WO2017111001A1 - Tip for cutting tool, cutting tool, and method for manufacturing same - Google Patents
Tip for cutting tool, cutting tool, and method for manufacturing same Download PDFInfo
- Publication number
- WO2017111001A1 WO2017111001A1 PCT/JP2016/088347 JP2016088347W WO2017111001A1 WO 2017111001 A1 WO2017111001 A1 WO 2017111001A1 JP 2016088347 W JP2016088347 W JP 2016088347W WO 2017111001 A1 WO2017111001 A1 WO 2017111001A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- cutting tool
- gate
- hole
- chip
- cutting
- Prior art date
Links
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F3/00—Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
- B22F3/02—Compacting only
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23B—TURNING; BORING
- B23B27/00—Tools for turning or boring machines; Tools of a similar kind in general; Accessories therefor
- B23B27/14—Cutting tools of which the bits or tips or cutting inserts are of special material
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23B—TURNING; BORING
- B23B27/00—Tools for turning or boring machines; Tools of a similar kind in general; Accessories therefor
- B23B27/14—Cutting tools of which the bits or tips or cutting inserts are of special material
- B23B27/16—Cutting tools of which the bits or tips or cutting inserts are of special material with exchangeable cutting bits or cutting inserts, e.g. able to be clamped
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23C—MILLING
- B23C5/00—Milling-cutters
- B23C5/16—Milling-cutters characterised by physical features other than shape
- B23C5/20—Milling-cutters characterised by physical features other than shape with removable cutter bits or teeth or cutting inserts
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23C—MILLING
- B23C5/00—Milling-cutters
- B23C5/16—Milling-cutters characterised by physical features other than shape
- B23C5/20—Milling-cutters characterised by physical features other than shape with removable cutter bits or teeth or cutting inserts
- B23C5/22—Securing arrangements for bits or teeth or cutting inserts
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23P—METAL-WORKING NOT OTHERWISE PROVIDED FOR; COMBINED OPERATIONS; UNIVERSAL MACHINE TOOLS
- B23P15/00—Making specific metal objects by operations not covered by a single other subclass or a group in this subclass
- B23P15/28—Making specific metal objects by operations not covered by a single other subclass or a group in this subclass cutting tools
Definitions
- This aspect relates to a chip constituting a blade part of a cutting tool, a cutting tool, and a manufacturing method thereof.
- a so-called insert (throw away tip) is known which is mounted on an insert type (blade tip exchange type) cutting tool to constitute a blade part.
- a cutting tool tip (hereinafter, simply referred to as “chip”) generally includes a raw material powder made of a relatively hard material and a raw material powder that becomes a binder phase component of the hard raw material powder. The mixture is pressed by a mold and molded, and then fired.
- Patent Document 1 proposes forming the raw material by injection molding in which the raw material is injected into the internal space of the mold instead of the press.
- the inner space of the mold generally includes a cavity (product part) for forming a product (here, a chip), a runner for supplying a raw material to the cavity, and the like.
- the opening located at the boundary between the cavity and the runner is called a gate.
- the gate is located on the side surface of the chip.
- the molded product obtained by molding the raw material by injection molding is not only the part that becomes the chip, but also the raw material in the runner It also includes unnecessary portions formed by. This unnecessary portion is removed from the portion that becomes the cutting tool tip by cutting or the like after the molded body is taken out of the mold.
- the removal trace (gate trace) is accompanied by, for example, a convex portion, a concave portion or a combination thereof and / or a surface roughness.
- a cutting tool tip includes a base material having an upper surface, a lower surface, and an outer peripheral surface positioned between the upper surface and the lower surface, and the tip between the upper surface and the lower surface of the base material.
- a gate mark is located at a height and surrounded by the outer peripheral surface.
- FIG. 3A The perspective view which shows the insert type cutting tool which concerns on 1st Embodiment.
- tip for cutting tools of the cutting tool of FIG. 3A is a cross-sectional view taken along line IIIa-IIIa in FIG. 2, FIG. 3B is an enlarged view of region IIIb in FIG. 3A, and FIG. 3C is a plan view schematically showing mounting holes. .
- tip for cutting tools. 5 (a) to 5 (e) are schematic diagrams for explaining the outline of the procedure of the method for manufacturing the cutting tool tip.
- FIGS. 7A to 7D are schematic views for explaining the injection molding procedure of FIG.
- FIG. 10A is a perspective view showing a cutting tool tip according to the second embodiment
- FIG. 10B is a cross-sectional view showing a mold for the cutting tool tip of FIG. 10A
- FIG. 11C is a plan view showing a part of the mold shown in FIG.
- FIG. 11A is a perspective view showing a cutting tool tip according to the third embodiment
- FIG. 11B is a cross-sectional view showing a forming die for the cutting tool tip of FIG.
- FIG. 12C is a plan view showing a part of the mold shown in FIG.
- FIG. 12 (a) is a perspective view showing a cutting tool tip according to the fourth embodiment
- FIG. 12 (b) is a cross-sectional view showing a forming die for the cutting tool tip of FIG. 12 (a)
- FIG. FIG. 13C is a plan view showing a part of the mold shown in FIG.
- FIG. 13A is a cross-sectional view showing a part of an insert type cutting tool according to the fifth embodiment
- FIG. 13B shows a mold for a cutting tool tip of the cutting tool of FIG. 13A.
- Cross-sectional view, FIG. 13C is a cross-sectional view showing a molded body formed by the mold shown in FIG. 13B
- FIG. 13D is a cutting tool tip formed from the molded body shown in FIG. 13C.
- FIG. 13C is a perspective view showing a cutting tool tip according to the fourth embodiment
- FIG. 12 (b) is a cross-sectional view showing a forming die for the cutting tool tip of FIG. 12 (a)
- the blade portion is used as a term indicating a relatively small portion (for example, a part of an insert) including a rake face, a flank face, and a cutting edge.
- the cutting edge refers to one or more blades that are used simultaneously during cutting. Therefore, for example, the cutting blade portion may be composed of one blade portion, or may be composed of two blade portions adjacent to each other via a corner (nose).
- the cutting edge is used as a term indicating the ridge line between the rake face and the flank face.
- the actual cutting blade is not a line microscopically as the term “cutting blade roundness” exists, and the cutting blade has an area or a volume as long as it is.
- the rake face and flank face mainly refer to the rake face and flank face closest to the cutting edge. Note that the flank may or may not include a so-called margin.
- the hole may be either a through hole or a recess.
- the hole portion is referred to as an opening portion, the portion of the hole portion on the surface where the hole portion is provided (inlet of the hole portion) is indicated.
- FIG. 1 is a perspective view showing an insert-type cutting tool 1 according to the first embodiment.
- the cutting tool 1 is a substantially shaft-shaped member that is attached to and detached from a holder 3 (shank) attached to a machine tool and a tip end side (left side of the paper) of the holder 3 and actually contacts a work piece. And one or more (three in the example of FIG. 1) chips 5 for cutting the work.
- the cutting tool 1 is an end mill, and is capable of cutting a workpiece on the tip surface and the outer peripheral surface of the tip by being rotated about an axis.
- the mounting of the chip 5 to the holder 3 is performed, for example, by screwing the screw 7 inserted through the chip 5 into a female screw portion (not shown) hidden in the chip 5.
