case assembly 102, and the electric power assembly 101 is also connected to the frame 400 through the suspension apparatus, so that torque generated by a centroid shift of the electric power assembly 101 to the axle case assembly 102 can be effectively balanced. By means of disposing the suspension apparatus, an impact can be effectively reduced, so that beat synchronization between the electric power assembly 101 and the axle case assembly 102 is approached as much as possible, and torque between the electric power assembly 101 and the axle case assembly 102 is almost reduced to zero, thereby ensuring reliability of a connection therebetween, ensuring stability of power transmission, and ensuring use safety of the whole electric drive axle assembly 100.
Such arrangement of the electric drive axle assembly 100 is more beneficial to a dump truck 10000 whose electric power assembly 101 has a large volume and whose power motor 11 has large power, so as to preferably satisfy running requirements of the heavy load-type dump truck 10000.
The suspension apparatus may be connected between an end, distal from the axle case assembly 102, of the transmission case 121 and the frame 400, so as to facilitate balancing torque caused by the centroid shift of the electric power assembly 101 to the axle case assembly 102, so that mounting of the electric power assembly 101 and the axle case assembly 102 is more stable.
In an embodiment, the suspension apparatus may include two vibration absorbers, and the two vibration absorbers may be symmetrically disposed on left and right sides of the transmission case 121. Hence, the electric power assembly 101 is subject to a force in a more balanced manner. The frame 400 may include a cross beam, an end of the vibration absorber is mounted to the cross beam, and the other end of the vibration absorber is mounted to the transmission case 121.
By means of disposing the suspension apparatus between the electric power assembly 101 and the frame 400, the electric drive axle assembly 100 according to the embodiment of the present disclosure can effectively reduce an impact, approach beat synchronization between the electric power assembly 101 and the axle case assembly 102 as much as possible, and almost reduce torque between the electric power assembly 101 and the axle case assembly 102 to zero, thereby ensuring reliability of a connection therebetween and ensuring stability of power transmission, so that use of the whole electric drive axle assembly 100 is more reliable and safer.
Each vehicle axle assembly is connected to the frame 400 through the suspension system 500. That is, the suspension system 500 is a connecting component between the frame 400 and each vehicle axle assembly, so that influence on the whole vehicle caused by vibrations of the drive system of the dump truck 10000 is greatly reduced, and comfortableness of the whole vehicle is improved.
With regard to the dump truck 10000 according to the embodiment of the present disclosure, at least one of two vehicle axle assemblies of a second axle assembly 1000 is configured to be an electric drive axle assembly having a compact structure, a short transmission link, high transmission efficiency, and easy arrangement, so that the dump truck 10000 implements a stable and environmental friendly driving process that has zero emission, zero pollution, and low noise; and a frame 400 is connected to each vehicle axle assembly through a suspension system 500, so that the dump truck is more comfortable. A plurality of transmission shafts is sequentially disposed from the top to the bottom to greatly shorten a distance from the centroid of the electric power assembly 101 to the center of axle case assembly 102, so that torque from the electric power assembly 101 to the axle case assembly 102 is reduced, the connection is reliable, and the transmission is more stable.
dump truck 10000 according to an embodiment of the present disclosure is described in detail below by referring to Fig. 1 to Fig. 15. As shown in Fig. 15, the dump truck 10000 includes a frame 400, a first axle assembly 300, a second axle assembly 1000, and a suspension system 500.
The first axle assembly 300 and the second axle assembly 1000 are disposed along a front-rear direction of the dump truck 10000 in a spaced manner, the second axle assembly 1000 includes two vehicle axle assemblies, at least one of the two vehicle axle assemblies is an electric drive axle assembly 100, and each of the vehicle axle assemblies is connected to the frame 400 through the suspension system 500.
suspension system 500 according to an embodiment of the present disclosure is described in detail below by referring to Fig. 1 to Fig. 5. As shown in Fig. 1 to Fig. 5, the suspension system 500 includes two elastic members 50 that are disposed along a left-right direction in a spaced manner, a balance shaft assembly 51, and a first thrust rod group and a second thrust rod group that are disposed along an up-down direction in a spaced manner.
The two elastic members 50 are disposed along the left-right direction in a spaced manner, a first elastic member is located on a left side of the dump truck 10000, and a second elastic member  is located on a right side of the dump truck 10000. Two ends (namely, a front end and a rear end) of each of the elastic members 50 are respectively connected to two axle case components 21, and each of the elastic members 50 is located above the two axle case components 21. In an embodiment, each of the elastic members 50 includes at least one layer of a leaf spring, and preferably, each of the elastic members 50 includes a plurality of layers of leaf springs, and the plurality of layers of leaf springs is disposed in a stacking manner from the top to the bottom.
In other words, a front end of the first elastic member 50 on the left side is connected to a left end of the axle case component 21 of the vehicle axle assembly located in the front, a rear end of the first elastic member 50 on the left side is connected to a left end of the axle case component 21 of the vehicle axle assembly located in the rear, and the first elastic member 50 on the left side is located above the two axle case components 21. A front end of the second elastic member 50 on the right side is connected to a right end of the axle case component 21 of the vehicle axle assembly located in the front, a rear end of the second elastic member 50 on the right side is connected to a right end of the axle case component 21 of the vehicle axle assembly located in the rear, and the second elastic member 50 on the right side is located above the two axle case components 21.
That is, with regard to the dump truck 10000 according to the present disclosure, because the axle case component 21 is disposed completely below the elastic member 50, that is, the axle case assembly 102 and the electric power assembly 101 are both located below the elastic member 50 (the leaf spring) , so that influence on the whole vehicle caused by the vibrations of the electric power assembly 101 is greatly reduced, comfortableness of the whole vehicle is improved, and a driving process is stable and environmental friendly and has zero emission, zero pollution, and low noise.
The balance shaft assembly 51 is fixed to the frame 400, and the balance shaft assembly 51 is located between the two vehicle axle assemblies in a front-rear direction, that is, the two vehicle axle assemblies are respectively located on two sides of the balance shaft assembly 51, and the middle of each of the elastic members 50 is fixed to the balance shaft assembly 51, that is, the balance shaft assembly 51 may serve as a connecting component between each of the elastic members 50 and the frame 400. The middle of the first elastic member 50 on the left side is fixed to a left end of the balance shaft assembly 51, and the middle of the second elastic member 50 on the right side is fixed to a right end of the balance shaft assembly 51. Hence, each of the elastic  members 50 is fixed more firmly, that is, two ends of each of the elastic members 50 are respectively fixed to end portions on the same side of the two axle case components 21, and the middle of each of the elastic members 50 is fixed onto a corresponding end of the balance shaft assembly 51.
For example, each of the elastic members 50 includes at least one layer of a leaf spring, the middle of each of the elastic members 50 is fixed to the balance shaft assembly 51 through a U-bolt 52, that is, at least one layer of a leaf spring is fixed to a corresponding end of the balance shaft assembly 51 through the U-bolt 52.
In an embodiment, each of the elastic members 50 is fixed to a corresponding end of a balance shaft assembly through two U-bolts 52 that are spaced in a front-rear direction.
As shown in Fig. 1 to Fig. 5, a first thrust rod group includes two first subgroups that are symmetrically disposed in a front-rear direction, the two first subgroups have one-to-one correspondences with the two axle case components 21, each of the first subgroups includes a plurality of first thrust rods 53, and each of the first thrust rods 53 is connected between the frame 400 and a corresponding axle case component 21.
A second thrust rod group includes two second subgroups that are symmetrically disposed in a front-rear direction, the two second subgroups have one-to-one correspondences with the two axle case components 21, each of the second subgroups includes a plurality of second thrust rods 54, and each of the second thrust rods 54 is connected between the balance shaft assembly 51 and a corresponding axle case component 21.
