WO2017111048A1 - Film manufacturing method and film - Google Patents

Film manufacturing method and film Download PDF

Info

Publication number
WO2017111048A1
WO2017111048A1 PCT/JP2016/088421 JP2016088421W WO2017111048A1 WO 2017111048 A1 WO2017111048 A1 WO 2017111048A1 JP 2016088421 W JP2016088421 W JP 2016088421W WO 2017111048 A1 WO2017111048 A1 WO 2017111048A1
Authority
WO
WIPO (PCT)
Prior art keywords
film
sheet
environment
wafer
face
Prior art date
Application number
PCT/JP2016/088421
Other languages
French (fr)
Japanese (ja)
Inventor
慶栄 董
Original Assignee
住友化学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友化学株式会社 filed Critical 住友化学株式会社
Priority to CN201680074769.5A priority Critical patent/CN108474890B/en
Priority to JP2017536036A priority patent/JP6342081B2/en
Priority to KR1020177029336A priority patent/KR101907336B1/en
Publication of WO2017111048A1 publication Critical patent/WO2017111048A1/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133528Polarisers

Definitions

  • the present invention relates to a film manufacturing method and a film.
  • This application claims priority based on Japanese Patent Application No. 2015-254899 filed in Japan on December 25, 2015, the contents of which are incorporated herein by reference.
  • Patent Document 1 relates to a method of cutting out a sheet-like optical film chip from a long belt-like optical film.
  • the optical film chip is cut to a size that matches the display area of the liquid crystal panel and then bonded to the liquid crystal panel.
  • the optical film chip is rarely attached to the liquid crystal panel immediately after being cut out, and is often left until it is attached to the liquid crystal panel.
  • the optical film chip expands and contracts depending on the humidity level of the leaving environment. Therefore, even if the optical film chip is cut out to a size that matches the display area of the liquid crystal panel, the size of the optical film chip may change when the optical film chip is subsequently bonded to the liquid crystal panel. For this reason, it may be difficult to attach the optical film chip to the display area of the liquid crystal panel with high accuracy.
  • display devices have become framed, and stricter dimensional accuracy than ever is required for optical film chips.
  • the conventional dimensional tolerance is about ⁇ 100 to 150 ⁇ m, but recently a dimensional tolerance of about ⁇ 30 to 50 ⁇ m is required. In the future, the required accuracy will become stricter, and it is expected that the optical film chip obtained by the conventional manufacturing method will not be able to cope with it.
  • the present invention has been made in view of the above circumstances, and provides a film manufacturing method capable of improving the dimensional accuracy of a film and a film having improved dimensional accuracy.
  • a film manufacturing method includes a sheet-fed film acquisition step of acquiring a sheet-fed film that is a sheet-fed resin film from a long strip-shaped resin film, and the sheet-fed film acquisition step. And an end face processing step for obtaining an end face processed film by processing an end face of the single wafer film, wherein the single wafer is between the single film acquisition step and the end face processing step. It further includes an environment adjustment step in which the leaving environment in which the film is left is at least an atmosphere in which the humidity is adjusted.
  • the humidity and temperature of the leaving environment are ⁇ 5 relative to the humidity and temperature at which the end face processed film is used after the end face processing step. % And ⁇ 5 ° C.
  • the dimensional change per unit time of the single-wafer film converges in the time for which the single-wafer film is left in the leaving environment. More than the time approaching.
  • the time for leaving the sheet film in the leaving environment is set to a dimensional change rate per unit time of 0.003%.
  • the time is equal to or less than / hour.
  • the time for leaving the sheet film in the leaving environment is set to 6 hours or more.
  • the single-wafer film is left with the main surface of the single-wafer film along the vertical direction.
  • the sheet film is rectangular, and in the environment adjustment step, an end surface along the long side of the sheet film is used. The sheet film is left exposed.
  • the laminate is left as a laminate in which a plurality of the single-wafer films are stacked.
  • the resin film is an optical film.
  • the film according to one aspect of the present invention has a rectangular shape, and when held for 24 hours in an environment of humidity of 52% and temperature of 23 ° C., the dimensional change rate of the two long sides is Is less than 0.0002% / hour.
  • a film manufacturing method capable of improving the dimensional accuracy of a film and a film having improved dimensional accuracy can be provided.
  • FIG. 2 is a sectional view taken along the line II-II in FIG. It is sectional drawing which shows an example of an optical film.
  • FIG. 2 is a sectional view taken along the line II-II in FIG. It is sectional drawing which shows an example of an optical film.
  • It is a perspective view which shows the film manufacturing method which concerns on embodiment. It is a flowchart of the film manufacturing method which concerns on embodiment.
  • It is a perspective view which shows the example of the leaving state of the sheet
  • examples of the optical film include a polarizing film, a retardation film, and a brightness enhancement film.
  • the optical film is used by being bonded to a panel-like optical display component (optical display panel) such as a liquid crystal display panel or an organic EL display panel.
  • a transmissive liquid crystal display device (not shown) will be described as an example of an optical display device.
  • the transmissive liquid crystal display device includes a liquid crystal display panel and a backlight.
  • illumination light emitted from the backlight is incident from the back side of the liquid crystal display panel, and light modulated by the liquid crystal display panel is emitted from the front side of the liquid crystal display panel, thereby displaying an image. It is possible.
  • FIG. 1 is a plan view showing an example of the liquid crystal display panel P.
  • FIG. 2 is a cross-sectional view taken along the line II-II in FIG. In FIG. 2, hatching showing a cross section is omitted.
  • the liquid crystal display panel P includes a first substrate P1, a second substrate P2 disposed opposite to the first substrate P1, a first substrate P1, and a second substrate P1. And a liquid crystal layer P3 arranged between the substrate P2.
  • the first substrate P1 is made of a transparent substrate having a rectangular shape in plan view.
  • the second substrate P2 is a transparent substrate having a rectangular shape that is relatively smaller than the first substrate P1.
  • the liquid crystal layer P3 seals the periphery between the first substrate P1 and the second substrate P2 with a sealing material (not shown), and is located inside a rectangular region in plan view surrounded by the sealing material. Is arranged.
  • an area that fits inside the outer periphery of the liquid crystal layer P3 in plan view is a display area P4, and an outer area that surrounds the display area P4 is a frame portion G.
  • first optical film F11 As a polarizing film and a third optical film F13 used as a brightness enhancement film on the first optical film F11. They are laminated and bonded in order.
  • a second optical film F12 As a polarizing film is bonded.
  • the first, second, and third optical films F11, F12, and F13 may be collectively referred to as an optical film F1X.
  • FIG. 3 is a cross-sectional view illustrating a configuration of the optical sheet FX.
  • hatching showing a cross section is omitted.
  • the optical film F1X is obtained by cutting a sheet piece having a predetermined length from the long belt-like optical sheet FX shown in FIG.
  • the optical sheet FX includes a base material sheet F4, an adhesive layer F5 provided on one surface (upper surface in FIG. 3) of the base material sheet F4, and a base material sheet via the adhesive layer F5. It has a separator sheet F6 provided on one surface of F4 and a surface protection sheet F7 provided on the other surface (lower surface in FIG. 3) of the base material sheet F4.
  • the base sheet F4 has a structure in which a polarizer F4a is sandwiched between a pair of protective films F4b and F4c.
  • the adhesive layer F5 adheres the base material sheet F4 to the liquid crystal display panel P.
  • Separator sheet F6 protects adhesive layer F5.
  • the adhesive layer F5 is exposed by peeling and removing the separator sheet F6 from the optical film F1X. Thereafter, the optical film F1X is bonded to the liquid crystal display panel P.
  • excluding the separator sheet F6 from the optical film F1X is set as the bonding sheet
  • the surface protection sheet F7 protects the surface of the base material sheet F4.
  • the surface protective sheet F7 is peeled off from the surface of the base sheet F4 after the base sheet F4 is attached to the liquid crystal display panel P.
  • the base material sheet F4 you may abbreviate
  • the protective film F4b on the adhesive layer F5 side may be omitted, and the adhesive layer F5 may be provided directly on the surface of the polarizer F4a.
  • the protective film F4c on the surface protective sheet F7 side may be subjected to a surface treatment such as a hard coat treatment for protecting the outermost surface of the liquid crystal display panel P or an antiglare treatment for obtaining an antiglare effect. .
  • the surface protection sheet F7 may be omitted.
  • FIG. 4 is a perspective view showing the film manufacturing method according to the present embodiment.
  • FIG. 5 is a flowchart of the film manufacturing method according to this embodiment.
  • the film manufacturing method according to the present embodiment is a method of manufacturing an optical film F10X in which a surface protective film is bonded to both surfaces of a polarizing film.
  • This film manufacturing method may include a manufacturing process of the optical film F10X.
  • the film manufacturing method according to the present embodiment includes an original roll manufacturing process for manufacturing an original roll (not shown) of a long strip-shaped polarizing film, and a long strip-shaped surface on the long strip-shaped polarizing film. A pasting step in which a protective film is pasted to manufacture an original fabric roll R1 of the long belt-shaped optical film F10X.
  • a protective film such as TAC (Triacetylcellulose) is pasted on both sides of the film to produce a long band-shaped polarizing film, and the resulting polarizing film is wound around a core material to obtain an original roll (not shown) .
  • the long strip-shaped polarizing film and the long strip-shaped surface protective film are obtained from the long strip-shaped polarizing film original roll and the long strip-shaped surface protective film original roll (not shown). While unwinding each, these are pinched
  • PET Polyethylene terephthalate
  • the film manufacturing method of this embodiment is a sheet
  • Step S1 shown, an environment adjustment step (step S2 shown in FIG. 5) in which the leaving environment in which the sheet film 11 is left after the sheet-fed film acquisition step is at least a humidity-adjusted atmosphere, and an environment adjustment step After that, it further includes an end face processing step (step S3 shown in FIG. 5) of polishing (processing) the end face of the sheet film 11 to obtain the end face processed film 11A.
  • a plurality of rectangular single-wafer films 11 are cut out from the long belt-like optical film F ⁇ b> 10 ⁇ / b> X using a cutting device not shown in FIG. 4.
  • a cutting device for example, a plurality of cutters arranged at intervals corresponding to the length of the long side of the sheet film 11, and a plurality of cutters arranged at intervals corresponding to the length of the short side of the sheet film 11 Can be used that are arranged in a grid pattern in a plan view.
  • a region cut out in a rectangular shape by four cutters is a cut-out region of one single sheet film 11.
  • the shape of the sheet film 11 to be cut out may be a polygonal shape such as a square, rhombus, hexagon, or octagon, or a shape having a curve such as a circle or an ellipse, The shape may have a curved edge and a straight edge.
  • the humidity and temperature of the leaving environment are adjusted to an environment close to the humidity and temperature (target value) at which the end face processed film 11A is used after the end face processing process.
  • the humidity and temperature of the leaving environment are substantially the same as the humidity and temperature when the end face processed film 11A is bonded to the liquid crystal display panel P (see FIG. 2) as the optical film F1X (see FIG. 3).
  • the humidity and temperature of the leaving environment are preferably in the range of ⁇ 5% and ⁇ 5 ° C. with respect to the target value, and more preferably in the range of ⁇ 3% and ⁇ 3 ° C. with respect to the target value.
  • humidity described in the present specification refers to relative humidity, which is the ratio of the actual water vapor pressure to the saturated water vapor pressure at room temperature.
  • the neglected environment in the environment adjustment process is set inside the storage chamber 15 in which a plurality of single-wafer films 11 can be stored.
  • the leaving environment in an environmental adjustment process may be the same as the usage environment of the cutting device in a sheet-fed film acquisition process. That is, the leaving of the sheet film 11 in the environment adjustment process may be performed in the same environment as the sheet film acquisition process.
  • the accommodation room 15 is configured such that the humidity and temperature inside the accommodation room 15 can be adjusted.
  • the storage chamber 15 is provided with a humidity adjusting device and a temperature adjusting device (not shown).
  • a clean room that can keep the inside of the storage room 15 clean can be used.
  • the clean room is used when the single wafer film 11 is an optical film such as a polarizing film.
  • the environment of the accommodation room 15 is brought closer (matched) with the environment of the clean room.
  • the clean room environment has a humidity of 47% to 57% and a temperature of 18 ° C to 28 ° C.
  • FIG. 6 is a perspective view showing an example of the leaving state of the sheet film 11 according to the present embodiment.
  • FIG. 7 is a perspective view showing another example of the leaving state of the sheet film 11 according to the present embodiment.
  • seat film 11 is made to follow the vertical direction V1.
  • the end face 11e along the long side of the sheet film 11 is exposed and the sheet film 11 is left unattended.
  • the “main surface 11 a of the sheet film 11” described in the present specification is any one of both surfaces of the sheet film 11.
  • the film stand 20 which can stand the sheet
  • the film stand 20 is connected to a rectangular plate-like bottom plate portion 21 having a longitudinal direction in the arrangement direction of the sheet films 11 and one end portion of the bottom plate portion 21 and along the vertical direction V ⁇ b> 1.
  • a rectangular columnar bottom support portion 23 having a longitudinal direction in the arrangement direction of the sheet film 11, and a rectangular frame shape that is connected to the bottom plate portion 21 and the side wall portion 22 and smaller than the sheet film 11, and A partition frame 24 arranged at intervals in the arrangement direction of the sheet films 11.
  • a single sheet film 11 is disposed between two adjacent partition frames 24 so as to lean on the partition frame 24.
  • the interval between two adjacent partition frames 24 is sufficiently larger than the thickness of the sheet film 11.
  • the main surface 11 a of the sheet film 11 is exposed from the opening 24 h of the partition frame 24.
  • seat film 11 is exposed. It is configured. Thereby, since the sheet
  • the end portion of the single-wafer film 11 on the side of the bottom support portion 23 protrudes to the side of the bottom support portion 23. Further, the film stand 20 is inclined so as to be positioned higher toward the bottom support portion 23 side. Thereby, since the operation
  • the film support stand 30 which can support the laminated body 12 which piled up the sheet
  • the film support 30 is connected to the rectangular plate-shaped base 31 and the upper surface of the base 31, and stands in the direction along the vertical direction V ⁇ b> 1, and the thickness direction of the stacked body 12.
  • prismatic support pillars 32 arranged at intervals (in the arrangement direction of the sheet films 11).
  • the support pillars 32 are provided as a pair so as to sandwich the laminate 12 in the thickness direction of the laminate 12.
  • a plurality of (for example, two sets in FIG. 7 referred to in the present embodiment) a plurality of pairs of support pillars 32 are arranged in the longitudinal direction of the laminated body 12 (longitudinal direction of the sheet film 11).
  • a dummy film 13 is provided on the main surface side of the laminate 12 (side adjacent to the pair of support columns 32).
  • the dummy film 13 is a film that is not used as a product.
  • the sheet film 11 is also used as the dummy film 13. For example, when 100 sheet films 11 are stacked to form a laminated body 12, the first sheet film 11 and the 100th sheet film 11 are the dummy films 13.
  • the distance between the pair of support columns 32 is such that the thickness of the stacked body 12 can be maintained. Is slightly larger than.
  • the main surface 11 a of the sheet film 11 is exposed from between two adjacent sheet films 11.
  • the distance between the pair of support columns 32 is large so that a sufficiently thick laminate 13 (a sufficient number of sheet films 11) can be disposed.
  • a sufficient number of sheet films 11 can be collectively supported on the film support table 30 and taken out from the film support table 30, so that workability can be improved.
  • the number of stacked sheets 11 can be arbitrarily set in consideration of the thickness of the sheets 11 and the like.
  • the number of stacked sheets 11 is preferably 50 or more and 300 or less in consideration of handling in a later process.
  • the following effects are achieved by leaving the laminated film 11 as a laminated body 12 in which a plurality of sheet films 11 are stacked.
  • the end face processing of the single wafer film 11 can be efficiently performed after the environmental adjustment process.
  • the dimensional change and curl change of the end face processed film 11A can be effectively suppressed.
  • the time for leaving the sheet film 11 in the leaving environment in the environment adjusting step will be described.
  • the time for which the sheet film 11 is left in the leaving environment (hereinafter referred to as “leaving time”) is set to be longer than the time when the dimensional change per unit time of the sheet film 11 approaches convergence.
  • the “time when the dimensional change per unit time of the sheet film approaches convergence” described in the present embodiment is specifically the following time.
  • the standing time can be set to be equal to or longer than the time when the dimensional change rate per unit time of the sheet film 11 is 0.003% / hour or less.
  • the standing time is set to a time when the rate of dimensional change per unit time of the sheet film 11 is 0.002% / hour or less.
  • the standing time is set to a time when the dimensional change rate per unit time of all of the long and short sides of the sheet film 11 is not more than the above value.
  • the leaving time is more preferably 6 hours or more.
  • said dimensional change rate is calculated
  • FIG. The dimensional change rate per unit time (% / hour) is calculated by the following formula (I).
  • W (X / Y) ⁇ 100 (%) ⁇ Z (hours) (I)
  • W is the dimensional change rate (% / hour)
  • X is the time when the length of the long side or the short side of the film is measured twice over Z time.
  • Dimensional change amount (mm) which is the difference between the first length and the second length
  • Y is the length of the long side or short side (mm) before the dimensional change. The time between them is “Z” (hours).
  • the measurement of the length of the film twice with a Z time can be measured, for example, the first time before leaving the film and the second time after leaving the film.
  • the end face processing film 11 ⁇ / b> A is obtained by polishing the end face 11 e (see FIGS. 6 and 7) along the four sides of the single wafer film 11 using a polishing apparatus (not shown).
  • a polishing apparatus a medium and small size polishing machine (model PLBP300) manufactured by Megaro Technica Co., Ltd. can be used.
  • the polishing amount is, for example, about 0.3 to 2 mm on each side.
  • the film manufacturing method according to the present embodiment is performed after the sheet-fed film acquisition step of acquiring the sheet-fed sheet film 11 from the long strip-shaped optical film F10X and the sheet-fed film acquisition step.
  • the end face processing film 11A can be obtained because the sheet film 11 can be stretched in advance in the environment adjustment step before the end face processing step. It is possible to prevent the end-face processed film 11A from being excessively stretched by wetting during use.
  • the end face processed film 11A is cut out to a size that matches the display area P4 of the liquid crystal display panel P, and the size of the end face processed film 11A changes excessively when the end face processed film 11A is subsequently attached to the liquid crystal display panel P. Can be suppressed. Therefore, the dimensional accuracy of the film (end face processed film 11A) can be improved.