- the holder 3 is formed with, for example, a recess 3r composed of a plurality of surfaces with which a plurality of surfaces (for example, one main surface and two side surfaces) of the chip 5 abut.
- the chip 5 is positioned by contacting the surface of the recess 3r.
- FIG. 2 is a perspective view showing the chip 5.
- FIG. 3A is a cross-sectional view taken along line IIIa-IIIa in FIG.
- an orthogonal coordinate system xyz defined and fixed to the chip 5 is attached.
- directions may be described with reference to this coordinate system.
- Any direction of the chip 5 may be a vertical direction or a horizontal direction, and the dimension in the z-axis direction may be relatively large.
- the z-axis direction is referred to as a vertical direction or a thickness direction. is there.
- the chip 5 is simply referred to as a plan view, it refers to viewing in the z-axis direction.
- the chip 5 includes a base material 6 that is integrally formed and forms the shape of the chip 5.
- the chip 5 includes only the base material 6 or includes the base material 6 and a coating layer (not shown) that covers the base material 6.
- the coating layer may cover the entire surface of the base material 6 or may cover only a part of the base material 6.
- the coating layer is relatively thin and has almost no influence on the shape of the chip 5 macroscopically.
- the material of the base material 6 is cemented carbide, diamond sintered body, CBN (Cubic Boron Nitride) sintered body, narrow speed ceramic, cermet, or high speed tool steel (powder high speed) formed by powder metallurgy. is there.
- the material of the coating layer is, for example, diamond-like carbon, titanium nitride, titanium nitride carbide, titanium aluminum nitride, titanium carbide, chromium nitride, or aluminum oxide.
- the chip 5 is formed, for example, in a substantially rectangular parallelepiped shape, and is located between the pair of main surfaces 9 (upper surface and lower surface) and the pair of main surfaces 9 and connects the pair of main surfaces 9. It has four side surfaces 11. In addition, all the side surfaces 11 whole may be called the outer peripheral surface 12. The dimensions of the chip 5 may be set as appropriate.
- the side surface 11 positioned on the long side in plan view is, for example, generally bulging outward as a whole.
- the side surface 11 located on the short side in the plan view is generally recessed, for example, so that the center side in the thickness direction is lowest as a whole. Note that these shapes may be appropriately set from various viewpoints such as securing strength and securing a flank.
- the tip 5 has, for example, a plurality of cutting edge portions 14 that protrude in the thickness direction (z-axis direction) of the tip 5 at the outer peripheral edge of the main surface 9.
- the cutting edge portion 14 is provided, for example, on each of the pair of main surfaces 9, and is provided on each of the main surfaces 9 at two corner portions positioned on one diagonal line.
- the diagonal line provided with the cutting edge portion 14 on the one main surface 9 side intersects with the diagonal line provided with the cutting edge portion 14 on the other main surface 9 side. Therefore, the chip 5 can be used four times by rotating 180 ° around the z axis and / or rotating 180 ° around the x axis.
- Each cutting edge 14 is, for example, a long edge 13L and a short edge 13S (hereinafter simply referred to as “blade 13”, which are not directly distinguished from each other) that are directly involved in the cutting of the work material. have.
- blade portions 13 are located at corners (ie, intersecting ridge lines) between the main surface 9 and the side surface 11.
- the long edge part 13L and the short edge part 13S are connected with corners 21 (nose) at the corners of the long side and the short side in plan view.
- Each blade portion 13 is a portion where the rake face 15 through which chips generated by cutting flow, the flank face 17 which escapes to avoid unnecessary contact with the finished surface, and the rake face 15 is connected to the flank face 17. And a cutting edge 19.
- the blade portion 13 is formed, for example, so as to protrude in the thickness direction (z-axis direction) with respect to the center side of the main surface 9.
- the rake face 15 is continuous to the center side of the main surface 9 and is formed to rise in the thickness direction from the main surface 9 on the center side.
- the flank 17 is continuous with the side surface 11 and extends beyond the central main surface 9 in the thickness direction.
- the cutting edge 19 has a height from the center side of the main surface 9 that is higher toward the corner 21 side.
- the presence / absence of the rake face 15 and the flank face 17 with respect to the thickness direction (z-axis direction), the inclination direction, and the inclination angle may be set as appropriate.
- the flank 17 is inclined with respect to the thickness direction so that the flank 17 is located closer to the center of the main surface 9 toward the cutting edge 19 side.
- the flank 17 may be parallel to the thickness direction, or may be inclined in the thickness direction so as to be positioned on the outer peripheral edge side of the main surface 9 toward the cutting edge 19 side. .
- the tip 5 since the blade portion 13 protrudes from the main surface 9, the tip 5 includes the base portion 23 having the main surface 9 and the side surface 11, and the blade portion 13 protruding from the base portion 23. May be perceived as having Further, since the blade portion 13 protrudes from the main surface 9, in the present embodiment, it may be considered that the cutting blade 19 is formed on at least one of the upper end portion and the lower end portion of the outer peripheral surface 12.
- the chip 5 has a hole.
- the hole is, for example, a mounting hole 25 made of a through hole and through which a fixing member such as the screw 7 is inserted.
- the attachment hole 25 has a receiving portion 27 located on the opening 26 side (main surface 9 side) and an insertion portion 29 located in the back thereof.
- the receiving portion 27 is a portion that receives the screw head 7 b of the screw 7 and abuts the screw head 7 b
- the insertion portion 29 is a portion through which the male screw portion 7 a of the screw 7 is inserted.
- the receiving portions 27 are provided on both sides of the mounting hole 25 in the penetrating direction.
- the mounting hole 25 is a through hole provided from one side of the pair of main surfaces 9 to the other, and the opening 26 is located on the main surface 9. Is not limited to such a configuration.
- the hole may be configured such that the opening 26 is located on the side surface 11.
- the mounting hole 25 may be configured by a through hole provided from one side of the side surface 11 located on the opposite side to the other side.
- the receiving portion 27 extends, for example, while reducing the diameter from the main surface 9 side to the insertion portion 29 side.
- the insertion portion 29 is a portion having the smallest diameter in the attachment hole 25.
- the maximum diameter of the receiving portion 27 is equal to or larger than the diameter of the screw head 7b. Further, the diameter of the insertion portion 29 (minimum diameter of the receiving portion 27) is smaller than the diameter of the screw head 7b and larger than the diameter of the male screw portion 7a.
- FIG. 3B is an enlarged view of region IIIb in FIG.
- FIG. 3C is a plan view showing the attachment hole 25.
- the gate mark 30 in the chip 5 is a height between the pair of main surfaces 9 in the base material, and is located at a portion surrounded by the outer peripheral surface 12.
- the gate mark 30 is located in the mounting hole 25. That is, as will be described in detail later, the base material 6 of the chip 5 is formed by injection molding in which a raw material is injected into a mold, and the cavity that forms the base material 6 of the mold is formed in the mounting hole 25. Raw material is injected from the gate located.
- the gate mark 30 is located on the inner surface of the insertion portion 29 in the mounting hole 25.
- a predetermined margin is interposed between the inner surface of the insertion portion 29 and the male screw portion 7 a of the screw 7. Therefore, the screw 7 fixes the chip 5 to the holder 3 in a non-contact state with respect to the gate mark 30.
- the screw 7 screw head 7b is engaged with the base material 6 directly or indirectly through the coating layer in the axial direction and / or the radial direction of the screw 7 outside the gate mark 30. Become.