In other words, any first thrust rod 53 in the first thrust rod group is connected between the frame 400 and a corresponding axle case component 21, and any second thrust rod 54 in the second thrust rod group is connected between the balance shaft assembly 51 and a corresponding axle case component 21. By means of connecting the foregoing two thrust rod groups to the balance shaft assembly 51 and the frame 400, the two vehicle axle assemblies have fixed positions relative to the frame 400, and when the second axle assembly 1000 generates power, the truck body is pushed forward.
In an embodiment of the present disclosure, the first thrust rod group is located above the second thrust rod group, a first end of each first thrust rod 53 is connected to the middle of a corresponding axle case component 21. For example, the first end of each first thrust rod 53 is connected to the middle of the corresponding axle case component 21 through a first thrust rod  axle case mounting seat 552, the first thrust rod axle case mounting seat 552 is fixed to the middle of the axle case component 21, and the first thrust rod axle case mounting seat 552 is located above the axle case component 21.
A second end of each first thrust rod 53 is connected to the frame 400 through a first thrust rod frame mounting seat 551, the first thrust rod frame mounting seat 551 is fixed to the frame 400, and the first thrust rod frame mounting seat 551 is located between the two axle case components 21.
In other words, each first thrust rod 53 separately corresponds to one first thrust rod axle case mounting seat 552 and one first thrust rod frame mounting seat 551. A front end of the first thrust rod 53 in the first subgroup located in the front is connected to the middle of the front axle case component 21 through the first thrust rod axle case mounting seat 552, and a rear end of the first thrust rod 53 in the first subgroup located in the front is connected to the frame 400 through the first thrust rod frame mounting seat 551; and a rear end of the first thrust rod 53 in the first subgroup located in the rear is connected to the middle of the rear axle case component 21 through the first thrust rod axle case mounting seat 552, and a front end of the first thrust rod 53 in the first subgroup located in the rear is connected to the frame 400 through the first thrust rod frame mounting seat 551.
In an embodiment, the first end of each of the first thrust rods 53 is located on an inner side of the second end of the same first thrust rod 53, that is, the first thrust rods 53 each are obliquely disposed, and the first thrust rod 53 in the first subgroup located in the front extends outward from the front to the rear, and the first thrust rod 53 in the first subgroup located in the rear extends inward from the front to the rear.
In an embodiment, the first thrust rod frame mounting seat 551 is fixed to an inner side of the frame 400, so that the structure of the suspension system 500 is more compact and can be more conveniently connected and assembled. It could be understood that the frame 400 may include two longitudinal beams that are disposed along a left-right direction in a spaced manner, the first thrust rod frame mounting seat 551 on the left side is located on an inner side of the longitudinal beam located on the left side, and the first thrust rod frame mounting seat 551 on the right side is located on an inner side of the longitudinal beam on the right side.
In some embodiments of the present disclosure, each first subgroup includes two first thrust rods 53, there are two first thrust rod axle case mounting seats 552 that correspond to each first  subgroup, and the two first thrust rod 53 are connected to the two first thrust rod axle case mounting seats 552 in a one-to-one correspondence manner; and there are two first thrust rod frame mounting seats 551 that correspond to each first subgroup, and second ends of the two first thrust rods 53 have one-to-one correspondences with the two first thrust rod frame mounting seats 551.
In other words, the two first thrust rod axle case mounting seats 552 that correspond to the two first thrust rods 53 of each first subgroup are integrated into one first thrust rod V-shaped axle case mounting seat 556.
In an embodiment, one first thrust rod frame mounting seat 551 that is connected to the rear end of the first thrust rod 53 on the left side of the first subgroup located in the front and one first thrust rod frame mounting seat 551 that is connected to the front end of the first thrust rod 53 on the left side of the first subgroup located in the rear may be integrally formed, and one first thrust rod frame mounting seat 551 that is connected to the rear end of the first thrust rod 53 on the right side of the first subgroup located in the front and one first thrust rod frame mounting seat 551 that is connected to the front end of the first thrust rod 53 on the right side of the first subgroup located in the rear may be integrally formed. In this way, the two first thrust rod frame mounting seats 551 that are integrally formed have structures that have high strength and are assembled with the frame 400 more easily. In an embodiment, the integrated first thrust rod frame mounting seats 551 may be fixed onto the frame 400 through thread connecting members.
In an embodiment of the present disclosure, the first thrust rod group is located above the second thrust rod group, a first end of each second thrust rod 54 is connected to an end portion of a corresponding axle case component 21, for example, a first end of each second thrust rod 54 is connected to the end portion of the corresponding axle case component 21 through a second thrust rod axle case mounting seat 554, the second thrust rod axle case mounting seat 554 is fixed onto the end portion of the axle case component 21, and the second thrust rod axle case mounting seat 554 is located below the corresponding axle case component 21.
A second end of the second thrust rod 54 is connected to the balance shaft assembly 51 through a second thrust rod balance shaft mounting seat 553, the second thrust rod balance shaft mounting seat 553 is fixed to an end portion of the balance shaft assembly 51, and an end portion of an axle case component 21 and the end portion of the balance shaft assembly 51 which correspond to the same second thrust rod 54 are located on the same side of the second axle  assembly 1000.
In other words, each second thrust rod 54 separately corresponds to one second thrust rod axle case mounting seat 554 and one second thrust rod balance shaft mounting seat 553, a front end of the second thrust rod 54 on the left side in the second subgroup located in the front is connected to a left end portion of the axle case component 21 in the front through the second thrust rod axle case mounting seat 554, and a front end of the second thrust rod 54 on the right side in the second subgroup located in the front is connected to a right end portion of the axle case component 21 in the front through the second thrust rod axle case mounting seat 554; and a rear end of the second thrust rod 54 on the left side in the second subgroup located in the front is connected to a left end portion of the balance shaft assembly 51 through the second thrust rod balance shaft mounting seat 553, and a rear end of the second thrust rod 54 on the right side in the second subgroup located in the front is connected to a right end portion of the balance shaft assembly 51 through the second thrust rod balance shaft mounting seat 553.
A rear end of the second thrust rod 54 on the left side in the second subgroup located in the rear is connected to a left end portion of the axle case component 21 in the rear through the second thrust rod axle case mounting seat 554, and a rear end of the second thrust rod 54 on the right side in the second subgroup located in the rear is connected to a right end portion of the axle case component 21 in the rear through the second thrust rod axle case mounting seat 554; and a front end of the second thrust rod 54 on the left side in the second subgroup located in the rear is connected to a left end portion of the balance shaft assembly 51 through the second thrust rod balance shaft mounting seat 553, and a front end of the second thrust rod 54 on the right side in the second subgroup located in the rear is connected to a right end portion of the balance shaft assembly 51 through the second thrust rod balance shaft mounting seat 553.
In an embodiment, the second end of each of the second thrust rods 54 is located on an inner side of the first end of the same second thrust rod 54, that is, the second thrust rods 54 each are obliquely disposed, and the second thrust rod 54 in the second subgroup located in the front extends inward from the front to the rear, and the second thrust rod 54 in the second subgroup located in the rear extends outward from the front to the rear.
In some embodiments of the present disclosure, each second subgroup includes two second thrust rods 54, and there are two second thrust rod axle case mounting seats 554 that correspond to the second subgroup. Further, as shown in Fig. 3, two elastic member mounting seats 555 that are  disposed in a left-right direction in a spaced manner are respectively fixed to two ends of the axle case component 21 corresponding to the second subgroup, the two elastic member mounting seats 555 have one-to-one correspondences with the two second thrust rod axle case mounting seats 554, each of the second thrust rod axle case mounting seats 554 is fixed below the corresponding elastic member mounting seat 555, and each of the second thrust rod balance shaft mounting seats 553 is fixed below the balance shaft assembly 51.
