WO2017113272A1 - 一种数据传输的方法及装置 - Google Patents

一种数据传输的方法及装置 Download PDF

Info

Publication number
WO2017113272A1
WO2017113272A1 PCT/CN2015/100072 CN2015100072W WO2017113272A1 WO 2017113272 A1 WO2017113272 A1 WO 2017113272A1 CN 2015100072 W CN2015100072 W CN 2015100072W WO 2017113272 A1 WO2017113272 A1 WO 2017113272A1
Authority
WO
WIPO (PCT)
Prior art keywords
contention
base station
transmission
uplink data
threshold
Prior art date
Application number
PCT/CN2015/100072
Other languages
English (en)
French (fr)
Inventor
胡星星
邓天乐
周凯捷
王新征
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP15911900.7A priority Critical patent/EP3389328B1/en
Priority to CN201580085437.2A priority patent/CN108432325B/zh
Priority to PCT/CN2015/100072 priority patent/WO2017113272A1/zh
Publication of WO2017113272A1 publication Critical patent/WO2017113272A1/zh
Priority to US16/023,378 priority patent/US10652899B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/02Traffic management, e.g. flow control or congestion control
    • H04W28/0247Traffic management, e.g. flow control or congestion control based on conditions of the access network or the infrastructure network
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/53Allocation or scheduling criteria for wireless resources based on regulatory allocation policies
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/12Wireless traffic scheduling
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/08Non-scheduled access, e.g. ALOHA
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W88/00Devices specially adapted for wireless communication networks, e.g. terminals, base stations or access point devices
    • H04W88/02Terminal devices
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W88/00Devices specially adapted for wireless communication networks, e.g. terminals, base stations or access point devices
    • H04W88/08Access point devices

