WO2017112993A1 - Method for producing a thin-film nanostructure composed of a polymeric amphiphilic blend with a high concentration of the organic core as a u.v. protection filter - Google Patents

Method for producing a thin-film nanostructure composed of a polymeric amphiphilic blend with a high concentration of the organic core as a u.v. protection filter Download PDF

Info

Publication number
WO2017112993A1
WO2017112993A1 PCT/BR2016/050353 BR2016050353W WO2017112993A1 WO 2017112993 A1 WO2017112993 A1 WO 2017112993A1 BR 2016050353 W BR2016050353 W BR 2016050353W WO 2017112993 A1 WO2017112993 A1 WO 2017112993A1
Authority
WO
WIPO (PCT)
Prior art keywords
organic
phase
rpm
prepared
aqueous
Prior art date
Application number
PCT/BR2016/050353
Other languages
French (fr)
Portuguese (pt)
Other versions
WO2017112993A8 (en
Inventor
Juliana Flor
Marcos Rogério SPINA
Natália NETO PEREIRA CERIZE
Adriano Marim De Oliveira
Kleber LANIGRA GUIMARÃES
Maria Helena AMBRASIO ZANIN
Thais ARAGÃO HOROIWA
Tatiana SANTANA BALOGH
Priscila CAROLLO MONCAYO
Simone Andrea EMIDIO
Karina MORETTI DA SILVA
Original Assignee
Natura Cosméticos S.A.
Instituto De Pesquisas Tecnológicas Do Estado De São Paulo S.A. - Ipt
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Natura Cosméticos S.A., Instituto De Pesquisas Tecnológicas Do Estado De São Paulo S.A. - Ipt filed Critical Natura Cosméticos S.A.
Publication of WO2017112993A1 publication Critical patent/WO2017112993A1/en
Publication of WO2017112993A8 publication Critical patent/WO2017112993A8/en

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K8/00Cosmetics or similar toiletry preparations
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K8/00Cosmetics or similar toiletry preparations
    • A61K8/02Cosmetics or similar toiletry preparations characterised by special physical form
    • A61K8/11Encapsulated compositions
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K8/00Cosmetics or similar toiletry preparations
    • A61K8/18Cosmetics or similar toiletry preparations characterised by the composition
    • A61K8/96Cosmetics or similar toiletry preparations characterised by the composition containing materials, or derivatives thereof of undetermined constitution
    • A61K8/97Cosmetics or similar toiletry preparations characterised by the composition containing materials, or derivatives thereof of undetermined constitution from algae, fungi, lichens or plants; from derivatives thereof
    • A61K8/9783Angiosperms [Magnoliophyta]
    • A61K8/9794Liliopsida [monocotyledons]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K8/00Cosmetics or similar toiletry preparations
    • A61K8/02Cosmetics or similar toiletry preparations characterised by special physical form
    • A61K8/04Dispersions; Emulsions
    • A61K8/06Emulsions
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K8/00Cosmetics or similar toiletry preparations
    • A61K8/18Cosmetics or similar toiletry preparations characterised by the composition
    • A61K8/19Cosmetics or similar toiletry preparations characterised by the composition containing inorganic ingredients
    • A61K8/29Titanium; Compounds thereof
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K8/00Cosmetics or similar toiletry preparations
    • A61K8/18Cosmetics or similar toiletry preparations characterised by the composition
    • A61K8/30Cosmetics or similar toiletry preparations characterised by the composition containing organic compounds
    • A61K8/33Cosmetics or similar toiletry preparations characterised by the composition containing organic compounds containing oxygen
    • A61K8/34Alcohols
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K8/00Cosmetics or similar toiletry preparations
    • A61K8/18Cosmetics or similar toiletry preparations characterised by the composition
    • A61K8/30Cosmetics or similar toiletry preparations characterised by the composition containing organic compounds
    • A61K8/33Cosmetics or similar toiletry preparations characterised by the composition containing organic compounds containing oxygen
    • A61K8/35Ketones, e.g. benzophenone
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K8/00Cosmetics or similar toiletry preparations
    • A61K8/18Cosmetics or similar toiletry preparations characterised by the composition
    • A61K8/30Cosmetics or similar toiletry preparations characterised by the composition containing organic compounds
    • A61K8/33Cosmetics or similar toiletry preparations characterised by the composition containing organic compounds containing oxygen
    • A61K8/37Esters of carboxylic acids
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K8/00Cosmetics or similar toiletry preparations
    • A61K8/18Cosmetics or similar toiletry preparations characterised by the composition
    • A61K8/30Cosmetics or similar toiletry preparations characterised by the composition containing organic compounds
    • A61K8/40Cosmetics or similar toiletry preparations characterised by the composition containing organic compounds containing nitrogen
    • A61K8/42Amides
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K8/00Cosmetics or similar toiletry preparations
    • A61K8/18Cosmetics or similar toiletry preparations characterised by the composition
    • A61K8/30Cosmetics or similar toiletry preparations characterised by the composition containing organic compounds
    • A61K8/46Cosmetics or similar toiletry preparations characterised by the composition containing organic compounds containing sulfur
    • A61K8/463Cosmetics or similar toiletry preparations characterised by the composition containing organic compounds containing sulfur containing sulfuric acid derivatives, e.g. sodium lauryl sulfate
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K8/00Cosmetics or similar toiletry preparations
    • A61K8/18Cosmetics or similar toiletry preparations characterised by the composition
    • A61K8/72Cosmetics or similar toiletry preparations characterised by the composition containing organic macromolecular compounds
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K8/00Cosmetics or similar toiletry preparations
    • A61K8/18Cosmetics or similar toiletry preparations characterised by the composition
    • A61K8/92Oils, fats or waxes; Derivatives thereof, e.g. hydrogenation products thereof
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K8/00Cosmetics or similar toiletry preparations
    • A61K8/18Cosmetics or similar toiletry preparations characterised by the composition
    • A61K8/92Oils, fats or waxes; Derivatives thereof, e.g. hydrogenation products thereof
    • A61K8/922Oils, fats or waxes; Derivatives thereof, e.g. hydrogenation products thereof of vegetable origin
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/14Particulate form, e.g. powders, Processes for size reducing of pure drugs or the resulting products, Pure drug nanoparticles
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61QSPECIFIC USE OF COSMETICS OR SIMILAR TOILETRY PREPARATIONS
    • A61Q17/00Barrier preparations; Preparations brought into direct contact with the skin for affording protection against external influences, e.g. sunlight, X-rays or other harmful rays, corrosive materials, bacteria or insect stings
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61QSPECIFIC USE OF COSMETICS OR SIMILAR TOILETRY PREPARATIONS
    • A61Q17/00Barrier preparations; Preparations brought into direct contact with the skin for affording protection against external influences, e.g. sunlight, X-rays or other harmful rays, corrosive materials, bacteria or insect stings
    • A61Q17/04Topical preparations for affording protection against sunlight or other radiation; Topical sun tanning preparations
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J13/00Colloid chemistry, e.g. the production of colloidal materials or their solutions, not otherwise provided for; Making microcapsules or microballoons
    • B01J13/02Making microcapsules or microballoons
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J13/00Colloid chemistry, e.g. the production of colloidal materials or their solutions, not otherwise provided for; Making microcapsules or microballoons
    • B01J13/02Making microcapsules or microballoons
    • B01J13/04Making microcapsules or microballoons by physical processes, e.g. drying, spraying
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B02CRUSHING, PULVERISING, OR DISINTEGRATING; PREPARATORY TREATMENT OF GRAIN FOR MILLING
    • B02CCRUSHING, PULVERISING, OR DISINTEGRATING IN GENERAL; MILLING GRAIN
    • B02C19/00Other disintegrating devices or methods
    • B02C19/18Use of auxiliary physical effects, e.g. ultrasonics, irradiation, for disintegrating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B9/00Making granules
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B3/00Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar form; Layered products having particular features of form
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B37/00Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82BNANOSTRUCTURES FORMED BY MANIPULATION OF INDIVIDUAL ATOMS, MOLECULES, OR LIMITED COLLECTIONS OF ATOMS OR MOLECULES AS DISCRETE UNITS; MANUFACTURE OR TREATMENT THEREOF
    • B82B3/00Manufacture or treatment of nanostructures by manipulation of individual atoms or molecules, or limited collections of atoms or molecules as discrete units
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B40/00Processes, in general, for influencing or modifying the properties of mortars, concrete or artificial stone compositions, e.g. their setting or hardening ability
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09CTREATMENT OF INORGANIC MATERIALS, OTHER THAN FIBROUS FILLERS, TO ENHANCE THEIR PIGMENTING OR FILLING PROPERTIES ; PREPARATION OF CARBON BLACK  ; PREPARATION OF INORGANIC MATERIALS WHICH ARE NO SINGLE CHEMICAL COMPOUNDS AND WHICH ARE MAINLY USED AS PIGMENTS OR FILLERS
    • C09C3/00Treatment in general of inorganic materials, other than fibrous fillers, to enhance their pigmenting or filling properties
    • C09C3/04Physical treatment, e.g. grinding, treatment with ultrasonic vibrations
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09CTREATMENT OF INORGANIC MATERIALS, OTHER THAN FIBROUS FILLERS, TO ENHANCE THEIR PIGMENTING OR FILLING PROPERTIES ; PREPARATION OF CARBON BLACK  ; PREPARATION OF INORGANIC MATERIALS WHICH ARE NO SINGLE CHEMICAL COMPOUNDS AND WHICH ARE MAINLY USED AS PIGMENTS OR FILLERS
    • C09C3/00Treatment in general of inorganic materials, other than fibrous fillers, to enhance their pigmenting or filling properties
    • C09C3/06Treatment with inorganic compounds
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K2800/00Properties of cosmetic compositions or active ingredients thereof or formulation aids used therein and process related aspects
    • A61K2800/40Chemical, physico-chemical or functional or structural properties of particular ingredients
    • A61K2800/41Particular ingredients further characterized by their size
    • A61K2800/412Microsized, i.e. having sizes between 0.1 and 100 microns
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K2800/00Properties of cosmetic compositions or active ingredients thereof or formulation aids used therein and process related aspects
    • A61K2800/40Chemical, physico-chemical or functional or structural properties of particular ingredients
    • A61K2800/60Particulates further characterized by their structure or composition
    • A61K2800/65Characterized by the composition of the particulate/core
    • A61K2800/654The particulate/core comprising macromolecular material

