WO2017111129A1 - Novel genetic abnormality related to acute lymphoblastic leukemia, and uses thereof - Google Patents

Novel genetic abnormality related to acute lymphoblastic leukemia, and uses thereof Download PDF

Info

Publication number
WO2017111129A1
WO2017111129A1 PCT/JP2016/088570 JP2016088570W WO2017111129A1 WO 2017111129 A1 WO2017111129 A1 WO 2017111129A1 JP 2016088570 W JP2016088570 W JP 2016088570W WO 2017111129 A1 WO2017111129 A1 WO 2017111129A1
Authority
WO
WIPO (PCT)
Prior art keywords
gene
bcl9
mef2d
fusion
exon
Prior art date
Application number
PCT/JP2016/088570
Other languages
French (fr)
Japanese (ja)
Inventor
友介 奥野
勢二 小島
喬悟 鈴木
希 川島
由子 関屋
Original Assignee
国立大学法人名古屋大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人名古屋大学 filed Critical 国立大学法人名古屋大学
Priority to JP2017558310A priority Critical patent/JPWO2017111129A1/en
Publication of WO2017111129A1 publication Critical patent/WO2017111129A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K45/00Medicinal preparations containing active ingredients not provided for in groups A61K31/00 - A61K41/00
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K16/00Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
    • C07K16/18Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans
    • C07K16/32Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against translation products of oncogenes
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K19/00Hybrid peptides, i.e. peptides covalently bound to nucleic acids, or non-covalently bound protein-protein complexes
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids

Definitions

  • the present invention relates to a novel genetic abnormality related to acute lymphoblastic leukemia. Specifically, it relates to various uses (for example, testing method, determination of treatment policy, treatment method) of the newly found MEF2D-BCL9 fusion gene.
  • This application claims priority based on Japanese Patent Application No. 2015-255179 filed on Dec. 25, 2015, the entire contents of which are incorporated by reference.
  • ALL Acute lymphoblastic leukemia
  • Japan 500 cases occur annually, and the long-term survival rate is around 80%.
  • ALL it is known that it develops with various genetic abnormalities (gene fusion, gene deletion / amplification, point mutation) (Non-patent Document 1).
  • Gene fusion, gene deletion / amplification, point mutation gene fusion, gene deletion / amplification, point mutation
  • Non-patent Document 1 Acute lymphoblastic leukemia
  • ALL having an ETV6-RUNX1 fusion gene or a TCF3-PBX1 fusion gene responds well to normal chemotherapy and has a good prognosis.
  • ALL with the BCR-ABL fusion gene was considered to have a poor prognosis, but it became clear that treatment with BCR-ABL molecular target drugs (imatinib, dasatinib, etc.) improved the prognosis.
  • ALL with point mutations / deletions in the TP53 and IKZF1 genes and ALL with partial amplification within chromosome 21 have a poor prognosis.
  • ALL having a point mutation in the NT5C2 gene has resistance to a specific chemotherapy (6-mercaptopurine) (Patent Document 1).
  • Recent large-scale studies have identified a group of ALL with activated thyrone kinase mutations (due to point mutations and gene fusions) and suggested the possibility of treatment with corresponding thyrone kinase inhibitors.
  • ALL Although various genetic abnormalities have been discovered in ALL, there is still an example (B-other ALL) in which no genetic abnormality that predicts prognosis is found.
  • B-other ALL Another hypothesis explaining this may be that the genetic abnormality in ALL is still insufficiently elucidated. For example, there are many reports of analysis at the time of diagnosis, but there are few reports of analysis at a more advanced stage such as the time of recurrence.
  • the long-term survival rate of ALL patients is improving to 90%, but in order to further improve treatment outcomes, new genetic abnormalities and molecules that predict response to specific chemotherapy It may be necessary to look for genetic abnormalities that are the target of targeted therapy.
  • an object of the present invention is to meet such needs and contribute to the improvement of ALL treatment results.
  • MEF2D-BCL9 fusion gene alone defines a group of characteristic ALL. Therefore, if the presence of a genetic abnormality characterized by the formation of the fusion gene is used as an index, it can be said that the case can be identified and a more effective treatment policy can be determined.
  • MEF2D gene fusion with DAZAP1 gene (Patent Document 2, Non-Patent Documents 2 and 3) and fusion with CSF1R gene (Non-Patent Document 4) have been reported.
  • HDAC9 is a class IIa histone deacetylase and is involved in transcriptional regulation.
  • drugs effective for inhibiting HDAC9 HDAC inhibitors such as vorionstat, quisinostat and TMP269 have been developed.
  • a drug susceptibility test using patient-derived primary cultured leukemia cells was performed.
  • HDAC inhibitors (vorinostat, xinostat) showed significant cell growth inhibitory activity.
  • bortezomib a proteasome inhibitor that is expected to be effective against treatment-resistant B-precursor ALL, showed similar activity. That is, the possibility that the HDAC inhibitor and the proteasome inhibitor are effective for the treatment of the case was shown.
  • the following invention is mainly based on the above-mentioned results.
  • a method for testing acute lymphocytic leukemia comprising the following steps (1) to (3): (1) preparing a specimen containing leukemia cells isolated from a patient with acute lymphoblastic leukemia; (2) detecting the presence or absence of a fusion gene of the MEF2D gene and the BCL9 gene or a fusion protein encoded by the fusion gene in the specimen; (3) A step of determining that the prognosis is poor or difficult to treat when the fusion gene or the fusion protein is detected.
  • Method. [3] The detection of the fusion gene in step (2) is from the group consisting of RT-PCR, PCR, PCR-RFLP, PCR-SSCP, RNA sequence analysis, target sequence analysis, FISH method and whole genome analysis.
  • [4] The examination method according to any one of [1] to [3], wherein the patient with acute lymphoblastic leukemia is a child.
  • the therapeutic policy determined or changed in the step (4) or (4 ′) includes treatment by administration of a histone deacetylase inhibitor and / or a proteasome inhibitor, [5] or [ 6].
  • the examination method according to [5] or [6], wherein the treatment policy determined or changed in step (4) or (4 ′) includes adaptation of hematopoietic stem cell transplantation.
  • Treatment of acute lymphocytic leukemia comprising treating the patient with acute lymphocytic leukemia according to a treatment policy determined or changed by the test method according to any one of [5] to [11] Method.
  • a medicament for treating a patient with acute lymphocytic leukemia characterized by formation of a fusion gene of MEF2D gene and BCL9 gene, comprising a histone deacetylase inhibitor and / or a proteasome inhibitor.
  • the medicament according to [13], wherein the histone deacetylase inhibitor is a histone deacetylase 9 inhibitor.
  • a therapeutically effective amount of a medicine containing a histone deacetylase inhibitor and / or a proteasome inhibitor is administered to a patient with acute lymphocytic leukemia characterized by the formation of a fusion gene between the MEF2D gene and the BCL9 gene A method for treating acute lymphoblastic leukemia.
  • the histone deacetylase inhibitor is a histone deacetylase 9 inhibitor.
  • a kit for detecting a genetic abnormality characterized by formation of a fusion gene of a MEF2D gene and a BCL9 gene comprising the primer set according to [17] or [18].
  • a screening method for a substance effective for the treatment of a patient with acute lymphocytic leukemia characterized by formation of a fusion gene of MEF2D gene and BCL9 gene comprising the following steps (i) to (iii): (i) providing a cell expressing a fusion gene of MEF2D gene and BCL9 gene; (ii) culturing the cell in the presence of a test substance; (iii) measuring the number of viable cells and determining the effectiveness of the test substance. [24] A fusion gene of MEF2D gene and BCL9 gene.
  • [25] The fusion gene according to [24], which is generated by chromosomal inversion in which a breakpoint exists in intron 6 or 7 in the MEF2D gene and a breakpoint exists in exon 8 or intron 9 in the BCL9 gene.
  • the fusion gene according to [25] comprising exons 1 to 6 of the MEF2D gene and exon 10 of the BCL9 gene or a part thereof.
  • the fusion gene according to [26] comprising the sequence of SEQ ID NO: 11 and the sequence of SEQ ID NO: 12.
  • [29] The fusion protein according to [28], comprising the sequence of SEQ ID NO: 13 and the sequence of SEQ ID NO: 14. [30] DNA complementary to mRNA that is a transcription product of the fusion gene according to any one of [24] to [27]. [31] The DNA of [30], comprising the sequence of SEQ ID NO: 15 and the sequence of SEQ ID NO: 16. [32] An antibody that recognizes a fusion protein encoded by a fusion gene of MEF2D gene and BCL9 gene. [33] The antibody according to [32], wherein the fusion protein is a fusion protein defined in [28] or [29].
  • A The position on the chromosome of MEF2D gene and BCL9 gene.
  • B An example of a breakpoint that forms a fusion gene of MEF2D-BCL9. Detection of fusion gene mRNA by RT-PCR. RT-PCR results. Case 1 (upper) and case 4 (lower) are shown. Detection of breakpoints in genomic DNA. PCR results (top). Detection was attempted using primer set 4 (left) and primer set 5 (right). The genomic breakpoints in each case are shown in the bottom row. Results of expression profile analysis. Functional analysis of MEF2D-BCL9 fusion gene.
  • HDAC9 expression levels were compared between MEF2D-BCL9 positive and negative cases (A).
  • MELM2D-BCL9 was introduced into NALM-6, and the expression level (B) and cell proliferation rate (C) of HDAC9 were examined.
  • Effect of molecular target drugs Using primary culture cells established from patient leukemia cells positive for MEF2D-BCL9 fusion gene, the effect (drug sensitivity) of vorinostat (A), xynostat (B), and bortezomib (C) was tested.
  • the first aspect of the present invention relates to a test method for ALL.
  • the following steps (1) to (3) are performed.
  • step (1) prepare a sample to be used for the test.
  • Specimens containing leukemia cells isolated from ALL patients are used.
  • the type and origin of the specimen are not particularly limited.
  • a cell fraction (bone marrow cell) prepared from bone marrow or a cell fraction (blood cell) prepared from blood such as peripheral blood is used as a specimen.
  • the test method of the present invention is particularly useful for predicting the prognosis of ALL in children, determining the treatment policy, and the like, it is preferable to use a sample derived from a child with ALL. In general, children under the age of 15 are considered children.
  • the specimen is prepared prior to the practice of the present invention. That is, the examination method of the present invention does not include a step of isolating (collecting) bone marrow or the like for preparing a specimen from a patient.
  • step (2) the presence or absence of a fusion gene (MEF2D-BCL9 fusion gene) of MEF2D gene and BCL9 gene or a fusion protein encoded by the fusion gene is detected in the sample.
  • a fusion gene (MEF2D-BCL9 fusion gene is detected)
  • genomic DNA or mRNA is the detection target.
  • genomic DNA is targeted for detection
  • the presence or absence of fusion gene formation due to partial inversion of the chromosome is detected.
  • mRNA is the detection target, the presence or absence of the expression of the fusion gene is detected.
  • the means for detecting the MEF2D-BCL9 fusion gene is not particularly limited.
  • RT-PCR reverse transcription-polymerase chain reaction
  • PCR method PCR method
  • PCR-RFLP restriction fragment fragment length polymorphism
  • PCR-SSCP single strand strand conformation polymorphism
  • RNA sequence analysis target sequence analysis
  • FISH Fluorescence in situ hybridization
  • Invader registered trademark, Third Wave Technologies
  • LAMP Loop-Mediated Isothermal Amplification
  • CGH Comparative Genomic Hybridization
  • dot hybridization method Northern hybridization method, etc.
  • the detection means can be used. Extraction and purification of genomic DNA and mRNA can be performed by known methods. Various kits for preparation are commercially available, and they may be used.
  • the MEF2D-BCL9 fusion gene is a novel fusion gene derived from ALL patients, as shown in the Examples below. According to the study by the present inventors, it is clear that the fusion gene is formed by a chromosomal inversion in which a breakpoint exists in intron 6 or 7 in the MEF2D gene and a breakpoint exists in exon 8 or intron 9 in the BCL9 gene. It became. Based on this information, it is possible to design and prepare primers and probes used for detection of fusion genes. Specific examples of primers that can be used in detection means using the nucleic acid amplification reaction (the above-mentioned RT-PCR method and PCR method) will be described later.
  • the fusion protein can be detected by an immunological assay.
  • an antibody against the fusion protein is used, and the fusion protein is detected using the binding property (binding amount) of the antibody as an index.
  • immunoassays are Western blot, immunohistochemistry, fluorescence immunoassay (FIA), enzyme immunoassay (EIA), radioimmunoassay (RIA), flow cytometry (FCM) , Immunoprecipitation, immunochromatography, ELISA, and the like.
  • step (3) the prognosis or treatment difficulty of the patient is evaluated based on the detection result in step (2). Specifically, when a fusion gene or fusion protein to be detected in step (2) is detected, it is determined that the prognosis is poor or treatment is difficult.
  • genetic abnormalities characterized by the formation of the MEF2D-BCL9 fusion gene (hereinafter referred to as “genetic abnormalities of the present invention”) are used as indicators for determining the prognosis and treatment responsiveness of ALL patients. May be used). The determination here can be automatically / mechanically performed without depending on the determination of a person having specialized knowledge such as a doctor or a laboratory technician, as is apparent from the determination criteria.
  • step (4) is performed following step (3). (4) Based on the determination in step (3), identifying a risk group to which the patient with acute lymphocytic leukemia belongs, and determining or changing a treatment policy
  • ALL stratification treatment In ALL, stratified treatment is generally performed according to risk.
  • ALL stratification treatment generally consists of remission induction therapy, intensive therapy, central nervous system invasion prevention therapy, remission induction therapy, maintenance therapy, etc., and a treatment policy combining these therapies is set. Indications for hematopoietic stem cell transplantation are also considered when treatment alone is not possible with chemotherapy.
  • Treatment of ALL usually begins with the initial goal of introducing remission. After successful introduction of remission, treatment is performed to further reduce the remaining tumor cells while preventing infiltration of the central nervous system and the like. Thereafter, maintenance therapy, re-induction therapy, etc. will be continued, aiming to eradicate tumor cells.
  • stratified treatment of ALL multiple risk groups are set using various indicators, and treatment is performed for each risk group according to the optimal treatment policy.
  • a risk group to which a patient should belong is identified based on examinations before and after the start of treatment. The therapeutic effect is maximized by the stratified treatment.
  • the inspection method of the present invention is performed before or after the start of treatment. If it is carried out before the start of treatment, the present invention can be used to identify a provisional or definite risk group (to which an immediate or definitive treatment policy is determined).
  • Stratified treatment protocols include, for example, age, white blood cell count, chromosomal / gene abnormalities, initial treatment (eg, methotrexate (MTX) intrathecal injection and 7-day prednisolone (PSL) administration), presence or absence of central nervous system invasion, etc.
  • test method of the present invention is carried out before the start of treatment and the results are used, cases having genetic abnormalities of the present invention can be classified into more qualified risk groups, and earlier and appropriate treatment can be performed. It becomes possible.
  • the test method of the present invention is carried out after the start of treatment, the present invention can be used for determination or change of risk groups (accordingly, subsequent treatment policy is determined). This aspect allows, for example, a review of the treatment policy if it recurs after remission.
  • the examination method of the present invention may be performed multiple times over time to monitor the treatment effect and review the treatment policy (for example, change of risk group and change of treatment method associated therewith).
  • Step (4) corresponds to stratification using the genetic abnormality of the present invention as an index.
  • the “risk group” identified in step (4) is typically a group associated with a high risk, that is, a “high risk group”.
  • a corresponding risk group can be identified from among a plurality of risk groups set in the stratified treatment protocol. Below, a specific example is shown regarding this point.
  • JACLS Choildren's Leukemia Research Group
  • TCCSG Tokyo Children's Cancer Research Group
  • CCLSG Cho Children's Cancer and Leukemia Research Group
  • KYCCSG Knowu / Yamaguchi Children's Cancer Research Group
  • the standard risk group (SR group) and the intermediate risk group
  • the present invention is applied to this protocol, for example, at the time of determination of poor prognosis or difficult treatment (step (3)), the patient is considered to belong to the “HR group” and another determination (ie, step ( When the fusion gene or fusion protein of the MEF2D gene and the BCL9 gene is not detected in 2), the patient belongs to the “SR group” or the patient belongs to the “IR group”.
  • the patient belongs to the “ER group” and another determination (ie, When the fusion gene or fusion protein of MEF2D gene and BCL9 gene is not detected in step (2)), it is assumed that the patient belongs to the “HR group” or the patient belongs to the “SR group”.
  • patients in whom the genetic abnormality of the present invention is detected are usually classified into high risk groups (poor prognosis, difficult treatment) among a plurality of set risk groups.
  • high risk groups poor prognosis, difficult treatment
  • step (4) and alternative step (4 ') the risk group to which the patient belongs is specified by using the determination in step (3) and the results of other tests together.
  • various indices including a new index provided by the present application that is, the genetic abnormality of the present invention are comprehensively evaluated to identify a risk group to which the patient belongs.
  • tests here include interviews, physical examination (extramedullary invasion, especially testicular invasion screening, etc.), blood tests (total blood count, blood biochemistry, cell surface marker analysis, detection of chromosomal abnormalities), Imaging (chest x-ray (eg, mediastinal mass screening)), ultrasonography, CT examination, bone marrow puncture or bone marrow biopsy (nucleated cell count, May Giemsa staining, peroxidase staining, esterase staining, cell surface Marker analysis, detection of chromosomal abnormalities, G-band staining, genetic analysis, pathological examination), cerebrospinal fluid examination, and the like. These inspections may be performed in a conventional manner. In addition, contract inspection may be used. For example, BML Inc., SRL Inc., etc. provide contract inspection services for the detection of chromosomal abnormalities, which is one of the most important tests for appropriate stratified therapy.
  • a dedicated risk group is provided, and in step (4) or (4 '), the fusion gene or fusion protein of the MEF2D gene and the BCL9 gene is The detected patient may belong to the risk group.
  • treatment policy is set for each risk group. Therefore, by specifying the risk group to which the patient belongs, the patient's treatment policy is also determined.
  • step (4) or (4 The risk group identified in ') may differ from the previous risk group (ie, the risk group is changed).
  • the treatment policy is also changed with the change of the risk group.
  • the treatment strategy after the change typically includes an enhanced therapy than before the change.
  • Intensified therapy for example, increased the number of drugs used in combination (for example, use of etoposide, ifosfamide, vindesine in high-risk groups), increased cumulative doses / number of doses of drugs (eg, vincristine, daunorubicin, Intrathecal injection of cyclophosphamide, L-asparaginase, methotrexate, cytarabine, methotrexate, cytarabine and prednisolone) chemotherapy, cranial radiation, or hematopoietic stem cell transplantation.
  • drugs eg, vincristine, daunorubicin, Intrathecal injection of cyclophosphamide, L-asparaginase, methotrexate, cytarabine, methotrexate, cytarabine and prednisolone
  • the treatment policy determined in step (4) or (4 ′) (also applicable to the modified treatment policy) is a histone deacetylase inhibitor or proteasome inhibitor, or Treatment by administration of both of these is included.
  • cases of genetic abnormalities according to the present invention have a poor prognosis and show resistance to treatment, and therefore, more aggressive and enhanced treatment application is desired.
  • the treatment policy determined in step (4) or (4 ′) (also applicable to the modified treatment policy) includes indication of hematopoietic stem cell transplantation.
  • hematopoietic stem cell transplantation is used when chemotherapy alone cannot be cured. Hematopoietic stem cell transplantation is performed during the first remission phase or a subsequent remission phase, but is preferably the first remission phase so as to enhance the therapeutic effect by early aggressive therapeutic intervention.
  • hematopoietic stem cell transplantation are allogeneic bone marrow transplantation, autologous bone marrow transplantation, peripheral blood stem cell transplantation, umbilical cord blood stem cell transplantation, and mini-transplantation.
  • allogeneic bone marrow transplantation has few recurrences of disease, it has the problem that there are many complications (for example, GVHD) accompanying transplantation.
  • Peripheral blood stem cell transplantation is a method in which hematopoietic stem cells in peripheral blood are collected and transplanted, and has an advantage that hematopoietic recovery after transplantation is quick.
  • Umbilical cord blood stem cell transplantation has advantages such as no burden on the donor and early transplantation.
  • Mini-transplantation is a method for reducing side effects by reducing the amount of pre-transplantation treatment (administration of anticancer drugs or irradiation) by using an immunosuppressant, and is also called non-myeloablative transplantation.
  • the test method of the present invention is useful for determining, changing, and reviewing the ALL treatment policy.
  • ALL can be treated under a more optimized treatment policy.
  • this invention provides the treatment method using the test
  • prevention, remission, prevention or cure of an illness (ALL) or a disease state is intended.
  • Treatment after symptoms appear is aimed at reducing, ameliorating or eliminating the symptoms and / or related symptoms, or preventing exacerbations.
  • Treatment before symptoms appear typically aims to reduce the risk of symptoms appearing or to reduce the severity if symptoms appear.
  • an acute lymphoblastic leukemia patient is treated according to the treatment policy determined or changed by the test method of the present invention.
  • more optimized stratification treatment is possible.
  • Specific examples of treatment in the therapeutic method of the present invention are chemotherapy, hematopoietic stem cell transplantation, and radiation therapy. If classified according to purpose, remission induction therapy, reinforcement therapy, central nervous system invasion prevention therapy, remission induction therapy, maintenance therapy and the like can be mentioned.
  • drugs used in chemotherapy include corticosteroids (prednisolone, dexamethasone, hydrocortisone), alkylating agents (eg cyclophosphamide, ifosfamide, melphalan), antimetabolites (eg methotrexate, 6-mercapto) Purine, cytarabine, fludarabine, clofarabine), anticancer antibiotics (eg, daunorubicin, doxorubicin, pirarubicin, idarubicin, mitoxantrone), plant alkaloids (eg, vincristine, vinblastine, vindesine, etoposide), L-asparaginase.
  • corticosteroids prednisolone, dexamethasone, hydrocortisone
  • alkylating agents eg cyclophosphamide, ifosfamide, melphalan
  • antimetabolites eg methotrexate, 6-mercapto
  • Chemotherapy is based on multi-drug combination therapy that combines several types of anticancer drugs with different mechanisms of action and side effects.
  • Drug administration methods include intravenous injection (one-shot intravenous injection method, intravenous infusion method), subcutaneous injection, intramuscular injection, oral administration (internal use), intrathecal injection and the like.
  • the present invention is further based on the fact that histone deacetylase (HDAC) inhibitors and proteasome inhibitors have been suggested to be effective for cases in which the genetic abnormality of the present invention is observed, and specific cases of ALL Provide medicines for
  • the medicament of the present invention is used for the treatment of ALL patients with a genetic abnormality characterized by the formation of the MEF2D-BCL9 fusion gene, and contains an HDAC inhibitor, a proteasome inhibitor, or both as active ingredients .
  • the HDAC inhibitor and the proteasome inhibitor are not particularly limited.
  • As the HDAC inhibitor preferably, one that inhibits HDAC9 directly or through other molecules is employed.
  • HDAC inhibitors examples include vorinostat, panobunostat, quisinostat, romidepsin, TMP269 (see Baas, T. Closer to class IIa HDAC inhibitors. SciBX 6 (13) 2013) .
  • Vorinostat is a class I and class II HDAC inhibitor and is marketed under the trade name “ZOLINZA®”.
  • Romidepsin is a class I HDAC inhibitor and is marketed under the trade name “ISTODAX (registered trademark)”.
  • proteasome inhibitors are bortezomib, carfilzomib, ixazomib. Bortezomib is a drug that is expected to have an effect on treatment-resistant B-precursor ALL in recent years.
  • Treatment with a therapeutically effective amount of the medicament of the present invention can be expected as a promising therapeutic strategy for ALL patients with genetic abnormalities of the present invention.
  • Primer set and detection kit for detecting a novel genetic abnormality A further aspect of the present invention provides a primer set and a detection kit for detecting a genetic abnormality of the present invention.
  • the primer set of the present invention is typically used in the inspection method of the present invention. The same applies to the detection kit.
  • the MEF2D gene and the BCL9 are formed by a chromosomal inversion in which a breakpoint exists in intron 6 or 7 in the MEF2D gene and a breakpoint exists in exon 8 or intron 9 in the BCL9 gene. It is designed to specifically amplify DNA (cDNA) complementary to mRNA which is a fusion gene with a gene or its transcription product.
  • cDNA DNA
  • Examples of the primer set of the present invention include the following.
  • a forward primer consisting of a sequence complementary to a part of exon 1 to 6 of the MEF2D gene and consisting of 13 bases or more, and a part of the exon 10 region of the BCL9 gene consisting of 13 bases or more
  • Primer set consisting of reverse primers consisting of complementary sequences
  • primer sets targeting cDNA include the following (a1) to (a3). Since the primer set targets cDNA, it is suitable for various methods such as RT-PCR, in which cDNA prepared using mRNA as a template is to be detected.
  • (a1) Forward primer consisting of a sequence complementary to a part of the exon 3 to 4 region of the MEF2D gene and 13 bases or more, and a part of the exon 10 region of the BCL9 gene from 13 bases or more
  • BCL9 Primer set consisting of a reverse primer consisting of a sequence complementary to a part of the exon 10 region of the gene that is complementary to a part consisting of 13 bases or more
  • a part of the region of the exon 6 of the MEF2D gene consist
  • primer set (a1) examples include a forward primer 5′-CATCATCGAGACCCTGAGGAAG-3 ′ (SEQ ID NO: 1) and reverse primer 5′-TGTGGGGGAGACTGTACTGG-3 ′ (SEQ ID NO: 2). .
  • a set of forward primer 5′-GGCGCTATGGGTCAACTGTC-3 ′ (SEQ ID NO: 3) and reverse primer 5′-CGTCCTTGAGGTACCATCGG-3 ′ (SEQ ID NO: 4) is Specific examples of the primer set of a3) include a set of forward primer 5′-GCCCGTGTCCAATCAGAGC-3 ′ (SEQ ID NO: 5) and reverse primer 5′-CCGGGCATTGTAGATTGTGC-3 ′ (SEQ ID NO: 6).
  • primer set targets genomic DNA, and the MEF2D gene has a breakpoint in intron 6 or 7 and the BCL9 gene has a breakpoint in exon 8 or intron 9.
  • MEF2D gene has a breakpoint in intron 6 or 7
  • BCL9 gene has a breakpoint in exon 8 or intron 9.
  • Preferable specific examples include the following (b1) and (b2). These primer sets are suitable for PCR, but are not limited to use in other nucleic acid amplification reactions.
  • (b1) A part of the exon 2 region of the MEF2D gene that is complementary to a portion consisting of 13 bases or more and a part of the exon 10 region of the BCL9 gene that is a portion of 13 bases or more
  • B2 A forward primer consisting of a sequence complementary to a part of the exon 5 region of the MEF2D gene that is complementary to a part consisting of 13 or more bases
  • exon 10 of the BCL9 gene Primer set consisting of a reverse primer consisting of a sequence complementary to a part of the region of 13 and more than 13 bases
  • primer set (b1) examples include a forward primer 5′-AGGCTGTGCAGAAGGTATCC-3 ′ (SEQ ID NO: 7) and reverse primer 5′-GTGCAACACATGACCGATGG-3 ′ (SEQ ID NO: 8).
  • primer set (b2) a set of forward primer 5′-TTCTGTGGGCCAGAAATGGA-3 ′ (SEQ ID NO: 9) and reverse primer 5′-GGGACCCCATGAGGAGGTAT-3 ′ (SEQ ID NO: 10) can be mentioned. it can.
  • the length of each primer is usually 13 bases or more (upper limit is, for example, 40 bases), but preferably 15 bases to 30 bases, more preferably 18 bases to 26 bases in consideration of specificity, efficiency of amplification reaction, and the like.
  • the base is more preferably 20 to 24 bases.
  • the length of the DNA fragment amplified by the primer set is, for example, 200 to 2000 bases long, preferably 400 to 1500 bases long when cDNA is a target, and 500 to 500 bases long when genomic DNA is a target.
  • the length is 12000 bases, preferably 800 to 10000 bases.
  • Each primer sequence is complementary to the target (template) sequence, but only slightly between the primer sequence and the target sequence as long as specific hybridization occurs and the desired DNA fragment is specifically amplified. There may be minor mismatches.
  • the degree of mismatch is 1 to several, preferably 1 to 3, and more preferably 1 to 2.
  • the primer can be previously labeled with a labeling substance.
  • a labeled primer for example, detection using the labeling amount of the amplification product as an index becomes possible.
  • 7-AAD Alexa Fluor (registered trademark) 488, Alexa Fluor (registered trademark) 350, Alexa Fluor (registered trademark) 546, Alexa Fluor (registered trademark) 555, Alexa Fluor (registered) trademark) 568, Alexa Fluor (registered trademark) 594, Alexa Fluor (registered trademark) 633, Alexa Fluor (registered trademark) 647, Cy TM 2, DsRED , EGFP, EYFP, FITC, PerCP TM, R-Phycoerythrin, Propidium Iodide, AMCA, DAPI, ECFP, MethylCoumarin, Allophycocyanin (APC), Cy TM 3, Cy TM 5, Rhodamine-123, Tetramethylrhodamine, Texas Red (Tex
  • primer design software examples include Primer 3, OLIGO Primer Analysis Software, Primer-BLAST, and the like.
  • the primer can be synthesized by a known method such as a phosphodiester method.
  • the kit of the present invention makes it possible to perform the detection method of the present invention simply and efficiently.
  • the detection kit of the present invention contains the primer set of the present invention as an essential element.
  • the primer set (a) and the primer set (b) are preferably included.
  • the detection kit targeting genomic DNA preferably includes the primer set (A) and the primer set (B). According to these detection kits, the coverage of cases of genetic abnormalities according to the present invention (that is, the number of cases detected as having genetic abnormalities) is increased, and the test results are more useful. .
  • the kit of the present invention may contain other elements. Examples of other elements are instructions on the use of primer sets, various reagents (DNA polymerase, restriction enzymes, buffers, etc.), solvents, standard specimens, reaction vessels, and other instruments. Further, it may include guidelines and explanations for determining a treatment policy.
  • Drug screening method The present invention further shows that ALL cells introduced with the MEF2D-BCL9 fusion gene expressed HDAC9 as well as MEF2D-BCL9-positive patient-derived cells and increased their proliferation rate (Examples described later). And the fact that a drug susceptibility evaluation system could be constructed using MEF2D-BCL9 positive patient-derived cells (see the Example section below), the fusion gene of MEF2D gene and BCL9 gene Provided is a screening method for substances effective in the treatment of patients with ALL who form.
  • the following steps (i) to (iii) are performed.
  • (i) a step of preparing a cell expressing a fusion gene of MEF2D gene and BCL9 gene (ii) a step of culturing the cell in the presence of the test substance (iii) measuring the number of viable cells, and Step of determining effectiveness
  • a MEF2D-BCL9 fusion gene positive cell is prepared.
  • an ALL cell line for example, NALM-6, BALL-1, CCRF-CEM, Jurkat, CPT-K5
  • MEF2D-BCL9 fusion gene-positive cells for example, a MEF2D-BCL9 fusion gene positive cell.
  • an ALL cell line for example, NALM-6, BALL-1, CCRF-CEM, Jurkat, CPT-K5
  • the prepared cells are cultured in the presence of the test substance.
  • the number of cells to be used is not particularly limited and can be determined in consideration of detection sensitivity, experimental equipment, and the like. For example, 1 ⁇ 10 2 to 1 ⁇ 10 6 cells can be used in one screening operation.
  • the abundance (addition amount) of the test substance in the culture solution can be arbitrarily set, but the addition amount may be set within a range that does not have a fatal effect when normal cells are cultured under the same conditions.
  • a person skilled in the art can set an appropriate addition amount by preliminary experiments.
  • the incubation time is set so that the action / effect of the test substance can be sufficiently evaluated, but is not particularly limited.
  • the culture time can be set within a range of 10 minutes to 1 month.
  • the culture time in the subsequent screening can be set based on the time required for the substance to show the action / effect.
  • organic compounds or inorganic compounds of various molecular sizes can be used as the test substance.
  • organic compounds include nucleic acids, peptides, proteins, lipids (simple lipids, complex lipids (phosphoglycerides, sphingolipids, glycosylglycerides, cerebrosides, etc.), prostaglandins, isoprenoids, terpenes, steroids, polyphenols, catechins, and vitamins.
  • the test substance may be derived from a natural product or synthesized, and in the latter case, an efficient screening system can be constructed by using, for example, a combinatorial synthesis technique.
  • cell extracts, culture supernatants, etc. may be used as test substances, or existing drugs may be used as test substances, by adding two or more kinds of test substances at the same time, You may investigate synergistic action etc.
  • step (iii) following step (ii) the number of viable cells after culturing is measured, and the cell growth inhibitory activity (cytotoxic activity) of the test substance, that is, the effectiveness is determined.
  • the cell growth inhibitory activity cytotoxic activity
  • cells cultured in the presence of the test substance (test group) and cells cultured in the absence of the test substance (control group) are prepared, and the number of viable cells is measured and compared for each group. From the comparison results, the degree to which the cell viability has changed as a result of the presence of the test substance is determined.
  • the number of living cells in the test group is small compared to the control group (cell viability is low), that is, when the test substance shows cell growth inhibitory activity, the test substance exhibits the genetic abnormality of the present invention.
  • the substance (screening result) selected by the screening method of the present invention is a promising candidate (lead compound) as an active ingredient of a medicine for ALL cases having a genetic abnormality of the present invention.
  • the selected substance has a sufficient medicinal effect, it can be used as an active ingredient of a medicine as it is.
  • it can be used as an active ingredient of a medicine after it has been modified by chemical modification to enhance its medicinal effect.
  • the same modification may be applied for the purpose of further increasing the medicinal effect.
  • the present invention further provides a MEF2D-BCL9 fusion gene and a MEF2D-BCL9 fusion protein that define the genetic abnormality of the present invention.
  • the MEF2D-BCL9 fusion gene is caused by a chromosomal inversion in which a breakpoint exists in intron 6 or 7 in the MEF2D gene and a breakpoint exists in exon 8 or intron 9 in the BCL9 gene.
  • the MEF2D-BCL9 fusion protein is an expression product of the fusion gene.
  • MEF2D-BCL9 fusion gene and MEF2D-BCL9 fusion protein can define a new group of ALL, become an index when detecting the group (for example, become a detection target of the test method of the present invention), treatment It is useful in that it can be a target of the above.
  • the genetic abnormality of the present invention causes the onset of ALL.
  • the MEF2D-BCL9 fusion gene contains exons 1 to 6 of the MEF2D gene and exon 10 of the BCL9 gene or a part thereof.
  • a specific example of the sequence of exons 1 to 6 of the MEF2D gene is shown in SEQ ID NO: 11.
  • SEQ ID NO: 12 A specific example of the sequence of exon 10 of the BCL9 gene is shown in SEQ ID NO: 12.
  • MEF2D-BCL9 fusion protein is encoded by the MEF2D-BCL9 fusion gene. Accordingly, the amino acid sequence (SEQ ID NO: 13) corresponding to exons 1 to 6 of the MEF2D gene and the amino acid sequence (SEQ ID NO: 14) corresponding to exon 10 of the BCL9 gene or a part thereof are included.
  • the amino acid sequences of specific examples of the MEF2D-BCL9 fusion protein are shown in SEQ ID NOs: 15-20.
  • the MEF2D-BCL9 fusion gene and MEF2D-BCL9 fusion protein can be prepared in an isolated state, for example, by separating and purifying from a patient having a genetic abnormality of the present invention. Moreover, based on the sequence information disclosed in the present specification, it may be prepared by chemical synthesis, genetic engineering techniques, or the like.
  • the present invention further provides cDNA complementary to mRNA which is a transcription product of the MEF2D-BCL9 fusion gene.
  • the cDNA is particularly useful in that it serves as an index for detecting a new group of ALL (for example, a detection target of the test method of the present invention).
  • the cDNA of the present invention includes the sequence of exons 1 to 6 (SEQ ID NO: 21) of the MEF2D gene and the sequence of exon 10 (SEQ ID NO: 22) of the BCL9 gene or a part thereof. Specific examples of the cDNA of the present invention are shown in SEQ ID NOs: 23 to 28.
  • the cDNA of the present invention can be prepared by a conventional method.
  • various reagents and kits for preparing cDNA are commercially available, and the cDNA of the present invention can be easily prepared by using them.
  • the present invention further provides antibodies that recognize MEF2D-BCL9 fusion proteins.
  • the antibody of the present invention is useful for detecting, for example, MEF2D-BCL9 fusion protein. Therefore, it can be used for the inspection method of the present invention.
  • the antibody of the present invention can be prepared using an immunological technique, a phage display method, a ribosome display method, or the like.
  • Preparation of a polyclonal antibody by an immunological technique can be performed by the following procedure.
  • An antigen (MEF2D-BCL9 fusion protein or a part thereof (including a fusion site)) is prepared and used to immunize animals such as rabbits.
  • An antigen can be obtained by purifying a biological sample.
  • a recombinant antigen can also be used.
  • the recombinant antigen can be expressed, for example, by introducing a gene encoding the MEF2D-BCL9 fusion protein (ie, MEF2D-BCL9 fusion gene) into a suitable host using a vector, and expressing it in the resulting recombinant cell. Can be prepared.
  • an antigen to which a carrier protein is bound may be used.
  • the carrier protein KLH (KeyholeHLimpet) Hemocyanin), BSA (Bovine Serum Albumin), OVA (Ovalbumin) and the like are used.
  • the carbodiimide method, the glutaraldehyde method, the diazo condensation method, the MBS (maleimidobenzoyloxysuccinimide) method, etc. can be used for the coupling
  • MEF2D-BCL9 fusion protein or part thereof is expressed as a fusion protein with GST, ⁇ -galactosidase, maltose-binding protein, histidine (His) tag or the like can also be used.
  • a fusion protein can be easily purified by a general method.
  • Immunization is repeated as necessary, and blood is collected when the antibody titer has sufficiently increased, and serum is obtained by centrifugation or the like. The obtained antiserum is affinity purified to obtain a polyclonal antibody.
  • monoclonal antibodies can be prepared by the following procedure. First, an immunization operation is performed in the same procedure as described above. Immunization is repeated as necessary, and antibody-producing cells are removed from the immunized animal when the antibody titer sufficiently increases. Next, the obtained antibody-producing cells and myeloma cells are fused to obtain a hybridoma. Subsequently, after this hybridoma is monoclonalized, a clone that produces an antibody having high specificity for the target protein (ie, MEF2D-BCL9 fusion protein) is selected. The target antibody can be obtained by purifying the culture medium of the selected clone.
  • the target antibody ie, MEF2D-BCL9 fusion protein
  • the desired antibody can be obtained by growing the hybridoma to a desired number or more, then transplanting it into the abdominal cavity of an animal (for example, a mouse), growing it in ascites, and purifying the ascites.
  • affinity chromatography using protein G, protein A or the like is preferably used.
  • affinity chromatography in which an antigen is immobilized may be used.
  • methods such as ion exchange chromatography, gel filtration chromatography, ammonium sulfate fractionation, and centrifugation can also be used. These methods can be used alone or in any combination.
  • labeling substances that can be used for labeling include fluorescent dyes such as fluorescein, rhodamine, Texas red, oregon green, enzymes such as horseradish peroxidase, microperoxidase, alkaline phosphatase, ⁇ -D-galactosidase, luminol, acridine Chemical or bioluminescent compounds such as dyes, various radioisotopes, biotin.
  • the antibodies of the present invention include antibodies from non-human animals such as mice and rats, chimeric antibodies, humanized antibodies, and human antibodies in which a part of the region has been replaced with those from other animals (including humans).
  • the class of the antibody is not particularly limited.
  • antibodies of the IgG class for example, those belonging to human antibody subclasses IgG1, IgG2, IgG3, and IgG4.
  • MEF2D-BCL9 fusion gene was detected in 4 cases. The detected fusion gene was fused in-frame, suggesting the possibility of producing a functional protein. MEF2D and BCL9 are both located on the long arm of chromosome 1, and the distance between these two genes is about 9 Mb (FIG. 1A). A partial inversion of this site forms a MEF2D-BCL9 fusion gene. This chromosomal abnormality was not detected by G-band staining.
  • RT-PCR Detection of fusion gene mRNA by RT-PCR
  • cDNA extracted from bone marrow containing leukemia cells as a template using ThermoScript TM RT-PCR system (Thermo) was synthesized.
  • RT-PCR was performed using the following primer set corresponding to the sequences of MEF2D and BCL9 and PrimeSTAR (registered trademark) GXL DNA polymerase.
  • the PCR product was subjected to direct sequence analysis using BigDye (registered trademark) Terminater 3.1 (Life Technologies).
  • MEF2D-BCL9 fusion gene detected by RNA sequencing was also confirmed by RT-PCR.
  • the specificity of the RT-PCR method could be confirmed by using healthy subjects as controls.
  • MEF2D-BCL9 in 115 cases of first acute leukemia 100 cases of B progenitor ALL, 4 cases of T cell ALL, 10 cases of acute myeloid leukemia, 1 case of mixed plasma acute leukemia, 1 case of acute mixed leukemia
  • the fusion gene was screened, no new cases of MEF2D-BCL9 fusion gene were detected.
  • the insertion sequence of unknown origin is the junction site (in case 3, MEF2D intron 7 and BCL9 intron 9 are joined via the insertion sequence, and in case 4 MEF2D intron 7 and BCL9 exon 8 are located via the insertion sequence. It was confirmed that this occurred in the bonding).
  • MEF2D-BCL9 fusion gene detected by RNA sequencing was supported by the presence of a breakpoint in the genome. It was also confirmed that this fusion gene could be detected by PCR using the genome as a template.
  • MEF2D-BCL9 in 115 cases of first acute leukemia (100 cases of B progenitor ALL, 4 cases of T cell ALL, 10 cases of acute myeloid leukemia, 1 case of mixed plasma acute leukemia, 1 case of acute mixed leukemia) Although the fusion gene was screened, no new cases of MEF2D-BCL9 fusion gene were detected.
  • MEF2D-BCL9 positive leukemia cells Four cases of MEF2D-BCL9 positive leukemia cells are typical in terms of (i) medium to large blasts, (ii) strong basophil cytoplasm, and (iii) marked vacuolation. It had morphological characteristics different from those of B precursor cells. These findings are similar to those of mature B-cell leukemia, but are differentiated based on the presence of cell surface markers such as CD20 and immunoglobulin, and the presence or absence of an IGH-MYC fusion gene.
  • MEF2D-BCL9 fusion gene useful for predicting the prognosis of ALL and deciding treatment policy.
  • cases are stratified by predicting prognosis using various indicators, and the optimal treatment strategy is determined for each case.
  • the present invention provides a new index useful for stratification of cases, and contributes to optimization of ALL treatment policy and maximization of therapeutic effect.
  • the MEF2D-BCL9 fusion gene is also useful as a target for molecular targeted therapy. Therefore, the present invention is also expected to contribute to the establishment of a new treatment strategy for ALL.
  • SEQ ID NO: 1 description of artificial sequence: forward primer SEQ ID NO: 2: description of artificial sequence: reverse primer SEQ ID NO: 3: description of artificial sequence: forward primer SEQ ID NO: 4: description of artificial sequence: reverse primer SEQ ID NO: 5: artificial sequence Description: forward primer SEQ ID NO: 6: description of artificial sequence: reverse primer SEQ ID NO: 7: description of artificial sequence: forward primer SEQ ID NO: 8: description of artificial sequence: reverse primer SEQ ID NO: 9: description of artificial sequence: forward primer sequence Number 10: description of artificial sequence: reverse primer SEQ ID NO: 21: description of artificial sequence: cDNA of exons 1, 2, 3, 4, 5, 6 of MEF2D gene SEQ ID NO: 22: Description of artificial sequence: cDNA, exon 10 of BCL9 gene, exon 10 cDNA SEQ ID NO: 23: Description of artificial sequence: cDNA encoding MEF2D-BCL9 fusion protein SEQ ID NO: 24: Description of artificial sequence: cDNA encoding MEF2D-BCL9 fusion