  • the humidity and temperature of the leaving environment are brought close to the humidity and temperature at which the end face processed film 11A is used after the end face processing step, thereby providing the following effects. That is, in the environment adjustment process, the sheet film 11 can be stretched in advance in accordance with the usage environment of the end face processed film 11A. Therefore, when the end face processed film 11A is used, the end face processed film 11A is excessively wet. Can be effectively suppressed. Therefore, the dimensional accuracy of the film can be further improved.
  • the following effects are achieved by setting the standing time to be equal to or longer than the time when the dimensional change per unit time of the sheet film 11 approaches convergence. That is, in the environmental adjustment step, the sheet film 11 can be sufficiently stretched by wetness in advance, so that when the end face processed film 11A is used, the end face processed film 11A is effectively stretched by wetness. Can be suppressed. Therefore, the dimensional accuracy of the film can be further improved.
  • the following effects are achieved by setting the standing time to a time when the dimensional change rate per unit time of the sheet film 11 is 0.003% / hour or more. That is, in the environment adjustment step, the sheet film 11 can be stretched in advance to such an extent that the dimensional change does not occur any more. Therefore, when the end face processed film 11A is used, the end face processed film 11A is excessively stretched due to moisture. It can be effectively suppressed. Therefore, the dimensional accuracy of the film can be further improved.
  • the following effects can be obtained by setting the standing time to 6 hours or more. That is, in the environment adjustment step, the sheet film 11 can be sufficiently stretched by wet in advance in a time that can contribute to the dimensional change of the sheet film 11 to the maximum, so that when the end face processed film 11A is used, It is possible to effectively suppress the end face processed film 11 ⁇ / b> A from being excessively stretched by wetting by time management. Therefore, the dimensional accuracy of the film can be further improved, and workability by time management can be improved.
  • the following effects are achieved by causing the main surface 11a of the sheet film 11 to be along the vertical direction V1. That is, as compared with the case where the main surface 11a of the sheet film 11 is set along the horizontal direction (for example, when the sheet film 11 is placed on a flat mounting table as it is), the sheet film 11 is not subjected to its own weight.
  • the single wafer film 11 can be exposed as much as possible.
  • the following effects are produced by exposing the end face 11e along the long side of the sheet film 11. That is, in the environment adjustment step, the sheet film 11 can be exposed as much as possible with the long end surface 11e as compared with the case where the end surface 11e along the short side of the sheet film 11 is exposed.
  • the single wafer film 11 can be sufficiently stretched by wetting in advance, when the end face processing film 11A is used, it is effectively prevented that the end face processing film 11A is excessively stretched by wetting. Can be suppressed. Therefore, the dimensional accuracy of the film can be further improved.
  • the following effects can be obtained by forming a laminated body 12 in which a plurality of sheet films 11 are stacked. That is, in the environmental adjustment process, the sheet film 11 can be left in units of the laminated body 12, so that the workability is improved and the work time is reduced as compared with the case where the sheet film 11 is left alone. It can be shortened.
  • the following effects are achieved by providing the dummy film 13 on the main surface side of the laminate 12. That is, in the environmental adjustment process, a plurality of sheet films 11 inside the dummy film 13 can be protected in the thickness direction of the laminated body 12, and therefore, disturbance or the like affects when the sheet film 11 is stretched by wetting. Can be kept as small as possible. Therefore, the dimensional accuracy of the film can be further improved.
  • the end face 11e of the sheet film 11 is polished, and the following effects are obtained. That is, in the end face processing step, since the end face 11e of the single wafer film 11 can be processed more smoothly than in the case of cutting the end face 11e of the single wafer film 11, the size of the end face processed film 11A is the product. It becomes easy to adapt to size.
  • FIG. 8 is a perspective view showing a modified example of the leaving state of the sheet film 11 in the environment adjustment process.
  • the example (refer FIG. 7) by which the laminated body 12 was supported by the film support stand 30 provided with the base 31 and the support pillar 32 was given.
  • the laminated body 12 is mounted on the film mounting table 40 having an L-shaped cross section.
  • the film mounting table 40 is connected to one end of the rectangular plate-shaped first support plate 41 and the first support plate 41, and stands up in the direction along the vertical direction V ⁇ b> 1.
  • a second support plate 42 having a rectangular plate shape having a longitudinal direction in the thickness direction.
  • the length of the first support plate 41 and the second support plate 42 along the thickness direction of the laminate 12 is sufficiently longer than the thickness of the laminate 12.
  • the laminated body 12 is supported so as to lean against the second support plate 42 so that one short side thereof is along the second support plate 42.
  • the thickness of the second support plate 42 is sufficiently large so that the posture of the stacked body 12 can be maintained.
  • an end surface along the long side of the laminate 12 opposite to the first support plate 41 of the sheet film 11 and the short side of the sheet film 11 opposite to the second support plate 42. 11e is exposed. Thereby, since the sheet
  • FIG. 9 is a perspective view showing another modified example of the leaving state of the sheet film 11 in the environment adjustment process.
  • an example in which the laminate 12 is supported by leaning against the second support plate 42 so that one short side thereof is along the second support plate 42 has been described.
  • the laminated body 12 has the second support so that a part of one long side (lower part of the laminated body 12) is along the second support plate 42. It leans against the plate 42 and is supported.
  • the stacked body 12 stands up so that the longitudinal direction thereof follows the vertical method V1.
  • the laminated body 12 is supported by leaning against the second support plate 42 so that a part of one long side thereof is along the second support plate 42, as described below.
  • the sheet film 11 is formed with the long end surface 11e. It can be exposed as much as possible.
  • the single wafer film 11 can be sufficiently stretched by wet in advance, when the end face processed film 11A is used, it is effectively prevented that the end face processed film 11A is excessively stretched by wet. Can be suppressed. Therefore, the dimensional accuracy of the film can be further improved.
  • the end face of the sheet film 11 is made possible in the environmental adjustment process. It is preferable to expose it. Specifically, it is preferable to expose the longest edge among the edges of the sheet film 11. Thereby, the sheet
  • the sheet film 11 when the sheet film 11 has a symmetrical shape (for example, a square, a rhombus, a regular hexagon, a regular octagon, or a circle), the following effects can be obtained. That is, since the dimensional change of the sheet film 11 can be uniformly suppressed from the end surface to the center portion, the stress due to the dimensional change can be relaxed. Therefore, the curl change of the sheet
  • a symmetrical shape for example, a square, a rhombus, a regular hexagon, a regular octagon, or a circle
  • the end face processed film 11A obtained by the film manufacturing method of the present embodiment is subjected to end face processing after sufficiently changing the dimensions of the single-wafer film 11 in an environmental adjustment step. Therefore, even if the end face processed film 11A is left in the same environment (for example, the same humidity and the same temperature) as the environment adjustment step, the dimensional change hardly occurs. Such an effect is particularly remarkable when an optical film (particularly a polarizing film) is used as the resin film.
  • the dimensional change rate of the longest edge is preferably less than 0.0002% / hour, Preferably it is 0.0001% / hour or less.
  • the dimensional change rate of the resin film is 0.00001% / hour or more.
  • the dimensional change rate of the two long sides is less than 0.0002% / hour when held for 24 hours in an environment of humidity 52% and temperature 23 ° C. Preferably there is. Thereby, a film with improved dimensional accuracy can be provided.
  • the sheet film 11 is moistened in the environment adjustment process.
  • the present invention is not limited to this.
  • the sheet film 11 may be dried in the environment adjustment step.
  • the end face of the sheet film is polished in the end face processing step.
  • the present invention is not limited to this.
  • the end face of the single wafer film may be processed by cutting such as laser cutting.
  • the present invention is not limited to this.
  • the effect of the present invention can be sufficiently obtained as long as the film to be used is capable of causing dimensional changes such as expansion and contraction due to humidity.
  • Example 1 The present inventor confirmed that the film can be stretched longer by exposing the long side rather than the short side of the film by adjusting the leaving environment using a rectangular film.
  • a rectangular optical film (a sheet film 11 cut out from a long belt-shaped optical film F10X as shown in FIG. 4) was used.
  • the length of the long side of the film was 110 mm.
  • the short side length of the film was 60 mm.
  • the thickness of the film was 200 ⁇ m.
  • FIG. 10 is a diagram for explaining the dimensional change amount of the long side of the film in the example.
  • FIG. 11 is a diagram for explaining the dimensional change amount of the short side of the film in the example.
  • a horizontal axis shows time [hour] and a vertical axis
  • shaft shows dimensional change [micrometer].
  • the temperature of the leaving environment in this example was 23 ° C.
  • the humidity of the leaving environment was set to three conditions of 45%, 55%, and 65%.
  • indicates humidity 45%
  • indicates humidity 55%
  • indicates humidity 65%.
  • the moisture content (initial moisture content) of the film was set to three conditions of 0.284%, 0.476%, and 0.594%.
  • the solid line is a graph with a moisture content of 0.284%
  • the alternate long and short dash line is the graph with a moisture content of 0.476%
  • the broken line is a graph with a moisture content of 0.594%.
  • the moisture content of the film was measured by a dry weight method.
  • the sample used for the measurement by the dry weight method was a square having a side length of 100 mm.
  • the drying conditions at this time were a temperature of 105 ° C. and a drying time of 2 hours.
  • (M1 ⁇ M2) / M1 (1)
  • the dimensional change amount of the long side is larger than the dimensional change amount of the short side under any of the moisture ratio and humidity conditions.
  • the dimensional change amount on the long side was about twice as large as the dimensional change amount on the short side in each moisture ratio and each humidity condition. From the above, it was confirmed that the film can be stretched longer by exposing the long side rather than the short side of the film by adjusting the leaving environment using a rectangular film.
  • Example 2 By adjusting the leaving environment using a rectangular film, the present inventor made it possible to “extend the film longer than when the film is not exposed” and “the dimensions of each side”. The change was confirmed by the following evaluation about “coming closer to convergence after 6 hours”.
  • a rectangular optical film (a single-wafer film 11 cut out from an elongated optical film F10X as shown in FIG. 4) was used.
  • the length of the long side of the film was 110 mm.
  • the short side length of the film was 60 mm.
  • the thickness of the film was 200 ⁇ m.
  • the film is left standing one by one (state leaning on a film leaning base 20 as shown in FIG. 6), or in a laminated state (state supported on a film support 30 as shown in FIG. 7). ).
  • the film which exists in two positions of a center part and an edge part in the thickness direction of this laminated body was used among the laminated bodies.
  • the center part in the thickness direction of the laminated body corresponds to a portion T1 shown in FIG. 7 (for example, the 50th sheet when 100 films are stacked to form a laminated body).
  • the end portion in the thickness direction of the laminated body corresponds to a portion T2 shown in FIG. 7 (for example, the 25th sheet when 100 films are stacked to form a laminated body).
  • FIG. 12 is a diagram for explaining the state of leaving the film in this example.
  • the symbol J1 is the first long side covered with the first wall W1
  • the symbol J2 is the second long side exposed to the outside on the opposite side of the first long side W1
  • the symbol K1 is the second long side.
  • the first short side covered with the wall W2 and the symbol K2 indicate the second short side exposed to the outside on the opposite side of the first short side K1.
  • FIG. 13 is a diagram for explaining the dimensional change amount of the first long side of the film in this example.
  • FIG. 14 is a diagram for explaining the dimensional change amount of the second long side of the film in this example.
  • FIG. 15 is a diagram for explaining the dimensional change amount of the first short side of the film in this example.
  • FIG. 16 is a diagram for explaining the dimensional change amount of the second short side of the film in this example.
  • the horizontal axis represents time [hour]
  • the vertical axis represents the dimensional change [ ⁇ m].
  • the temperature of the standing environment was 23 ° C. and the humidity was 55%.
  • the film was left standing one by one, or a laminated body. In the state which used the film as the laminated body, the film which exists in two positions of a center part and an edge part in the thickness direction of this laminated body was used among the laminated bodies.
  • indicates a state of standing one by one
  • indicates a center portion in the thickness direction of the laminate
  • indicates an end portion in the thickness direction of the laminate.
  • the moisture content (initial moisture content) of the film was set to two conditions of 0.289% and 0.361%.
  • the solid line indicates a graph with a moisture content of 0.289%
  • the alternate long and short dash line indicates a graph with a moisture content of 0.361%.
  • the moisture content was calculated using the above formula (1).
  • the result is that the dimensional change amount of the second long side tends to be larger than the dimensional change amount of the first long side in each leaving state and each moisture content.
  • the dimensional change amount of the second short side is not as different as the result of the dimensional change amount of the long side, but the first short side is not changed in each standing state and each moisture content. The result that it tends to become larger than the dimensional change amount of the side was obtained. Further, as shown in the graphs of FIGS. 13 to 16, it was obtained that the dimensional change amount of each side became the largest by the time 6 hours passed.
  • the film can be stretched longer when the film is exposed than when the film is not exposed.
  • the dimensional change of each side of the film approaches the convergence after 6 hours have passed.
  • Example 3 The present inventor has confirmed by the following evaluation that the dimensional accuracy of the film can be improved by adjusting the leaving environment using a rectangular film.
  • a rectangular optical film (a single-wafer film 11 cut out from an elongated optical film F10X as shown in FIG. 4) was used.
  • the length of the long side of the film was 110 mm.
  • the short side length of the film was 60 mm.
  • the thickness of the film was 200 ⁇ m.
  • the film was left standing one by one, or a laminated body. In the state which used the film as the laminated body, the film which exists in two positions of a center part and an edge part in the thickness direction of this laminated body was used among the laminated bodies.
  • the film manufacturing method of the comparative example shall have no environmental adjustment process.
  • the end face processing step is reached without going through the environment adjustment step.
  • the film manufacturing method of this example has an environmental adjustment step.
  • it has an environmental adjustment process between a sheet-fed film acquisition process and an end surface processing process.
  • the temperature of the leaving environment was 23 ° C.
  • the humidity was 52%
  • the leaving time was 48 hours.
  • the above-described medium and small size polishing machine (model PLBP300) manufactured by Megaro Technica Co., Ltd. was used as a polishing apparatus.
  • the polishing conditions were a parallel arbor, a rotational speed of 4000 rpm, a feed rate of 500 mm / min, a clamp pressure of 0.06 MPa, and a cutting amount (0.5 mm on one side).
  • FIG. 17 is a diagram showing a dimensional change amount of the first long side of the film in this example and the comparative example.
  • FIG. 18 is a diagram showing the dimensional change amount of the second long side of the film in this example and the comparative example.
  • FIG. 19 is a diagram showing the dimensional change amount of the first short side of the film in this example and the comparative example.
  • FIG. 20 is a diagram showing the dimensional change amount of the second short side of the film in this example and the comparative example.
  • the horizontal axis represents time [day]
  • the vertical axis represents the dimensional change [ ⁇ m].
  • the solid line indicates the graph of the example, and the broken line indicates the graph of the comparative example.
  • FIGS. 17 to 20 are graphs when the film is left again in the leaving environment after the end face processing step. That is, FIG. 17 to FIG. 20 show the results of confirming the dimensional change of the film obtained through the end face processing step in a standing environment (temperature 23 ° C., humidity 52%).
  • the film was left standing one by one and a laminated body.
  • the film which exists in two positions of a center part and an edge part in the thickness direction of this laminated body was used among the laminated bodies.
  • indicates a state of standing one by one
  • indicates a center portion in the thickness direction of the laminate
  • indicates an end portion in the thickness direction of the laminate.
  • the result was that the dimensional change amount of this example was smaller than the dimensional change amount of the comparative example in each side and in each leaving state.
  • the result was that the dimensional change amount of the example was significantly smaller than the dimensional change amount of the comparative example.
  • the dimensional change amount becomes maximum at the first long side of the film located at the end portion ( ⁇ mark shown in FIG. 17) in the thickness direction of the laminated body, and the time is 7 days. And obtained a result of about 30 ⁇ m.
  • the dimensional change amount is maximum at the first long side of the film at the position of the central portion ( ⁇ mark shown in FIG. 17) in the thickness direction of the laminated body, and is about 10 ⁇ m at 7 days. Results were obtained.
  • Table 1 below shows the dimensional change rate of the long side in the present example and the comparative example, which was obtained from the result of the dimensional change amount in the present example and the comparative example.
  • the dimensional change rate (% / hour) of the long side was calculated by the following formula (2).
  • D (E / H) ⁇ 100 (%) ⁇ 24 (hours) (2)
  • “D” is the dimensional change rate (% / hour) of the long side
  • E is the dimensional change amount (mm) of the long side when the film is held for 24 hours
  • “H” is the length (mm) of the long side before the dimension change.
  • H 110 mm.
  • the dimensional change rate of the long side after 4 days or 7 days was obtained by holding “E” for 4 days (96 hours) or 7 days (168 hours) in the above formula (2). It is a value calculated with the dimensional change amount (mm) of the long side at the time and 24 (hours) as 96 (hours) or 168 (hours).
  • the film when the film is left standing one by one, the dimensional change rate is maximized on the first long side, and the result is 0.0005% / hour. It was.
  • the film is left standing one by one, and is a laminated body (when a film is used at two positions in the center and the end in the thickness direction of the laminated body). In all cases, the dimensional change rate of the long side of the film was 0.0001% / hour or less. From the above, it was confirmed that the dimensional accuracy of the film can be improved by adjusting the leaving environment using a rectangular film.
  • Sheet-fed film 11 Sheet-fed film 11A ... End-face processed film 11a ... Main surface of sheet-fed film 11e ... End surface of sheet-fed film 12 ... Laminate 13 ... Dummy film F10X ... Optical film (resin film)

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Mathematical Physics (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Polarising Elements (AREA)
  • Liquid Crystal (AREA)

Abstract

This film manufacturing method includes a sheet film acquisition step for acquiring a sheet film, which is a sheet-shaped resin film, from a long strip-shaped resin film, and an end-face-machining step for machining the end face of the film to obtain an end-face-machined film following the sheet film acquisition step, wherein the film manufacturing method furthermore includes an environment adjustment step for providing an unattended environment for leaving the sheet film unattended in which the atmosphere has been at least adjusted for humidity.