Definitions

  • the present invention relates to the field of wireless communications, and in particular, to a method, device, and system for data transmission.
  • each terminal performs data transmission by sharing a part of resources, for example, the terminal performs data transmission based on a non-contention-based manner.
  • the non-contention based mode also called the scheduling-based mode, refers to the terminal performing data transmission after obtaining the dedicated resources allocated by the base station.
  • this method requires a large amount of signaling interaction, and the overhead is large, and the transmission efficiency is low.
  • a contention-based approach was proposed.
  • a contention-based approach also referred to as a non-scheduled-based approach, refers to a resource that a terminal uses when transmitting data is not a dedicated resource, but a resource shared by multiple terminals.
  • the terminal decides whether to use the contention-based method or the non-contention-based method for data transmission.
  • the terminal does not know the current network status when deciding the transmission mode, and thus may cause the determined transmission mode to be unreasonable.
  • the embodiment of the invention provides a method, a device and a system for data transmission, which are used to solve the problem that the transmission mode determined by the terminal in the prior art is unreasonable.
  • an embodiment of the present invention provides a data transmission method, including: determining, by a base station, a transmission parameter, where the transmission parameter is used for contention-based uplink data transmission or non-contention-based uplink data transmission; and the base station sends a transmission policy to the terminal. Therefore, the base station can comprehensively consider the actual conditions of the terminal and the network, determine a reasonable transmission strategy, and thereby improve transmission efficiency.
  • the base station may determine, according to at least one of a size of the downlink data to be transmitted, a quantity of the contention-based uplink service, a quality of service QoS of the downlink service, and a remaining resource capacity of the physical downlink control channel PDCCH. Transmission strategy.
  • the base station may determine the transmission policy according to the foregoing factors according to a certain priority order or other rules, so that a better transmission efficiency can be obtained by determining a reasonable transmission policy as much as possible. For example, when there are more downlink data to be sent or a larger number of contention-based uplink services, the transmission efficiency is higher in a non-contention-based manner. For another example, when the QoS requirement of the downlink service is high, it is more reasonable to adopt a non-contention-based manner, and conversely, the competition-based manner is more efficient.
  • the base station may determine that the transmission policy is the first transmission indication, and the first transmission indication is used to indicate the non-contention based uplink data transmission.
  • the base station may determine that the transmission policy is a second transmission indication, and the second transmission indication is used to indicate contention-based uplink data transmission.
  • the base station determines that the transmission policy is a transmission parameter, and the transmission parameter is used to determine that the competition is based on the competition.
  • the base station can clearly indicate which transmission mode the terminal adopts according to the specific conditions of various factors, and can also send transmission parameters to the terminal, thereby facilitating the terminal to comprehensively determine which transmission mode is used in combination with the transmission parameters and other information of the terminal.
  • the QoS of the downlink service may include at least one of a delay, a bit error rate, and a packet loss rate allowed by the downlink service.
  • the transmission policy is the first transmission indication, the QoS of the downlink service is reached.
  • the first preset condition includes at least one of the following situations: the delay is greater than or equal to the first sub-threshold, the error rate is greater than or equal to the second sub-threshold, and the packet loss rate is greater than or equal to the third sub-threshold; or, when transmitting When the policy is the second transmission indication, the QoS of the downlink service does not reach the second preset condition, including at least one of the following situations: the delay is less than the fourth sub-threshold, the error rate is less than the fifth sub-threshold, and the packet loss rate is less than the first The six sub-threshold; or, when the transmission policy is a transmission parameter, the QoS of the downlink service reaches the second preset condition and the first preset condition is not met, including at least one of the following situations: the delay is greater than or equal to the fourth The sub-threshold is less than the first sub-threshold, the error rate is greater than or equal to the fifth sub-threshold and less than
  • the base station when the terminal sends uplink data to the base station in a non-contention-based manner, the base station further receives a first request sent by the terminal, where the first request is used to request contention-based uplink data transmission; Sending, by the terminal, a request acknowledgement message, the request acknowledgement message is used to authorize the contention-based uplink data transmission; and receiving the uplink data sent by the terminal in a contention-based manner; or, when the terminal adopts a contention-based manner, sending the uplink data to the base station.
  • the base station further receives, by the terminal, a second request, where the second request is used to request the non-contention based uplink data transmission; and sends an authorization message to the terminal, where the authorization message is used to authorize non-contention based uplink data transmission and use For resource allocation; and the receiving terminal uses uplink data sent in a non-contention manner.
  • the base station may send a request to convert the transmission mode after obtaining the authorization, so the terminal does not need to execute the entire process of the other transmission mode. In order to send uplink data, the transmission efficiency is improved.
  • the base station when the terminal sends uplink data to the base station in the contention-based manner, the base station further sends timing advance information to the terminal, and the timing advance information is used for uplink synchronization. Therefore, it is advantageous for the terminal to obtain uplink synchronization, and signals transmitted by other synchronized terminals are orthogonal to each other to avoid mutual interference.
  • an embodiment of the present invention provides a data transmission method, including: receiving, by a terminal, a transmission policy sent by a base station, where the transmission policy is used for contention-based uplink data transmission or non-contention-based uplink data transmission; The transmission policy sends uplink data to the base station.
  • the transmission policy is a first transmission indication
  • the first transmission indication is used to indicate the non-contention based uplink data transmission
  • the terminal sends the uplink data to the base station according to the first transmission indication according to the non-contention manner.
  • the transmission policy is a second transmission indication, the second transmission indication is used to indicate the contention-based uplink data transmission, and the terminal sends the uplink data to the base station according to the second transmission indication in a contention-based manner; or the transmission policy is a transmission parameter, The transmission parameter is used to determine whether to perform contention-based uplink data transmission or non-contention-based uplink data transmission, and the terminal determines to use the non-contention-based manner or the contention-based manner to send uplink data to the base station according to the transmission parameter.
  • the terminal when the terminal sends the uplink data to the base station in a non-contention-based manner, if the terminal determines that the preset condition for the contention-based uplink data transmission is met, the terminal further sends a first request to the base station, first.
  • the terminal sends the uplink data to the base station in a contention-based manner, if the terminal determines that the preset condition for the non-contention-based uplink data transmission is satisfied, the terminal further sends a second request to the base station, where the second request is used to request the non-competition based Uplink data transmission; and receiving an authorization message sent by the base station, the authorization message is used to authorize non-contention based uplink data transmission and for resource allocation; and the non-contention based manner is used to send uplink data to the base station.
  • the terminal when the terminal sends uplink data to the base station in a contention-based manner, the terminal also receives timing advance information sent by the base station, and the timing advance information is used for uplink step.
  • an embodiment of the present invention provides a data transmission method, including: when a terminal sends uplink data to a base station in a non-contention-based manner, the base station receives a first request sent by the terminal, where the first request is used to request Competing uplink data transmission; the base station sends a request acknowledgement message to the terminal, the request acknowledgement message is used to authorize the contention-based uplink data transmission; the base station receives the uplink data transmitted by the terminal in a contention-based manner; or, when the terminal adopts a contention-based manner
  • the base station sends the uplink data the base station receives the second request sent by the terminal, and the second request is used to request the non-contention based uplink data transmission; the base station sends an authorization message to the terminal, and the authorization message is used to authorize the non-contention based uplink data transmission and use For resource allocation; the base station receiving terminal uses uplink data transmitted in a non-contention manner.
  • the embodiment of the present invention provides a data transmission method, including: when a terminal sends uplink data to a base station in a non-contention-based manner, if the terminal determines that a preset condition for contention-based uplink data transmission is satisfied, The terminal sends a first request to the base station, where the first request is used to request contention-based uplink data transmission; the terminal receives a request acknowledgement message sent by the base station, and the request acknowledgement message is used to authorize contention-based uplink data transmission; the terminal adopts a contention-based manner
  • the base station sends the uplink data; or, when the terminal sends the uplink data to the base station in a contention-based manner, if the terminal determines that the preset condition based on the non-contention-based uplink data transmission is satisfied, the terminal sends a second request to the base station, where the second request is used.
  • the request is based on non-contention-based uplink data transmission; the terminal receives an authorization message sent by the base station, the authorization message is used to authorize non-contention-based uplink data transmission and is used for resource allocation; and the terminal uses the non-contention-based manner to send uplink data to the base station.
  • the embodiment of the present invention provides a data transmission method, including: receiving, by a base station, uplink data that is sent by a terminal in a contention-based manner, where the terminal is in an asynchronous state; and the base station estimates timing advance information of the terminal according to the uplink data.
  • the timing advance information is used for uplink synchronization; the base station sends timing advance information to the terminal to adjust the terminal to a synchronous state.
  • the embodiment of the present invention provides a data transmission method, including: the terminal sends uplink data to a base station in a contention-based manner, where the terminal is in an asynchronous state; the terminal receives timing advance information sent by the base station, and the timing advances. The information is used for uplink synchronization; the terminal adjusts to the synchronization state according to the timing advance information.
  • an embodiment of the present invention provides a data transmission method, including: determining, by a network side device, a transmission policy, where the transmission policy is used for contention-based uplink data transmission or non-contention-based uplink data transmission; The device sends the transmission policy to the terminal.
  • an embodiment of the present invention provides a data transmission method, including: receiving, by a terminal, a transmission policy sent by a network side device, where the transmission policy is used for contention-based uplink data transmission or non-contention-based uplink data transmission; The terminal sends uplink data to the network side device according to the transmission policy.
  • an embodiment of the present invention provides a network side device, where the network side device has a function of implementing network side device behavior in the foregoing method design.
  • the functions may be implemented by hardware or by corresponding software implemented by hardware.
  • the hardware or software includes one or more modules corresponding to the functions described above.
  • the network side device may be a base station.
  • the structure of the base station may include a processor, a transmitter, and a receiver, and the processor is configured to support the base station to perform a corresponding function in the foregoing method.
  • the transmitter and the receiver are configured to support communication between the base station and the terminal, wherein the transmitter is configured to send information or instructions involved in the foregoing method to the terminal, and the receiver is configured to receive the method in the foregoing method sent by the terminal. Information or instructions involved.
  • the base station can also include a memory for coupling with the processor that stores the necessary program instructions and data for the base station.
  • an embodiment of the present invention provides a terminal, where the terminal has a function of implementing terminal behavior in the design of the foregoing method.
  • the functions may be implemented by hardware or by corresponding software implemented by hardware.
  • the hardware or software includes one or more modules corresponding to the functions described above.
  • the structure of the terminal includes a receiver, a transmitter and a processor, the processor being configured to support the base station to perform a corresponding function in the above method, the receiver being configured to support the terminal to receive the above The various information or instructions sent by the base station in the method, the transmitter being configured to support the terminal to send various information or instructions involved in the foregoing method to the base station.
  • an embodiment of the present invention provides a communication system, including the network device and the terminal in the foregoing aspect, or the system includes the base station and the terminal in the foregoing aspect.
  • an embodiment of the present invention provides a computer storage medium for storing computer software instructions used by the network side device or a base station, and includes a program designed to perform the above aspects.
  • an embodiment of the present invention provides a computer storage medium for storing computer software instructions for use in the terminal, including a program designed to perform the above aspects.
  • the base station can comprehensively consider the actual situation of the terminal and the network, determine a reasonable transmission policy, and send it to the terminal, which is beneficial for the terminal to send uplink data to the base station by using an appropriate transmission mode, thereby Improve transmission efficiency.
  • FIG. 1 is a schematic diagram of a possible application scenario of the present invention
  • Figure 2a is a schematic diagram of one possible system for implementing the present invention.
  • Figure 2b is a schematic diagram of another possible system for implementing the present invention.
  • Figure 2c is a schematic diagram of still another possible system for implementing the present invention.
  • FIG. 3 is a schematic flowchart of a method for data transmission according to an embodiment of the present invention.
  • 4a is a schematic flowchart of a method for determining a transmission policy according to an embodiment of the present invention
  • FIG. 4b is a schematic flowchart diagram of another method for determining a transmission policy according to an embodiment of the present disclosure
  • FIG. 5 is a schematic diagram of communication of a method for transmitting uplink data according to an embodiment of the present disclosure
  • FIG. 5b is a schematic diagram of communication of another method for transmitting uplink data according to an embodiment of the present disclosure.
  • FIG. 6 is a schematic flowchart diagram of another method for data transmission according to an embodiment of the present disclosure.
  • FIG. 7 is a schematic flowchart diagram of still another method for data transmission according to an embodiment of the present disclosure.
  • FIG. 8 is a schematic flowchart diagram of still another method for data transmission according to an embodiment of the present disclosure.
  • 9a-9c are schematic diagrams of a contention resource according to an embodiment of the present invention.
  • FIG. 10 is a schematic flowchart diagram of still another method for sending uplink data according to an embodiment of the present disclosure.
  • FIG. 11 is a schematic structural diagram of a base station according to an embodiment of the present disclosure.
  • FIG. 12 is a schematic structural diagram of a terminal according to an embodiment of the present invention.
  • the network architecture and the service scenario described in the embodiments of the present invention are for the purpose of more clearly illustrating the technical solutions of the embodiments of the present invention, and are not limited to the technical solutions provided by the embodiments of the present invention.
  • the technical solutions provided by the embodiments of the present invention are equally applicable to similar technical problems.
  • the terminal accesses the Internet Protocol (IP) Multimedia Subsystem (IP Multimedia System) by means of a Radio Access Network (RAN) and a Core Network (CN).
  • IP Internet Protocol
  • RAN Radio Access Network
  • CN Core Network
  • IMS Internet Protocol
  • LTE Long Term Evolution
  • CDMA Code Division Multiple Access
  • FDMA Frequency Division Multiple Access
  • TDMA Time Division Multiple Access
  • OFDMA Orthogonal Frequency Division Multiple Access
  • Single Carrier Frequency Division Multiple Access Single Carrier Frequency Division Multiple Access
  • SC-FDMA Single Carrier Frequency Division Multiple Access
  • an Evolved Universal Terrestrial Radio Access Network (E-UTRAN) is used as a radio access network
  • EPC Evolved Packet Core
  • the terminal accesses the IMS network through E-UTRAN and EPC.
  • the terminal involved in the present invention may include various handheld devices, in-vehicle devices, wearable devices, computing devices, or other processing devices connected to the wireless modem, and various forms of user equipment (User Equipment, referred to as short-circuit communication functions).
  • UE User Equipment
  • MS mobile station
  • terminals the above-mentioned devices are collectively referred to as terminals.
  • the network side device involved in the present invention may be a core network device, a base station, a fused wireless network controller, or a cloud RAN controller or other device, where The radio network controller may correspond to a Single Radio Controller defined by the 3rd Generation Partnership Project (3GPP), referred to as SRC.
  • the base station to which the present invention relates refers to a device deployed in a radio access network to provide a wireless communication function for a terminal.
  • the base station may include various forms of macro base stations, micro base stations, relay stations, access points, and the like.
  • the base station may also be a Global System for Mobile Communications (GSM) or a Base Station Controller (BSC) in a CDMA system, or a Wideband Code Division Multiple Access (Wideband Code Division Multiple Access).
  • GSM Global System for Mobile Communications
  • BSC Base Station Controller
  • a radio network controller in a WCDMA system, or a base station (BS) or a centralized server in various communication systems, or a combination of a base station and a controller.
  • RNC radio network controller
  • BS base station
  • a centralized server in various communication systems, or a combination of a base station and a controller.
  • the name of a device having a base station function may be different.
  • an evolved Node B eNodeB or eNB
  • 3G 3rd Generation
  • NodeB Node B
  • the above-described devices for providing wireless communication functions to terminals are collectively referred to as base stations or BSs.
  • the base station involved in the present invention includes both the base station in the existing communication system and the base station in the communication system that may occur in the future, which is not limited in the embodiment of the present invention.
  • FIG. 2 is a schematic diagram of a system according to an embodiment of the present invention, which mainly includes a base station and a terminal, where the base station and the terminal communicate through a cellular network.
  • Figure 2b is provided in an embodiment of the present invention Another system diagram, which mainly includes a base station, an access point (AP), and a terminal, wherein the terminal and the AP communicate through a wireless local area network (WLAN), the AP and the base station. Between the two is a wired connection, the terminal communicates with the base station through the AP.
  • WLAN wireless local area network
  • Figure 2c is a schematic diagram of another system according to an embodiment of the present invention, which mainly includes a base station, an access controller (AC), an AP, and a terminal, where the terminal communicates with the AP through the WLAN, and the AP and the AP A wired connection between the ACs and between the AC and the base station, and the terminal communicates with the base station through the AP and the AC.
  • the signal transmission between the base station and the terminal may be performed by using a cellular network between the base station and the terminal as shown in FIG. 2a, or may be as shown in FIG. 2b.
  • the base station and the terminal perform signal transmission through the AP, and may also perform signal transmission between the base station and the terminal through the AC and the AP as shown in FIG. 2c.
  • the communication between the base station and the terminal can be performed by other means, the technical solution provided by the embodiment of the present invention is also applicable.
  • the network side device determines a transmission policy for contention-based uplink data transmission or non-contention-based uplink data transmission; the network side device sends the transmission policy to the terminal.
  • the network side device is used as the base station, and the base station can be based on the size of the downlink data to be sent, the number of contention-based uplink services, the quality of service of the downlink service (QoS), and the physical downlink control channel (Physical).
  • QoS quality of service of the downlink service