- the size of the gate mark 30 may be set as appropriate.
- the gate mark 30 is formed over the entire penetrating length (z-axis direction) of the insertion portion 29 in the cross section (vertical cross section) including the axis of the mounting hole 25. Yes.
- the gate mark 30 may be formed only in a part of the penetration length of the insertion portion 29. When it is formed only in a part of the penetration length of the insertion portion 29, the possibility that the screw head 7b abuts on the gate mark 30 can be reduced. Therefore, the screw head 7b can be stably brought into contact with the receiving portion 27.
- the gate trace 30 is formed over the entire circumference of the insertion portion 29 and is annular in plan view.
- the gate trace 30 may be formed only in a part of the insertion portion 29 in the circumferential direction.
- the position and / or size of the gate mark 30 in the z-axis direction is constant over the entire circumference of the insertion portion 29.
- the position and / or size of the gate mark 30 in the z-axis direction may vary depending on the circumferential position of the insertion portion 29.
- the cutting edge portion 14 is located at the end of the chip 5 in the thickness direction (z-axis direction) in the longitudinal section as shown in FIG. Therefore, considering the gate mark 30 as a reference, the cutting edge portion 14 is provided at a position farthest from the gate mark 30 in the axial direction of the attachment hole 25 (in another aspect, the z-axis direction).
- the inner surface of the insertion portion 29 intersects the direction in which the cutting blade 19 of the cutting blade portion 14 projects (generally the z-axis direction) ( For example, it protrudes in a direction (y-axis direction) orthogonal.
- the gate mark 30 formed on the inner surface of the insertion portion 29 protrudes in a direction intersecting the direction in which the cutting edge 19 of the cutting edge portion 14 protrudes.
- the direction in which the cutting edge 19 of the cutting edge portion 14 protrudes may be defined by the direction in which an intermediate line between the flank 15 and the rake face 17 (which may be an approximate straight line in the case of a curve) extends.
- the direction in which the gate mark 30 (the inner surface of the insertion portion 29) protrudes may also be defined by the direction in which the middle line of the pair of receiving portions 27 extends.
- the gate trace 30 is generally visible. This is because, for example, depending on the method for removing unnecessary parts formed on the runner, etc., the surface from which the unnecessary parts are removed rises slightly from the surrounding surface due to the force applied during removal. is there. And / or, for example, the surface from which unnecessary portions have been removed (for example, a cut surface) has a surface roughness different from that of the surface around the adjacent region in which the inner surface of the mold is transferred (generally, This is because the surface roughness of the cut surface is larger) and, in turn, the way in which the light is reflected is different.
- 3B and 3C schematically show that the surface roughness of the gate mark 30 is larger than the surface roughness of the other surface (the surface on which the inner surface of the mold is transferred) ( Somewhat exaggerated). Note that the difference in surface roughness between the gate trace 30 and other surfaces tends to appear in the appearance of the surface (for example, gloss) due to the difference. Therefore, for example, when determining whether or not the surface roughness of the two is different, it is often unnecessary to compare the surface roughness of the two until the arithmetic average roughness or the like is measured.
- the gate mark 30 is exposed in the mounting hole 25.
- the gate mark 30 may be covered with the coating layer, or may be exposed in the mounting hole 25 without being covered.
- the thickness of the coating layer may be a thickness at which the gate trace 30 cannot be seen, or a thickness at which the gate trace 30 can still be seen.
- FIG. 4 is a flowchart showing a method for manufacturing the chip 5.
- FIG. 5A to FIG. 5E are schematic diagrams for explaining the outline of the procedure of the manufacturing method of the chip 5. The manufacturing method proceeds in order from FIG. 5 (a) to FIG. 5 (e).
- the raw material 31 of the chip 5 is prepared as indicated by reference numeral S301 in FIG. 4 and as shown in FIG. Specifically, for example, a relatively hard raw material powder that is a main component, a raw material powder that is a binder phase component of this hard raw material powder, imparts fluidity to these raw material powders, and retains shape retention after molding. Mixing of organic substances such as a binder for imparting is performed.
- the raw material powder includes tungsten carbide as a main component, cobalt as a binder component, tantalum carbide and titanium carbide.
- the binder or a role similar to the binder include paraffin or an appropriate type of resin.
- the tip 5 is not limited to the cemented carbide.
- the raw material 31 of the chip 5 is injected and filled into the molding die 33. That is, the process indicated by reference numeral S302 in FIG. 4 is a molding process for forming a molded body to be a cutting tool chip.
- the shape in the molding die 33 is substantially the same as that of the molded body to be the chip 5. Therefore, when the injected raw material 31 is solidified in the molding die 33, a molded body 35 (FIG. 5C) having a shape substantially similar to that of the chip 5 is formed.
- an unnecessary portion as the chip 5 is removed from the molded body 35 taken out from the molding die 33.
- the unnecessary portion is, for example, a portion solidified by a so-called sprue and runner (described later).
- the removal may be performed by an appropriate method, for example, by cutting the gate 53 by the cutter 37.
- the molded body 35 is fired (a heat treatment step is performed).
- a sintered body 39 (FIG. 5E) to be the chip 5 is formed.
- the binder added to impart fluidity to the raw material 31 evaporates or burns and is removed from the sintered body 39.
- the cutting edge of the sintered body 39 is ground or polished (honed) to adjust the roundness of the cutting edge.
- the chip 5 is obtained. Honing is performed, for example, by sandblasting as illustrated in FIG.
- FIG. 6 is a flowchart showing a molding process by injection indicated by S302 in FIG. 7 (a) to 7 (d) are schematic diagrams for explaining the injection molding procedure of FIG. 5 (b). Injection molding proceeds in order from FIG. 7 (a) to FIG. 7 (d).
- the mold 33 composed of a plurality of divided molds (41: 41A to 41C) is closed.
- the split type here includes, for example, a core or a slide core in addition to a fixed type and a movable type.
- the injection is performed by the injection device (in a narrow sense) as indicated by reference numeral S402 in FIG. 6 and as shown in FIG. 7 (c). Specifically, the raw material 31 in the sleeve 43 (cylinder) communicating with the molding die 33 is pushed into the molding die 33 by the plunger 45 in the sleeve 43.
- the injection speed may be set as appropriate, and appropriate shift control may be performed.
- the gas in the mold 33 is appropriately discharged to the outside of the mold 33.
- FIG. 7C schematically shows a state in which the gas is discharged by a vent (not shown) by an arrow y1.
- gas is discharged from all joints. However, it is not necessary to discharge gas from all joints.
- the injection molding is performed from the (narrow sense) injection step to the pressure increase (pressure increase) step.
- the pressure of the raw material 31 in the mold 33 is increased to a predetermined pressure (final pressure) by the pressure applied by the plunger 45. Thereafter, the final pressure is maintained (pressure holding step).
- the raw material 31 filled in the molding die 33 is solidified by receiving heat from the plunger 45 and depriving the molding die 33 of heat.
- the mold 33 is opened by a mold clamping device (not shown).
- the molded body 35 remains in one of the plurality of split dies 41 and is pushed out from the split dies 41 by pins (not shown).
- FIG. 8 is a cross-sectional view showing the mold 33.