Abstract

The present invention addresses the problem of discovering a novel genetic abnormality, which is useful for the determination of treatment strategies or prognostic prediction of acute lymphoblastic leukemia, and contributing to the improvement of treatment outcomes. A genetic abnormality characterized by the formation of a fusion gene comprising the MEF2D gene and the BCL9 gene has been discovered from recurrent childhood acute lymphoblastic leukemia patients. This genetic abnormality will serve as a new indicator when determining treatment strategies.

Description

急性リンパ性白血病関連の新規遺伝学的異常及びその利用Novel genetic abnormalities associated with acute lymphoblastic leukemia and their use
 本発明は急性リンパ性白血病に関連する新規遺伝学的異常に関する。詳しくは、新たに見出されたMEF2D-BCL9融合遺伝子の各種用途(例えば、検査方法、治療方針の決定、治療方法)等に関する。本出願は、2015年12月25日に出願された日本国特許出願第2015-255179号に基づく優先権を主張するものであり、当該特許出願の全内容は参照により援用される。 The present invention relates to a novel genetic abnormality related to acute lymphoblastic leukemia. Specifically, it relates to various uses (for example, testing method, determination of treatment policy, treatment method) of the newly found MEF2D-BCL9 fusion gene. This application claims priority based on Japanese Patent Application No. 2015-255179 filed on Dec. 25, 2015, the entire contents of which are incorporated by reference.
 急性リンパ性白血病(ALL; acute lymphoblastic leukemia)は小児期において最も頻度の高い白血病である。日本においては年間500例が発生し、長期生存率は80%前後である。ALLの特徴として非常に多様な遺伝学的異常(遺伝子融合、遺伝子欠失・増幅、点変異)を伴って発症することが知られている(非特許文献1)。そして、備える遺伝学的異常の違いによって、生命予後や各種治療法への反応性が異なる。例えば、ETV6-RUNX1融合遺伝子やTCF3-PBX1融合遺伝子を有するALLは通常の化学療法によく反応し、予後良好である。BCR-ABL融合遺伝子を有するALLは予後不良とされていたが、BCR-ABLの分子標的薬(イマチニブ、ダサチ二ブ等)を用いた治療で予後が改善することが明らかとなった。TP53遺伝子やIKZF1遺伝子に点変異・欠失を有するALLや、21番染色体内に部分的な増幅を有するALLは予後不良である。NT5C2遺伝子に点変異を有するALLは特定の化学療法(6-メルカプトプリン)に対して抵抗性を備える(特許文献1)。近年の大規模研究によって、活性化型チロンンキナーゼ変異(点変異や遺伝子融合による)を有するALLの一群が同定され、対応するチロンンキナーゼ阻害薬によって治療できる可能性が示された。 Acute lymphoblastic leukemia (ALL) is the most common leukemia in childhood. In Japan, 500 cases occur annually, and the long-term survival rate is around 80%. As a characteristic of ALL, it is known that it develops with various genetic abnormalities (gene fusion, gene deletion / amplification, point mutation) (Non-patent Document 1). And the prognosis of life and responsiveness to various treatment methods differ depending on the difference in genetic abnormality provided. For example, ALL having an ETV6-RUNX1 fusion gene or a TCF3-PBX1 fusion gene responds well to normal chemotherapy and has a good prognosis. ALL with the BCR-ABL fusion gene was considered to have a poor prognosis, but it became clear that treatment with BCR-ABL molecular target drugs (imatinib, dasatinib, etc.) improved the prognosis. ALL with point mutations / deletions in the TP53 and IKZF1 genes and ALL with partial amplification within chromosome 21 have a poor prognosis. ALL having a point mutation in the NT5C2 gene has resistance to a specific chemotherapy (6-mercaptopurine) (Patent Document 1). Recent large-scale studies have identified a group of ALL with activated thyrone kinase mutations (due to point mutations and gene fusions) and suggested the possibility of treatment with corresponding thyrone kinase inhibitors.
国際公開第2014/074651号パンフレットInternational Publication No. 2014/074651 Pamphlet 国際公開第2005/082933号パンフレットInternational Publication No. 2005/082933 Pamphlet
 ALLにおいて様々な遺伝学的異常が発見されているが、未だに予後を予測する遺伝学的異常が見つからない例(B-other ALL)が存在する。これを説明する仮説の一つとして、未だにALLにおける遺伝的異常の解明は不十分である可能性が考えられる。例えば、診断時点における解析の報告は数多く存在するが、再発時点など、より病期の進行した時点での解析の報告はほとんどない。世界的にはALL患者の長期生存率は90%にまで改善しつつあるが、さらに治療成績を改善するためには、特定の化学療法への反応を予測する新たな遺伝学的異常や、分子標的治療の標的となる遺伝学的異常を探すことが必要と考えられる。 Although various genetic abnormalities have been discovered in ALL, there is still an example (B-other ALL) in which no genetic abnormality that predicts prognosis is found. One hypothesis explaining this may be that the genetic abnormality in ALL is still insufficiently elucidated. For example, there are many reports of analysis at the time of diagnosis, but there are few reports of analysis at a more advanced stage such as the time of recurrence. Worldwide, the long-term survival rate of ALL patients is improving to 90%, but in order to further improve treatment outcomes, new genetic abnormalities and molecules that predict response to specific chemotherapy It may be necessary to look for genetic abnormalities that are the target of targeted therapy.
 このように、治療方針の決定や予後予測などに役立つ、未知の遺伝学的異常を見出すことが望まれている。そこで本発明は、このようなニーズに応え、ALLの治療成績の向上に貢献することを課題とする。 Thus, it is desired to find unknown genetic abnormalities that are useful in determining treatment strategies and predicting prognosis. Accordingly, an object of the present invention is to meet such needs and contribute to the improvement of ALL treatment results.
 上記課題を解決すべく、本発明者らは鋭意検討を行った。まず、再発又は治療抵抗性の小児ALL 59例(乳児ALL 3例、Ph1陽性ALL 6例、T細胞性ALL 4例、成熟B細胞性ALL 3例を含む)において、骨髄又は末梢血の白血病細胞を用いてRNAシーケンスを行った。その結果、4例でMEF2D-BCL9融合遺伝子が同定された。これらの4例は、発症年齢が比較的高い年齢(10~13歳)であることや、短期間で再発し、再発後の治療も困難であること、更には細胞の形態(巨大な空胞を有する)が通常のALLと異なることなど、共通の特徴を示した。さらに、これらの4例においては、ALLの既知の遺伝学的異常は見つからなかった。即ち、MEF2D-BCL9融合遺伝子が単独で特徴的なALLの一群を規定することが示唆された。従って、当該融合遺伝子の形成で特徴付けられる遺伝学的異常の存在を指標にすれば、当該症例を特定でき、より有効な治療方針の決定が可能になるといえる。尚、MEF2D遺伝子については、DAZAP1遺伝子との融合(特許文献2、非特許文献2、3)、CSF1R遺伝子との融合(非特許文献4)が報告されている。 In order to solve the above problems, the present inventors have conducted intensive studies. First, bone marrow or peripheral blood leukemia cells in 59 patients with relapsed or refractory ALL (3 infants, 6 Ph1-positive ALL, 4 T-cell ALL, 3 mature B-cell ALL) Was used for RNA sequencing. As a result, MEF2D-BCL9 fusion gene was identified in 4 cases. In these 4 cases, the age of onset is relatively high (10-13 years), relapses in a short period of time, and treatment after recurrence is difficult, and cell morphology (giant vacuoles) Have common features, such as being different from normal ALL. Furthermore, no known genetic abnormality of ALL was found in these 4 cases. That is, it was suggested that the MEF2D-BCL9 fusion gene alone defines a group of characteristic ALL. Therefore, if the presence of a genetic abnormality characterized by the formation of the fusion gene is used as an index, it can be said that the case can be identified and a more effective treatment policy can be determined. Regarding MEF2D gene, fusion with DAZAP1 gene (Patent Document 2, Non-Patent Documents 2 and 3) and fusion with CSF1R gene (Non-Patent Document 4) have been reported.
 更に検討した結果、ゲノムにおけるMEF2D遺伝子とBCL9遺伝子の切断点の特定に成功し、検出法の確立ないし実現が可能になった。また、切断点の情報を基にプライマーを設計し、初発の急性白血病115例(B前駆細胞性ALL 100例、T細胞性ALL 4例、急性骨髄性白血病 10例、混合形質性急性白血病 1例、急性混合性白血病 1例)でMEF2D-BCL9融合遺伝子のスクリーニングを行ったが、検出される症例はなく、当該融合遺伝子が上記4例に特徴的な遺伝子異常であることが裏づけられた。 As a result of further investigation, it was possible to identify the breakpoints of the MEF2D gene and the BCL9 gene in the genome, and to establish or implement a detection method. In addition, primers were designed based on the information on the breakpoints, and the first 115 cases of acute leukemia (100 cases of B progenitor ALL, 4 cases of T-cell ALL, 10 cases of acute myeloid leukemia, 10 cases of mixed trait acute leukemia) In the case of acute mixed leukemia (1 case), the MEF2D-BCL9 fusion gene was screened, but no cases were detected, confirming that the fusion gene had a genetic abnormality characteristic to the above 4 cases.
 一方、MEF2D-BCL9融合遺伝子を指標とした新たな治療戦略の確立を目指し、更に検討を進めた。まず、MEF2D-BCL9融合遺伝子の陽性4症例における腫瘍細胞の発現解析を行った。その結果、古典的な予後不良因子として知られているHDAC9遺伝子の特徴的な高発現が観察された。HDAC9はクラスIIaのヒストン脱アセチル化酵素であり、転写調節に関わる。HDAC9の阻害に有効な薬剤としてボリノスタット(vorionstat)、キシノスタット(quisinostat)、TMP269等のHDAC阻害剤が開発されている。HDAC阻害剤を使用した治療法の有効性を調べるため、患者由来初代培養白血病細胞を用いた薬剤感受性試験を行った。その結果、HDAC阻害剤(ボリノスタット、キシノスタット)が有意な細胞増殖阻害活性を示した。また、近年、治療抵抗性B前駆細胞性ALLに対して効果が期待されているプロテアソーム阻害剤のボルテゾミブ(bortezomib)にも同様の活性が認められた。即ち、HDAC阻害剤及びプロテアソーム阻害剤が当該症例の治療に有効である可能性が示された。
 以下の発明は、主として上記の成果に基づく。
 [1]以下のステップ(1)~(3)を含む、急性リンパ性白血病の検査方法:
 (1)急性リンパ性白血病患者から単離した白血病細胞を含む検体を用意するステップ;
 (2)前記検体における、MEF2D遺伝子とBCL9遺伝子との融合遺伝子又は該融合遺伝子がコードする融合タンパク質の存否を検出するステップ;
 (3)前記融合遺伝子又は前記融合タンパク質が検出された場合に予後不良又は治療困難と判定するステップ。
 [2]MEF2D遺伝子ではイントロン6又は7に切断点が存在し、BCL9遺伝子ではエクソン8又はイントロン9に切断点が存在する染色体逆位によって前記融合遺伝子が形成される、[1]に記載の検査方法。
 [3]ステップ(2)における前記融合遺伝子の検出が、RT-PCR法、PCR法、PCR-RFLP、PCR-SSCP法、RNAシーケンス解析、ターゲットシーケンス解析、FISH法及び全ゲノム解析からなる群より選択されるいずれかの検出法によって行われ、ステップ(2)における前記融合タンパク質の検出が免疫学的測定法によって行われる、[1]又は[2]に記載の検査方法。
 [4]前記急性リンパ性白血病患者が小児である、[1]~[3]のいずれか一項に記載の検査方法。
 [5]以下のステップ(4)又は(4')を更に含む、[1]~[4]のいずれか一項に記載の検査方法:
 (4)前記ステップ(3)の判定に基づき、前記急性リンパ性白血病患者が属するリスク群を特定し、治療方針を決定又は変更するステップ;
 (4')前記ステップ(3)の判定と、他の検査の結果に基づき、前記急性リンパ性白血病患者が属するリスク群を特定し、治療方針を決定又は変更するステップ。
 [6]前記リスク群が高リスク群である、[5]に記載の検査方法。
 [7]前記ステップ(4)又は(4')で変更した後の治療方針が、変更前よりも強化された療法を含む、[5]又は[6]に記載の検査方法。
 [8]前記ステップ(4)又は(4')で決定した又は変更した後の治療方針が、ヒストン脱アセチル化酵素阻害剤及び/又はプロテアソーム阻害剤の投与による処置を含む、[5]又は[6]に記載の検査方法。
 [9]前記ヒストン脱アセチル化酵素阻害剤がヒストン脱アセチル化酵素9阻害剤である、[8]に記載の検査方法。
 [10]前記ステップ(4)又は(4')で決定した又は変更した後の治療方針が、造血幹細胞移植の適応を含む、[5]又は[6]に記載の検査方法。
 [11]前記造血幹細胞移植が第1寛解期に実施される、[10]に記載の検査方法。
 [12][5]~[11]のいずれか一項に記載の検査方法で決定した又は変更した後の治療方針に従って前記急性リンパ性白血病患者を処置することを含む、急性リンパ性白血病の治療方法。
 [13]ヒストン脱アセチル化酵素阻害剤及び/又はプロテアソーム阻害剤を含む、MEF2D遺伝子とBCL9遺伝子との融合遺伝子の形成で特徴付けられる急性リンパ性白血病患者を治療するための医薬。
 [14]前記ヒストン脱アセチル化酵素阻害剤がヒストン脱アセチル化酵素9阻害剤である、[13]に記載の医薬。
 [15]MEF2D遺伝子とBCL9遺伝子との融合遺伝子の形成で特徴付けられる急性リンパ性白血病患者に対して、ヒストン脱アセチル化酵素阻害剤及び/又はプロテアソーム阻害剤を含む医薬を治療上有効量投与することを含む、急性リンパ性白血病の治療方法。
 [16]前記ヒストン脱アセチル化酵素阻害剤がヒストン脱アセチル化酵素9阻害剤である、[15]に記載の治療方法。
 [17]MEF2D遺伝子ではイントロン6又は7に切断点が存在し、BCL9遺伝子ではエクソン8又はイントロン9に切断点が存在する染色体逆位によって形成される、MEF2D遺伝子とBCL9遺伝子との融合遺伝子の転写産物であるmRNAに相補的なDNAを特異的に増幅できるように設計したフォワードプライマーとリバースプライマーからなるプライマーセット。
 [18]MEF2D遺伝子ではイントロン6又は7に切断点が存在し、BCL9遺伝子ではエクソン8又はイントロン9に切断点が存在する染色体逆位によって形成される、MEF2D遺伝子とBCL9遺伝子との融合遺伝子を特異的に増幅できるように設計したフォワードプライマーとリバースプライマーからなるプライマーセット。
 [19][17]又は[18]に記載のプライマーセットを含む、MEF2D遺伝子とBCL9遺伝子との融合遺伝子の形成で特徴付けられる遺伝学的異常の検出用キット。
 [20]前記プライマーセットとして以下のプライマーセットを含む、[19]に記載の検出用キット:
 MEF2D遺伝子のエクソン1~6の領域の一部分であって13塩基以上からなる部分に相補的な配列からなるフォワードプライマーと、BCL9遺伝子のエクソン10の領域の一部分であって13塩基以上からなる部分に相補的な配列からなるリバースプライマーからなるプライマーセット
 [21]前記プライマーセットとして以下の(a1)~(a3)の中の一つ以上を含む、[19]に記載の検出用キット:
 (a1)MEF2D遺伝子のエクソン3~4の領域の一部分であって13塩基以上からなる部分に相補的な配列からなるフォワードプライマーと、BCL9遺伝子のエクソン10の領域の一部分であって13塩基以上からなる部分に相補的な配列からなるリバースプライマーからなるプライマーセット;
 (a2)MEF2D遺伝子のエクソン5~6の領域の一部分であって13塩基以上からなる部分に相補的な配列からなるフォワードプライマーと、BCL9遺伝子のエクソン10の領域の一部分であって13塩基以上からなる部分に相補的な配列からなるリバースプライマーからなるプライマーセット;
 (a3)MEF2D遺伝子のエクソン6の領域の一部分であって13塩基以上からなる部分に相補的な配列からなるフォワードプライマーと、BCL9遺伝子のエクソン10の領域の一部分であって13塩基以上からなる部分に相補的な配列からなるリバースプライマーからなるプライマーセット。
 [22]前記プライマーセットとして以下の(b1)及び/又は(b2)を含む、[19]に記載の検出用キット:
 (b1)MEF2D遺伝子のエクソン2の領域の一部分であって13塩基以上からなる部分に相補的な配列からなるフォワードプライマーと、BCL9遺伝子のエクソン10の領域の一部分であって13塩基以上からなる部分に相補的な配列からなるリバースプライマーからなるプライマーセット;
 (b2)MEF2D遺伝子のエクソン5の領域の一部分であって13塩基以上からなる部分に相補的な配列からなるフォワードプライマーと、BCL9遺伝子のエクソン10の領域の一部分であって13塩基以上からなる部分に相補的な配列からなるリバースプライマーからなるプライマーセット。
 [23]以下のステップ(i)~(iii)を含む、MEF2D遺伝子とBCL9遺伝子との融合遺伝子の形成で特徴付けられる急性リンパ性白血病患者の治療に有効な物質のスクリーニング方法:
 (i)MEF2D遺伝子とBCL9遺伝子との融合遺伝子を発現する細胞を用意するステップ;
 (ii)試験物質の存在下、前記細胞を培養するステップ;
 (iii)細胞の生存数を測定し、前記試験物質の有効性を判定するステップ。
 [24]MEF2D遺伝子とBCL9遺伝子との融合遺伝子。
 [25]MEF2D遺伝子ではイントロン6又は7に切断点が存在し、BCL9遺伝子ではエクソン8又はイントロン9に切断点が存在する染色体逆位によって生ずる、[24]に記載の融合遺伝子。
 [26]MEF2D遺伝子のエクソン1~6とBCL9遺伝子のエクソン10又はその一部を含む、[25]に記載の融合遺伝子。
 [27]配列番号11の配列と配列番号12の配列を含む、[26]に記載の融合遺伝子。
 [28][24]~[27]のいずれか一項に記載の融合遺伝子がコードする融合タンパク質。
 [29]配列番号13の配列と配列番号14の配列を含む、[28]に記載の融合タンパク質。
 [30][24]~[27]のいずれか一項に記載の融合遺伝子の転写産物であるmRNAに相補的なDNA。
 [31]配列番号15の配列と配列番号16の配列を含む、[30]に記載のDNA。
 [32]MEF2D遺伝子とBCL9遺伝子との融合遺伝子がコードする融合タンパク質を認識する抗体。
 [33]前記融合タンパク質が、[28]又は[29]に定義される融合タンパク質である、[32]に記載の抗体。
On the other hand, further studies were conducted with the aim of establishing a new treatment strategy using the MEF2D-BCL9 fusion gene as an index. First, expression analysis of tumor cells in 4 positive cases of MEF2D-BCL9 fusion gene was performed. As a result, characteristic high expression of the HDAC9 gene known as a classic poor prognosis factor was observed. HDAC9 is a class IIa histone deacetylase and is involved in transcriptional regulation. As drugs effective for inhibiting HDAC9, HDAC inhibitors such as vorionstat, quisinostat and TMP269 have been developed. In order to examine the effectiveness of treatments using HDAC inhibitors, a drug susceptibility test using patient-derived primary cultured leukemia cells was performed. As a result, HDAC inhibitors (vorinostat, xinostat) showed significant cell growth inhibitory activity. In recent years, bortezomib, a proteasome inhibitor that is expected to be effective against treatment-resistant B-precursor ALL, showed similar activity. That is, the possibility that the HDAC inhibitor and the proteasome inhibitor are effective for the treatment of the case was shown.
The following invention is mainly based on the above-mentioned results.
[1] A method for testing acute lymphocytic leukemia comprising the following steps (1) to (3):
(1) preparing a specimen containing leukemia cells isolated from a patient with acute lymphoblastic leukemia;
(2) detecting the presence or absence of a fusion gene of the MEF2D gene and the BCL9 gene or a fusion protein encoded by the fusion gene in the specimen;
(3) A step of determining that the prognosis is poor or difficult to treat when the fusion gene or the fusion protein is detected.
[2] The test according to [1], wherein the fusion gene is formed by a chromosomal inversion in which a breakpoint is present in intron 6 or 7 in the MEF2D gene and a breakpoint is present in exon 8 or intron 9 in the BCL9 gene. Method.
[3] The detection of the fusion gene in step (2) is from the group consisting of RT-PCR, PCR, PCR-RFLP, PCR-SSCP, RNA sequence analysis, target sequence analysis, FISH method and whole genome analysis. The test method according to [1] or [2], wherein the detection is performed by any selected detection method, and the detection of the fusion protein in step (2) is performed by an immunological measurement method.
[4] The examination method according to any one of [1] to [3], wherein the patient with acute lymphoblastic leukemia is a child.
[5] The inspection method according to any one of [1] to [4], further including the following step (4) or (4 ′):
(4) identifying a risk group to which the acute lymphoblastic leukemia patient belongs based on the determination in the step (3), and determining or changing a treatment policy;
(4 ′) A step of identifying a risk group to which the patient with acute lymphocytic leukemia belongs and determining or changing a treatment policy based on the determination in step (3) and the results of other tests.
[6] The inspection method according to [5], wherein the risk group is a high risk group.
[7] The examination method according to [5] or [6], wherein the treatment policy after the change in step (4) or (4 ′) includes a therapy that is strengthened than before the change.
[8] The therapeutic policy determined or changed in the step (4) or (4 ′) includes treatment by administration of a histone deacetylase inhibitor and / or a proteasome inhibitor, [5] or [ 6].
[9] The test method according to [8], wherein the histone deacetylase inhibitor is a histone deacetylase 9 inhibitor.
[10] The examination method according to [5] or [6], wherein the treatment policy determined or changed in step (4) or (4 ′) includes adaptation of hematopoietic stem cell transplantation.
[11] The examination method according to [10], wherein the hematopoietic stem cell transplantation is performed in a first remission period.
[12] Treatment of acute lymphocytic leukemia, comprising treating the patient with acute lymphocytic leukemia according to a treatment policy determined or changed by the test method according to any one of [5] to [11] Method.
[13] A medicament for treating a patient with acute lymphocytic leukemia characterized by formation of a fusion gene of MEF2D gene and BCL9 gene, comprising a histone deacetylase inhibitor and / or a proteasome inhibitor.
[14] The medicament according to [13], wherein the histone deacetylase inhibitor is a histone deacetylase 9 inhibitor.
[15] A therapeutically effective amount of a medicine containing a histone deacetylase inhibitor and / or a proteasome inhibitor is administered to a patient with acute lymphocytic leukemia characterized by the formation of a fusion gene between the MEF2D gene and the BCL9 gene A method for treating acute lymphoblastic leukemia.
[16] The treatment method according to [15], wherein the histone deacetylase inhibitor is a histone deacetylase 9 inhibitor.
[17] Transcription of a fusion gene between the MEF2D gene and the BCL9 gene formed by chromosomal inversion in the MEF2D gene where a breakpoint exists in intron 6 or 7 and in the BCL9 gene where a breakpoint exists in exon 8 or intron 9 Primer set consisting of forward and reverse primers designed to specifically amplify DNA complementary to the product mRNA.
[18] The MEF2D gene has a breakpoint in intron 6 or 7 and the BCL9 gene has a fusion gene of MEF2D gene and BCL9 gene formed by chromosomal inversion with a breakpoint in exon 8 or intron 9 Primer set consisting of forward primer and reverse primer designed for efficient amplification.
[19] A kit for detecting a genetic abnormality characterized by formation of a fusion gene of a MEF2D gene and a BCL9 gene, comprising the primer set according to [17] or [18].
[20] The detection kit according to [19], comprising the following primer set as the primer set:
A forward primer consisting of a sequence complementary to a part of exon 1 to 6 of the MEF2D gene and consisting of 13 bases or more, and a part of the exon 10 region of the BCL9 gene consisting of 13 bases or more Primer set comprising reverse primers comprising complementary sequences [21] The detection kit according to [19], wherein the primer set comprises one or more of the following (a1) to (a3):
(a1) Forward primer consisting of a sequence complementary to a part of the exon 3 to 4 region of the MEF2D gene and 13 bases or more, and a part of the exon 10 region of the BCL9 gene from 13 bases or more A primer set consisting of a reverse primer consisting of a sequence complementary to
(a2) Forward primer consisting of a sequence complementary to a part of exon 5 to 6 of the MEF2D gene and consisting of 13 bases or more, and part of the exon 10 region of the BCL9 gene from 13 bases or more A primer set consisting of a reverse primer consisting of a sequence complementary to
(A3) A part of the exon 6 region of the MEF2D gene that is complementary to a portion consisting of 13 bases or more and a part of the exon 10 region of the BCL9 gene that is a portion of 13 bases or more A primer set consisting of a reverse primer consisting of a sequence complementary to.
[22] The detection kit according to [19], comprising the following (b1) and / or (b2) as the primer set:
(b1) A part of the exon 2 region of the MEF2D gene that is complementary to a portion consisting of 13 bases or more and a part of the exon 10 region of the BCL9 gene that is a portion of 13 bases or more A primer set consisting of a reverse primer consisting of a sequence complementary to
(b2) A part of the exon 5 region of the MEF2D gene that is complementary to the portion consisting of 13 bases or more and a part of the exon 10 region of the BCL9 gene that is a portion of 13 bases or more A primer set consisting of a reverse primer consisting of a sequence complementary to.
[23] A screening method for a substance effective for the treatment of a patient with acute lymphocytic leukemia characterized by formation of a fusion gene of MEF2D gene and BCL9 gene, comprising the following steps (i) to (iii):
(i) providing a cell expressing a fusion gene of MEF2D gene and BCL9 gene;
(ii) culturing the cell in the presence of a test substance;
(iii) measuring the number of viable cells and determining the effectiveness of the test substance.
[24] A fusion gene of MEF2D gene and BCL9 gene.
[25] The fusion gene according to [24], which is generated by chromosomal inversion in which a breakpoint exists in intron 6 or 7 in the MEF2D gene and a breakpoint exists in exon 8 or intron 9 in the BCL9 gene.
[26] The fusion gene according to [25], comprising exons 1 to 6 of the MEF2D gene and exon 10 of the BCL9 gene or a part thereof.
[27] The fusion gene according to [26], comprising the sequence of SEQ ID NO: 11 and the sequence of SEQ ID NO: 12.