  • Physical Physical downlink control channel
  • One or more of the remaining resource capacity of the Downlink Control Channel (referred to as PDCCH) or other factors determine the transmission policy.
  • the terminal receives the transmission policy sent by the network side device, and sends the uplink data to the network side device according to the transmission policy.
  • the network side device can comprehensively consider the status of the terminal and the network, determine a reasonable transmission mode, and thereby improve transmission efficiency. For example, when the amount of data to be transmitted is large or the quality of the transmission is high, the network side can determine the efficiency of the non-contention based transmission strategy; or when the amount of data to be transmitted is small or the quality of the transmission is required. When low, the network side can determine the competition-based transmission strategy to improve efficiency.
  • the network side device is used as a base station, and an example is illustrated.
  • the solution provided by the embodiment of the present invention will be described below with reference to FIG.
  • the base station determines a transmission strategy for the contention based uplink data transmission or the non-contention based uplink data transmission.
  • the base station is based on the size of the downlink data to be transmitted, the competition-based industry At least one of the number of services, the QoS of the downlink service, and the remaining resource capacity of the PDCCH determines a transmission policy.
  • the further transmission policy may be a first transmission indication or a second transmission indication or transmission parameter.
  • the transmission policy is a first transmission indication, and the first transmission indication is used to indicate non-contention-based uplink data transmission.
  • the base station determines the first transmission indication.
  • the transmission policy is a second transmission indication, and the second transmission indication is used to indicate contention-based uplink data transmission.
  • the base station determines the second transmission indication when the remaining resource capacity of the PDCCH is less than the sixth threshold and the QoS of the downlink service does not reach at least one of the second preset conditions.
  • the transmission policy is a transmission parameter, and the transmission parameter is used to determine that the contention-based uplink data transmission or the non-contention-based uplink data transmission is performed, when the size of the downlink data to be sent is greater than or equal to the fourth threshold and less than the first threshold.
  • the number of the contention-based uplink services is greater than or equal to the fifth threshold and is less than the second threshold, and the remaining resource capacity of the PDCCH is greater than or equal to the sixth threshold and less than the third threshold, and the QoS of the downlink service reaches the second preset condition and does not reach.
  • the base station determines the transmission parameter, wherein the fourth threshold is less than the first threshold, the fifth threshold is less than the second threshold, and the sixth threshold is less than the third threshold.
  • the QoS of the downlink service includes at least one of a delay, a bit error rate, and a packet loss rate allowed by the downlink service, and whether the QoS of the downlink service reaches the first preset condition or the first
  • the two preset conditions can be determined according to the following examples. For example, when the transmission policy is the first transmission indication, the QoS of the downlink service reaches the first preset condition, including at least one of the following situations: the delay is greater than or equal to the first sub-threshold, and the error rate is greater than or equal to the second sub- Threshold, the packet loss rate is greater than or equal to the third sub-threshold.
  • the QoS of the downlink service does not reach the second preset condition, including at least one of the following situations: the delay is less than the fourth sub-threshold, and the error rate is less than the fifth sub-threshold.
  • the packet loss rate is less than the sixth sub-threshold.
  • the QoS of the downlink service reaches the second preset condition and the first preset condition is not met, including at least one of the following situations: the delay is greater than or equal to the fourth sub-threshold and is less than the first a sub-threshold, the error rate is greater than or equal to the fifth sub-threshold and less than the second sub-threshold, and the packet loss rate is greater than or equal to the sixth sub-threshold and less than the third sub-threshold; wherein the fourth sub-threshold is less than the first sub-threshold, The fifth sub-threshold is smaller than the second sub-threshold, and the sixth sub-threshold is smaller than the third sub-threshold.
  • the transmission policy may also be a first transmission indication or a second transmission indication.
  • the transmission policy is the first transmission indication.
  • the size of the downlink data to be sent is greater than or equal to the seventh threshold
  • the number of contention-based uplink services is greater than or equal to the eighth threshold
  • the remaining resource capacity of the PDCCH is greater than or equal to the ninth.
  • the base station determines the first transmission indication.
  • the transmission policy is a second transmission indication, when The size of the downlink data to be sent is smaller than the seventh threshold, the number of contention-based uplink services is less than the eighth threshold, the remaining resource capacity of the PDCCH is less than the ninth threshold, and the QoS of the downlink service does not reach at least one of the third preset conditions.
  • the base station determines the second transmission indication.
  • the seventh threshold may be equal to the first threshold or the fourth threshold, or may be any other value
  • the eighth threshold may be equal to the second threshold or the fifth threshold, or may be any other value
  • the ninth threshold may be equal to
  • the third threshold or the sixth threshold may be any other value
  • the third preset condition may be the same as the first preset condition, or may be the same as the second preset condition, or may be any other preset condition, where
  • the determining manner of whether the QoS of the downlink service reaches the third preset condition is similar to the determining manner of whether the QoS of the downlink service reaches the first preset condition or the second preset condition, and may refer to the foregoing detailed description, and no longer Narration.
  • the base station determines a transmission policy according to an indication message sent by the core network device or other network element.
  • the indication message is used to indicate that the non-contention based uplink data transmission is performed, and the base station determines the first transmission indication according to the indication message.
  • the indication message is used to indicate contention-based uplink data transmission, and the base station determines the second transmission indication according to the indication message.
  • the indication message is used to provide the base station with some parameters or factors for determining the transmission policy, and the base station determines the transmission policy according to the parameters or factors. The specific implementation manner may be determined by referring to the foregoing base station according to factors such as the size of the downlink data to be sent. The way is not repeated here.
  • the transmission parameter may include content carried in the traditional broadcast message and at least one of uplink quality, uplink path loss, and uplink interference of the terminal, so that the terminal can obtain the information in time. These parameters are used to determine whether to transmit uplink data to the base station in a contention-based or non-contention manner.
  • the base station transmits a transmission policy to the terminal.
  • the base station may send a transmission policy to the terminal by using a paging message or a Media Access Control (MAC) control unit (MAC).
  • MAC Media Access Control
  • the base station may send a transmission policy to the terminal by using a PDCCH or an MCE message. It should be noted that the base station may send a transmission policy to the terminal in a scenario in which the terminal has used the transmission mode to send the uplink data, or may send the transmission policy to the terminal in the scenario that the terminal does not use any transmission mode to send the uplink data.
  • the base station may further receive the first request sent by the terminal, where the first request is used to request contention-based uplink data transmission.
  • the base station may send a request acknowledgement message to the terminal, where the request acknowledgement message is used to authorize the contention-based uplink data transmission; or the base station may also send the first request non-acknowledgement message to the terminal, the first request non-acknowledgement message. Used to prohibit contention-based uplink data transmission; or, the base station may not send any message to the terminal, ignoring the terminal The request.
  • the base station sends a request acknowledgement message to the terminal, when the terminal sends the uplink data to the base station in a contention-based manner, if the existing cell of the cell in which the terminal is located has insufficient or no existing competitive resources, the base station also allocates a competition for the terminal. Resources.
  • the base station may further receive a second request sent by the terminal, where the second request is used to request non-contention-based uplink data transmission. .
  • the base station may send an authorization message to the terminal, where the authorization message is used to authorize non-contention based uplink data transmission and for resource allocation; or the base station may also send a second request non-acknowledgement message to the terminal, second.
  • the request non-acknowledgement message is used to prohibit non-contention based uplink data transmission; or the base station may not send any message to the terminal, ignoring the terminal's request.
  • the base station may also send some parameters or information to the terminal, for example, the parameters or information may be carried in the broadcast message, wireless.
  • the resource control (Radio Resource Control, RRC for short) signaling, the MCE message, or the PDCCH is used to notify the terminal: if the terminal continuously sends several data packets to the base station within a specified time period, the terminal may be in the specified time period. After the end, it is converted to send uplink data to the base station in a non-contention-based manner.
  • the plurality of data packets may be a plurality of data packets carrying the same content, or may be a plurality of data packets respectively carrying the specified content, or may also be a plurality of data packets that meet other conditions.
  • the base station may also send timing advance information to the terminal, and the timing advance information is used for uplink synchronization.
  • the timing advance command may be a time advance command, and the timing advance command may enable the terminal to adjust a physical uplink control channel (Physical Uplink Control Channel) of the primary cell or the primary secondary cell.
  • the uplink transmission timing of the PUCCH or the Physical Uplink Shared Channel (PUSCH) or the Sounding Reference Signal (SRS) is used to achieve uplink synchronization.
  • the size of the timing advance command may be determined according to the actual situation. For example, in the case of a random access response (RAR), the size of the timing advance command may be 11 bits, and the base station may pass the RAR message.
  • the timing advance command is sent to the terminal; or, in other cases, the timing advance command may be 6 bits or other size, and the base station may send the timing advance command to the terminal by using a timing advance command (MCE) message.
  • MCE timing advance command
  • the terminal receives a transmission policy sent by the base station.
  • the terminal receives a first transmission indication sent by the base station, where the first transmission indication is used to indicate non-contention based uplink data transmission; or the terminal receives a second transmission indication sent by the base station, where the second transmission indication is used to indicate that Competing uplink data transmission; or, the terminal receives transmission parameters sent by the base station, and the transmission parameters are used to determine contention-based uplink data Transmission or non-contention based uplink data transmission.
  • the terminal transmits uplink data to the base station according to the transmission policy.
  • the terminal sends the uplink data to the base station according to the first transmission indication according to the non-contention manner; or the terminal sends the uplink data to the base station according to the second transmission indication according to the second transmission indication; or, the terminal determines to adopt according to the transmission parameter.
  • the uplink data is transmitted to the base station based on a non-contention manner or a contention based manner.
  • MCS Modulation and Coding Scheme
  • the terminal when the terminal sends the uplink data to the base station in a non-contention-based manner after receiving the transmission policy, if the terminal determines that the preset condition for the contention-based uplink data transmission is met, the terminal sends the first request to the base station.
  • the first request is for requesting contention-based uplink data transmission.
  • the terminal may further receive a request confirmation message sent by the base station, where the request confirmation message is used to authorize the contention-based uplink data transmission, and then the terminal sends the uplink data to the base station in a contention-based manner; or, the terminal may also Receiving a first request non-acknowledgment message sent by the base station, where the first request non-acknowledgement message is used to prohibit contention-based uplink data transmission, and then, the terminal continues to use the non-contention-based manner to send uplink data to the base station; or, if the terminal is in a period of time If neither the request acknowledgement message nor the first request non-acknowledgement message is received, the terminal continues to transmit uplink data to the base station in a non-contention based manner.
  • the terminal receives the request acknowledgement message, when the terminal sends the uplink data to the base station in a contention-based manner, if the cell in which the terminal is located has an existing contention resource, the terminal sends the uplink data to the base station through the existing contention resource; When the existing cell in the cell where the terminal is located is insufficient or there is no existing contention resource, the base station allocates a contention resource to the terminal, and the terminal sends the uplink data to the base station through the contention resource allocated by the base station.
  • the terminal when the terminal sends the uplink data to the base station in a contention-based manner after receiving the transmission policy, if the terminal determines that the preset condition based on the non-contention-based uplink data transmission is met, the terminal sends the second request to the base station.
  • the second request is for requesting non-contention based uplink data transmission.
  • the terminal may further receive an authorization message sent by the base station, where the authorization message is used to authorize the non-contention-based uplink data transmission and the resource allocation, and then the terminal sends the uplink data to the base station in a non-contention-based manner;
  • the terminal can also receive the sending by the base station.
  • the second request non-confirmation message is used to prohibit non-contention based uplink data transmission, and then the terminal continues to use the contention-based manner to send uplink data to the base station; or, if the terminal does not receive for a period of time After the authorization message is received and the second request non-acknowledgement message is not received, the terminal continues to send the uplink data to the base station in a contention-based manner.
  • the terminal may further receive timing advance information sent by the base station, and the timing advance information is used for uplink synchronization.
  • the timing advance information may be a timing advance command, and the terminal may adjust the uplink transmission timing of the PUCCH, the PUSCH, or the SRS of the primary cell or the secondary primary cell after receiving the timing advance command, thereby achieving uplink synchronization. Therefore, the signals transmitted by the terminal and other synchronized terminals are orthogonal to each other, and mutual interference can be avoided.
  • the base station can comprehensively consider the actual situation of the terminal and the network, determine a reasonable transmission policy, and send it to the terminal, and the terminal can finally determine whether to adopt a contention-based manner or a non-contention-based manner according to the transmission policy.
  • the uplink data is sent to the base station, thereby improving transmission efficiency.
  • FIG. 4 is a schematic flowchart of a method for determining a transmission policy according to an embodiment of the present invention.
  • the base station determines the priority order of the data to be transmitted, the number of contention-based uplink services, the QoS of the downlink service, and the remaining resource capacity of the PDCCH.
  • FIG. 4b is a schematic flowchart diagram of another method for determining a transmission policy according to an embodiment of the present invention.
  • the base station determines the priority order according to the number of contention-based uplink services, the size of data to be transmitted, the QoS of the downlink service, and the remaining resource capacity of the PDCCH.
  • the base station can also be determined according to other priority sequences or other rules.
  • the method shown in FIG. 4a or FIG. 4b is only used as an example.
  • the embodiment of the present invention does not limit the implementation manner in which the base station determines the transmission policy according to the above factors.
  • the method shown in FIG. 4a is taken as an example for detailed description.
  • the method shown in FIG. 4b is similar to the method shown in FIG. 4a, and details are not described herein.
  • the base station acquires the size of the downlink data to be transmitted, the number of contention-based uplink services, the QoS of the downlink service, and the remaining resource capacity of the PDCCH.
  • the base station determines whether the size of the downlink data to be transmitted is greater than or equal to the first threshold, and if so, performs part 406; if not, performs part 403.
  • the base station determines whether the number of contention-based uplink services is greater than or equal to a second threshold, and if so, performs a portion 407; if not, performs a portion 404.
  • the base station determines whether the QoS of the downlink service reaches the first preset condition, and if so, performs part 407; if not, performs part 405.
  • the base station determines whether the remaining resource capacity of the PDCCH is greater than or equal to a third threshold, and if so, performs a portion 407; if not, performs a portion 408.
  • the base station determines that the transmission policy is the first transmission indication.
  • the base station determines the transmission policy as a transmission parameter.
  • the base station determines that the transmission policy is a second transmission indication.
  • the base station determines a transmission strategy according to the size of the data to be transmitted, the number of contention-based uplink services, the QoS of the downlink service, and the remaining resource capacity of the PDCCH, so that the uplink and downlink transmissions can be comprehensively considered.
  • the factor is to consider the actual situation of the terminal and the network to determine a reasonable transmission strategy, thereby improving the transmission efficiency. For example, when there are more downlink data to be sent or a larger number of contention-based uplink services, the transmission efficiency is higher in a non-contention-based manner. For another example, when the QoS requirement of the downlink service is high, it is more reasonable to adopt a non-contention-based manner, and conversely, the competition-based manner is more efficient.
  • FIG. 5 is a schematic diagram of communication of a method for transmitting uplink data according to an embodiment of the present invention.
  • the terminal sends uplink data to a base station in a contention-based manner.
  • the base station determines a transmission policy, wherein the transmission policy can be a second transmission indication or transmission parameter.
  • the base station may determine the transmission policy according to the method in section 301 or the method shown in FIG. 4a or FIG. 4b in the method shown in FIG. 3, and details are not described herein.
  • the base station transmits a transmission policy to the terminal.
  • the base station may send a transmission policy to the terminal according to part 302 of the method shown in FIG. 3, and details are not described herein.
  • the terminal receives the transmission policy sent by the base station, and determines to adopt a contention-based manner according to the transmission policy. For example, when the transmission policy is the second transmission indication, the base station may adopt a contention-based manner according to the second transmission indication. For another example, when the transmission policy is a transmission parameter, the base station can determine to adopt a contention-based manner according to an example of part 304 of the method shown in FIG.
  • the terminal transmits uplink data to the base station.
  • the terminal may send uplink data to the base station by adding a Cyclic Prefix (CP) in front of the data.
  • the base station receives the uplink data sent by the terminal. Adding a CP before the uplink data can ensure that the signal between the terminal signal and other terminals is orthogonal, thereby avoiding interference between signals of different terminals.
  • CP Cyclic Prefix
  • Figure 5b is a schematic diagram of communication of another method for transmitting uplink data according to an embodiment of the present invention.
  • the terminal sends uplink data to the base station in a non-contention-based manner.
  • the base station determines a transmission policy, wherein the transmission policy can be a first transmission indication or a transmission parameter.
  • the base station may determine the transmission policy according to the method in section 301 or the method shown in FIG. 4a or FIG. 4b in the method shown in FIG. 3, and details are not described herein.
  • the base station transmits a transmission policy to the terminal.
  • the base station may send a transmission policy to the terminal according to part 302 of the method shown in FIG. 3, and details are not described herein.
  • the terminal receives the transmission policy sent by the base station, and determines to adopt a non-contention based manner according to the transmission policy.
  • the base station may adopt a non-contention based manner according to the first transmission indication.
  • the transmission strategy is a transmission parameter
  • the base The station may determine to employ a non-contention based approach based on an example of section 304 of the method illustrated in FIG.
  • determining the manner of transmitting the uplink data according to the state of the terminal is: when the terminal is a terminal in a synchronous state, performing part 514; when the terminal is a terminal in an asynchronous state, performing part 515; When the terminal is an idle terminal, step 516 is performed.