- FIG. 8 not only a so-called cross section that is hatched but also a mating surface of the split mold 41 that is located behind the cross section is shown.
- FIG. 9 is a plan view of the mold 33. All of these show the mold 33 in a closed state.
- the molding die 33 is constituted by, for example, a mold. As shown in FIG. 8, the space formed in the closed mold 33 includes a cavity 47 that forms a portion to be the chip 5, and a runner for causing the raw material 31 to flow into the cavity 47 from the outside of the mold 33. 49 and sprue 51.
- the molding die 33 has a gate (gate portion) 53 that is an opening for connecting the runner 49 and the cavity 47.
- the shape and dimensions of the cavity 47 are basically the same shape and dimensions as the molded body 35 that becomes the chip 5. That is, the mold 33 has surfaces corresponding to the pair of main surfaces 9, the side surfaces 11, the blade portions 13, and the like of the chip 5. In the present embodiment, since the blade portion 13 protrudes from the main surface 9, the molding die 33 has a recess 47 r that retreats from the surface corresponding to the main surface 9.
- the gate 53 is located at a height between the upper surface and the lower surface of the mold 33 and is present at a portion surrounded by the outer peripheral surface. Specifically, the gate 53 opens at the mounting hole forming surface 33 a corresponding to the inner surface of the mounting hole 25 of the mold 33. More specifically, the gate 53 opens at a position corresponding to the insertion portion 29 of the mounting hole 25 (the tip side of the protruding portion 41p) on the mounting hole forming surface 33a.
- the gate 53 is configured as a so-called ring gate, for example, and is open over 360 ° around the z-axis.
- the raw material 31 supplied to the runner 49 is injected through the gate 53. Specifically, the raw material 31 flows from the center side of the cavity 47 to the outer peripheral side. In other words, it flows from the mounting hole 25 to the plurality of cutting blades 19.
- the runner 49 is a disc-shaped flow path, for example, corresponding to the gate 53 being a ring gate as described above.
- the size of the runner 49 in the thickness direction (z-axis direction) may be different from that of the gate 53 or may be the same.
- the sprue 51 communicates with the runner 49 and opens on the outer surface of the molding die 33.
- the sprue 51 extends, for example, in the thickness direction (z-axis direction), and is formed in a tapered shape so that the outer side of the mold 33 is reduced in diameter.
- the molding die 33 is divided into, for example, the top, bottom, left and right with respect to the cavity 47, and has a total of four split dies 41. That is, the mold 33 includes a first main surface split mold 41A that constitutes one main surface 9 side of the chip 5, a second main surface split mold 41B that constitutes the other main surface 9 side of the chip 5, and a chip. 5 and two side surface split molds 41 ⁇ / b> C constituting the outer peripheral side.
- the sprue 51 described above is provided, for example, in the first main surface split mold 41A.
- the runner 49 is configured, for example, between the first main surface split mold 41A and the second main surface split mold 41B.
- the first main surface split mold 41A and the side split mold 41C are divided, for example, along a ridge line 47a corresponding to the cutting edge 19 in the cavity 47, and a mating surface 47b that is a boundary (boundary portion) between them is It is connected to the ridgeline 47a.
- the mating surface 47b of the first main surface split mold 41A or the second main surface split mold 41B and the side split mold 41C intersects the surface corresponding to the rake face 15 and the surface corresponding to the flank face 17.
- the two virtual surfaces VS extended to the side are considered, they are located between the two virtual surfaces VS (excluding the position matching the virtual surface VS).
- the two side surface split molds 41C are divided, for example, at the center of the short side in plan view, and the mating surfaces of both are connected to the center of the short side.
- the cutting tool tip 5 according to the present embodiment is located between the pair of main surfaces 9 (upper surface and lower surface) and the pair of main surfaces 9 and connects the pair of main surfaces 9.
- a base material having four side surfaces 11 is provided, and a gate mark 30 is located at a height between a pair of main surfaces 9 in the base material and surrounded by the outer peripheral surface 12.
- the cutting tool tip 5 according to the present embodiment has a cutting edge 14 and a hole (attachment hole 25) in the base material 6, and the gate mark 30 is located in the attachment hole 25. is doing.
- the gate trace 30 interferes with the work material as in the case where the gate trace 30 is located on the side surface 11, for example. That is, the possibility that the gate mark 30 adversely affects the cutting performance is reduced.
- the gate mark 30 is in a region where the possibility of adversely affecting the cutting performance is low (in the mounting hole 25), there are few design restrictions in the region. As a result, for example, the gate 53 can be provided at an appropriate position in consideration of the flow of the raw material 31.
- the gate mark 30 is separated from the surface in contact with the holder 3. Therefore, it is possible to avoid the smoothness of the surface of the chip 5 that contacts the holder 3 from being deteriorated by the gate mark 30. Therefore, the chip 5 can be stably attached to the holder 3.
- the mounting hole 25 which is a fixing hole is a first portion (one receiving portion 27) located on the first opening (one opening 26) side of the mounting hole 25. ) And a second part (insertion portion 29) that is narrower than the first part and located deeper than the first part, and a gate mark 30 is provided in the second part. ing.
- the screw head 7b that must be brought into contact with the chip 5 is brought into contact with the non-arranged region (receiving portion 27) of the gate mark 30;
- the male screw portion 7 a that does not necessarily need to contact the chip 5 can be located in the arrangement region (insertion portion 29) of the gate mark 30.
- the mounting hole 25 is a through hole.
- the mounting hole 25 has a third portion (the other receiving portion 27) located on the second opening (the other opening 26) side opposite to the first opening (the one opening 26).
- the second part (insertion part 29) is located between the first part (one receiving part 27) and the third part.
- the gate trace 30 is provided at a position away from the surface (both main surfaces 9) of the chip 5, the possibility that the gate trace 30 adversely affects the cutting performance is further reduced.
- the effect of separating the male screw portion 7a from the gate trace 30 described above is exhibited even when the chip 5 is fixed to the holder 3 in any of the upper and lower directions.
- the surface roughness of the gate mark 30 is larger than the area adjacent to the gate mark 30 (for example, the first part: the receiving part 27).
- the insertion portion 29 has a larger surface area ratio with respect to the occupied area or the projected area than the receiving portion 27, and heat dissipation is improved.
- heat accumulated in the base material 6 with cutting can be suitably dissipated. This effect is exhibited not only when the gate trace 30 (base material 6) is exposed, but also when the gate trace 30 is covered with the coating layer. For example, if the surface of the coating layer is rough due to the influence of the surface roughness of the gate trace 30, the surface area of the coating layer increases and heat dissipation is improved.
- the cutting edge portion 14 is provided at a position farthest from the gate mark 30 in the axial direction of the mounting hole 25.
- the possibility that the gate mark 30 adversely affects the cutting performance can be further reduced.
- the molding accuracy of the cutting edge portion 14 is improved. Specifically, for example, it is as follows. In the injection molding, as described with reference to FIG. 7D, the raw material 31 is solidified while applying a relatively high pressure to the raw material 31. As a result, when the raw material 31 is solidified and its volume is reduced and a gap is generated between the raw material 31 and the inner surface of the mold 33, the raw material 31 is further pushed in. At this time, the amount of deviation of the solidified raw material 31 with respect to the molding die 33 increases as the distance from the gate 53 increases. However, in this embodiment, since the cutting edge part 14 is located in the position away from the gate 53, a possibility that the shaping
- the gate mark 30 when viewed from the direction along the axial direction (z-axis direction) of the mounting hole 25, the gate mark 30 has an annular shape surrounding the axis of the mounting hole 25.