[28] A fusion protein encoded by the fusion gene according to any one of [24] to [27].
[29] The fusion protein according to [28], comprising the sequence of SEQ ID NO: 13 and the sequence of SEQ ID NO: 14.
[30] DNA complementary to mRNA that is a transcription product of the fusion gene according to any one of [24] to [27].
[31] The DNA of [30], comprising the sequence of SEQ ID NO: 15 and the sequence of SEQ ID NO: 16.
[32] An antibody that recognizes a fusion protein encoded by a fusion gene of MEF2D gene and BCL9 gene.
[33] The antibody according to [32], wherein the fusion protein is a fusion protein defined in [28] or [29].
小児ALLにおけるMEF2D-BCL9融合遺伝子の発見。A:MEF2D遺伝子及びBCL9遺伝子の染色体上の位置。B:MEF2D-BCL9の融合遺伝子を形成させる切断点の例。Discovery of MEF2D-BCL9 fusion gene in childhood ALL. A: The position on the chromosome of MEF2D gene and BCL9 gene. B: An example of a breakpoint that forms a fusion gene of MEF2D-BCL9. RT-PCRによる融合遺伝子mRNAの検出。RT-PCRの結果。症例1(上段)と症例4(下段)を示す。Detection of fusion gene mRNA by RT-PCR. RT-PCR results. Case 1 (upper) and case 4 (lower) are shown. ゲノムDNAにおける切断点の検出。PCRの結果(上段)。プライマーセット4(左)とプライマーセット5(右)を用いて検出を試みた。各症例におけるゲノムの切断点を下段に示す。Detection of breakpoints in genomic DNA. PCR results (top). Detection was attempted using primer set 4 (left) and primer set 5 (right). The genomic breakpoints in each case are shown in the bottom row. 発現プロファイル解析の結果。Results of expression profile analysis. MEF2D-BCL9融合遺伝子の機能解析。MEF2D-BCL9陽性例と陰性例でHDAC9発現レベルを比較した(A)。NALM-6にMEF2D-BCL9を導入し、HDAC9の発現レベル(B)及び細胞増殖率(C)を調べた。Functional analysis of MEF2D-BCL9 fusion gene. HDAC9 expression levels were compared between MEF2D-BCL9 positive and negative cases (A). MELM2D-BCL9 was introduced into NALM-6, and the expression level (B) and cell proliferation rate (C) of HDAC9 were examined. 分子標的薬の効果。MEF2D-BCL9融合遺伝子陽性の患者白血病細胞から樹立した初代培養細胞を用い、ボリノスタット(A)、キシノスタット(B)、ボルテゾミブ(C)の効果(薬剤感受性)を試験した。Effect of molecular target drugs. Using primary culture cells established from patient leukemia cells positive for MEF2D-BCL9 fusion gene, the effect (drug sensitivity) of vorinostat (A), xynostat (B), and bortezomib (C) was tested.
1.急性リンパ性白血病(ALL)の検査方法
 本発明の第1の局面はALLの検査方法に関する。本発明の検査方法では以下のステップ(1)~(3)を行う。
 (1)ALL患者から単離した白血病細胞を含む検体を用意するステップ
 (2)前記検体における、MEF2D遺伝子とBCL9遺伝子との融合遺伝子又は該融合遺伝子がコードする融合タンパク質の存否を検出するステップ
 (3)前記融合遺伝子又は前記融合タンパク質が検出された場合に予後不良又は治療困難と判定するステップ
1. Test Method for Acute Lymphoblastic Leukemia (ALL) The first aspect of the present invention relates to a test method for ALL. In the inspection method of the present invention, the following steps (1) to (3) are performed.
(1) preparing a specimen containing leukemia cells isolated from an ALL patient (2) detecting the presence or absence of a fusion gene of MEF2D gene and BCL9 gene or a fusion protein encoded by the fusion gene in the specimen ( 3) A step of determining that the prognosis is poor or difficult to treat when the fusion gene or the fusion protein is detected.
 ステップ(1)では、検査に使用する検体を用意する。ALL患者から単離した白血病細胞を含む検体が用いられる。白血病細胞を含む限り、検体の種類や由来などは特に限定されない。例えば、骨髄から調製した細胞画分(骨髄細胞)や末梢血などの血液から調製した細胞画分(血液細胞)を検体として用いる。本発明の検査方法は、小児のALLの予後予測や治療方針の決定等に特に有用であることから、好ましくは、小児ALL患者由来の検体を用いる。一般に、15歳以下の者が小児とされる。検体は、本発明の実施に先立って調製される。即ち、本発明の検査方法は、検体を調製するための骨髄等を患者から単離(採取)するステップを含むものではない。 In step (1), prepare a sample to be used for the test. Specimens containing leukemia cells isolated from ALL patients are used. As long as leukemia cells are included, the type and origin of the specimen are not particularly limited. For example, a cell fraction (bone marrow cell) prepared from bone marrow or a cell fraction (blood cell) prepared from blood such as peripheral blood is used as a specimen. Since the test method of the present invention is particularly useful for predicting the prognosis of ALL in children, determining the treatment policy, and the like, it is preferable to use a sample derived from a child with ALL. In general, children under the age of 15 are considered children. The specimen is prepared prior to the practice of the present invention. That is, the examination method of the present invention does not include a step of isolating (collecting) bone marrow or the like for preparing a specimen from a patient.
 ステップ(2)では、検体における、MEF2D遺伝子とBCL9遺伝子との融合遺伝子(MEF2D-BCL9融合遺伝子)又は当該融合遺伝子がコードする融合タンパク質の存否を検出する。前者の態様(MEF2D-BCL9融合遺伝子を検出)ではゲノムDNA又はmRNAが検出対象となる。ゲノムDNAを検出対象とした場合には、染色体の部分的逆位による融合遺伝子の形成の有無が検出されることになる。他方、mRNAを検出対象とした場合には、融合遺伝子の発現の有無が検出されることになる。MEF2D-BCL9融合遺伝子の検出手段は特に限定されない。例えば、RT-PCR(reverse transcription-polymerase chain reaction)法、PCR法、PCR-RFLP(restriction fragment length polymorphism)法、PCR-SSCP(single strand conformation polymorphism)法、RNAシーケンス解析、ターゲットシーケンス解析、FISH(Fluorescence in situ hybridization)法、全ゲノム解析、Invader(登録商標、Third Wave Technologies社)法、LAMP(Loop-Mediated Isothermal Amplification)、CGH(Comparative Genomic Hybridization)法、ドットハイブリダイゼーション法、ノーザンハイブリダイゼーション法等の検出手段を利用できる。ゲノムDNA及びmRNAの抽出、精製などは公知の方法で行うことができる。調製用のキットも各種市販されており、それらを利用することにしてもよい。 In step (2), the presence or absence of a fusion gene (MEF2D-BCL9 fusion gene) of MEF2D gene and BCL9 gene or a fusion protein encoded by the fusion gene is detected in the sample. In the former embodiment (MEF2D-BCL9 fusion gene is detected), genomic DNA or mRNA is the detection target. When genomic DNA is targeted for detection, the presence or absence of fusion gene formation due to partial inversion of the chromosome is detected. On the other hand, when mRNA is the detection target, the presence or absence of the expression of the fusion gene is detected. The means for detecting the MEF2D-BCL9 fusion gene is not particularly limited. For example, RT-PCR (reverse transcription-polymerase chain reaction) method, PCR method, PCR-RFLP (restriction fragment fragment length polymorphism) method, PCR-SSCP (single strand strand conformation polymorphism) method, RNA sequence analysis, target sequence analysis, FISH ( Fluorescence in situ hybridization) method, whole genome analysis, Invader (registered trademark, Third Wave Technologies) method, LAMP (Loop-Mediated Isothermal Amplification) method, CGH (Comparative Genomic Hybridization) method, dot hybridization method, Northern hybridization method, etc. The detection means can be used. Extraction and purification of genomic DNA and mRNA can be performed by known methods. Various kits for preparation are commercially available, and they may be used.
 MEF2D-BCL9融合遺伝子は、後述の実施例に示す通り、ALL患者由来の新規な融合遺伝子である。本発明者らの検討によって、MEF2D遺伝子ではイントロン6又は7に切断点が存在し、BCL9遺伝子ではエクソン8又はイントロン9に切断点が存在する染色体逆位によって当該融合遺伝子が形成されることが明らかとなった。この情報に基づき、融合遺伝子の検出に使用するプライマーやプローブを設計・調製することができる。尚、核酸増幅反応を利用した検出手段(上掲のRT-PCR法やPCR法)に利用可能なプライマーの具体例は後述する。 The MEF2D-BCL9 fusion gene is a novel fusion gene derived from ALL patients, as shown in the Examples below. According to the study by the present inventors, it is clear that the fusion gene is formed by a chromosomal inversion in which a breakpoint exists in intron 6 or 7 in the MEF2D gene and a breakpoint exists in exon 8 or intron 9 in the BCL9 gene. It became. Based on this information, it is possible to design and prepare primers and probes used for detection of fusion genes. Specific examples of primers that can be used in detection means using the nucleic acid amplification reaction (the above-mentioned RT-PCR method and PCR method) will be described later.
 後者の態様(融合タンパク質を検出)の場合、例えば、免疫学的測定法によって融合タンパク質を検出することができる。免疫学的測定法によれば迅速で感度のよい検出が可能となる。また、操作も簡便である。免疫学的測定法では、融合タンパク質に対する抗体が使用され、当該抗体の結合性(結合量)を指標として融合タンパク質が検出される。免疫学的測定法の例は、ウエスタンブロット法、免疫組織化学、蛍光免疫測定法(FIA法)、酵素免疫測定法(EIA法)、放射免疫測定法(RIA法)、フローサイトメトリー(FCM)、免疫沈降法、イムノクロマト法、ELISA法等である。 In the case of the latter mode (detection of fusion protein), for example, the fusion protein can be detected by an immunological assay. According to the immunological measurement method, rapid and sensitive detection is possible. Also, the operation is simple. In the immunoassay, an antibody against the fusion protein is used, and the fusion protein is detected using the binding property (binding amount) of the antibody as an index. Examples of immunoassays are Western blot, immunohistochemistry, fluorescence immunoassay (FIA), enzyme immunoassay (EIA), radioimmunoassay (RIA), flow cytometry (FCM) , Immunoprecipitation, immunochromatography, ELISA, and the like.
 ステップ(3)では、ステップ(2)の検出結果に基づき、患者の予後又は治療困難性を評価する。具体的には、ステップ(2)における検出対象である融合遺伝子又は融合タンパク質が検出された場合に予後不良又は治療困難と判定する。このように、ALL患者の予後や治療反応性を判定するための指標として、MEF2D-BCL9融合遺伝子の形成で特徴付けられる遺伝学的異常(以下では、「本発明の遺伝学的異常」と呼ぶこともある)が用いられる。ここでの判定は、その判定基準から明らかな通り、医師や検査技師など専門知識を有する者の判断によらずとも自動的/機械的に行うことができる。 In step (3), the prognosis or treatment difficulty of the patient is evaluated based on the detection result in step (2). Specifically, when a fusion gene or fusion protein to be detected in step (2) is detected, it is determined that the prognosis is poor or treatment is difficult. Thus, genetic abnormalities characterized by the formation of the MEF2D-BCL9 fusion gene (hereinafter referred to as “genetic abnormalities of the present invention”) are used as indicators for determining the prognosis and treatment responsiveness of ALL patients. May be used). The determination here can be automatically / mechanically performed without depending on the determination of a person having specialized knowledge such as a doctor or a laboratory technician, as is apparent from the determination criteria.
 ところで、後述の実施例に示す通り、MEF2D-BCL9融合遺伝子が特徴的なALLの一群を規定することが示唆された。この知見に基づき、本発明の一態様では、ステップ(3)に続いて以下のステップ(4)を行う。
 (4)前記ステップ(3)の判定に基づき、前記急性リンパ性白血病患者が属するリスク群を特定し、治療方針を決定又は変更するステップ
By the way, as shown in Examples described later, it was suggested that the MEF2D-BCL9 fusion gene defines a group of characteristic ALL. Based on this knowledge, in one embodiment of the present invention, the following step (4) is performed following step (3).
(4) Based on the determination in step (3), identifying a risk group to which the patient with acute lymphocytic leukemia belongs, and determining or changing a treatment policy
 ALLではリスクに応じた層別化治療を行うことが一般的である。ALLの層別化治療は、一般に、寛解導入療法、強化療法、中枢神経系浸潤予防療法、再寛解導入療法、維持療法等からなり、これらの療法を組み合わせた治療方針が設定される。化学療法だけでは治療が望めない場合には造血幹細胞移植の適応も考慮される。通常、ALLの治療では寛解の導入を当初の目標として治療を開始する。寛解の導入が成功した後、中枢神経系などへの浸潤を防止しつつ、残存する腫瘍細胞を更に減らすための治療を行う。その後、維持療法、再寛解導入療法等を継続し、腫瘍細胞の根絶を目指す。 In ALL, stratified treatment is generally performed according to risk. ALL stratification treatment generally consists of remission induction therapy, intensive therapy, central nervous system invasion prevention therapy, remission induction therapy, maintenance therapy, etc., and a treatment policy combining these therapies is set. Indications for hematopoietic stem cell transplantation are also considered when treatment alone is not possible with chemotherapy. Treatment of ALL usually begins with the initial goal of introducing remission. After successful introduction of remission, treatment is performed to further reduce the remaining tumor cells while preventing infiltration of the central nervous system and the like. Thereafter, maintenance therapy, re-induction therapy, etc. will be continued, aiming to eradicate tumor cells.
 ALLの層別化治療では、様々な指標を利用して複数のリスク群の設定し、リスク群毎、最適と考えられる治療方針に従い治療を行う。通常、治療開始前及び治療開始後の検査に基づき、患者が属すべきリスク群が特定される。層別化治療により、治療効果の最大化が図られる。 In stratified treatment of ALL, multiple risk groups are set using various indicators, and treatment is performed for each risk group according to the optimal treatment policy. Usually, a risk group to which a patient should belong is identified based on examinations before and after the start of treatment. The therapeutic effect is maximized by the stratified treatment.
 本発明の検査方法は治療開始前又は治療開始後に実施される。治療開始前に実施すれば、暫定又は確定のリスク群の特定(これに伴い当面の又は確定の治療方針が決定される)に本発明を利用できる。層別化治療プロトコールでは、例えば、年齢、白血球数、染色体・遺伝子異常、初期治療(例えば、メトトレキサート(MTX)髄注と7日間のプレドニゾロン(PSL)投与)に対する反応性、中枢神経浸潤の有無等を総合評価して暫定のリスク分類を行い、寛解導入療法を開始する。本発明の検査方法を治療開始前に実施し、その結果を利用すれば、本発明の遺伝学的異常を有する症例をより適格なリスク群に分類することができ、より早期且つ適切な処置が可能になる。一方、治療開始後に本発明の検査方法を実施すれば、リスク群の確定や変更(これに伴い、以降の治療方針が決定される)に本発明を利用できる。この態様は、例えば、寛解後に再発した場合の治療方針の見直しを可能にする。本発明の検査方法を経時的に複数回実施し、治療効果のモニターや治療方針の見直し(例えばリスク群の変更及びそれに伴う治療方法の変更)を図ることにしてもよい。 The inspection method of the present invention is performed before or after the start of treatment. If it is carried out before the start of treatment, the present invention can be used to identify a provisional or definite risk group (to which an immediate or definitive treatment policy is determined). Stratified treatment protocols include, for example, age, white blood cell count, chromosomal / gene abnormalities, initial treatment (eg, methotrexate (MTX) intrathecal injection and 7-day prednisolone (PSL) administration), presence or absence of central nervous system invasion, etc. Comprehensive assessment of risk assessment, provisional risk classification, and initiation of remission induction therapy. If the test method of the present invention is carried out before the start of treatment and the results are used, cases having genetic abnormalities of the present invention can be classified into more qualified risk groups, and earlier and appropriate treatment can be performed. It becomes possible. On the other hand, if the test method of the present invention is carried out after the start of treatment, the present invention can be used for determination or change of risk groups (accordingly, subsequent treatment policy is determined). This aspect allows, for example, a review of the treatment policy if it recurs after remission. The examination method of the present invention may be performed multiple times over time to monitor the treatment effect and review the treatment policy (for example, change of risk group and change of treatment method associated therewith).
 現在、層別化のために様々な指標が利用されている。本発明は、層別化に有用な指標の一つとなる、新規遺伝学的異常を提供する。ステップ(4)は、本発明の遺伝学的異常を指標として用いた層別化に該当する。ステップ(4)で特定される「リスク群」は、典型的には、高いリスクが関連付けられた群、即ち「高リスク群」である。既存の層別化治療プロトコールに本発明を適用した場合には、当該層別化治療プロトコールで設定されている複数のリスク群の中から、該当するリスク群を特定することができる。以下では、この点に関して具体例を示す。 Currently, various indicators are used for stratification. The present invention provides a novel genetic abnormality that is one of useful indices for stratification. Step (4) corresponds to stratification using the genetic abnormality of the present invention as an index. The “risk group” identified in step (4) is typically a group associated with a high risk, that is, a “high risk group”. When the present invention is applied to an existing stratified treatment protocol, a corresponding risk group can be identified from among a plurality of risk groups set in the stratified treatment protocol. Below, a specific example is shown regarding this point.
 本邦では、小児ALLに対する治療研究グループとして、JACLS(小児白血病研究会)、TCCSG(東京小児がん研究グループ)、CCLSG(小児癌・白血病研究グループ)、KYCCSG(九州・山口小児がん研究グループ)等が存在しており、各々、独自の層別化治療プロトコールを作成していた。平成22年には小児白血病リンパ腫の標準的治療法を確立することを目的としてJPLSG(日本小児白血病リンパ腫研究グループ)が設立された。JPLSGが行う最新の臨床試験(小児B前駆細胞性急性リンパ性白血病に対する多施設共同第II相および第III相臨床試験JPLSG ALL-B12)のプロトコールでは、標準リスク群(SR群)、中間リスク群(IR群)及び高リスク群(HR群)の3群が設定されている(各試験群に対して対照群も設定される)。このプロトコールに本発明を適用した場合には、例えば、予後不良又は治療困難との判定(ステップ(3))のときに、患者が「HR群」に属するとし、別の判定(即ち、ステップ(2)においてMEF2D遺伝子とBCL9遺伝子との融合遺伝子又は融合タンパク質が検出されなかった場合)のときに、患者が「SR群」に属する、或いは患者が「IR群」に属するとする。 In Japan, JACLS (Children's Leukemia Research Group), TCCSG (Tokyo Children's Cancer Research Group), CCLSG (Children's Cancer and Leukemia Research Group), KYCCSG (Kyushu / Yamaguchi Children's Cancer Research Group) Etc., and each created its own stratified treatment protocol. In 2010, JPLSG (Japan Pediatric Leukemia and Lymphoma Research Group) was established with the aim of establishing a standard treatment for childhood leukemia and lymphoma. In the protocol of the latest clinical trial conducted by JPLSG (JPLSG ALL-B12, a multicenter phase II and III clinical trial for childhood B precursor cell acute lymphoblastic leukemia), the standard risk group (SR group) and the intermediate risk group There are 3 groups (IR group) and high-risk group (HR group) (a control group is also set for each test group). When the present invention is applied to this protocol, for example, at the time of determination of poor prognosis or difficult treatment (step (3)), the patient is considered to belong to the “HR group” and another determination (ie, step ( When the fusion gene or fusion protein of the MEF2D gene and the BCL9 gene is not detected in 2), the patient belongs to the “SR group” or the patient belongs to the “IR group”.
 一方、上掲の治療研究グループJACLSが作成した従前の治療プロトコール(JACLS ALL-02)では、標準危険群(SR群)、高危険群(HR群)及び超危険群(ER群)が設定されていた。但し、その他の治療群としてT群(T細胞性ALL)、F群(造血幹細胞移植の適応、寛解導入不能例とt(4;11)陽性ALL)及びPh1群(フィラデルフィア染色体陽性ALL)も設定される。更に、1歳未満の乳児ALL(MLL遺伝子再構成陽性例と、MLL遺伝子再構成を認めない例)に対しては特別な治療が選択される。このようなプロトコールに本発明を適用しようとすれば、例えば、予後不良又は治療困難との判定(ステップ(3))のときに、患者が「ER群」に属するとし、別の判定(即ち、ステップ(2)においてMEF2D遺伝子とBCL9遺伝子との融合遺伝子又は融合タンパク質が検出されなかった場合)のときに、患者が「HR群」に属する、或いは患者が「SR群」に属するとする。 On the other hand, in the previous treatment protocol (JACLS ALL-02) prepared by the above-mentioned treatment research group JACLS, standard risk group (SR group), high risk group (HR group) and super risk group (ER group) are set. It was. However, other treatment groups include T group (T-cell ALL), F group (adaptation of hematopoietic stem cell transplantation, inability to introduce remission and t (4; 11) positive ALL), and Ph1 group (Philadelphia chromosome positive ALL) Is set. In addition, special treatment is selected for infants under 1 year of age (MLL gene rearrangement positive and non-MLL gene rearrangements). If the present invention is applied to such a protocol, for example, at the time of determination of poor prognosis or treatment difficulty (step (3)), the patient belongs to the “ER group” and another determination (ie, When the fusion gene or fusion protein of MEF2D gene and BCL9 gene is not detected in step (2)), it is assumed that the patient belongs to the “HR group” or the patient belongs to the “SR group”.
 以上の例に示したように、本発明の遺伝学的異常が検出された患者は、通常、設定された複数のリスク群の中で、リスクの高い(予後不良、治療困難)群に分類される。このように分類することにより、本発明の遺伝学的異常を有する患者に対して適切な処置(強化された治療)を施すことが可能になる。 As shown in the above examples, patients in whom the genetic abnormality of the present invention is detected are usually classified into high risk groups (poor prognosis, difficult treatment) among a plurality of set risk groups. The By classifying in this way, it is possible to perform an appropriate treatment (enhanced treatment) on a patient having a genetic abnormality of the present invention.
 ステップ(4)と択一的なステップ(4')では、ステップ(3)の判定と、他の検査の結果を併用し、患者が属するリスク群を特定する。換言すれば、本願が提供する新たな指標(即ち、本発明の遺伝学的異常)を含め、各種指標を総合評価し、患者が属するリスク群を特定する。ここでの他の検査としては、問診、身体診察(髄外浸潤、特に精巣浸潤のスクリーニング等)、血液検査(全血球数測定、血液生化学検査、細胞表面マーカー解析、染色体異常の検出)、画像検査(胸部レントゲン(例えば、縦隔腫瘤のスクリーニング))、超音波検査、CT検査)、骨髄穿刺又は骨髄生検(有核細胞数検査、メイ・ギムザ染色、ペルオキシダーゼ染色、エステラーゼ染色、細胞表面マーカー解析、染色体異常の検出、Gバンド分染法、遺伝子解析、病理学的検査)、脳脊髄液検査等を挙げることができる。これらの検査は常法で行えばよい。また、受託検査を利用してもよい。例えば、適切な層別化治療を行う上で特に重要な検査の一つである染色体異常の検出について、株式会社ビー・エム・エル、株式会社エスアールエル等が受託検査サービスを提供している。 In step (4) and alternative step (4 '), the risk group to which the patient belongs is specified by using the determination in step (3) and the results of other tests together. In other words, various indices including a new index provided by the present application (that is, the genetic abnormality of the present invention) are comprehensively evaluated to identify a risk group to which the patient belongs. Other tests here include interviews, physical examination (extramedullary invasion, especially testicular invasion screening, etc.), blood tests (total blood count, blood biochemistry, cell surface marker analysis, detection of chromosomal abnormalities), Imaging (chest x-ray (eg, mediastinal mass screening)), ultrasonography, CT examination, bone marrow puncture or bone marrow biopsy (nucleated cell count, May Giemsa staining, peroxidase staining, esterase staining, cell surface Marker analysis, detection of chromosomal abnormalities, G-band staining, genetic analysis, pathological examination), cerebrospinal fluid examination, and the like. These inspections may be performed in a conventional manner. In addition, contract inspection may be used. For example, BML Inc., SRL Inc., etc. provide contract inspection services for the detection of chromosomal abnormalities, which is one of the most important tests for appropriate stratified therapy.