  • Section 514 includes sections 514a-514e:
  • the terminal sends a scheduling request (Scheduling Request, SR for short) to the base station to request non-contention based uplink transmission.
  • a scheduling request (Scheduling Request, SR for short) to the base station to request non-contention based uplink transmission.
  • the base station after receiving the SR sent by the terminal, the base station sends a scheduling grant (SG) to the terminal.
  • SG scheduling grant
  • the base station can allocate some resources through the SG.
  • the terminal after receiving the SG sent by the base station, the terminal sends a Buffer Status Report (BSR) to the base station.
  • BSR Buffer Status Report
  • the base station after receiving the BSR sent by the terminal, the base station sends the SG to the terminal.
  • the base station learns the resource size required by the terminal according to the BSR sent by the terminal, and allocates the resource to the terminal through the SG.
  • the terminal after receiving the SG sent by the base station, the terminal sends the uplink data to the base station.
  • the base station receives the uplink data sent by the terminal.
  • Section 515 includes sections 515a-515e:
  • the terminal transmits a preamble to the base station.
  • the base station after receiving the preamble sent by the terminal, the base station sends the RAR to the terminal, and the RAR carries the SG.
  • the terminal after receiving the RAR sent by the base station, the terminal sends a third message (MSG3) to the base station, and the MSG3 carries a Cell Radio Network Temporary Identifier (C-RNTI).
  • MSG3 Cell Radio Network Temporary Identifier
  • the base station after receiving the MSG3 sent by the terminal, the base station sends a fourth message (MSG4) to the terminal.
  • MSG4 fourth message
  • the terminal after receiving the MSG4 sent by the base station, the terminal sends uplink data to the base station.
  • the base station receives the uplink data sent by the terminal.
  • Section 516 includes sections 516a through 516i:
  • the terminal transmits a preamble to the base station.
  • the base station after receiving the preamble sent by the terminal, the base station sends the RAR to the terminal, and the RAR carries the SG.
  • the camera station sends the MSG3, and the MSG3 carries the RRC connection request.
  • the base station after receiving the RAR sent by the terminal, the base station sends the MSG4 to the terminal.
  • the terminal after receiving the MSG4 sent by the base station, the terminal sends a BSR to the base station.
  • the base station after receiving the BSR sent by the terminal, the base station sends the SG to the terminal.
  • the terminal after receiving the SG sent by the base station, the terminal sends an RRC connection setup complete message to the base station.
  • the base station receives the RRC connection setup complete message sent by the terminal.
  • the authentication and security authentication process is performed between the terminal and the base station.
  • the terminal transmits uplink data to the base station.
  • the base station receives the uplink data sent by the terminal.
  • FIG. 6 is a schematic flowchart diagram of another method for data transmission according to an embodiment of the present invention.
  • the method illustrated in FIG. 6 provides a scheme for transitioning from non-contention based uplink data transmission to contention based uplink data transmission.
  • the base station can be timely. Respond to improve transmission efficiency.
  • the terminal when the terminal sends the uplink data to the base station in a non-contention-based manner, if the terminal determines that the preset condition for the contention-based uplink data transmission is met, the terminal sends a first request to the base station, where the first request is used to request the Competitive uplink data transmission.
  • the first request may be a non-scheduling request, and the terminal may send a non-scheduling request to the base station by using a PUCCH, a PUSCH, or an MCE message.
  • the terminal when the terminal sends uplink data to the base station in a non-contention-based manner, it means that the terminal is in a period of time based on non-contention-based uplink data transmission, and data may be currently transmitted, or there may be no data. In the transmission, and not limited to the current time is sending uplink data.
  • the terminal may determine, according to at least one of a signal quality of the terminal, a location of the terminal, a size of the uplink data to be sent, and a sparseness of the service, a preset condition that satisfies the contention-based uplink data transmission, and how to determine
  • a signal quality of the terminal e.g., a signal quality of the terminal
  • a location of the terminal e.g., a location of the terminal
  • a size of the uplink data to be sent e.g., a size of the uplink data to be sent
  • a sparseness of the service e.g., a preset condition that satisfies the contention-based uplink data transmission
  • the base station after receiving the first request sent by the terminal, the base station sends a request acknowledgement message to the terminal, and the request acknowledgement message is used to authorize the contention-based uplink data transmission.
  • the request acknowledgement message may be a non-scheduling request acknowledgement message, and the base station may send a non-scheduling request acknowledgement message to the terminal by using the MCE message.
  • the terminal after receiving the request acknowledgement message sent by the base station, the terminal sends the uplink data to the base station in a contention-based manner. For example, after receiving the non-scheduling request acknowledgement message and determining that the current no retransmission data needs to be sent, the terminal sends the uplink data to the base station in a contention-based manner.
  • the method shown in FIG. 6 may be executed after the method shown in FIG. 3 is executed, or may be performed initially without executing the method shown in FIG. 3.
  • FIG. 7 is a schematic flowchart diagram of still another method for data transmission according to an embodiment of the present invention.
  • the method illustrated in Figure 7 provides a scheme for transitioning from contention-based uplink data transmission to non-contention based uplink data transmission.
  • the terminal needs to switch to a non-competitive based
  • the terminal does not need to transmit the process of adopting the non-contention-based uplink data transmission after the execution of the process shown in FIG. Uplink data, which can shorten the waiting time for the terminal to wait for authorization.
  • the terminal when the terminal sends the uplink data to the base station in a contention-based manner, if the terminal determines that the preset condition based on the non-contention-based uplink data transmission is met, the terminal sends a second request to the base station, where the second request is used to request the Non-competitive upstream data transmission.
  • the second request may be an SG, and the terminal may send the SG to the base station by using a PUCCH, a PUSCH, or an MCE message.
  • the terminal when the terminal sends uplink data to the base station in a contention-based manner, it means that the terminal is in a period of time using the contention-based uplink data transmission, and data may be currently being transmitted, or there may be no data being transmitted. And is not limited to the current time being sent upstream data.
  • the terminal may determine, according to at least one of a signal quality of the terminal, a location of the terminal, a size of the uplink data to be sent, and a sparseness of the service, a preset condition that satisfies the non-contention-based uplink data transmission, and how It is determined that the embodiments of the present invention are not limited.
  • the terminal when the terminal sends the second request to the base station, the terminal may also send the BSR to the base station, and the BSR is used to notify the base station of the buffered data size of the current uplink service, thereby facilitating the base station to allocate the uplink resource.
  • the terminal determines that the preset condition based on the non-contention-based uplink data transmission is met, the terminal does not send the second request message to the base station, but only sends the BSR to the base station, where the BSR is used to notify the base station of the current
  • the buffered data size of the uplink service is also used to request non-contention based uplink data transmission.
  • the terminal after the terminal sends the second request message to the base station, the terminal does not send new data, and may start a timer to wait for the base station to authorize the non-contention based uplink data transmission.
  • the terminal can resend the previously sent data during the period before the base station is authorized.
  • the base station after receiving the second request sent by the terminal, the base station sends an authorization message to the terminal, where the authorization message is used to authorize non-contention based uplink data transmission and for resource allocation.
  • the base station may not send an authorization message to the terminal, but may send some parameters or information to the terminal.
  • the parameters or information may be carried in a broadcast message, an RRC signaling, an MCE message, or a PDCCH to notify Terminal: If the terminal continuously sends several data packets to the base station within a specified time period, the terminal may switch to send the uplink data to the base station in a non-contention-based manner after the specified time period ends.
  • the plurality of data packets may be a plurality of data packets carrying the same content, or may be a plurality of data packets respectively carrying the specified content, or may also be a plurality of data packets that meet other conditions.
  • the base station may further send timing advance information to the terminal.
  • the base station may send timing advance information to the terminal through a PDCCH or a timing advance command MCE message. If the terminal is a synchronous terminal, the base station may not end up. The terminal sends timing advance information.
  • the base station can also send timing advance information to the terminal in the synchronous state, for example, in the case where the timing advance information changes.
  • the terminal After receiving the authorization message sent by the base station, the terminal sends the uplink data to the base station in a non-contention-based manner. If the terminal does not send the BSR to the base station in part 701, the terminal also sends the BSR to the base station.
  • the terminal if the terminal receives the authorization message sent by the base station before the timer expires, the terminal sends the uplink data to the base station in a non-contention-based manner. If the terminal receives the timing advance information sent by the base station before the timer expires, the terminal may further send the uplink data to the base station according to the timing advance information in a non-contention manner. For the data that has not been successfully transmitted in the manner of the competition, the data may be sent in a non-contention manner. For example, the hybrid transmission may be performed by using a Hybrid Automatic Repeat Request (HARQ).
  • HARQ Hybrid Automatic Repeat Request
  • the terminal if the terminal is an idle terminal, after receiving the authorization message sent by the base station, the terminal needs to complete the authentication and security authentication process with the base station, and then send the uplink data to the base station in a non-contention-based manner.
  • the method shown in FIG. 7 may be executed after the method shown in FIG. 3 is executed, or may be performed initially without executing the method shown in FIG. 7.
  • FIG. 8 is a schematic flowchart diagram of still another method for data transmission according to an embodiment of the present invention.
  • the terminal transmits uplink data to the base station in a contention-based manner, wherein the terminal is in an asynchronous state.
  • the base station after receiving the uplink data sent by the terminal in the contention-based manner, the base station receives the timing advance information of the terminal according to the uplink data, and the timing advance information is used for uplink synchronization.
  • the base station transmits timing advance information to the terminal.
  • the terminal after receiving the timing advance information sent by the base station, the terminal adjusts to the synchronization state according to the timing advance information.
  • FIG. 8 may be executed after the method shown in FIG. 3 or FIG. 6 is executed, or may be performed initially without executing the method shown in FIG. 3 or FIG. 6.
  • the CP When the terminal sends the uplink data to the base station in a contention-based manner, the CP is usually sent in the manner of adding the CP before the uplink data.
  • the length of the CP When the terminal is in the asynchronous state, the length of the CP is longer than the CP length when the terminal is in the synchronous state.
  • the content of the competition resources used by the terminals in different states may be different.
  • the terminal in the synchronous state uses the first contention resource
  • the terminal in the synchronous state or the idle state uses the second contention resource
  • the terminal in the different state may determine whether to use the first contention resource or the second contention resource in consideration of the resource condition.
  • the multiplexing method of the first competitive resource and the second competitive resource may be frequency division multiplexing, It can be time division multiplexed, and can also be both frequency division multiplexing and time division multiplexing. For example, as shown in FIG.
  • the first contention resource and the second contention resource are frequency division multiplexed; for example, as shown in FIG. 9b, the first contention resource and the second contention resource are time division multiplexed; As shown in FIG. 9c, the first contention resource and the second contention resource are both frequency division multiplexed and time division multiplexed.
  • FIG. 10 is a schematic flowchart diagram of still another method for transmitting uplink data according to an embodiment of the present invention.
  • the base station delivers the first contention resource and the second contention resource.
  • the multiplexing manner of the first contention resource and the second contention resource refer to the manner shown in FIG. 9a to FIG. 9c.
  • the terminal determines whether to use contention-based uplink data transmission or non-contention-based uplink data transmission. For example, the terminal can be determined by the method shown in FIG. 3, FIG. 6, or FIG. If it is determined to use contention-based uplink data transmission, part 1003 is performed; if it is determined to use non-contention-based uplink data transmission, section 1007 is performed.
  • the terminal uses contention-based uplink data transmission.
  • section 1004 it is determined whether the terminal is in a synchronous state, and if so, the 1005 portion is executed; if not, the 1006 portion is executed.
  • the terminal sends uplink data to the base station in a contention-based manner in the first contention resource.
  • the terminal transmits uplink data to the base station in a contention-based manner in the second contention resource.
  • the terminal uses non-contention based uplink data transmission.
  • the terminal sends uplink data to the base station in a non-contention manner in the uplink resources allocated by the base station.
  • the solution provided by the embodiment of the present invention is mainly introduced from the perspective of the interaction between the base station and the terminal.
  • the base station is an example of the foregoing network side device, and the functions of the base station involved in the foregoing method may be implemented by other possible network side devices.
  • a network side device such as a base station, in order to implement the above functions, includes a hardware structure and/or a software module corresponding to each function.
  • the present invention can be implemented in a combination of hardware or hardware and computer software in combination with the elements and algorithm steps of the various examples described in the embodiments disclosed herein. Whether a function is implemented in hardware or computer software to drive hardware depends on the specific application and design constraints of the solution. Those skilled in the art can use different methods to implement the described functions for each particular application, but such implementation should not be considered to be beyond the scope of the present invention.
  • FIG. 11 is a schematic diagram showing a possible structure of a base station involved in the above embodiment.
  • the base station includes a transmitter/receiver 1101, a controller/processor 1102, a memory 1103, and a communication unit 1104.
  • the transmitter/receiver 1101 is configured to support transmission and reception of information between the base station and the terminal in the foregoing embodiment, and to support radio communication between the terminal and other terminals.
  • the controller/processor 1102 performs various functions for communicating with the terminal.
  • On the uplink the uplink signal from the terminal is received via the antenna, coordinated by the receiver 1101, and further processed by the controller/processor 1102 to recover the service data and signaling information transmitted by the terminal.
  • traffic data and signaling messages are processed by controller/processor 1102 and mediated by transmitter 1101 to generate downlink signals for transmission to the terminal via the antenna.
  • the controller/processor 1102 also performs the processes involved in the base station of Figures 3 through 8 and/or other processes for the technical solutions described herein.
  • the controller/processor 1102 is configured to support a base station to perform processes 301 and 302 in FIG. 3, processes 401-408 in FIG. 4a, processes 411-418 in FIG. 4b, and processes 501 and 502 in FIG. 5a, Processes 511, 512, 514b, 514d, 515b, 515d, 516b, 516d, 516f, and 516h in FIG. 5b, process 602 in FIG. 6, process 702 in FIG. 7, and processes 802 and 803 in FIG.
  • the memory 1103 is used to store program codes and data of the base station.
  • the communication unit 1104 is configured to support the base station to communicate with other network entities.
  • Figure 11 only shows a simplified design of the base station.
  • the base station may include any number of transmitters, receivers, processors, controllers, memories, communication units, etc., and all base stations that can implement the present invention are within the scope of the present invention.
  • Fig. 12 shows a simplified schematic diagram of one possible design structure of the terminal involved in the above embodiment.
  • the terminal includes a transmitter 1201, a receiver 1202, a controller/processor 1203, a memory 1204, and a modem processor 1205.
  • Transmitter 1201 conditions (e.g., analog transforms, filters, amplifies, and upconverts, etc.) the output samples and generates an uplink signal that is transmitted via an antenna to the base station described in the above embodiments.
  • the antenna receives the downlink signal transmitted by the base station in the above embodiment.
  • Receiver 1202 conditions (eg, filters, amplifies, downconverts, digitizes, etc.) the signals received from the antenna and provides input samples.
  • encoder 1206 receives the traffic data and signaling messages to be transmitted on the uplink and processes (e.g., formats, codes, and interleaves) the traffic data and signaling messages.
  • Modulator 1207 further processes (e.g., symbol maps and modulates) the encoded traffic data and signaling messages and provides output samples.
  • Demodulator 1209 processes (e.g., demodulates) the input samples and provides symbol estimates.
  • the decoder 1208 processes (e.g., deinterleaves and decodes) the symbol estimate and provides decoded data and signaling messages that are sent to the terminal.
  • Encoder 1206, modulator 1207, demodulator 1209, and decoder 1208 may be implemented by a composite modem processor 1205. These units are processed according to the radio access technology employed by the radio access network (e.g., access technologies of LTE and other evolved systems).
  • the controller/processor 1203 controls and manages the actions of the terminal for performing the processing performed by the terminal in the above embodiment. For example, the control terminal determines, according to the received transmission policy, other processes that use contention-based uplink data transmission or non-contention-based uplink data transmission and/or the technical solution described by the present invention. As an example, the controller/processor 1203 is configured to support the terminal in performing processes 303 and 304 in FIG. 3, processes 503 and 504 in FIG. 5a, and processes 513, 514a, 514c, 514e, 515a, 515c, 515e in FIG. 5b. , 516a, 516c, 516e, 516g, 516h, and 516i, processes 601 and 603 in FIG. 6, processes 701 and 703 in FIG. 7, and processes 801 and 804 in FIG.
  • the memory 1204 is used to store program codes and data for the terminal.
  • the controller/processor for performing the functions of the above base station or terminal of the present invention may be a central processing unit (CPU), a general purpose processor, a digital signal processor (DSP), an application specific integrated circuit ( Application-Specific Integrated Circuit (ASIC), Field Programmable Gate Array (FPGA) or other programmable logic device, transistor logic device, hardware component, or any combination thereof. It is possible to implement or carry out the various illustrative logical blocks, modules and circuits described in connection with the present disclosure.
  • the processor may also be a combination of computing functions, for example, including one or more microprocessor combinations, a combination of a DSP and a microprocessor, and the like.
  • the steps of a method or algorithm described in connection with the present disclosure may be implemented in a hardware, or may be implemented by a processor executing software instructions.
  • the software instructions may be composed of corresponding software modules, which may be stored in a random access memory (RAM), a flash memory, a read only memory (ROM), an erasable programmable read only memory ( Erasable Programmable ROM (EPROM), electrically erasable programmable read only memory (EEPROM), registers, hard disk, removable hard disk, compact disk read only (CD-ROM) or any other form of storage medium known in the art.
  • An exemplary storage medium is coupled to the processor to enable the processor to read information from, and write information to, the storage medium.
  • the storage medium can also be an integral part of the processor.
  • the processor and the storage medium can be located in an ASIC. Additionally, the ASIC can be located in a base station or terminal. Of course, the processor and the storage medium may also reside as a discrete component in a base station or terminal.
  • the functions described herein can be implemented in hardware, software, firmware, or any combination thereof.
  • the functions may be stored in a computer readable medium or transmitted as one or more instructions or code on a computer readable medium.
  • Computer readable media includes both computer storage media and communication media including any medium that facilitates transfer of a computer program from one location to another.
  • a storage medium may be any available media that can be accessed by a general purpose or special purpose computer.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请涉及通信领域,尤其涉及一种数据传输的方法及装置、系统。在一种数据传输的方法中,基站确定传输策略,传输策略用于基于竞争的上行数据传输或基于非竞争的上行数据传输;并向终端发送所述传输策略。终端接收基站发送的传输策略,并根据传输策略向基站发送上行数据。通过本申请的方案,基站可以根据网络状况确定合理的传输策略并发送给终端,终端能够根据传输策略采用合适的传输方式向基站发送上行数据,从而提高传输效率。