Description

フィルム製造方法及びフィルムFilm manufacturing method and film
 本発明は、フィルム製造方法及びフィルムに関する。
 本出願は、2015年12月25日に日本に出願された特願2015-254899号に基づき、優先権を主張し、その内容をここに援用する。
The present invention relates to a film manufacturing method and a film.
This application claims priority based on Japanese Patent Application No. 2015-254899 filed in Japan on December 25, 2015, the contents of which are incorporated herein by reference.
 従来、フィルム製造方法として、例えば、特許文献1に開示されたものがある。これは、長尺帯状の光学フィルムから、枚葉状の光学フィルムチップを切り出す方法に関するものである。
 例えば、光学フィルムチップは、液晶パネルの表示領域に合わせたサイズに切り出された後、液晶パネルに貼り合わされる。
Conventionally, as a film manufacturing method, for example, there is one disclosed in Patent Document 1. This relates to a method of cutting out a sheet-like optical film chip from a long belt-like optical film.
For example, the optical film chip is cut to a size that matches the display area of the liquid crystal panel and then bonded to the liquid crystal panel.
特開2003-255132号公報JP 2003-255132 A
 ところで、光学フィルムチップは、切り出し直後に液晶パネルに貼り合わされることは少なく、液晶パネルに貼り合わされるまでは放置されることが多い。光学フィルムチップは、上記の放置環境の湿度の大小によって伸縮する。そのため、光学フィルムチップを液晶パネルの表示領域に合わせたサイズに切り出したとしても、その後、液晶パネルに貼り合わせる際には、光学フィルムチップのサイズが変化していることがある。このため、光学フィルムチップを液晶パネルの表示領域に精度良く貼り合わせることが困難となる可能性があった。一方、最近では、表示装置の挟額縁化が進んでおり、光学フィルムチップに対して従来よりも厳しい寸法精度が求められるようになっている。例えば、従来の寸法公差は±100~150μm程度であったが、最近では±30~50μm程度の寸法公差が求められている。今後、更に要求精度が厳しくなり、従来の製法により得られた光学フィルムチップでは対応できなくなると予想される。 By the way, the optical film chip is rarely attached to the liquid crystal panel immediately after being cut out, and is often left until it is attached to the liquid crystal panel. The optical film chip expands and contracts depending on the humidity level of the leaving environment. Therefore, even if the optical film chip is cut out to a size that matches the display area of the liquid crystal panel, the size of the optical film chip may change when the optical film chip is subsequently bonded to the liquid crystal panel. For this reason, it may be difficult to attach the optical film chip to the display area of the liquid crystal panel with high accuracy. On the other hand, recently, display devices have become framed, and stricter dimensional accuracy than ever is required for optical film chips. For example, the conventional dimensional tolerance is about ± 100 to 150 μm, but recently a dimensional tolerance of about ± 30 to 50 μm is required. In the future, the required accuracy will become stricter, and it is expected that the optical film chip obtained by the conventional manufacturing method will not be able to cope with it.
 本発明は上記事情に鑑みてなされたもので、フィルムの寸法精度を向上することができるフィルム製造方法及び寸法精度が向上したフィルムを提供する。 The present invention has been made in view of the above circumstances, and provides a film manufacturing method capable of improving the dimensional accuracy of a film and a film having improved dimensional accuracy.
 上記の目的を達成するために、本発明は以下の手段を採用した。
 (1)本発明の一つの態様に係るフィルム製造方法は、長尺帯状の樹脂フィルムから枚葉状の樹脂フィルムである枚葉フィルムを取得する枚葉フィルム取得工程と、前記枚葉フィルム取得工程の後に、前記枚葉フィルムの端面を加工して端面加工フィルムを得る端面加工工程と、を含むフィルム製造方法であって、前記枚葉フィルム取得工程と前記端面加工工程との間に、前記枚葉フィルムを放置する放置環境を、少なくとも湿度を調整した雰囲気下とする環境調整工程を更に含む。
In order to achieve the above object, the present invention employs the following means.
(1) A film manufacturing method according to one aspect of the present invention includes a sheet-fed film acquisition step of acquiring a sheet-fed film that is a sheet-fed resin film from a long strip-shaped resin film, and the sheet-fed film acquisition step. And an end face processing step for obtaining an end face processed film by processing an end face of the single wafer film, wherein the single wafer is between the single film acquisition step and the end face processing step. It further includes an environment adjustment step in which the leaving environment in which the film is left is at least an atmosphere in which the humidity is adjusted.
 (2)上記(1)のフィルム製造方法において、前記環境調整工程では、前記放置環境の湿度及び温度を、前記端面加工工程の後に前記端面加工フィルムが使用される湿度及び温度に対して±5%及び±5℃の範囲とする。 (2) In the film manufacturing method of (1), in the environment adjustment step, the humidity and temperature of the leaving environment are ± 5 relative to the humidity and temperature at which the end face processed film is used after the end face processing step. % And ± 5 ° C.
 (3)上記(1)又は(2)のフィルム製造方法において、前記環境調整工程では、前記放置環境に前記枚葉フィルムを放置する時間を、前記枚葉フィルムの単位時間当たりの寸法変化が収束に近づく時間以上とする。 (3) In the film manufacturing method according to (1) or (2) above, in the environment adjustment step, the dimensional change per unit time of the single-wafer film converges in the time for which the single-wafer film is left in the leaving environment. More than the time approaching.
 (4)上記(3)のフィルム製造方法において、前記環境調整工程では、前記放置環境に前記枚葉フィルムを放置する時間を、前記枚葉フィルムの単位時間当たりの寸法変化率が0.003%/時以下となる時間以上とする。 (4) In the film manufacturing method according to (3), in the environment adjustment step, the time for leaving the sheet film in the leaving environment is set to a dimensional change rate per unit time of 0.003%. The time is equal to or less than / hour.
 (5)上記(3)又は(4)のフィルム製造方法において、前記環境調整工程では、前記放置環境に前記枚葉フィルムを放置する時間を6時間以上とする。 (5) In the film manufacturing method according to (3) or (4) above, in the environmental adjustment step, the time for leaving the sheet film in the leaving environment is set to 6 hours or more.
 (6)上記(1)から(5)までの何れかのフィルム製造方法において、前記環境調整工程では、前記枚葉フィルムの主面を鉛直方向に沿わせて前記枚葉フィルムを放置する。 (6) In any one of the above-described film manufacturing methods (1) to (5), in the environmental adjustment step, the single-wafer film is left with the main surface of the single-wafer film along the vertical direction.
 (7)上記(1)から(6)までの何れかのフィルム製造方法において、前記枚葉フィルムは矩形状であり、前記環境調整工程では、前記枚葉フィルムの長辺の側に沿う端面を露出させて前記枚葉フィルムを放置する。 (7) In the film manufacturing method according to any one of (1) to (6), the sheet film is rectangular, and in the environment adjustment step, an end surface along the long side of the sheet film is used. The sheet film is left exposed.
 (8)上記(1)から(7)までの何れかのフィルム製造方法において、前記環境調整工程では、前記枚葉フィルムを複数枚重ねた積層体として前記積層体を放置する。 (8) In any one of the above-described film manufacturing methods (1) to (7), in the environment adjustment step, the laminate is left as a laminate in which a plurality of the single-wafer films are stacked.
 (9)上記(8)のフィルム製造方法において、前記環境調整工程では、前記積層体の主面の側にダミーフィルムを設けて前記積層体を放置する。 (9) In the film manufacturing method of (8), in the environmental adjustment step, a dummy film is provided on the main surface side of the laminate, and the laminate is left unattended.
 (10)上記(1)から(9)までの何れかのフィルム製造方法において、前記端面加工工程では、前記枚葉フィルムの端面を研磨する。 (10) In the film manufacturing method according to any one of (1) to (9), the end face of the single wafer film is polished in the end face processing step.
 (11)上記(1)から(10)までの何れかのフィルム製造方法において、前記樹脂フィルムが光学フィルムである。 (11) In any one of the film production methods (1) to (10), the resin film is an optical film.
 (12)本発明の一つの態様に係るフィルムは、長方形状を有し、湿度52%、かつ温度23℃の環境下で、24時間保持した際、二つの長辺の寸法変化率が、何れも0.0002%/時未満である。 (12) The film according to one aspect of the present invention has a rectangular shape, and when held for 24 hours in an environment of humidity of 52% and temperature of 23 ° C., the dimensional change rate of the two long sides is Is less than 0.0002% / hour.
 本発明によれば、フィルムの寸法精度を向上することができるフィルム製造方法及び寸法精度が向上したフィルムを提供することができる。 According to the present invention, a film manufacturing method capable of improving the dimensional accuracy of a film and a film having improved dimensional accuracy can be provided.
液晶表示パネルの一例を示す平面図である。It is a top view which shows an example of a liquid crystal display panel. 図1のII-II断面図である。FIG. 2 is a sectional view taken along the line II-II in FIG. 光学フィルムの一例を示す断面図である。It is sectional drawing which shows an example of an optical film. 実施形態に係るフィルム製造方法を示す斜視図である。It is a perspective view which shows the film manufacturing method which concerns on embodiment. 実施形態に係るフィルム製造方法のフローチャートである。It is a flowchart of the film manufacturing method which concerns on embodiment. 実施形態に係る枚葉フィルムの放置状態の例を示す斜視図である。It is a perspective view which shows the example of the leaving state of the sheet | seat film which concerns on embodiment. 実施形態に係る枚葉フィルムの放置状態の他の例を示す斜視図である。It is a perspective view which shows the other example of the leaving state of the sheet | seat film which concerns on embodiment. 枚葉フィルムの放置状態の変形例を示す斜視図である。It is a perspective view which shows the modification of the leaving state of a sheet | seat film. 枚葉フィルムの放置状態の他の変形例を示す斜視図である。It is a perspective view which shows the other modification of the leaving state of a sheet | seat film. 実施例におけるフィルムの長辺の寸法変化量を説明するためのグラフである。It is a graph for demonstrating the dimensional change amount of the long side of the film in an Example. 実施例におけるフィルムの短辺の寸法変化量を説明するためのグラフである。It is a graph for demonstrating the dimensional change amount of the short side of the film in an Example. 実施例におけるフィルムの放置状態を説明するための図である。It is a figure for demonstrating the leaving state of the film in an Example. 実施例におけるフィルムの第一長辺の寸法変化量を説明するためのグラフである。It is a graph for demonstrating the dimensional change amount of the 1st long side of the film in an Example. 実施例におけるフィルムの第二長辺の寸法変化量を説明するためのグラフである。It is a graph for demonstrating the dimensional change amount of the 2nd long side of the film in an Example. 実施例におけるフィルムの第一短辺の寸法変化量を説明するためのグラフである。It is a graph for demonstrating the dimensional change amount of the 1st short side of the film in an Example. 実施例におけるフィルムの第二短辺の寸法変化量を説明するためのグラフである。It is a graph for demonstrating the dimensional change amount of the 2nd short side of the film in an Example. 実施例及び比較例におけるフィルムの第一長辺の寸法変化量を示すグラフである。It is a graph which shows the dimensional change amount of the 1st long side of the film in an Example and a comparative example. 実施例及び比較例におけるフィルムの第二長辺の寸法変化量を示すグラフである。It is a graph which shows the dimensional change amount of the 2nd long side of the film in an Example and a comparative example. 実施例及び比較例におけるフィルムの第一短辺の寸法変化量を示すグラフである。It is a graph which shows the dimensional change amount of the 1st short side of the film in an Example and a comparative example. 実施例及び比較例におけるフィルムの第二短辺の寸法変化量を示すグラフである。It is a graph which shows the dimensional change amount of the 2nd short side of the film in an Example and a comparative example.
 以下、本発明の実施形態について、図面を参照して詳細に説明する。
 本実施形態では、樹脂フィルムとして光学フィルムを用いたフィルム製造方法について説明する。
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.
In the present embodiment, a film manufacturing method using an optical film as a resin film will be described.
 例えば、光学フィルムとしては、偏光フィルム、位相差フィルム及び輝度向上フィルム等が挙げられる。例えば、光学フィルムは、液晶表示パネルや有機EL表示パネル等のパネル状の光学表示部品(光学表示パネル)に貼合されて用いられる。 For example, examples of the optical film include a polarizing film, a retardation film, and a brightness enhancement film. For example, the optical film is used by being bonded to a panel-like optical display component (optical display panel) such as a liquid crystal display panel or an organic EL display panel.
 本実施形態では、光学表示デバイスとして透過型の液晶表示装置(不図示)を例示して説明する。透過型の液晶表示装置は、液晶表示パネルと、バックライトとを備えている。この液晶表示装置では、バックライトから出射された照明光を液晶表示パネルの裏面側から入射し、液晶表示パネルにより変調された光を液晶表示パネルの表面側から出射することによって、画像を表示することが可能である。 In this embodiment, a transmissive liquid crystal display device (not shown) will be described as an example of an optical display device. The transmissive liquid crystal display device includes a liquid crystal display panel and a backlight. In this liquid crystal display device, illumination light emitted from the backlight is incident from the back side of the liquid crystal display panel, and light modulated by the liquid crystal display panel is emitted from the front side of the liquid crystal display panel, thereby displaying an image. It is possible.
(光学表示デバイス)
 先ず、光学表示デバイスとして、図1及び図2に示す液晶表示パネルPの構成について説明する。図1は、液晶表示パネルPの一例を示す平面図である。図2は、図1のII-II断面図である。尚、図2では、断面を示すハッチングの図示を省略している。
(Optical display device)
First, the configuration of the liquid crystal display panel P shown in FIGS. 1 and 2 will be described as an optical display device. FIG. 1 is a plan view showing an example of the liquid crystal display panel P. FIG. 2 is a cross-sectional view taken along the line II-II in FIG. In FIG. 2, hatching showing a cross section is omitted.
 液晶表示パネルPは、図1及び図2に示すように、第一の基板P1と、第一の基板P1に対向して配置された第二の基板P2と、第一の基板P1と第二の基板P2との間に配置された液晶層P3とを備えている。 As shown in FIGS. 1 and 2, the liquid crystal display panel P includes a first substrate P1, a second substrate P2 disposed opposite to the first substrate P1, a first substrate P1, and a second substrate P1. And a liquid crystal layer P3 arranged between the substrate P2.
 第一の基板P1は、平面視で長方形状をなす透明基板からなる。第二の基板P2は、第一の基板P1よりも比較的小形の長方形状をなす透明基板からなる。液晶層P3は、第一の基板P1と第二の基板P2との間の周囲をシール材(不図示)で封止し、シール材によって囲まれた平面視で長方形状をなす領域の内側に配置されている。液晶表示パネルPでは、平面視で液晶層P3の外周の内側に収まる領域を表示領域P4とし、この表示領域P4の周囲を囲む外側の領域を額縁部Gとする。 The first substrate P1 is made of a transparent substrate having a rectangular shape in plan view. The second substrate P2 is a transparent substrate having a rectangular shape that is relatively smaller than the first substrate P1. The liquid crystal layer P3 seals the periphery between the first substrate P1 and the second substrate P2 with a sealing material (not shown), and is located inside a rectangular region in plan view surrounded by the sealing material. Is arranged. In the liquid crystal display panel P, an area that fits inside the outer periphery of the liquid crystal layer P3 in plan view is a display area P4, and an outer area that surrounds the display area P4 is a frame portion G.
 液晶表示パネルPの裏面(バックライト側)には、偏光フィルムとしての第一の光学フィルムF11と、この第一の光学フィルムF11に重ねて輝度向上フィルムとして用いられる第三の光学フィルムF13とが順に積層されて貼合されている。液晶表示パネルPの表面(表示面側)には、偏光フィルムとしての第二の光学フィルムF12が貼合されている。以下、第一、第二及び第三の光学フィルムF11,F12,F13を光学フィルムF1Xと総称することがある。 On the back surface (backlight side) of the liquid crystal display panel P, there are a first optical film F11 as a polarizing film and a third optical film F13 used as a brightness enhancement film on the first optical film F11. They are laminated and bonded in order. On the surface (display surface side) of the liquid crystal display panel P, a second optical film F12 as a polarizing film is bonded. Hereinafter, the first, second, and third optical films F11, F12, and F13 may be collectively referred to as an optical film F1X.
(光学フィルム)
 次に、図3に示す光学フィルムF1Xを構成する光学シートFXの一例について説明する。図3は、光学シートFXの構成を示す断面図である。尚、図3では、断面を示すハッチングの図示を省略している。
(Optical film)
Next, an example of the optical sheet FX constituting the optical film F1X shown in FIG. 3 will be described. FIG. 3 is a cross-sectional view illustrating a configuration of the optical sheet FX. In FIG. 3, hatching showing a cross section is omitted.
 光学フィルムF1Xは、図3に示す長尺帯状の光学シートFXから所定の長さのシート片を切り出すことによって得られる。具体的には、この光学シートFXは、基材シートF4と、基材シートF4の一方の面(図3中の上面)に設けられた粘着層F5と、粘着層F5を介して基材シートF4の一方の面に設けられたセパレータシートF6と、基材シートF4の他方の面(図3中の下面)に設けられた表面保護シートF7とを有する。 The optical film F1X is obtained by cutting a sheet piece having a predetermined length from the long belt-like optical sheet FX shown in FIG. Specifically, the optical sheet FX includes a base material sheet F4, an adhesive layer F5 provided on one surface (upper surface in FIG. 3) of the base material sheet F4, and a base material sheet via the adhesive layer F5. It has a separator sheet F6 provided on one surface of F4 and a surface protection sheet F7 provided on the other surface (lower surface in FIG. 3) of the base material sheet F4.
 基材シートF4は、例えば、偏光フィルムの場合、偏光子F4aを、一対の保護フィルムF4b,F4cが挟み込む構造を有している。
 粘着層F5は、基材シートF4を液晶表示パネルPに貼着するものである。
 セパレータシートF6は、粘着層F5を保護するものである。セパレータシートF6を、光学フィルムF1Xから剥離、除去することにより、粘着層F5を露出させる。その後、光学フィルムF1Xを液晶表示パネルPへ貼り合わせる。尚、光学フィルムF1XからセパレータシートF6を除いた部分(光学フィルムF1Xとなる部分)は、貼合シートF8とされる。
 表面保護シートF7は、基材シートF4の表面を保護するものである。表面保護シートF7は、基材シートF4が液晶表示パネルPに貼着された後に、基材シートF4の表面から剥離される。