Definitions

  • the invention which pertains to the cosmetics and pharmaceutical preparations sector of actives characterized by special physical forms, relates to the process of producing nanostructured nanoparticles acting as an ultraviolet radiation filter formed by a thin film of amphiphilic blend. high concentration polymeric encapsulated organic core as ultraviolet radiation filter. Due to their size scale, composition and morphology, these nanoparticles can be applied in cosmetic formulations for sunscreen preparation, or in any other formulation that has an interest in protection against solar radiation.
  • Topical sunscreens are recommended to protect human skin against the acute and chronic adverse effects of solar radiation.
  • the main reported effects of solar radiation are acute sunburn, many forms of photoallergy, premature photoaging, skin neoplasia, and pre-neoplastic melanoma and non-melanoma disorders.
  • a modern sunscreen with a broad spectrum of UVB and UVA protection and a long-lasting effect should prevent erythema and skin inflammation (mediated by ROS species).
  • Sunscreen preparations are usually applied to large areas of the skin and should remain on its surface and penetrate it as little as possible. Sunscreens usually need a long residence time on the skin to perform their function to absorb or reflect UV radiation, however. Both the risk of systemic distribution should be considered as they may lead to toxicological problems such as estrogenic and antiandrogenic activities, as well as carcinogenic effects, as well as being photosensitizing, photoirritating and photoallergenic.
  • sunscreens are cinnamates such as octyl methoxycinnamate (WTO), which absorbs radiation in the region of 290 - 320 nm, and benzophenones, such as benzophenone-3 (BZ-3) which absorbs in the region of 320 - 340 nm.
  • WTO octyl methoxycinnamate
  • BZ-3 benzophenone-3
  • Colloidal nanocarriers such as microemulsions, naemulsions and polymeric nanocapsules, are proposed as an alternative to improve topical administration based on their ability to encapsulate pharmaceutical and cosmetic actives when compared to usual topical compositions such as emulsions. and gels.
  • the sunscreen encapsulation strategy enables an improvement in photostability and efficacy compared to unencapsulated sunscreen, thereby reducing toxicological effects, as shown in the papers by GK Borghetti (BORGHETTI GK) O / W lotions containing sunscreens, "Braz. J. Pharm. Sci., Vol. 42, pp. 531-537, 2006) and M. Burnett and S. Wang (Burnett, M. and WANG S.” Current sun-screen controversies: a critical review, "Photomed., Photodermatol. Photoimmunol., vol. 27, pp. 58-67, 201 1).
  • encapsulation has been shown as an effective way to prevent octylmethoxycinnamate (WTO) photodegradation in formulations and to reduce its penetration into the skin leading to an increase FPS (PERUGINI, P. et al "Effect of nanoparticle encapsulation on photostability of the suncreen agent, 2-ethylhexyl-p-methoxycinnamate", Int. J. Pharm., Vol. 246, pp. 37-45, 2002.; ANUMANSIRIKUL N. et al, "Chitosan UV-screening nanocontainers: increasing the photostability of encapsulated materials and controlled release", Nanotechnology, vol.
  • WO 2004069216 discloses a stabilized composition of the cinnamic ester sunscreen, relating to a method of increasing the photostability of an encapsulated cinnamate derivative in a topical sunscreen
  • WO 201 1112129 discloses a nanostructured sunscreen agent and its synthesis process comprising core-shell nanoparticles, consisting of a wall formed of oxide nanoparticles and a core of broad spectrum solar radiation protection polymers from UVA to UVB.
  • WO2015022471 (“Aqueous suspension of nanocapsules encapsulating sunscreen agents”) relates to an aqueous nanocapsule suspension comprising at least one UV filter (avobenzone [butyl methoxydibenzoylmethane] and ethylhexyl salicylate obtained by a method employing two The addition of the organic phase is added to the aqueous phase.
  • UV filter avobenzone [butyl methoxydibenzoylmethane] and ethylhexyl salicylate
  • production process of polymeric amphiphilic slender film nanostructure with high concentration of organic core for application against ultraviolet radiation 3 phases are used, one phase added to the aqueous and a second aqueous phase added to the first emulsion, initiating the controlled diffusion process, the latter being the formed structure comprises a core filter blend without oil or other additives; furthermore, the polymeric capsule contains a blend of hydrophobic polymers, PCL, and Plurnic hydrophilic copolymer, and not just a polymer like the above invention, giving a superior and unexpected technical effect of future colloidal stability as well as photoprotective effect.
  • UV filters diethylamino hydroxybenzoyl hexylbenzoate, homosalate and octocrene
  • microcapsules including sunscreen agents' composed of a core with one or more sunscreen agents and a cover of a wall-forming polymer which do not break by rubbing or pressing on the shell.
  • the polymeric thin film and the organic content of the UV filter is not an obvious derivative of the disclosure, and WO2014132261 also uses a method of emulsification and solvent evaporation, which does not allow nanocapsules to be generated, but only microparticles.
  • WO2014074555 (“Composition containing a cellulose derived capsule with a sunscreen”) describes sunscreen formulations with one or more sunscreen agents (homosalate, butyl methoxydibenzoylmethane, Uvinul A Plus (diethylamino hydroxybenzoyl hexyl). benzoate), octocrylene and ethylhexyl salicylate encapsulated in a cellulose-derived capsule, preferably in the range 400 - 700 nm, and one or more additional agents, which differs from that disclosed herein by the process of obtaining, as for the composition and morphology of the nanostructure obtained.
  • sunscreen agents homosalate, butyl methoxydibenzoylmethane, Uvinul A Plus (diethylamino hydroxybenzoyl hexyl). benzoate
  • octocrylene and ethylhexyl salicylate encapsulated in a cellulose-derived capsule,
  • the nanostructure with a thin amphiphilic combination film containing high concentration of encapsulated sunscreen agents is novel and inventive in the concept of performance in the Sunscreen Factor (SPF) and sensory effect when applied to the skin, corroborated by the fact that this sunscreen concentrates on the core organic sunscreens in a range of 50 to 90 wt% UV filter relative to the nanocapsule, making it possible to encapsulate high filter contents in a very thin / thin polymer blend structure. Furthermore, it is possible to work with higher concentrations of the chemical agent in sunscreen formulations, maintaining a sensory and cosmetic elegance, since the sunscreens protected by the amphilic thin film do not cause skin irritation or irritability because they are nanoencapsulated. and maintain the protective effect of UV radiation even when acting on the core. DESCRIPTION OF THE FIGURES
  • Figure 1 Electron microscopy photo of the polymer nanoparticles of Example 1, with photo 1A increasing by 5,000X and 1B increasing by 10,000X.
  • FIG. 2 SEM photo of the polymeric nanoparticles of Example 2 containing potassium cetyl phosphate in the aqueous phase and dilution, photo 2A increasing by 5,000X and 2B increasing by 10,000X.
  • Figure 3 - Analysis results from Sample 3, where 3A Particle Size Distribution Chart, 3B Zeta Potential Distribution Profile, 3C1 SEM SEM micrograph with 20,000X magnification, 3C2 SEM SEM micrograph with 50,000X magnification, Figure 3D Thermography Curve Graph of the dry sample, 3E Differential Exploratory Calorimetry Profile Chart of the dry sample and 3F Physical Stability Profile Chart of the nanocapers suspension.
  • Figure 4 - Results of analysis of Sample 4 being 4A Particle Size Distribution Chart and 4B 23 h Turbidimetry Physical Stability Profile Chart.
  • Figure 5 Representative non-scaled photographs of tests performed on the sample of Example 3, where 5A Photo of the sample layout on automated skin permeation system, 5B featuring Tape-stripping procedure and 5C showing shredded skins mixed with acetone for filter extraction.
  • the "Organic Core High Concentration Polymeric Amphiphilic Slender Film Nanostructure Production Process for Application against Ultraviolet Radiation" generates a peel-to-core nanoparticle conjugation product, where the shell is composed of a thin polymeric film comprising a blend of a hydrophobic polymer, which may be of the type polyester, polycarbonate, acrylate, methacrylate, acrylate derivatives, polyhydroxybutyrate, vinyl, styrenic, acrylamide, methacrylamide, preferably polycaprolactone, and polymer may also be used.
  • a hydrophobic polymer which may be of the type polyester, polycarbonate, acrylate, methacrylate, acrylate derivatives, polyhydroxybutyrate, vinyl, styrenic, acrylamide, methacrylamide, preferably polycaprolactone, and polymer may also be used.
  • a hydrophilic copolymer which may be of the polyether, polyacid, polyol type, preferably polyoxyethylene or polyoxypropylene copolymers, and the core by a character phase comprising the combination of chemical radiation protection agents the ultraviolet, salicylates, cinnamates, benzophenones, anthranilates, dibenzoylmethanes, camphor derivatives, triazones and PABA derivatives (or p-aminobenzoates) preferably the combination of at least two of these comprising a liquid physical mixture at a temperature of 22 ° C. 25 Q C.
  • a character phase comprising the combination of chemical radiation protection agents the ultraviolet, salicylates, cinnamates, benzophenones, anthranilates, dibenzoylmethanes, camphor derivatives, triazones and PABA derivatives (or p-aminobenzoates) preferably the combination of at least two of these comprising a liquid physical mixture at a temperature of 22
  • the synthesis of the nanostructures involves three phases: organic, aqueous and aqueous dilution phase.
  • organic solvents such as ketones, esters and alcohols are used, or a combination of two or more of them, preferably ethyl acetate, where the hydrophobic polymer, the organic content of chemical agents against UV radiation, is added individually.
  • the aqueous phase is prepared with distilled water and surfactant type sodium lauryl ether sulfate or cocoamidopropyl betaine or coconut fatty acid diethanolamide or sorbitan 80 EO laurate, preferably cetyl phosphate.
  • the dilution phase is prepared with distilled water and surfactants such as sodium lauryl ether sulfate or cocoamidopropyl betaine or coconut fatty acid diethanolamide or sorbitan 80 EO laurate.
  • the organic phase is prepared under magnetic or mechanical stirring from 10 to 700 rpm, preferably 200 rpm, and a temperature of 15 to 65 ° C, preferably 50 ° C until total dissolution of the components.
  • the aqueous and dilution phases are prepared under mechanical agitation at 10 to 700 rpm, preferably at 200 rpm, and at a temperature of 15 to 65, preferably 25, until complete solubilization of the surfactants.
  • Emulsion is formed by adding the organic phase to the aqueous phase directly with vigorous mechanical stirring from 1,000 to 23,000 rpm, preferably 7,000 rpm.
  • the emulsion formed is transferred to the reactor under mechanical agitation at 150 to 1000 rpm, preferably at 400 rpm, and the dilution phase is added directly to the reactor.