Description

一种数据传输的方法及装置 技术领域
本发明涉及无线通信领域,尤其涉及一种数据传输的方法及装置和系统。
背景技术
随着通信技术的发展,越来越多的终端需要接入到无线网络,网络难以为各个终端固定分配资源用于传输数据。因此,各个终端通过共享一部分资源来进行数据传输,例如,终端采用基于非竞争的方式进行数据传输。基于非竞争的方式,也称为基于调度的方式,是指终端在获得基站分配的专用资源后再进行数据传输。然而,这种方式需要大量的信令交互,开销较大,传输效率较低。在此背景下,基于竞争的方式被提出。基于竞争的方式,也称为基于非调度的方式,是指终端在传输数据时使用的资源不是专用资源,而是多个终端共享的资源。
现有技术中,终端决定采用基于竞争的方式还是采用基于非竞争的方式进行数据传输。然而,终端在决定传输方式时并不了解当前的网络状况,因此可能会导致所决定的传输方式不合理。
发明内容
本发明实施例提供一种数据传输的方法,装置及系统,用以解决现有技术中终端决定的传输方式不合理的问题。
一方面,本发明实施例提供一种数据传输的方法,包括:基站确定传输参数,传输参数用于基于竞争的上行数据传输或基于非竞争的上行数据传输;基站向终端发送传输策略。因此基站能够综合考虑终端和网络的实际状况,确定合理的传输策略,从而提高传输效率。
在一种可能的设计中,基站可以根据待发送的下行数据的大小、基于竞争的上行业务的数量、下行业务的服务质量QoS、物理下行控制信道PDCCH的剩余资源容量中的至少一个确定所述传输策略。其中,基站可以按照一定的优先级顺序或其他规则来根据上述因素确定传输策略,从而能够尽可能通过确定合理的传输策略来获得较优的传输效率。例如,当待发送的下行数据较多或基于竞争的上行业务的数量较多时,采用基于非竞争的方式传输效率更高。又例如,当下行业务的QoS要求较高时,采用基于非竞争的方式更为合理,反之,则采用基于竞争的方式传输效率更高。
在一种可能的设计中,当满足待发送的下行数据的大小大于或等于第一门限、基于竞争的上行业务的数量大于或等于第二门限、PDCCH的剩余资源容量大于或等于第三门限、下行业务的QoS达到第一预设条件中的至少一种时,基站可以确定传输策略为第一传输指示,第一传输指示用于指示基于非竞争的上行数据传输。或者,当满足待发送的下行数据的大小小于第四门限、基于竞争的上行业务的数量小于第五门限、PDCCH的剩余资源容量小于第六门限、下行业务的QoS未达到第二预设条件中的至少一种时,基站可以确定传输策略为第二传输指示,第二传输指示用于指示基于竞争的上行数据传输。或者,当满足待发送的下行数据的大小大于或等于第四门限且小于第一门限、基于竞争的上行业务的数量大于或等于第五门限且小于第二门限、PDCCH的剩余资源容量大于或等于第六门限且小于第三门限、下行业务的QoS达到第二预设条件且未达到第一预设条件中的至少一种时,基站确定传输策略为传输参数,传输参数用于确定进行基于竞争的上行数据传输或基于非竞争的上行数据传输,其中,第四门限小于第一门限,第五门限小于第二门限,第六门限小于第三门限。因此基站可以根据各种因素的具体情况明确指示终端采用何种传输方式,也可以向终端发送传输参数,从而有利于终端结合传输参数和自身的其他信息综合确定采用何种传输方式。
在一种可能的设计中,下行业务的QoS可以包括下行业务所允许的时延、误码率、丢包率中的至少一种,当传输策略为第一传输指示时,下行业务的QoS达到第一预设条件包括如下情形中的至少一种:时延大于或等于第一子门限,误码率大于或等于第二子门限,丢包率大于或等于第三子门限;或者,当传输策略为第二传输指示时,下行业务的QoS未达到第二预设条件包括如下情形中的至少一种:时延小于第四子门限,误码率小于第五子门限,丢包率小于第六子门限;或者,当传输策略为传输参数时,下行业务的QoS达到第二预设条件且未达到第一预设条件包括如下情形中的至少一种:时延大于或等于所述第四子门限且小于第一子门限,误码率大于或等于第五子门限且小于第二子门限,丢包率大于或等于第六子门限且小于第三子门限;其中,第四子门限小于第一子门限,第五子门限小于第二子门限,第六子门限小于第三子门限。
在一种可能的设计中,当终端采用基于非竞争的方式向基站发送上行数据时,基站还接收所述终端发送的第一请求,第一请求用于请求基于竞争的上行数据传输;以及向所述终端发送请求确认消息,请求确认消息用于授权基于竞争的上行数据传输;以及接收所述终端采用基于竞争的方式发送的上行数据;或者,当终端采用基于竞争的方式向基站发送上行数据 时,基站还接收终端发送第二请求,第二请求用于请求所述基于非竞争的上行数据传输;以及向所述终端发送授权消息,授权消息用于授权基于非竞争的上行数据传输以及用于资源分配;以及接收终端采用基于非竞争的方式发送的上行数据。当终端已采用一种传输方式,但确定更适合另一种传输方式时,可以向基站发送请求,以在获得授权后转换传输方式,因此终端不需要将另一种传输方式的全部流程执行完才能发送上行数据,从而提高传输效率。
在一种可能的设计中,当所述终端采用所述基于竞争的方式向所述基站发送上行数据时,基站还向终端发送定时提前信息,定时提前信息用于上行同步。从而有利于终端取得上行同步,与其他同步的终端所传输的信号之间相互正交,避免相互干扰。
另一方面,本发明实施例提供了一种数据传输的方法,包括:终端接收基站发送的传输策略,传输策略用于基于竞争的上行数据传输或基于非竞争的上行数据传输;终端根据所述传输策略向所述基站发送上行数据。
在一种可能的设计中,传输策略为第一传输指示,第一传输指示用于指示所述基于非竞争的上行数据传输,终端根据第一传输指示采用基于非竞争的方式向基站发送上行数据;或者,传输策略为第二传输指示,第二传输指示用于指示基于竞争的上行数据传输,终端根据第二传输指示采用基于竞争的方式向基站发送上行数据;或者,传输策略为传输参数,传输参数用于确定进行基于竞争的上行数据传输或基于非竞争的上行数据传输,终端根据传输参数确定采用基于非竞争的方式或采用基于竞争的方式向基站发送上行数据。
在一种可能的设计中,当终端采用基于非竞争的方式向基站发送上行数据时,若终端确定满足基于竞争的上行数据传输的预设条件,则终端还向基站发送第一请求,第一请求用于请求基于竞争的上行数据传输;以及接收基站发送的请求确认消息,请求确认消息用于授权所述基于竞争的上行数据传输;以及采用所述基于竞争的方式向基站发送上行数据;或者,当终端采用基于竞争的方式向基站发送上行数据时,若终端确定满足基于非竞争的上行数据传输的预设条件,则终端还向基站发送第二请求,第二请求用于请求基于非竞争的上行数据传输;以及接收基站发送的授权消息,授权消息用于授权基于非竞争的上行数据传输以及用于资源分配;以及采用基于非竞争的方式向基站发送上行数据。
在一种可能的设计中,当终端采用基于竞争的方式向基站发送上行数据时,终端还接收基站发送的定时提前信息,定时提前信息用于上行同 步。
又一方面,本发明实施例提供了一种数据传输的方法,包括:当终端采用基于非竞争的方式向基站发送上行数据时,基站接收终端发送的第一请求,第一请求用于请求基于竞争的上行数据传输;基站向终端发送请求确认消息,请求确认消息用于授权基于竞争的上行数据传输;基站接收终端采用基于竞争的方式发送的上行数据;或者,当终端采用基于竞争的方式向基站发送上行数据时,基站接收终端发送的第二请求,第二请求用于请求基于非竞争的上行数据传输;基站向终端发送授权消息,授权消息用于授权基于非竞争的上行数据传输以及用于资源分配;基站接收终端采用基于非竞争的方式发送的上行数据。
又一方面,本发明实施例提供了一种数据传输的方法,包括:当终端采用基于非竞争的方式向基站发送上行数据时,若终端确定满足基于竞争的上行数据传输的预设条件,则终端向基站发送第一请求,第一请求用于请求基于竞争的上行数据传输;终端接收基站发送的请求确认消息,请求确认消息用于授权基于竞争的上行数据传输;终端采用基于竞争的方式向基站发送上行数据;或者,当终端采用基于竞争的方式向基站发送上行数据时,若终端确定满足基于非竞争的上行数据传输的预设条件,则终端向基站发送第二请求,第二请求用于请求基于非竞争的上行数据传输;终端接收基站发送的授权消息,授权消息用于授权基于非竞争的上行数据传输以及用于资源分配;终端采用基于非竞争的方式向基站发送上行数据。
又一方面,本发明实施例提供了一种数据传输的方法,包括:基站接收终端采用基于竞争的方式发送的上行数据,其中,终端处于非同步态;基站根据上行数据估计终端的定时提前信息,定时提前信息用于上行同步;基站向终端发送定时提前信息,以使得终端调整为同步态。
又一方面,本发明实施例提供了一种数据传输的方法,包括:终端采用基于竞争的方式向基站发送上行数据,其中,终端处于非同步态;终端接收基站发送的定时提前信息,定时提前信息用于上行同步;终端根据定时提前信息调整为同步态。
又一方面,本发明实施例提供了一种数据传输的方法,包括:网路侧设备确定传输策略,所述传输策略用于基于竞争的上行数据传输或基于非竞争的上行数据传输;网络侧设备向终端发送所述传输策略。
又一方面,本发明实施例提供了一种数据传输的方法,包括:终端接收网络侧设备发送的传输策略,所述传输策略用于基于竞争的上行数据传输或基于非竞争的上行数据传输;所述终端根据所述传输策略向所述网络侧设备发送上行数据。
又一方面,本发明实施例提供了一种网络侧设备,该网络侧设备具有实现上述方法设计中网络侧设备行为的功能。所述功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。所述硬件或软件包括一个或多个与上述功能相对应的模块。
在一种可能的设计中,上述网络侧设备可以是基站。在一种可能的实现方式中,基站的结构中可以包括处理器、发射器和接收器,所述处理器被配置为支持基站执行上述方法中相应的功能。所述发射器和接收器用于支持基站与终端之间的通信,其中,所述发射器用于向终端发送上述方法中所涉及的信息或者指令,所述接收器用于接收终端发送的上述方法中所涉及的信息或者指令。所述基站还可以包括存储器,所述存储器用于与处理器耦合,其保存基站必要的程序指令和数据。
又一方面,本发明实施例提供了一种终端,该终端具有实现上述方法设计中终端行为的功能。所述功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。所述硬件或软件包括一个或多个与上述功能相对应的模块。
在一种可能的设计中,终端的结构中包括接收器、发射器和处理器,所述处理器被配置为支持基站执行上述方法中相应的功能,所述接收器被配置为支持终端接收上述方法中基站发送的各种信息或者指令,所述发射器被配置为支持终端向基站发送上述方法中所述涉及的各种信息或者指令。
又一方面,本发明实施例提供了一种通信系统,该系统包括上述方面所述的网络设备和终端,或者,该系统包括上述方面所述的基站和终端。
再一方面,本发明实施例提供了一种计算机存储介质,用于储存为上述网络侧设备或基站所用的计算机软件指令,其包含用于执行上述方面所设计的程序。
再一方面,本发明实施例提供了一种计算机存储介质,用于储存为上述终端所用的计算机软件指令,其包含用于执行上述方面所设计的程序。
相比于现有技术,本发明提供的方案中,基站能够综合考虑终端和网络的实际状况,确定合理的传输策略并发送给终端,有利于终端采用合适的传输方式向基站发送上行数据,从而提高传输效率。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作一简单地介绍,显而易见地,下面描述中的附图是本发明的一些实施例,对于本领域普通技术人员来说,在 不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为本发明的一种可能的应用场景示意图;
图2a为实现本发明的一种可能的系统示意图;
图2b为实现本发明的另一种可能的系统示意图;
图2c为实现本发明的又一种可能的系统示意图;
图3为本发明实施例提供的一种数据传输的方法的流程示意图;
图4a为本发明实施例提供的一种确定传输策略的方法的流程示意图;
图4b为本发明实施例提供的另一种确定传输策略的方法的流程示意图;
图5a为本发明实施例提供的一种发送上行数据的方法的通信示意图;
图5b为本发明实施例提供的另一种发送上行数据的方法的通信示意图;
图6为本发明实施例提供的另一种数据传输的方法的流程示意图;
图7为本发明实施例提供的又一种数据传输的方法的流程示意图;
图8为本发明实施例提供的又一种数据传输的方法的流程示意图;
图9a~9c为本发明实施例提供的一种竞争资源的示意图;
图10为本发明实施例提供的又一种发送上行数据的方法的流程示意图;
图11为本发明实施例提供的一种基站的结构示意图;
图12为本发明实施例提供的一种终端的结构示意图。
具体实施方式
下面将结合附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
本发明实施例描述的网络架构以及业务场景是为了更加清楚的说明本发明实施例的技术方案,并不构成对本发明实施例提供的技术方案的限定,本领域普通技术人员可知,随着网络架构的演变和新业务场景的出现,本发明实施例提供的技术方案对于类似的技术问题,同样适用。
如图1所示,终端通过无线接入网(Radio Access Network,简称RAN)及核心网(Core Network,简称CN)接入互联网协议(Internet Protocol,简称IP)多媒体子系统(IP Multimedia System,简称IMS)网络。本发明描述的技术方案可以适用于长期演进(Long Term Evolution,简称LTE)系统,或其他采用各种无线接入技术的无线通信系统,例如采用码分多址(Code Division Multiple Access,简称CDMA)、频分多址(Frequency Division  Multiple Access,简称FDMA)、时分多址(Time Division Multiple Access,简称TDMA)、正交频分多址(Orthogonal Frequency Division Multiple Access,简称OFDMA)、单载波频分多址(Single Carrier Frequency Division Multiple Access,简称SC-FDMA)等接入技术的系统。此外,还可以适用于LTE系统后续的演进系统,如第五代(5th Generation,简称5G)系统等。为清楚起见,这里仅以LTE系统为例进行说明。在LTE系统中,演进的通用陆地无线接入网(Evolved Universal Terrestrial Radio Access Network,简称E-UTRAN)作为无线接入网,演进分组核心网(Evolved Packet Core,简称EPC)作为核心网。终端通过E-UTRAN及EPC接入IMS网络。
本发明中,名词“网络”和“系统”经常交替使用,但本领域技术人员可以理解其含义。本发明所涉及到的终端可以包括各种具有无限通信功能的手持设备、车载设备、可穿戴设备、计算设备或连接到无线调制解调器的其他处理设备,以及各种形式的用户设备(User Equipment,简称UE)、移动台(Mobile Station,简称MS)等。为方便描述,本发明中,上面提到的设备统称为终端。本发明所涉及到的网络侧设备可以是核心网设备,也可以是基站,也可以是融合无线网络控制器,还可以是云无线接入网(Cloud RAN)控制器或者其他设备,其中,融合无线网络控制器可以对应第三代合作伙伴计划(3rd Generation Partnership Project,3GPP)定义的Single Radio Controller,简称为SRC。本发明所涉及到的基站是指一种部署在无线接入网中用以为终端提供无线通信功能的装置。所述基站可以包括各种形式的宏基站、微基站、中继站、接入点等等。所述基站还可以是全球移动通信系统(Global System for Mobile Communications,简称GSM)或CDMA系统中的基站控制器(Base Station Controller,简称BSC),或者是宽带码分多址(Wideband Code Division Multiple Access,简称WCDMA)系统中的无线网络控制器(Radio Network Controller,简称RNC),或者是各种通信系统中的基站(Base Station,简称BS)或集中式服务器等,或者是基站和控制器的组合。在采用不同的无线接入技术的系统中,具备基站功能的设备的名称可能会有所不同,例如,在LTE系统中,称为演进的节点B(evolved NodeB,简称eNodeB或者eNB),在第三代(3rd Generation,简称3G)系统中,称为节点B(NodeB)等等。为方便描述,本发明中,上述为终端提供无线通信功能的装置统称为基站或BS。应当理解的是,本发明涉及到的基站既包括已有通信系统中的基站,也包括未来可能出现的通信系统中的基站,本发明实施例并不限定。
图2a为本发明实施例提供的一种系统示意图,其主要包括基站和终端,其中,基站与终端之间通过蜂窝网络进行通信。图2b为本发明实施例提供 的另一种系统示意图,其主要包括基站、接入点(Access Point,简称AP)和终端,其中,终端与AP之间通过无线局域网(Wireless Local Area Network,简称WLAN)进行通信,AP与基站之间为有线连接,终端通过AP与基站进行通信。图2c为本发明实施例提供的又一种系统示意图,其主要包括基站、接入控制器(Access Controller,简称AC)、AP和终端,其中,终端与AP之间通过WLAN进行通信,AP与AC之间以及AC与基站之间为有线连接,终端通过AP及AC与基站进行通信。可以理解的是,在本发明实施例中,基站与终端之间进行信号传输,可以是如图2a所示的基站与终端之间通过蜂窝网络进行信号传输,也可以是如图2b所示的基站与终端之间通过AP进行信号传输,还可以是如图2c所示的基站与终端之间通过AC及AP进行信号传输。当然,当基站与终端之间还可以通过其他方式进行通信时,同样适用本发明实施例提供的技术方案。