In the case of a polarizing film, for example, the base sheet F4 has a structure in which a polarizer F4a is sandwiched between a pair of protective films F4b and F4c.
The adhesive layer F5 adheres the base material sheet F4 to the liquid crystal display panel P.
Separator sheet F6 protects adhesive layer F5. The adhesive layer F5 is exposed by peeling and removing the separator sheet F6 from the optical film F1X. Thereafter, the optical film F1X is bonded to the liquid crystal display panel P. In addition, the part (part used as the optical film F1X) remove | excluding the separator sheet F6 from the optical film F1X is set as the bonding sheet | seat F8.
The surface protection sheet F7 protects the surface of the base material sheet F4. The surface protective sheet F7 is peeled off from the surface of the base sheet F4 after the base sheet F4 is attached to the liquid crystal display panel P.
 尚、基材シートF4については、一対の保護フィルムF4b,F4cのうちの何れか一方を省略してもよい。例えば、粘着層F5側の保護フィルムF4bを省略して、偏光子F4aの表面に粘着層F5が直接設けられていてもよい。又、表面保護シートF7側の保護フィルムF4cには、例えば、液晶表示パネルPの最外面を保護するハードコート処理や、防眩効果が得られるアンチグレア処理などの表面処理が施されていてもよい。又、基材シートF4については、上述した積層構造のものに限らず、単層構造のものであってもよい。又、本実施形態で説明する光学フィルムF1Xにおいては、表面保護シートF7を省略してもよい。 In addition, about the base material sheet F4, you may abbreviate | omit any one of a pair of protective films F4b and F4c. For example, the protective film F4b on the adhesive layer F5 side may be omitted, and the adhesive layer F5 may be provided directly on the surface of the polarizer F4a. The protective film F4c on the surface protective sheet F7 side may be subjected to a surface treatment such as a hard coat treatment for protecting the outermost surface of the liquid crystal display panel P or an antiglare treatment for obtaining an antiglare effect. . Moreover, about the base material sheet F4, not only the laminated structure mentioned above but a single layer structure may be sufficient. In the optical film F1X described in the present embodiment, the surface protection sheet F7 may be omitted.
(フィルム製造方法)
 次に、本実施形態に係るフィルム製造方法について説明する。図4は、本実施形態に係るフィルム製造方法を示す斜視図である。図5は、本実施形態に係るフィルム製造方法のフローチャートである。
(Film production method)
Next, the film manufacturing method according to the present embodiment will be described. FIG. 4 is a perspective view showing the film manufacturing method according to the present embodiment. FIG. 5 is a flowchart of the film manufacturing method according to this embodiment.
 例えば、本実施形態に係るフィルム製造方法は、偏光フィルムの両面に表面保護フィルムが貼合された光学フィルムF10Xを製造する方法である。このフィルム製造方法は、光学フィルムF10Xの製造工程を含んでもよい。また、例えば、本実施形態に係るフィルム製造方法は、長尺帯状の偏光フィルムの原反ロール(不図示)を製造する原反ロール製造工程と、長尺帯状の偏光フィルムに長尺帯状の表面保護フィルムを貼合して長尺帯状の光学フィルムF10Xの原反ロールR1を製造する貼合工程と、を含む。 For example, the film manufacturing method according to the present embodiment is a method of manufacturing an optical film F10X in which a surface protective film is bonded to both surfaces of a polarizing film. This film manufacturing method may include a manufacturing process of the optical film F10X. Moreover, for example, the film manufacturing method according to the present embodiment includes an original roll manufacturing process for manufacturing an original roll (not shown) of a long strip-shaped polarizing film, and a long strip-shaped surface on the long strip-shaped polarizing film. A pasting step in which a protective film is pasted to manufacture an original fabric roll R1 of the long belt-shaped optical film F10X.
 例えば、上記の原反ロール製造工程では、PVA(Polyvinyl Alcohol)などの偏光子の基材となるフィルムに対して、染色処理、架橋処理及び延伸処理などを施した後、前記処理を施したフィルムの両面に、TAC(Triacetylcellulose)などの保護フィルムを貼合することによって長尺帯状の偏光フィルムを製造し、製造された偏光フィルムを芯材に巻き取ることによって原反ロール(不図示)を得る。 For example, in the above-mentioned raw roll manufacturing process, a film that has been subjected to the above-mentioned treatment after being subjected to a dyeing treatment, a crosslinking treatment, a stretching treatment, etc. on a film that is a base material for a polarizer such as PVA (Polyvinyl Alcohol) A protective film such as TAC (Triacetylcellulose) is pasted on both sides of the film to produce a long band-shaped polarizing film, and the resulting polarizing film is wound around a core material to obtain an original roll (not shown) .
 貼合工程では、長尺帯状の偏光フィルムの原反ロール及び長尺帯状の表面保護フィルムの原反ロール(何れも不図示)から、長尺帯状の偏光フィルム及び長尺帯状の表面保護フィルムをそれぞれ巻き出しつつ、これらをニップロール等で挟み込んで貼合し、引き出すことによって長尺帯状の光学フィルムF10Xを製造する。そして、製造された光学フィルムF10Xを芯材に巻き取ることにより、原反ロールR1を得る。上記の表面保護フィルムとしては、例えば、PET(Polyethylene terephthalate)などが用いられる。 In the laminating step, the long strip-shaped polarizing film and the long strip-shaped surface protective film are obtained from the long strip-shaped polarizing film original roll and the long strip-shaped surface protective film original roll (not shown). While unwinding each, these are pinched | interposed with a nip roll etc., are bonded, and are drawn out, and produce the elongate optical film F10X. And the original fabric roll R1 is obtained by winding up manufactured optical film F10X to a core material. For example, PET (Polyethylene terephthalate) is used as the surface protective film.
 図4及び図5に示すように、本実施形態のフィルム製造方法は、長尺帯状の光学フィルムF10Xから枚葉状の光学フィルムである枚葉フィルム11を取得する枚葉フィルム取得工程(図5に示すステップS1)と、枚葉フィルム取得工程の後に、枚葉フィルム11を放置する放置環境を、少なくとも湿度を調整した雰囲気下とする環境調整工程(図5に示すステップS2)と、環境調整工程の後に、枚葉フィルム11の端面を研磨(加工)して端面加工フィルム11Aを得る端面加工工程(図5に示すステップS3)と、を更に含む。 As shown in FIG.4 and FIG.5, the film manufacturing method of this embodiment is a sheet | seat film acquisition process (in FIG. 5) which acquires the sheet | seat film 11 which is a sheet-like optical film from the elongate strip-shaped optical film F10X. Step S1) shown, an environment adjustment step (step S2 shown in FIG. 5) in which the leaving environment in which the sheet film 11 is left after the sheet-fed film acquisition step is at least a humidity-adjusted atmosphere, and an environment adjustment step After that, it further includes an end face processing step (step S3 shown in FIG. 5) of polishing (processing) the end face of the sheet film 11 to obtain the end face processed film 11A.
(枚葉フィルム取得工程)
 図4に示すように、枚葉フィルム取得工程では、図4中では不図示の切断装置を用いて、長尺帯状の光学フィルムF10Xから複数の矩形状の枚葉フィルム11を切り出す。上記の切断装置としては、例えば、枚葉フィルム11の長辺の長さに対応した間隔で並ぶ複数のカッターと、枚葉フィルム11の短辺の長さに対応した間隔で並ぶ複数のカッターとが平面視格子状に配置されているものなどを用いることができる。この切断装置において、4つのカッターにより矩形状に切り出される領域は、1つの枚葉フィルム11の切り出し領域となっている。なお、切断装置としてレーザーカッターを用いてもよい。
(Single wafer film acquisition process)
As shown in FIG. 4, in the single-wafer film acquisition step, a plurality of rectangular single-wafer films 11 are cut out from the long belt-like optical film F <b> 10 </ b> X using a cutting device not shown in FIG. 4. As said cutting device, for example, a plurality of cutters arranged at intervals corresponding to the length of the long side of the sheet film 11, and a plurality of cutters arranged at intervals corresponding to the length of the short side of the sheet film 11 Can be used that are arranged in a grid pattern in a plan view. In this cutting apparatus, a region cut out in a rectangular shape by four cutters is a cut-out region of one single sheet film 11. In addition, you may use a laser cutter as a cutting device.
 なお、図4では、長尺帯状の光学フィルムF10Xから長方形状の枚葉フィルム11を切り出す例を示したが、これに限らない。切り出す枚葉フィルム11の形状は、種々の形状を採用することができる。例えば、枚葉フィルム11の形状は、正方形、菱形、六角形、又は八角形等の多角形形状であってもよいし、円形、又は楕円形等の曲線を持つ形状であってもよいし、曲線状の端辺と直線状の端辺とを持つ形状であってもよい。 In addition, in FIG. 4, although the example which cuts out the rectangular sheet | seat film 11 from the elongate optical film F10X was shown, it does not restrict to this. Various shapes can be adopted as the shape of the sheet film 11 to be cut out. For example, the shape of the sheet film 11 may be a polygonal shape such as a square, rhombus, hexagon, or octagon, or a shape having a curve such as a circle or an ellipse, The shape may have a curved edge and a straight edge.
(環境調整工程)
 環境調整工程では、放置環境の湿度及び温度を、端面加工工程の後に端面加工フィルム11Aが使用される湿度及び温度(目標値)に近づけた環境に調整する。例えば、環境調整工程では、放置環境の湿度及び温度を、端面加工フィルム11Aを、光学フィルムF1X(図3参照)として液晶表示パネルP(図2参照)に貼り合わせるときの湿度及び温度と実質的に同一とする。例えば、放置環境の湿度及び温度は、目標値に対し±5%及び±5℃の範囲とすることが好ましく、目標値に対し±3%及び±3℃の範囲とすることがより好ましい。なお、本実施形態では、環境調整工程において枚葉フィルム11を湿潤(吸湿)させる例を説明する。ここで、本明細書において説明する「湿度」とは、相対湿度のことであり、室温における飽和水蒸気圧に対する実際の空気の水蒸気圧の比である。
(Environmental adjustment process)
In the environment adjustment process, the humidity and temperature of the leaving environment are adjusted to an environment close to the humidity and temperature (target value) at which the end face processed film 11A is used after the end face processing process. For example, in the environmental adjustment step, the humidity and temperature of the leaving environment are substantially the same as the humidity and temperature when the end face processed film 11A is bonded to the liquid crystal display panel P (see FIG. 2) as the optical film F1X (see FIG. 3). Are the same. For example, the humidity and temperature of the leaving environment are preferably in the range of ± 5% and ± 5 ° C. with respect to the target value, and more preferably in the range of ± 3% and ± 3 ° C. with respect to the target value. In the present embodiment, an example in which the single wafer film 11 is moistened (absorbed) in the environment adjustment process will be described. Here, “humidity” described in the present specification refers to relative humidity, which is the ratio of the actual water vapor pressure to the saturated water vapor pressure at room temperature.
 例えば、環境調整工程における放置環境は、複数の枚葉フィルム11を収容可能な収容室15の内部において設定される。なお、環境調整工程における放置環境は、枚葉フィルム取得工程における切断装置の使用環境と同じであってもよい。すなわち、環境調整工程における枚葉フィルム11の放置は、枚葉フィルム取得工程と同じ環境で行ってもよい。 For example, the neglected environment in the environment adjustment process is set inside the storage chamber 15 in which a plurality of single-wafer films 11 can be stored. In addition, the leaving environment in an environmental adjustment process may be the same as the usage environment of the cutting device in a sheet-fed film acquisition process. That is, the leaving of the sheet film 11 in the environment adjustment process may be performed in the same environment as the sheet film acquisition process.
 収容室15は、収容室15の内部の湿度及び温度が調整可能に構成されている。収容室15には、不図示の湿度調整装置及び温度調整装置が設けられている。例えば、収容室15としては、収容室15の内部を清浄に維持可能なクリーンルームを用いることができる。 The accommodation room 15 is configured such that the humidity and temperature inside the accommodation room 15 can be adjusted. The storage chamber 15 is provided with a humidity adjusting device and a temperature adjusting device (not shown). For example, as the storage room 15, a clean room that can keep the inside of the storage room 15 clean can be used.
 一般に、クリーンルームは、枚葉フィルム11が偏光フィルム等の光学フィルムである場合に用いられる。本発明の効果をより有効に発揮させる上でも、収容室15の環境は、クリーンルームの環境に近づける(一致させる)ことがより好ましい。通常、クリーンルームの環境は、湿度47%~57%、かつ温度18℃~28℃である。 Generally, the clean room is used when the single wafer film 11 is an optical film such as a polarizing film. In order to more effectively exhibit the effects of the present invention, it is more preferable that the environment of the accommodation room 15 is brought closer (matched) with the environment of the clean room. Usually, the clean room environment has a humidity of 47% to 57% and a temperature of 18 ° C to 28 ° C.
 次に、本実施形態に係る枚葉フィルム11の放置状態について説明する。図6は、本実施形態に係る枚葉フィルム11の放置状態の例を示す斜視図である。図7は、本実施形態に係る枚葉フィルム11の放置状態の他の例を示す斜視図である。 Next, the leaving state of the single wafer film 11 according to this embodiment will be described. FIG. 6 is a perspective view showing an example of the leaving state of the sheet film 11 according to the present embodiment. FIG. 7 is a perspective view showing another example of the leaving state of the sheet film 11 according to the present embodiment.
 図6及び図7に示すように、環境調整工程では、枚葉フィルム11の主面11aを鉛直方向V1に沿わせる。また、環境調整工程では、枚葉フィルム11の長辺の側に沿う端面11eを露出させて枚葉フィルム11を放置する。
 なお、本明細書において説明する「枚葉フィルム11の主面11a」とは、枚葉フィルム11における両面のうちの何れか一方の面である。
As shown in FIG.6 and FIG.7, in the environmental adjustment process, the main surface 11a of the sheet | seat film 11 is made to follow the vertical direction V1. In the environment adjustment step, the end face 11e along the long side of the sheet film 11 is exposed and the sheet film 11 is left unattended.
In addition, the “main surface 11 a of the sheet film 11” described in the present specification is any one of both surfaces of the sheet film 11.
 図6においては、枚葉フィルム11を一枚ずつ立て掛け可能なフィルム立て掛け台20を例示している。
 図6に示すように、フィルム立て掛け台20は、枚葉フィルム11の配列方向に長手方向を有する矩形板状の底板部21と、底板部21の一端部に接続されるとともに鉛直方向V1に沿う方向に起立し、かつ枚葉フィルム11の配列方向に長手方向を有する長方形板状の側壁部22と、底板部21の他端部(側壁部22とは反対側の端部)の下面に接続されるとともに枚葉フィルム11の配列方向に長手方向を有する角柱状の底支持部23と、底板部21及び側壁部22に接続されるとともに枚葉フィルム11よりも小さい矩形枠状をなし、かつ枚葉フィルム11の配列方向に間隔を開けて配置される仕切り枠24と、を備える。
In FIG. 6, the film stand 20 which can stand the sheet | seat film 11 piece by piece is illustrated.
As shown in FIG. 6, the film stand 20 is connected to a rectangular plate-like bottom plate portion 21 having a longitudinal direction in the arrangement direction of the sheet films 11 and one end portion of the bottom plate portion 21 and along the vertical direction V <b> 1. Connected to the bottom surface of the rectangular plate-like side wall portion 22 standing in the direction and having the longitudinal direction in the arrangement direction of the sheet films 11 and the other end portion of the bottom plate portion 21 (the end portion opposite to the side wall portion 22) A rectangular columnar bottom support portion 23 having a longitudinal direction in the arrangement direction of the sheet film 11, and a rectangular frame shape that is connected to the bottom plate portion 21 and the side wall portion 22 and smaller than the sheet film 11, and A partition frame 24 arranged at intervals in the arrangement direction of the sheet films 11.
 フィルム立て掛け台20において、隣り合う2つの仕切り枠24の間には、仕切り枠24に立て掛かるように1枚の枚葉フィルム11が配置されている。隣り合う2つの仕切り枠24の間の間隔は、枚葉フィルム11の厚みよりも十分に大きくなっている。仕切り枠24の開口部24hからは、枚葉フィルム11の主面11aが露出するように構成されている。
 また、フィルム立て掛け台20においては、枚葉フィルム11の底板部21とは反対側の長辺、及び、枚葉フィルム11の側壁部22とは反対側の短辺に沿う端面11eが露出するように構成されている。これにより、枚葉フィルム11を可及的に露出させることができるため、環境調整工程において枚葉フィルム11を十分に湿潤させることができる。
 なお、環境調整工程において枚葉フィルム11を十分に湿潤させる観点からは、枚葉フィルム11の2つの長辺の側に沿う端面11eを露出させて放置することがより好ましい。
In the film stand 20, a single sheet film 11 is disposed between two adjacent partition frames 24 so as to lean on the partition frame 24. The interval between two adjacent partition frames 24 is sufficiently larger than the thickness of the sheet film 11. The main surface 11 a of the sheet film 11 is exposed from the opening 24 h of the partition frame 24.
Moreover, in the film standing base 20, the end surface 11e along the long side on the opposite side to the baseplate part 21 of the sheet | seat film 11 and the short side on the opposite side to the side wall part 22 of the sheet | seat film 11 is exposed. It is configured. Thereby, since the sheet | seat film 11 can be exposed as much as possible, the sheet | seat film 11 can fully be wetted in an environmental adjustment process.
In addition, from the viewpoint of sufficiently wetting the sheet film 11 in the environmental adjustment step, it is more preferable to leave the end face 11e along the two long sides of the sheet film 11 exposed.
 フィルム立て掛け台20おいて、枚葉フィルム11の底支持部23の側の端部は、底支持部23よりも側方にはみ出ている。また、フィルム立て掛け台20は、底支持部23の側ほど上方に位置するように傾斜している。これにより、枚葉フィルム11をフィルム立て掛け台20に立て掛けたり、あるいはフィルム立て掛け台20から取り出したりする作業がし易くなるため、作業性を向上することができる。 In the film stand 20, the end portion of the single-wafer film 11 on the side of the bottom support portion 23 protrudes to the side of the bottom support portion 23. Further, the film stand 20 is inclined so as to be positioned higher toward the bottom support portion 23 side. Thereby, since the operation | work which leans the sheet | seat film 11 on the film stand 20 or takes out from the film stand 20 becomes easy, workability | operativity can be improved.