- the effect of improving the heat dissipation described above is exhibited over the entire circumference of the mounting hole 25.
- the manufacturing process since the raw material 31 flows from the gate 53 provided as a ring gate in all directions, the generation of the weld line caused by the joining of the raw material 31 is suppressed.
- the direction in which the gate mark 30 protrudes is the direction in which the cutting edge 19 in the cutting edge portion 14 protrudes ( It is inclined with respect to the z-axis direction).
- the stress in the protruding direction is hardly transmitted between the cutting edge 19 and the gate mark 30.
- the possibility that the chip 5 is deformed such that the gate mark 30 is pressed against the screw 7 or the like, or that unintended stress is transmitted from the gate mark 30 to the cutting blade 19 is reduced.
- the cutting tool 1 includes the tip 5 as described above and the holder 3 to which the tip 5 is fixed. Further, the chip 5 is fixed to the holder 3 by a screw 7 inserted into the mounting hole 25.
- the hole (mounting hole 25) provided with the gate mark 30 can be used for mounting the chip 5.
- the mounting hole 25 for mounting the chip 5 can be used as a hole for arranging the gate mark 30, and it is not necessary to provide a hole for hiding the gate mark 30.
- the chip 5 can be simplified.
- the screw 7 and the gate trace 30 are not in contact with each other.
- the screw 7 is engaged with the base material 6 outside the gate mark 30.
- “outward” means a direction approaching the opening 26 in the mounting hole 25.
- the possibility that the gate trace 30 adversely affects the mounting of the chip 5 is reduced. Moreover, the possibility that the male screw portion 7a of the screw 7 is damaged by the gate mark 30 is reduced. As a result, for example, the possibility that the male screw portion 7a cannot be reused is reduced.
- the tip 5 that is generally a rectangular parallelepiped and forms an end mill is taken as an example.
- the position of the gate mark 30 of the first embodiment is applicable to other various cutting tool tips. Below, some are illustrated.
- FIG. 10A is a perspective view showing a cutting tool tip 205 according to the second embodiment.
- the chip 205 is a substantially triangular chip in plan view, and is used, for example, as a bite chip.
- the tip 205 has a pair of main surfaces 209 and three side surfaces 211, and three blade portions 213 (this embodiment) are formed at corners of one of the pair of main surfaces 209 and the three side surfaces 211. In the form, it is the same as the cutting edge portion). Three blade portions 213 may be formed at the corners of the other main surface 209 and the three side surfaces 211.
- the blade part 213 includes, for example, a rake face 215 made of a land parallel to a central portion of the main surface 209, a flank face 217 formed by the side face 211, and a cutting edge 219 (and a corner 221) that intersect with these. ).
- the blade part 213 may be comprised by the corner
- the chip 205 has a mounting hole 225.
- FIG. 10B is a cross-sectional view of a molding die 233 for forming a molded body to be the chip 205, and corresponds to the Xb-Xb line in FIG.
- FIG. 10C is a plan view showing a part of the molding die 233 (side split mold 241C).
- a cavity 247 corresponding to the chip 205 and a runner 249 communicating with the cavity 247 are formed.
- the gate 253 connecting the cavity 247 and the runner 249 is, for example, in the insertion portion (a portion having a constant diameter in the penetration direction) of the mounting hole forming surface 233a that forms the inner surface of the mounting hole 225, as in the first embodiment. It is provided in a ring shape in the corresponding region.
- the gate mark is located at the center of the chip 205 in the thickness direction or below the center, and the blade part 213 (cutting edge part) is provided at the position farthest from the gate mark in the axial direction of the mounting hole 225. Further, although different from the illustrated example, if receiving portions are provided at both ends of the mounting hole 225, the direction in which the gate mark protrudes in the longitudinal section is the direction in which the cutting edge 219 of the blade 213 protrudes (oblique 45 °). Inclined with respect to (upward).
- the gate 253 may be separated from the main surface 209 where the blade portion 213 is not provided. In this case, for example, as described in the first embodiment, it is possible to avoid the smoothness of the surface of the chip 5 that contacts the holder 3 from being deteriorated by the gate mark.
- Mold 233 may be appropriately divided.
- the mold 233 is divided along the ridge line 247a (FIG. 10B) corresponding to the cutting edge 219, as in the first embodiment, and the first main surface split mold 241A and the second main surface split mold. 241B and three side surface split molds 241C.
- FIG. 11A is a perspective view showing a cutting tool tip 305 according to the third embodiment.
- the chip 305 is a substantially hexagonal chip in a plan view, and is used, for example, as a face milling chip.
- the chip 305 has a pair of main surfaces 309 and six side surfaces 311, and twelve blade portions 313 are formed at corners of the pair of main surfaces 309 and the six side surfaces 311. Yes.
- the hexagon has a 120 ° rotationally symmetric shape, and three corners at 120 ° rotationally symmetric positions are smaller than the other three corners.
- Two cutting blades 319 connected by a corner 321 located at a relatively small corner are used simultaneously, and constitute a cutting blade portion 314.
- the rake face 315 extends from the central side of the main surface 309 and extends so as to rise at the outer peripheral edge of the main surface 309, and the flank 317 continues from the central region in the thickness direction of the side surface 311 and The cutting edge 319 extends beyond the center side and is higher than the center side of the main surface 309.
- the chip 305 has a mounting hole 325.
- FIG. 11B is a cross-sectional view of a molding die 333 for forming a molded body to be the chip 305, and corresponds to the line XIb-XIb in FIG.
- FIG. 11C is a plan view showing a part of the molding die 333 (side split mold 341C).
- a cavity 347 corresponding to the chip 305 and a runner 349 communicating with the cavity 347 are formed.
- the gate 353 that connects the cavity 347 and the runner 349 is provided in a ring shape in a region corresponding to the insertion portion of the mounting hole forming surface 333a that forms the inner surface of the mounting hole 325, for example, as in the first embodiment. ing.
- the gate mark is located at the center of the chip 305 in the thickness direction, and the blade part 313 (cutting edge part 314) is provided at a position farthest from the gate mark in the axial direction of the mounting hole 325.
- the direction in which the gate mark protrudes is inclined with respect to the direction in which the cutting edge 319 of the blade portion 313 protrudes (oblique vertical direction).
- Mold 333 may be divided as appropriate.
- the molding die 333 is divided along the ridge line 347a (FIG. 11B) corresponding to the cutting edge 319, as in the first embodiment, and the first main surface dividing die 341A and the second main surface dividing die. 341B and three side split molds 341C are provided.
- the three side surface split molds 341C may be divided, for example, at positions corresponding to the corners 321 of the chip 305 as shown in the figure, or different from the figure, corresponding to the center of each side of the chip 305. It may be divided at a position.
- FIG. 12A is a perspective view showing a cutting tool tip 405 according to the fourth embodiment.
- the cutting edge is located at the corner between the main surface and the outer peripheral surface, whereas in the tip 405, the cutting edge is located on the outer peripheral surface.
- the above-described gate trace position may be applied. Specifically, it is as follows.
- the chip 405 is a roughly triangular chip in plan view, and is used, for example, as a chip for a grooving tool.