下面将基于上面所述的本发明涉及的共性部分,对本发明实施例进一步详细说明。
本发明的一个实施例提供一种数据传输的方法,和基于这个方法的装置及系统。网络侧设备确定传输策略,该传输策略用于基于竞争的上行数据传输或基于非竞争的上行数据传输;网络侧设备向终端发送该传输策略。例如,以网络侧设备为基站为例,基站可以根据待发送的下行数据的大小、基于竞争的上行业务的数量、下行业务的服务质量(Quality of Service,简称QoS)、物理下行控制信道(Physical Downlink Control Channel,简称PDCCH)的剩余资源容量或其他因素中的一个或多个来确定该传输策略。对应的,终端接收网路侧设备发送的该传输策略,并根据该传输策略向网络侧设备发送上行数据。
现有技术中,对于采用基于竞争的上行数据传输还是基于非竞争的上行数据传输,是由终端确定的,然而终端在确定传输方式时,并没有考虑到当前的网络状况。通过本发明实施例提供的技术方案,网络侧设备可以综合考虑终端和网络的状况,确定合理的传输模式,从而提高传输效率。例如,当需要传输的数据量较大或对传输的质量要求较高时,网络侧可以确定基于非竞争的传输策略提高效率;或者,当需要传输的数据量较小或对传输的质量要求较低时,网络侧可以确定基于竞争的传输策略提高效率。
在本发明实施例的后续说明中,以网络侧设备为基站,进行举例说明。下面结合附图3,对本发明实施例提供的方案进行说明。
在301部分,基站确定传输策略,传输策略用于基于竞争的上行数据传输或基于非竞争的上行数据传输。
在一个示例中,基站根据待发送的下行数据的大小、基于竞争的上行业 务的数量、下行业务的QoS、PDCCH的剩余资源容量中的至少一个确定传输策略。进一步的传输策略可以为第一传输指示或第二传输指示或传输参数。例如,传输策略为第一传输指示,第一传输指示用于指示基于非竞争的上行数据传输,当满足待发送的下行数据的大小大于或等于第一门限、基于竞争的上行业务的数量大于或等于第二门限、PDCCH的剩余资源容量大于或等于第三门限、下行业务的QoS达到第一预设条件中的至少一种时,基站确定第一传输指示。又例如,传输策略为第二传输指示,第二传输指示用于指示基于竞争的上行数据传输,当满足待发送的下行数据的大小小于第四门限、基于竞争的上行业务的数量小于第五门限、PDCCH的剩余资源容量小于第六门限、下行业务的QoS未达到第二预设条件中的至少一种时,基站确定第二传输指示。又例如,传输策略为传输参数,传输参数用于确定进行基于竞争的上行数据传输或基于非竞争的上行数据传输,当满足待发送的下行数据的大小大于或等于第四门限且小于第一门限、基于竞争的上行业务的数量大于或等于第五门限且小于第二门限、PDCCH的剩余资源容量大于或等于第六门限且小于第三门限、下行业务的QoS达到第二预设条件且未达到第一预设条件中的至少一种时,基站确定传输参数,其中,第四门限小于第一门限,第五门限小于第二门限,第六门限小于第三门限。
在一种可能的实现方式中,上述下行业务的QoS包括该下行业务所允许的时延、误码率、丢包率中的至少一种,下行业务的QoS是否达到第一预设条件或第二预设条件可以根据以下示例进行确定。例如,当传输策略为第一传输指示时,下行业务的QoS达到第一预设条件包括如下情形中的至少一种:时延大于或等于第一子门限,误码率大于或等于第二子门限,丢包率大于或等于第三子门限。又例如,当传输策略为第二传输指示时,下行业务的QoS未达到第二预设条件包括如下情形中的至少一种:时延小于第四子门限,误码率小于第五子门限,丢包率小于第六子门限。又例如,当传输策略为传输参数时,下行业务的QoS达到第二预设条件且未达到第一预设条件包括如下情形中的至少一种:时延大于或等于第四子门限且小于第一子门限,误码率大于或等于第五子门限且小于第二子门限,丢包率大于或等于第六子门限且小于第三子门限;其中,第四子门限小于第一子门限,第五子门限小于第二子门限,第六子门限小于第三子门限。
在另一个示例中,传输策略也可以为第一传输指示或第二传输指示。例如,传输策略为第一传输指示,当满足待发送的下行数据的大小大于或等于第七门限、基于竞争的上行业务的数量大于或等于第八门限、PDCCH的剩余资源容量大于或等于第九门限、下行业务的QoS达到第三预设条件中的至少一种时,基站确定第一传输指示。又例如,传输策略为第二传输指示,当 满足待发送的下行数据的大小小于第七门限、基于竞争的上行业务的数量小于第八门限、PDCCH的剩余资源容量小于第九门限、下行业务的QoS未达到第三预设条件中的至少一种时,基站确定第二传输指示。需要说明的是,第七门限可以等于第一门限或第四门限,也可以为其它任意值;第八门限可以等于第二门限或第五门限,也可以为其它任意值;第九门限可以等于第三门限或第六门限,也可以为其它任意值;第三预设条件可以与第一预设条件相同,也可以与第二预设条件相同,还可以为其它任意预设条件,其中,上述下行业务的QoS是否达到第三预设条件的确定方式与上述下行业务的QoS是否达到第一预设条件或第二预设条件的确定方式相似,可以参考前面的详细描述,在此不再赘述。
在又一个示例中,基站根据核心网设备或其他网元发送的指示消息确定传输策略。例如,该指示消息用于指示基于非竞争的上行数据传输,基站根据该指示消息确定第一传输指示。又例如,该指示消息用于指示基于竞争的上行数据传输,基站根据该指示消息确定第二传输指示。又例如,该指示消息用于向基站提供一些确定传输策略的参数或因素,基站根据这些参数或因素确定传输策略,具体实现方式可以参考前述基站根据待发送的下行数据的大小等因素进行确定的方式,在此不再赘述。
在又一个示例中,当传输策略为传输参数时,该传输参数可以包括传统广播消息中携带的内容以及终端的上行质量、上行路径损耗、上行干扰中的至少一种,以使得终端可以及时获得这些参数,以确定采用基于竞争或非竞争的方式向基站发送上行数据。
在302部分,基站向终端发送传输策略。例如,当终端为空闲态的终端时,基站可以通过寻呼消息或媒体接入控制(Media Access Control,简称MAC)控制单元(MAC Control Element,简称MCE)消息向终端发送传输策略。又例如,当终端为非同步态或同步态的终端时,基站可以通过PDCCH或MCE消息向终端发送传输策略。需要说明的是,基站可以在终端已采用某种传输方式发送上行数据的场景下向终端发送传输策略,也可以在终端还未采用任何传输方式发送上行数据的场景下向终端发送传输策略。
在一个示例中,当终端在接收传输策略后,采用基于非竞争的方式向基站发送上行数据时,基站还可以接收终端发送的第一请求,第一请求用于请求基于竞争的上行数据传输。在接收第一请求后,基站可以向终端发送请求确认消息,请求确认消息用于授权基于竞争的上行数据传输;或者,基站也可以向终端发送第一请求非确认消息,第一请求非确认消息用于禁止基于竞争的上行数据传输;或者,基站还可以不发送任何消息给终端,忽略终端的 该请求。若基站向终端发送请求确认消息,当终端采用基于竞争的方式向基站发送上行数据时,若终端所在的小区现有的竞争资源不足或不存在现有的竞争资源,则基站还为终端分配竞争资源。
在另一个示例中,当终端在接收传输策略后,采用基于竞争的方式向基站发送上行数据时,基站还可以接收终端发送的第二请求,第二请求用于请求基于非竞争的上行数据传输。在接收第二请求后,基站可以向终端发送授权消息,授权消息用于授权基于非竞争的上行数据传输以及用于资源分配;或者,基站也可以向终端发送第二请求非确认消息,第二请求非确认消息用于禁止基于非竞争的上行数据传输;或者,基站还可以不发送任何消息给终端,忽略终端的该请求。
在又一个示例中,当终端在接收传输策略后,采用基于竞争的方式向基站发送上行数据时,基站还可以向终端发送一些参数或信息,例如,这些参数或信息可以携带在广播消息、无线资源控制(Radio Resource Control,简称RRC)信令、MCE消息或PDCCH中,用以通知终端:若终端在指定的时间段内连续向基站发送若干个数据包,则终端可以在该指定的时间段结束后转换为采用基于非竞争的方式向基站发送上行数据。其中,该若干个数据包可以为若干个携带相同内容的数据包,也可以为若干个分别携带指定内容的数据包,或者也可以为若干个符合其它条件的数据包。
在又一个示例中,基站还可以向终端发送定时提前信息,定时提前信息用于上行同步。例如,定时提前信息可以是定时提前命令(time advance command),定时提前命令可以使得终端调整主小区(primary cell)或辅助主小区(primary secondary cell)的物理上行控制信道(Physical Uplink Control Channel,简称PUCCH)或物理上行共享信道(Physical Uplink Shared Channel,简称PUSCH)或探测参考信号(Sounding Reference Signal,简称SRS)等的上行传输定时,从而达到上行同步。其中,定时提前命令的大小可以根据实际情况确定,例如,在随机接入响应(Random Access Response,简称RAR)的情况下,定时提前命令的大小可以为11比特(bit),基站可以通过RAR消息向终端发送该定时提前命令;或者,在其他情况下,定时提前命令的大小可以为6比特或其它大小,基站可以通过定时提前命令MCE(timing advance command MCE)消息向终端发送该定时提前命令。
在303部分,终端接收基站发送的传输策略。
在一个示例中,终端接收基站发送的第一传输指示,第一传输指示用于指示基于非竞争的上行数据传输;或者,终端接收基站发送的第二传输指示,第二传输指示用于指示基于竞争的上行数据传输;或者,终端接收基站发送的传输参数,传输参数用于确定进行基于竞争的上行数据 传输或基于非竞争的上行数据传输。
在304部分,终端根据传输策略向基站发送上行数据。
在一个示例中,终端根据第一传输指示采用基于非竞争的方式向基站发送上行数据;或者,终端根据第二传输指示采用基于竞争的方式向基站发送上行数据;或者,终端根据传输参数确定采用基于非竞争的方式或采用基于竞争的方式向基站发送上行数据。
在另一个示例中,若终端接收到基站发送的传输参数,则终端可以根据以下方式确定采用基于竞争的上行数据传输或基于非竞争的上行数据传输:终端根据传输参数中包括的终端的上行质量、上行路径损耗、上行干扰中的至少一种确定调制编码方案(Modulation and Coding Scheme,简称MCS),进而确定终端每次传输允许的数据量,然后估计当前缓冲中的数据量需要传输的次数,若需要传输的次数大于或等于预设值,则采用基于非竞争的上行数据传输;否则,采用基于竞争的上行数据传输。其中,该需要传输的次数=当前缓冲中的数据量/每次传输允许的数据量,计算结果向上取整。
在又一个示例中,当终端在接收传输策略后,采用基于非竞争的方式向基站发送上行数据时,若终端确定满足基于竞争的上行数据传输的预设条件,则终端向基站发送第一请求,第一请求用于请求基于竞争的上行数据传输。在发送第一请求后,终端还可以接收基站发送的请求确认消息,请求确认消息用于授权基于竞争的上行数据传输,然后,终端采用基于竞争的方式向基站发送上行数据;或者,终端还可以接收基站发送的第一请求非确认消息,第一请求非确认消息用于禁止基于竞争的上行数据传输,然后,终端继续采用基于非竞争的方式向基站发送上行数据;或者,若终端在一段时间内既未接收到请求确认消息,也未接收到第一请求非确认消息,则终端继续采用基于非竞争的方式向基站发送上行数据。若终端接收到请求确认消息,当终端采用基于竞争的方式向基站发送上行数据时,若终端所在的小区存在现有的竞争资源,则终端通过该现有的竞争资源向基站发送上行数据;若终端所在的小区现有的竞争资源不足或者不存在现有的竞争资源时,基站还会为终端分配竞争资源,终端通过基站分配的竞争资源向基站发送上行数据。
在又一个示例中,当终端在接收传输策略后,采用基于竞争的方式向基站发送上行数据时,若终端确定满足基于非竞争的上行数据传输的预设条件,则终端向基站发送第二请求,第二请求用于请求基于非竞争的上行数据传输。在发送第二请求后,终端还可以接收基站发送的授权消息,授权消息用于授权基于非竞争的上行数据传输以及用于资源分配,然后,终端采用基于非竞争的方式向基站发送上行数据;或者,终端还可以接收基站发送的 第二请求非确认消息,第二请求非确认消息用于禁止基于非竞争的上行数据传输,然后,终端继续采用基于竞争的方式向基站发送上行数据;或者,若终端在一段时间内既未接收到授权消息,也未接收到第二请求非确认消息,则终端继续采用基于竞争的方式向基站发送上行数据。
在又一个示例中,终端还可以接收基站发送的定时提前信息,定时提前信息用于上行同步。例如,定时提前信息可以是定时提前命令,终端可以在接收定时提前命令后调整主小区或辅助主小区的PUCCH或PUSCH或SRS等的上行传输定时,从而达到上行同步。从而终端与其他同步的终端所传输的信号之间相互正交,能够避免相互干扰。
在图3所示的方法中,基站能够综合考虑终端和网络的实际情况,确定合理的传输策略并发送给终端,终端能够根据该传输策略最终确定采用基于竞争的方式还是采用基于非竞争的方式向基站发送上行数据,从而提高传输效率。
下面将结合更多的附图,对本发明实施例做进一步说明。
图4a为本发明实施例提供的一种确定传输策略的方法的流程示意图。图4a所示的方法中,基站按照待发送的数据的大小、基于竞争的上行业务的数量、下行业务的QoS、PDCCH的剩余资源容量的优先级顺序进行确定。图4b为本发明实施例提供的另一种确定传输策略的方法的流程示意图。图4b所示的方法中,基站按照基于竞争的上行业务的数量、待发送的数据的大小、下行业务的QoS、PDCCH的剩余资源容量的优先级顺序进行确定。还当然,基站也可以按照其它优先级顺序或其他规则进行确定,图4a或图4b所示的方法仅作为一种示例,本发明实施例不限定基站根据上述因素确定传输策略的实现方式。下面以图4a所示的方法为例进行详细说明,图4b所示的方法与图4a所示的方法相似,在此不作赘述。
在401部分,基站获取待发送的下行数据的大小、基于竞争的上行业务的数量、下行业务的QoS、PDCCH的剩余资源容量。
在402部分,基站确定待发送的下行数据的大小是否大于或等于第一门限,若是,执行406部分;若否,执行403部分。
在403部分,基站确定基于竞争的上行业务的数量是否大于或等于第二门限,若是,执行407部分;若否,执行404部分。
在404部分,基站确定下行业务的QoS是否达到第一预设条件,若是,执行407部分;若否,执行405部分。
在405部分,基站确定PDCCH的剩余资源容量是否大于或等于第三门限,若是,执行407部分;若否,执行408部分。
在406部分,基站确定传输策略为第一传输指示。
在407部分,基站确定传输策略为传输参数。
在408部分,基站确定传输策略为第二传输指示。
在图4a和图4b所示的方法中,基站根据待发送的数据的大小、基于竞争的上行业务的数量、下行业务的QoS、PDCCH的剩余资源容量确定传输策略,从而能够综合考虑上下行传输的因素,即综合考虑终端和网络的实际情况,确定合理的传输策略,从而提高传输效率。例如,当待发送的下行数据较多或基于竞争的上行业务的数量较多时,采用基于非竞争的方式传输效率更高。又例如,当下行业务的QoS要求较高时,采用基于非竞争的方式更为合理,反之,则采用基于竞争的方式传输效率更高。
图5a为本发明实施例提供的一种发送上行数据的方法的通信示意图,其中,图5a所示的方法中,终端采用基于竞争的方式向基站发送上行数据。
在501部分,基站确定传输策略,其中,该传输策略可以为第二传输指示或传输参数。例如,基站可以根据图3所示方法中的301部分或图4a或图4b所示的方法确定传输策略,此处不作赘述。
在502部分,基站向终端发送传输策略。例如,基站可以根据图3所示方法中的302部分向终端发送传输策略,此处不作赘述。
在503部分,终端接收基站发送的传输策略,并根据传输策略确定采用基于竞争的方式。例如,当传输策略为第二传输指示时,基站可以根据第二传输指示采用基于竞争的方式。又例如,当传输策略为传输参数时,基站可以根据图3所示方法中的304部分的示例确定采用基于竞争的方式。
在504部分,终端向基站发送上行数据。例如,终端可以采用在数据前添加循环前缀(Cyclic Prefix,简称CP)的方式向基站发送上行数据。对应的,基站接收终端发送的上行数据。在上行数据前添加CP可以保证该终端信号与其他终端之间的信号正交,从而避免不同终端的信号之间的干扰。
图5b为本发明实施例提供的另一种发送上行数据的方法的通信示意图,其中,图5b所示的方法中,终端采用基于非竞争的方式向基站发送上行数据。
在511部分,基站确定传输策略,其中,该传输策略可以为第一传输指示或传输参数。例如,基站可以根据图3所示方法中的301部分或图4a或图4b所示的方法确定传输策略,此处不作赘述。
在512部分,基站向终端发送传输策略。例如,基站可以根据图3所示方法中的302部分向终端发送传输策略,此处不作赘述。
在513部分,终端接收基站发送的传输策略,并根据传输策略确定采用基于非竞争的方式。例如,当传输策略为第一传输指示时,基站可以根据第一传输指示采用基于非竞争的方式。又例如,当传输策略为传输参数时,基 站可以根据图3所示方法中的304部分的示例确定采用基于非竞争的方式。