  • the system should remain under a vacuum of 1 to 600 mmHg, preferably 200 mmHg, at a temperature of 35 to 75, preferably 50, with mechanical stirring of 150 to 1000 rpm, preferably 400 rpm, for a time period of 15 to 180 minutes. preferably 40 minutes for extraction of the organic solvent.
  • EXAMPLE 1 Obtaining high-concentration polymeric amphiphilic blend thin-film nanostructure of an organic character for application against ultraviolet radiation with addition of dilution phase in the reactor
  • the organic phase was prepared with 50.0 g of ethyl acetate, 1.0 g of polycaprolactone (MW: 10 KDa), 1.0 g of polyoxyethylene polyoxypropylene block copolymers, 2.5 g of Ethoxylated Sorbitan Monolaurate 80 EO and 18.0 g of the mixture of butyl methoxydibenzoylmethane, diethylamino hydroxybenzoyl hexylbenzoate, ethylhexyl salicylate, homo-salate and octocrylene in 13.64% butyl methoxydibenzoyl methane, 4, 54% diethylamino hydroxybenzoyl hexylbenzoate, 18.18% ethylhexyl salicylate
  • the aqueous phase was prepared with 22.5 g of distilled water and 2.5 g of sodium lauryl ether sulfate surfactant.
  • the dilution phase was prepared with 45.0 g of distilled water, 2.5 g of sodium lauryl ether sulfate and 2.5 g of 80 EO ethoxylated sorbitan monolaurate.
  • the organic phase was prepared under magnetic stirring at 100 rpm and heating to 50 Q C until complete dissolution of the components, yielding a transl ⁇ - acidic solution.
  • the aqueous and dilution phases were prepared by mechanical stirring at 250 rpm at room temperature until complete solubilization of the surfactants.
  • the organic phase was poured onto the aqueous phase slowly with mechanical stirring of 7,000 rpm for 1 minute. Then the emulsion formed was inserted into the reactor under mechanical stirring at 400 rpm and the dilution phase added directly into the reactor. The system remained under vacuum (300 mmHg) at 50 ° C and mechanical stirring at 400 rpm for 40 minutes for ethyl acetate extraction.
  • EXAMPLE 2 Obtaining thin film nanostructure of polymeric amphiphilic blend with high organic core concentration with addition of potassium cetylphosphate as a dilution and aqueous phase
  • polymeric amphiphilic slender thin film nanostructures containing sunscreen involved the preparation of three phases: organic, aqueous and dilution.
  • organic phase prepared with 50.0 g ethyl acetate, 1.0 g polycaprolactone (PM: 10 KDa), 1.0 g polyoxyethylene polyoxypropylene block copolymers, 2.5 g ethoxylated sorbitan monolaurate 80 EO and 18.0 g of a mixture of butyl methoxydibenzoylmethane, diethylamino hydroxybenzoyl hexylbenzoate, ethylhexyl salicylate, homosalate and octocrylene (13.64% diethylamino hydroxybenzoylhexylbenzoate, 18.18% ethylene salt) 22.73% homosalate and 40.91% octocrylene
  • the aqueous phase was prepared with 22.5 g of distilled water and 2.7
  • the organic phase was prepared under magnetic stirring of 400 rpm and heating at 50 Q C until complete dissolution of the components obtaining a clear solution
  • the aqueous and dilution phases were prepared mechanically stirred at 400 rpm at room temperature until complete solubilization of the surfactants.
  • the organic phase was poured into the aqueous phase for 2 minutes with vigorous mechanical stirring of 7,000 rpm using Ultraturrax. Then the emulsion formed was inserted into the reactor with mechanical stirring of 400 rpm and the dilution phase added directly to the reactor. The system remained under vacuum -480 mmHg at 50 ° C with mechanical stirring of 400 rpm for 40 minutes for extraction of ethyl acetate.
  • the morphology of the nanocapsulated suspensions was evaluated by high resolution scanning electron microscopy (SEM-FEG) and the particle size, polydispersion index (IP) and pH were determined. The results are shown in Table 2.
  • Figure 2 shows the electron microscopy (SEM) images of the obtained sample.
  • EXAMPLE 3 Obtaining a high-concentration organic polymeric amphiphilic blend thin film nanostructure with phase warming, high shear homogenization, and 3 g polymer mass
  • polymeric amphiphilic slender thin film nanostructures containing sunscreen involved the preparation of three phases: organic, aqueous and dilution.
  • organic phase prepared with 50.0 g ethyl acetate, 3.0 g polycaprolactone (PM: 10 KDa), 1.0 g polyoxyethylene polyoxypropylene block copolymers, 2.5 g ethoxylated sorbitan monolaurate 80 EO and 30.0 g of the mixture of butyl methoxydibenzoylmethane, diethylamino hydroxybenzoyl hexylbenzoate, ethylhexyl salicylate, homosalate and octocrene (13.64% butyl methoxydibenzoylmethane, 4.54% diethylamino hydroxybenzoylhexylbenzoate, 18.18% ethylene 22.73% homosalate and 40.91% octocrylene
  • the aque prepared
  • the dilution phase was prepared with 45.0 g of distilled water, 0.68 g of potassium cetyl phosphate, 2.5 g of 80 EO ethoxylated sorbitan monolaurate.
  • the organic phase was prepared with magnetic stirring of 400 rpm under heating to 50 Q C until complete dissolution of the components to give a clear solution.
  • the aqueous layers were diluted and prepared with magnetic stirring of 400 rpm under heating to 50 Q C until complete solubilization of the surfactants.
  • the organic phase was poured slowly over the aqueous phase for 15 minutes with mechanical stirring of 7,000 rpm. Then, the dilution phase was poured onto the formed emulsion and the dispersion formed was allowed to stir for 3 minutes at 7,000 rpm. The particulate suspension was then added to the reactor, leaving the system under vacuum - 480 mmHg at 50 ° C with mechanical stirring of 400 rpm for 40 minutes for ethyl acetate extraction.
  • the morphology of the nanocapsulated suspensions was evaluated by high resolution scanning electron microscopy (SEM-FEG) and particle size, polydispersion index (IP) and pH were determined. Thermogravimetric analysis (TG), differential exploratory calorimetry profile (DSC) and physical stability of the suspension by turbidimetry were performed. The results obtained are shown in Table 3.
  • Figure 3A shows the electron microscopy (SEM) images of the sample obtained in the method.
  • EXAMPLE 4 Obtaining nanostructured film nanostructure high concentration polymeric amphiphilic blend of an organic core for application against ultraviolet radiation with heating of the aqueous and dilution phases and use of high shear homogenization
  • the production of the organic core high concentration polymeric amphiphilic thin film nanostructure for application against ultraviolet radiation involved the preparation of three phases: organic, aqueous and dilution.
  • organic phase prepared with 150.0 g ethyl acetate, 12.0 g polycaprolactone (PM: 10 KDa), 6.0 g polyoxyethylene polyoxypropylene block copolymers, 7.6 g ethoxylated sorbitan monolaurate 80 EO and 90.0 g of the mixture of butyl methoxydibenzoylmethane, diethylamino hydroxybenzoyl hexylbenzoate, ethylhexyl salicylate, homosalate and octocrylene (13.64% diethylamino hydroxybenzoylhexylbenzoate, 18.18% ethylene salt) 22.73% homosalate and 40.91% octocrylene
  • the aqueous phase was prepared with 67.6
  • the dilution phase was prepared with 135.7 g of distilled water, 2.0 g of potassium cetyl phosphate, 7.6 g of 80 EO ethoxylated sorbitan monolaurate.
  • the organic phase was prepared with magnetic stirring at 400 rpm under 50 ° C heating. Q C until the total dissolution of the components obtaining a translucent solution. gone.
  • the aqueous layers were diluted and prepared with magnetic stirring of 400 rpm under heating at 50 Q C until complete solubilization of the active tenso-.
  • the organic phase was poured slowly over the aqueous phase over 15 minutes with mechanical stirring of 7,000 rpm. Then the dilution phase was poured over the formed emulsion and the dispersion formed was left to stir for 3 minutes at 7,000 rpm.
  • the particle suspension was It is then added to the reactor, leaving the system under vacuum at 400 rpm at 50 ° C, with mechanical stirring at 400 rpm for 5 hours to extract ethyl acetate.
  • To the suspension of the obtained nanoencapsulates was added 1.2% (w / w) mixture of phenoxyethanol with caprylyl glycol and 0.6% (w / w) dehydroacetic acid as preservative system.
  • Particle size, polydispersion index (IP) and solids content as shown in Table 4 were determined, and the physical stability of the nanoparticle suspension was monitored by dynamic turbidity where the 23 hr profile is presented. in Figure 4B.
  • CVD vertical diffusion cells
  • the assay was conducted at a temperature of 32 ⁇ 0.5 and rotation of 300 rpm, with 0.4 g of sample formulation taken, evenly spread in duplicate over the permeant membrane, placed over the area of 1 ⁇ m. 77 cm 2 available for diffusion cell permeation as depicted in Figure 5A using pH 7.2 phosphate buffer as the receptor solution.
  • permeated sunscreen blend concentrations For the determination of permeated sunscreen blend concentrations, 1.0 mL aliquots of the receiving solution were collected at predetermined time intervals (0, 1, 2, 4, 6, 8, 10, 12 and 24 hours), and the total duration of the experiment was 24 hours. Asset concentrations were quantified by high performance liquid chromatography (HPLC) using column chromatography. 150 x 4.6 mm and diode array detector (DAD). The concentrations of each component of the sunscreen blend were measured by the linear regression method using a calibration curve constructed with standards prepared by mixing the constituent chemicals of the sunscreen blend at the composition concentrations solubilized with ethanol PA.
  • HPLC high performance liquid chromatography
  • DAD diode array detector
  • the membranes were subjected to tape stripping to measure the dye retained in the stratum corneum.
  • the membranes were removed from the CVDs, washed with water and gently dried, and the stratum corneum layers of the dye contact region were removed by adhesive tapes (16 strokes), as shown in Figure 5B.
  • the strips were washed in 10 mL of acetone on a mechanical shaker at 2500 rpm for 1 minute, then ultrasound for 16 minutes. The supernatant was analyzed by HPLC according to the above methodology.
  • the membrane contact area was cut and ground in acetone, as shown in Figure 5C 3, and subjected to centrifugation separation at 5000 rpm for 5 minutes. The supernatant was assessed by HPLC under the conditions previously cited.
  • the permeation assay indicated that the percentages for permeate were practically zero and below the detection limit of the method, indicating that there is no nanoencapsulated filter blend penetration.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Veterinary Medicine (AREA)
  • Animal Behavior & Ethology (AREA)
  • Public Health (AREA)
  • Epidemiology (AREA)
  • Birds (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Medicinal Chemistry (AREA)
  • Nanotechnology (AREA)
  • Emergency Medicine (AREA)
  • Dispersion Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Dermatology (AREA)
  • Food Science & Technology (AREA)
  • Ceramic Engineering (AREA)
  • Biotechnology (AREA)
  • Botany (AREA)
  • Materials Engineering (AREA)
  • Mycology (AREA)
  • General Physics & Mathematics (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Microbiology (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Analytical Chemistry (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Manufacturing & Machinery (AREA)
  • Polymers & Plastics (AREA)
  • Composite Materials (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Biochemistry (AREA)
  • Toxicology (AREA)