In other words, one elastic member mounting seat 555 is fixed onto the left end of the axle case component 21 corresponding to the second subgroup, the corresponding second thrust rod axle case mounting seat 554 on the left end is fixed below the elastic member mounting seat 555 on the left end, and one second thrust rod balance shaft mounting seat 553 is fixed below the left end of the balance shaft assembly 51 corresponding to the second subgroup; and one elastic member mounting seat 555 is fixed onto the right end of the axle case component 21 corresponding to the second subgroup, the corresponding second thrust rod axle case mounting seat 554 on the right end is fixed below the elastic member mounting seat 555 on the right end, and one second thrust rod balance shaft mounting seat 553 is fixed below the right end of the balance shaft assembly 51 corresponding to the second subgroup. In this way, the second thrust rod group is completely disposed below the first thrust rod group, so that the top and the bottom of the vehicle axle assembly are both fixed to the frame 400. Hence, positions of the frame 400 and the vehicle axle assembly can be relatively fixed, the force carrying is more balanced, the load distribution is more even, and the whole arrangement of the dump truck 10000 is optimized.
In an embodiment, two ends of each first thrust rod 53 and two ends of each second thrust rod 54 all have a rubber ball hinge structure, so that joints between each first thrust rod 53 and the frame 400, between each first thrust rod 53 and the vehicle axle assembly, between each second thrust rod 54 and the balance shaft assembly 51, and between each second thrust rod 54 and the vehicle axle assembly have flexibility to some extent, a favorable vibration absorption effect, and convenient connection.
In some embodiments as shown in Fig. 1 to Fig. 5, two vehicle axle assemblies are both electric drive axle assemblies 100, and one electric drive axle assembly 100 is formed after rotating the other electric drive axle assembly 100 by 180°, so that the middle drive axle and the rear drive axle can be in common use, only one vehicle axle assembly needs to be developed, and with regard to four first thrust rods 53 of the first thrust rod group and four second thrust rods 54  of the second thrust rod group, only one state needs to be developed for each, which greatly lowers development costs.
Briefly, with regard to the dump truck 10000 according to the embodiment of the present disclosure, the electric drive axle assembly 100 integrates the power motor 11, the transmission 12, and the axle case assembly 102 together and has a compact structure and high transmission efficiency, and the second axle assembly 1000 of the dump truck 10000 completely uses an electric drive manner, has a high energy utilization ratio, a high response speed, and has stronger power performance. In addition, the whole power portion of the dump truck 10000 is located below the elastic member 50, that is, the vibration source of the whole vehicle is disposed below the elastic member 50, after vibration absorption performed by the suspension system 500, the vibration is weaken, the comfortableness of the whole vehicle is greatly improved, and a plurality of components (for example, the vehicle axle assembly, the first thrust rod 53, and the second thrust rod 54) can be in common use, so that development costs are low. In an embodiment, when the two vehicle axle assemblies are both electric drive axle assemblies 100, the two electric drive axle assemblies 100 can work synchronously or individually, so that even though one electric drive axle assembly 100 cannot work, the other electric drive axle assembly 100 can also drive the whole vehicle to run, and the two independent power sources make the power of the whole vehicle stronger.
An electric drive axle assembly 100 according to an embodiment of the present disclosure is described below by referring to Fig. 6 to Fig. 15. As shown in Fig. 6 to Fig. 15, the electric drive axle assembly 100 includes an electric power assembly 101, an axle case assembly 102 and a suspension apparatus. In an embodiment, the electric power assembly 101 may be fixed to the axle case assembly 102 through a plurality of bolts, so as to be integrated as an electric drive axle assembly 100.
As shown in Fig. 6, Fig. 7, and Fig. 10 to Fig. 14, the electric power assembly 101 includes a power motor 11, a transmission 12, a differential 13, and an electrohydraulic gear shift actuating module 15, where the transmission 12 has a transmission case 121.
As shown in Fig. 6, the power motor 11 may be fixed onto the transmission case 121 through a plurality of bolts, and the plurality of bolts is circumferentially disposed around the power motor 11 in a spaced manner. The power motor 11 may be a permanent magnet synchronous motor. The power motor 11 is externally connected to a power supply through a three-phase cable, so as to  implement driving of the power motor 11.
As shown in Fig. 10, the power motor 11 includes an active cooling structure. The active cooling structure is configured to actively cool the power motor 11. In some embodiments, the active cooling structure includes a coolant circulation passage 111 that is configured to cool the power motor 11, where the coolant circulates inside the coolant circulation passage 111 to cool the power motor 11. As shown in Fig. 10, the coolant circulation passage 111 has an inlet A and an outlet B, and the coolant may enter the coolant circulation passage 111 through the inlet A and be output through the outlet B after the coolant performs heat exchange with the power motor 11.
Hence, by means of enabling the power motor 11 to have a built-in active cooling structure, the power motor 11 can be prevented from overheating, which indirectly improves efficiency, the power motor 11 is prevented from being burned out, and the power motor 11 can satisfy requirements for operation with large power at a high rotation speed for a long time, can preferably match an operation working condition of the dump truck 10000, and can be used in the whole series of vehicles from a light vehicle to a heavy vehicle.
In an embodiment, the active cooling structure may further include a coolant drive member, the coolant drive member is disposed to the coolant circulation passage 111 to drive the coolant to flow inside the coolant circulation passage 111. In an embodiment, the coolant drive member may be a cooling oil pump. Hence, the active cooling structure has a built-in coolant drive member, a high integration degree, and simple assembly.
Certainly, in some embodiments of the present disclosure, the coolant circulation passage 111 may also be connected to a coolant located outside the electric drive axle assembly 100, that is, the coolant may be introduced from the outside, that is, the coolant circulation passage 111 of the active cooling structure may share the coolant drive member with a coolant circulation passage of another component on the dump truck.
The transmission case 121 of the transmission 12 may be fixed to the axle case component 21 of the axle case assembly 102 though a bolt. The axle case component 21 includes an axle case 210 and a case cover 213. The middle of the axle case 210 is provided with a differential accommodation space whose two side end faces are both open, the case cover 213 is detachably mounted to the axle case 210 to seal a first open side end face in the middle of the axle case 210, and the transmission case 121 is fixed onto a second open side end face in the middle of the axle case 210.
In an embodiment, the case cover 213 may be detachably mounted to the axle case 210 through a thread connecting member, and specifically, as shown in Fig. 6, Fig. 7, and Fig. 9, the thread connecting member is a bolt 403, and the case cover 213 may be connected to the first open side end face in the middle of the axle case 210 in a threaded manner through the plurality of bolts 403 that are circumferentially disposed around the case cover 213 in a spaced manner. In this way, the case cover 213 is detachably mounted to the axle case 210, so that the electric power assembly 101 can be mounted more conveniently and has a simple fixing structure and convenient operation. In an embodiment, a case cover 213 on the first side end face in the middle of the axle case 210 is manufactured to be of an assembly type, which can effectively reduce difficulty in assembly of the electric power assembly 101 and the two half axles 22 and facilitates maintenance of the differential 13.
In an embodiment, the electric drive axle assembly 100 further includes a plurality of bolts 401, the transmission case 121 is provided with a plurality of threaded holes, the axle case 210 is provided with a plurality of through holes having one-to-one correspondences with the plurality of threaded holes, the plurality of bolts has one-to-one correspondences with the plurality of through holes, and each of the bolts penetrates through the corresponding through hole to be fixed into the corresponding threaded hole, so as to fix the transmission case 121 onto the second open side end face in the middle of the axle case 210.
That is, with regard to the electric drive axle assembly 100 according to the embodiment of the present disclosure, the plurality of threaded holes is disposed in the transmission case 121, and the plurality of through holes is disposed in the axle case 210, so that in the situation of ensuring connection strength, the volume of the transmission 12 may be reduced as much as possible, and the structure is more compact.
Further, as shown in Fig. 7, two half axles sleeves 23 may be respectively fixed onto two ends (namely, the left end and the right end) of the axle case component 21 in a welding manner.
The axle case assembly 102 may further include two wheel reducers 20, two hub assemblies 24, two brakes 25, and two brake mounting plates 214, where each of the hub assemblies 24 is rotatably mounted to a corresponding half axle sleeve 23, the two half axles sleeves 23 are fitted over two half axles 22 in a one-to-one correspondence manner, the two wheel reducers 20 have one-to-one correspondences with the two hub assemblies 24, an input end of each of the wheel reducers 20 is connected to the corresponding half axle 22, and an output end of each of the wheel  reducers 20 is connected to the corresponding hub assembly 24.