在确定采用基于非竞争的方式后,根据终端的状态来确定发送上行数据的方式为:当终端为同步态的终端时,执行514部分;当终端为非同步态的终端时,执行515部分;当终端为空闲态的终端时,执行516部分。
514部分包括514a~514e部分:
在514a部分,终端向基站发送调度请求(Scheduling Request,简称SR),用于请求采用基于非竞争的上行传输。
在514b部分,基站接收终端发送的SR后,向终端发送调度授权(Scheduling Grant,简称SG)。示例性的,基站可以通过该SG分配一些资源。
在514c部分,终端接收基站发送的SG后,向基站发送缓冲区状态报告(Buffer Status Report,简称BSR)。
在514d部分,基站接收终端发送的BSR后,向终端发送SG。基站根据终端发送的BSR获知终端所需的资源大小,通过该SG为终端分配其所述的资源。
在514e部分,终端接收基站发送的SG后,向基站发送上行数据。对应的,基站接收终端发送的上行数据。
515部分包括515a~515e部分:
在515a部分,终端向基站发送前导码(preamble)。
在515b部分,基站接收终端发送的前导码后,向终端发送RAR,RAR中携带SG。
在515c部分,终端接收基站发送的RAR后,向基站发送第三条消息(MSG3),MSG3中携带小区无线网络临时标识(Cell Radio Network Temporary Identifier,简称C-RNTI)。
在515d部分,基站接收终端发送的MSG3后,向终端发送第四条消息(MSG4)。
在515e部分,终端接收基站发送的MSG4后,向基站发送上行数据。对应的,基站接收终端发送的上行数据。
516部分包括516a~516i部分:
在516a部分,终端向基站发送前导码。
在516b部分,基站接收终端发送的前导码后,向终端发送RAR,RAR中携带SG。
在516c部分,终端接收基站发送的RAR后,相机站发送MSG3,MSG3中携带RRC连接请求。
在516d部分,基站接收终端发送的RAR后,向终端发送MSG4。
在516e部分,终端接收基站发送的MSG4后,向基站发送BSR。
在516f部分,基站接收终端发送的BSR后,向终端发送SG。
在516g部分,终端接收基站发送的SG后,向基站发送RRC连接建立完成消息。对应的,基站接收终端发送的RRC连接建立完成消息
在516h部分,终端与基站之间进行鉴权及安全认证过程。
在516i部分,终端向基站发送上行数据。对应的,基站接收终端发送的上行数据。
图6为本发明实施例提供的另一种数据传输的方法的流程示意图。图6所示的方法提供一种从基于非竞争的上行数据传输转换为基于竞争的上行数据传输的方案。通过图6所示的方案,当采用基于非竞争的方式的终端需要转为采用基于竞争的方式时,例如,当上行业务的数据量很少,更适合于基于竞争的方式时,基站可以及时响应,从而提高传输效率。
在601部分,当终端采用基于非竞争的方式向基站发送上行数据时,若终端确定满足基于竞争的上行数据传输的预设条件,则终端向基站发送第一请求,第一请求用于请求基于竞争的上行数据传输。例如,第一请求可以是非调度请求,终端可以通过PUCCH、PUSCH或MCE消息向基站发送非调度请求。需要说明的是,所述当终端采用基于非竞争的方式向基站发送上行数据时,是指终端处于采用基于非竞争的上行数据传输的一段时间内,当前可能有数据正在传输,也有可能没有数据在传输,而并不限定于当前时刻正在发送上行数据。
在一个示例中,终端可以根据终端的信号质量、终端的位置、待发送的上行数据的大小、业务的稀疏程度中的至少一种确定满足基于竞争的上行数据传输的预设条件,具体如何确定本发明实施例不作限定。
在602部分,基站接收终端发送的第一请求后,向终端发送请求确认消息,请求确认消息用于授权基于竞争的上行数据传输。例如,请求确认消息可以是非调度请求确认消息,基站可以通过MCE消息向终端发送非调度请求确认消息。
在603部分,终端接收基站发送的请求确认消息后,采用基于竞争的方式向基站发送上行数据。例如,终端在收到非调度请求确认消息且确定当前无重传数据需要发送后,采用基于竞争的方式向基站发送上行数据。
需要说明的是,图6所示的方法可以在执行图3所示的方法之后再执行,也可以在不执行图3所示的方法的情况下初始执行。
图7为本发明实施例提供的又一种数据传输的方法的流程示意图。图7所示的方法提供一种从基于竞争的上行数据传输转换为基于非竞争的上行数据传输的方案。当采用基于竞争的方式的终端需要转为采用基于非竞争的方 式时,例如,当上行业务的数据量很多,更适合于基于非竞争的方式时,通过图7所示的方案,终端不需要将采用基于非竞争的上行数据传输的过程全部执行之后才发送上行数据,从而可以缩短终端等待授权的时间。
在701部分,当终端采用基于竞争的方式向基站发送上行数据时,若终端确定满足基于非竞争的上行数据传输的预设条件,则终端向基站发送第二请求,第二请求用于请求基于非竞争的上行数据传输。例如,第二请求可以是SG,终端可以通过PUCCH、PUSCH或MCE消息向基站发送SG。需要说明的是,所述当终端采用基于竞争的方式向基站发送上行数据时,是指终端处于采用基于竞争的上行数据传输的一段时间内,当前可能有数据正在传输,也有可能没有数据在传输,而并不限定于当前时刻正在发送上行数据。
在一个示例中,终端可以根据终端的信号质量、终端的位置、待发送的上行数据的大小、业务的稀疏程度中的至少一种确定满足基于非竞争的上行数据传输的预设条件,具体如何确定本发明实施例不作限定。
在另一个示例中,终端向基站发送第二请求时,还可以同时向基站发送BSR,BSR用于通知基站当前上行业务的缓冲数据大小,从而有利于基站分配上行资源。
在又一个示例中,若终端确定满足基于非竞争的上行数据传输的预设条件,终端不向基站发送第二请求消息,而是仅向基站发送BSR,此处,BSR除了用于通知基站当前上行业务的缓冲数据大小,还用于请求基于非竞争的上行数据传输。
在又一个示例中,终端向基站发送第二请求消息后,不再向发送新的数据,并可以启动定时器,用以等待基站授权基于非竞争的上行数据传输。当然,在基站授权之前的这段时间,终端可以重发之前发送过的数据。
在702部分,基站接收终端发送的第二请求后,向终端发送授权消息,授权消息用于授权基于非竞争的上行数据传输以及用于资源分配。
在一个示例中,基站也可以不向终端发送授权消息,而是向终端发送一些参数或信息,例如,这些参数或信息可以携带在广播消息、RRC信令、MCE消息或PDCCH中,用以通知终端:若终端在指定的时间段内连续向基站发送若干个数据包,则终端可以在该指定的时间段结束后转换为采用基于非竞争的方式向基站发送上行数据。其中,该若干个数据包可以为若干个携带相同内容的数据包,也可以为若干个分别携带指定内容的数据包,或者也可以为若干个符合其它条件的数据包。
在另一个示例中,如果终端为空闲态或非同步态的终端,基站还可以向终端发送定时提前信息,例如,基站可以通过PDCCH或定时提前命令MCE消息向终端发送定时提前信息。如果终端为同步态的终端,基站可以不向终 端发送定时提前信息。当然,基站也可以向同步态的终端发送定时提前信息,例如,在定时提前信息发生变化的情况下。
在703部分,终端接收基站发送的授权消息后,采用基于非竞争的方式向基站发送上行数据。其中,若终端在701部分未向基站发送过BSR,则终端还向基站发送BSR。
在一个示例中,若终端在定时器超时之前接收到基站发送的授权消息,则终端采用基于非竞争的方式向基站发送上行数据。若终端在定时器超时之前还接收到基站发送的定时提前信息,则终端还可以根据定时提前信息采用基于非竞争的方式向基站发送上行数据。对于之前采用竞争的方式未发送成功的数据,也可以改用基于非竞争的方式发送,例如,可以通过采用混合自动重传请求(Hybrid Automatic Repeat Request,简称HARQ)进行合并发送。
在有一个示例中,若终端为空闲态的终端,则终端在接收基站发送的授权消息之后,需要与基站完成鉴权及安全认证过程之后,在采用基于非竞争的方式向基站发送上行数据。
需要说明的是,图7所示的方法可以在执行图3所示的方法之后再执行,也可以在不执行图7所示的方法的情况下初始执行。
图8为本发明实施例提供的又一种数据传输的方法的流程示意图。
在801部分,终端采用基于竞争的方式向基站发送上行数据,其中,终端处于非同步态。
在802部分,基站接收终端采用基于竞争的方式发送的上行数据后,根据该上行数据估计终端的定时提前信息,定时提前信息用于上行同步。
在803部分,基站向终端发送定时提前信息。
在804部分,终端接收基站发送的定时提前信息后,根据该定时提前信息调整为同步态。
需要说明的是,图8所示的方法可以在执行图3或图6所示的方法之后再执行,也可以在不执行图3或图6所示的方法的情况下初始执行。
当终端采用基于竞争的方式向基站发送上行数据时,通常采用在上行数据前添加CP的方式进行发送,终端处于非同步态时,该CP的长度比终端处于同步态时的CP长度更长。通过本发明实施例的方案,能够将终端的状态调整为同步态,从而提高竞争资源的利用率。
在本发明实施例提供的上述方案中,当终端采用基于竞争的方式向基站发送上行数据时,不同状态的终端所使用的竞争资源可能不同,例如,同步态的终端使用第一竞争资源,非同步态或空闲态的终端使用第二竞争资源,或者,不同状态的终端也可以考虑资源的情况确定使用第一竞争资源还是第二竞争资源。第一竞争资源与第二竞争资源的复用方式可以为频分复用,也 可以为时分复用,还可以同时为频分复用和时分复用。例如,如图9a所示,第一竞争资源与第二竞争资源是频分复用的;又例如,如图9b所示,第一竞争资源与第二竞争资源是时分复用的;又例如,如图9c所示,第一竞争资源与第二竞争资源既是频分复用的,又是时分复用的。
图10为本发明实施例提供的又一种发送上行数据的方法的流程示意图。
在1001部分,基站下发第一竞争资源和第二竞争资源。其中,第一竞争资源和第二竞争资源的复用方式可以参见图9a~9c所示的方式。
在1002部分,终端确定采用基于竞争的上行数据传输还是基于非竞争的上行数据传输。例如,终端可以图3、图6或图7所示的方法进行确定。若确定采用基于竞争的上行数据传输,执行1003部分;若确定采用基于非竞争的上行数据传输,执行1007部分。
在1003部分,终端采用基于竞争的上行数据传输。
在1004部分,确定终端是否为同步态,若是,执行1005部分;若否,执行1006部分。
在1005部分,终端在第一竞争资源中采用基于竞争的方式向基站发送上行数据。
在1006部分,终端在第二竞争资源中采用基于竞争的方式向基站发送上行数据。
在1007部分,终端采用基于非竞争的上行数据传输。
在1008部分,终端在基站分配的上行资源中采用非竞争的方式向基站发送上行数据。
图10所示的方法中,同步态的不同终端竞争第一竞争资源,非同步态的不同终端竞争第二竞争资源,从而可以保证不同状态的终端的信号正交,以避免不同状态的终端的信号之间的干扰。
上述主要从基站和终端交互的角度对本发明实施例提供的方案进行了介绍。需要注意的是,基站是上述网络侧设备的一种示例,上述方法中涉及到的基站的功能均可以由其他可能的网络侧设备实现。可以理解的是,网络侧设备,例如基站,终端为了实现上述功能,其包含了执行各个功能相应的硬件结构和/或软件模块。本领域技术人员应该很容易意识到,结合本发明中所公开的实施例描述的各示例的单元及算法步骤,本发明能够以硬件或硬件和计算机软件的结合形式来实现。某个功能究竟以硬件还是计算机软件驱动硬件的方式来执行,取决于技术方案的特定应用和设计约束条件。本领域技术人员可以对每个特定的应用来使用不同的方法来实现所描述的功能,但是这种实现不应认为超出本发明的范围。
图11示出了上述实施例中所涉及的基站的一种可能的结构示意图。
基站包括发射器/接收器1101,控制器/处理器1102,存储器1103以及通信单元1104。所述发射器/接收器1101用于支持基站与上述实施例中的所述的终端之间收发信息,以及支持所述终端与其他终端之间进行无线电通信。所述控制器/处理器1102执行各种用于与终端通信的功能。在上行链路,来自所述终端的上行链路信号经由天线接收,由接收器1101进行调解,并进一步由控制器/处理器1102进行处理来恢复终端所发送到业务数据和信令信息。在下行链路上,业务数据和信令消息由控制器/处理器1102进行处理,并由发射器1101进行调解来产生下行链路信号,并经由天线发射给终端。控制器/处理器1102还执行图3至图8中涉及基站的处理过程和/或用于本申请所描述的技术方案的其他过程。作为示例,控制器/处理器1102用于支持基站执行图3中的过程301和302,图4a中的过程401~408,图4b中的过程411~418,图5a中的过程501和502,图5b中的过程511、512、514b、514d、515b、515d、516b、516d、516f和516h,图6中的过程602,图7中的过程702,图8中的过程802和803。存储器1103用于存储基站的程序代码和数据。通信单元1104用于支持基站与其他网络实体进行通信。
可以理解的是,图11仅仅示出了基站的简化设计。在实际应用中,基站可以包含任意数量的发射器,接收器,处理器,控制器,存储器,通信单元等,而所有可以实现本发明的基站都在本发明的保护范围之内。
图12示出了上述实施例中所涉及的终端的一种可能的设计结构的简化示意图。所述终端包括发射器1201,接收器1202,控制器/处理器1203,存贮器1204和调制解调处理器1205。
发射器1201调节(例如,模拟转换、滤波、放大和上变频等)该输出采样并生成上行链路信号,该上行链路信号经由天线发射给上述实施例中所述的基站。在下行链路上,天线接收上述实施例中基站发射的下行链路信号。接收器1202调节(例如,滤波、放大、下变频以及数字化等)从天线接收的信号并提供输入采样。在调制解调处理器1205中,编码器1206接收要在上行链路上发送的业务数据和信令消息,并对业务数据和信令消息进行处理(例如,格式化、编码和交织)。调制器1207进一步处理(例如,符号映射和调制)编码后的业务数据和信令消息并提供输出采样。解调器1209处理(例如,解调)该输入采样并提供符号估计。解码器1208处理(例如,解交织和解码)该符号估计并提供发送给终端的已解码的数据和信令消息。编码器1206、调制器1207、解调器1209和解码器1208可以由合成的调制解调处理器1205来实现。这些单元根据无线接入网采用的无线接入技术(例如,LTE及其他演进系统的接入技术)来进行处理。
控制器/处理器1203对终端的动作进行控制管理,用于执行上述实施例中由终端进行的处理。例如用于控制终端根据接收到的传输策略确定采用基于竞争的上行数据传输或基于非竞争的上行数据传输和/或本发明所描述的技术方案的其他过程。作为示例,控制器/处理器1203用于支持终端执行图3中的过程303和304,图5a中的过程503和504,图5b中的过程513、514a、514c、514e、515a、515c、515e、516a、516c、516e、516g、516h和516i,图6中的过程601和603,图7中的过程701和703,图8中的过程801和804。存储器1204用于存储用于终端的程序代码和数据。
用于执行本发明上述基站或终端的功能的控制器/处理器可以是中央处理器(Central Processing Unit,CPU),通用处理器、数字信号处理器(Digital Signal Processor,DSP)、专用集成电路(Application-Specific Integrated Circuit,ASIC),现场可编程门阵列(Field Programmable Gate Array,FPGA)或者其他可编程逻辑器件、晶体管逻辑器件,硬件部件或者其任意组合。其可以实现或执行结合本发明公开内容所描述的各种示例性的逻辑方框,模块和电路。所述处理器也可以是实现计算功能的组合,例如包含一个或多个微处理器组合,DSP和微处理器的组合等等。
结合本发明公开内容所描述的方法或者算法的步骤可以硬件的方式来实现,也可以是由处理器执行软件指令的方式来实现。软件指令可以由相应的软件模块组成,软件模块可以被存放于随机存取存储器(Random Access Memory,RAM)、闪存、只读存储器(Read Only Memory,ROM)、可擦除可编程只读存储器(Erasable Programmable ROM,EPROM)、电可擦可编程只读存储器(Electrically EPROM,EEPROM)、寄存器、硬盘、移动硬盘、只读光盘(CD-ROM)或者本领域熟知的任何其它形式的存储介质中。一种示例性的存储介质耦合至处理器,从而使处理器能够从该存储介质读取信息,且可向该存储介质写入信息。当然,存储介质也可以是处理器的组成部分。处理器和存储介质可以位于ASIC中。另外,该ASIC可以位于基站或终端中。当然,处理器和存储介质也可以作为分立组件存在于基站或终端中。
本领域技术人员应该可以意识到,在上述一个或多个示例中,本发明所描述的功能可以用硬件、软件、固件或它们的任意组合来实现。当使用软件实现时,可以将这些功能存储在计算机可读介质中或者作为计算机可读介质上的一个或多个指令或代码进行传输。计算机可读介质包括计算机存储介质和通信介质,其中通信介质包括便于从一个地方向另一个地方传送计算机程序的任何介质。存储介质可以是通用或专用计算机能够存取的任何可用介质。
以上所述的具体实施方式,对本发明的目的、技术方案和有益效果进行了进一步详细说明,所应理解的是,以上所述仅为本发明的具体实施方式而已,并不用于限定本发明的保护范围,凡在本发明的技术方案的基础之上,所做的任何修改、等同替换、改进等,均应包括在本发明的保护范围之内。