 図7においては、枚葉フィルム11を複数重ねた積層体12を支持可能なフィルム支持台30を例示している。
 図7に示すように、フィルム支持台30は、矩形板状の基台31と、基台31の上面に接続されるとともに、鉛直方向V1に沿う方向に起立し、かつ積層体12の厚み方向(枚葉フィルム11の配列方向)に間隔を開けて配置される角柱状の支持柱32とを備える。支持柱32は、積層体12を積層体12の厚み方向で挟むように一対で設けられている。一対の支持柱32は、積層体12の長手方向(枚葉フィルム11の長手方向)に間隔を開けて複数(例えば、本実施形態で参照する図7中においては2組)配置されている。
In FIG. 7, the film support stand 30 which can support the laminated body 12 which piled up the sheet | seat film 11 in multiple numbers is illustrated.
As shown in FIG. 7, the film support 30 is connected to the rectangular plate-shaped base 31 and the upper surface of the base 31, and stands in the direction along the vertical direction V <b> 1, and the thickness direction of the stacked body 12. And prismatic support pillars 32 arranged at intervals (in the arrangement direction of the sheet films 11). The support pillars 32 are provided as a pair so as to sandwich the laminate 12 in the thickness direction of the laminate 12. A plurality of (for example, two sets in FIG. 7 referred to in the present embodiment) a plurality of pairs of support pillars 32 are arranged in the longitudinal direction of the laminated body 12 (longitudinal direction of the sheet film 11).
 積層体12の主面の側(一対の支持柱32に近接する側)には、ダミーフィルム13が設けられている。ダミーフィルム13は、製品として使用されないフィルムである。本実施形態において、ダミーフィルム13としても枚葉フィルム11を用いる。例えば、100枚の枚葉フィルム11を重ねて積層体12とした場合、1枚目の枚葉フィルム11と100枚目の枚葉フィルム11とをダミーフィルム13とする。 A dummy film 13 is provided on the main surface side of the laminate 12 (side adjacent to the pair of support columns 32). The dummy film 13 is a film that is not used as a product. In the present embodiment, the sheet film 11 is also used as the dummy film 13. For example, when 100 sheet films 11 are stacked to form a laminated body 12, the first sheet film 11 and the 100th sheet film 11 are the dummy films 13.
 フィルム支持台30において、一対の支持柱32(積層体12の厚み方向に隣り合う2つの支持柱32)の間の間隔は、積層体12の姿勢を維持可能な程度に、積層体12の厚みよりも若干大きくなっている。積層体12において、隣り合う2つの枚葉フィルム11の間からは、枚葉フィルム11の主面11aが露出するようになっている。また、フィルム支持台30において、一対の支持柱32の間からは、積層体12における枚葉フィルム11の基台31とは反対側の長辺及び枚葉フィルム11の短辺に沿う端面11eが露出するようになっている。これにより、枚葉フィルム11を可及的に露出させて放置することができるため、環境調整工程において枚葉フィルム11を十分に湿潤させることができる。 In the film support base 30, the distance between the pair of support columns 32 (two support columns 32 adjacent to each other in the thickness direction of the stacked body 12) is such that the thickness of the stacked body 12 can be maintained. Is slightly larger than. In the laminated body 12, the main surface 11 a of the sheet film 11 is exposed from between two adjacent sheet films 11. Further, in the film support base 30, from between the pair of support pillars 32, there are end faces 11 e along the long side opposite to the base 31 of the sheet film 11 in the laminate 12 and the short side of the sheet film 11. It is supposed to be exposed. Thereby, since the sheet | seat film 11 can be exposed and left as much as possible, the sheet | seat film 11 can fully be wetted in an environmental adjustment process.
 フィルム支持台30において、一対の支持柱32の間の間隔は、十分な厚みの積層体13(十分な枚数の枚葉フィルム11)を配置可能に大きくなっている。これにより、十分な枚数の枚葉フィルム11をまとめてフィルム支持台30に支持させたり、フィルム支持台30から取り出したりすることができるため、作業性を向上させることが可能になる。 In the film support table 30, the distance between the pair of support columns 32 is large so that a sufficiently thick laminate 13 (a sufficient number of sheet films 11) can be disposed. As a result, a sufficient number of sheet films 11 can be collectively supported on the film support table 30 and taken out from the film support table 30, so that workability can be improved.
 なお、積層体12において、枚葉フィルム11の重ね枚数は、枚葉フィルム11の厚みなどを考慮して任意に設定することができる。例えば、枚葉フィルム11の重ね枚数は、後工程での取り扱いなどを考慮して、50枚以上かつ300枚以下とすることが好ましい。 In addition, in the laminated body 12, the number of stacked sheets 11 can be arbitrarily set in consideration of the thickness of the sheets 11 and the like. For example, the number of stacked sheets 11 is preferably 50 or more and 300 or less in consideration of handling in a later process.
 環境調整工程では、枚葉フィルム11を複数枚重ねた積層体12として放置することで、以下のような効果を奏する。まず、環境調整工程の後に、枚葉フィルム11の端面加工を効率よく行うことができる。また、端面加工フィルム11Aの寸法変化及びカール変化を効果的に抑制することができる。 In the environmental adjustment process, the following effects are achieved by leaving the laminated film 11 as a laminated body 12 in which a plurality of sheet films 11 are stacked. First, the end face processing of the single wafer film 11 can be efficiently performed after the environmental adjustment process. Moreover, the dimensional change and curl change of the end face processed film 11A can be effectively suppressed.
 次に、環境調整工程において、放置環境に枚葉フィルム11を放置する時間について説明する。
 環境調整工程では、放置環境に枚葉フィルム11を放置する時間(以下「放置時間」という。)を、枚葉フィルム11の単位時間当たりの寸法変化が収束に近づく時間以上とする。ここで、本実施形態で説明する「枚葉フィルムの単位時間当たりの寸法変化が収束に近づく時間」とは、具体的には、以下のような時間である。
 例えば、環境調整工程では、放置時間を、枚葉フィルム11の単位時間当たりの寸法変化率が0.003%/時以下となる時間以上とすることができる。なお、環境調整工程では、放置時間を、枚葉フィルム11の単位時間当たりの寸法変化率が0.002%/時以下となる時間以上とすることがより好ましい。また、環境調整工程では、放置時間を、枚葉フィルム11の長辺および短辺の全ての辺の単位時間当たりの寸法変化率が上記の値以下となる時間以上とすることがさらに好ましい。
 また、環境調整工程では、放置時間を6時間以上とすることがより好ましい。
 なお、上記の寸法変化率は、枚葉フィルム11の単位時間当たりの寸法変化量から求められる。なお、単位時間当たりの寸法変化率(%/時)は、以下の式(I)により算出する。
 W=(X/Y)×100(%)÷Z(時) ・・・(I)
 ここで、上記式(I)中において、「W」は寸法変化率(%/時)、「X」はフィルムの長辺または短辺の長さをZ時間を置いて2回測定した際の、1回目の長さと2回目の長さの差である寸法変化量(mm)、「Y」は寸法変化前の長辺または短辺の長さ(mm)、1回目と2回目の測定の間の時間「Z」(時)とする。フィルムの長さをZ時間を置いて2回測定するとは、例えばフィルムを前記放置する前に1回目、放置した後に2回目に測定することができる。
Next, the time for leaving the sheet film 11 in the leaving environment in the environment adjusting step will be described.
In the environment adjustment step, the time for which the sheet film 11 is left in the leaving environment (hereinafter referred to as “leaving time”) is set to be longer than the time when the dimensional change per unit time of the sheet film 11 approaches convergence. Here, the “time when the dimensional change per unit time of the sheet film approaches convergence” described in the present embodiment is specifically the following time.
For example, in the environment adjustment process, the standing time can be set to be equal to or longer than the time when the dimensional change rate per unit time of the sheet film 11 is 0.003% / hour or less. In the environmental adjustment process, it is more preferable that the standing time is set to a time when the rate of dimensional change per unit time of the sheet film 11 is 0.002% / hour or less. In the environment adjustment step, it is more preferable that the standing time is set to a time when the dimensional change rate per unit time of all of the long and short sides of the sheet film 11 is not more than the above value.
In the environment adjustment step, the leaving time is more preferably 6 hours or more.
In addition, said dimensional change rate is calculated | required from the dimensional change amount per unit time of the sheet | seat film 11. FIG. The dimensional change rate per unit time (% / hour) is calculated by the following formula (I).
W = (X / Y) × 100 (%) ÷ Z (hours) (I)
Here, in the above formula (I), “W” is the dimensional change rate (% / hour), and “X” is the time when the length of the long side or the short side of the film is measured twice over Z time. Dimensional change amount (mm), which is the difference between the first length and the second length, “Y” is the length of the long side or short side (mm) before the dimensional change. The time between them is “Z” (hours). The measurement of the length of the film twice with a Z time can be measured, for example, the first time before leaving the film and the second time after leaving the film.
(端面加工工程)
 図4に示すように、端面加工工程では、不図示の研磨装置を用いて、枚葉フィルム11の4辺に沿う端面11e(図6及び図7参照)を研磨して端面加工フィルム11Aを得る。例えば、研磨装置としては、メガロテクニカ株式会社製の中小型研磨機(型式PLBP300)を用いることができる。また、研磨量は、例えば、各辺において、0.3~2mm程度である。
(End face processing process)
As shown in FIG. 4, in the end face processing step, the end face processing film 11 </ b> A is obtained by polishing the end face 11 e (see FIGS. 6 and 7) along the four sides of the single wafer film 11 using a polishing apparatus (not shown). . For example, as a polishing apparatus, a medium and small size polishing machine (model PLBP300) manufactured by Megaro Technica Co., Ltd. can be used. The polishing amount is, for example, about 0.3 to 2 mm on each side.
 以上説明したように、本実施形態に係るフィルム製造方法は、長尺帯状の光学フィルムF10Xから枚葉状の枚葉フィルム11を取得する枚葉フィルム取得工程と、枚葉フィルム取得工程の後に、枚葉フィルム11の端面11eを研磨して端面加工フィルム11Aを得る端面加工工程と、を含むフィルム製造方法であって、枚葉フィルム取得工程と端面加工工程との間に、枚葉フィルム11を放置する放置環境を、少なくとも湿度を調整した雰囲気下とする環境調整工程を更に含むものである。 As described above, the film manufacturing method according to the present embodiment is performed after the sheet-fed film acquisition step of acquiring the sheet-fed sheet film 11 from the long strip-shaped optical film F10X and the sheet-fed film acquisition step. An end face processing step of polishing an end face 11e of the leaf film 11 to obtain an end face processing film 11A, wherein the single wafer film 11 is left between the single wafer film acquisition step and the end face processing step. It further includes an environment adjustment step in which the leaving environment is set to an atmosphere at least adjusted in humidity.
 本実施形態によれば、枚葉フィルム取得工程と端面加工工程との間において、枚葉フィルム11を放置する放置環境を少なくとも湿度を調整した雰囲気下とする環境調整工程を更に含むことで、以下のような効果を奏する。すなわち、環境調整工程を経ずに端面加工工程に至る場合と比較して、端面加工工程の前の環境調整工程において、予め枚葉フィルム11を湿潤によって伸張させることができるため、端面加工フィルム11Aの使用時に、この端面加工フィルム11Aが湿潤によって過度に伸張することを抑制することができる。これにより、端面加工フィルム11Aを液晶表示パネルPの表示領域P4に合わせたサイズに切り出した場合であって、その後、液晶表示パネルPに貼り合わせる際に、端面加工フィルム11Aのサイズが過度に変化することを抑制することができる。したがって、フィルム(端面加工フィルム11A)の寸法精度を向上させることができる。 According to the present embodiment, between the sheet film acquisition process and the end face processing process, by further including an environment adjustment process in which the leaving environment in which the sheet film 11 is left is in an atmosphere with at least humidity adjusted, There are effects like this. That is, compared with the case where the end face processing step is reached without going through the environment adjustment step, the end face processing film 11A can be obtained because the sheet film 11 can be stretched in advance in the environment adjustment step before the end face processing step. It is possible to prevent the end-face processed film 11A from being excessively stretched by wetting during use. Thus, the end face processed film 11A is cut out to a size that matches the display area P4 of the liquid crystal display panel P, and the size of the end face processed film 11A changes excessively when the end face processed film 11A is subsequently attached to the liquid crystal display panel P. Can be suppressed. Therefore, the dimensional accuracy of the film (end face processed film 11A) can be improved.
 また、環境調整工程では、放置環境の湿度及び温度を、端面加工工程の後に端面加工フィルム11Aが使用される湿度及び温度に近づけることで、以下のような効果を奏する。すなわち、環境調整工程において、端面加工フィルム11Aの使用環境に合わせて、予め枚葉フィルム11を湿潤によって伸張させることができるため、端面加工フィルム11Aの使用時において、端面加工フィルム11Aが湿潤によって過度に伸張することを効果的に抑制することができる。したがって、フィルムの寸法精度をより一層向上させることができる。 Also, in the environment adjustment process, the humidity and temperature of the leaving environment are brought close to the humidity and temperature at which the end face processed film 11A is used after the end face processing step, thereby providing the following effects. That is, in the environment adjustment process, the sheet film 11 can be stretched in advance in accordance with the usage environment of the end face processed film 11A. Therefore, when the end face processed film 11A is used, the end face processed film 11A is excessively wet. Can be effectively suppressed. Therefore, the dimensional accuracy of the film can be further improved.
 また、環境調整工程では、放置時間を、上記のように、枚葉フィルム11の単位時間当たりの寸法変化が収束に近づく時間以上とすることで、以下の効果を奏する。即ち、環境調整工程において、予め枚葉フィルム11を湿潤によって十分に伸張させきることができるため、端面加工フィルム11Aの使用時に、この端面加工フィルム11Aが湿潤によって過度に伸張することを効果的に抑制することができる。したがって、フィルムの寸法精度をより一層向上させることができる。 Also, in the environmental adjustment process, as described above, the following effects are achieved by setting the standing time to be equal to or longer than the time when the dimensional change per unit time of the sheet film 11 approaches convergence. That is, in the environmental adjustment step, the sheet film 11 can be sufficiently stretched by wetness in advance, so that when the end face processed film 11A is used, the end face processed film 11A is effectively stretched by wetness. Can be suppressed. Therefore, the dimensional accuracy of the film can be further improved.
 また、環境調整工程では、放置時間を、枚葉フィルム11の単位時間当たりの寸法変化率が0.003%/時以下となる時間以上とすることで、以下の効果を奏する。即ち、環境調整工程において、予め枚葉フィルム11を、これ以上寸法変化しない程度まで伸張させることができるため、端面加工フィルム11Aの使用時に、この端面加工フィルム11Aが湿潤によって過度に伸張することを効果的に抑制することができる。したがって、フィルムの寸法精度をより一層向上させることができる。 Also, in the environmental adjustment process, the following effects are achieved by setting the standing time to a time when the dimensional change rate per unit time of the sheet film 11 is 0.003% / hour or more. That is, in the environment adjustment step, the sheet film 11 can be stretched in advance to such an extent that the dimensional change does not occur any more. Therefore, when the end face processed film 11A is used, the end face processed film 11A is excessively stretched due to moisture. It can be effectively suppressed. Therefore, the dimensional accuracy of the film can be further improved.
 また、環境調整工程では、放置時間を6時間以上とすることで、以下のような効果を奏する。即ち、環境調整工程において、枚葉フィルム11の寸法変化に最大限寄与し得る時間で、枚葉フィルム11を、予め湿潤によって十分に伸張させきることができるため、端面加工フィルム11Aの使用時に、この端面加工フィルム11Aが湿潤によって過度に伸張することを時間管理で効果的に抑制することができる。したがって、フィルムの寸法精度がより一層向上するとともに、時間管理による作業性を向上させることができる。 Also, in the environmental adjustment process, the following effects can be obtained by setting the standing time to 6 hours or more. That is, in the environment adjustment step, the sheet film 11 can be sufficiently stretched by wet in advance in a time that can contribute to the dimensional change of the sheet film 11 to the maximum, so that when the end face processed film 11A is used, It is possible to effectively suppress the end face processed film 11 </ b> A from being excessively stretched by wetting by time management. Therefore, the dimensional accuracy of the film can be further improved, and workability by time management can be improved.
 また、環境調整工程では、枚葉フィルム11の主面11aを鉛直方向V1に沿わせることで、以下のような効果を奏する。即ち、枚葉フィルム11の主面11aを水平方向に沿わせる場合(例えば、枚葉フィルム11をそのまま平坦な載置台に置く場合)と比較して、枚葉フィルム11に自重がかからないようにしつつ、枚葉フィルム11を可及的に露出させることができる。これにより、環境調整工程において、予め枚葉フィルム11を湿潤によって十分に伸張させることができるため、端面加工フィルム11Aの使用時に、この端面加工フィルム11Aが湿潤によって過度に伸張することを効果的に抑制することができる。したがって、フィルムの寸法精度をより一層向上させることができる。 Also, in the environment adjustment process, the following effects are achieved by causing the main surface 11a of the sheet film 11 to be along the vertical direction V1. That is, as compared with the case where the main surface 11a of the sheet film 11 is set along the horizontal direction (for example, when the sheet film 11 is placed on a flat mounting table as it is), the sheet film 11 is not subjected to its own weight. The single wafer film 11 can be exposed as much as possible. Thereby, in the environmental adjustment process, since the single wafer film 11 can be sufficiently stretched by wetting in advance, when the end face processing film 11A is used, it is effectively prevented that the end face processing film 11A is excessively stretched by wetting. Can be suppressed. Therefore, the dimensional accuracy of the film can be further improved.