Abstract

The present invention relates to a method for producing a thin-film nanostructure composed of a polymeric amphiphilic blend with a high concentration of the organic core for use against ultraviolet radiation, belonging to the field of cosmetics and pharmaceutical preparations of active substances characterised by special physical forms, involving three phases: an organic phase, an aqueous phase and an aqueous dilution phase, wherein in the organic phase an organic solvent such as ketones, esters and alcohols is used, or a combination of two or more of these substances, wherein the hydrophobic polymer, the organic chemical agents against U.V. radiation, the hydrophilic copolymer and a non-ionic surfactant are added individually; the aqueous phase is prepared with distilled water and a surfactant such as lauryl ether sodium sulphate or cocoamidopropyl betaine or coconut fatty acid diethanolamide or sorbitan laurate 80 EO, or cetyl phosphate; and the dilution phase is prepared with distilled water and surfactants, such as lauryl ether sodium sulphate or cocoamidopropyl betaine or coconut fatty acid diethanolamide or sorbitan laurate 80 EO.

Description

PROCESSO DE PRODUÇÃO DE NANOESTRUTURA DE PELÍCULA DELGADA DE BLENDA ANFIFÍLICA POLIMÉRICA COM ALTA CONCENTRAÇÃO DE NÚCLEO ORGÂNICO COMO FILTRO PROCESS FOR PRODUCTION OF POLYMERIC AMPHIPHYLIC SLENDER FILM NANOSTRUCTURE WITH HIGH CONCENTRATION OF ORGANIC CORE AS FILTER
DE RADIAÇÃO ULTRAVIOLETA CAMPO DE ATUACÂO ULTRAVIOLET RADIATION FIELD
[001 ] A invenção, pertencente ao setor de cosméticos e preparações farmacêuticas de ativos caracterizadas por formas físicas especiais, refere-se ao processo de produção de nanopartículas nanoestrutu- radas, atuando como filtro de radiação ultravioleta, formadas por uma película delgada de blenda anfifílica polimérica com alta concentração de núcleo orgânico encapsulado como filtro de radiação ultravioleta. Devido a sua escala de tamanho, composição e morfologia, essas nanopartículas podem ser aplicadas em formulações cosméticas para preparação de protetores solares, ou em qualquer outra formulação que tenha interesse em proteção contra a radiação solar.  [001] The invention, which pertains to the cosmetics and pharmaceutical preparations sector of actives characterized by special physical forms, relates to the process of producing nanostructured nanoparticles acting as an ultraviolet radiation filter formed by a thin film of amphiphilic blend. high concentration polymeric encapsulated organic core as ultraviolet radiation filter. Due to their size scale, composition and morphology, these nanoparticles can be applied in cosmetic formulations for sunscreen preparation, or in any other formulation that has an interest in protection against solar radiation.
ESTADO DA TÉCNICA TECHNICAL STATE
[002] Protetores solares tópicos são recomendados para proteger a pele humana contra os efeitos adversos agudos e crónicos da radiação solar. Os principais efeitos reportados de radiação solar são as queimaduras solares agudas, muitas formas de fotoalergia, fotoenve- Ihecimento prematuro, neoplasia cutânea e distúrbios pré-neoplásicos do tipo melanoma e não melanoma.  Topical sunscreens are recommended to protect human skin against the acute and chronic adverse effects of solar radiation. The main reported effects of solar radiation are acute sunburn, many forms of photoallergy, premature photoaging, skin neoplasia, and pre-neoplastic melanoma and non-melanoma disorders.
[003] Um protetor solar moderno com um amplo espectro de proteção contra os raios UVB e contra os raios UVA e com um efeito de longa duração deve impedir eritema e inflamação da pele (mediada por espécies ROS). Preparações de filtros solares são usualmente aplicadas em grandes áreas da pele, devem permanecer na sua superfície e penetrá-la o menos possível. Os protetores solares geralmente precisam de um longo tempo de residência na pele para exer- cer sua função de forma a absorver ou refletir a radiação UV, no en- tanto o risco de distribuição sistémica deve ser considerado pois podem levar a problemas toxicológicos, tais como atividades estrogênica e antiandrogênica, bem como efeitos cancerígenos, além de serem fotossensibilizadores, fotoirritantes e fotoalergênicos. Os filtros solares mais utilizados são os cinamatos, como octil-metoxicinamato (OMC), que absorve radiação na região de 290 - 320 nm, e benzofenonas, como benzofenona-3 (BZ-3) que absorve na região de 320 - 340 nm. [003] A modern sunscreen with a broad spectrum of UVB and UVA protection and a long-lasting effect should prevent erythema and skin inflammation (mediated by ROS species). Sunscreen preparations are usually applied to large areas of the skin and should remain on its surface and penetrate it as little as possible. Sunscreens usually need a long residence time on the skin to perform their function to absorb or reflect UV radiation, however. Both the risk of systemic distribution should be considered as they may lead to toxicological problems such as estrogenic and antiandrogenic activities, as well as carcinogenic effects, as well as being photosensitizing, photoirritating and photoallergenic. The most commonly used sunscreens are cinnamates such as octyl methoxycinnamate (WTO), which absorbs radiation in the region of 290 - 320 nm, and benzophenones, such as benzophenone-3 (BZ-3) which absorbs in the region of 320 - 340 nm.
[004] Nanocarreadores coloidais, tais como microemulsões, na- noemulsões e nanocápsulas poliméricas, são propostos como alterna- tiva para melhorar a administração tópica com base na sua capacidade de encapsular ativos farmacêuticos e cosméticos, quando comparados às composições tópicas habituais, tais como emulsões e géis. A estratégia da encapsulação de filtros solares permite uma melhoria na fotoestabil idade e eficácia em comparação com o filtro solar não en- capsulado, consequentemente reduzindo os efeitos toxicológicos, como mostrado nos documentos de G. K. Borghetti (BORGHETTI G. K. "Development and evaluation of physical stability from O/W lotions con- taining sunscreens," Braz. J. Pharm. Sei. , vol. 42, pp. 531 -537, 2006) e M. Burnett e S. Wang (BURNETT, M. e WANG S. "Current sun- screen controversies: a criticai review," Photomed., Photodermatol. Photoimmunol., vol. 27, pp. 58-67, 201 1 ). Colloidal nanocarriers, such as microemulsions, naemulsions and polymeric nanocapsules, are proposed as an alternative to improve topical administration based on their ability to encapsulate pharmaceutical and cosmetic actives when compared to usual topical compositions such as emulsions. and gels. The sunscreen encapsulation strategy enables an improvement in photostability and efficacy compared to unencapsulated sunscreen, thereby reducing toxicological effects, as shown in the papers by GK Borghetti (BORGHETTI GK) O / W lotions containing sunscreens, "Braz. J. Pharm. Sci., Vol. 42, pp. 531-537, 2006) and M. Burnett and S. Wang (Burnett, M. and WANG S." Current sun-screen controversies: a critical review, "Photomed., Photodermatol. Photoimmunol., vol. 27, pp. 58-67, 201 1).
[005] Neste contexto, algumas tentativas têm sido feitas para aumentar a estabilidade e a eficácia de produtos de proteção solar e diminuir a sua intolerância local usando novas estratégias de formula- ção, tais como micropartículas, nanopartículas, ciclodextrinas ou lipos- somas (JIMENEZ, M. ; PELLETIER, J. B. E MARTINI, M. "Influence of encapsulation on the in vitro percutaneous absorption of octyl me- thoxycinnamate" , Int. J. Pharm., vol. 272, pp. 45-55, 2004. ; OLVERA- MARTÍNEZ, B. et al, "Preparation of polymeric nanocapsules contai- ning octyl methoxycinnamate by the emulsification-diffusion technique: penetration across the stratum corneum", J. Pharm. Sci., vol. 94, pp. 1552-1559, 2005. ; RAMON, E. et al. "Liposomes as alternative vehi- cles for sun filter formulations", Drug Delivery., vol. 12, pp. 83-88, 2005. ; MOLINARI, A. et al. "Influence of complexation with cyclodex- trins on photo-induced free radical production by the common sun- screen agents octyl-dimethylaminobenzoate and octyl- methoxycinnamate", Pharmazie, vol. 61 , pp. 41 -45, 2006. ; TURSILLI, R., et al "Solid lipid microparticles containing the sunscreen agent, octyl-dimethylaminobenzoate: effect of the vehicle", Eur. J. Pharm. Bi- opharm.. vol. 66, pp. 483-487, 2007). Também, a encapsulação tem sido mostrada como uma forma eficaz de evitar a fotodegradação de octilmetoxicinamato (OMC) em formulações e para reduzir sua penetração na pele levando a um incremento no FPS (PERUGINI, P. et al "Effect of nanoparticle encapsulation on the photostability of the suns- creen agent, 2-ethylhexyl-p-methoxycinnamate", Int. J. Pharm., vol. 246, pp. 37-45, 2002. ; ANUMANSIRIKUL N. et al, "UV-screening chi- tosan nanocontainers: increasing the photostability of encapsulated materiais and controlled release", Nanotechnology, vol. 19, pp. 19, 2008. ; WEISS-ANGELI VOL. et al, "Nanocapsules of octyl methox- ycinnamate containing quercetin delayed the photodegradation of both components under ultraviolet A radiation", J. Biomed. Nanotechnol, vol. 4, pp. 80-89, 2008) e diminuição da absorção sistémica (ALVA- REZ-ROMÁN, R. et al. "Biodegradable polymer nanocapsules containing a sunscreen agent: preparation and photoprotection". Eur. J. Pharm. Biopharm., vol. 52, pp. 191 -195, 2001 . ; KLINUBOL, P. et al. "Transdermal penetration of UV filters". Skin Pharmacol. Physiol., vol. 21 , pp. 23-29, 2008. ; VETTOR, M. et al. "Poly(D,L-lactide) nanoencap- sulation to reduce photoinactivation of a sunscreen agent". Int. J. Cosmet. Sci., vol. 30, pp. 21 9-227, 2008). In this context, some attempts have been made to increase the stability and effectiveness of sunscreen products and decrease their local intolerance using new formulation strategies such as microparticles, nanoparticles, cyclodextrins or liposomes (JIMENEZ , M.; PELLETIER, JB AND MARTINI, M. "Influence of encapsulation on the in vitro percutaneous absorption of octyl methoxycinnamate", Int. J. Pharm., Vol. 272, pp. 45-55, 2004.; OLVERA - MARTÍNEZ, B. et al, "Preparation of polymeric nanocapsules containing octyl methoxycinnamate by the emulsification-diffusion technique: penetration across the stratum corneum, "J. Pharm. Sci., vol. 94, pp. 1552-1559, 2005.; RAMON, E. et al." Liposomes as alternative vehicles for sun filter formulations, "Drug Delivery. , vol. 12, pp. 83-88, 2005.; MOLINARI, A. et al. "Influence of complexation with cyclodextrins on photo-induced free radical production by the common sun-screen agents octyl-dimethylaminobenzoate and octyl-methoxycinnamate "Pharmazie, vol. 61, pp. 41-45, 2006.; TURSILLI, R., et al." Solid lipid microparticles containing the sunscreen agent, octyl-dimethylaminobenzoate: effect of the vehicle ", Eur. J. Pharm. Bi - opharm .. vol. 66, pp. 483-487, 2007) Also, encapsulation has been shown as an effective way to prevent octylmethoxycinnamate (WTO) photodegradation in formulations and to reduce its penetration into the skin leading to an increase FPS (PERUGINI, P. et al "Effect of nanoparticle encapsulation on photostability of the suncreen agent, 2-ethylhexyl-p-methoxycinnamate", Int. J. Pharm., Vol. 246, pp. 37-45, 2002.; ANUMANSIRIKUL N. et al, "Chitosan UV-screening nanocontainers: increasing the photostability of encapsulated materials and controlled release", Nanotechnology, vol. 19, pp. 19, 2008.; WEISS-ANGELI VOL. et al, "Nanocapsules of octyl methoxycinnamate containing quercetin delayed the photodegradation of both components under ultraviolet A radiation", J. Biomed. Nanotechnol, Vol. 4, pp. 80-89, 2008) and decreased systemic absorption (ALVARZ-ROMÁN, R. et al. "Biodegradable polymer nanocapsules containing a sunscreen agent: preparation and photoprotection". Eur. J. Pharm. Biopharm., Vol. 52, 191 -195, 2001; KLINUBOL, P. et al., "Transdermal Penetration of UV Filters." Skin Pharmacol. Physiol., vol. 21, pp. 23-29, 2008.; VETTOR, M. et al. "Poly (D, L-lactide) nanoencapsulation to reduce photoinactivation of a sunscreen agent." Int. J. Cosmet. Sci., Vol. 30, pp. 21 9-227, 2008).
[006] Estudos demonstraram a viabilidade do desenvolvimento de novos produtos com base em filtros solares encapsulados, tal como revelados nos documentos WO 2004069216 { "Aqueous suspension of nanocapsules encapsulating sunscreen agents") e WO 201 1 1 13129 ("Nanostructured sun protection agent and process"), sendo que WO 2004069216 revela uma composição estabilizada do filtro solar éster cinâmico, relativa a um método de aumentar a fotoestabil idade de um derivado de cinamato encapsulado em um filtro solar tópico, e WO 201 1 1 13129 revela um agente de proteção solar nanoestruturado e o seu processo de síntese compreendendo nanopartículas do tipo cas- ca-núcleo, que consiste em uma parede formada por nanopartículas de óxido e um núcleo de polímeros e produtos químicos de proteção contra radiações solares de amplo espectro desde UVA até UVB. Studies have demonstrated the feasibility of developing of new products based on encapsulated sunscreens as disclosed in WO 2004069216 ("Aqueous suspension of nanocapsules encapsulating sunscreen agents") and WO 201 1 1 13129 ("Nanostructured sun protection agent and process"), where WO 2004069216 discloses a stabilized composition of the cinnamic ester sunscreen, relating to a method of increasing the photostability of an encapsulated cinnamate derivative in a topical sunscreen, and WO 201 1112129 discloses a nanostructured sunscreen agent and its synthesis process comprising core-shell nanoparticles, consisting of a wall formed of oxide nanoparticles and a core of broad spectrum solar radiation protection polymers from UVA to UVB.
[007] Foram identificados documentos que revelam um sistema de filtros UV, bem como sua rota de obtenção através da emulsifica- ção da fase orgânica na fase aquosa, todavia não foram identificados documentos que revelassem um processo contemplando emulsifica- ção e difusão de solvente empregando técnica de destilação, nem de uma nanoestrutura composta por uma película delgada de blenda anfi- fílica polimérica com alta concentração de núcleo de caráter orgânico. [007] Documents were identified that reveal a UV filter system, as well as its route of obtaining by emulsifying the organic phase in the aqueous phase, however no documents were identified that revealed a process contemplating emulsification and solvent diffusion using distillation technique, or a nanostructure composed of a thin film of polymeric amphiphilic blend with a high core concentration of an organic character.