- the tip 405 generally has a pair of main surfaces 409 and three side surfaces 411 (outer peripheral surface 412), and three blade portions 413 (cut in this embodiment) at corners of the three side surfaces 411. The same as the blade part).
- the blade portion 413 includes, for example, a concave rake face 415 positioned on the corner side of one side face 411, and a relief face 417 that is a part formed by chamfering another side face 411 continuous to the rake face 415, It has a cutting edge 419 located at the intersection of the rake face 415 and the flank face 417.
- the cutting edge 419 extends in the thickness direction of the tip 405.
- the chip 405 has a mounting hole 425.
- FIG. 12B is a cross-sectional view of a molding die 433 for forming a molded body to be the chip 405, and corresponds to the XIIb-XIIb line in FIG.
- FIG. 12C is a plan view showing a part of the molding die 433 (side split mold 441C).
- a cavity 447 corresponding to the chip 405 and a runner 449 communicating with the cavity 447 are formed.
- the gate 453 that connects the cavity 447 and the runner 449 is provided in a ring shape in a region corresponding to the insertion portion of the mounting hole forming surface 433a that forms the inner surface of the mounting hole 425, for example, as in the first embodiment. ing.
- the blade portion 413 (cutting blade portion) is not provided at the position farthest from the gate mark in the axial direction of the mounting hole 425.
- the direction in which the gate mark protrudes is not inclined with respect to the direction in which the cutting edge 419 of the blade portion 413 protrudes (the left-right direction in this embodiment).
- the gate 453 may be provided at an appropriate position in the insertion portion that extends from the receiving portion to the main surface on the opposite side of the receiving portion.
- the cavity 447 is provided on the center side in the thickness direction.
- Mold 433 may be appropriately divided.
- the mold 433 is divided along the ridge line 447a (FIG. 12C) corresponding to the cutting edge 419, as in the other embodiments, and the first main surface split mold 441A and the second main surface split mold. 441B and three side surface split molds 441C.
- the surface constituting the ridge line 447a appears in a cross-sectional view along the main surface 409.
- FIG. 13A is a cross-sectional view showing a part of the tip of an insert-type cutting tool 501 according to the fifth embodiment.
- the cutting tool 501 is different from the cutting tool 1 of the first embodiment in that the tip 505 is attached to the holder 503 by so-called clamping. Specifically, it is as follows.
- the cutting tool 501 has, for example, a clamp member 504 for clamping the tip 505 and a screw 507 for fastening the clamp member 504 to the holder 503 in addition to the holder 503 and the tip 505.
- the clamp member 504 has, for example, a contact portion 504a into which the tip is inserted into the mounting recess 525 (hole) of the chip 505.
- the contact portion 504a can contact the inner peripheral surface of the mounting recess 525 to position the chip 505 in the left-right direction on the paper surface, and can contact the upper surface of the chip 505 to position the chip 505.
- the clamp member 504 has a sliding portion 504b that is slidable with respect to the inclined surface 503a formed on the holder 503.
- the inclined surface 503a is located on the opposite side of the chip 505 with the female screw portion 503b formed on the holder 503 interposed therebetween, and faces the opposite side of the chip 505, and further away from the chip 505 toward the lower side. Inclined.
- the screw 507 When the chip 505 is fixed to the holder 503, the screw 507 is inserted into the clamp member 504 from above, and the male screw portion 507a of the screw 507 is screwed into the female screw portion 503b of the holder 503.
- the clamp member 504 receives a downward force from the screw head 507b of the screw 507.
- a downward force is applied to the upper surface of the chip 505 by the contact portion 504a.
- the clamp member 504 tries to move in the direction indicated by the arrow y6.
- the hole for fixing the chip 505 (attachment recess 525) does not need to be a through hole, and the hole is also a recess in this embodiment.
- the hole portion of the chip 505 may be a through hole.
- FIG. 13B is a cross-sectional view of a molding die 533 for forming a molded body that becomes the chip 505.
- a cavity 547 corresponding to the chip 505 and a sprue 551 communicating with the cavity 547 are formed.
- a runner may be provided.
- the gate 553 that connects the cavity 447 and the sprue 551 is provided on the mounting recess forming surface 533a that forms the inner surface of the mounting recess 525, for example, as in the other embodiments.
- the mounting recess forming surface 533a includes a surface that forms the bottom surface of the mounting recess 525, corresponding to the mounting recess 525 being a recess, and the gate 553 is open to the surface that forms the bottom surface. Yes.
- FIG. 13B illustrates a case where the image is divided into two at the center in the vertical direction, and the dividing surface is positioned on the side surface of the chip 505.
- the division may be performed along the ridgeline constituting the cutting edge.
- FIG. 13C is a cross-sectional view showing a molded body 535 formed by the mold 533 of FIG. 13B.
- the molded body 535 has a portion that becomes the chip 505 and an unnecessary portion, as in the other embodiments. However, in the molded body 535, the unnecessary portion protrudes from the bottom surface of the recess that becomes the mounting recess 525. Then, unnecessary parts in the molded body 535 are removed, the molded body 535 is baked, and the like, and the chip 505 is formed.
- FIG. 13D is a cross-sectional view of the chip 505 formed by removing unnecessary portions.
- the gate trace 530 is formed on a part (for example, the center) of the bottom surface of the mounting recess 525.
- the blade part 513 (cut blade part) may be comprised by the ridgeline of the upper surface (main surface 509) and the side surface 511 similarly to 2nd Embodiment (FIG. 10 (a)), for example. .
- the mounting holes 25, 225, 325 and 425 and the mounting recess 525 are examples of holes.
- the pair of receiving portions 27 is an example of a first part and a third part.
- the insertion part 29 is an example of a second part.
- the present invention is not limited to the above embodiment, and may be implemented in various modes.
- the cutting tool is not limited to the insert type, and may be one in which the chip is brazed. Even in the brazed tip, if the gate mark is located in the hole, the possibility that the gate mark adversely affects the cutting performance is reduced.
- the chip attaching / detaching method may be a combination of a screw and a clamp.
- the hole portion of the chip may have no taper portion (screw receiving portion) as exemplified in the fifth embodiment. The same applies to the case where fixing is performed with screws (in the case of through holes from another viewpoint).
- the gate mark may come into contact with a screw or a clamp member inserted into the hole. Even in this case, for example, the possibility that the gate trace interferes with the work material is reduced.
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Manufacturing & Machinery (AREA)
- Powder Metallurgy (AREA)
- Milling Processes (AREA)
- Cutting Tools, Boring Holders, And Turrets (AREA)
- Moulds For Moulding Plastics Or The Like (AREA)
Abstract
A tip for a cutting tool, the tip having a base material that has an upper surface, a lower surface, and an outer peripheral surface positioned between the upper surface and the lower surface. A gate mark is positioned at a site surrounded by the outer peripheral surface, at a height in between the upper surface and the lower surface of the base material.
Description
本態様は、切削工具の刃部を構成するチップ、切削工具及びその製造方法に関する。
This aspect relates to a chip constituting a blade part of a cutting tool, a cutting tool, and a manufacturing method thereof.