In some embodiments of the present disclosure, as shown in Fig. 8, the wheel reducer 20 is a planet gear reducer. The planet gear reducer includes a sun gear 202, a planet gear 203, and an inner gear ring 204, where the sun gear 202 is fixed onto the half axle 22, so as to rotate synchronously with the half axle 22, the planet gear 203 is engaged with the sun gear 202 and the inner gear ring 204, and the inner gear ring 204 is fixed to the corresponding half axle sleeve 23 through an inner gear ring support 205. Hence, the volume is small, the transmission efficiency is high, and the speed reduction range is broad.
In an embodiment, as shown in Fig. 8, the wheel reducer 20 includes a wheel reducer case 201, the wheel reducer case 201 may be fixed onto the hub assembly 24, so that the volume of the axle case assembly 102 is further reduced, the structure is compact, and the space is saved.
Further, the inner gear ring support 205 is engaged with the inner gear ring 204, the planet gear reducer may further include a retainer ring 206, and the retainer ring 206 is sandwiched between the inner gear ring support 205 and the inner gear ring 204 in a radial direction, so as to stop the inner gear ring 204 in the radial direction, thereby preferably ensuring accuracy in assembly of the wheel reducer 20 and the hub assembly 24.
The two brakes 25 have one-to-one correspondences with the two hub assemblies 24, that is, one brake 25 corresponds to one hub assembly 24, so as to brake the hub assembly 24. The two brake mounting plates 214 are respectively fixed to two ends of the axle case component 21 in a welding manner (and specifically, the two brake mounting plates 214 may be respectively fixed onto the two half axle sleeves 23 in a welding manner, the two half axle sleeves 23 may be respectively fixed onto the two ends of the axle case component 21 in a welding manner) , the two brakes 25 are fixed onto the two brake mounting plates 214 in a one-to-one correspondence manner through thread connecting members respectively, and brake drums 251 of the two brakes 25 are fixed to the two hub assemblies 24 in a one-to-one correspondence manner.
The axle case assembly 102 may further include two axial stopper sets 27, and the two axial stopper sets 27 have one-to-one correspondences with the two hub assemblies 24, that is, one axial stopper set 27 corresponds to one hub assembly 24 to axially stop the hub assembly 24. Each inner gear ring support 205 is fitted over the corresponding half axle sleeve 23 through a spline structure, and each axial stopper set 27 includes a stop nut 271 and a locking sheet 272. The stop nut 271 and the locking sheet 272 are both fitted over the corresponding half axle sleeve 23, and the stop nut  271 is connected to the corresponding half axle sleeve 23 in a threaded manner, so as to tightly press the corresponding inner gear ring support 205 and the corresponding hub assembly 24 between the locking sheet 272 and the brake drum 251 of the corresponding brake 25.
It could be understood that the two wheel reducers 20, the two hub assemblies 24, the two half axles sleeves 23, the two brakes 25, the two brake mounting plates 214, the two axial stopper sets 27, and the two half axles 22 all have one-to-one correspondences and are respectively symmetrically located on the left and right ends of the axle case component 21 in a width direction of the vehicle.
The left end is used as an example below to describe connection relationships and position relationships of the wheel reducer 20, the hub assembly 24, the half axle sleeve 23, the brake 25, the brake mounting plate 214 and the axial stopper set 27.
In an embodiment, as shown in Fig. 8, the left end of the axle case component 21 is provided with one half axle sleeve 23 in a welding manner, the hub assembly 24 on the left end is rotatably mounted to the half axle sleeve 23 on the left end, and the half axle sleeve 23 on the left end is fitted over the half axle 22 on the left side. The hub assembly 24 is a part of a wheel, and rotation of the hub assembly 24 can implement rotation of the wheel. More specifically, as shown in Fig. 8, a left end of the half axle 22 on the left end penetrates through the half axle sleeve 23 on the left end to be connected to a sun gear, an end cover is secured to the wheel reducer 20 (for example, a wheel reducer case 201) on the left end through a thread connecting member (the bolt 406 in Fig. 8) , a right end of the half axle 22 on the left end is connected to the differential 13 through a spline, the half axle 22 on the left end transmits power output by the differential 13 to an input end of the wheel reducer 20 on the left end, and after speed reduction performed by the wheel reducer 20 on the left end, the power is transmitted from an output end of the wheel reducer 20 on the left end to the hub assembly 24 on the left and then drives the wheel to rotate.
The brake 25 on the left end corresponding to the hub assembly 24 on the left end is mounted to the brake mounting plate 214 on the left end, the brake mounting plate 214 on the left end is fixed onto the left end of the axle case component 21, the brake drum 251 of the brake 25 on the left end is also fixed onto the hub assembly 24 on the left end to rotate together with the hub assembly 24. For example, the brake mounting plate 214 may be fitted over and fixedly welded to the axle case 210 of the axle case component 21, the brake 25 on the left end is fixed to the brake mounting plate 214 on the left end through a thread connecting member, and the brake drum 251  of the brake 25 on the left end may be fixed to the hub assembly 24 on the left end through a bolt 405, where there are a plurality of thread connecting members and a plurality of bolts 405. In an axial direction, that is, in the left-right direction of the vehicle, the brake 25 on a corresponding end is located between the brake mounting plate 214 on the corresponding end and the hub assembly 24 on the corresponding end.
The axial stopper set 27 corresponding to the hub assembly 24 on the left end is a left end set, the stop nut 271 of the left end set and the locking sheet 272 of the left end set are both fitted over the half axle sleeve 23 on the left end, and the stop nut 271 of the left end set is connected to the half axle sleeve 23 on the left end in a screwed manner to tightly press the inner gear ring support 205 on the left end and the hub assembly 24 on the left end between the locking sheet 272 on the left end and the brake drum 251 of the brake 25 on the left end. Hence, the hub assembly 24 may perform axial locking by means of cooperation of the stop nut 271 and the brake drum 251 of the brake 25, and similarly, the wheel reducer 20 may also perform axial locking by means of cooperation of the stop nut 271 and the brake drum 251 of the brake 25. In an embodiment, the wheel reducer case 201, the brake drum 251 of the brake 25, and a part of the hub assembly 24 are fixed together through bolts 405.
The locking sheet 272 may prevent the stop nut 271 from loosening. In an embodiment, each hub assembly 24 is rotatably fitted over the corresponding half axle sleeve 23 through a hub bearing 241, and the axial stopper set 27 can adjust a clearance of the hub bearing 241.
According to the foregoing description, a person skilled in the art can derive connection relationships and position relationships of the wheel reducer 20, the hub assembly 24, the half axle sleeve 23, the brake 25, the brake mounting plate 214 and the axial stopper set 27 on the right end, which are not further described in detail.
In an embodiment, as shown in Fig. 10, the electric power assembly 101 may also include an electrohydraulic gear shift actuating module 15, where the electrohydraulic gear shift actuating module 15 is configured to control the transmission 12, and the electrohydraulic gear shift actuating module 15 is mounted to the transmission case 121. A sensor and a precise flow valve that match the electrohydraulic gear shift actuating module 15 are mounted to the electrohydraulic gear shift actuating module 15, an external electronic control unit makes a response by means of a collected signal and can accurately control a gear shift speed and a gear shift time point of the transmission 12, so that the transmission 12 shifts the gear smoothly, has a high response speed  and favorable controllability, and can relieve driving fatigue.
The differential lock mechanism is mounted to the transmission 12, and the differential lock mechanism is configured to selectively lock one of the two half axles 22 and a differential case of the differential 13 that integrates with an electric drive axle.
A working principle of the differential lock mechanism is that when a driving wheel slips, the differential case and the half axle 22 are locked together to make the differential 13 lose a differential function, so as to transfer entire torque to a driving wheel on the other side, which is very important to a construction vehicle that runs on a muddy road and that is likely to slip.
With regard to the case assembly 102 according to the embodiment of the present disclosure, by means of disposing the differential lock mechanism, the differential 13 can enable the differential function or disable the differential function according to different traveling conditions of the vehicle, which is particularly applicable to the dump truck that runs in a severe working condition. The dump truck has strong power, and the differential lock mechanism is integrated with the transmission 12, the structure is complete, the mounting is firm, the working is stable, and the reliability is high, so that the electric drive axle assembly 100 has higher reliability and a more rounded function.