[008] O documento WO2015022471 {"Aqueous suspension of nanocapsules encapsulating sunscreen agents") refere-se a uma suspensão aquosa de nanocápsulas que compreende pelo menos um filtro UV (avobenzona [butil metoxidibenzoilmetano] e etil-hexil salicilato obtida por um método empregando duas fases, sendo a adição da fa- se orgânica na fase aquosa. Em "processo de produção de nanoestrutura de película delgada de blenda anfifílica polimérica com alta concentração de núcleo de caráter orgânico para aplicação contra radiação ultravioleta" são utilizadas 3 fases, sendo uma fase orgânica adicionada na aquosa e uma segunda fase aquosa adicionada na primeira emulsão, iniciando o processo de difusão controlada, sendo que a na- noestrutura formada compreende uma blenda de filtros no núcleo, sem óleo ou outros aditivos; além disso, a cápsula polimérica contém uma blenda de polímeros hidrofóbicos, PCL, e copolimero hidrofílico Pluro- nic, e não apenas um polímero como a invenção supracitada, obtendo- se um efeito técnico superior e inesperado da futura estabilidade coloidal, além do efeito fotoprotetor e sensorial superior devido à inclusão dos demais filtros UV (dietilamino hidroxibenzoil hexilbenzoato, ho- mossalato e octocrileno) na formulação, quando comparado à formulação revelada em WO 2015022471 . WO2015022471 ("Aqueous suspension of nanocapsules encapsulating sunscreen agents") relates to an aqueous nanocapsule suspension comprising at least one UV filter (avobenzone [butyl methoxydibenzoylmethane] and ethylhexyl salicylate obtained by a method employing two The addition of the organic phase is added to the aqueous phase. In "production process of polymeric amphiphilic slender film nanostructure with high concentration of organic core for application against ultraviolet radiation" 3 phases are used, one phase added to the aqueous and a second aqueous phase added to the first emulsion, initiating the controlled diffusion process, the latter being the formed structure comprises a core filter blend without oil or other additives; furthermore, the polymeric capsule contains a blend of hydrophobic polymers, PCL, and Plurnic hydrophilic copolymer, and not just a polymer like the above invention, giving a superior and unexpected technical effect of future colloidal stability as well as photoprotective effect. and superior sensory due to the inclusion of the other UV filters (diethylamino hydroxybenzoyl hexylbenzoate, homosalate and octocrene) in the formulation when compared to the formulation disclosed in WO 2015022471.
[009] No documento WO2014132261 { "Microcapsules comprising sunscreen agents'), são reveladas microcápsulas compostas por um núcleo com um ou mais agentes de proteção solar e uma cobertura de um polímero formador de parede, que não se rompem mediante fricção ou pressionamento sobre a pele. O produto gerado em "processo de produção de nanoestrutura de película delgada de blenda anfifílica polimérica com alta concentração de núcleo de caráter orgânico para aplicação contra radiação ultravioleta", visto ter efeito fotoprotetor e sensorial superior devido à escala nanométrica, o caráter anfifílico da película delgada polimérica e o conteúdo orgânico de filtro UV não é uma derivação óbvia do revelado. Além disso, no documento WO2014132261 utiliza-se um método de emulsificação e evaporação de solvente, o que não permite gerar nanocápsulas, mas apenas mi- cropartículas. No caso de "processo de produção de nanoestrutura de película delgada de blenda anfifílica polimérica com alta concentração de núcleo de caráter orgânico para aplicação contra radiação ultravioleta", o processo envolve uma etapa de emulsificação e outra de difusão de solvente para produzir as nanoestruturas. Os mecanismos que regem a formação da partícula são diferentes, pois no caso da extra- cão de solvente é preciso empregar um solvente não solúvel na fase externa da emulsão, enquanto no caso da difusão de solvente empre- ga-se um solvente na fase orgânica parcialmente solúvel na fase aquosa para que possa difundir o que determina o processo físico- quimico de geração da nanoestrutura. Outro ponto a ser destacado é o emprego de uma blenda polimérica de composição mista. In WO2014132261 ("Microcapsules including sunscreen agents'), microcapsules composed of a core with one or more sunscreen agents and a cover of a wall-forming polymer are disclosed which do not break by rubbing or pressing on the shell. The product generated in a "high-concentration polymeric amphiphilic blend thin-film nanostructure of an organic core for application against ultraviolet radiation", as it has a superior photoprotective and sensory effect due to the nanometric scale, the amphiphilic character of the skin. The polymeric thin film and the organic content of the UV filter is not an obvious derivative of the disclosure, and WO2014132261 also uses a method of emulsification and solvent evaporation, which does not allow nanocapsules to be generated, but only microparticles. case of "blef thin film nanostructure production process "The high-concentration polymeric amphiphilic organic core for application against ultraviolet radiation", the process involves one emulsification step and one solvent diffusion step to produce the nanostructures. The mechanisms governing particle formation are different, as in the case of solvent extraction it is necessary to employ a non-soluble solvent in the external phase of the emulsion, while in the case of solvent diffusion employed. a solvent in the partially soluble organic phase is added to the aqueous phase so that it can diffuse which determines the physicochemical process of generating the nanostructure. Another point to be highlighted is the use of a mixed polymer blend.
[0010] No documento WO2014074555 ("Composition containing a cellulose derived capsule with a sunscreen') são descritas formulações de proteção solar com um ou mais agentes de proteção solar (homos- salato, butil metoxidibenzoilmetano, Uvinul A Plus (dietilamino hidroxi- benzoil hexil benzoato), octocrileno e etil-hexil salicilato encapsula- do(s) em uma cápsula derivada de celulose, preferencialmente na faixa de 400 - 700 nm, e de um ou mais agentes adicionais, que difere daquela aqui revelada tanto pelo processo de obtenção, quanto pela composição e morfologia da nanoestrutura obtida. WO2014074555 ("Composition containing a cellulose derived capsule with a sunscreen") describes sunscreen formulations with one or more sunscreen agents (homosalate, butyl methoxydibenzoylmethane, Uvinul A Plus (diethylamino hydroxybenzoyl hexyl). benzoate), octocrylene and ethylhexyl salicylate encapsulated in a cellulose-derived capsule, preferably in the range 400 - 700 nm, and one or more additional agents, which differs from that disclosed herein by the process of obtaining, as for the composition and morphology of the nanostructure obtained.
RESUMO DA INVENÇÃO SUMMARY OF THE INVENTION
[001 1 ] "Processo de produção de nanoestrutura de película delgada de blenda anfifílica polimérica com alta concentração de núcleo orgânico como filtro de radiação ultravioleta" gera um produto que é obtido por meio de emulsificação e difusão de solvente, e pelo menos um polímero hidrofóbico combinado com um copolímero de bloco hidrofí- lico, interior de caráter orgânico e composição mista de filtros de radiação UV, formando nanopartículas do tipo casca-núcleo, onde a casca é constituída por uma película delgada de característica anfifílica e o núcleo por pelo menos um agente químico de proteção à radiação solar, sendo que as nanoestruturas conferem proteção solar em larga faixa espectral, variando desde UVA até UVB. A nanoestrutura com uma película delgada de combinação anfifílica contendo alta concentração de agentes de proteção solar encapsulados trata-se de novidade e atividade inventiva no conceito de desempenho no Fator de Proteção Solar (FPS) e efeito sensorial quando aplicado à pele, corrobo- rado pelo fato de este agente de proteção solar concentrar no núcleo orgânico filtros solares em uma faixa de 50 a 90% em massa de filtro UV em relação à nanocápsula, possibilitando encapsular altos teores de filtros em uma estrutura muito fina/delgada de blenda de polímeros. Ainda, tem-se a possibilidade de trabalhar com concentrações maiores do agente químico nas formulações de protetor solar, mantendo um sensorial e elegância cosmética, visto que os agentes de proteção solar protegidos pela película delgada anfílica não causam irritação ou irritabilidade cutânea por se encontrarem nanoencapsulados e manterem o efeito de proteção da radiação UV mesmo agindo no núcleo. DESCRIÇÃO DAS FIGURAS [001 1] "Production Process of Polymer Amphiphilic Slender Film Nanostructure with High Organic Core Concentration as Ultraviolet Radiation Filter" generates a product that is obtained by emulsification and solvent diffusion, and at least one hydrophobic polymer combined with a hydrophilic block copolymer, organic interior and mixed composition of UV radiation filters, forming core-shell nanoparticles, where the shell is comprised of a thin amphiphilic film and the core by at least one. chemical agent for protection from solar radiation, and the nanostructures provide sun protection over a wide spectral range, ranging from UVA to UVB. The nanostructure with a thin amphiphilic combination film containing high concentration of encapsulated sunscreen agents is novel and inventive in the concept of performance in the Sunscreen Factor (SPF) and sensory effect when applied to the skin, corroborated by the fact that this sunscreen concentrates on the core organic sunscreens in a range of 50 to 90 wt% UV filter relative to the nanocapsule, making it possible to encapsulate high filter contents in a very thin / thin polymer blend structure. Furthermore, it is possible to work with higher concentrations of the chemical agent in sunscreen formulations, maintaining a sensory and cosmetic elegance, since the sunscreens protected by the amphilic thin film do not cause skin irritation or irritability because they are nanoencapsulated. and maintain the protective effect of UV radiation even when acting on the core. DESCRIPTION OF THE FIGURES
[0012] Figura 1 - Foto de microscopia eletrônica das nanopartícu- las poliméricas do Exemplo 1 , sendo a foto 1 A com aumento de 5.000X e 1 B com aumento de 10.000X.  [0012] Figure 1 - Electron microscopy photo of the polymer nanoparticles of Example 1, with photo 1A increasing by 5,000X and 1B increasing by 10,000X.
[0013] Figura 2 - Foto de MEV das nanopartículas poliméricas do Exemplo 2 contendo cetilfosfato de potássio na fase aquosa e diluição, sendo a foto 2A com aumento de 5.000X e 2B com aumento de 10.000X.  [0013] Figure 2 - SEM photo of the polymeric nanoparticles of Example 2 containing potassium cetyl phosphate in the aqueous phase and dilution, photo 2A increasing by 5,000X and 2B increasing by 10,000X.
[0014] Figura 3 - Resultados de análise da Amostra 3, sendo 3A Gráfico do Perfil de Distribuição Granulométrica, 3B Perfil de Distribui- ção de Potencial zeta, 3C1 Fotomicrografia de MEV com aumento 20.000X, 3C2 Fotomicrografia de MEV com aumento 50.000X, Figura 3D Gráfico da Curva de Termografia da amostra seca, 3E Gráfico do Perfil da Calorimetria Exploratória Diferencial da amostra seca e 3F Gráfico do Perfil de Estabilidade Física da suspensão dos nanoencap- sulados.  [0014] Figure 3 - Analysis results from Sample 3, where 3A Particle Size Distribution Chart, 3B Zeta Potential Distribution Profile, 3C1 SEM SEM micrograph with 20,000X magnification, 3C2 SEM SEM micrograph with 50,000X magnification, Figure 3D Thermography Curve Graph of the dry sample, 3E Differential Exploratory Calorimetry Profile Chart of the dry sample and 3F Physical Stability Profile Chart of the nanocapers suspension.
[0015] Figura 4 - Resultados de análise da Amostra 4, sendo 4A Gráfico do Perfil de Distribuição Granulométrica e 4B Gráfico do Perfil de Estabilidade Física por turbidimetria de 23 h.  [0015] Figure 4 - Results of analysis of Sample 4, being 4A Particle Size Distribution Chart and 4B 23 h Turbidimetry Physical Stability Profile Chart.
[0016] Figura 5 - Apresentação em fotografias sem escala repre- sentativas de ensaios realizadas na amostra do Exemplo 3, sendo 5A Foto da disposição das amostras sobre sistema de permeação cutânea automatizado, 5B apresentando procedimento de Tape-stripping e 5C mostrando peles trituradas e misturadas com acetona para extra- ção dos filtros. [0016] Figure 5 - Representative non-scaled photographs of tests performed on the sample of Example 3, where 5A Photo of the sample layout on automated skin permeation system, 5B featuring Tape-stripping procedure and 5C showing shredded skins mixed with acetone for filter extraction.
DETALHAMENTO DA INVENÇÃO DETAIL OF THE INVENTION
[0017] O "processo de produção de nanoestrutura de película delgada de blenda anfifílica polimérica com alta concentração de núcleo de caráter orgânico para aplicação contra radiação ultravioleta" gera um produto com conjugação de nanopartículas do tipo casca-núcleo, onde a casca é constituída por uma fina película polimérica composta por uma blenda de um polímero hidrofóbico, que pode ser do tipo poliéster, policarbonato, acrilato, metacrilato, derivados de acrilato, poli- hidroxibutirato, vinílico, estirênico, acrilamida, metacrilamida, preferencialmente policaprolactona, podendo ser ainda utilizado polímero de diferentes massas moleculares, como 10 kDa, 45 kDa, 90 kDa, misturado a um copolímero hidrofílico, que pode ser do tipo poliéter, poliáci- do, poliol, preferencialmente copolímeros polioxietileno ou polioxipropi- leno, e o núcleo por uma fase de caráter orgânico que compreende a combinação de agentes químicos de proteção contra radiação ultravio- leta, salicilatos, cinamatos, benzofenonas, antranilatos, dibenzoilmeta- nos, derivados da cânfora, triazonas e derivados do PABA (ou p- aminobenzoatos) preferencialmente a combinação de pelo menos dois destes que contemplem uma mistura física líquida em temperatura de 22 a 25QC. [0017] The "Organic Core High Concentration Polymeric Amphiphilic Slender Film Nanostructure Production Process for Application Against Ultraviolet Radiation" generates a peel-to-core nanoparticle conjugation product, where the shell is composed of a thin polymeric film comprising a blend of a hydrophobic polymer, which may be of the type polyester, polycarbonate, acrylate, methacrylate, acrylate derivatives, polyhydroxybutyrate, vinyl, styrenic, acrylamide, methacrylamide, preferably polycaprolactone, and polymer may also be used. of different molecular weights, such as 10 kDa, 45 kDa, 90 kDa, mixed with a hydrophilic copolymer, which may be of the polyether, polyacid, polyol type, preferably polyoxyethylene or polyoxypropylene copolymers, and the core by a character phase comprising the combination of chemical radiation protection agents the ultraviolet, salicylates, cinnamates, benzophenones, anthranilates, dibenzoylmethanes, camphor derivatives, triazones and PABA derivatives (or p-aminobenzoates) preferably the combination of at least two of these comprising a liquid physical mixture at a temperature of 22 ° C. 25 Q C.