 また、環境調整工程では、枚葉フィルム11の長辺の側に沿う端面11eを露出させることで、以下のような効果を奏する。即ち、環境調整工程において、枚葉フィルム11の短辺の側に沿う端面11eを露出させる場合と比較して、枚葉フィルム11を長い端面11eで可及的に露出させることができる。これにより、環境調整工程において、予め枚葉フィルム11を湿潤によって十分に伸張させることができるため、端面加工フィルム11Aの使用時に、この端面加工フィルム11Aが湿潤によって過度に伸張することを効果的に抑制することができる。したがって、フィルムの寸法精度をより一層向上させることができる。 Moreover, in the environment adjustment process, the following effects are produced by exposing the end face 11e along the long side of the sheet film 11. That is, in the environment adjustment step, the sheet film 11 can be exposed as much as possible with the long end surface 11e as compared with the case where the end surface 11e along the short side of the sheet film 11 is exposed. Thereby, in the environmental adjustment process, since the single wafer film 11 can be sufficiently stretched by wetting in advance, when the end face processing film 11A is used, it is effectively prevented that the end face processing film 11A is excessively stretched by wetting. Can be suppressed. Therefore, the dimensional accuracy of the film can be further improved.
 また、環境調整工程では、枚葉フィルム11を複数枚重ねた積層体12とすることで、以下のような効果を奏する。即ち、環境調整工程において、枚葉フィルム11を積層体12単位で放置することができるため、枚葉フィルム11を1枚ずつ放置する場合と比較して、作業性が向上するとともに、作業時間を短縮することができる。 Moreover, in the environment adjustment process, the following effects can be obtained by forming a laminated body 12 in which a plurality of sheet films 11 are stacked. That is, in the environmental adjustment process, the sheet film 11 can be left in units of the laminated body 12, so that the workability is improved and the work time is reduced as compared with the case where the sheet film 11 is left alone. It can be shortened.
 また、環境調整工程では、積層体12の主面の側にダミーフィルム13を設けることで、以下のような効果を奏する。即ち、環境調整工程において、積層体12の厚み方向でダミーフィルム13よりも内側の複数の枚葉フィルム11を保護することができるため、枚葉フィルム11を湿潤によって伸張させる際に外乱などが影響することを可及的に小さく抑えることができる。したがって、フィルムの寸法精度をより一層向上させることができる。 Moreover, in the environment adjustment process, the following effects are achieved by providing the dummy film 13 on the main surface side of the laminate 12. That is, in the environmental adjustment process, a plurality of sheet films 11 inside the dummy film 13 can be protected in the thickness direction of the laminated body 12, and therefore, disturbance or the like affects when the sheet film 11 is stretched by wetting. Can be kept as small as possible. Therefore, the dimensional accuracy of the film can be further improved.
 また、端面加工工程では、枚葉フィルム11の端面11eを研磨することで、以下のような効果を奏する。即ち、端面加工工程において、枚葉フィルム11の端面11eを切断する場合と比較して、枚葉フィルム11の端面11eをより一層滑らかに加工することができるため、端面加工フィルム11Aのサイズを製品サイズに適合させ易くなる。 Also, in the end face processing step, the end face 11e of the sheet film 11 is polished, and the following effects are obtained. That is, in the end face processing step, since the end face 11e of the single wafer film 11 can be processed more smoothly than in the case of cutting the end face 11e of the single wafer film 11, the size of the end face processed film 11A is the product. It becomes easy to adapt to size.
 以下、本発明に係るフィルム製造方法の実施形態の変形例について説明する。以下の変形例において、上記実施形態と共通する構成要素については、同じ符号を付し、その詳細な説明は省略する。 Hereinafter, modifications of the embodiment of the film manufacturing method according to the present invention will be described. In the following modifications, the same reference numerals are given to components common to the above embodiment, and detailed description thereof is omitted.
(枚葉フィルムの放置状態の変形例)
 図8は、環境調整工程における枚葉フィルム11の放置状態の変形例を示す斜視図である。
 上記実施形態では、積層体12が、基台31と支持柱32とを備えたフィルム支持台30で支持されている例(図7参照)を挙げた。これに対し、本変形例では、図8に示すように、積層体12が、断面L字状のフィルム載置台40に載置されている。
(Modification of the state of leaving a sheet film)
FIG. 8 is a perspective view showing a modified example of the leaving state of the sheet film 11 in the environment adjustment process.
In the said embodiment, the example (refer FIG. 7) by which the laminated body 12 was supported by the film support stand 30 provided with the base 31 and the support pillar 32 was given. On the other hand, in this modification, as shown in FIG. 8, the laminated body 12 is mounted on the film mounting table 40 having an L-shaped cross section.
 図8に示すように、フィルム載置台40は、矩形板状の第一支持板41と、第一支持板41の一端部に接続されるとともに鉛直方向V1に沿う方向に起立し、かつ積層体12の厚み方向に長手方向を有する長方形板状の第二支持板42とを備える。 As shown in FIG. 8, the film mounting table 40 is connected to one end of the rectangular plate-shaped first support plate 41 and the first support plate 41, and stands up in the direction along the vertical direction V <b> 1. And a second support plate 42 having a rectangular plate shape having a longitudinal direction in the thickness direction.
 フィルム載置台40において、第一支持板41及び第二支持板42の積層体12の厚み方向に沿った長さは、積層体12の厚みよりも十分に長く構成されている。積層体12は、一方の短辺を第二支持板42に沿わせるように、第二支持板42に寄りかかるように支持されている。第二支持板42の厚みは、積層体12の姿勢を維持可能な程度に、十分に大きく構成されている。フィルム載置台40においては、積層体12における枚葉フィルム11の第一支持板41とは反対側の長辺、及び枚葉フィルム11の第二支持板42とは反対側の短辺に沿う端面11eが露出するように構成されている。これにより、枚葉フィルム11を可及的に露出させることができるため、環境調整工程において枚葉フィルム11を十分に湿潤させることができる。 In the film mounting table 40, the length of the first support plate 41 and the second support plate 42 along the thickness direction of the laminate 12 is sufficiently longer than the thickness of the laminate 12. The laminated body 12 is supported so as to lean against the second support plate 42 so that one short side thereof is along the second support plate 42. The thickness of the second support plate 42 is sufficiently large so that the posture of the stacked body 12 can be maintained. In the film mounting table 40, an end surface along the long side of the laminate 12 opposite to the first support plate 41 of the sheet film 11 and the short side of the sheet film 11 opposite to the second support plate 42. 11e is exposed. Thereby, since the sheet | seat film 11 can be exposed as much as possible, the sheet | seat film 11 can fully be wetted in an environmental adjustment process.
 図9は、環境調整工程における枚葉フィルム11の放置状態の他の変形例を示す斜視図である。
 上記変形例では、積層体12が、一方の短辺を第二支持板42に沿わせるように第二支持板42に寄りかかって支持されている例(図8参照)を挙げた。これに対し、本変形例では、図9に示すように、積層体12は、一方の長辺の一部(積層体12の下部)を第二支持板42に沿わせるように、第二支持板42に寄りかかって支持されている。言い換えると、積層体12は、長手方向を鉛直方法V1に沿わせるように起立している。
FIG. 9 is a perspective view showing another modified example of the leaving state of the sheet film 11 in the environment adjustment process.
In the above modification, an example (see FIG. 8) in which the laminate 12 is supported by leaning against the second support plate 42 so that one short side thereof is along the second support plate 42 has been described. On the other hand, in this modified example, as shown in FIG. 9, the laminated body 12 has the second support so that a part of one long side (lower part of the laminated body 12) is along the second support plate 42. It leans against the plate 42 and is supported. In other words, the stacked body 12 stands up so that the longitudinal direction thereof follows the vertical method V1.
 本変形例によれば、積層体12が、一方の長辺の一部を第二支持板42に沿わせるように第二支持板42に寄りかかって支持されていることで、以下のような効果を奏する。即ち、積層体12が、一方の短辺を第二支持板42に沿わせるように第二支持板42に寄りかかって支持されている場合と比較して、枚葉フィルム11を長い端面11eで可及的に露出させることができる。これにより、環境調整工程において、予め枚葉フィルム11を湿潤によって十分に伸張させることができるため、端面加工フィルム11Aの使用時において、端面加工フィルム11Aが湿潤によって過度に伸張することを効果的に抑制することができる。したがって、フィルムの寸法精度をより一層向上させることができる。 According to the present modification, the laminated body 12 is supported by leaning against the second support plate 42 so that a part of one long side thereof is along the second support plate 42, as described below. There is an effect. That is, as compared with the case where the laminate 12 is supported by leaning against the second support plate 42 so that one short side thereof is along the second support plate 42, the sheet film 11 is formed with the long end surface 11e. It can be exposed as much as possible. Thereby, in the environmental adjustment process, since the single wafer film 11 can be sufficiently stretched by wet in advance, when the end face processed film 11A is used, it is effectively prevented that the end face processed film 11A is excessively stretched by wet. Can be suppressed. Therefore, the dimensional accuracy of the film can be further improved.
 なお、本発明は、上記実施形態のものに必ずしも限定されるものではなく、本発明の趣旨を逸脱しない範囲において種々の変更を加えることが可能である。 Note that the present invention is not necessarily limited to the above embodiment, and various modifications can be made without departing from the spirit of the present invention.
 例えば、枚葉フィルム11の形状が長方形状以外である場合(例えば、菱形、六角形、八角形、円形、又は楕円形等)には、環境調整工程において、枚葉フィルム11の端面を可及的に露出させることが好ましい。具体的には、枚葉フィルム11の各端辺のうち、最も長い端辺を露出させることが好ましい。これにより、環境調整工程において枚葉フィルム11を湿潤によって十分に伸張させることができる。 For example, when the shape of the sheet film 11 is other than a rectangular shape (for example, rhombus, hexagon, octagon, circle, or ellipse), the end face of the sheet film 11 is made possible in the environmental adjustment process. It is preferable to expose it. Specifically, it is preferable to expose the longest edge among the edges of the sheet film 11. Thereby, the sheet | seat film 11 can fully be extended by moistening in an environmental adjustment process.
 また、本発明においては、枚葉フィルム11の形状が対称性を有する形状(例えば、正方形、菱形、正六角形、正八角形、又は円形等)である場合には、以下のような効果を奏する。即ち、枚葉フィルム11の寸法変化を端面から中心部にかけて均一に抑制することができるため、寸法変化による応力を緩和することができる。したがって、枚葉フィルム11のカール変化及び端部のひび割れの発生を抑制することができる。 In the present invention, when the sheet film 11 has a symmetrical shape (for example, a square, a rhombus, a regular hexagon, a regular octagon, or a circle), the following effects can be obtained. That is, since the dimensional change of the sheet film 11 can be uniformly suppressed from the end surface to the center portion, the stress due to the dimensional change can be relaxed. Therefore, the curl change of the sheet | seat film 11 and generation | occurrence | production of the crack of an edge part can be suppressed.
 本実施形態のフィルム製造方法によって得られた端面加工フィルム11Aは、環境調整工程において枚葉フィルム11を予め十分に寸法変化させた上で端面加工が行われている。そのため、端面加工フィルム11Aを環境調整工程と同じ環境(例えば同じ湿度かつ同じ温度)で放置しても、寸法変化はほとんど生じない。このような作用は、樹脂フィルムとして光学フィルム(特に偏光フィルム)を用いた場合において特に顕著である。 The end face processed film 11A obtained by the film manufacturing method of the present embodiment is subjected to end face processing after sufficiently changing the dimensions of the single-wafer film 11 in an environmental adjustment step. Therefore, even if the end face processed film 11A is left in the same environment (for example, the same humidity and the same temperature) as the environment adjustment step, the dimensional change hardly occurs. Such an effect is particularly remarkable when an optical film (particularly a polarizing film) is used as the resin film.
 また、光学フィルムを表示装置に貼り合わせる際は、最も長い端辺の寸法変化を小さく抑えることが重要となる。例えば、湿度47%~57%、かつ温度18℃~28℃の環境下で、24時間保持した際、最も長い端辺の寸法変化率は、好ましくは0.0002%/時未満であり、より好ましくは0.0001%/時以下である。通常、樹脂フィルムの寸法変化率は、0.00001%/時以上である。 Also, when the optical film is bonded to the display device, it is important to keep the longest edge side dimension change small. For example, when kept for 24 hours in an environment of humidity 47% to 57% and temperature 18 ° C. to 28 ° C., the dimensional change rate of the longest edge is preferably less than 0.0002% / hour, Preferably it is 0.0001% / hour or less. Usually, the dimensional change rate of the resin film is 0.00001% / hour or more.
 光学フィルムが長方形状を有する場合には、湿度52%、かつ温度23℃の環境下で、24時間保持した際、二つの長辺の寸法変化率が、何れも0.0002%/時未満であることが好ましい。これにより、寸法精度がより向上したフィルムを提供することができる。 When the optical film has a rectangular shape, the dimensional change rate of the two long sides is less than 0.0002% / hour when held for 24 hours in an environment of humidity 52% and temperature 23 ° C. Preferably there is. Thereby, a film with improved dimensional accuracy can be provided.
 なお、上記実施形態では、環境調整工程において枚葉フィルム11を湿潤させる例を挙げて説明したが、これには限らない。例えば、環境調整工程において、枚葉フィルム11を乾燥させてもよい。 In the above-described embodiment, the example in which the sheet film 11 is moistened in the environment adjustment process has been described. However, the present invention is not limited to this. For example, the sheet film 11 may be dried in the environment adjustment step.
 また、上記実施形態では、端面加工工程において枚葉フィルムの端面を研磨する例を挙げて説明したが、これに限らない。例えば、端面研磨工程において、枚葉フィルムの端面をレーザーカット等の切断することで加工してもよい。これにより、枚葉フィルムを複数重ねた積層体とした場合であっても、端面研磨工程において、積層体の端面をレーザーカットでまとめて切断することができるため、作業性を向上させることができる。 In the above embodiment, the example in which the end face of the sheet film is polished in the end face processing step has been described. However, the present invention is not limited to this. For example, in the end face polishing step, the end face of the single wafer film may be processed by cutting such as laser cutting. Thereby, even when it is a case where it is set as the laminated body which laminated | stacked the sheet | seat film in multiple, in the end surface grinding | polishing process, since the end surface of a laminated body can be cut | disconnected collectively with a laser cut, workability | operativity can be improved. .
 また、上記実施形態では、樹脂フィルムとして光学フィルムを用いた例を挙げて説明したが、これに限らない。使用するフィルムは、少なくとも湿度による伸張、収縮などの寸法変化が生じ得るものであれば本発明による効果が十分に得られる。 In the above embodiment, the example in which an optical film is used as the resin film has been described. However, the present invention is not limited to this. The effect of the present invention can be sufficiently obtained as long as the film to be used is capable of causing dimensional changes such as expansion and contraction due to humidity.
 以上、添付図面を参照しながら本発明に係る好適な実施の形態例について説明したが、本発明は係る例に限定されないことは言うまでもない。上述した例において示した各構成部材の諸形状や組み合わせ等は一例であって、本発明の主旨から逸脱しない範囲において、設計要求等に基づき種々変更可能である。 As described above, the preferred embodiments according to the present invention have been described with reference to the accompanying drawings, but the present invention is not limited to such examples. Various shapes, combinations, and the like of the constituent members shown in the above-described examples are examples, and various modifications can be made based on design requirements and the like without departing from the gist of the present invention.
 以下、実施例により本発明をより具体的に説明するが、本発明は以下の実施例に限定されるものではない。 Hereinafter, the present invention will be described more specifically by way of examples. However, the present invention is not limited to the following examples.
(実施例1)
 本発明者は、長方形状のフィルムを用いて放置環境を調整することによって、フィルムの短辺よりも長辺を露出させたほうが、フィルムをより長く伸ばすことができることを以下の評価により確認した。
Example 1
The present inventor confirmed that the film can be stretched longer by exposing the long side rather than the short side of the film by adjusting the leaving environment using a rectangular film.
 評価対象としてのフィルムは、長方形状の光学フィルム(図4に示すような長尺帯状の光学フィルムF10Xから切り出した枚葉フィルム11)を用いた。フィルムの長辺の長さは、110mmとした。フィルムの短辺の長さは、60mmとした。フィルムの厚みは、200μmとした。 As a film to be evaluated, a rectangular optical film (a sheet film 11 cut out from a long belt-shaped optical film F10X as shown in FIG. 4) was used. The length of the long side of the film was 110 mm. The short side length of the film was 60 mm. The thickness of the film was 200 μm.
 図10は、実施例におけるフィルムの長辺の寸法変化量を説明するための図である。図11は、実施例におけるフィルムの短辺の寸法変化量を説明するための図である。図10及び図11の各グラフにおいて、横軸は時間[hour]、縦軸は寸法変化量[μm]を示す。 FIG. 10 is a diagram for explaining the dimensional change amount of the long side of the film in the example. FIG. 11 is a diagram for explaining the dimensional change amount of the short side of the film in the example. In each graph of FIG.10 and FIG.11, a horizontal axis shows time [hour] and a vertical axis | shaft shows dimensional change [micrometer].
 本実施例における放置環境の温度は23℃とした。
 放置環境の湿度は、45%、55%、65%の3つの条件とした。図10及び図11のグラフ中において、◇印は湿度45%、□印は湿度55%、△印は湿度65%を示す。
 フィルムの水分率(初期水分率)は、0.284%、0.476%、0.594%の3つの条件とした。図10及び図11において、実線は水分率0.284%のグラフ、一点鎖線は水分率0.476%のグラフ、破線は水分率0.594%のグラフを示す。フィルムの水分率は、乾燥重量法で測定した。乾燥重量法による測定に使用したサンプルは、一辺の長さが100mmの正方形とした。この際の乾燥条件は、温度105℃、乾燥時間2hourとした。ここで、水分率を「α」、乾燥前のサンプル重量を「M1」、乾燥後のサンプル重量を「M2」とすると、以下の式(1)の関係が成り立つ。
 α=(M1-M2)/M1 ・・・(1)
The temperature of the leaving environment in this example was 23 ° C.