Claims (21)

  1. 一种数据传输的方法,其特征在于,包括:
    基站确定传输策略,所述传输策略用于基于竞争的上行数据传输或基于非竞争的上行数据传输;
    基站向终端发送所述传输策略。
  2. 根据权利要求1所述的方法,其特征在于,所述基站确定传输策略,包括:
    所述基站根据待发送的下行数据的大小、基于竞争的上行业务的数量、下行业务的服务质量QoS、物理下行控制信道PDCCH的剩余资源容量中的至少一个确定所述传输策略。
  3. 根据权利要求2所述的方法,其特征在于,
    所述传输策略为第一传输指示,所述第一传输指示用于指示所述基于非竞争的上行数据传输,所述基站确定传输策略,包括:
    当满足所述待发送的下行数据的大小大于或等于第一门限、所述基于竞争的上行业务的数量大于或等于第二门限、所述PDCCH的剩余资源容量大于或等于第三门限、所述下行业务的QoS达到第一预设条件中的至少一种时,所述基站确定所述第一传输指示;或者,
    所述传输策略为第二传输指示,所述第二传输指示用于指示所述基于竞争的上行数据传输,所述基站确定传输策略,包括:
    当满足所述待发送的下行数据的大小小于第四门限、所述基于竞争的上行业务的数量小于第五门限、所述PDCCH的剩余资源容量小于第六门限、所述下行业务的QoS未达到第二预设条件中的至少一种时,所述基站确定所述第二传输指示;或者,
    所述传输策略为传输参数,所述传输参数用于确定进行所述基于竞争的上行数据传输或所述基于非竞争的上行数据传输,所述基站确定传输策略,包括:
    当满足所述待发送的下行数据的大小大于或等于第四门限且小于第一门限、所述基于竞争的上行业务的数量大于或等于第五门限且小于第二门限、所述PDCCH的剩余资源容量大于或等于第六门限且小于第三门限、所述下行业务的QoS达到第二预设条件且未达到第一预设条件中的至少一种时,所述基站确定所述传输参数,其中,所述第四门限小于所述第一门限,所述第五门限小于所述第二门限,所述第六门限小于所述第三门限。
  4. 根据权利要求3所述的方法,其特征在于,所述下行业务的QoS包括所述下行业务所允许的时延、误码率、丢包率中的至少一种,
    当所述传输策略为所述第一传输指示时,所述下行业务的QoS达到所 述第一预设条件包括如下情形中的至少一种:所述时延大于或等于第一子门限,所述误码率大于或等于第二子门限,所述丢包率大于或等于第三子门限;或者,
    当所述传输策略为所述第二传输指示时,所述下行业务的QoS未达到所述第二预设条件包括如下情形中的至少一种:所述时延小于第四子门限,所述误码率小于第五子门限,所述丢包率小于第六子门限;或者,
    当所述传输策略为所述传输参数时,所述下行业务的QoS达到所述第二预设条件且未达到所述第一预设条件包括如下情形中的至少一种:所述时延大于或等于所述第四子门限且小于所述第一子门限,所述误码率大于或等于所述第五子门限且小于所述第二子门限,所述丢包率大于或等于所述第六子门限且小于所述第三子门限;其中,所述第四子门限小于所述第一子门限,所述第五子门限小于所述第二子门限,所述第六子门限小于所述第三子门限。
  5. 根据权利要求1至4中任一项所述的方法,其特征在于,
    当所述终端采用基于非竞争的方式向所述基站发送上行数据时,所述方法还包括:
    所述基站接收所述终端发送的第一请求,所述第一请求用于请求所述基于竞争的上行数据传输;
    所述基站向所述终端发送请求确认消息,所述请求确认消息用于授权所述基于竞争的上行数据传输;
    所述基站接收所述终端采用基于竞争的方式发送的上行数据;
    或者,
    当所述终端采用所述基于竞争的方式向所述基站发送上行数据时,所述方法还包括:
    所述基站接收所述终端发送第二请求,所述第二请求用于请求所述基于非竞争的上行数据传输;
    所述基站向所述终端发送授权消息,所述授权消息用于授权所述基于非竞争的上行数据传输以及用于资源分配;
    所述基站接收所述终端采用基于非竞争的方式发送的上行数据。
  6. 根据权利要求5所述的方法,其特征在于,当所述终端采用所述基于竞争的方式向所述基站发送上行数据时,所述方法还包括:
    所述基站向所述终端发送定时提前信息,所述定时提前信息用于上行同步。
  7. 一种数据传输的方法,其特征在于,包括:
    终端接收基站发送的传输策略,所述传输策略用于基于竞争的上行数 据传输或基于非竞争的上行数据传输;
    所述终端根据所述传输策略向所述基站发送上行数据。
  8. 根据权利要求7所述的方法,其特征在于,
    所述传输策略为第一传输指示,所述第一传输指示用于指示所述基于非竞争的上行数据传输,所述终端根据所述传输策略向所述基站发送上行数据,包括:所述终端根据所述第一传输指示采用基于非竞争的方式向所述基站发送上行数据;或者,
    所述传输策略为第二传输指示,所述第二传输指示用于指示所述基于竞争的上行数据传输,所述终端根据所述传输策略向所述基站发送上行数据,包括:所述终端根据所述第二传输指示采用基于竞争的方式向所述基站发送上行数据;或者,
    所述传输策略为传输参数,所述传输参数用于确定进行所述基于竞争的上行数据传输或所述基于非竞争的上行数据传输,所述终端根据所述传输策略向所述基站发送上行数据包括:所述终端根据所述传输参数确定采用基于非竞争的方式或采用基于竞争的方式向所述基站发送上行数据。
  9. 根据权利要求7或8所述的方法,其特征在于,
    当所述终端采用所述基于非竞争的方式向所述基站发送上行数据时,所述方法还包括:
    若所述终端确定满足所述基于竞争的上行数据传输的预设条件,则所述终端向所述基站发送第一请求,所述第一请求用于请求所述基于竞争的上行数据传输;
    所述终端接收所述基站发送的请求确认消息,所述请求确认消息用于授权所述基于竞争的上行数据传输;
    所述终端采用所述基于竞争的方式向所述基站发送上行数据;
    或者,
    当所述终端采用所述基于竞争的方式向所述基站发送上行数据时,所述方法还包括:
    若所述终端确定满足所述基于非竞争的上行数据传输的预设条件,则所述终端向所述基站发送第二请求,所述第二请求用于请求所述基于非竞争的上行数据传输;
    所述终端接收所述基站发送的授权消息,所述授权消息用于授权所述基于非竞争的上行数据传输以及用于资源分配;
    所述终端采用所述基于非竞争的方式向所述基站发送上行数据。
  10. 根据权利要求9所述的方法,其特征在于,当所述终端采用所述基于竞争的方式向所述基站发送上行数据时,所述方法还包括:
    所述终端接收所述基站发送的定时提前信息,所述定时提前信息用于上行同步。
  11. 一种基站,其特征在于,包括:
    至少一个处理器,用于确定传输策略,所述传输策略用于基于竞争的上行数据传输或基于非竞争的上行数据传输;
    发射器,用于向终端发送所述传输策略。
  12. 根据权利要求11所述的基站,其特征在于,所述至少一个处理器具体用于根据待发送的下行数据的大小、基于竞争的上行业务的数量、下行业务的服务质量QoS、物理下行控制信道PDCCH的剩余资源容量中的至少一个确定所述传输策略。
  13. 根据权利要求12所述的基站,其特征在于,
    所述传输策略为第一传输指示,所述第一传输指示用于指示所述基于非竞争的上行数据传输,所述至少一个处理器具体用于当满足所述待发送的下行数据的大小大于或等于第一门限、所述基于竞争的上行业务的数量大于或等于第二门限、所述PDCCH的剩余资源容量大于或等于第三门限、所述下行业务的QoS达到第一预设条件中的至少一种时,确定所述第一传输指示;或者,
    所述传输策略为第二传输指示,所述第二传输指示用于指示所述基于竞争的上行数据传输,所述至少一个处理器具体用于当满足所述待发送的下行数据的大小小于第四门限、所述基于竞争的上行业务的数量小于第五门限、所述PDCCH的剩余资源容量小于第六门限、所述下行业务的QoS未达到第二预设条件中的至少一种时,确定所述第二传输指示;或者,
    所述传输策略为传输参数,所述传输参数用于确定进行所述基于竞争的上行数据传输或所述基于非竞争的上行数据传输,所述至少一个处理器具体用于当满足所述待发送的下行数据的大小大于或等于第四门限且小于第一门限、所述基于竞争的上行业务的数量大于或等于第五门限且小于第二门限、所述PDCCH的剩余资源容量大于或等于第六门限且小于第三门限、所述下行业务的QoS达到第二预设条件且未达到第一预设条件中的至少一种时,确定所述传输参数,其中,所述第四门限小于所述第一门限,所述第五门限小于所述第二门限,所述第六门限小于所述第三门限。
  14. 根据权利要求13所述的基站,其特征在于,所述下行业务的QoS包括所述下行业务所允许的时延、误码率、丢包率中的至少一种,
    当所述传输策略为所述第一传输指示时,所述下行业务的QoS达到所述第一预设条件包括如下情形中的至少一种:所述时延大于或等于第一子门限,所述误码率大于或等于第二子门限,所述丢包率大于或等于第三子 门限;或者,
    当所述传输策略为所述第二传输指示时,所述下行业务的QoS未达到所述第二预设条件包括如下情形中的至少一种:所述时延小于第四子门限,所述误码率小于第五子门限,所述丢包率小于第六子门限;或者,
    当所述传输策略为所述传输参数时,所述下行业务的QoS达到所述第二预设条件且未达到所述第一预设条件包括如下情形中的至少一种:所述时延大于或等于所述第四子门限且小于所述第一子门限,所述误码率大于或等于所述第五子门限且小于所述第二子门限,所述丢包率大于或等于所述第六子门限且小于所述第三子门限;其中,所述第四子门限小于所述第一子门限,所述第五子门限小于所述第二子门限,所述第六子门限小于所述第三子门限。
  15. 根据权利要求11至14中任一项所述的基站,其特征在于,所述基站还包括接收器,
    所述接收器用于当所述终端采用基于非竞争的方式向所述基站发送上行数据时,接收所述终端发送的第一请求,所述第一请求用于请求所述基于竞争的上行数据传输;所述发射器还用于在所述接收器接收所述第一请求之后向所述终端发送请求确认消息,所述请求确认消息用于授权所述基于竞争的上行数据传输;所述接收器还用于在所述发射器发送所述请求确认消息之后接收所述终端采用基于竞争的方式发送的上行数据;或者,
    所述接收器用于当所述终端采用所述基于竞争的方式向所述基站发送上行数据时,接收所述终端发送第二请求,所述第二请求用于请求所述基于非竞争的上行数据传输;所述发射器还用于在所述接收器接收所述第一请求之后向所述终端发送授权消息,所述授权消息用于授权所述基于非竞争的上行数据传输以及用于资源分配;所述接收器还用于在所述发射器发送所述授权消息之后接收所述终端采用基于非竞争的方式发送的上行数据。
  16. 根据权利要求15所述的基站,其特征在于,所述发射器还用于当所述终端采用所述基于竞争的方式向所述基站发送上行数据时,向所述终端发送定时提前信息,所述定时提前信息用于上行同步。
  17. 一种终端,其特征在于,包括:
    接收器,用于接收基站发送的传输策略,所述传输策略用于基于竞争的上行数据传输或基于非竞争的上行数据传输;
    发射器,用于根据所述传输策略向所述基站发送上行数据。
  18. 根据权利要求17所述的终端,其特征在于,
    所述传输策略为第一传输指示,所述第一传输指示用于指示所述基于 非竞争的上行数据传输,所述发射器具体用于根据所述第一传输指示采用基于非竞争的方式向所述基站发送上行数据;或者,
    所述传输策略为第二传输指示,所述第二传输指示用于指示所述基于竞争的上行数据传输,所述发射器具体用于根据所述第二传输指示采用基于竞争的方式向所述基站发送上行数据;或者,
    所述传输策略为传输参数,所述传输参数用于确定进行所述基于竞争的上行数据传输或所述基于非竞争的上行数据传输,所述发射器具体用于根据所述传输参数确定采用基于非竞争的方式或采用基于竞争的方式向所述基站发送上行数据。
  19. 根据权利要求17或18所述的终端,其特征在于,
    所述发射器还用于当所述发射器采用所述基于非竞争的方式向所述基站发送上行数据时,若所述终端确定满足所述基于竞争的上行数据传输的预设条件,则所述发射器向所述基站发送第一请求,所述第一请求用于请求所述基于竞争的上行数据传输;所述接收器还用于在所述发射器发送所述第一请求之后接收所述基站发送的请求确认消息,所述请求确认消息用于授权所述基于竞争的上行数据传输;所述发射器还用于在所述接收器接收所述请求确认消息之后采用所述基于竞争的方式向所述基站发送上行数据;或者,
    所述发射器还用于当所述发射器采用所述基于竞争的方式向所述基站发送上行数据时,若所述终端确定满足所述基于非竞争的上行数据传输的预设条件,则所述发射器向所述基站发送第二请求,所述第二请求用于请求所述基于非竞争的上行数据传输;所述接收器还用于在所述发射器发送所述第二请求之后接收所述基站发送的授权消息,所述授权消息用于授权所述基于非竞争的上行数据传输以及用于资源分配;所述发射器还用于在所述接收器接收所述授权消息之后采用所述基于非竞争的方式向所述基站发送上行数据。
  20. 根据权利要求19所述的终端,其特征在于,所述接收器还用于当所述发射器采用所述基于竞争的方式向所述基站发送上行数据时,接收所述基站发送的定时提前信息,所述定时提前信息用于上行同步。
  21. 一种通信系统,其特征在于,包括根据权利要求10至16中任一项所述的基站和根据权利要求17至20中任一项所述的终端。
PCT/CN2015/100072 2015-12-31 2015-12-31 一种数据传输的方法及装置 WO2017113272A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP15911900.7A EP3389328B1 (en) 2015-12-31 2015-12-31 Data transmission method and device
CN201580085437.2A CN108432325B (zh) 2015-12-31 2015-12-31 一种数据传输的方法及装置
PCT/CN2015/100072 WO2017113272A1 (zh) 2015-12-31 2015-12-31 一种数据传输的方法及装置
US16/023,378 US10652899B2 (en) 2015-12-31 2018-06-29 Data transmission method and apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2015/100072 WO2017113272A1 (zh) 2015-12-31 2015-12-31 一种数据传输的方法及装置

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/023,378 Continuation US10652899B2 (en) 2015-12-31 2018-06-29 Data transmission method and apparatus

Publications (1)

Publication Number Publication Date
WO2017113272A1 true WO2017113272A1 (zh) 2017-07-06

Family

ID=59224244

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/100072 WO2017113272A1 (zh) 2015-12-31 2015-12-31 一种数据传输的方法及装置

Country Status (4)

Country Link
US (1) US10652899B2 (zh)
EP (1) EP3389328B1 (zh)
CN (1) CN108432325B (zh)
WO (1) WO2017113272A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109474992A (zh) * 2017-09-08 2019-03-15 中国移动通信有限公司研究院 数据传输方法、基站及用户终端

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109076610B (zh) * 2016-05-06 2023-05-09 株式会社Ntt都科摩 终端、无线通信方法、基站及系统
US10277514B2 (en) * 2016-07-21 2019-04-30 Viasat, Inc. Methods and systems for dynamic policy based traffic steering over multiple access networks
US9781744B1 (en) * 2016-08-11 2017-10-03 Futurewei Technologies, Inc. System and method for uplink data scheduling for grant free transmission
US11706837B2 (en) * 2016-11-04 2023-07-18 Lg Electronics Inc. Method and user equipment for transmitting uplink signals
US11202307B2 (en) * 2017-09-28 2021-12-14 Lg Electronics Inc. Method for transmitting uplink data which is robust to collision on shared uplink resource in wireless communication system and a device therefor
CN113079382B (zh) * 2021-03-24 2023-04-21 百度国际科技(深圳)有限公司 消息传输方法、装置、设备、系统和存储介质

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102083224A (zh) * 2010-04-06 2011-06-01 大唐移动通信设备有限公司 一种基于竞争的上行数据传输方法及装置
CN102149080A (zh) * 2010-02-10 2011-08-10 电信科学技术研究院 缓存状态报告和调度请求的处理方法及用户设备
US20120157141A1 (en) * 2010-12-21 2012-06-21 Electronics And Telecommunications Research Institute Contention based uplink transmission method
CN103796320A (zh) * 2010-01-08 2014-05-14 华为技术有限公司 调度请求的方法及装置

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101502599B1 (ko) * 2008-01-30 2015-03-13 삼성전자주식회사 통신 시스템을 위한 접속 모드 제어 장치 및 그 방법
EP2265077B1 (en) * 2009-06-18 2012-03-21 Panasonic Corporation Enhanced random access procedure for mobile communications
US8711789B2 (en) * 2010-08-19 2014-04-29 Motorola Mobility Llc Method and apparatus for providing contention-based resource zones in a wireless network
US10028302B2 (en) 2013-03-08 2018-07-17 Huawei Technologies Co., Ltd. System and method for uplink grant-free transmission scheme
US9392487B2 (en) * 2013-05-06 2016-07-12 Huawei Technologies Co., Ltd. Systems and methods for traffic-aware medium access selection
WO2016003056A1 (ko) * 2014-07-03 2016-01-07 엘지전자(주) 무선 통신 시스템에서 다중 사용자(multi-user) 상향링크 데이터 전송을 위한 방법 및 이를 위한 장치

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103796320A (zh) * 2010-01-08 2014-05-14 华为技术有限公司 调度请求的方法及装置
CN102149080A (zh) * 2010-02-10 2011-08-10 电信科学技术研究院 缓存状态报告和调度请求的处理方法及用户设备
CN102083224A (zh) * 2010-04-06 2011-06-01 大唐移动通信设备有限公司 一种基于竞争的上行数据传输方法及装置
US20120157141A1 (en) * 2010-12-21 2012-06-21 Electronics And Telecommunications Research Institute Contention based uplink transmission method

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3389328A4 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109474992A (zh) * 2017-09-08 2019-03-15 中国移动通信有限公司研究院 数据传输方法、基站及用户终端

Also Published As

Publication number Publication date
EP3389328A4 (en) 2019-01-02
US20180324811A1 (en) 2018-11-08
CN108432325B (zh) 2021-04-09
EP3389328B1 (en) 2023-08-09
EP3389328A1 (en) 2018-10-17
US10652899B2 (en) 2020-05-12
CN108432325A (zh) 2018-08-21

Similar Documents

Publication Publication Date Title
WO2017113272A1 (zh) 一种数据传输的方法及装置
JP5654698B2 (ja) ランダムアクセス手順を行う方法及び装置
KR20200036797A (ko) 무선통신 시스템에서 랜덤 액세스 방법 및 장치
EP3768027B1 (en) Random access processing methods and related devices
JP5236749B2 (ja) 時間同期タイマーの満了時のダウンリンクharqの動作方法
CN111919497B (zh) 在无线通信系统中执行随机接入的方法和装置
CN111587593A (zh) 下一代移动通信系统中有效的系统信息请求方法和终端装置
KR102110545B1 (ko) 무선 통신 시스템에서 경쟁 기반 pusch 전송에 대한 경쟁 해소를 수행하기 위한 방법 및 장치
CN112106430A (zh) 宽带无线通信系统中控制上行链路时间对齐的方法和装置
EP3567906B1 (en) Inactivity handling of devices with delay-tolerant traffic
EP3400752B1 (en) Signaling reduction for out-of-sync users
JP6641034B2 (ja) 無線端末、基地局、無線通信方法、及び無線通信システム
WO2021087927A1 (zh) 随机接入方法、装置和通信系统
CN110710321A (zh) 执行随机接入过程的方法和用户设备
JP2018507629A (ja) 非同期アップリンク伝送のための方法、端末、及び基地局
WO2019194296A1 (ja) 通信制御方法
KR100992780B1 (ko) 랜덤 액세스 절차를 수행하는 방법
TWI630838B (zh) 處理與基地台的通訊的裝置及方法
US20220232619A1 (en) Method processing for split resources and processing device
JP7262610B2 (ja) チャネルの伝送方法、電子機器および記憶媒体
US10433364B2 (en) Systems and methods for facilitating the transition of a wireless communication device (WCD) from a CELL_FACH state to a CELL_DCH state
WO2024148662A1 (zh) 无线通信的方法及装置
WO2023108420A1 (zh) 定时提前的有效性的确定方法、装置、设备及存储介质
WO2019158096A1 (zh) 随机接入过程中传输数据的方法和装置
WO2020199001A1 (zh) 信息发送方法、信息发送装置和通信系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15911900

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2015911900

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2015911900

Country of ref document: EP

Effective date: 20180710