[0018] A síntese das nanoestruturas envolve três fases: orgânica, aquosa e fase aquosa de diluição. Na fase orgânica, é utilizado solvente orgânico como cetonas, ésteres e álcoois, ou ainda a combinação de dois ou mais deles, preferencialmente acetato de etila, onde é acrescentado individualmente o polímero hidrofóbico, o conteúdo or- gânico de agentes químicos contra radiação UV, o copolímero hidrofí- lico, preferencialmente copolímero polioxietileno polioxipropileno, e um tensoativo não iônico, preferencialmente laurato de sorbitan 80 EO. A fase aquosa é preparada com água destilada e tensoativo do tipo lauril éter sulfato de sódio ou cocoamidopropilbetaína ou dietanolamida de ácido graxo de coco ou laurato de sorbitan 80 EO, preferencialmente cetil fosfato. A fase de diluição é preparada com água destilada e tensoativos, como lauril éter sulfato de sódio, ou cocoamidopropilbetaína ou dietanolamida de ácido graxo de coco ou laurato de sorbitan 80 EO. The synthesis of the nanostructures involves three phases: organic, aqueous and aqueous dilution phase. In the organic phase, organic solvents such as ketones, esters and alcohols are used, or a combination of two or more of them, preferably ethyl acetate, where the hydrophobic polymer, the organic content of chemical agents against UV radiation, is added individually. hydrophilic copolymer polyoxyethylene polyoxypropylene copolymer, and a nonionic surfactant, preferably sorbitan laurate 80 EO. The aqueous phase is prepared with distilled water and surfactant type sodium lauryl ether sulfate or cocoamidopropyl betaine or coconut fatty acid diethanolamide or sorbitan 80 EO laurate, preferably cetyl phosphate. The dilution phase is prepared with distilled water and surfactants such as sodium lauryl ether sulfate or cocoamidopropyl betaine or coconut fatty acid diethanolamide or sorbitan 80 EO laurate.
[0019] A fase orgânica é preparada sob agitação magnética ou mecânica de 10 a 700 rpm, preferencialmente 200 rpm, e temperatura de 15 a 65 , preferencialmente 50 até a dissoluç ão total dos componentes. As fases aquosa e de diluição são preparadas sob agitação mecânica de 10 a 700 rpm, preferencialmente a 200 rpm, e temperatura de 15 a 65 , preferencialmente 25 , até a comp leta solubilização dos tensoativos. A formação da emulsão se dá por meio da adição da fase orgânica sobre a fase aquosa diretamente com agitação mecânica vigorosa de 1 .000 a 23.000 rpm, preferencialmente 7.000 rpm. A emulsão formada é transferida para reator sob agitação mecânica de 150 a 1 .000 rpm, preferencialmente de 400 rpm, e a fase de diluição é adicionada diretamente no reator. O sistema deve permanecer sob vácuo de 1 a 600 mmHg, preferencialmente 200 mmHg, sob temperatura de 35 a 75 , preferencialmente 50 , com agitação mecânica de 150 a 1000 rpm, preferencialmente 400 rpm, por um intervalo de tempo de 15 a 1 80 minutos, preferencialmente 40 minutos, para extração do sol- vente orgânico. The organic phase is prepared under magnetic or mechanical stirring from 10 to 700 rpm, preferably 200 rpm, and a temperature of 15 to 65 ° C, preferably 50 ° C until total dissolution of the components. The aqueous and dilution phases are prepared under mechanical agitation at 10 to 700 rpm, preferably at 200 rpm, and at a temperature of 15 to 65, preferably 25, until complete solubilization of the surfactants. Emulsion is formed by adding the organic phase to the aqueous phase directly with vigorous mechanical stirring from 1,000 to 23,000 rpm, preferably 7,000 rpm. The emulsion formed is transferred to the reactor under mechanical agitation at 150 to 1000 rpm, preferably at 400 rpm, and the dilution phase is added directly to the reactor. The system should remain under a vacuum of 1 to 600 mmHg, preferably 200 mmHg, at a temperature of 35 to 75, preferably 50, with mechanical stirring of 150 to 1000 rpm, preferably 400 rpm, for a time period of 15 to 180 minutes. preferably 40 minutes for extraction of the organic solvent.
EXEMPLOS DE CONCRETIZAÇÃO DA INVENÇÃO  EXAMPLES OF CARRYING OUT THE INVENTION
[0020] EXEMPLO 1 : Obtenção de nanoestrutura de película delgada de blenda anfifílica polimérica com alta concentração de núcleo de caráter orgânico para aplicação contra radiação ultravioleta com adição de fase de diluição no reator [0021 ] A fase orgânica foi preparada com 50,0 g de acetato de eti- la, 1 ,0 g de policaprolactona (PM: 10 KDa), 1 ,0 g de copolímeros de bloco de polioxietileno polioxipropileno, 2,5 g de Monolaurato de Sorbi- tan etoxilado 80 EO e 18,0 g da mistura de butil metoxidibenzoilmeta- no , dietilamino hidroxibenzoil hexilbenzoato, etil-hexil salicilato, homo- salato e octocrileno na proporção de 13,64% de butil metoxidibenzoil- metano, 4,54% de dietilamino hidroxibenzoil hexilbenzoato, 18, 18% de etil-hexil salicilato, 22,73% de homosalato e 40,91 % de octocrileno. A fase aquosa foi preparada com 22,5 g de água destilada e 2,5 g de tensoativo lauril éter sulfato de sódio. A fase de diluição foi preparada com 45,0 g de água destilada, 2,5 g de lauril éter sulfato de sódio e 2,5 g de monolaurato de sorbitan etoxilado 80 EO. A fase orgânica foi preparada sob agitação magnética de 100 rpm e aquecimento a 50 QC até a dissolução total dos componentes, obtendo-se uma solução translú- cida. As fases aquosa e de diluição foram preparadas com agitação mecânica de 250 rpm à temperatura ambiente até a completa solubili- zação dos tensoativos. EXAMPLE 1: Obtaining high-concentration polymeric amphiphilic blend thin-film nanostructure of an organic character for application against ultraviolet radiation with addition of dilution phase in the reactor The organic phase was prepared with 50.0 g of ethyl acetate, 1.0 g of polycaprolactone (MW: 10 KDa), 1.0 g of polyoxyethylene polyoxypropylene block copolymers, 2.5 g of Ethoxylated Sorbitan Monolaurate 80 EO and 18.0 g of the mixture of butyl methoxydibenzoylmethane, diethylamino hydroxybenzoyl hexylbenzoate, ethylhexyl salicylate, homo-salate and octocrylene in 13.64% butyl methoxydibenzoyl methane, 4, 54% diethylamino hydroxybenzoyl hexylbenzoate, 18.18% ethylhexyl salicylate, 22.73% homosalate and 40.91% octocrylene. The aqueous phase was prepared with 22.5 g of distilled water and 2.5 g of sodium lauryl ether sulfate surfactant. The dilution phase was prepared with 45.0 g of distilled water, 2.5 g of sodium lauryl ether sulfate and 2.5 g of 80 EO ethoxylated sorbitan monolaurate. The organic phase was prepared under magnetic stirring at 100 rpm and heating to 50 Q C until complete dissolution of the components, yielding a translú- acidic solution. The aqueous and dilution phases were prepared by mechanical stirring at 250 rpm at room temperature until complete solubilization of the surfactants.
[0022] Após a solubilização de todos os componentes, verteu-se a fase orgânica sobre a fase aquosa lentamente com agitação mecânica de 7.000 rpm, durante 1 minuto. Em seguida, a emulsão formada foi inserida no reator sob agitação mecânica de 400 rpm e a fase de diluição adicionada diretamente no reator. O sistema permaneceu sob vácuo (300 mmHg) a 50 °C e agitação mecânica de 400 rpm por 40 minutos para extração do acetato de etila.  After solubilization of all components, the organic phase was poured onto the aqueous phase slowly with mechanical stirring of 7,000 rpm for 1 minute. Then the emulsion formed was inserted into the reactor under mechanical stirring at 400 rpm and the dilution phase added directly into the reactor. The system remained under vacuum (300 mmHg) at 50 ° C and mechanical stirring at 400 rpm for 40 minutes for ethyl acetate extraction.
[0023] Avaliou-se a morfologia das suspensões dos nanoencapsu- lados e determinou-se o tamanho de partícula, o índice de polidisper- são (IP) e o pH, sendo os resultados obtidos apresentados na Tabela 1 . A Figura 1 apresenta as imagens de microscopia eletrônica (MEV) da amostra obtida. The morphology of the nanocapsulated suspensions was evaluated and particle size, polydispersion index (IP) and pH were determined, and the results are presented in Table 1. Figure 1 presents the electron microscopy (SEM) images of the obtained sample.
[0024] Tabela 1 : Resultados obtidos com o produto produzido de acordo com as condições experimentais do Exemplo 1 . Table 1: Results obtained with the product produced from according to the experimental conditions of Example 1.
Figure imgf000013_0001
Figure imgf000013_0001
[0025] EXEMPLO 2: Obtenção de nanoestrutura de película delgada de blenda anfifílica polimérica com alta concentração de núcleo de caráter orgânico com adição de cetilfosfato de potássio como ten- soativo nas fases de diluição e fase aquosa  EXAMPLE 2: Obtaining thin film nanostructure of polymeric amphiphilic blend with high organic core concentration with addition of potassium cetylphosphate as a dilution and aqueous phase
[0026] A produção das nanoestruturas de película delgada de blenda anfifílica polimérica contendo filtro solar envolveu o preparo de três fases: orgânica, aquosa e de diluição. Na fase orgânica, preparada com 50,0 g de acetato de etila, 1 ,0 g de policaprolactona (PM: 10 KDa), 1 ,0 g de copolímeros de bloco de polioxietileno polioxipropileno, 2,5 g de monolaurato de sorbitan etoxilado 80 EO e 18,0 g de mistura de butil metoxidibenzoilmetano, dietilamino hidroxibenzoil hexilbenzoa- to, etilhexil salicilato, homosalato e octocrileno (13,64% de butil metoxidibenzoilmetano, 4,54% de dietilamino hidroxibenzoil hexilbenzoato, 18, 18% de etilhexil salicilato, 22,73% de homosalato e 40,91 % de octocrileno. A fase aquosa foi preparada com 22,5 g de água destilada e 2,7 g de cetilfosfato de potássio. A fase de diluição foi preparada com 45,0 g de água destilada, 0,675 g de cetilfosfato de potássio e 2,5 g de monolaurato de sorbitan etoxilado 80 EO. A fase orgânica foi prepara- da sob agitação magnética de 400 rpm e aquecimento a 50 QC até a dissolução total dos componentes obtendo uma solução translúcida. As fases aquosa e de diluição foram preparadas sob agitação mecânica de 400 rpm à temperatura ambiente até a completa solubilização dos tensoativos. The production of polymeric amphiphilic slender thin film nanostructures containing sunscreen involved the preparation of three phases: organic, aqueous and dilution. In the organic phase, prepared with 50.0 g ethyl acetate, 1.0 g polycaprolactone (PM: 10 KDa), 1.0 g polyoxyethylene polyoxypropylene block copolymers, 2.5 g ethoxylated sorbitan monolaurate 80 EO and 18.0 g of a mixture of butyl methoxydibenzoylmethane, diethylamino hydroxybenzoyl hexylbenzoate, ethylhexyl salicylate, homosalate and octocrylene (13.64% diethylamino hydroxybenzoylhexylbenzoate, 18.18% ethylene salt) 22.73% homosalate and 40.91% octocrylene The aqueous phase was prepared with 22.5 g of distilled water and 2.7 g of potassium cetyl phosphate The dilution phase was prepared with 45.0 g of water distilled, 0.675 g of potassium cetyl and 2.5 g of sorbitan monolaurate 80 EO ethoxylate. the organic phase was prepared under magnetic stirring of 400 rpm and heating at 50 Q C until complete dissolution of the components obtaining a clear solution The aqueous and dilution phases were prepared mechanically stirred at 400 rpm at room temperature until complete solubilization of the surfactants.
[0027] Após a solubilização de todos os componentes, verteu-se a fase orgânica sobre a fase aquosa, por 2 minutos, com agitação mecânica vigorosa de 7.000 rpm, utilizando o Ultraturrax . Em seguida, a emulsão formada foi inserida no reator com agitação mecânica de 400 rpm e a fase de diluição adicionada diretamente no reator. O sistema permaneceu sob vácuo -480 mmHg, a 50 , com agitação mecânica de 400 rpm por 40 minutos para extração do acetato de etila. After solubilization of all components, the organic phase was poured into the aqueous phase for 2 minutes with vigorous mechanical stirring of 7,000 rpm using Ultraturrax. Then the emulsion formed was inserted into the reactor with mechanical stirring of 400 rpm and the dilution phase added directly to the reactor. The system remained under vacuum -480 mmHg at 50 ° C with mechanical stirring of 400 rpm for 40 minutes for extraction of ethyl acetate.
[0028] Avaliou-se a morfologia das suspensões dos nanoencapsu- lados por microscopia eletrônica de varredura de alta resolução (MEV- FEG) e determinou-se o tamanho de partícula, o índice de polidisper- são (IP) e o pH. Os resultados obtidos encontram-se na Tabela 2. A Figura 2 apresenta as imagens de microscopia eletrônica (MEV) da amostra obtida. The morphology of the nanocapsulated suspensions was evaluated by high resolution scanning electron microscopy (SEM-FEG) and the particle size, polydispersion index (IP) and pH were determined. The results are shown in Table 2. Figure 2 shows the electron microscopy (SEM) images of the obtained sample.
[0029] Tabela 2: Resultados obtidos com o produto produzido de acordo com as condições experimentais do Exemplo 2. Table 2: Results obtained with the product produced under the experimental conditions of Example 2.
Figure imgf000014_0001
Figure imgf000014_0001
[0030] EXEMPLO 3: Obtenção de nanoestrutura de película delgada de blenda anfifílica polimérica com alta concentração de núcleo de caráter orgânico com aquecimentos das fases, emprego de homo- geneização de alto cisalhamento e massa de polímero de 3 g  EXAMPLE 3: Obtaining a high-concentration organic polymeric amphiphilic blend thin film nanostructure with phase warming, high shear homogenization, and 3 g polymer mass