 患者が属するリスク群を既存のリスク群の中から特定するのではなく、専用のリスク群を設け、ステップ(4)又は(4')において、MEF2D遺伝子とBCL9遺伝子との融合遺伝子又は融合タンパク質が検出された患者が当該リスク群に属するとしてもよい。専用のリスク群を設けることにより、本発明の遺伝学的異常の症例を、より最適化した治療方針の下で治療することが可能になる。 Instead of identifying the risk group to which the patient belongs from the existing risk group, a dedicated risk group is provided, and in step (4) or (4 '), the fusion gene or fusion protein of the MEF2D gene and the BCL9 gene is The detected patient may belong to the risk group. By providing a dedicated risk group, it is possible to treat a case of a genetic abnormality of the present invention under a more optimized treatment policy.
 ALLの層別化治療ではリスク群毎に治療方針が設定される。従って、属するリスク群が特定されることにより、患者の治療方針も決定する。治療の経過に沿って本発明の検査方法を複数回実施する場合の2回目以降の実施のときや、或いは他の指標によるリスク分類を既に行っている場合等では、ステップ(4)又は(4')で特定されたリスク群が、従前のリスク群と異なること(即ち、リスク群の変更)が生じ得る。この場合にはリスク群の変更に伴って治療方針も変更されることになる。変更後の治療方針は、典型的には、変更前よりも強化された療法を含む。強化された治療は、例えば、併用する薬剤の数を増加した(例えば高リスク群におけるエトポシド、イホスファミド、ビンデシンの使用)化学療法、薬剤の累積投与量・投与回数を増加した(例えばビンクリスチン、ダウノルビシン、シクロフォスファミド、L-アスパラギナーゼ、メソトレキセート、シタラビン、メソトレキセート・シタラビン・プレドニゾロンの三者髄腔内注入)化学療法、頭蓋放射線照射、又は造血幹細胞移植である。 In ALL stratified treatment, treatment policy is set for each risk group. Therefore, by specifying the risk group to which the patient belongs, the patient's treatment policy is also determined. When the test method of the present invention is performed a plurality of times along the course of treatment, or when risk classification based on another index has already been performed, step (4) or (4 The risk group identified in ') may differ from the previous risk group (ie, the risk group is changed). In this case, the treatment policy is also changed with the change of the risk group. The treatment strategy after the change typically includes an enhanced therapy than before the change. Intensified therapy, for example, increased the number of drugs used in combination (for example, use of etoposide, ifosfamide, vindesine in high-risk groups), increased cumulative doses / number of doses of drugs (eg, vincristine, daunorubicin, Intrathecal injection of cyclophosphamide, L-asparaginase, methotrexate, cytarabine, methotrexate, cytarabine and prednisolone) chemotherapy, cranial radiation, or hematopoietic stem cell transplantation.
 後述の実施例に示す通り、本発明の遺伝学的異常の症例に対してヒストン脱アセチル化酵素阻害剤及びプロテアソーム阻害剤が有効であることが示唆された。この知見に基づけば、好ましくは、ステップ(4)又は(4')で決定された治療方針(変更後の治療方針の場合も該当する)はヒストン脱アセチル化酵素阻害剤又はプロテアソーム阻害剤、或いはこれら両者の投与による処置を含む。一方、本発明の遺伝学的異常の症例は予後不良であり、治療抵抗性を示すことから、より積極的かつ強化された治療の適用が望まれる。この観点からは、好ましくは、ステップ(4)又は(4')で決定された治療方針(変更後の治療方針の場合も該当する)は造血幹細胞移植の適応を含む。通常、造血幹細胞移植は化学療法だけでは治癒が望めない場合に採用される。造血幹細胞移植の実施時期は第1寛解期又はそれ以降の寛解期であるが、好ましくは、早期の積極的な治療介入によって治療効果を高めるべく、第1寛解期とする。造血幹細胞移植の例は同種骨髄移植、自家骨髄移植、末梢血幹細胞移植、臍帯血幹細胞移植、ミニ移植である。同種骨髄移植は病気の再発が少ない反面、移植に伴う合併症(例えばGVHD)が多いという問題がある。自家骨髄移植はHLAが一致するドナーが見出せないような場合の選択肢となる。末梢血幹細胞移植は末梢血液中の造血幹細胞を採取して移植するものであり、移植後の造血の回復が早いという利点がある。臍帯血幹細胞移植にはドナーの負担がないことや早期に移植を実施できることなどの利点がある。ミニ移植とは、免疫抑制剤を併用することで移植前処置(抗がん剤の投与や放射線照射)の量を減らし、副作用を低減させるものであり、骨髄非破壊的移植とも呼ばれる。 As shown in Examples described later, it was suggested that a histone deacetylase inhibitor and a proteasome inhibitor are effective for cases of genetic abnormalities of the present invention. Based on this finding, preferably, the treatment policy determined in step (4) or (4 ′) (also applicable to the modified treatment policy) is a histone deacetylase inhibitor or proteasome inhibitor, or Treatment by administration of both of these is included. On the other hand, cases of genetic abnormalities according to the present invention have a poor prognosis and show resistance to treatment, and therefore, more aggressive and enhanced treatment application is desired. From this point of view, preferably, the treatment policy determined in step (4) or (4 ′) (also applicable to the modified treatment policy) includes indication of hematopoietic stem cell transplantation. Usually, hematopoietic stem cell transplantation is used when chemotherapy alone cannot be cured. Hematopoietic stem cell transplantation is performed during the first remission phase or a subsequent remission phase, but is preferably the first remission phase so as to enhance the therapeutic effect by early aggressive therapeutic intervention. Examples of hematopoietic stem cell transplantation are allogeneic bone marrow transplantation, autologous bone marrow transplantation, peripheral blood stem cell transplantation, umbilical cord blood stem cell transplantation, and mini-transplantation. Although allogeneic bone marrow transplantation has few recurrences of disease, it has the problem that there are many complications (for example, GVHD) accompanying transplantation. Autologous bone marrow transplantation is an option when no matching HLA donor is found. Peripheral blood stem cell transplantation is a method in which hematopoietic stem cells in peripheral blood are collected and transplanted, and has an advantage that hematopoietic recovery after transplantation is quick. Umbilical cord blood stem cell transplantation has advantages such as no burden on the donor and early transplantation. Mini-transplantation is a method for reducing side effects by reducing the amount of pre-transplantation treatment (administration of anticancer drugs or irradiation) by using an immunosuppressant, and is also called non-myeloablative transplantation.
2.急性リンパ性白血病の治療方法、医薬
 上記の通り、本発明の検査方法はALLの治療方針の決定、変更、見直しなどに有用である。換言すれば、本発明の検査方法を適用すれば、より最適化された治療方針の下でALLの治療が可能になる。そこで本発明は、別の局面として、本発明の検査方法を利用した治療方法を提供する。尚、本明細書において用語「処置」又は「治療」を使用する場合には、疾病(ALL)又は病態の予防、寛解、防止または治癒が意図される。症状が現れた後の処置は、当該症状及び/又は関連する症状の減少、寛解又は除去、或いは悪化の防止を目的とする。症状が現れる前の処置(即ち、予防処置)は、典型的には、症状が現れるリスクを減少すること、或いは症状が現れた場合に重症度を和らげることを目的とする。
2. As described above, the test method of the present invention is useful for determining, changing, and reviewing the ALL treatment policy. In other words, if the test method of the present invention is applied, ALL can be treated under a more optimized treatment policy. Then, this invention provides the treatment method using the test | inspection method of this invention as another situation. In addition, when using the term “treatment” or “therapy” in the present specification, prevention, remission, prevention or cure of an illness (ALL) or a disease state is intended. Treatment after symptoms appear is aimed at reducing, ameliorating or eliminating the symptoms and / or related symptoms, or preventing exacerbations. Treatment before symptoms appear (ie, preventative treatment) typically aims to reduce the risk of symptoms appearing or to reduce the severity if symptoms appear.
 本発明の治療方法では、本発明の検査方法で決定した又は変更した後の治療方針に従って急性リンパ性白血病患者を処置する。本発明によれば、より最適化された層別化治療が可能になる。特に、これまでは識別ないし区別できなかった、本発明の遺伝学的異常を認める症例に対し、より適切な治療戦略を提供できる。本発明の治療方法における処置の具体例は化学療法、造血幹細胞移植、放射線療法である。目的別に分類すれば、寛解導入療法、強化療法、中枢神経系浸潤予防療法、再寛解導入療法、維持療法等を挙げることができる。化学療法に使用される薬剤の例を挙げると、副腎皮質ホルモン(プレドニゾロン、デキサメタゾン、ヒドロコルチゾン)、アルキル化剤(例えばシクロフォスファミド、イホスファミド、メルファラン)、代謝拮抗剤(例えばメトトレキサート、6-メルカプトプリン、シタラビン、フルダラビン、クロファラビン)、抗がん抗生物質(例えばダウノルビシン、ドキソルビシン、ピラルビシン、イダルビシン、ミトキサントロン)、植物アルカロイド(例えばビンクリスチン、ビンブラスチン、ビンデシン、エトポシド)、L-アスパラギナーゼである。化学療法では、作用機序や副作用が異なる数種類の抗がん剤を組み合わせる多剤併用療法を行うのが基本となる。薬剤の投与方法には静注(ワン・ショット静注法、点滴静注法)、皮下注、筋注、経口投与(内服)、髄腔内注入等がある。 In the treatment method of the present invention, an acute lymphoblastic leukemia patient is treated according to the treatment policy determined or changed by the test method of the present invention. According to the present invention, more optimized stratification treatment is possible. In particular, it is possible to provide a more appropriate treatment strategy for a case in which a genetic abnormality of the present invention has been recognized that could not be identified or distinguished until now. Specific examples of treatment in the therapeutic method of the present invention are chemotherapy, hematopoietic stem cell transplantation, and radiation therapy. If classified according to purpose, remission induction therapy, reinforcement therapy, central nervous system invasion prevention therapy, remission induction therapy, maintenance therapy and the like can be mentioned. Examples of drugs used in chemotherapy include corticosteroids (prednisolone, dexamethasone, hydrocortisone), alkylating agents (eg cyclophosphamide, ifosfamide, melphalan), antimetabolites (eg methotrexate, 6-mercapto) Purine, cytarabine, fludarabine, clofarabine), anticancer antibiotics (eg, daunorubicin, doxorubicin, pirarubicin, idarubicin, mitoxantrone), plant alkaloids (eg, vincristine, vinblastine, vindesine, etoposide), L-asparaginase. Chemotherapy is based on multi-drug combination therapy that combines several types of anticancer drugs with different mechanisms of action and side effects. Drug administration methods include intravenous injection (one-shot intravenous injection method, intravenous infusion method), subcutaneous injection, intramuscular injection, oral administration (internal use), intrathecal injection and the like.
 本発明は更に、本発明の遺伝学的異常を認める症例に対してヒストン脱アセチル化酵素(HDAC)阻害剤及びプロテアソーム阻害剤が有効であることが示唆された事実に基づき、ALLの特定の症例に対する医薬を提供する。本発明の医薬は、MEF2D-BCL9融合遺伝子の形成で特徴付けられる遺伝学的異常を認めるALL患者の治療に用いられるものであり、HDAC阻害剤又はプロテアソーム阻害剤、或いはこの両者を有効成分として含む。HDAC阻害剤及びプロテアソーム阻害剤は特に限定されるものではない。HDAC阻害剤としては、好ましくは、直接又は他の分子を介してHDAC9を阻害するものが採用される。HDAC阻害剤の例を挙げるとボリノスタット(vorinostat)、パノビノスタット(panobunostat)、キシノスタット(quisinostat)、ロミデプシン、TMP269である(Baas, T. Closer to class IIa HDAC inhibitors. SciBX 6(13) 2013を参照)。ボリノスタットはクラスI及びクラスII HDAC阻害剤であり、商品名「ZOLINZA(登録商標)」として上市されている。また、ロミデプシンはクラスI HDAC阻害剤であり、商品名「ISTODAX(登録商標)」として上市されている。一方、プロテアソーム阻害剤の具体例はボルテゾミブ(bortezomib)、カルフォルゾミブ(carfilzomib)、イキサゾミブ(ixazomib)である。ボルテゾミブは、近年、治療抵抗性B前駆細胞性ALLに対して効果が期待されている薬剤である。 The present invention is further based on the fact that histone deacetylase (HDAC) inhibitors and proteasome inhibitors have been suggested to be effective for cases in which the genetic abnormality of the present invention is observed, and specific cases of ALL Provide medicines for The medicament of the present invention is used for the treatment of ALL patients with a genetic abnormality characterized by the formation of the MEF2D-BCL9 fusion gene, and contains an HDAC inhibitor, a proteasome inhibitor, or both as active ingredients . The HDAC inhibitor and the proteasome inhibitor are not particularly limited. As the HDAC inhibitor, preferably, one that inhibits HDAC9 directly or through other molecules is employed. Examples of HDAC inhibitors are vorinostat, panobunostat, quisinostat, romidepsin, TMP269 (see Baas, T. Closer to class IIa HDAC inhibitors. SciBX 6 (13) 2013) . Vorinostat is a class I and class II HDAC inhibitor and is marketed under the trade name “ZOLINZA®”. Romidepsin is a class I HDAC inhibitor and is marketed under the trade name “ISTODAX (registered trademark)”. On the other hand, specific examples of proteasome inhibitors are bortezomib, carfilzomib, ixazomib. Bortezomib is a drug that is expected to have an effect on treatment-resistant B-precursor ALL in recent years.
 本発明の医薬(HDAC阻害剤及び/又はプロテアソーム阻害剤を含む医薬)を治療上有効量投与する治療は、本発明の遺伝学的異常を有するALL患者に対する、有望な治療戦略として期待できる。 Treatment with a therapeutically effective amount of the medicament of the present invention (medicament containing an HDAC inhibitor and / or proteasome inhibitor) can be expected as a promising therapeutic strategy for ALL patients with genetic abnormalities of the present invention.
3.新規遺伝学的異常を検出するためのプライマーセット及び検出用キット
 本発明の更なる局面は、本発明の遺伝学的異常を検出するためのプライマーセット及び検出用キットを提供する。本発明のプライマーセットは、典型的には、上記本発明の検査方法に用いられる。検出用キットも同様である。
3. Primer set and detection kit for detecting a novel genetic abnormality A further aspect of the present invention provides a primer set and a detection kit for detecting a genetic abnormality of the present invention. The primer set of the present invention is typically used in the inspection method of the present invention. The same applies to the detection kit.
<プライマーセット>
 本発明のプライマーセットの一態様は、MEF2D遺伝子ではイントロン6又は7に切断点が存在し、BCL9遺伝子ではエクソン8又はイントロン9に切断点が存在する染色体逆位によって形成される、MEF2D遺伝子とBCL9遺伝子との融合遺伝子又はその転写産物であるmRNAに相補的なDNA(cDNA)を特異的に増幅できるように設計される。本発明のプライマーセットの例として以下のものを挙げることができる。
 MEF2D遺伝子のエクソン1~6の領域の一部分であって13塩基以上からなる部分に相補的な配列からなるフォワードプライマーと、BCL9遺伝子のエクソン10の領域の一部分であって13塩基以上からなる部分に相補的な配列からなるリバースプライマーからなるプライマーセット
<Primer set>
In one embodiment of the primer set of the present invention, the MEF2D gene and the BCL9 are formed by a chromosomal inversion in which a breakpoint exists in intron 6 or 7 in the MEF2D gene and a breakpoint exists in exon 8 or intron 9 in the BCL9 gene. It is designed to specifically amplify DNA (cDNA) complementary to mRNA which is a fusion gene with a gene or its transcription product. Examples of the primer set of the present invention include the following.
A forward primer consisting of a sequence complementary to a part of exon 1 to 6 of the MEF2D gene and consisting of 13 bases or more, and a part of the exon 10 region of the BCL9 gene consisting of 13 bases or more Primer set consisting of reverse primers consisting of complementary sequences
 cDNAを標的としたプライマーセットの好ましい一例としては、以下の(a1)~(a3)を挙げる。尚、当該プライマーセットはcDNAを標的とすることから、RT-PCR法等、mRNAを鋳型として調製したcDNAを検出対象とした各種方法に適する。
 (a1)MEF2D遺伝子のエクソン3~4の領域の一部分であって13塩基以上からなる部分に相補的な配列からなるフォワードプライマーと、BCL9遺伝子のエクソン10の領域の一部分であって13塩基以上からなる部分に相補的な配列からなるリバースプライマーからなるプライマーセット
 (a2)MEF2D遺伝子のエクソン5~6の領域の一部分であって13塩基以上からなる部分に相補的な配列からなるフォワードプライマーと、BCL9遺伝子のエクソン10の領域の一部分であって13塩基以上からなる部分に相補的な配列からなるリバースプライマーからなるプライマーセット
 (a3)MEF2D遺伝子のエクソン6の領域の一部分であって13塩基以上からなる部分に相補的な配列からなるフォワードプライマーと、BCL9遺伝子のエクソン10の領域の一部分であって13塩基以上からなる部分に相補的な配列からなるリバースプライマーからなるプライマーセット
Preferred examples of primer sets targeting cDNA include the following (a1) to (a3). Since the primer set targets cDNA, it is suitable for various methods such as RT-PCR, in which cDNA prepared using mRNA as a template is to be detected.
(a1) Forward primer consisting of a sequence complementary to a part of the exon 3 to 4 region of the MEF2D gene and 13 bases or more, and a part of the exon 10 region of the BCL9 gene from 13 bases or more A primer set consisting of a reverse primer consisting of a sequence complementary to a part of (a2) a forward primer consisting of a part of the exon 5-6 region of the MEF2D gene and a part complementary to a part consisting of 13 bases or more, and BCL9 Primer set consisting of a reverse primer consisting of a sequence complementary to a part of the exon 10 region of the gene that is complementary to a part consisting of 13 bases or more (a3) A part of the region of the exon 6 of the MEF2D gene consisting of 13 bases or more Forward primer consisting of a sequence complementary to the part and part of the exon 10 region of the BCL9 gene, complementary to a part consisting of 13 bases or more Primer set consisting of reverse primer consisting of a typical sequence
 尚、上記(a1)のプライマーセットの具体例として、フォワードプライマー5'-CATCATCGAGACCCTGAGGAAG-3'(配列番号1)とリバースプライマー5'-TGTGGGGGAGACTGTACTGG-3'(配列番号2)のセットを挙げることができる。同様に、上記(a2)のプライマーセットの具体例として、フォワードプライマー5'-GGCGCTATGGGTCAACTGTC-3'(配列番号3)とリバースプライマー5'-CGTCCTTGAGGTACCATCGG-3'(配列番号4)のセットを、上記(a3)のプライマーセットの具体例として、フォワードプライマー5'-GCCCGTGTCCAATCAGAGC-3'(配列番号5)とリバースプライマー5'-CCGGGCATTGTAGATTGTGC-3'(配列番号6)のセットをそれぞれ挙げることができる。 Specific examples of the primer set (a1) include a forward primer 5′-CATCATCGAGACCCTGAGGAAG-3 ′ (SEQ ID NO: 1) and reverse primer 5′-TGTGGGGGAGACTGTACTGG-3 ′ (SEQ ID NO: 2). . Similarly, as a specific example of the primer set (a2) above, a set of forward primer 5′-GGCGCTATGGGTCAACTGTC-3 ′ (SEQ ID NO: 3) and reverse primer 5′-CGTCCTTGAGGTACCATCGG-3 ′ (SEQ ID NO: 4) is Specific examples of the primer set of a3) include a set of forward primer 5′-GCCCGTGTCCAATCAGAGC-3 ′ (SEQ ID NO: 5) and reverse primer 5′-CCGGGCATTGTAGATTGTGC-3 ′ (SEQ ID NO: 6).
 別の態様のプライマーセットはゲノムDNAを標的とするものであり、MEF2D遺伝子ではイントロン6又は7に切断点が存在し、BCL9遺伝子ではエクソン8又はイントロン9に切断点が存在する染色体逆位によって形成される、MEF2D遺伝子とBCL9遺伝子との融合遺伝子を特異的に増幅できるように設計される。好ましい具体例として、以下の(b1)と(b2)を挙げることができる。尚、これらのプライマーセットはPCR法に好適なものであるが、他の核酸増幅反応への使用を制限するものではない。
 (b1)MEF2D遺伝子のエクソン2の領域の一部分であって13塩基以上からなる部分に相補的な配列からなるフォワードプライマーと、BCL9遺伝子のエクソン10の領域の一部分であって13塩基以上からなる部分に相補的な配列からなるリバースプライマーからなるプライマーセット
 (b2)MEF2D遺伝子のエクソン5の領域の一部分であって13塩基以上からなる部分に相補的な配列からなるフォワードプライマーと、BCL9遺伝子のエクソン10の領域の一部分であって13塩基以上からなる部分に相補的な配列からなるリバースプライマーからなるプライマーセット
Another embodiment of the primer set targets genomic DNA, and the MEF2D gene has a breakpoint in intron 6 or 7 and the BCL9 gene has a breakpoint in exon 8 or intron 9. Designed to specifically amplify the fusion gene of MEF2D gene and BCL9 gene. Preferable specific examples include the following (b1) and (b2). These primer sets are suitable for PCR, but are not limited to use in other nucleic acid amplification reactions.
(b1) A part of the exon 2 region of the MEF2D gene that is complementary to a portion consisting of 13 bases or more and a part of the exon 10 region of the BCL9 gene that is a portion of 13 bases or more (B2) A forward primer consisting of a sequence complementary to a part of the exon 5 region of the MEF2D gene that is complementary to a part consisting of 13 or more bases, and exon 10 of the BCL9 gene Primer set consisting of a reverse primer consisting of a sequence complementary to a part of the region of 13 and more than 13 bases
 上記(b1)のプライマーセットの具体例として、フォワードプライマー5'-AGGCTGTGCAGAAGGTATCC-3'(配列番号7)とリバースプライマー5'-GTGCAACACATGACCGATGG-3'(配列番号8)のセットを挙げることができる。同様に、上記(b2)のプライマーセットの具体例として、フォワードプライマー5'-TTCTGTGGGCCAGAAATGGA-3'(配列番号9)とリバースプライマー5'-GGGACCCCATGAGGAGGTAT-3'(配列番号10)のセットを挙げることができる。 Specific examples of the primer set (b1) include a forward primer 5′-AGGCTGTGCAGAAGGTATCC-3 ′ (SEQ ID NO: 7) and reverse primer 5′-GTGCAACACATGACCGATGG-3 ′ (SEQ ID NO: 8). Similarly, as a specific example of the primer set (b2) above, a set of forward primer 5′-TTCTGTGGGCCAGAAATGGA-3 ′ (SEQ ID NO: 9) and reverse primer 5′-GGGACCCCATGAGGAGGTAT-3 ′ (SEQ ID NO: 10) can be mentioned. it can.
 各プライマーの長さは、通常13塩基以上(上限は例えば40塩基)であるが、特異性や増幅反応の効率等を考慮すれば、好ましくは15塩基~30塩基、更に好ましくは18塩基~26塩基、より一層好ましくは20塩基~24塩基とする。プライマーセットによって増幅されるDNA断片の長さは、cDNAが標的の場合には、例えば200~2000塩基長、好ましくは400~1500塩基長であり、ゲノムDNAが標的の場合には、例えば500~12000塩基長、好ましくは800~10000塩基長である。各プライマーの配列は標的(鋳型となる)配列に相補的であるが、特異的なハイブリダイゼーションが生じ、目的のDNA断片が特異的に増幅される限り、プライマーの配列と標的配列の間に僅かなミスマッチがあってもよい。ミスマッチの程度としては、1~数個、好ましくは1~3個、更に好ましくは1~2個である。 The length of each primer is usually 13 bases or more (upper limit is, for example, 40 bases), but preferably 15 bases to 30 bases, more preferably 18 bases to 26 bases in consideration of specificity, efficiency of amplification reaction, and the like. The base is more preferably 20 to 24 bases. The length of the DNA fragment amplified by the primer set is, for example, 200 to 2000 bases long, preferably 400 to 1500 bases long when cDNA is a target, and 500 to 500 bases long when genomic DNA is a target. The length is 12000 bases, preferably 800 to 10000 bases. Each primer sequence is complementary to the target (template) sequence, but only slightly between the primer sequence and the target sequence as long as specific hybridization occurs and the desired DNA fragment is specifically amplified. There may be minor mismatches. The degree of mismatch is 1 to several, preferably 1 to 3, and more preferably 1 to 2.
 プライマーを予め標識物質で標識しておくことができる。このような標識化プライマーを用いることにより、例えば、増幅産物の標識量を指標とした検出が可能となる。プライマーの標識に用いられる標識物質としては7-AAD、Alexa Fluor(登録商標)488、Alexa Fluor(登録商標)350、Alexa Fluor(登録商標)546、Alexa Fluor(登録商標)555、Alexa Fluor(登録商標)568、Alexa Fluor(登録商標)594、Alexa Fluor(登録商標)633、Alexa Fluor(登録商標)647、CyTM 2、DsRED、EGFP、EYFP、FITC、PerCPTM、R-Phycoerythrin、Propidium Iodide、AMCA、DAPI、ECFP、MethylCoumarin、Allophycocyanin(APC)、CyTM 3、CyTM 5、Rhodamine-123、Tetramethylrhodamine、テキサスレッド(Texas Red(登録商標))、PE、PE-CyTM5、PE-CyTM5.5、PE-CyTM7、APC-CyTM7、オレゴングリーン(Oregon Green)、カルボキシフルオレセイン、カルボキシフルオレセインジアセテート、量子ドットなどの蛍光色素、32P、131I、125Iなどの放射性同位元素、ビオチンを例示でき、標識方法としてはアルカリフォスファターゼ及びT4ポリヌクレオチドキナーゼを用いた5'末端標識法、T4 DNAポリメラーゼやKlenow断片を用いた3'末端標識法、ニックトランスレーション法、ランダムプライマー法(Molecular Cloning,Third Edition,Chapter 9,Cold Spring Harbor Laboratory Press, New York)などを例示できる。 The primer can be previously labeled with a labeling substance. By using such a labeled primer, for example, detection using the labeling amount of the amplification product as an index becomes possible. 7-AAD, Alexa Fluor (registered trademark) 488, Alexa Fluor (registered trademark) 350, Alexa Fluor (registered trademark) 546, Alexa Fluor (registered trademark) 555, Alexa Fluor (registered) trademark) 568, Alexa Fluor (registered trademark) 594, Alexa Fluor (registered trademark) 633, Alexa Fluor (registered trademark) 647, Cy TM 2, DsRED , EGFP, EYFP, FITC, PerCP TM, R-Phycoerythrin, Propidium Iodide, AMCA, DAPI, ECFP, MethylCoumarin, Allophycocyanin (APC), Cy TM 3, Cy TM 5, Rhodamine-123, Tetramethylrhodamine, Texas Red (Texas Red (registered trademark)), PE, PE-Cy TM 5, PE-Cy TM 5.5, PE-Cy TM 7, APC-Cy TM 7, Oregon Green, carboxyfluorescein, carboxyfluorescein diacetate, fluorescent dyes such as quantum dots, radioisotopes such as 32 P, 131 I, 125 I, Biotin can be exemplified, and alkaline phosphor as a labeling method. 5 'end labeling method using tase and T4 polynucleotide kinase, 3' end labeling method using T4 DNA polymerase or Klenow fragment, nick translation method, random primer method (Molecular Cloning, Third Edition, Chapter 9, Cold Spring Harbor Laboratory Press, New York).