インサート式(刃先交換式)切削工具に装着されて刃部を構成する、いわゆるインサート(スローアウェイチップ)が知られている。このような切削工具用チップ(以下、単に「チップ」ということがある。)は、一般に、比較的硬質の材料からなる原料粉末と、この硬質の原料粉末の結合相成分となる原料粉末とを混合したものを型によってプレスして成形し、その後、焼成することによって形成されている。
A so-called insert (throw away tip) is known which is mounted on an insert type (blade tip exchange type) cutting tool to constitute a blade part. Such a cutting tool tip (hereinafter, simply referred to as “chip”) generally includes a raw material powder made of a relatively hard material and a raw material powder that becomes a binder phase component of the hard raw material powder. The mixture is pressed by a mold and molded, and then fired.
特開平4-283009号公報(特許文献1)では、プレスに代えて、成形型の内部空間に原料を射出する射出成形によって原料を成形することを提案している。成形型の内部空間は、一般に、製品(ここではチップ)を形成するキャビティ(製品部)と、キャビティに原料を供給するためのランナー等を含んでいる。キャビティとランナーとの境界に位置する開口は、ゲートと呼ばれている。特許文献1では、このゲートが、チップの側面に位置している。
Japanese Laid-Open Patent Publication No. 4-283209 (Patent Document 1) proposes forming the raw material by injection molding in which the raw material is injected into the internal space of the mold instead of the press. The inner space of the mold generally includes a cavity (product part) for forming a product (here, a chip), a runner for supplying a raw material to the cavity, and the like. The opening located at the boundary between the cavity and the runner is called a gate. In Patent Document 1, the gate is located on the side surface of the chip.
上記のように、成形型の内部空間は、キャビティだけでなく、ランナーも含んでいるから、射出成形によって原料が成形されて得られる成形体は、チップとなる部分だけでなく、ランナー内の原料によって形成された不要部分も含んでいる。この不要部分は、成形体が成形型から取り出された後に、切断などによって切削工具用チップとなる部分から除去される。その除去の痕跡(ゲート跡)は、例えば、凸部、凹部若しくはこれらの組み合わせ及び/又は表面粗さを伴う。
As described above, since the inner space of the mold includes not only the cavity but also the runner, the molded product obtained by molding the raw material by injection molding is not only the part that becomes the chip, but also the raw material in the runner It also includes unnecessary portions formed by. This unnecessary portion is removed from the portion that becomes the cutting tool tip by cutting or the like after the molded body is taken out of the mold. The removal trace (gate trace) is accompanied by, for example, a convex portion, a concave portion or a combination thereof and / or a surface roughness.
一態様に係る切削工具用チップは、上面と、下面と、前記上面及び前記下面の間に位置する外周面とを有する母材を備えており、前記母材の前記上面及び前記下面の間の高さであって、前記外周面に囲まれた部位にゲート跡が位置している。
A cutting tool tip according to an aspect includes a base material having an upper surface, a lower surface, and an outer peripheral surface positioned between the upper surface and the lower surface, and the tip between the upper surface and the lower surface of the base material. A gate mark is located at a height and surrounded by the outer peripheral surface.
(用語の使い方)
以下の説明においては、切削工具等に関する用語を以下のように用いるものとする。 (How to use terms)
In the following description, terms relating to cutting tools and the like are used as follows.
以下の説明においては、切削工具等に関する用語を以下のように用いるものとする。 (How to use terms)
In the following description, terms relating to cutting tools and the like are used as follows.
刃部は、すくい面、逃げ面及び切刃からなる比較的小さい部分(例えばインサートの一部)を指す用語として用いられる。
The blade portion is used as a term indicating a relatively small portion (for example, a part of an insert) including a rake face, a flank face, and a cutting edge.
切刃部は、切削の際に同時に利用される1以上の刃部を指すものとする。従って、例えば、切刃部は、1つの刃部からなる場合、及びコーナ(ノーズ)を介して隣接する2つの刃部からなる場合等がある。
切 The cutting edge refers to one or more blades that are used simultaneously during cutting. Therefore, for example, the cutting blade portion may be composed of one blade portion, or may be composed of two blade portions adjacent to each other via a corner (nose).
切刃は、すくい面と逃げ面との稜線を指す用語として用いられる。ただし、実際の切刃は、切刃の丸みという用語があるように、微視的には線ではなく、その限りで、切刃は、面積乃至は体積を有している。
The cutting edge is used as a term indicating the ridge line between the rake face and the flank face. However, the actual cutting blade is not a line microscopically as the term “cutting blade roundness” exists, and the cutting blade has an area or a volume as long as it is.
すくい面及び逃げ面は、主として、切刃に最も近いすくい面及び逃げ面を指すものとする。なお、逃げ面は、いわゆるマージンを含んでいてもよいし、含んでいなくてもよい。
The rake face and flank face mainly refer to the rake face and flank face closest to the cutting edge. Note that the flank may or may not include a so-called margin.
穴部は、貫通孔及び凹部のいずれであってもよいものとする。また、穴部について開口部というときは、穴部のうち穴部が設けられている面における部分(穴部の入口)を指すものとする。
The hole may be either a through hole or a recess. In addition, when the hole portion is referred to as an opening portion, the portion of the hole portion on the surface where the hole portion is provided (inlet of the hole portion) is indicated.
<第1実施形態>
(切削工具の構成)
図1は、第1実施形態に係るインサート式の切削工具1を示す斜視図である。 <First Embodiment>
(Configuration of cutting tool)
FIG. 1 is a perspective view showing an insert-type cutting tool 1 according to the first embodiment.
(切削工具の構成)
図1は、第1実施形態に係るインサート式の切削工具1を示す斜視図である。 <First Embodiment>
(Configuration of cutting tool)
FIG. 1 is a perspective view showing an insert-
切削工具1は、概略軸状の部材であり、工作機械に取り付けられるホルダ3(シャンク)と、ホルダ3の先端側(紙面左側)の部分に着脱され、被削物に当接して実際に被削物を切削する1以上(図1の例では3つ)のチップ5とを有している。図示の例では、切削工具1はエンドミルであり、軸回りに回転されることによって、先端面及び先端の外周面において被削物を切削可能である。
The cutting tool 1 is a substantially shaft-shaped member that is attached to and detached from a holder 3 (shank) attached to a machine tool and a tip end side (left side of the paper) of the holder 3 and actually contacts a work piece. And one or more (three in the example of FIG. 1) chips 5 for cutting the work. In the example shown in the drawing, the cutting tool 1 is an end mill, and is capable of cutting a workpiece on the tip surface and the outer peripheral surface of the tip by being rotated about an axis.
チップ5のホルダ3に対する装着は、例えば、チップ5に挿通されたねじ7がホルダ3に形成された雌ねじ部(チップ5に隠れて不図示)に螺合することによってなされる。ホルダ3には、例えば、チップ5の複数の面(例えば1主面及び2側面)が当接する複数の面からなる凹部3rが形成されている。チップ5は、この凹部3rの面に当接することによって位置決めされている。
The mounting of the chip 5 to the holder 3 is performed, for example, by screwing the screw 7 inserted through the chip 5 into a female screw portion (not shown) hidden in the chip 5. The holder 3 is formed with, for example, a recess 3r composed of a plurality of surfaces with which a plurality of surfaces (for example, one main surface and two side surfaces) of the chip 5 abut. The chip 5 is positioned by contacting the surface of the recess 3r.