[0031 ] A produção das nanoestruturas de película delgada de blenda anfifílica polimérica contendo filtro solar envolveu o preparo de três fases: orgânica, aquosa e de diluição. Na fase orgânica, preparada com 50,0 g de acetato de etila, 3,0 g de policaprolactona (PM: 10 KDa), 1 ,0 g de copolímeros de bloco de polioxietileno polioxipropileno, 2,5 g de monolaurato de sorbitan etoxilado 80 EO e 30,0 g da mistura de butil metoxidibenzoilmetano, dietilamino hidroxibenzoil hexilbenzoa- to, etilhexil salicilato, homosalato e octocrileno (13,64% de butil metoxidibenzoilmetano, 4,54% de dietilamino hidroxibenzoil hexilbenzoato, 18, 18% de etilhexil salicilato, 22,73% de homosalato e 40,91 % de octocrileno. A fase aquosa foi preparada com 22,5 g de água destilada, 2,5 g de monolaurato de sorbitan etoxilado 80 EO e 0,34 g de cetilfos- fato de potássio. A fase de diluição foi preparada com 45,0 g de água destilada, 0,68 g de cetilfosfato de potássio, 2,5 g de monolaurato de sorbitan etoxilado 80 EO. A fase orgânica foi preparada com agitação magnética de 400 rpm sob aquecimento de 50 QC até a dissolução total dos componentes obtendo-se uma solução translúcida. As fases aquosa e de diluição foram preparadas com agitação magnética de 400 rpm, sob aquecimento de 50 QC até a completa solubilização dos tensoativos. The production of polymeric amphiphilic slender thin film nanostructures containing sunscreen involved the preparation of three phases: organic, aqueous and dilution. In the organic phase, prepared with 50.0 g ethyl acetate, 3.0 g polycaprolactone (PM: 10 KDa), 1.0 g polyoxyethylene polyoxypropylene block copolymers, 2.5 g ethoxylated sorbitan monolaurate 80 EO and 30.0 g of the mixture of butyl methoxydibenzoylmethane, diethylamino hydroxybenzoyl hexylbenzoate, ethylhexyl salicylate, homosalate and octocrene (13.64% butyl methoxydibenzoylmethane, 4.54% diethylamino hydroxybenzoylhexylbenzoate, 18.18% ethylene 22.73% homosalate and 40.91% octocrylene The aqueous phase was prepared with 22.5 g of distilled water, 2.5 g of 80 EO ethoxylated sorbitan monolaurate and 0.34 g of cetylphosphonate. Potassium fact. The dilution phase was prepared with 45.0 g of distilled water, 0.68 g of potassium cetyl phosphate, 2.5 g of 80 EO ethoxylated sorbitan monolaurate. The organic phase was prepared with magnetic stirring of 400 rpm under heating to 50 Q C until complete dissolution of the components to give a clear solution. The aqueous layers were diluted and prepared with magnetic stirring of 400 rpm under heating to 50 Q C until complete solubilization of the surfactants.
[0032] Após a solubilização de todos os componentes, verteu-se a fase orgânica sobre a fase aquosa lentamente, durante 15 minutos, com agitação mecânica de 7.000 rpm. Em seguida, a fase de diluição foi vertida sobre a emulsão formada e deixou-se a dispersão formada por 3 minutos sob agitação de 7.000 rpm. A suspensão de partículas foi em seguida adicionada ao reator, deixando o sistema sob vácuo - 480 mmHg, a 50 , com agitação mecânica de 400 rpm por 40 minutos para extração do acetato de etila.  After solubilization of all components, the organic phase was poured slowly over the aqueous phase for 15 minutes with mechanical stirring of 7,000 rpm. Then, the dilution phase was poured onto the formed emulsion and the dispersion formed was allowed to stir for 3 minutes at 7,000 rpm. The particulate suspension was then added to the reactor, leaving the system under vacuum - 480 mmHg at 50 ° C with mechanical stirring of 400 rpm for 40 minutes for ethyl acetate extraction.
[0033] Avaliou-se a morfologia das suspensões dos nanoencapsu- lados por microscopia eletrônica de varredura de alta resolução (MEV- FEG) e determinou-se o tamanho de partícula, o índice de polidisper- são (IP) e o pH. Realizou-se a análise termogravimétrica (TG), perfil de calorimetria exploratória diferencial (DSC) e estabilidade física da suspensão por turbidimetria. Os resultados obtidos encontram-se na Tabela 3.  The morphology of the nanocapsulated suspensions was evaluated by high resolution scanning electron microscopy (SEM-FEG) and particle size, polydispersion index (IP) and pH were determined. Thermogravimetric analysis (TG), differential exploratory calorimetry profile (DSC) and physical stability of the suspension by turbidimetry were performed. The results obtained are shown in Table 3.
[0034] A Figura 3A apresenta as imagens de microscopia eletrôni- ca (MEV) da amostra obtida no método.  Figure 3A shows the electron microscopy (SEM) images of the sample obtained in the method.
[0035] Tabela 3 - Resultados das caracterizações da amostra do Exemplo 3
Figure imgf000015_0001
Table 3 - Results of Sample Characterizations of Example 3
Figure imgf000015_0001
[0036] EXEMPLO 4: Obtenção de nanoestrutura de película dei- gada de blenda anfifílica polimérica com alta concentração de núcleo de caráter orgânico para aplicação contra radiação ultravioleta com aquecimentos das fases aquosas e de diluição e emprego de homogeneização de alto cisalhamento EXAMPLE 4: Obtaining nanostructured film nanostructure high concentration polymeric amphiphilic blend of an organic core for application against ultraviolet radiation with heating of the aqueous and dilution phases and use of high shear homogenization
[0037] A produção da nanoestrutura de película delgada de blenda anfifílica polimérica com alta concentração de núcleo de caráter orgânico para aplicação contra radiação ultravioleta envolveu o preparo de três fases: orgânica, aquosa e de diluição. Na fase orgânica, preparada com 150,0 g de acetato de etila, 12,0 g de policaprolactona (PM: 10 KDa), 6,0 g de copolímeros de bloco de polioxietileno polioxipropileno, 7,6 g de monolaurato de sorbitan etoxilado 80 EO e 90,0 g da mistura de butil metoxidibenzoilmetano, dietilamino hidroxibenzoil hexilbenzoa- to, etilhexil salicilato, homosalato e octocrileno (13,64% de butil metoxidibenzoilmetano, 4,54% de dietilamino hidroxibenzoil hexilbenzoato, 18, 18% de etilhexil salicilato, 22,73% de homosalato e 40,91 % de octocrileno. A fase aquosa foi preparada com 67,6 g de água destilada, 1 ,0 g de cetilfosfato de potássio e 7,5 g de monolaurato de sorbitan etoxilado 80 EO. A fase de diluição foi preparada com 135,7 g de água destilada, 2,0 g de cetilfosfato de potássio, 7,6 g de monolaurato de sorbitan etoxilado 80 EO. A fase orgânica foi preparada com agitação magnética de 400 rpm sob aquecimento de 50 QC até a dissolução total dos componentes obtendo uma solução translúcida. As fases aquosa e de diluição foram preparadas com agitação magnética de 400 rpm, sob aquecimento a 50 QC até a completa solubilização dos tenso- ativos. [0037] The production of the organic core high concentration polymeric amphiphilic thin film nanostructure for application against ultraviolet radiation involved the preparation of three phases: organic, aqueous and dilution. In the organic phase, prepared with 150.0 g ethyl acetate, 12.0 g polycaprolactone (PM: 10 KDa), 6.0 g polyoxyethylene polyoxypropylene block copolymers, 7.6 g ethoxylated sorbitan monolaurate 80 EO and 90.0 g of the mixture of butyl methoxydibenzoylmethane, diethylamino hydroxybenzoyl hexylbenzoate, ethylhexyl salicylate, homosalate and octocrylene (13.64% diethylamino hydroxybenzoylhexylbenzoate, 18.18% ethylene salt) 22.73% homosalate and 40.91% octocrylene The aqueous phase was prepared with 67.6 g of distilled water, 1.0 g of potassium cetylphosphate and 7.5 g of 80 EO ethoxylated sorbitan monolaurate. The dilution phase was prepared with 135.7 g of distilled water, 2.0 g of potassium cetyl phosphate, 7.6 g of 80 EO ethoxylated sorbitan monolaurate.The organic phase was prepared with magnetic stirring at 400 rpm under 50 ° C heating. Q C until the total dissolution of the components obtaining a translucent solution. gone. The aqueous layers were diluted and prepared with magnetic stirring of 400 rpm under heating at 50 Q C until complete solubilization of the active tenso-.
[0038] Após a solubilização de todos os componentes, verteu-se a fase orgânica sobre a fase aquosa lentamente, durante 1 5 minutos, com agitação mecânica de 7.000 rpm. Em seguida, a fase de diluição foi vertida sobre a emulsão formada e deixou-se a dispersão formada 3 minutos sob agitação de 7.000 rpm. A suspensão de partículas foi então adicionada ao reator, deixando sistema sob vácuo de 400 rpm a 50 , com agitação mecânica de 400 rpm por 5 horas para extração do acetato de etila. Sobre a suspensão dos nanoencapsulados obtidos foi adicionado 1 ,2% (m/m) de mistura de fenoxietanol com caprilil- glicol e 0,6% (m/m) de ácido dehidroacético como sistema conservante. Determinou-se o tamanho de partícula, o índice de polidispersão (IP) e o teor de sólidos, apresentados na Tabela 4, e também se monitorou a estabilidade física da suspensão das nanopartículas por turbi- dimetria dinâmica onde o perfil de 23 h é apresentado na Figura 4B. After solubilization of all components, the organic phase was poured slowly over the aqueous phase over 15 minutes with mechanical stirring of 7,000 rpm. Then the dilution phase was poured over the formed emulsion and the dispersion formed was left to stir for 3 minutes at 7,000 rpm. The particle suspension was It is then added to the reactor, leaving the system under vacuum at 400 rpm at 50 ° C, with mechanical stirring at 400 rpm for 5 hours to extract ethyl acetate. To the suspension of the obtained nanoencapsulates was added 1.2% (w / w) mixture of phenoxyethanol with caprylyl glycol and 0.6% (w / w) dehydroacetic acid as preservative system. Particle size, polydispersion index (IP) and solids content as shown in Table 4 were determined, and the physical stability of the nanoparticle suspension was monitored by dynamic turbidity where the 23 hr profile is presented. in Figure 4B.
[0039] Tabela 4 - Resultados das Caracterizações da amostra do Exemplo 4 Table 4 - Sample Characterization Results from Example 4
Figure imgf000017_0001
Figure imgf000017_0001
estrato córneo, epiderme e derme do Exemplo 3 Horn, stratum and dermis of Example 3
[0041 ] No ensaio de permeação cutânea, foram utilizadas células verticais de difusão (CVD), empregando membrana animal (pele de orelha de porco) como membrana permeante. In the skin permeation assay, vertical diffusion cells (CVD) were used, employing animal membrane (pig's ear skin) as permeant membrane.
[0042] O ensaio foi conduzido à temperatura de 32 ± 0,5 e rotação de 300 rpm, com tomadas de amostra 0,4 g da formulação, espalhadas uniformemente em duplicata sobre a membrana permean- te, colocada sobre a área de 1 ,77 cm2 disponível para a permeação nas células de difusão, como representado na Figura 5A, utilizando tampão fosfato pH 7,2 como solução receptora. The assay was conducted at a temperature of 32 ± 0.5 and rotation of 300 rpm, with 0.4 g of sample formulation taken, evenly spread in duplicate over the permeant membrane, placed over the area of 1 µm. 77 cm 2 available for diffusion cell permeation as depicted in Figure 5A using pH 7.2 phosphate buffer as the receptor solution.
[0043] Para a determinação das concentrações de blenda de filtro solar permeado, foram coletadas alíquotas de 1 ,0 mL da solução re- ceptora em intervalos de tempo predeterminados (0, 1 , 2, 4, 6, 8, 10, 12 e 24 horas), sendo que a duração total do experimento foi de 24 horas. As concentrações do ativo foram quantificadas por cromatografia líquida de alta eficiência (HPLC) utilizando coluna cromatográfica de 150X4,6 mm e detector de arranjo de díodos (DAD). As concentrações de cada componente da blenda de filtro solar foram medidas pelo método de regressão linear utilizando curva de calibração construída com padrões preparados pela mistura dos componentes químicos constituintes da blenda de filtro solar nas concentrações da composição, solubilizados com etanol P.A.. For the determination of permeated sunscreen blend concentrations, 1.0 mL aliquots of the receiving solution were collected at predetermined time intervals (0, 1, 2, 4, 6, 8, 10, 12 and 24 hours), and the total duration of the experiment was 24 hours. Asset concentrations were quantified by high performance liquid chromatography (HPLC) using column chromatography. 150 x 4.6 mm and diode array detector (DAD). The concentrations of each component of the sunscreen blend were measured by the linear regression method using a calibration curve constructed with standards prepared by mixing the constituent chemicals of the sunscreen blend at the composition concentrations solubilized with ethanol PA.
[0044] Ao final do experimento, as membranas foram submetidas ao processo de tape stripping para o doseamento do corante retido no estrato córneo. Para isto, as membranas foram retiradas das CVDs, lavadas com água e suavemente secas, e as camadas do estrato córneo da região de contato com o corante foram removidas por fitas adesivas (16 batidas), conforme pode ser visualizado na Figura 5B. As fitas foram submetidas à lavagem em 10 mL de acetona, em agitador mecânico a 2500 rpm por 1 minuto, em seguida em ultrassom por 16 minutos. O sobrenadante foi analisado por HPLC, conforme metodologia supracitada.  At the end of the experiment, the membranes were subjected to tape stripping to measure the dye retained in the stratum corneum. For this, the membranes were removed from the CVDs, washed with water and gently dried, and the stratum corneum layers of the dye contact region were removed by adhesive tapes (16 strokes), as shown in Figure 5B. The strips were washed in 10 mL of acetone on a mechanical shaker at 2500 rpm for 1 minute, then ultrasound for 16 minutes. The supernatant was analyzed by HPLC according to the above methodology.
[0045] Após a retirada do estrato córneo, a área de contato da membrana foi recortada e triturada em acetona, conforme mostrado na Figura 5C 3, e submetida à separação por centrifugação a 5000 rpm por 5 minutos. O sobrenadante foi avaliado por HPLC, nas condições previamente citadas.  After stratum corneum removal, the membrane contact area was cut and ground in acetone, as shown in Figure 5C 3, and subjected to centrifugation separation at 5000 rpm for 5 minutes. The supernatant was assessed by HPLC under the conditions previously cited.
[0046] Os resultados indicaram que não houve permeação da blenda do corante na membrana animal, uma vez que a absorbância para as amostras coletadas foram próximas de zero e abaixo do limite de detecção do método, indicando que provavelmente a nanoestrutura não apresenta absorção sistémica.  The results indicated that there was no permeation of the dye blend in the animal membrane, since the absorbance for the collected samples were close to zero and below the detection limit of the method, indicating that the nanostructure probably does not have systemic absorption.
[0047] O ensaio de permeação indicou que as porcentagens para permeado foram praticamente nulas e inferiores ao limite de detecção do método, indicando que há não há penetração da blenda de filtros nanoencapsulados.  The permeation assay indicated that the percentages for permeate were practically zero and below the detection limit of the method, indicating that there is no nanoencapsulated filter blend penetration.