The humidity of the leaving environment was set to three conditions of 45%, 55%, and 65%. In the graphs of FIG. 10 and FIG. 11, ◇ indicates humidity 45%, □ indicates humidity 55%, and Δ indicates humidity 65%.
The moisture content (initial moisture content) of the film was set to three conditions of 0.284%, 0.476%, and 0.594%. 10 and 11, the solid line is a graph with a moisture content of 0.284%, the alternate long and short dash line is the graph with a moisture content of 0.476%, and the broken line is a graph with a moisture content of 0.594%. The moisture content of the film was measured by a dry weight method. The sample used for the measurement by the dry weight method was a square having a side length of 100 mm. The drying conditions at this time were a temperature of 105 ° C. and a drying time of 2 hours. Here, when the moisture content is “α”, the sample weight before drying is “M1”, and the sample weight after drying is “M2”, the relationship of the following equation (1) is established.
α = (M1−M2) / M1 (1)
 図10及び図11のグラフに示すように、長辺の寸法変化量は、各水分率、各湿度の条件の何れにおいても、短辺の寸法変化量よりも大きくなる結果を得た。また、長辺の寸法変化量は、各水分率、各湿度の条件の何れにおいても、短辺の寸法変化量に対して2倍程度となる結果を得た。
以上により、長方形状のフィルムを用いて放置環境を調整することによって、フィルムの短辺よりも長辺を露出させたほうが、フィルムをより長く伸張させることができることが確認できた。
As shown in the graphs of FIGS. 10 and 11, the dimensional change amount of the long side is larger than the dimensional change amount of the short side under any of the moisture ratio and humidity conditions. In addition, the dimensional change amount on the long side was about twice as large as the dimensional change amount on the short side in each moisture ratio and each humidity condition.
From the above, it was confirmed that the film can be stretched longer by exposing the long side rather than the short side of the film by adjusting the leaving environment using a rectangular film.
(実施例2)
 本発明者は、長方形状のフィルムを用いて放置環境を調整することによって、「フィルムを露出させないよりも露出させたほうが、フィルムをより長く伸張させることができること」、及び、「各辺の寸法変化は、時間が6hour経過した後は収束に近づいていくこと」について、以下の評価により確認した。
(Example 2)
By adjusting the leaving environment using a rectangular film, the present inventor made it possible to “extend the film longer than when the film is not exposed” and “the dimensions of each side”. The change was confirmed by the following evaluation about “coming closer to convergence after 6 hours”.
 評価対象としてのフィルムは、長方形状の光学フィルム(図4に示すような長尺帯状の光学フィルムF10Xから切り出した枚葉フィルム11)を用いた。フィルムの長辺の長さは、110mmとした。フィルムの短辺の長さは、60mmとした。フィルムの厚みは、200μmとした。
 フィルムの放置状態は、一枚ずつ立て掛けた状態(図6に示すようなフィルム立て掛け台20に立て掛けた状態)、積層体とした状態(図7に示すようなフィルム支持台30に支持させた状態)の2つの状態とした。フィルムを積層体とした状態では、積層体のうち、この積層体の厚み方向で中央部及び端部の2つの位置にあるフィルムを用いた。なお、積層体の厚み方向における中央部は、図7に示すT1の部分(例えば、100枚のフィルムを重ねて積層体とした場合には50枚目)に相当する。積層体の厚み方向における端部は、図7に示すT2の部分(例えば、100枚のフィルムを重ねて積層体とした場合には25枚目)に相当する。
As the film to be evaluated, a rectangular optical film (a single-wafer film 11 cut out from an elongated optical film F10X as shown in FIG. 4) was used. The length of the long side of the film was 110 mm. The short side length of the film was 60 mm. The thickness of the film was 200 μm.
The film is left standing one by one (state leaning on a film leaning base 20 as shown in FIG. 6), or in a laminated state (state supported on a film support 30 as shown in FIG. 7). ). In the state which used the film as the laminated body, the film which exists in two positions of a center part and an edge part in the thickness direction of this laminated body was used among the laminated bodies. In addition, the center part in the thickness direction of the laminated body corresponds to a portion T1 shown in FIG. 7 (for example, the 50th sheet when 100 films are stacked to form a laminated body). The end portion in the thickness direction of the laminated body corresponds to a portion T2 shown in FIG. 7 (for example, the 25th sheet when 100 films are stacked to form a laminated body).
 図12は、本実施例におけるフィルムの放置状態を説明するための図である。図12中において、符号J1は第一壁W1で覆われている第一長辺、符号J2は第一長辺W1の反対側において外部に露出している第二長辺、符号K1は第二壁W2で覆われている第一短辺、符号K2は第一短辺K1の反対側において外部に露出している第二短辺を示す。 FIG. 12 is a diagram for explaining the state of leaving the film in this example. In FIG. 12, the symbol J1 is the first long side covered with the first wall W1, the symbol J2 is the second long side exposed to the outside on the opposite side of the first long side W1, and the symbol K1 is the second long side. The first short side covered with the wall W2 and the symbol K2 indicate the second short side exposed to the outside on the opposite side of the first short side K1.
 図13は、本実施例におけるフィルムの第一長辺の寸法変化量を説明するための図である。図14は、本実施例におけるフィルムの第二長辺の寸法変化量を説明するための図である。図15は、本実施例におけるフィルムの第一短辺の寸法変化量を説明するための図である。図16は、本実施例におけるフィルムの第二短辺の寸法変化量を説明するための図である。図13~図16の各グラフにおいて、横軸は時間[hour]、縦軸は寸法変化量[μm]を示す。 FIG. 13 is a diagram for explaining the dimensional change amount of the first long side of the film in this example. FIG. 14 is a diagram for explaining the dimensional change amount of the second long side of the film in this example. FIG. 15 is a diagram for explaining the dimensional change amount of the first short side of the film in this example. FIG. 16 is a diagram for explaining the dimensional change amount of the second short side of the film in this example. In each graph of FIGS. 13 to 16, the horizontal axis represents time [hour], and the vertical axis represents the dimensional change [μm].
 本実施例における放置環境の温度は23℃、湿度は55%とした。
 フィルムの放置状態は、上述の通り、一枚ずつ立て掛けた状態、積層体とした状態とした。フィルムを積層体とした状態では、積層体のうち、この積層体の厚み方向で中央部及び端部の2つの位置にあるフィルムを用いた。
 図13~図16の各グラフ中において、◇印は一枚ずつ立て掛けた状態、□印は積層体の厚み方向で中央部、△印は積層体の厚み方向で端部を示す。
 フィルムの水分率(初期水分率)は0.289%、0.361%の2つの条件とした。
 また、図13~図16の各グラフ中において、実線は水分率0.289%のグラフ、一点鎖線は水分率0.361%のグラフを示す。なお、水分率は上記式(1)を用いて算出した。
In this example, the temperature of the standing environment was 23 ° C. and the humidity was 55%.
As described above, the film was left standing one by one, or a laminated body. In the state which used the film as the laminated body, the film which exists in two positions of a center part and an edge part in the thickness direction of this laminated body was used among the laminated bodies.
In each graph of FIG. 13 to FIG. 16, ◇ indicates a state of standing one by one, □ indicates a center portion in the thickness direction of the laminate, and Δ indicates an end portion in the thickness direction of the laminate.
The moisture content (initial moisture content) of the film was set to two conditions of 0.289% and 0.361%.
In each graph of FIGS. 13 to 16, the solid line indicates a graph with a moisture content of 0.289%, and the alternate long and short dash line indicates a graph with a moisture content of 0.361%. The moisture content was calculated using the above formula (1).
 図13及び図14に示すように、第二長辺の寸法変化量は、各放置状態、各水分率の何れにおいても、第一長辺の寸法変化量よりも大きくなる傾向があるとの結果を得た。
 図15及び図16に示すように、第二短辺の寸法変化量は、長辺の寸法変化量の結果ほどの差はないが、各放置状態、各水分率の何れにおいても、第一短辺の寸法変化量よりも大きくなる傾向があるとの結果を得た。
 また、図13~図16の各グラフに示すように、各辺の寸法変化量は、時間が6hour経過するまでに最も大きくなるとの結果を得た。
 以上により、長方形状のフィルムを用いて放置環境を調整することによって、フィルムを露出させないよりも露出させたほうが、フィルムをより長く伸張させることができることが確認できた。また、フィルムの各辺の寸法変化は、時間が6hour経過した後は収束に近づいていくことが確認できた。
As shown in FIG. 13 and FIG. 14, the result is that the dimensional change amount of the second long side tends to be larger than the dimensional change amount of the first long side in each leaving state and each moisture content. Got.
As shown in FIGS. 15 and 16, the dimensional change amount of the second short side is not as different as the result of the dimensional change amount of the long side, but the first short side is not changed in each standing state and each moisture content. The result that it tends to become larger than the dimensional change amount of the side was obtained.
Further, as shown in the graphs of FIGS. 13 to 16, it was obtained that the dimensional change amount of each side became the largest by the time 6 hours passed.
As described above, it was confirmed that by adjusting the leaving environment using a rectangular film, the film can be stretched longer when the film is exposed than when the film is not exposed. In addition, it was confirmed that the dimensional change of each side of the film approaches the convergence after 6 hours have passed.
(実施例3)
 本発明者は、長方形状のフィルムを用いて放置環境を調整することによって、フィルムの寸法精度を向上することができることを以下の評価により確認した。
(Example 3)
The present inventor has confirmed by the following evaluation that the dimensional accuracy of the film can be improved by adjusting the leaving environment using a rectangular film.
 評価対象としてのフィルムは、長方形状の光学フィルム(図4に示すような長尺帯状の光学フィルムF10Xから切り出した枚葉フィルム11)を用いた。フィルムの長辺の長さは、110mmとした。フィルムの短辺の長さは、60mmとした。フィルムの厚みは、200μmとした。
 フィルムの放置状態は、上述の通り、一枚ずつ立て掛けた状態、積層体とした状態とした。フィルムを積層体とした状態では、積層体のうち、この積層体の厚み方向で中央部及び端部の2つの位置にあるフィルムを用いた。
As the film to be evaluated, a rectangular optical film (a single-wafer film 11 cut out from an elongated optical film F10X as shown in FIG. 4) was used. The length of the long side of the film was 110 mm. The short side length of the film was 60 mm. The thickness of the film was 200 μm.
As described above, the film was left standing one by one, or a laminated body. In the state which used the film as the laminated body, the film which exists in two positions of a center part and an edge part in the thickness direction of this laminated body was used among the laminated bodies.
 なお、比較例のフィルム製造方法は、環境調整工程を有していないものとした。比較例においては、環境調整工程を経ずに端面加工工程に至る。 In addition, the film manufacturing method of the comparative example shall have no environmental adjustment process. In the comparative example, the end face processing step is reached without going through the environment adjustment step.
 一方、本実施例のフィルム製造方法は、環境調整工程を有するものとした。本実施例においては、枚葉フィルム取得工程と端面加工工程との間に、環境調整工程を有する。本実施例において、放置環境の温度は23℃、湿度は52%、放置時間は48hourとした。 On the other hand, the film manufacturing method of this example has an environmental adjustment step. In a present Example, it has an environmental adjustment process between a sheet-fed film acquisition process and an end surface processing process. In this example, the temperature of the leaving environment was 23 ° C., the humidity was 52%, and the leaving time was 48 hours.
 また、本実施例及び比較例の端面加工工程では、研磨装置として、前述のメガロテクニカ株式会社製の中小型研磨機(型式PLBP300)を用いた。研磨条件は、平行アーバー、回転数4000rpm、送り速度500mm/min、クランプ圧力0.06MPa、切り込み量(片側0.5mm)とした。 Further, in the end face processing steps of the present example and the comparative example, the above-described medium and small size polishing machine (model PLBP300) manufactured by Megaro Technica Co., Ltd. was used as a polishing apparatus. The polishing conditions were a parallel arbor, a rotational speed of 4000 rpm, a feed rate of 500 mm / min, a clamp pressure of 0.06 MPa, and a cutting amount (0.5 mm on one side).
 図17は、本実施例及び比較例におけるフィルムの第一長辺の寸法変化量を示す図である。図18は、本実施例及び比較例におけるフィルムの第二長辺の寸法変化量を示す図である。図19は、本実施例及び比較例におけるフィルムの第一短辺の寸法変化量を示す図である。図20は、本実施例及び比較例におけるフィルムの第二短辺の寸法変化量を示す図である。図17~図20の各グラフにおいて、横軸は時間[day]、縦軸は寸法変化量[μm]を示す。また、図17~図20の各グラフ中において、実線は実施例のグラフ、破線は比較例のグラフを示す。 FIG. 17 is a diagram showing a dimensional change amount of the first long side of the film in this example and the comparative example. FIG. 18 is a diagram showing the dimensional change amount of the second long side of the film in this example and the comparative example. FIG. 19 is a diagram showing the dimensional change amount of the first short side of the film in this example and the comparative example. FIG. 20 is a diagram showing the dimensional change amount of the second short side of the film in this example and the comparative example. In each graph of FIGS. 17 to 20, the horizontal axis represents time [day], and the vertical axis represents the dimensional change [μm]. In each graph of FIGS. 17 to 20, the solid line indicates the graph of the example, and the broken line indicates the graph of the comparative example.
 なお、図17~図20は、端面加工工程後に再度放置環境下でフィルムを放置したときのグラフである。すなわち、図17~図20は、端面加工工程を経て得られたフィルムについて、放置環境下(温度23℃、湿度52%)にて保持し、その寸法変化を確認した結果を示している。 FIGS. 17 to 20 are graphs when the film is left again in the leaving environment after the end face processing step. That is, FIG. 17 to FIG. 20 show the results of confirming the dimensional change of the film obtained through the end face processing step in a standing environment (temperature 23 ° C., humidity 52%).
 フィルムの放置状態は、上述の通り、一枚ずつ立て掛けた状態、及び、積層体とした状態とした。積層体とした状態では、積層体のうち、この積層体の厚み方向で中央部及び端部の2つの位置にあるフィルムを用いた。
 また、図17~図20の各グラフ中において、◇印は一枚ずつ立て掛けた状態、□印は積層体の厚み方向で中央部、△印は積層体の厚み方向で端部を示す。
As described above, the film was left standing one by one and a laminated body. In the state made into the laminated body, the film which exists in two positions of a center part and an edge part in the thickness direction of this laminated body was used among the laminated bodies.
In each graph of FIG. 17 to FIG. 20, ◇ indicates a state of standing one by one, □ indicates a center portion in the thickness direction of the laminate, and Δ indicates an end portion in the thickness direction of the laminate.
 図17~図20の各グラフに示すように、本実施例の寸法変化量は、各辺、各放置状態の何れにおいても、比較例の寸法変化量よりも小さくなるとの結果が得られた。
 特に、寸法変化が生じ易い長辺側において、実施例の寸法変化量は、比較例の寸法変化量よりも顕著に小さくなるとの結果が得られた。
 ここで、比較例では、図17に示すように、積層体の厚み方向で端部(図17に示す△印)の位置にあるフィルムの第一長辺において寸法変化量が最大となり、時間7dayで30μm程度となる結果を得た。
 これに対し、本実施例では、積層体の厚み方向で中央部(図17に示す□印)の位置にあるフィルムの第一長辺において寸法変化量が最大となり、時間7dayで10μm程度となる結果が得られた。
As shown in the graphs of FIGS. 17 to 20, the result was that the dimensional change amount of this example was smaller than the dimensional change amount of the comparative example in each side and in each leaving state.
In particular, on the long side where the dimensional change is likely to occur, the result was that the dimensional change amount of the example was significantly smaller than the dimensional change amount of the comparative example.
Here, in the comparative example, as shown in FIG. 17, the dimensional change amount becomes maximum at the first long side of the film located at the end portion (Δ mark shown in FIG. 17) in the thickness direction of the laminated body, and the time is 7 days. And obtained a result of about 30 μm.
On the other hand, in this example, the dimensional change amount is maximum at the first long side of the film at the position of the central portion (□ mark shown in FIG. 17) in the thickness direction of the laminated body, and is about 10 μm at 7 days. Results were obtained.
 本実施例及び比較例における寸法変化量の結果から求めた、本実施例及び比較例における長辺の寸法変化率を下記表1に示す。
 なお、長辺の寸法変化率(%/時)は、以下の式(2)により算出した。
 D=(E/H)×100(%)÷24(時) ・・・(2)
 ここで、上記式(2)中において、「D」は長辺の寸法変化率(%/時)、「E」はフィルムを24時間保持した際の長辺の寸法変化量(mm)、「H」は寸法変化前の長辺の長さ(mm)とする。なお、本実施例においては、H=110mmである。また、下記表1において、4日後または7日後の長辺の寸法変化率は、上記式(2)中において、「E」をフィルムを4日間(96時間)または7日間(168時間)保持した際の長辺の寸法変化量(mm)とし、24(時)を96(時)または168(時)として、算出した値である。
Table 1 below shows the dimensional change rate of the long side in the present example and the comparative example, which was obtained from the result of the dimensional change amount in the present example and the comparative example.
In addition, the dimensional change rate (% / hour) of the long side was calculated by the following formula (2).
D = (E / H) × 100 (%) ÷ 24 (hours) (2)
Here, in the above formula (2), “D” is the dimensional change rate (% / hour) of the long side, “E” is the dimensional change amount (mm) of the long side when the film is held for 24 hours, “ “H” is the length (mm) of the long side before the dimension change. In this embodiment, H = 110 mm. In Table 1 below, the dimensional change rate of the long side after 4 days or 7 days was obtained by holding “E” for 4 days (96 hours) or 7 days (168 hours) in the above formula (2). It is a value calculated with the dimensional change amount (mm) of the long side at the time and 24 (hours) as 96 (hours) or 168 (hours).
Figure JPOXMLDOC01-appb-T000001
 