 本発明のプライマーセットの設計には各種ソフトウエアを利用することができる。プライマー設計用のソフトウエアとして、例えば、Primer3、OLIGO Primer Analysis Software、Primer-BLAST等がある。尚、プライマーはホスホジエステル法など公知の方法によって合成することができる。 Various software can be used for designing the primer set of the present invention. Examples of the primer design software include Primer 3, OLIGO Primer Analysis Software, Primer-BLAST, and the like. The primer can be synthesized by a known method such as a phosphodiester method.
<検出用キット>
 本発明のキットは、本発明の検出方法を簡便且つ効率的に行うことを可能にする。本発明の検出用キットは必須の要素として本発明のプライマーセットを含む。cDNAを標的とする検出用キットの場合、好ましくは、上記(a)のプライマーセットと(b)のプライマーセットを含む。同様に、ゲノムDNAを標的とする検出用キットでは、好ましくは、上記(A)のプライマーセットと(B)のプライマーセットを含む。これらの検出用キットによれば、本発明の遺伝学的異常の症例のカバー率(即ち、遺伝学的異常を有するとして検出される症例の数)が高まり、検査結果がより有益なものとなる。
<Detection kit>
The kit of the present invention makes it possible to perform the detection method of the present invention simply and efficiently. The detection kit of the present invention contains the primer set of the present invention as an essential element. In the case of a detection kit that targets cDNA, the primer set (a) and the primer set (b) are preferably included. Similarly, the detection kit targeting genomic DNA preferably includes the primer set (A) and the primer set (B). According to these detection kits, the coverage of cases of genetic abnormalities according to the present invention (that is, the number of cases detected as having genetic abnormalities) is increased, and the test results are more useful. .
 本発明のキットが他の要素を含んでいてもよい。他の要素の例は、プライマーセットの使用に関する説明書、各種試薬(DNAポリメラーゼ、制限酵素、緩衝液など)、溶媒、標準検体、反応容器、その他の器具である。更には、治療方針を決定するための指針や説明を含んでいてもよい。 The kit of the present invention may contain other elements. Examples of other elements are instructions on the use of primer sets, various reagents (DNA polymerase, restriction enzymes, buffers, etc.), solvents, standard specimens, reaction vessels, and other instruments. Further, it may include guidelines and explanations for determining a treatment policy.
4.薬剤のスクリーニング方法
 本発明は更に、MEF2D-BCL9融合遺伝子を導入したALL細胞が、MEF2D-BCL9陽性の患者由来細胞と同様にHDAC9を高発現し、その増殖速度も上昇した事実(後述の実施例の欄を参照)と、MEF2D-BCL9陽性の患者由来細胞を用いて薬剤感受性評価系を構築できた事実(後述の実施例の欄を参照)に基づき、MEF2D遺伝子とBCL9遺伝子との融合遺伝子の形成を認めるALL患者の治療に有効な物質のスクリーニング方法を提供する。
4). Drug screening method The present invention further shows that ALL cells introduced with the MEF2D-BCL9 fusion gene expressed HDAC9 as well as MEF2D-BCL9-positive patient-derived cells and increased their proliferation rate (Examples described later). And the fact that a drug susceptibility evaluation system could be constructed using MEF2D-BCL9 positive patient-derived cells (see the Example section below), the fusion gene of MEF2D gene and BCL9 gene Provided is a screening method for substances effective in the treatment of patients with ALL who form.
 本発明のスクリーニング方法では以下のステップ(i)~(iii)を行う。
 (i)MEF2D遺伝子とBCL9遺伝子との融合遺伝子を発現する細胞を用意するステップ
 (ii)試験物質の存在下、前記細胞を培養するステップ
 (iii)細胞の生存数を測定し、前記試験物質の有効性を判定するステップ
In the screening method of the present invention, the following steps (i) to (iii) are performed.
(i) a step of preparing a cell expressing a fusion gene of MEF2D gene and BCL9 gene (ii) a step of culturing the cell in the presence of the test substance (iii) measuring the number of viable cells, and Step of determining effectiveness
 本発明のスクリーニング方法では、まず、MEF2D遺伝子とBCL9遺伝子との融合遺伝子を発現する細胞を用意する(ステップ(i))。換言すれば、MEF2D-BCL9融合遺伝子陽性の細胞を用意する。例えば、ALLの細胞株(例えば、NALM-6、BALL-1、CCRF-CEM、Jurkat、CPT-K5)にMEF2D-BCL9融合遺伝子を導入して強制発現させたものを、ここでの細胞として使用することができる。MEF2D-BCL9融合遺伝子陽性の患者から単離した細胞、当該細胞の継代細胞、又は当該細胞から樹立した細胞株を使用することも可能である。 In the screening method of the present invention, first, cells that express a fusion gene of MEF2D gene and BCL9 gene are prepared (step (i)). In other words, a MEF2D-BCL9 fusion gene positive cell is prepared. For example, an ALL cell line (for example, NALM-6, BALL-1, CCRF-CEM, Jurkat, CPT-K5) in which the MEF2D-BCL9 fusion gene is introduced and forcibly expressed is used as the cell here can do. It is also possible to use cells isolated from MEF2D-BCL9 fusion gene-positive patients, passage cells of the cells, or cell lines established from the cells.
 ステップ(ii)では、試験物質の存在下、用意した細胞を培養する。使用する細胞の数は特に限定されず、検出感度、実験設備等を考慮して定めることができる。例えば、1回のスクリーニング操作に1×102個~1×106個の細胞を用いることができる。 In step (ii), the prepared cells are cultured in the presence of the test substance. The number of cells to be used is not particularly limited and can be determined in consideration of detection sensitivity, experimental equipment, and the like. For example, 1 × 10 2 to 1 × 10 6 cells can be used in one screening operation.
 培養液中の試験物質の存在量(添加量)は任意に設定可能であるが、正常細胞を同様の条件で培養した際に致命的な影響を与えない範囲で添加量を設定するとよい。当業者であれば予備実験によって適切な添加量を設定可能である。 The abundance (addition amount) of the test substance in the culture solution can be arbitrarily set, but the addition amount may be set within a range that does not have a fatal effect when normal cells are cultured under the same conditions. A person skilled in the art can set an appropriate addition amount by preliminary experiments.
 培養時間は、試験物質の作用・効果が十分に評価できるように設定されるものであるが、特に限定されない。例えば、培養時間を10分~1月の範囲内で設定することができる。尚、目的の作用・効果を示す物質が見出された場合には、その物質が作用・効果を示すまでに要する時間を基に、以降のスクリーニングにおける培養時間を設定することができる。 The incubation time is set so that the action / effect of the test substance can be sufficiently evaluated, but is not particularly limited. For example, the culture time can be set within a range of 10 minutes to 1 month. When a substance exhibiting the desired action / effect is found, the culture time in the subsequent screening can be set based on the time required for the substance to show the action / effect.
 試験物質としては様々な分子サイズの有機化合物又は無機化合物を用いることができる。有機化合物の例として、核酸、ペプチド、タンパク質、脂質(単純脂質、複合脂質(ホスホグリセリド、スフィンゴ脂質、グリコシルグリセリド、セレブロシド等)、プロスタグランジン、イソプレノイド、テルペン、ステロイド、ポリフェノール、カテキン、ビタミンを例示できる。試験物質は天然物由来であっても、或いは合成によるものであってもよい。後者の場合には例えばコンビナトリアル合成の手法を利用して効率的なスクリーニング系を構築することができる。尚、細胞抽出液、培養上清などを試験物質として用いてもよい。また、既存の薬剤を試験物質としてもよい。2種類以上の被験物質を同時に添加することにより、被験物質間の相互作用、相乗作用などを調べることにしてもよい。 As the test substance, organic compounds or inorganic compounds of various molecular sizes can be used. Examples of organic compounds include nucleic acids, peptides, proteins, lipids (simple lipids, complex lipids (phosphoglycerides, sphingolipids, glycosylglycerides, cerebrosides, etc.), prostaglandins, isoprenoids, terpenes, steroids, polyphenols, catechins, and vitamins. The test substance may be derived from a natural product or synthesized, and in the latter case, an efficient screening system can be constructed by using, for example, a combinatorial synthesis technique. In addition, cell extracts, culture supernatants, etc. may be used as test substances, or existing drugs may be used as test substances, by adding two or more kinds of test substances at the same time, You may investigate synergistic action etc.
 ステップ(ii)に続くステップ(iii)では、培養後の細胞の生存数を測定し、試験物質の細胞増殖阻害活性(細胞傷害活性)、即ち有効性を判定する。例えば、試験物質の存在下で培養する細胞(試験群)と、試験物質の非存在下で培養する細胞(対照群)とを用意し、各群について細胞生存数を測定し、比較する。比較結果から、試験物質が存在した結果として細胞生存率が変化した程度が求められる。対照群に比較して試験群の生細胞数が少ない(細胞生存率が低い)場合、即ち試験物質に細胞増殖阻害活性が認められた場合、当該試験物質が、本発明の遺伝学的異常を有する症例に対して有効であると判定できる。試験群において生存率の顕著な低下が認められた場合、当該試験物質の有効性は特に高いと判定できる。対照群を設定するのではなく、試験群における培養前後の細胞数を比較することによっても、試験物質の有効性を判定することが可能である。但し、上記の如き対照群を設定した方が信頼性の高い結果を得ることができる。 In step (iii) following step (ii), the number of viable cells after culturing is measured, and the cell growth inhibitory activity (cytotoxic activity) of the test substance, that is, the effectiveness is determined. For example, cells cultured in the presence of the test substance (test group) and cells cultured in the absence of the test substance (control group) are prepared, and the number of viable cells is measured and compared for each group. From the comparison results, the degree to which the cell viability has changed as a result of the presence of the test substance is determined. When the number of living cells in the test group is small compared to the control group (cell viability is low), that is, when the test substance shows cell growth inhibitory activity, the test substance exhibits the genetic abnormality of the present invention. It can be determined that it is effective for the case it has. When a significant decrease in the survival rate is observed in the test group, it can be determined that the effectiveness of the test substance is particularly high. Rather than setting a control group, it is also possible to determine the effectiveness of a test substance by comparing the number of cells before and after culturing in a test group. However, more reliable results can be obtained by setting the control group as described above.
 本発明のスクリーニング方法で選抜された物質(スクリーニング結果物)は、本発明の遺伝学的異常を有するALL症例に対する医薬の有効成分として有力な候補(リード化合物)となる。選抜された物質が十分な薬効を有する場合にはそのまま医薬の有効成分として使用することができる。一方で十分な薬効を有しない場合であっても化学的修飾などの改変を施してその薬効を高めた上で医薬の有効成分としての使用に供することができる。勿論、十分な薬効を有する場合であっても、更なる薬効の増大を目的として同様の改変を施してもよい。 The substance (screening result) selected by the screening method of the present invention is a promising candidate (lead compound) as an active ingredient of a medicine for ALL cases having a genetic abnormality of the present invention. When the selected substance has a sufficient medicinal effect, it can be used as an active ingredient of a medicine as it is. On the other hand, even if it does not have a sufficient medicinal effect, it can be used as an active ingredient of a medicine after it has been modified by chemical modification to enhance its medicinal effect. Of course, even if it has a sufficient medicinal effect, the same modification may be applied for the purpose of further increasing the medicinal effect.
5.融合遺伝子、融合タンパク質
 本発明は更に、本発明の遺伝学的異常を規定するMEF2D-BCL9融合遺伝子及びMEF2D-BCL9融合タンパク質も提供する。MEF2D-BCL9融合遺伝子は、MEF2D遺伝子ではイントロン6又は7に切断点が存在し、BCL9遺伝子ではエクソン8又はイントロン9に切断点が存在する染色体逆位によって生ずる。MEF2D-BCL9融合タンパク質は当該融合遺伝子の発現産物である。MEF2D-BCL9融合遺伝子及びMEF2D-BCL9融合タンパク質は、ALLの新たな一群を規定し得ること、当該一群を検出する際の指標になること(例えば本発明の検査方法の検出対象になる)、治療の標的になり得ること等の点において有用である。尚、本発明者らの検討によって得られた知見によれば(後述の実施例の欄)、本発明の遺伝学的異常はALLの発症原因になることが示唆される。
5). Fusion gene, fusion protein The present invention further provides a MEF2D-BCL9 fusion gene and a MEF2D-BCL9 fusion protein that define the genetic abnormality of the present invention. The MEF2D-BCL9 fusion gene is caused by a chromosomal inversion in which a breakpoint exists in intron 6 or 7 in the MEF2D gene and a breakpoint exists in exon 8 or intron 9 in the BCL9 gene. The MEF2D-BCL9 fusion protein is an expression product of the fusion gene. MEF2D-BCL9 fusion gene and MEF2D-BCL9 fusion protein can define a new group of ALL, become an index when detecting the group (for example, become a detection target of the test method of the present invention), treatment It is useful in that it can be a target of the above. In addition, according to the knowledge obtained by the study of the present inventors (the column of Examples described later), it is suggested that the genetic abnormality of the present invention causes the onset of ALL.
 典型的には、MEF2D-BCL9融合遺伝子はMEF2D遺伝子のエクソン1~6を含むととともに、BCL9遺伝子のエクソン10又はその一部を含む。MEF2D遺伝子のエクソン1~6の配列の具体例を配列番号11に示す。他方、BCL9遺伝子のエクソン10の配列の具体例を配列番号12に示す。 Typically, the MEF2D-BCL9 fusion gene contains exons 1 to 6 of the MEF2D gene and exon 10 of the BCL9 gene or a part thereof. A specific example of the sequence of exons 1 to 6 of the MEF2D gene is shown in SEQ ID NO: 11. On the other hand, a specific example of the sequence of exon 10 of the BCL9 gene is shown in SEQ ID NO: 12.
 MEF2D-BCL9融合タンパク質は、MEF2D-BCL9融合遺伝子によってコードされるものである。従って、MEF2D遺伝子のエクソン1~6に対応するアミノ酸配列(配列番号13)とBCL9遺伝子のエクソン10又はその一部に対応するアミノ酸配列(配列番号14)を含む。MEF2D-BCL9融合タンパク質の具体例のアミノ酸配列を配列番号15~20に示す。 MEF2D-BCL9 fusion protein is encoded by the MEF2D-BCL9 fusion gene. Accordingly, the amino acid sequence (SEQ ID NO: 13) corresponding to exons 1 to 6 of the MEF2D gene and the amino acid sequence (SEQ ID NO: 14) corresponding to exon 10 of the BCL9 gene or a part thereof are included. The amino acid sequences of specific examples of the MEF2D-BCL9 fusion protein are shown in SEQ ID NOs: 15-20.
 MEF2D-BCL9融合遺伝子及びMEF2D-BCL9融合タンパク質は、例えば、本発明の遺伝学的異常を有する患者から分離、精製することによって、単離された状態に調製することができる。また、本明細書が開示する配列情報に基づき、化学合成、遺伝子工学的手法などによって調製してもよい。 The MEF2D-BCL9 fusion gene and MEF2D-BCL9 fusion protein can be prepared in an isolated state, for example, by separating and purifying from a patient having a genetic abnormality of the present invention. Moreover, based on the sequence information disclosed in the present specification, it may be prepared by chemical synthesis, genetic engineering techniques, or the like.
 本発明は更に、MEF2D-BCL9融合遺伝子の転写産物であるmRNAに相補的なcDNAも提供する。当該cDNAはALLの新たな一群を検出する際の指標になる(例えば本発明の検査方法の検出対象になる)点において特に有用である。 The present invention further provides cDNA complementary to mRNA which is a transcription product of the MEF2D-BCL9 fusion gene. The cDNA is particularly useful in that it serves as an index for detecting a new group of ALL (for example, a detection target of the test method of the present invention).
 本発明のcDNAは、MEF2D遺伝子のエクソン1~6(配列番号21)の配列とBCL9遺伝子のエクソン10の配列(配列番号22)又はその一部を含む。本発明のcDNAの具体例を配列番号23~28に示す。 The cDNA of the present invention includes the sequence of exons 1 to 6 (SEQ ID NO: 21) of the MEF2D gene and the sequence of exon 10 (SEQ ID NO: 22) of the BCL9 gene or a part thereof. Specific examples of the cDNA of the present invention are shown in SEQ ID NOs: 23 to 28.
 本発明のcDNAは常法で調製することができる。例えば、cDNA調製用の試薬やキットも各種市販されており、それらを利用すれば、簡便に本発明のcDNAを調製することができる。 The cDNA of the present invention can be prepared by a conventional method. For example, various reagents and kits for preparing cDNA are commercially available, and the cDNA of the present invention can be easily prepared by using them.
6.融合タンパク質を認識する抗体
 本発明は更に、MEF2D-BCL9融合タンパク質を認識する抗体も提供する。本発明の抗体は例えばMEF2D-BCL9融合タンパク質の検出に有用である。従って、本発明の検査方法に利用することができる。
6). Antibodies Recognizing Fusion Proteins The present invention further provides antibodies that recognize MEF2D-BCL9 fusion proteins. The antibody of the present invention is useful for detecting, for example, MEF2D-BCL9 fusion protein. Therefore, it can be used for the inspection method of the present invention.
 本発明の抗体は免疫学的手法、ファージディスプレイ法、リボソームディスプレイ法などを利用して調製することができる。免疫学的手法によるポリクローナル抗体の調製は次の手順で行うことができる。抗原(MEF2D-BCL9融合タンパク質又はその一部(融合部位を含むもの))を調製し、これを用いてウサギ等の動物に免疫を施す。生体試料を精製することにより抗原を得ることができる。また、組換え型抗原を用いることもできる。組換え型抗原は、例えば、MEF2D-BCL9融合タンパク質をコードする遺伝子(即ち、MEF2D-BCL9融合遺伝子)を、ベクターを用いて適当な宿主に導入し、得られた組換え細胞内で発現させることにより調製することができる。 The antibody of the present invention can be prepared using an immunological technique, a phage display method, a ribosome display method, or the like. Preparation of a polyclonal antibody by an immunological technique can be performed by the following procedure. An antigen (MEF2D-BCL9 fusion protein or a part thereof (including a fusion site)) is prepared and used to immunize animals such as rabbits. An antigen can be obtained by purifying a biological sample. A recombinant antigen can also be used. The recombinant antigen can be expressed, for example, by introducing a gene encoding the MEF2D-BCL9 fusion protein (ie, MEF2D-BCL9 fusion gene) into a suitable host using a vector, and expressing it in the resulting recombinant cell. Can be prepared.
 免疫惹起作用を増強するために、キャリアタンパク質を結合させた抗原を用いてもよい。キャリアタンパク質としてはKLH(Keyhole Limpet Hemocyanin)、BSA(Bovine Serum Albumin)、OVA(Ovalbumin)などが使用される。キャリアタンパク質の結合にはカルボジイミド法、グルタルアルデヒド法、ジアゾ縮合法、MBS(マレイミドベンゾイルオキシコハク酸イミド)法などを使用できる。一方、MEF2D-BCL9融合タンパク質(又はその一部)を、GST、βガラクトシダーゼ、マルトース結合タンパク、又はヒスチジン(His)タグ等との融合タンパク質として発現させた抗原を用いることもできる。このような融合タンパク質は、汎用的な方法により簡便に精製することができる。 In order to enhance the immunity-inducing action, an antigen to which a carrier protein is bound may be used. As the carrier protein, KLH (KeyholeHLimpet) Hemocyanin), BSA (Bovine Serum Albumin), OVA (Ovalbumin) and the like are used. The carbodiimide method, the glutaraldehyde method, the diazo condensation method, the MBS (maleimidobenzoyloxysuccinimide) method, etc. can be used for the coupling | bonding of carrier protein. On the other hand, an antigen in which MEF2D-BCL9 fusion protein (or part thereof) is expressed as a fusion protein with GST, β-galactosidase, maltose-binding protein, histidine (His) tag or the like can also be used. Such a fusion protein can be easily purified by a general method.
 必要に応じて免疫を繰り返し、十分に抗体価が上昇した時点で採血し、遠心処理などによって血清を得る。得られた抗血清をアフィニティー精製し、ポリクローナル抗体とする。 Immunization is repeated as necessary, and blood is collected when the antibody titer has sufficiently increased, and serum is obtained by centrifugation or the like. The obtained antiserum is affinity purified to obtain a polyclonal antibody.
 一方、モノクローナル抗体については次の手順で調製することができる。まず、上記と同様の手順で免疫操作を実施する。必要に応じて免疫を繰り返し、十分に抗体価が上昇した時点で免疫動物から抗体産生細胞を摘出する。次に、得られた抗体産生細胞と骨髄腫細胞とを融合してハイブリドーマを得る。続いて、このハイブリドーマをモノクローナル化した後、目的タンパク質(即ち、MEF2D-BCL9融合タンパク質)に対して高い特異性を有する抗体を産生するクローンを選択する。選択されたクローンの培養液を精製することによって目的の抗体が得られる。一方、ハイブリドーマを所望数以上に増殖させた後、これを動物(例えばマウス)の腹腔内に移植し、腹水内で増殖させて腹水を精製することにより目的の抗体を取得することもできる。上記培養液の精製又は腹水の精製には、プロテインG、プロテインA等を用いたアフィニティークロマトグラフィーが好適に用いられる。また、抗原を固相化したアフィニティークロマトグラフィーを用いることもできる。更には、イオン交換クロマトグラフィー、ゲル濾過クロマトグラフィー、硫安分画、及び遠心分離等の方法を用いることもできる。これらの方法は単独ないし任意に組み合わされて用いられる。 On the other hand, monoclonal antibodies can be prepared by the following procedure. First, an immunization operation is performed in the same procedure as described above. Immunization is repeated as necessary, and antibody-producing cells are removed from the immunized animal when the antibody titer sufficiently increases. Next, the obtained antibody-producing cells and myeloma cells are fused to obtain a hybridoma. Subsequently, after this hybridoma is monoclonalized, a clone that produces an antibody having high specificity for the target protein (ie, MEF2D-BCL9 fusion protein) is selected. The target antibody can be obtained by purifying the culture medium of the selected clone. On the other hand, the desired antibody can be obtained by growing the hybridoma to a desired number or more, then transplanting it into the abdominal cavity of an animal (for example, a mouse), growing it in ascites, and purifying the ascites. For purification of the culture medium or ascites, affinity chromatography using protein G, protein A or the like is preferably used. Alternatively, affinity chromatography in which an antigen is immobilized may be used. Furthermore, methods such as ion exchange chromatography, gel filtration chromatography, ammonium sulfate fractionation, and centrifugation can also be used. These methods can be used alone or in any combination.
 MEF2D-BCL9融合タンパク質への特異的結合性を保持することを条件として、得られた抗体に種々の改変を施すことができる。また、標識化してもよい。標識化に利用可能な標識物質の例を挙げると、フルオレセイン、ローダミン、テキサスレッド、オレゴングリーン等の蛍光色素、ホースラディッシュペルオキシダーゼ、マイクロペルオキシダーゼ、アルカリ性ホスファターゼ、β-D-ガラクトシダーゼ等の酵素、ルミノール、アクリジン色素等の化学又は生物発光化合物、各種放射性同位体、ビオチンである。 Various modifications can be made to the obtained antibody on condition that the specific binding property to the MEF2D-BCL9 fusion protein is maintained. It may also be labeled. Examples of labeling substances that can be used for labeling include fluorescent dyes such as fluorescein, rhodamine, Texas red, oregon green, enzymes such as horseradish peroxidase, microperoxidase, alkaline phosphatase, β-D-galactosidase, luminol, acridine Chemical or bioluminescent compounds such as dyes, various radioisotopes, biotin.