Claims

REIVINDICAÇÕES
1 . Processo de produção de nanoestrutura de película delgada de blenda anfifílica polimérica com alta concentração de núcleo de caráter orgânico para aplicação contra radiação ultravioleta, carac- terizado por envolver três fases: orgânica, aquosa e fase aquosa de diluição, onde na fase orgânica é utilizado solvente orgânico como ce- tonas, ésteres e álcoois, ou ainda a combinação de dois ou mais deles, onde é acrescentado individualmente o polímero hidrofóbico, o conteúdo orgânico de agentes químicos contra radiação UV, o copolí- mero hidrofílico, e um tensoativo não iônico; a fase aquosa ser preparada com água destilada e tensoativo do tipo lauril éter sulfato de sódio ou cocoamidopropilbetaína ou dietanolamida de ácido graxo de coco ou laurato de sorbitan 80 EO, ou cetil fosfato; e a fase de diluição ser preparada com água destilada e tensoativos, como lauril éter sulfato de sódio, ou cocoamidopropilbetaína ou dietanolamida de ácido graxo de coco ou laurato de sorbitan 80 EO;  1 . Production process of polymeric amphiphilic slender film nanostructure with high concentration of organic core for application against ultraviolet radiation, characterized by involving three phases: organic, aqueous and aqueous dilution phase, where in the organic phase solvent is used. organic compounds such as ketones, esters and alcohols, or a combination of two or more of them, where the hydrophobic polymer, the organic content of chemical agents against UV radiation, the hydrophilic copolymer, and a nonionic surfactant are added individually; the aqueous phase is prepared with distilled water and surfactant of the sodium lauryl ether sulfate or cocoamidopropyl betaine or coconut fatty acid diethanolamide or sorbitan 80 EO laurate or cetyl phosphate type surfactant; and the dilution phase is prepared with distilled water and surfactants such as sodium lauryl ether sulfate or cocoamidopropyl betaine or coconut fatty acid diethanolamide or sorbitan laurate 80 EO;
2. Processo de produção de nanoestrutura de película delgada de blenda anfifílica polimérica com alta concentração de núcleo de caráter orgânico para aplicação contra radiação ultravioleta, de acordo com a reivindicação 1 , caracterizado por a fase orgânica ser preparada sob agitação magnética ou mecânica de 10 a 700 rpm, e temperatura de 15 a 65 °C até a dissolução total do s componentes; as fases aquosa e de diluição são preparadas sob agitação mecânica de 10 a 700 rpm, e temperatura de 15 a 65 °C até a com pleta solubiliza- ção do tensoativo; sendo que a formação da emulsão se dá por meio da adição da fase orgânica sobre a fase aquosa diretamente com agitação mecânica de 1 .000 a 23.000 rpm; a emulsão formada é transferida para reator sob agitação mecânica de 150 a 1 .000 rpm e a fase de diluição é adicionada diretamente no reator; finalmente o sistema deve permanecer sob vácuo de 1 a 600 mm Hg sob temperatura de 35 a 75 , com agitação mecânica de 150 a 1000 rpm por u m intervalo de tempo de 15 a 1 80 minutos para extração do solvente orgânico. Process for producing an organic core high concentration polymeric amphiphilic slender thin film nanostructure for application against ultraviolet radiation according to claim 1, characterized in that the organic phase is prepared under magnetic or mechanical stirring from 10 to 700 rpm, and a temperature of 15 to 65 ° C until total dissolution of the components; the aqueous and dilution phases are prepared under mechanical agitation at 10 to 700 rpm, and at a temperature of 15 to 65 ° C until complete surfactant solubilization; wherein the emulsion is formed by the addition of the organic phase to the aqueous phase directly with mechanical stirring from 1,000 to 23,000 rpm; the emulsion formed is transferred to the reactor under mechanical agitation at 150 to 1000 rpm and the dilution phase is added directly to the reactor; finally the system must remain under vacuum from 1 to 600 mm Hg under temperature from 35 to 75, with mechanical stirring of 150 to 1000 rpm for a time period of 15 to 180 minutes for extraction of the organic solvent.
3. Processo de produção de nanoestrutura de película delgada de blenda anfifílica polimérica com alta concentração de núcleo de caráter orgânico para aplicação contra radiação ultravioleta, de acordo com as reivindicações 1 e 2, caracterizado por na fase orgânica ser utilizado como solvente orgânico acetato de etila, onde é acrescentado individualmente o copolímero hidrofílico polioxietileno polioxi- propileno e laurato de sorbitan 80 EO como tensoativo não iônico; a fase aquosa ser preparada com água destilada e cetil fosfato como tensoativo e, a fase de diluição é preparada com água destilada e ten- soativos, como lauril éter sulfato de sódio, ou cocoamidopropilbetaína ou dietanolamida de ácido graxo de coco e laurato de sorbitan 80 EO;  Process for producing an organic core high concentration polymeric amphiphilic slender thin film nanostructure for application against ultraviolet radiation according to claims 1 and 2, characterized in that the organic phase is used as an organic solvent ethyl acetate wherein the polyoxyethylene polyoxypropylene hydrophilic copolymer and sorbitan laurate 80 EO are added individually as a nonionic surfactant; the aqueous phase is prepared with distilled water and cetyl phosphate as a surfactant, and the dilution phase is prepared with distilled water and surfactants such as sodium lauryl ether sulfate, or coco fatty acid diethylamide and coconut fatty acid sorbitan laurate. IT'S THE;
4. Processo de produção de nanoestrutura de película del- gada de blenda anfifílica polimérica com alta concentração de núcleo de caráter orgânico para aplicação contra radiação ultravioleta, de acordo com as reivindicações 1 e 2, caracterizado por se utilizar para constituição da casca-núcleo uma blenda de um polímero hidrofóbico do tipo poliéster, policarbonato, acrilato, metacrilato, derivados de acri- lato, poli-hidroxibutirato, vinílico, estirênico, acrilamida, metacrilamida, ou polímeros de diferentes massas moleculares de 10 kDa ou 45 kDa ou 90 kDa misturados a um copolímero hidrofílico do tipo poliéter, poli- ácido, poliol, polioxietileno ou polioxipropileno, e para constituição do núcleo a combinação de agentes químicos de proteção contra radia- ção ultravioleta salicilatos, cinamatos, benzofenonas, antranilatos, di- benzoilmetanos, derivados da cânfora, triazonas e derivados do PABA (ou p-aminobenzoatos) que contemplem uma mistura física líquida em temperatura de 22 a 25 QC. Process for the production of an organic high-density polymeric amphiphilic blend thin film nanostructure for application against ultraviolet radiation according to claims 1 and 2, characterized in that a core shell is used for constitution of the core shell. blend of a hydrophobic polymer of the polyester, polycarbonate, acrylate, methacrylate type, acrylate, polyhydroxybutyrate, vinyl, styrenic, acrylamide, methacrylamide derivatives, or polymers of different molecular weights of 10 kDa or 45 kDa or 90 kDa mixed to a hydrophilic copolymer of the polyether, polyacid, polyol, polyoxyethylene or polyoxypropylene type, and for the composition of the nucleus the combination of chemical ultraviolet radiation protection agents salicylates, cinnamates, benzophenones, anthranilates, benzoylmethanes, camphor derivatives, triazones and PABA derivatives (or p-aminobenzoates) comprising a physical mixture ca liquid temperature at 22 to 25 Q C.
5. Processo de produção de nanoestrutura de película del- gada de blenda anfifílica polimérica com alta concentração de núcleo de caráter orgânico para aplicação contra radiação ultravioleta, de acordo com as reivindicações 1 e 2, caracterizado por a fase orgânica ser preparada sob agitação magnética ou mecânica de 200 rpm, e temperatura de 50 até a dissolução total dos comp onentes; as fases aquosa e de diluição são preparadas sob agitação mecânica de 200 rpm, e temperatura de 25 , até a completa solubili zação do tensoati- vo; a formação da emulsão se dá pela adição da fase orgânica sobre a fase aquosa diretamente com agitação mecânica de 7.000 rpm, a emulsão formada ser transferida para o reator sob agitação mecânica de 400 rpm, e a fase de diluição ser adicionada diretamente no reator; e o sistema permanecer sob vácuo de 200 mmHg, sob temperatura de 50 , com agitação mecânica de 400 rpm, por um inte rvalo de tempo de 40 minutos para extração do solvente orgânico. 5. Production process of high core concentration polymeric amphiphilic thin film nanostructure Organic material for application against ultraviolet radiation according to Claims 1 and 2, characterized in that the organic phase is prepared under magnetic or mechanical stirring at 200 rpm and at a temperature of 50 ° C until the total dissolution of the components; the aqueous and dilution phases are prepared under mechanical agitation of 200 rpm and 25 ° C until complete surfactant solubility; emulsion formation occurs by adding the organic phase to the aqueous phase directly with mechanical stirring of 7,000 rpm, the emulsion formed being transferred to the reactor under mechanical stirring at 400 rpm, and the dilution phase being added directly to the reactor; and the system remains under vacuum of 200 mmHg, at a temperature of 50 ° C, with mechanical stirring of 400 rpm for a time period of 40 minutes for extraction of the organic solvent.
6. Processo de produção de nanoestrutura de película del- gada de blenda anfifílica polimérica com alta concentração de núcleo de caráter orgânico para aplicação contra radiação ultravioleta, de acordo com a reivindicação 5, caracterizado por se utilizar para constituição da casca-núcleo uma blenda do polímero hidrofóbico policapro- lactona misturado aos copolímeros hidrofílicos polioxietileno ou poli- oxipropileno, e a combinação de pelo menos dois agentes químicos de proteção contra radiação ultravioleta para constituição do núcleo.  Process for the production of a high-concentration polymeric amphiphilic blend thin-film nanostructure of an organic character for application against ultraviolet radiation according to claim 5, characterized in that a blend of the core shell is used for constitution of the core shell. polycaprolone hydrophobic polymer mixed with the polyoxyethylene or polyoxypropylene hydrophilic copolymers, and the combination of at least two ultraviolet radiation shielding chemicals to form the core.
PCT/BR2016/050353 2015-12-29 2016-12-27 Method for producing a thin-film nanostructure composed of a polymeric amphiphilic blend with a high concentration of the organic core as a u.v. protection filter WO2017112993A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
BR102015032897-4A BR102015032897B1 (en) 2015-12-29 2015-12-29 PRODUCTION PROCESS OF THIN FILM NANOSTRUCTURE OF POLYMER AMPHILICAL BLENDA WITH HIGH CONCENTRATION OF ORGANIC NUCLEUS AS AN ULTRAVIOLET RADIATION FILTER
BRBR102015032897-4 2015-12-29

Publications (2)

Publication Number Publication Date
WO2017112993A1 true WO2017112993A1 (en) 2017-07-06
WO2017112993A8 WO2017112993A8 (en) 2017-08-10

Family

ID=59224024

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/BR2016/050353 WO2017112993A1 (en) 2015-12-29 2016-12-27 Method for producing a thin-film nanostructure composed of a polymeric amphiphilic blend with a high concentration of the organic core as a u.v. protection filter

Country Status (3)

Country Link
AR (1) AR107236A1 (en)
BR (1) BR102015032897B1 (en)
WO (1) WO2017112993A1 (en)

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030146529A1 (en) * 2001-08-09 2003-08-07 Ching-Jen Chen Polymeric encapsulation of nanoparticles
US20030219391A1 (en) * 2002-02-28 2003-11-27 L'oreal Dispersed powders providing ultraviolet light protection, suitable for use in cosmetic compositions
CN1912016A (en) * 2006-08-29 2007-02-14 攀枝花钢铁(集团)公司 Preparation method of nanometer TiO2 water dispersion pulp liquid for ultraviolet shielding
CN101486845A (en) * 2008-01-14 2009-07-22 深圳市海川实业股份有限公司 Method for preparing nano colouring matter aqueous dispersions
US20090214655A1 (en) * 2005-01-28 2009-08-27 Alfonso Miguel Ganan Calvo Method and Device for Obtaining Micro and Nanometric Size Particles
WO2009126722A1 (en) * 2008-04-11 2009-10-15 Kobo Products Inc. Process for making large particles with nano optical sunscreen properties
US20100303913A1 (en) * 2006-10-31 2010-12-02 William Marsh Rice University Method for Nanoencapsulation
CN104127335A (en) * 2014-08-05 2014-11-05 西南交通大学 Preparation process of easy-clean Pickering emulsion type sunscreen cream containing UV controlled-release medicinal components
WO2015089609A1 (en) * 2013-12-19 2015-06-25 Instituto De Pesquisas Tecnologicas Do Estado De São Paulo S/A - Ipt Method for nanoencapsulating high concentrations of active ingredients and resulting products
US9139745B2 (en) * 2009-08-11 2015-09-22 National Institute Of Advanced Industrial Science And Technology Aggregate of spherical core-shell cerium oxide/polymer hybrid nanoparticles and method for producing the same

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030146529A1 (en) * 2001-08-09 2003-08-07 Ching-Jen Chen Polymeric encapsulation of nanoparticles
US20030219391A1 (en) * 2002-02-28 2003-11-27 L'oreal Dispersed powders providing ultraviolet light protection, suitable for use in cosmetic compositions
US20090214655A1 (en) * 2005-01-28 2009-08-27 Alfonso Miguel Ganan Calvo Method and Device for Obtaining Micro and Nanometric Size Particles
CN1912016A (en) * 2006-08-29 2007-02-14 攀枝花钢铁(集团)公司 Preparation method of nanometer TiO2 water dispersion pulp liquid for ultraviolet shielding
US20100303913A1 (en) * 2006-10-31 2010-12-02 William Marsh Rice University Method for Nanoencapsulation
CN101486845A (en) * 2008-01-14 2009-07-22 深圳市海川实业股份有限公司 Method for preparing nano colouring matter aqueous dispersions
WO2009126722A1 (en) * 2008-04-11 2009-10-15 Kobo Products Inc. Process for making large particles with nano optical sunscreen properties
US9139745B2 (en) * 2009-08-11 2015-09-22 National Institute Of Advanced Industrial Science And Technology Aggregate of spherical core-shell cerium oxide/polymer hybrid nanoparticles and method for producing the same
WO2015089609A1 (en) * 2013-12-19 2015-06-25 Instituto De Pesquisas Tecnologicas Do Estado De São Paulo S/A - Ipt Method for nanoencapsulating high concentrations of active ingredients and resulting products
CN104127335A (en) * 2014-08-05 2014-11-05 西南交通大学 Preparation process of easy-clean Pickering emulsion type sunscreen cream containing UV controlled-release medicinal components

Also Published As

Publication number Publication date
WO2017112993A8 (en) 2017-08-10
AR107236A1 (en) 2018-04-11
BR102015032897B1 (en) 2021-07-20
BR102015032897A2 (en) 2017-07-04

Similar Documents

Publication Publication Date Title
EP1194111B1 (en) Uv radiation reflecting or absorbing agents, protecting against harmful uv radiation and reinforcing the natural skin barrier
US6242099B1 (en) Microcapsules made of chitin or of chitin derivatives containing a hydrophobic substance, in particular a sunscreen, and process for the preparation of such microcapsules
EP1127567B1 (en) Aqueous dispersions of water insoluble organic sunscreens
Joshi et al. Sunscreen creams containing naringenin nanoparticles: Formulation development and in vitro and in vivo evaluations
US10016350B2 (en) Nanoparticle system comprising oil and UV filter
US20180207218A1 (en) Plant extractions, compositions containing same, and uses thereof
Gaur et al. Solid lipid nanoparticles of guggul lipid as drug carrier for transdermal drug delivery
Scalia et al. Microencapsulation of a cyclodextrin complex of the UV filter, butyl methoxydibenzoylmethane: In vivo skin penetration studies
US20120027697A1 (en) Plant extracts, compositions containing same, and uses thereof
US20060057090A1 (en) Cosmetic preparations with anitacterial properties
US20070003510A1 (en) Preparations containing an extract of eperua falcata and/or constituents of the latter
US20160166488A1 (en) Medicament
WO2017112993A1 (en) Method for producing a thin-film nanostructure composed of a polymeric amphiphilic blend with a high concentration of the organic core as a u.v. protection filter
KR101541400B1 (en) UV light absorbing emulsifiers
WO2017112992A1 (en) Composition of butyl methoxydibenzoilmethane, diethylamino hydroxybenzoil hexyl benzoate, ethyl-hexyl salycilate, homosalate and octocrylene nanoencapsulated in a polymeric thin film nanostructure
KR102067514B1 (en) Biocompatible Polymer for UV Screening, Composition Comprising the Same and Method for Preparing the Same
ITMI20122009A1 (en) SOLID FORM STABLE AMORFA OF A TRIAZINE DERIVATIVE AND ITS PROCEDURE FOR ITS PRODUCTION
DE10007116A1 (en) Aqueous dispersions, dry powders and double dispersions containing difficultly water-soluble or insoluble organic UV filter substances (especially triazines) for use in plastics, lacquers, cosmetics or pharmaceuticals
JP2018537492A (en) Emulsion with UV sunscreen factor and carnosine
Tripathi et al. Nanoformulations of quercetin: a potential phytochemical for the treatment of uv radiation induced skin damages
BR112016028513B1 (en) OIL FREE EMOLIENTS IN SUN PROTECTION COMPOSITIONS
BRPI0904197B1 (en) POLYMERIC NANOCAPSULES, USE OF POLYMERIC NANOCAPSULES AND PHOTOPROTECTIVE COMPOSITION
Diniyanti DEVELOPMENT OF SUNSCREEN CREAM CONTAINING MANGOSTEEN PERICARP EXTRACT ENCAPSULATED IN SOLID LIPID NANOPARTICLES
BR102015012999B1 (en) composition, preparation process and use of nanocosmetic based on carnáuba wax and quercetin with hydrating, antioxidant and photoprotective action
EP1902756A1 (en) Composition and method for treating skin by administering silybin and piperine/terahydropiperine

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16880206

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16880206

Country of ref document: EP

Kind code of ref document: A1