The transmission includes a transmission power input portion and a transmission power output portion. The transmission power input portion is directly connected to a motor output shaft of the power motor, the transmission power output portion is constructed to adapt to output power from the transmission power input portion to the differential, and the power is output through the differential to a wheel of the dump truck to drive the dump truck to travel. In an embodiment, as shown in Fig. 10, the differential 13 may be supported on the transmission case 121 through a differential bearing.
The electric power assembly 101 may further include a power takeoff 14, and the power takeoff 14 includes a power takeoff input end and a power takeoff output end. The power takeoff input end is configured to move in cooperation with at least one of the transmission power input portion and the transmission power output portion. That is, the power takeoff input end may be configured to move in cooperation with the transmission power input portion, the power takeoff input end may also be configured to move in cooperation with the transmission power output portion, and the power takeoff input end may also be configured to move in cooperation with the transmission power input portion and at the same time, move in cooperation with the transmission  power output portion. The wording "move in cooperation" indicates that actions of two components have a driving-driven relationship, and an action of one component actuates an action of the other component.
The power takeoff output end is configured to be selectively joined to the power takeoff input end to output the power from the power takeoff input end. That is, when the power takeoff output end is joined to the power takeoff input end, the power takeoff output end may output the power from the power takeoff input end to a to-be-driven apparatus 16.
In an embodiment, the power takeoff 14 is fixed onto the transmission case 121, that is, the power takeoff 14 is integrated onto the transmission case 121, so that the structure of the electric power assembly 101 is more compact. In an embodiment, the power takeoff 14 may include a power takeoff case 141, and the power takeoff case 141 is connected to the transmission case 121, or the power takeoff case 141 and the transmission case 121 are integrally formed.
When the transmission 12 is only used to drive the dump truck, the power of the power motor 11 is output to a wheel of the dump truck through the transmission power input portion, the transmission power output portion and the differential 13 in sequence, so as to drive the dump truck to run.
When it is needed to drive the to-be-driven apparatus 11, a part of the power of the power motor 11 is output to the wheel of the dump truck through the transmission power input portion, the transmission power output portion and the differential 13 in sequence. Another part of the power of the power motor 11 is output to the to-be-driven apparatus 16 through at least one of the transmission power input portion and the transmission power output portion, the power takeoff input end and the power takeoff output end in sequence.
In an embodiment of the present disclosure, the to-be-driven apparatus 16 is an oil pump, the oil pump can be driven by the power takeoff 14 to generate high-pressure hydraulic oil to provide a power source for a truck bed lifting mechanism of the dump truck and the like, thereby satisfying other requirements for power of the whole vehicle.
That is, with regard to the electric drive axle assembly 100 for a dump truck according to the embodiment of the present disclosure, by means of disposing a power takeoff 14, power can be output to a mechanism that has a demand, so as to satisfy more market requirements, so that the electric drive axle assembly 100 is more practical. In addition, because the power takeoff input end moves in cooperation with at least one of the transmission power input portion and the  transmission power output portion, there are a few transmission components, the transmission efficiency is high, a fault occurrence rate can be reduced, and manufacturing costs are lowered.
The power takeoff input end may include a power takeoff gear k3, the power takeoff output end may include a power takeoff shaft V, and as shown in Fig. 13, the power takeoff shaft V may be supported by the power takeoff case 141 through a power takeoff bearing 142. The power takeoff gear k3 is freely fitted over the power takeoff shaft V, that is, the power takeoff gear k3 may rotate relative to the power takeoff shaft V, that is, when the power takeoff gear k3 rotates, the power takeoff shaft V may not rotate.
The power takeoff 14 may also include a power takeoff synchronizer S3, and the power takeoff synchronizer S3 is configured to selectively synchronize the power takeoff gear k3 with the power takeoff shaft V. That is, when the to-be-driven apparatus 16 needs power, the power takeoff synchronizer S3 synchronizes the power takeoff gear k3 with the power takeoff shaft V, so that the power takeoff shaft V outputs the power that is output by the power takeoff gear k3 to the to-be-driven apparatus 16. When the to-be-driven apparatus 16 does not power, the power takeoff gear k3 is separated from the power takeoff shaft V, and the power takeoff gear k3 may be idling around the power takeoff shaft V.
In an embodiment of the present disclosure, as shown in Fig. 11 to Fig. 14, the plurality of transmission shafts may include a first shaft I, a second shaft II, a third shaft III, and a fourth shaft IV. The first shaft I, the second shaft II, the third shaft III and the fourth shaft IV are all supported on the transmission case 121 through a bearing. In an embodiment, as shown in Fig. 11, Fig. 12, and Fig. 14, the first shaft I, the second shaft II, the third shaft III and the fourth shaft IV all extend long a width direction of the dump truck, the width direction of the dump truck is the left-right direction of the dump truck, and the power motor 11 may be disposed to the right side of transmission case 121.
The first shaft I is connected to a motor output shaft VI of the power motor 11, for example, as shown in Fig. 11, the first shaft I may be connected to the motor output shaft VI through a spline structure, specifically, the first shaft I has an inner spline, and the motor output shaft VI has an outer spline that fits with the inner spline. Certainly, the first shaft I may also be connected to the motor output shaft VI through a shaft coupling. With regard to the electric power assembly 101 according to the embodiment of the present disclosure, by means of directly connecting the motor output shaft VI of the power motor 11 to the first shaft I, a transmission link is short, and a  structure is simple.
As shown in Fig. 11 and Fig. 14, an input gear q is fixed onto the first shaft I, that is, the input gear q may rotate synchronously with the first shaft I, an idle gear q'is fixed onto the second shaft II, that is, the idle gear q'may rotate synchronously with the second shaft II, and the idle gear q'is engaged with the input gear q.
As shown in Fig. 14, the third shaft III includes a first shaft segment III-1 and a second shaft segment III-2 that are coaxially disposed, and the second shaft segment III-2 is configured to be selectively joined to the first shaft segment III-1, that is, the second shaft segment III-2 may be joined to the first shaft segment III-1 to rotate synchronously with the first shaft segment III-1, and the second shaft segment III-2 and the first shaft segment III-1 may also separately rotate.
As shown in Fig. 14, one end of the first shaft segment III-1 is fitted over the second shaft segment III-2, that is, one end, proximal to the first shaft segment III-1, of the second shaft segment III-2 is supported by the first shaft segment III-1, and the first shaft segment III-1 is also supported by the transmission case 121. Specifically, the first shaft segment III-1 is a hollow shaft and has a bearing hole, the end, proximal to the first shaft segment III-1, of the second shaft segment III-2 is supported inside the bearing hole (namely, an inner circumferential wall of the first shaft segment III-1) of the first shaft segment III-1 through a bearing B1, the first shaft segment III-1 (namely, an outer circumferential wall of the first shaft segment III-1) is also supported by the transmission case 121 through a bearing B2, the bearing B1 includes a pair of conical roller bearings located on one end of the bearing of the second shaft segment III-2, and the bearing B2 includes two cylinder roller bearings located on two ends of the first shaft segment III-1 separately. By means of disposing bearings of different types inside and outside, the third shaft III is subject to a force more reasonably, which indirectly prolongs a service life of the transmission 12.
A first gear k1 is fixed onto the first shaft segment III-1, that is, the first gear k1 may rotate synchronously with the first shaft segment III-1, when the first shaft segment III-1 is not joined to the second shaft segment III-2, the first gear k1 can freely rotate relative to the second shaft segment III-2, and when the first shaft segment III-1 is joined to the second shaft segment III-2, the first gear k1 may also rotate synchronously with the second shaft segment III-2. The first gear k1 is engaged with the idle gear q', and a plurality of gear driven gears is freely fitted over the second shaft segment III-2, that is, the gear driven gear may rotate relative to the second shaft  segment III-2, that is, when the gear driven gear rotates, the second shaft segment III-2 may not rotate.
A second gear k2 and a plurality of gear driving gears are fixed onto the fourth shaft IV, that is, the second gear k2 may rotate synchronously with the fourth shaft IV, and each of the plurality of gear driving gears may rotate synchronously with the fourth shaft IV. The second gear k2 is engaged with the first gear k1, and the plurality of gear driving gears is engaged with the plurality of gear driven gears in a one-to-one correspondence manner.