 本発明の抗体には、マウス、ラットなどの非ヒト動物の抗体、一部の領域を他の動物(ヒトを含む)のものに置換したキメラ抗体、ヒト化抗体、及びヒト抗体が含まれる。また、抗体のクラスも特に限定されない。例えば、IgGクラス(例えばヒト抗体のサブクラスIgG1、IgG2、IgG3、IgG4に属するもの)の抗体である。 The antibodies of the present invention include antibodies from non-human animals such as mice and rats, chimeric antibodies, humanized antibodies, and human antibodies in which a part of the region has been replaced with those from other animals (including humans). The class of the antibody is not particularly limited. For example, antibodies of the IgG class (for example, those belonging to human antibody subclasses IgG1, IgG2, IgG3, and IgG4).
 尚、本明細書で特に言及しない事項(条件、操作方法など)については常法に従えばよく、例えばMolecular Cloning(Third Edition, Cold Spring Harbor Laboratory Press, New York)、Current protocols in molecular biology(edited by Frederick M. Ausubel et al., 1987)、Current protocols in Immunology, John Wiley& Sons Inc等を参考にすることができる。 Note that matters not specifically mentioned in the present specification (conditions, operation methods, etc.) may follow conventional methods, for example, Molecular Cloning (Third Edition, Cold Spring Harbor Laboratory Press, New York), Current protocols in molecular biology (edited by Frederick M. Ausubel et al., 1987), Current protocols in Immunology, John Wiley & Sons Inc.
1.小児ALLにおけるMEF2D-BCL9融合遺伝子の発見
(1)方法
 59人の再発小児ALL患者(乳児ALL 3例、Ph1陽性ALL 6例、T細胞性ALL 4例、成熟B細胞性ALL 3例を含む)の、白血病細胞を含む骨髄からRNeasy(登録商標) Mini Kit (キアゲン社)を用いてRNAを抽出した。Agilent 2200 TapeStationとRNA ScreenTape (アジレント社)を用いてRNAの分解度を確認した後、NEBNext(登録商標) Ultra RNA Prep Kit for Illumina (New England Biolabs社)を用いてRNAシーケンス解析用のライブラリーを作成した。HiSeqTM 2500 (イルミナ社)を用いて次世代シーケンスを行い、得られたシーケンスデータをTophat-fusionソフトウエアを用いて解析し、融合遺伝子を検出した。
1. Discovery of MEF2D-BCL9 fusion gene in pediatric ALL (1) Method 59 patients with recurrent pediatric ALL (including 3 infant ALL, 6 Ph1-positive ALL, 4 T-cell ALL, 3 mature B-cell ALL) RNA was extracted from bone marrow containing leukemia cells using RNeasy (registered trademark) Mini Kit (Qiagen). After confirming the degree of RNA degradation using Agilent 2200 TapeStation and RNA ScreenTape (Agilent), a library for RNA sequencing analysis using NEBNext (registered trademark) Ultra RNA Prep Kit for Illumina (New England Biolabs) Created. Next generation sequencing was performed using HiSeq 2500 (Illumina), and the obtained sequence data was analyzed using Tophat-fusion software to detect the fusion gene.
(2)結果
 4例についてMEF2D-BCL9融合遺伝子が検出された。検出された融合遺伝子はin-frameで融合しており、機能性のタンパク質が産生される可能性が示唆された。MEF2D、BCL9はいずれも1番染色体の長腕に位置し、この2つの遺伝子の距離は約9 Mbである(図1A)。この部位の部分的逆位により、MEF2D-BCL9の融合遺伝子が形成される。この染色体異常は、Gバンド分染法では検出されなかった。
(2) Results MEF2D-BCL9 fusion gene was detected in 4 cases. The detected fusion gene was fused in-frame, suggesting the possibility of producing a functional protein. MEF2D and BCL9 are both located on the long arm of chromosome 1, and the distance between these two genes is about 9 Mb (FIG. 1A). A partial inversion of this site forms a MEF2D-BCL9 fusion gene. This chromosomal abnormality was not detected by G-band staining.
(3)考察
 4例全例において、ダイレクトシーケンスでゲノムの切断点が同定された。MEF2D側はイントロン6もしくは7、BCL9側はエクソン8もしくはイントロン9に切断点が存在した(図1Bに一例を示す)。MEF2D-BCL9融合遺伝子は4人の患者で観察されており、ALLの再発に関与することが示唆される。
(3) Discussion In all 4 cases, genomic breakpoints were identified by direct sequencing. A breakpoint existed in intron 6 or 7 on the MEF2D side and in exon 8 or intron 9 on the BCL9 side (an example is shown in FIG. 1B). The MEF2D-BCL9 fusion gene has been observed in 4 patients, suggesting that it is involved in the recurrence of ALL.
2.RT-PCRによる融合遺伝子mRNAの検出
(1)方法
 MEF2D-BCL9が検出された患者について、白血病細胞を含む骨髄から抽出したRNAを鋳型として、ThermoScriptTM RT-PCRシステム(Thermo社)を用いてcDNAを合成した。MEF2DとBCL9の配列に対応する以下のプライマーセットとPrimeSTAR(登録商標) GXL DNAポリメラーゼを用いてRT-PCRを行った。PCR産物をBigDye(登録商標) Terminater 3.1 (ライフテクノロジーズ社)を用いてダイレクトシーケンス解析した。
2. Detection of fusion gene mRNA by RT-PCR (1) Method For patients with MEF2D-BCL9 detected, cDNA extracted from bone marrow containing leukemia cells as a template using ThermoScript RT-PCR system (Thermo) Was synthesized. RT-PCR was performed using the following primer set corresponding to the sequences of MEF2D and BCL9 and PrimeSTAR (registered trademark) GXL DNA polymerase. The PCR product was subjected to direct sequence analysis using BigDye (registered trademark) Terminater 3.1 (Life Technologies).
<プライマーセット1>
 フォワードプライマー(MEF2Dのエクソン3~4にまたがる領域):5'-CATCATCGAGACCCTGAGGAAG-3'(配列番号1)
 リバースプライマー(BCL9のエクソン10の領域):5'-TGTGGGGGAGACTGTACTGG-3'(配列番号2)
<プライマーセット2>
 フォォワードプライマー(MEF2Dのエクソン5~6にまたがる領域):5'-GGCGCTATGGGTCAACTGTC-3'(配列番号3)
 リバースプライマー(BCL9のエクソン10の領域):5'-CGTCCTTGAGGTACCATCGG-3'(配列番号4)
<プライマーセット3>
 フォワードプライマー(MEF2Dのエクソン6の領域):5'-GCCCGTGTCCAATCAGAGC-3'(配列番号5)
 リバースプライマー(BCL9のエクソン10の領域):5'-CCGGGCATTGTAGATTGTGC-3'(配列番号6)
<Primer set 1>
Forward primer (region spanning exons 3 to 4 of MEF2D): 5'-CATCATCGAGACCCTGAGGAAG-3 '(SEQ ID NO: 1)
Reverse primer (exon 10 region of BCL9): 5'-TGTGGGGGAGACTGTACTGG-3 '(SEQ ID NO: 2)
<Primer set 2>
Forward primer (region spanning exons 5-6 of MEF2D): 5'-GGCGCTATGGGTCAACTGTC-3 '(SEQ ID NO: 3)
Reverse primer (exon 10 region of BCL9): 5'-CGTCCTTGAGGTACCATCGG-3 '(SEQ ID NO: 4)
<Primer set 3>
Forward primer (region of exon 6 of MEF2D): 5'-GCCCGTGTCCAATCAGAGC-3 '(SEQ ID NO: 5)
Reverse primer (exon 10 region of BCL9): 5'-CCGGGCATTGTAGATTGTGC-3 '(SEQ ID NO: 6)
(2)結果
 症例1についての結果を図2上段に示す。診断時の検体と再発時の検体の両方について、918 bpのPCR産物が確認できた(プライマーセット3を使用)。健常人骨髄検体由来のcDNAについては、PCR産物は確認されなかった。ダイレクトシーケンスによって、MEF2Dのエクソン7とBCL9のエクソン10が接合した産物であることを確認した。症例4についての結果を図2下段に示す。再発時の検体については1,353 bpのPCR産物が確認されたが(プライマーセット3を使用)、寛解期の検体については観察されなかった。PCR産物をダイレクトシーケンスし、MEF2Dのエクソン7とBCL9のエクソン9が接合した産物であることを確認した。
(2) Results The results for case 1 are shown in the upper part of FIG. A PCR product of 918 bp was confirmed for both the specimen at the time of diagnosis and the specimen at the time of recurrence (using primer set 3). No PCR product was confirmed for cDNA from normal bone marrow specimens. It was confirmed by direct sequencing that MEF2D exon 7 and BCL9 exon 10 were joined. The results for case 4 are shown in the lower part of FIG. A PCR product of 1,353 bp was confirmed in the specimen at the time of recurrence (using primer set 3), but no specimen in remission was observed. The PCR product was directly sequenced and confirmed to be a product of exon 7 of MEF2D and exon 9 of BCL9.
(3)考察
 RNAシーケンスによって検出されたMEF2D-BCL9融合遺伝子の存在が、RT-PCR法によっても確認された。健常人の検体を対照にすることで、RT-PCR法の特異性が確認できた。尚、初発の急性白血病115例(B前駆細胞性ALL 100例、T細胞性ALL 4例、急性骨髄性白血病 10例、混合形質性急性白血病 1例、急性混合性白血病 1例)でMEF2D-BCL9融合遺伝子のスクリーニングを行ったが、新たにMEF2D-BCL9融合遺伝子が検出される症例は認めなかった。
(3) Discussion The presence of the MEF2D-BCL9 fusion gene detected by RNA sequencing was also confirmed by RT-PCR. The specificity of the RT-PCR method could be confirmed by using healthy subjects as controls. In addition, MEF2D-BCL9 in 115 cases of first acute leukemia (100 cases of B progenitor ALL, 4 cases of T cell ALL, 10 cases of acute myeloid leukemia, 1 case of mixed plasma acute leukemia, 1 case of acute mixed leukemia) Although the fusion gene was screened, no new cases of MEF2D-BCL9 fusion gene were detected.
3.ゲノムDNAにおける切断点の検出
(1)方法
 MEF2D-BCL9が検出された患者について、白血病細胞を含む骨髄から抽出したDNAを鋳型として、MEF2DとBCL9の配列に対応する以下のプライマーセットとPrimeSTAR(登録商標) GXL DNAポリメラーゼを用いてPCRを行った。PCR産物をBigDye(登録商標) Terminater 3.1 (ライフテクノロジーズ社)を用いてダイレクトシーケンス解析した。
3. Detection of breakpoints in genomic DNA (1) Method For patients with MEF2D-BCL9 detected, using the DNA extracted from bone marrow containing leukemia cells as a template, the following primer set corresponding to the sequences of MEF2D and BCL9 and PrimeSTAR (registered) (Trademark) PCR was performed using GXL DNA polymerase. The PCR product was subjected to direct sequence analysis using BigDye (registered trademark) Terminater 3.1 (Life Technologies).
<プライマーセット4>
 フォワードプライマー(MEF2Dのエクソン2の領域):5'-AGGCTGTGCAGAAGGTATCC-3'(配列番号7)
 リバースプライマー(BCL9のエクソン10の領域):5'-GTGCAACACATGACCGATGG-3'(配列番号8)
<プライマーセット5>
 フォワードプライマー(MEF2Dのエクソン5の領域):5'-TTCTGTGGGCCAGAAATGGA-3'(配列番号9)
 リバースプライマー(BCL9のエクソン10の領域):5'-GGGACCCCATGAGGAGGTAT-3'(配列番号10)
<Primer set 4>
Forward primer (region of exon 2 of MEF2D): 5'-AGGCTGTGCAGAAGGTATCC-3 '(SEQ ID NO: 7)
Reverse primer (exon 10 region of BCL9): 5'-GTGCAACACATGACCGATGG-3 '(SEQ ID NO: 8)
<Primer set 5>
Forward primer (region of exon 5 of MEF2D): 5'-TTCTGTGGGCCAGAAATGGA-3 '(SEQ ID NO: 9)
Reverse primer (exon 10 region of BCL9): 5'-GGGACCCCATGAGGAGGTAT-3 '(SEQ ID NO: 10)
(2)結果
 プライマーセット4を用いてPCRを行った結果を図3上段左に示す。症例1と3について陽性のバンドが確認された。プライマーセット5を用いてPCRを行った結果を図3上段右に示す。症例2、3、4について陽性のバンドが確認された。それぞれのPCR産物をダイレクトシーケンスし、各症例におけるゲノムの切断点を決定した結果を図3下段に示す。症例1はMEF2Dイントロン7とBCL9イントロン9で、症例2はMEF2Dイントロン6とBCL9イントロン9で、それぞれ染色体が接合していることが確認された。症例3と4については、由来不明の挿入配列が接合部位(症例3ではMEF2Dイントロン7とBCL9イントロン9が挿入配列を介して接合、症例4ではMEF2Dイントロン7とBCL9エクソン8が挿入配列を介して接合)に生じていることを確認した。
(2) Results The results of PCR using primer set 4 are shown in the upper left of FIG. Positive bands were confirmed for cases 1 and 3. The results of PCR using primer set 5 are shown in the upper right of FIG. Positive bands were confirmed for cases 2, 3, and 4. The results of direct sequencing each PCR product and determining the genomic breakpoint in each case are shown in the lower part of FIG. Case 1 was MEF2D intron 7 and BCL9 intron 9, and Case 2 was MEF2D intron 6 and BCL9 intron 9, confirming that the chromosomes were joined. For cases 3 and 4, the insertion sequence of unknown origin is the junction site (in case 3, MEF2D intron 7 and BCL9 intron 9 are joined via the insertion sequence, and in case 4 MEF2D intron 7 and BCL9 exon 8 are located via the insertion sequence. It was confirmed that this occurred in the bonding).
(3)考察
 RNAシーケンスによって検出されたMEF2D-BCL9融合遺伝子の存在が、ゲノムにおける切断点の存在によって裏付けられた。また、ゲノムを鋳型としたPCRによって、この融合遺伝子を検出できることが確認された。尚、初発の急性白血病115例(B前駆細胞性ALL 100例、T細胞性ALL 4例、急性骨髄性白血病 10例、混合形質性急性白血病 1例、急性混合性白血病 1例)でMEF2D-BCL9融合遺伝子のスクリーニングを行ったが、新たにMEF2D-BCL9融合遺伝子が検出される症例は認めなかった。
(3) Discussion The presence of the MEF2D-BCL9 fusion gene detected by RNA sequencing was supported by the presence of a breakpoint in the genome. It was also confirmed that this fusion gene could be detected by PCR using the genome as a template. In addition, MEF2D-BCL9 in 115 cases of first acute leukemia (100 cases of B progenitor ALL, 4 cases of T cell ALL, 10 cases of acute myeloid leukemia, 1 case of mixed plasma acute leukemia, 1 case of acute mixed leukemia) Although the fusion gene was screened, no new cases of MEF2D-BCL9 fusion gene were detected.
4.発現プロファイル解析
(1)方法
 RNAシーケンス解析によって得られたシーケンスデータから、TophatソフトウエアとCufflinksソフトウエアを用い、発現量の指標であるFPKM(Fragments per kilobase of exon per million mapped sequence reads)値を算出した。Spearmanの相関係数に基づいて、サンプルをクラスタリングした。
4). Expression profile analysis (1) Method Using the Tophat software and Cufflinks software, FPKM (Fragments per kilobase of exon per million mapped sequence reads) value is calculated from the sequence data obtained by RNA sequence analysis. did. Samples were clustered based on Spearman's correlation coefficient.
(2)結果
 MEF2D-BCL9融合遺伝子を有する症例由来のサンプルは、小さなクラスターに集積することが確認された(図4)。
(2) Results It was confirmed that samples derived from cases having the MEF2D-BCL9 fusion gene accumulate in small clusters (FIG. 4).
(3)考察
 MEFD-BCL9融合遺伝子が白血病細胞の発現プロファイルに主要な影響を及ぼし、4症例において類似の発現プロファイルを構築したと考えられる。類似の発現プロファイルが認められた事実は、これらの症例の白血病細胞が類似の生物学的特性を備えることを示唆する。すなわち、これらの症例については、類似した薬剤感受性等の特徴が存在することが示唆される。尚、MEF2D-BCL9陽性の4例は、B前駆細胞性の免疫表現型(CD19陽性、CD20陰性、CD3陰性、CD13陰性、CD33陰性)、10歳以上と比較的年齢の高い発症、治療中に再発、予後不良(全例死亡)、という点で共通した臨床的特徴も有していた。また、MEF2D-BCL9陽性の4例の白血病細胞は、(i)中~大型の芽球、(ii)好塩基性の強い細胞質、(iii)著明な空胞形成、という点において、典型的なB前駆細胞性と異なる形態学的特徴を有していた。これらは、成熟B細胞性白血病に類似した所見であるが、CD20や免疫グロブリンなどの細胞表面マーカー、IGH-MYC融合遺伝子の有無などから鑑別される。
(3) Discussion It is thought that the MEFD-BCL9 fusion gene has a major effect on the expression profile of leukemia cells and a similar expression profile has been constructed in 4 cases. The fact that similar expression profiles were observed suggests that the leukemia cells in these cases have similar biological properties. That is, it is suggested that similar characteristics such as drug sensitivity exist for these cases. In addition, 4 cases of MEF2D-BCL9 positive were B precursor progenitor immunophenotype (CD19 positive, CD20 negative, CD3 negative, CD13 negative, CD33 negative), relatively older age of 10 years or older, during treatment They also had common clinical features in terms of recurrence and poor prognosis (all deaths). Four cases of MEF2D-BCL9 positive leukemia cells are typical in terms of (i) medium to large blasts, (ii) strong basophil cytoplasm, and (iii) marked vacuolation. It had morphological characteristics different from those of B precursor cells. These findings are similar to those of mature B-cell leukemia, but are differentiated based on the presence of cell surface markers such as CD20 and immunoglobulin, and the presence or absence of an IGH-MYC fusion gene.
5.MEF2D-BCL9融合遺伝子の機能解析
(1)方法
 MEF2D-BCL9陽性例と陰性例におけるHDAC9の発現レベルを、Taqman(登録商標) Gene Expression Assay (Cat no #4331182、Applied Biosystem社)とABI Prism(登録商標) 7000 (ライフテクノロジーズ社)を用いた定量的RT-PCRで測定した。また、ALL細胞株であるNALM-6と、レンチウィルスを用いてNALM-6にMEF2D-BCL9融合遺伝子を強制発現したものを培養し、同様にHDAC9の発現レベルを測定した。測定にはBD FACSCaliburTM (BD社)とCountBrightTM Absolute Counting Beads (ライフテクノロジーズ社)を使用した。
5). Functional analysis of MEF2D-BCL9 fusion gene (1) Method The expression level of HDAC9 in MEF2D-BCL9 positive and negative cases was determined using Taqman (registered trademark) Gene Expression Assay (Cat no # 4331182, Applied Biosystem) and ABI Prism (registered) Measurement was performed by quantitative RT-PCR using a trademark 7000 (Life Technologies). In addition, NALM-6, which is an ALL cell line, and NALM-6 in which MEF2D-BCL9 fusion gene was forcibly expressed using a lentivirus were cultured, and the expression level of HDAC9 was similarly measured. For measurement, BD FACSCalibur (BD) and CountBright Absolute Counting Beads (Life Technologies) were used.
(2)結果
 MEF2D-BCL9陽性例ではHDAC9発現レベルが陰性例に比べて統計学的有意差をもって高かった(図5A)。また、NALM-6にMEF2D-BCL9融合遺伝子を導入すると、HDAC9の発現レベルが上昇し(図5B)、細胞増殖スピードも上昇した(図5C)。
(2) Results In the MEF2D-BCL9 positive case, the HDAC9 expression level was higher than the negative case with a statistically significant difference (FIG. 5A). In addition, when the MEF2D-BCL9 fusion gene was introduced into NALM-6, the expression level of HDAC9 increased (FIG. 5B), and the cell growth rate also increased (FIG. 5C).
(3)考察
 MEF2D-BCL9陽性ALLにおけるHDAC9の高発現が、MEF2D-BCL9融合遺伝子が発現した結果であることが示された。また、MEF2D-BCL9融合遺伝子は細胞増殖を促進することが示された。これらの結果は、MEF2D-BCL9融合遺伝子が、白血病細胞におけるドライバー遺伝子として機能していることを示唆する。
(3) Discussion It was shown that high expression of HDAC9 in MEF2D-BCL9 positive ALL was the result of expression of the MEF2D-BCL9 fusion gene. It was also shown that the MEF2D-BCL9 fusion gene promotes cell proliferation. These results suggest that the MEF2D-BCL9 fusion gene functions as a driver gene in leukemia cells.
6.分子標的薬の効果
(1)方法
 MEF2D-BCL9陽性の患者白血病細胞から樹立した初代培養細胞を用いて、ボリノスタット(vorinostat)、キシノスタット(quisinostat)、ボルテゾミブ(bortezomib)に対するin vitroの薬剤感受性試験を行った。各薬剤濃度に設定した培養液200μLに2.5×104個の白血病細胞を入れ、24時間又は48時間インキュベーションした後、AnnevinV-FITCと7-AADで染色を行いフローサイトメーターで生細胞数を測定した。結果はDMSOコントロールに対する割合(%)で示した。
6). Effect of molecular target drug (1) Method In vitro drug susceptibility test against vorinostat, quisinostat, and bortezomib using primary cultured cells established from MEF2D-BCL9 positive patient leukemia cells went. Place 2.5 × 10 4 leukemia cells in 200 μL of culture solution set to each drug concentration, incubate for 24 or 48 hours, stain with Annevin V-FITC and 7-AAD, and measure the number of viable cells with a flow cytometer did. The results are shown as a percentage (%) relative to DMSO control.
(2)結果(図6)
 ボリノスタット(A)、キシノスタット(B)、ボルテゾミブ(C)のいずれも、治療濃度域と考えられる濃度で抗白血病細胞作用を示した。それぞれの薬剤における50%増殖阻害濃度(IC50)は、ボリノスタットが1.91μM、キシノスタットが43.3 nM、ボルテゾミブが27.1 nMであった。
(2) Results (Fig. 6)
All of vorinostat (A), xinostat (B), and bortezomib (C) showed anti-leukemic cell action at a concentration considered to be a therapeutic concentration range. The 50% growth inhibitory concentration (IC50) for each drug was 1.91 μM for vorinostat, 43.3 nM for xinostat, and 27.1 nM for bortezomib.
(3)考察
 HDAC阻害剤であるボリノスタット及びキシノスタットがMEF2D-BCL9陽性ALLの治療に有効である可能性が示唆された。また、近年、再発難治ALLに対して他剤との組み合わせで効果が期待されているプロテアソーム阻害剤のボルテゾミブも、in vitroで細胞増殖阻害活性を示した。これは、MEF2D-BCL9陽性患者4例のうち1例の再発治療で、ボルテゾミブ併用化学療法により第3寛解が得られたという臨床での経験と一致したものであった。
(3) Discussion It was suggested that vorinostat and xinostat, which are HDAC inhibitors, may be effective in treating MEF2D-BCL9 positive ALL. In recent years, bortezomib, a proteasome inhibitor that is expected to be effective in combination with other drugs against relapsed and refractory ALL, also showed cell growth inhibitory activity in vitro. This was consistent with clinical experience that one of four MEF2D-BCL9 positive patients had relapse treatment and a third response was obtained with bortezomib combination chemotherapy.
 ALLの予後予測や治療方針の決定等に有用な新たな融合遺伝子(MEF2D-BCL9融合遺伝子)の同定に成功した。ALLの治療においては、様々な指標を利用して予後を予測することで症例を層別化し、各症例に最適な治療方針を決定する。本発明は、症例の層別化に有用な新たな指標を提供するものであり、ALLの治療方針の最適化、治療効果の最大化に貢献する。MEF2D-BCL9融合遺伝子は分子標的治療の標的としても有用である。従って、本発明には、ALLの新たな治療戦略の確立への貢献も期待される。 Â € ¢ We succeeded in identifying a new fusion gene (MEF2D-BCL9 fusion gene) useful for predicting the prognosis of ALL and deciding treatment policy. In treating ALL, cases are stratified by predicting prognosis using various indicators, and the optimal treatment strategy is determined for each case. The present invention provides a new index useful for stratification of cases, and contributes to optimization of ALL treatment policy and maximization of therapeutic effect. The MEF2D-BCL9 fusion gene is also useful as a target for molecular targeted therapy. Therefore, the present invention is also expected to contribute to the establishment of a new treatment strategy for ALL.
 この発明は、上記発明の実施の形態及び実施例の説明に何ら限定されるものではない。特許請求の範囲の記載を逸脱せず、当業者が容易に想到できる範囲で種々の変形態様もこの発明に含まれる。本明細書の中で明示した論文、公開特許公報、及び特許公報などの内容は、その全ての内容を援用によって引用することとする。 The present invention is not limited to the description of the embodiments and examples of the above invention. Various modifications may be included in the present invention as long as those skilled in the art can easily conceive without departing from the description of the scope of claims. The contents of papers, published patent gazettes, patent gazettes, and the like specified in this specification are incorporated by reference in their entirety.
 配列番号1:人工配列の説明:フォワードプライマー
 配列番号2:人工配列の説明:リバースプライマー
 配列番号3:人工配列の説明:フォワードプライマー
 配列番号4:人工配列の説明:リバースプライマー
 配列番号5:人工配列の説明:フォワードプライマー
 配列番号6:人工配列の説明:リバースプライマー
 配列番号7:人工配列の説明:フォワードプライマー
 配列番号8:人工配列の説明:リバースプライマー
 配列番号9:人工配列の説明:フォワードプライマー
 配列番号10:人工配列の説明:リバースプライマー
 配列番号21:人工配列の説明:MEF2D遺伝子のエクソン1、2、3、4、5、6のcDNA
 配列番号22:人工配列の説明:cDNA, exon 10 of BCL9遺伝子のエクソン10のcDNA
 配列番号23:人工配列の説明:MEF2D-BCL9融合タンパク質をコードするcDNA
 配列番号24:人工配列の説明:MEF2D-BCL9融合タンパク質をコードするcDNA
 配列番号25:人工配列の説明:MEF2D-BCL9融合タンパク質をコードするcDNA
 配列番号26:人工配列の説明:MEF2D-BCL9融合タンパク質をコードするcDNA
 配列番号27:人工配列の説明:MEF2D-BCL9融合タンパク質をコードするcDNA
 配列番号28:人工配列の説明:MEF2D-BCL9融合タンパク質をコードするcDNA
SEQ ID NO: 1: description of artificial sequence: forward primer SEQ ID NO: 2: description of artificial sequence: reverse primer SEQ ID NO: 3: description of artificial sequence: forward primer SEQ ID NO: 4: description of artificial sequence: reverse primer SEQ ID NO: 5: artificial sequence Description: forward primer SEQ ID NO: 6: description of artificial sequence: reverse primer SEQ ID NO: 7: description of artificial sequence: forward primer SEQ ID NO: 8: description of artificial sequence: reverse primer SEQ ID NO: 9: description of artificial sequence: forward primer sequence Number 10: description of artificial sequence: reverse primer SEQ ID NO: 21: description of artificial sequence: cDNA of exons 1, 2, 3, 4, 5, 6 of MEF2D gene
SEQ ID NO: 22: Description of artificial sequence: cDNA, exon 10 of BCL9 gene, exon 10 cDNA
SEQ ID NO: 23: Description of artificial sequence: cDNA encoding MEF2D-BCL9 fusion protein
SEQ ID NO: 24: Description of artificial sequence: cDNA encoding MEF2D-BCL9 fusion protein
SEQ ID NO: 25 Description of artificial sequence: cDNA encoding MEF2D-BCL9 fusion protein
SEQ ID NO: 26: Description of artificial sequence: cDNA encoding MEF2D-BCL9 fusion protein
SEQ ID NO: 27 Description of artificial sequence: cDNA encoding MEF2D-BCL9 fusion protein
SEQ ID NO: 28: Description of artificial sequence: cDNA encoding MEF2D-BCL9 fusion protein