Figure JPOXMLDOC01-appb-T000001
 
 表1に示すように、比較例では、フィルムの放置状態を一枚ずつ立て掛けた状態とした場合に、第一長辺において寸法変化率が最大となり、0.0005%/時となる結果を得た。
 これに対し、実施例では、フィルムの放置状態を、一枚ずつ立て掛けた状態、積層体とした状態(積層体の厚み方向で中央部及び端部の2つの位置にあるフィルムを用いた場合)とした場合の何れにおいても、フィルムの長辺の寸法変化率は何れも0.0001%/時以下となる結果が得られた。
 以上により、長方形状のフィルムを用いて放置環境を調整することによって、フィルムの寸法精度を向上させることができることが確認できた。
As shown in Table 1, in the comparative example, when the film is left standing one by one, the dimensional change rate is maximized on the first long side, and the result is 0.0005% / hour. It was.
On the other hand, in the examples, the film is left standing one by one, and is a laminated body (when a film is used at two positions in the center and the end in the thickness direction of the laminated body). In all cases, the dimensional change rate of the long side of the film was 0.0001% / hour or less.
From the above, it was confirmed that the dimensional accuracy of the film can be improved by adjusting the leaving environment using a rectangular film.
 11…枚葉フィルム 11A…端面加工フィルム 11a…枚葉フィルムの主面 11e…枚葉フィルムの端面 12…積層体 13…ダミーフィルム F10X…光学フィルム(樹脂フィルム) 11 ... Sheet-fed film 11A ... End-face processed film 11a ... Main surface of sheet-fed film 11e ... End surface of sheet-fed film 12 ... Laminate 13 ... Dummy film F10X ... Optical film (resin film)

Claims (12)

  1.  長尺帯状の樹脂フィルムから枚葉状の樹脂フィルムである枚葉フィルムを取得する枚葉フィルム取得工程と、
     前記枚葉フィルム取得工程の後に、前記枚葉フィルムの端面を加工して端面加工フィルムを得る端面加工工程と、を含むフィルム製造方法であって、
     前記枚葉フィルム取得工程と前記端面加工工程との間に、前記枚葉フィルムを放置する放置環境を、少なくとも湿度を調整した雰囲気下とする環境調整工程を更に含むフィルム製造方法。
    A sheet-fed film acquisition step of acquiring a sheet-fed film that is a sheet-fed resin film from a long strip-shaped resin film;
    An end face processing step of processing an end face of the single wafer film to obtain an end face processed film after the single wafer film acquisition process,
    The film manufacturing method which further includes the environmental adjustment process which makes the leaving environment which leaves the said single wafer film leave in the atmosphere which adjusted the humidity at least between the said single wafer film acquisition process and the said end surface processing process.
  2.  前記環境調整工程では、前記放置環境の湿度及び温度を、前記端面加工工程の後に前記端面加工フィルムが使用される湿度及び温度に対して±5%及び±5℃の範囲とする、請求項1に記載のフィルム製造方法。 In the environmental adjustment step, the humidity and temperature of the leaving environment are in a range of ± 5% and ± 5 ° C with respect to the humidity and temperature at which the end face processed film is used after the end face processing step. The film manufacturing method of description.
  3.  前記環境調整工程では、前記放置環境に前記枚葉フィルムを放置する時間を、前記枚葉フィルムの単位時間当たりの寸法変化が収束に近づく時間以上とする、請求項1又は2に記載のフィルム製造方法。 3. The film production according to claim 1, wherein, in the environmental adjustment step, a time during which the sheet film is left in the leaving environment is equal to or longer than a time when a dimensional change per unit time of the sheet film approaches convergence. Method.
  4.  前記環境調整工程では、前記放置環境に前記枚葉フィルムを放置する時間を、前記枚葉フィルムの単位時間当たりの寸法変化率が0.003%/時以下となる時間以上とする、請求項3に記載のフィルム製造方法。 4. In the environmental adjustment step, the time for which the single-wafer film is left in the leaving environment is set to a time when the dimensional change rate per unit time of the single-wafer film is 0.003% / hour or less. The film manufacturing method of description.
  5.  前記環境調整工程では、前記放置環境に前記枚葉フィルムを放置する時間を6時間以上とする、請求項3又は4に記載のフィルム製造方法。 The film manufacturing method according to claim 3 or 4, wherein in the environmental adjustment step, the time for which the single-wafer film is left in the leaving environment is 6 hours or more.
  6.  前記環境調整工程では、前記枚葉フィルムの主面を鉛直方向に沿わせて前記枚葉フィルムを放置する、請求項1から5までの何れか一項に記載のフィルム製造方法。 The film manufacturing method according to any one of claims 1 to 5, wherein in the environmental adjustment step, the single-wafer film is left with the main surface of the single-wafer film along a vertical direction.
  7.  前記枚葉フィルムは矩形状であり、
     前記環境調整工程では、前記枚葉フィルムの長辺の側に沿う端面を露出させて前記枚葉フィルムを放置する、請求項1から6までの何れか一項に記載のフィルム製造方法。
    The sheet film is rectangular,
    The film manufacturing method according to any one of claims 1 to 6, wherein, in the environmental adjustment step, an end surface along a long side of the single-wafer film is exposed and the single-wafer film is left as it is.
  8.  前記環境調整工程では、前記枚葉フィルムを複数枚重ねた積層体として前記積層体を放置する、請求項1から7までの何れか一項に記載のフィルム製造方法。 The film manufacturing method according to any one of claims 1 to 7, wherein in the environment adjustment step, the laminate is left as a laminate in which a plurality of the single-wafer films are stacked.
  9.  前記環境調整工程では、前記積層体の主面の側にダミーフィルムを設けて前記積層体を放置する、請求項8に記載のフィルム製造方法。 The film manufacturing method according to claim 8, wherein, in the environmental adjustment step, a dummy film is provided on a main surface side of the laminated body and the laminated body is left as it is.
  10.  前記端面加工工程では、前記枚葉フィルムの端面を研磨する、請求項1から9までの何れか一項に記載のフィルム製造方法。 The film manufacturing method according to any one of claims 1 to 9, wherein, in the end face processing step, the end face of the single wafer film is polished.
  11.  前記樹脂フィルムが光学フィルムである、請求項1から10までの何れか一項に記載のフィルム製造方法。 The film manufacturing method according to any one of claims 1 to 10, wherein the resin film is an optical film.
  12.  長方形状を有し、
     湿度52%、かつ温度23℃の環境下で、24時間保持した際、二つの長辺の寸法変化率が、何れも0.0002%/時未満であるフィルム。
    Has a rectangular shape,
    A film having a dimensional change rate of two long sides of less than 0.0002% / hour when held for 24 hours in an environment of humidity 52% and temperature 23 ° C.
PCT/JP2016/088421 2015-12-25 2016-12-22 Film manufacturing method and film WO2017111048A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201680074769.5A CN108474890B (en) 2015-12-25 2016-12-22 Film manufacturing method and film
JP2017536036A JP6342081B2 (en) 2015-12-25 2016-12-22 Film manufacturing method and film
KR1020177029336A KR101907336B1 (en) 2015-12-25 2016-12-22 Film manufacturing method and film

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015254899 2015-12-25
JP2015-254899 2015-12-25

Publications (1)

Publication Number Publication Date
WO2017111048A1 true WO2017111048A1 (en) 2017-06-29

Family

ID=59090562

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/088421 WO2017111048A1 (en) 2015-12-25 2016-12-22 Film manufacturing method and film

Country Status (4)

Country Link
JP (1) JP6342081B2 (en)
KR (1) KR101907336B1 (en)
CN (1) CN108474890B (en)
WO (1) WO2017111048A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20190077230A (en) * 2017-12-25 2019-07-03 닛토덴코 가부시키가이샤 Method for manufacturing a packing material of an optical member
WO2022074872A1 (en) * 2020-10-09 2022-04-14 日東電工株式会社 Method for manufacturing phase difference layer-equipped polarizing plate

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005224935A (en) * 2004-01-15 2005-08-25 Nitto Denko Corp Laminated sheet machining method, laminated sheet machining device, laminated sheet, optical element, and image display device
JP2006308936A (en) * 2005-04-28 2006-11-09 Fuji Photo Film Co Ltd Polarizing plate and liquid crystal display device
JP2010228353A (en) * 2009-03-27 2010-10-14 Fujifilm Corp Resin sheet with protective sheet, manufacturing method thereof, and apparatus for manufacturing
JP2012053349A (en) * 2010-09-02 2012-03-15 Nitto Denko Corp Continuous roll and method and system for manufacturing liquid crystal display element
JP2013200376A (en) * 2012-03-23 2013-10-03 Sumitomo Chemical Co Ltd Method for manufacturing end face processed polarizing plate

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050158136A1 (en) * 2004-01-15 2005-07-21 Nitto Denko Corporation Cutting method and cutting apparatus for layered sheet, layered sheet, optical element and image display
JP5699373B2 (en) 2011-03-22 2015-04-08 大日本印刷株式会社 Manufacturing method of optical sheet
JP6205212B2 (en) * 2013-08-30 2017-09-27 日東電工株式会社 Film laminate manufacturing method and film laminate manufacturing equipment
JP2015215550A (en) 2014-05-13 2015-12-03 大日本印刷株式会社 Corrected optical film, corrected optical film having auxiliary sheet, and correction method and correction device for optical film

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005224935A (en) * 2004-01-15 2005-08-25 Nitto Denko Corp Laminated sheet machining method, laminated sheet machining device, laminated sheet, optical element, and image display device
JP2006308936A (en) * 2005-04-28 2006-11-09 Fuji Photo Film Co Ltd Polarizing plate and liquid crystal display device
JP2010228353A (en) * 2009-03-27 2010-10-14 Fujifilm Corp Resin sheet with protective sheet, manufacturing method thereof, and apparatus for manufacturing
JP2012053349A (en) * 2010-09-02 2012-03-15 Nitto Denko Corp Continuous roll and method and system for manufacturing liquid crystal display element
JP2013200376A (en) * 2012-03-23 2013-10-03 Sumitomo Chemical Co Ltd Method for manufacturing end face processed polarizing plate

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20190077230A (en) * 2017-12-25 2019-07-03 닛토덴코 가부시키가이샤 Method for manufacturing a packing material of an optical member
JP2019113743A (en) * 2017-12-25 2019-07-11 日東電工株式会社 Method for manufacturing package of optical member
JP7175083B2 (en) 2017-12-25 2022-11-18 日東電工株式会社 Manufacturing method for package of optical members
KR102636897B1 (en) * 2017-12-25 2024-02-16 닛토덴코 가부시키가이샤 Method for manufacturing a packing material of an optical member
WO2022074872A1 (en) * 2020-10-09 2022-04-14 日東電工株式会社 Method for manufacturing phase difference layer-equipped polarizing plate

Also Published As

Publication number Publication date
JPWO2017111048A1 (en) 2017-12-28
CN108474890A (en) 2018-08-31
JP6342081B2 (en) 2018-06-13
KR101907336B1 (en) 2018-10-11
CN108474890B (en) 2020-02-04
KR20170118961A (en) 2017-10-25

Similar Documents

Publication Publication Date Title
TWI545017B (en) An optical function film continuous roll, and a method for manufacturing the liquid crystal display device using the same, and an optical function film bonding apparatus
JP5945143B2 (en) Optical film roll set and method for producing optical film roll set
KR102436860B1 (en) Optical film set and manufacturing method thereof
JP2009251213A (en) Method of manufacturing polarizing plate roll
KR101802560B1 (en) Polarizing plate and method for manufacturing thereof
JP5744819B2 (en) Optical display panel continuous manufacturing method and optical display panel continuous manufacturing system
WO2018070247A1 (en) Polarizer, polarizing plate, and image forming apparatus
JP6126257B2 (en) Optical film roll set and method of manufacturing optical film roll set
JP5580842B2 (en) Optical display panel manufacturing method and optical display panel manufacturing system
CN103185910A (en) Polarizing plate and optical display device including the same
JP6342081B2 (en) Film manufacturing method and film
KR20120058887A (en) Polarizing plate and method for preparing the same
TW201908828A (en) Liquid crystal panel and method of manufacturing same
JPWO2018190180A1 (en) Polarizing plate, image display device, and method of manufacturing image display device
KR101952969B1 (en) Web roll and method for manufacturing the same, and method for manufacturing optical sheet
JP2023025240A (en) Method for manufacturing polarizing film roll
CN114764160A (en) Method for manufacturing optical laminate
WO2016072358A1 (en) Method for manufacturing optical film provided with protective film
WO2012029716A1 (en) Serial rolls, and manufacturing method and manufacturing system for liquid crystal display element
TWI704058B (en) Method for manufacturing laminated optical film
JP2023138571A (en) Manufacturing method of optical laminate
JP6654113B2 (en) Optical display panel manufacturing method and optical display panel manufacturing system
TW201706680A (en) Method of manufacturing display unit and system for laminating optical film
JP5197708B2 (en) Liquid crystal display element continuous manufacturing method and liquid crystal display element continuous manufacturing system
TWI666475B (en) Method for manufacturing sheet-like polarizing plate

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2017536036

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16878934

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20177029336

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16878934

Country of ref document: EP

Kind code of ref document: A1