In an embodiment, the third shaft III and the fourth shaft IV have various lengths and structures, and on the third shaft III and the fourth shaft IV, there may be different numbers of pairs of engaged gears, so that the transmission 12 has output of more gears.
The first shaft I, the input gear q, the second shaft II, and the idle gear q'constitute the transmission power input portion; the third shaft III, the first gear k1, the fourth shaft IV, the second gear k2, the plurality of gear driving gears and the plurality of gear driven gears constitute the transmission power output portion.
Further, as shown in Fig. 14, an output gear z is also fixed onto the second shaft segment III-2, that is, the output gear z may rotate synchronously with the second shaft segment III-2, the output gear z may be engaged with a differential driven gear z'of the differential 13, so that power output by the power motor 11 is transferred to the differential 13 through the transmission 12 and drives the half axles 22 and the wheel through the differential 13 to make the dump truck run.
In an embodiment, the input gear q, the idle gear q', the first gear k1, the second gear k2, the plurality of gear driving gears, and the plurality of gear driven gears are all helical gears. The output gear z is also a helical gear. Hence, the transmission gears of the electric power assembly 101 are all helical gears, and the whole transmission 12 has stable transmission, low noise, high transmission efficiency, and large transmission torque.
In an embodiment of the present disclosure, the plurality of gear driven gears includes a first-gear driven gear 1', a second-gear driven gear 2'and a third-gear driven gear 3'. The plurality of gear driving gears includes a first-gear driving gear 1, a second-gear driving gear 2 and a third-gear driving gear 3, where the first-gear driven gear 1'is engaged with the first-gear driving gear 1, the second-gear driven gear 2'is engaged with the second-gear driving gear 2, and the third-gear driven gear 3'is engaged with the third-gear driving gear 3.
The transmission power output portion may further include a first-fourth-gear synchronizer  S1 and a second-third-gear synchronizer S2. The first-fourth-gear synchronizer S1 is configured to selectively join one of the first shaft segment III-1 and the first-gear driven gear 1'to the second shaft segment III-2. That is, the second shaft segment III-2 may be joined to the first shaft segment III-1 through the first-fourth-gear synchronizer S1 to rotate synchronously with the first shaft segment III-1, or the second shaft segment III-2 may be joined to the first-gear driven gear 1'through the first-fourth-gear synchronizer S1 to enable the second shaft segment III-2 to rotate synchronously with the first-gear driven gear 1', or the second shaft segment III-2 may be located at an intermediate position, which is neither joined to the first shaft segment III-1, nor joined to the first-gear driven gear 1'.
The second-third-gear synchronizer S2 is configured to selectively join one of the second-gear driven gear 2'and the third-gear driven gear 3'to the second shaft segment III-2. That is, the second shaft segment III-2 may be joined to the second-gear driven gear 2'through the second-third-gear synchronizer S2 to enable the second shaft segment III-2 to rotate synchronously with the second-gear driven gear 2', or the second shaft segment III-2 may be joined to the third-gear driven gear 3'through the second-third-gear synchronizer S2 to enable the second shaft segment III-2 to rotate synchronously with the third-gear driven gear 3', or the second shaft segment III-2 may be located at an intermediate position, which is neither joined to the second-gear driven gear 2', nor joined to the third-gear driven gear 3'.
As shown in Fig. 14, the output gear z is located between the first-gear driven gear 1'and the second-gear driven gear 2'. Hence, the structure of the transmission 12 is more compact.
In a four-gear transmission 12, two ends of the first shaft I are supported by the transmission case 121 through paired conical roller bearings, the idle gear q'is connected to the second shaft II through fitting of inner and outer spline structures, the second shaft II is supported by the transmission case 121 through paired conical roller bearings on two ends, the third-gear driven gear 3', the second-gear driven gear 2'and the first-gear driven gear 1'are connected to the second shaft segment III-2 through fittings of the bearings, and the second-third-gear synchronizer S2, the first-fourth-gear synchronizer S1 and the output gear z are connected to the second shaft segment III-2 through fitting of a spline structure. The second gear k2 is connected to the fourth shaft IV through fitting of a spline structure, and the third-gear driving gear 3, the second-gear driving gear 2 and the first-gear driving gear 1 are all connected to the fourth shaft IV through fitting of the spline structure. The differential driven gear z'may be fixedly mounted to the differential 13  through a thread connecting manner or in a welding form to drive the differential 13 to rotate.
From the foregoing descriptions, it could be known that the present disclosure provides a four-gear transmission 12, which has a high speed ratio, large torque, stronger power performance, and preferable control performance and can satisfy use requirements of a heavy duty vehicle.
In the description of the present disclosure, it should be understood that, location or position relationships indicated by the terms, such as "center" , "longitude" , "transverse" , "length" , "width" , "thickness" , "up" , "down" , "front" , "rear" , "left" , "right" , "vertical" , "horizontal" , "top" , "bottom" , "inside" , "outside" , "clockwise" , "counterclockwise" , "axial" , "radial" , and "circumferential" are location or position relationships based on illustration of the accompanying drawings, are merely used for describing the present disclosure and simplifying the description instead of indicating or implying the indicated apparatuses or elements should have specified locations or be constructed and operated according to specified locations, and therefore, should not be intercepted as limitations to the present disclosure.
In addition, the terms such as "first" and "second" are used merely for the purpose of description, but shall not be construed as indicating or implying relative importance or implicitly indicating a number of the indicated technical feature. Hence, the feature defined with "first" and "second" may explicitly or implicitly include at least one of the features. In the description of the present disclosure, unless otherwise explicitly specifically defined, "a plurality of" means at least two, for example, two or three.
In the present disclosure, unless otherwise explicitly specified or defined, the terms such as "mount" , "connect" , "connection" , and "fix" should be interpreted in a broad sense. For example, a connection may be a fixed connection, or may be a detachable connection or an integral connection; a connection may be a mechanical connection, or may be an electrical connection; a connection may be a mechanical connection, or may be an electrical connection, or may be used for intercommunication; a connection may be a direct connection, or may be an indirect connection via an intermediate medium, or may be communication between interiors of two elements or an interaction relationship between two elements, unless otherwise explicitly defined. It may be appreciated by those of ordinary skill in the art that the specific meanings of the aforementioned terms in the present disclosure can be understood depending on specific situations.
In the present disclosure, unless otherwise explicitly specified or defined, a first feature being "above" or "below" a second feature may be that the first and second features are in direct contact  or that the first and second features in indirect contact by means of an intermediate medium. In addition, the first feature being "over" , "above" or "on the top of" a second feature may be that the first feature is over or above the second feature or merely indicates that the horizontal height of the first feature is higher than that of the second feature. The first feature being "underneath" , "below" or "on the bottom of" a second feature may be that the first feature is underneath or below the second feature or merely indicates that the horizontal height of the first feature is lower than that of the second feature.
In the descriptions of this specification, a description of a reference term such as "an embodiment" , "some embodiments" , "examples" , "specific examples" , or "some examples" means that a specific feature, structure, material, or characteristic that is described with reference to the embodiment or the example is included in at least one embodiment or example of the present disclosure. In this specification, exemplary descriptions of the foregoing terms do not necessarily refer to a same embodiment or example. In addition, the described specific feature, structure, material, or characteristic may be combined in a proper manner in any one or more embodiments or examples. Moreover, if there is no contradiction, those skilled in the art can joint and combine different embodiments or examples described in the description and features of different embodiments or examples.
Although the embodiments of the present disclosure have been shown and described, those of ordinary skill in the art can understand that a plurality of changes, modifications, replacements, and variations may be made to these embodiments without departing from the principle and purpose of the present disclosure.