Claims (33)

  1.  以下のステップ(1)~(3)を含む、急性リンパ性白血病の検査方法:
     (1)急性リンパ性白血病患者から単離した白血病細胞を含む検体を用意するステップ;
     (2)前記検体における、MEF2D遺伝子とBCL9遺伝子との融合遺伝子又は該融合遺伝子がコードする融合タンパク質の存否を検出するステップ;
     (3)前記融合遺伝子又は前記融合タンパク質が検出された場合に予後不良又は治療困難と判定するステップ。
    Method for testing acute lymphocytic leukemia, including the following steps (1) to (3):
    (1) preparing a specimen containing leukemia cells isolated from a patient with acute lymphoblastic leukemia;
    (2) detecting the presence or absence of a fusion gene of the MEF2D gene and the BCL9 gene or a fusion protein encoded by the fusion gene in the specimen;
    (3) A step of determining that the prognosis is poor or difficult to treat when the fusion gene or the fusion protein is detected.
  2.  MEF2D遺伝子ではイントロン6又は7に切断点が存在し、BCL9遺伝子ではエクソン8又はイントロン9に切断点が存在する染色体逆位によって前記融合遺伝子が形成される、請求項1に記載の検査方法。 The test method according to claim 1, wherein the fusion gene is formed by chromosomal inversion in which a breakpoint is present in intron 6 or 7 in the MEF2D gene and a breakpoint is present in exon 8 or intron 9 in the BCL9 gene.
  3.  ステップ(2)における前記融合遺伝子の検出が、RT-PCR法、PCR法、PCR-RFLP、PCR-SSCP法、RNAシーケンス解析、ターゲットシーケンス解析、FISH法及び全ゲノム解析からなる群より選択されるいずれかの検出法によって行われ、ステップ(2)における前記融合タンパク質の検出が免疫学的測定法によって行われる、請求項1又は2に記載の検査方法。 The detection of the fusion gene in step (2) is selected from the group consisting of RT-PCR method, PCR method, PCR-RFLP, PCR-SSCP method, RNA sequence analysis, target sequence analysis, FISH method and whole genome analysis The test method according to claim 1 or 2, wherein the detection is performed by any detection method, and the detection of the fusion protein in step (2) is performed by an immunological measurement method.
  4.  前記急性リンパ性白血病患者が小児である、請求項1~3のいずれか一項に記載の検査方法。 The test method according to any one of claims 1 to 3, wherein the patient with acute lymphoblastic leukemia is a child.
  5.  以下のステップ(4)又は(4')を更に含む、請求項1~4のいずれか一項に記載の検査方法:
     (4)前記ステップ(3)の判定に基づき、前記急性リンパ性白血病患者が属するリスク群を特定し、治療方針を決定又は変更するステップ;
     (4')前記ステップ(3)の判定と、他の検査の結果に基づき、前記急性リンパ性白血病患者が属するリスク群を特定し、治療方針を決定又は変更するステップ。
    The inspection method according to any one of claims 1 to 4, further comprising the following step (4) or (4 '):
    (4) identifying a risk group to which the acute lymphoblastic leukemia patient belongs based on the determination in the step (3), and determining or changing a treatment policy;
    (4 ′) A step of identifying a risk group to which the patient with acute lymphocytic leukemia belongs and determining or changing a treatment policy based on the determination in step (3) and the results of other tests.
  6.  前記リスク群が高リスク群である、請求項5に記載の検査方法。 The inspection method according to claim 5, wherein the risk group is a high risk group.
  7.  前記ステップ(4)又は(4')で変更した後の治療方針が、変更前よりも強化された療法を含む、請求項5又は6に記載の検査方法。 The inspection method according to claim 5 or 6, wherein the treatment policy after the change in step (4) or (4 ') includes a therapy that is strengthened than before the change.
  8.  前記ステップ(4)又は(4')で決定した又は変更した後の治療方針が、ヒストン脱アセチル化酵素阻害剤及び/又はプロテアソーム阻害剤の投与による処置を含む、請求項5又は6に記載の検査方法。 The therapeutic policy determined or changed in the step (4) or (4 ') includes treatment by administration of a histone deacetylase inhibitor and / or a proteasome inhibitor. Inspection method.
  9.  前記ヒストン脱アセチル化酵素阻害剤がヒストン脱アセチル化酵素9阻害剤である、請求項8に記載の検査方法。 The test method according to claim 8, wherein the histone deacetylase inhibitor is a histone deacetylase 9 inhibitor.
  10.  前記ステップ(4)又は(4')で決定した又は変更した後の治療方針が、造血幹細胞移植の適応を含む、請求項5又は6に記載の検査方法。 The test method according to claim 5 or 6, wherein the treatment policy determined or changed in step (4) or (4 ') includes indication of hematopoietic stem cell transplantation.
  11.  前記造血幹細胞移植が第1寛解期に実施される、請求項10に記載の検査方法。 The test method according to claim 10, wherein the hematopoietic stem cell transplantation is performed in a first remission period.
  12.  請求項5~11のいずれか一項に記載の検査方法で決定した又は変更した後の治療方針に従って前記急性リンパ性白血病患者を処置することを含む、急性リンパ性白血病の治療方法。 A method for treating acute lymphoblastic leukemia, comprising treating the patient with acute lymphoblastic leukemia according to a treatment policy determined or changed by the testing method according to any one of claims 5 to 11.
  13.  ヒストン脱アセチル化酵素阻害剤及び/又はプロテアソーム阻害剤を含む、MEF2D遺伝子とBCL9遺伝子との融合遺伝子の形成で特徴付けられる急性リンパ性白血病患者を治療するための医薬。 A pharmaceutical for treating patients with acute lymphocytic leukemia characterized by the formation of a fusion gene between the MEF2D gene and the BCL9 gene, including a histone deacetylase inhibitor and / or a proteasome inhibitor.
  14.  前記ヒストン脱アセチル化酵素阻害剤がヒストン脱アセチル化酵素9阻害剤である、請求項13に記載の医薬。 The medicament according to claim 13, wherein the histone deacetylase inhibitor is a histone deacetylase 9 inhibitor.
  15.  MEF2D遺伝子とBCL9遺伝子との融合遺伝子の形成で特徴付けられる急性リンパ性白血病患者に対して、ヒストン脱アセチル化酵素阻害剤及び/又はプロテアソーム阻害剤を含む医薬を治療上有効量投与することを含む、急性リンパ性白血病の治療方法。 Including therapeutically effective doses of drugs containing histone deacetylase inhibitors and / or proteasome inhibitors for patients with acute lymphocytic leukemia characterized by the formation of a fusion gene between the MEF2D gene and the BCL9 gene How to treat acute lymphoblastic leukemia.
  16.  前記ヒストン脱アセチル化酵素阻害剤がヒストン脱アセチル化酵素9阻害剤である、請求項15に記載の治療方法。 The treatment method according to claim 15, wherein the histone deacetylase inhibitor is a histone deacetylase 9 inhibitor.
  17.  MEF2D遺伝子ではイントロン6又は7に切断点が存在し、BCL9遺伝子ではエクソン8又はイントロン9に切断点が存在する染色体逆位によって形成される、MEF2D遺伝子とBCL9遺伝子との融合遺伝子の転写産物であるmRNAに相補的なDNAを特異的に増幅できるように設計したフォワードプライマーとリバースプライマーからなるプライマーセット。 The transcription product of the fusion gene of MEF2D gene and BCL9 gene formed by chromosomal inversion in which breakpoint exists in intron 6 or 7 in MEF2D gene and breakpoint exists in exon 8 or intron 9 in BCL9 gene A primer set consisting of forward and reverse primers designed to specifically amplify DNA complementary to mRNA.
  18.  MEF2D遺伝子ではイントロン6又は7に切断点が存在し、BCL9遺伝子ではエクソン8又はイントロン9に切断点が存在する染色体逆位によって形成される、MEF2D遺伝子とBCL9遺伝子との融合遺伝子を特異的に増幅できるように設計したフォワードプライマーとリバースプライマーからなるプライマーセット。 In the MEF2D gene, a breakpoint exists in intron 6 or 7; in the BCL9 gene, a fusion gene between the MEF2D gene and the BCL9 gene, which is formed by a chromosomal inversion with a breakpoint in exon 8 or intron 9, is specifically amplified. Primer set consisting of forward primer and reverse primer designed to be able to.
  19.  請求項17又は18に記載のプライマーセットを含む、MEF2D遺伝子とBCL9遺伝子との融合遺伝子の形成で特徴付けられる遺伝学的異常の検出用キット。 A kit for detecting a genetic abnormality characterized by formation of a fusion gene of MEF2D gene and BCL9 gene, comprising the primer set according to claim 17 or 18.
  20.  前記プライマーセットとして以下のプライマーセットを含む、請求項19に記載の検出用キット:
     MEF2D遺伝子のエクソン1~6の領域の一部分であって13塩基以上からなる部分に相補的な配列からなるフォワードプライマーと、BCL9遺伝子のエクソン10の領域の一部分であって13塩基以上からなる部分に相補的な配列からなるリバースプライマーからなるプライマーセット
    The detection kit according to claim 19, comprising the following primer set as the primer set:
    A forward primer consisting of a sequence complementary to a part of exon 1 to 6 of the MEF2D gene and consisting of 13 bases or more, and a part of the exon 10 region of the BCL9 gene consisting of 13 bases or more Primer set consisting of reverse primers consisting of complementary sequences
  21.  前記プライマーセットとして以下の(a1)~(a3)の中の一つ以上を含む、請求項19に記載の検出用キット:
     (a1)MEF2D遺伝子のエクソン3~4の領域の一部分であって13塩基以上からなる部分に相補的な配列からなるフォワードプライマーと、BCL9遺伝子のエクソン10の領域の一部分であって13塩基以上からなる部分に相補的な配列からなるリバースプライマーからなるプライマーセット;
     (a2)MEF2D遺伝子のエクソン5~6の領域の一部分であって13塩基以上からなる部分に相補的な配列からなるフォワードプライマーと、BCL9遺伝子のエクソン10の領域の一部分であって13塩基以上からなる部分に相補的な配列からなるリバースプライマーからなるプライマーセット;
     (a3)MEF2D遺伝子のエクソン6の領域の一部分であって13塩基以上からなる部分に相補的な配列からなるフォワードプライマーと、BCL9遺伝子のエクソン10の領域の一部分であって13塩基以上からなる部分に相補的な配列からなるリバースプライマーからなるプライマーセット。
    The detection kit according to claim 19, comprising one or more of the following (a1) to (a3) as the primer set:
    (a1) Forward primer consisting of a sequence complementary to a part of the exon 3 to 4 region of the MEF2D gene and 13 bases or more, and a part of the exon 10 region of the BCL9 gene from 13 bases or more A primer set consisting of a reverse primer consisting of a sequence complementary to
    (a2) Forward primer consisting of a sequence complementary to a part of exon 5 to 6 of the MEF2D gene and consisting of 13 bases or more, and part of the exon 10 region of the BCL9 gene from 13 bases or more A primer set consisting of a reverse primer consisting of a sequence complementary to
    (A3) A part of the exon 6 region of the MEF2D gene that is complementary to a portion consisting of 13 bases or more and a part of the exon 10 region of the BCL9 gene that is a portion of 13 bases or more A primer set consisting of a reverse primer consisting of a sequence complementary to.
  22.  前記プライマーセットとして以下の(b1)及び/又は(b2)を含む、請求項19に記載の検出用キット:
     (b1)MEF2D遺伝子のエクソン2の領域の一部分であって13塩基以上からなる部分に相補的な配列からなるフォワードプライマーと、BCL9遺伝子のエクソン10の領域の一部分であって13塩基以上からなる部分に相補的な配列からなるリバースプライマーからなるプライマーセット;
     (b2)MEF2D遺伝子のエクソン5の領域の一部分であって13塩基以上からなる部分に相補的な配列からなるフォワードプライマーと、BCL9遺伝子のエクソン10の領域の一部分であって13塩基以上からなる部分に相補的な配列からなるリバースプライマーからなるプライマーセット。
    The detection kit according to claim 19, comprising the following (b1) and / or (b2) as the primer set:
    (b1) A part of the exon 2 region of the MEF2D gene that is complementary to a portion consisting of 13 bases or more and a part of the exon 10 region of the BCL9 gene that is a portion of 13 bases or more A primer set consisting of a reverse primer consisting of a sequence complementary to
    (b2) A part of the exon 5 region of the MEF2D gene that is complementary to the portion consisting of 13 bases or more and a part of the exon 10 region of the BCL9 gene that is a portion of 13 bases or more A primer set consisting of a reverse primer consisting of a sequence complementary to.
  23.  以下のステップ(i)~(iii)を含む、MEF2D遺伝子とBCL9遺伝子との融合遺伝子の形成で特徴付けられる急性リンパ性白血病患者の治療に有効な物質のスクリーニング方法:
     (i)MEF2D遺伝子とBCL9遺伝子との融合遺伝子を発現する細胞を用意するステップ;
     (ii)試験物質の存在下、前記細胞を培養するステップ;
     (iii)細胞の生存数を測定し、前記試験物質の有効性を判定するステップ。
    A method for screening a substance effective for the treatment of patients with acute lymphocytic leukemia characterized by formation of a fusion gene of MEF2D gene and BCL9 gene, comprising the following steps (i) to (iii):
    (i) providing a cell expressing a fusion gene of MEF2D gene and BCL9 gene;
    (ii) culturing the cell in the presence of a test substance;
    (iii) measuring the number of viable cells and determining the effectiveness of the test substance.
  24.  MEF2D遺伝子とBCL9遺伝子との融合遺伝子。 Fusion gene of MEF2D gene and BCL9 gene.
  25.  MEF2D遺伝子ではイントロン6又は7に切断点が存在し、BCL9遺伝子ではエクソン8又はイントロン9に切断点が存在する染色体逆位によって生ずる、請求項24に記載の融合遺伝子。 The fusion gene according to claim 24, which is generated by a chromosomal inversion in which a breakpoint is present in intron 6 or 7 in the MEF2D gene and a breakpoint is present in exon 8 or intron 9 in the BCL9 gene.
  26.  MEF2D遺伝子のエクソン1~6とBCL9遺伝子のエクソン10又はその一部を含む、請求項25に記載の融合遺伝子。 The fusion gene according to claim 25, comprising exons 1 to 6 of the MEF2D gene and exon 10 of the BCL9 gene or a part thereof.
  27.  配列番号11の配列と配列番号12の配列を含む、請求項26に記載の融合遺伝子。 The fusion gene according to claim 26, comprising the sequence of SEQ ID NO: 11 and the sequence of SEQ ID NO: 12.
  28.  請求項24~27のいずれか一項に記載の融合遺伝子がコードする融合タンパク質。 A fusion protein encoded by the fusion gene according to any one of claims 24 to 27.
  29.  配列番号13の配列と配列番号14の配列を含む、請求項28に記載の融合タンパク質。 The fusion protein according to claim 28, comprising the sequence of SEQ ID NO: 13 and the sequence of SEQ ID NO: 14.
  30.  請求項24~27のいずれか一項に記載の融合遺伝子の転写産物であるmRNAに相補的なDNA。 A DNA complementary to mRNA which is a transcription product of the fusion gene according to any one of claims 24 to 27.
  31.  配列番号15の配列と配列番号16の配列を含む、請求項30に記載のDNA。 The DNA according to claim 30, comprising the sequence of SEQ ID NO: 15 and the sequence of SEQ ID NO: 16.
  32.  MEF2D遺伝子とBCL9遺伝子との融合遺伝子がコードする融合タンパク質を認識する抗体。 An antibody that recognizes the fusion protein encoded by the fusion gene of MEF2D gene and BCL9 gene.
  33.  前記融合タンパク質が、請求項28又は29に定義される融合タンパク質である、請求項32に記載の抗体。 The antibody according to claim 32, wherein the fusion protein is a fusion protein as defined in claim 28 or 29.
PCT/JP2016/088570 2015-12-25 2016-12-22 Novel genetic abnormality related to acute lymphoblastic leukemia, and uses thereof WO2017111129A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017558310A JPWO2017111129A1 (en) 2015-12-25 2016-12-22 Novel genetic abnormalities associated with acute lymphoblastic leukemia and their use