Claims (30)

  1. A dump truck, comprising:
    a frame;
    a first axle assembly;
    a second axle assembly, wherein the second axle assembly and the first axle assembly are disposed along a front-rear direction in a spaced manner, the second axle assembly comprises two vehicle axle assemblies that are disposed along the front-rear direction in a spaced manner, each of the vehicle axle assemblies comprises an axle case assembly, the axle case assembly comprises an axle case component and two half axles, and the two half axles are located inside the axle case component;
    at least one of the two vehicle axle assemblies is an electric drive axle assembly, the electric drive axle assembly further comprises an electric power assembly and a suspension apparatus, the electric power assembly comprises a power motor, a transmission and a differential, the transmission has a transmission case, the power motor is fixed onto the transmission case, the differential is supported on the transmission case, the differential is located inside the axle case component, the transmission case is fixed onto the axle case component, the transmission comprises a plurality of transmission shafts, the plurality of transmission shafts is sequentially disposed from the top to the bottom, and the suspension apparatus is connected between the electric power assembly and the frame; and
    a suspension system, wherein each of the vehicle axle assemblies is connected to the frame through the suspension system.
  2. The dump truck according to claim 1, wherein the suspension system comprises two elastic members disposed along a left-right direction in a spaced manner, two ends of each of the elastic members are respectively connected to two axle case components, and each of the elastic members is located above the two axle case components.
  3. The dump truck according to claim 2, wherein the suspension system further comprises:
    a balance shaft assembly, wherein the balance shaft assembly is fixed to the frame and is located in the middle between the two vehicle axle assemblies in the front-rear direction, and the middle of each of the elastic members is fixed to the balance shaft assembly.
  4. The dump truck according to claim 3, wherein each of the elastic members comprises at  least one layer of a leaf spring.
  5. The dump truck according to claim 3, wherein the suspension system further comprises a first thrust rod group and a second thrust rod group that are disposed along an up-down direction in a spaced manner;
    the first thrust rod group comprises two first subgroups that are symmetrically disposed along the front-rear direction, the two first subgroups have one-to-one correspondences with the two axle case components, each of the first subgroups comprises a plurality of first thrust rods, and each of the first thrust rods is connected between the frame and the corresponding axle case component; and
    the second thrust rod group comprises two second subgroups that are symmetrically disposed along the front-rear direction, the two second subgroups have one-to-one correspondences with the two axle case components, each of the second subgroups comprises a plurality of second thrust rods, and each of the second thrust rods is connected between the balance shaft assembly and the corresponding axle case component.
  6. The dump truck according to claim 5, wherein:
    a first end of each of the first thrust rods is connected to the middle of the corresponding axle case component, a second end of each of the first thrust rods is connected to the frame through a first thrust rod frame mounting seat, and the first thrust rod frame mounting seat is fixed to the frame and is located in the middle between the two axle case components.
  7. The dump truck according to claim 6, wherein the first end of each of the first thrust rods is located on an inner side of the second end of the same first thrust rod.
  8. The dump truck according to claim 6, wherein the first end of each of the first thrust rods is connected to the middle of the corresponding axle case component through the first thrust rod axle case mounting seat, and the first thrust rod axle case mounting seat is fixed to the middle of the axle case component and is located above the axle case component.
  9. The dump truck according to claim 8, wherein each of the first subgroups comprises two first thrust rods, there are two first thrust rod axle case mounting seats that correspond to each of the first subgroups, and the two first thrust rod axle case mounting seats are integrally formed; and
    there are two first thrust rod frame mounting seats that correspond to the first subgroup, and second ends of the two first thrust rods have one-to-one correspondences with the two first thrust rod frame mounting seats.
  10. The dump truck according to claim 6, wherein the first thrust rod frame mounting seat is fixed to an inner side of the frame.
  11. The dump truck according to claim 5, wherein:
    a first end of each of the second thrust rods is connected to an end portion of the corresponding axle case component, a second end of each of the second thrust rods is connected to the balance shaft assembly through a second thrust rod balance shaft mounting seat, the second thrust rod balance shaft mounting seat is fixed to an end portion of the balance shaft assembly, and the end portion of the axle case component and the end portion of the balance shaft assembly that correspond to the same second thrust rod are located on the same side of the second axle assembly.
  12. The dump truck according to claim 11, wherein the second end of each of the second thrust rods is located on an inner side of the first end of the same second thrust rod.
  13. The dump truck according to claim 11, wherein the first end of each of the second thrust rods is connected to the end portion of the corresponding axle case component through the second thrust rod axle case mounting seat, and the second thrust rod axle case mounting seat is fixed onto the end portion of the corresponding axle case component and is located below the corresponding axle case component.
  14. The dump truck according to claim 13, wherein each of the second subgroup comprises two second thrust rods, and there are two second thrust rod axle case mounting seats that correspond to each of the second subgroups;
    two elastic member mounting seats that are disposed along the left-right direction in a spaced manner are respectively fixed to two ends of the axle case component that corresponds to each of the second subgroups, the two elastic member mounting seats have one-to-one correspondences with the two second thrust rod axle case mounting seats, and each of the second thrust rod axle case mounting seats is fixed below the corresponding elastic member mounting seat; and
    each of the second thrust rod balance shaft mounting seats is fixed below the balance shaft assembly.
  15. The dump truck according to any one of claims 1 to 14, wherein the two vehicle axle assemblies are both electric drive axle assemblies, and the two electric drive axle assemblies are disposed in such a way that one of the electric drive axle assemblies is formed after rotating the other electric drive axle assembly around an axis in the up-down direction that is perpendicular to the front-rear direction by 180°.
  16. The dump truck according to any one of claims 1 to 14, wherein one of the two vehicle axle assemblies is an electric drive axle assembly, and the other one of the two vehicle axle assemblies is a driven axle.
  17. The dump truck according to any one of claims 1 to 16, wherein the power motor comprises an active cooling structure, and the active cooling structure comprises a coolant circulation passage configured to cool the power motor; and
    the active cooling structure further comprises a coolant drive member, and the coolant drive member is disposed to the coolant circulation passage to drive a coolant to flow inside the coolant circulation passage.
  18. The dump truck according to any one of claims 1 to 16, wherein the axle case component comprises:
    an axle case, wherein the middle of the axle case is provided with a differential accommodation space whose two side end faces are both open; and
    a case cover, wherein the case cover is detachably mounted to the axle case to seal a first open side end face in the middle of the axle case, and the transmission case is fixed onto a second open side end face in the middle of the axle case.
  19. The dump truck according to any one of claims 1 to 16, wherein two half axle sleeves are respectively fixed to two ends of the axle case component in a welding manner, the axle case assembly further comprises two hub assemblies, each of the hub assemblies is rotatably mounted to the corresponding half axle sleeve, and the two half axle sleeves are fitted over the two half axles in a one-to-one correspondence manner.
  20. The dump truck according to any one of claims 1 to 16, wherein the axle case assembly further comprises a differential lock mechanism, and the differential lock mechanism is mounted to the transmission and is configured to selectively lock one of the two half axles and the differential case of the differential.
  21. The dump truck according to any one of claims 1 to 16, wherein the transmission comprises a transmission power input portion and a transmission power output portion, the transmission power input portion is directly connected to a motor output shaft of the power motor, and the transmission power output portion is constructed to adapt to output power from the transmission power input portion to the differential.
  22. The dump truck according to claim 21, wherein the electric power assembly further  comprises a power takeoff, the power takeoff comprises a power takeoff input end and a power takeoff output end, the power takeoff input end is configured to move in cooperation with at least one of the transmission power input portion and the transmission power output portion, the power takeoff output end is configured to be selectively joined to the power takeoff input end to output power from the power takeoff input end, and the power takeoff is fixed onto the transmission case.
  23. The dump truck according to claim 21, wherein the plurality of transmission shafts comprises:
    a first shaft, wherein an input gear is fixed onto the first shaft, and the first shaft is connected to the motor output shaft;
    a second shaft, wherein an idle gear is fixed onto the second shaft, and the idle gear is engaged with the input gear;
    a third shaft, wherein the third shaft comprises a first shaft segment and a second shaft segment that are coaxially disposed, the second shaft segment is configured to be selectively joined to the first shaft segment, a first gear is fixed onto the first shaft segment, the first gear is engaged with the idle gear, and a plurality of gear driven gears is freely fitted over the second shaft segment; and
    a fourth shaft, wherein a second gear and a plurality of gear driving gears are fixed onto the fourth shaft, the second gear is engaged with the first gear, and the plurality of gear driving gears is engaged with the plurality of gear driven gear in a one-to-one correspondence manner, wherein
    the first shaft, the input gear, the second shaft and the idle gear constitute the transmission power input portion; the third shaft, the first gear, the fourth shaft, the second gear, the plurality of gear driving gears and the plurality of gear driven gears constitute the transmission power output portion.
  24. The dump truck according to claim 23, wherein the plurality of gear driven gears comprises a first-gear driven gear, a second-gear driven gear and a third-gear driven gear;
    the plurality of gear driving gears comprises a first-gear driving gear engaged with the first-gear driven gear, a second-gear driving gear engaged with the second-gear driven gear, and a third-gear driving gear engaged with the third-gear driven gear; and
    the transmission power output portion further comprises:
    a first-fourth-gear synchronizer, wherein the first-fourth-gear synchronizer is configured to selectively join one of the first shaft segment and the first-gear driven gear to the second shaft  segment; and
    a second-third-gear synchronizer, wherein the second-third-gear synchronizer is configured to selectively join one of the second-gear driven gear and the third-gear driven gear to the second shaft segment.
  25. The dump truck according to claim 24, wherein an output gear is further fixed to the second shaft segment, the output gear is located between the first-gear driven gear and the second-gear driven gear, and the output gear adapts to be engaged with a differential driven gear of the differential.
  26. The dump truck according to claim 23, wherein the first shaft segment is supported by the transmission case, and one end, proximal to the first shaft segment, of the second shaft segment is supported by the first shaft segment.
  27. The dump truck according to claim 23, wherein the input gear, the idle gear, the first gear, the second gear, the plurality of gear driving gears and the plurality of gear driven gears are all helical gears.
  28. The dump truck according to any one of claims 1 to 16, wherein the electric power assembly further comprises an electrohydraulic gear shift actuating module, and the electrohydraulic gear shift actuating module is configured to control the transmission and is mounted to the transmission case.
  29. The dump truck according to any one of claims 1 to 28, wherein the suspension apparatus is connected between one end, distal from the axle case assembly, of the transmission case and the frame.
  30. The dump truck according to claim 28, wherein the suspension apparatus comprises two vibration absorbers, and the two vibration absorbers are symmetrically disposed on left and right sides of the transmission case.
PCT/CN2016/112653 2015-12-31 2016-12-28 Dump truck WO2017114417A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN201511030807.0 2015-12-31
CN201521138862.7 2015-12-31
CN201511030807.0A CN105984278B (en) 2015-12-31 2015-12-31 Dumper
CN201521138862.7U CN205468311U (en) 2015-12-31 2015-12-31 Dump truck