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015255179 2015-12-25
JP2015-255179 2015-12-25

Publications (1)

Publication Number Publication Date
WO2017111129A1 true WO2017111129A1 (en) 2017-06-29

Family

ID=59090510

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/088570 WO2017111129A1 (en) 2015-12-25 2016-12-22 Novel genetic abnormality related to acute lymphoblastic leukemia, and uses thereof

Country Status (2)

Country Link
JP (1) JPWO2017111129A1 (en)
WO (1) WO2017111129A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109593861A (en) * 2019-02-18 2019-04-09 南方医科大学 The detection method and detection kit of different loci leukaemia MEF2D-BCL9 fusion oligonucleotides

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005082933A1 (en) * 2004-02-26 2005-09-09 Bml, Inc. Novel chimeric protein, gene encoding the same, and means of judging leukemia using the gene and the protein

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005082933A1 (en) * 2004-02-26 2005-09-09 Bml, Inc. Novel chimeric protein, gene encoding the same, and means of judging leukemia using the gene and the protein

Non-Patent Citations (9)

* Cited by examiner, † Cited by third party
Title
FLAVELL S. ET AL.: "Genome-wide analysis of MEF2 transcriptional program reveals synaptic target genes and neuronal activity-dependent polyadenylation site selection", NEURON, vol. 60, no. 6, 2008, pages 1022 - 1038, XP055600231 *
GU Z. ET AL.: "Genomic analyses identify recurrent MEF2D fusions in acute lymphoblastic leukaemia", NATURE COMMUNICATIONS, vol. 7, no. 13331, 8 November 2016 (2016-11-08), pages 1 - 10, XP055600244 *
GU Z. ET AL.: "Recurrent MEF2D fusions define a new subtype of acute lymphoblastic leukemia associated with older age at diagnosis and poor outcome", PEDIATR . BLOOD CANCER, vol. 63, no. suppl. S3, 27 September 2016 (2016-09-27), pages o-034 - 034 *
LILLJEBJORN H. ET AL.: "RNA-seq identifies clinically relevant fusion genes in leukemia including a novel MEF2D/CSFIR fusion responsive to imatinib", LEUKEMIA, vol. 28, 2014, pages 977 - 979, XP055379249, DOI: doi:10.1038/leu.2013.324 *
MANI M. ET AL.: "BCL9 promotes tumor progression by conferring enhanced proliferative, metastatic, and angiogenic properties to cancer cells", CANCER RES., vol. 69, no. 19, 2009, pages 7577 - 7586, XP055600234 *
PRIMA V. ET AL.: "Cloning and functional characterization of MEF2D/DAZAP1 and DAZAP1/MEF2D fusion proteins created by a variant t(1;19) (q23;p13. 3) in acute lymphoblastic leukemia", LEUKEMIA, vol. 19, no. 5, 2005, pages 806 - 813 *
PRIMA V. ET AL.: "Cooperative transformation by MEF2D/DAZAP1 and DAZAP1/MEF2D fusion proteins generated by the variant t(1;19) in acute lymphoblastic leukemia", LEUKEMIA, vol. 21, no. 12, 1 December 2007 (2007-12-01), pages 2470 - 2475, XP055379245, DOI: doi:10.1038/sj.leu.2404962 *
SUZUKI K. ET AL.: "MEF2D-BCL9 fusion gene is associated with high-risk acute B- cell precursor lymphoblastic leukemia in adolescents", JOURNAL OF CLINICAL ONCOLOGY, vol. 34, no. 28, 1 October 2016 (2016-10-01), pages 3451 - 3459, XP055600241 *
YUKI Y. ET AL.: "Identification of a novel fusion gene in a pre-B acute lymphoblastic leukemia with t(1;19)(q23;p13)", CANCER SCI., vol. 95, no. 6, 2004, pages 503 - 507, XP055600239 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109593861A (en) * 2019-02-18 2019-04-09 南方医科大学 The detection method and detection kit of different loci leukaemia MEF2D-BCL9 fusion oligonucleotides

Also Published As

Publication number Publication date
JPWO2017111129A1 (en) 2018-10-11

Similar Documents

Publication Publication Date Title
de la Morena Clinical phenotypes of hyper-IgM syndromes
EP3064591B1 (en) Phage microarray profiling of the humoral response to disease
JP6404208B2 (en) Methods of prognosis, diagnosis and treatment of idiopathic pulmonary fibrosis
US20220195529A1 (en) Isoforms of gata6 and nkx2-1 as markers for diagnosis and therapy of cancer and as targets for anti-cancer therapy
EP3601615A1 (en) Genomic stability profiling
CA3100345A1 (en) Cell-free dna for assessing and/or treating cancer
US20130096021A1 (en) Recurrent gene fusions in breast cancer
JP2008546387A (en) Compositions and methods for treating and diagnosing cancer
CA2620521A1 (en) Methods and compositions for identifying biomarkers useful in diagnosis and/or treatment of biological states
CA2854255C (en) Mutations of histone proteins associated with proliferative disorders
US11262358B2 (en) Infiltrating immune cell proportions predict anti-TNF response in colon biopsies
US20160272720A1 (en) Compositions and Methods for the Treatment of Acute Myeloid Leukemias and Myelodysplastic Syndromes
US11254988B2 (en) Somatic mutations in ATRX in brain cancer
US20120052079A1 (en) Compositions, Kits, and Methods for Predicting Anti-Cancer Response to Anthracyclines
JP2010178650A (en) Test method for predicting recurrence of solid cancer and recurrence prophylactic
CA2934878A1 (en) Genomic rearrangements associated with prostate cancer and methods of using the same
WO2020141199A1 (en) Methods and pharmaceutical compositions for enhancing cd8+ t cell-dependent immune responses in subjects suffering from cancer
JP2014531020A (en) Expression of BIN1 as a marker for cancer
WO2017111129A1 (en) Novel genetic abnormality related to acute lymphoblastic leukemia, and uses thereof
US8597883B2 (en) Biomarkers for cancer-related fatigue and use thereof
US20220325346A1 (en) Use of snca-mediated genes for diagnosis and treatment of parkinson&#39;s disease
CN116411080B (en) Marker for distinguishing cold and hot tumors
KR102202120B1 (en) Use of Ube2h for Diagnosis or Treatment of Alzheimer&#39;s Disease
US20220298580A1 (en) Immune signatures predictive of response to pd-1 blockade in richter&#39;s transformation
US20040138161A1 (en) Methods of modulating proliferative conditions

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16879015

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017558310

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16879015

Country of ref document: EP

Kind code of ref document: A1