Publications (1)

Publication Number Publication Date
WO2017114417A1 true WO2017114417A1 (en) 2017-07-06

Family

ID=59224553

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/112653 WO2017114417A1 (en) 2015-12-31 2016-12-28 Dump truck

Country Status (1)

Country Link
WO (1) WO2017114417A1 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108394332A (en) * 2018-04-28 2018-08-14 陕西汽车实业有限公司 Dumper frame assembly structure
CN108674323A (en) * 2018-06-02 2018-10-19 汽解放汽车有限公司 A kind of sensor of speed odometer for vehicle installation assembly for motor driving double speed vehicle bridge
CN109955703A (en) * 2017-12-22 2019-07-02 东风德纳车桥有限公司 A kind of external hanging type Dual-motors Driving car axle assembly
EP3616954A1 (en) * 2018-08-30 2020-03-04 MAN Truck & Bus SE Truck with an electric drive unit
CN112721563A (en) * 2019-10-28 2021-04-30 陕西重型汽车有限公司 Maintenance-free disconnected balance shaft assembly and balance suspension system
CN114274769A (en) * 2021-08-10 2022-04-05 太原科技大学 All-wheel drive drill carriage walking device
IT202000028391A1 (en) * 2020-11-25 2022-05-25 Fpt Ind Spa IMPROVED DRIVE SYSTEM FOR AN ELECTRIC VEHICLE
WO2022112996A1 (en) * 2020-11-25 2022-06-02 Fpt Industrial S.P.A. Improved drive system for an electric vehicle
EP3676118B1 (en) * 2017-10-16 2023-05-17 Neapco Intellectual Property Holdings, LLC Driveline assembly for an electric vehicle

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008143252A (en) * 2006-12-07 2008-06-26 Shin Caterpillar Mitsubishi Ltd Suspension device
CN201881893U (en) * 2010-11-29 2011-06-29 李祥 Integral differential motor assembly used on electric vehicle
CN102490582A (en) * 2011-12-21 2012-06-13 南京南汽专用车有限公司 Symmetrically-arranged electrically-driven automobile chassis and driving control method thereof
WO2012082022A1 (en) * 2010-12-17 2012-06-21 Volvo Lastvagnar Ab Frame-steered vehicle
CN202368295U (en) * 2011-11-17 2012-08-08 北汽福田汽车股份有限公司 Balanced rear suspension system and mining dump truck
CN103935255A (en) * 2013-04-17 2014-07-23 济南田中工贸有限公司 Electrically driven road traction motor car
CN205468311U (en) * 2015-12-31 2016-08-17 比亚迪股份有限公司 Dump truck
CN105984278A (en) * 2015-12-31 2016-10-05 比亚迪股份有限公司 Dumper

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008143252A (en) * 2006-12-07 2008-06-26 Shin Caterpillar Mitsubishi Ltd Suspension device
CN201881893U (en) * 2010-11-29 2011-06-29 李祥 Integral differential motor assembly used on electric vehicle
WO2012082022A1 (en) * 2010-12-17 2012-06-21 Volvo Lastvagnar Ab Frame-steered vehicle
CN202368295U (en) * 2011-11-17 2012-08-08 北汽福田汽车股份有限公司 Balanced rear suspension system and mining dump truck
CN102490582A (en) * 2011-12-21 2012-06-13 南京南汽专用车有限公司 Symmetrically-arranged electrically-driven automobile chassis and driving control method thereof
CN103935255A (en) * 2013-04-17 2014-07-23 济南田中工贸有限公司 Electrically driven road traction motor car
CN205468311U (en) * 2015-12-31 2016-08-17 比亚迪股份有限公司 Dump truck
CN105984278A (en) * 2015-12-31 2016-10-05 比亚迪股份有限公司 Dumper

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3676118B1 (en) * 2017-10-16 2023-05-17 Neapco Intellectual Property Holdings, LLC Driveline assembly for an electric vehicle
CN109955703A (en) * 2017-12-22 2019-07-02 东风德纳车桥有限公司 A kind of external hanging type Dual-motors Driving car axle assembly
CN108394332A (en) * 2018-04-28 2018-08-14 陕西汽车实业有限公司 Dumper frame assembly structure
CN108394332B (en) * 2018-04-28 2023-11-07 陕汽集团商用车有限公司 Frame assembly structure of dump truck
CN108674323A (en) * 2018-06-02 2018-10-19 汽解放汽车有限公司 A kind of sensor of speed odometer for vehicle installation assembly for motor driving double speed vehicle bridge
CN108674323B (en) * 2018-06-02 2023-12-19 一汽解放汽车有限公司 Speedometer sensor mounting assembly for motor-driven double-speed axle
EP3616954A1 (en) * 2018-08-30 2020-03-04 MAN Truck & Bus SE Truck with an electric drive unit
CN112721563A (en) * 2019-10-28 2021-04-30 陕西重型汽车有限公司 Maintenance-free disconnected balance shaft assembly and balance suspension system
IT202000028391A1 (en) * 2020-11-25 2022-05-25 Fpt Ind Spa IMPROVED DRIVE SYSTEM FOR AN ELECTRIC VEHICLE
WO2022112996A1 (en) * 2020-11-25 2022-06-02 Fpt Industrial S.P.A. Improved drive system for an electric vehicle
CN114274769A (en) * 2021-08-10 2022-04-05 太原科技大学 All-wheel drive drill carriage walking device
CN114274769B (en) * 2021-08-10 2023-07-14 太原科技大学 All-wheel drive drill carriage running gear

Similar Documents

Publication Publication Date Title
US10189351B2 (en) Agitator truck
WO2017114417A1 (en) Dump truck
WO2017114420A1 (en) Vehicle and drive axle unit for vehicle
WO2017114422A1 (en) Vehicle and electric drive axle assembly for vehicle
US20180297401A1 (en) Electric drive axle assembly and vehicle having the electric drive axle assembly
WO2017114419A1 (en) Vehicle and drive axle component for use in vehicle
US10703202B2 (en) Drive axle assembly with clutch collar
EP2574490B1 (en) Drive axle assembly and disengagement system
CN105966219B (en) Vehicle and electric drive axle assembly for vehicle
US11207962B2 (en) Electric drive axle with multi-speed gearbox
CN105966221A (en) Vehicle and drive axle module used for vehicle
US20200317042A1 (en) Motor integration assembly
CN205365231U (en) Truck mixer
US10995836B2 (en) Drive unit assembly
CN105966237B (en) Vehicle and drive axle assemblies for vehicle
CN205468311U (en) Dump truck
CN105984278A (en) Dumper
CN110171248B (en) Drive axle assembly with movable axle and method of operation
CN213360893U (en) Clutch device
CN111765178A (en) Hydraulic transmission and clutch device thereof
JP2019194042A (en) vehicle
EP4324673A1 (en) Wheel hub assembly and axle assembly for a vehicle
CN111845201B (en) Steering axle assembly and vehicle with same
US20240051379A1 (en) Integrated electric drive axle layout
CN212839031U (en) Hydraulic transmission and clutch device thereof

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16881206

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16881206

Country of ref document: EP

Kind code of ref document: A1