(チップの構成)
図2は、チップ5を示す斜視図である。図3(a)は、図2のIIIa-IIIa線における断面図である。 (Chip configuration)
FIG. 2 is a perspective view showing thechip 5. FIG. 3A is a cross-sectional view taken along line IIIa-IIIa in FIG.
図2は、チップ5を示す斜視図である。図3(a)は、図2のIIIa-IIIa線における断面図である。 (Chip configuration)
FIG. 2 is a perspective view showing the
図2及び図3(a)等においては、チップ5に対して固定して定義した直交座標系xyzを付している。以下の説明では、この座標系を参照して方向を説明することがある。チップ5は、いずれの方向が鉛直方向乃至は水平方向とされてもよく、また、z軸方向の寸法が比較的大きくされてもよいが、z軸方向を上下方向又は厚さ方向ということがある。また、チップ5について単に平面視という場合、z軸方向に見ることを指すものとする。
In FIG. 2 and FIG. 3A and the like, an orthogonal coordinate system xyz defined and fixed to the chip 5 is attached. In the following description, directions may be described with reference to this coordinate system. Any direction of the chip 5 may be a vertical direction or a horizontal direction, and the dimension in the z-axis direction may be relatively large. However, the z-axis direction is referred to as a vertical direction or a thickness direction. is there. Further, when the chip 5 is simply referred to as a plan view, it refers to viewing in the z-axis direction.
チップ5は、一体成形され、チップ5の形状を構成している母材6を含んでいる。そして、例えば、チップ5は、母材6のみからなり、又は母材6と母材6を覆うコーティング層(不図示)とからなる。なお、コーティング層が設けられる場合、コーティング層は、母材6の全面を覆っていてもよいし、母材6の一部のみを覆っていてもよい。コーティング層は、比較的薄く、巨視的にはチップ5の形状に殆ど影響を及ぼさない。
The chip 5 includes a base material 6 that is integrally formed and forms the shape of the chip 5. For example, the chip 5 includes only the base material 6 or includes the base material 6 and a coating layer (not shown) that covers the base material 6. When the coating layer is provided, the coating layer may cover the entire surface of the base material 6 or may cover only a part of the base material 6. The coating layer is relatively thin and has almost no influence on the shape of the chip 5 macroscopically.
これらの材料には、例えば、公知の種々のものが適用されてよい。例えば、母材6の材料は、超硬合金、ダイヤモンド焼結体、CBN(Cubic Boron Nitride)焼結体、狭義の
セラミック、サーメット、又は粉末冶金で形成される高速度工具鋼(粉末ハイス)である。また、コーティング層の材料は、例えば、ダイヤモンドライクカーボン、窒化チタン、窒化チタンカーバイト、窒化チタンアルミニウム、炭化チタン、窒化クロム、又は酸化アルミニウムである。 For example, various known materials may be applied to these materials. For example, the material of thebase material 6 is cemented carbide, diamond sintered body, CBN (Cubic Boron Nitride) sintered body, narrow speed ceramic, cermet, or high speed tool steel (powder high speed) formed by powder metallurgy. is there. The material of the coating layer is, for example, diamond-like carbon, titanium nitride, titanium nitride carbide, titanium aluminum nitride, titanium carbide, chromium nitride, or aluminum oxide.
セラミック、サーメット、又は粉末冶金で形成される高速度工具鋼(粉末ハイス)である。また、コーティング層の材料は、例えば、ダイヤモンドライクカーボン、窒化チタン、窒化チタンカーバイト、窒化チタンアルミニウム、炭化チタン、窒化クロム、又は酸化アルミニウムである。 For example, various known materials may be applied to these materials. For example, the material of the
チップ5は、例えば、概略直方体状に形成されており、1対の主面9(上面及び下面)と、当該1対の主面9の間に位置して、1対の主面9をつなぐ4つの側面11とを有している。なお、全ての側面11全体を外周面12ということがある。チップ5の寸法は適宜に設定されてよい。
The chip 5 is formed, for example, in a substantially rectangular parallelepiped shape, and is located between the pair of main surfaces 9 (upper surface and lower surface) and the pair of main surfaces 9 and connects the pair of main surfaces 9. It has four side surfaces 11. In addition, all the side surfaces 11 whole may be called the outer peripheral surface 12. The dimensions of the chip 5 may be set as appropriate.
平面視における長辺に位置する側面11は、例えば、全体として概ね外側に膨らんでいる。一方、平面視における短辺に位置する側面11は、例えば、全体として概ね、厚さ方向の中央側が最も低くなるように凹んでいる。なお、これらの形状は、強度確保や逃げ面の確保等の種々の観点から適宜に設定されてよい。
The side surface 11 positioned on the long side in plan view is, for example, generally bulging outward as a whole. On the other hand, the side surface 11 located on the short side in the plan view is generally recessed, for example, so that the center side in the thickness direction is lowest as a whole. Note that these shapes may be appropriately set from various viewpoints such as securing strength and securing a flank.
(切刃部の構成)
チップ5は、例えば、主面9の外周縁においてチップ5の厚さ方向(z軸方向)に突出している複数の切刃部14を有している。 (Configuration of cutting edge)
Thetip 5 has, for example, a plurality of cutting edge portions 14 that protrude in the thickness direction (z-axis direction) of the tip 5 at the outer peripheral edge of the main surface 9.
チップ5は、例えば、主面9の外周縁においてチップ5の厚さ方向(z軸方向)に突出している複数の切刃部14を有している。 (Configuration of cutting edge)
The
切刃部14は、例えば、1対の主面9それぞれに設けられるとともに、各主面9において、一の対角線上に位置する2つの角部に設けられている。平面視において、一方の主面9側の切刃部14が設けられた対角線と、他方の主面9側の切刃部14が設けられた対角線とは交差している。従って、チップ5は、z軸回りに180°回転させ、及び/又は、x軸回りに180°回転させることによって、4回使用できるようになっている。
The cutting edge portion 14 is provided, for example, on each of the pair of main surfaces 9, and is provided on each of the main surfaces 9 at two corner portions positioned on one diagonal line. In plan view, the diagonal line provided with the cutting edge portion 14 on the one main surface 9 side intersects with the diagonal line provided with the cutting edge portion 14 on the other main surface 9 side. Therefore, the chip 5 can be used four times by rotating 180 ° around the z axis and / or rotating 180 ° around the x axis.
各切刃部14は、例えば、被削材の切削に直接にあずかる長辺刃部13L及び短辺刃部13S(以下、単に「刃部13」といい、両者を区別しないことがある。)を有している。
Each cutting edge 14 is, for example, a long edge 13L and a short edge 13S (hereinafter simply referred to as “blade 13”, which are not directly distinguished from each other) that are directly involved in the cutting of the work material. have.
これら刃部13は、主面9と側面11との角部(すなわち、交差稜線部)に位置している。長辺刃部13L及び短辺刃部13Sは、平面視における長辺と短辺との角部をコーナ21(ノーズ)としてつながっている。
These blade portions 13 are located at corners (ie, intersecting ridge lines) between the main surface 9 and the side surface 11. The long edge part 13L and the short edge part 13S are connected with corners 21 (nose) at the corners of the long side and the short side in plan view.
各刃部13は、切削によって生じた切屑が流れるすくい面15と、切削仕上げ面との不必要な接触をさけるために逃がした逃げ面17と、すくい面15が逃げ面17につながる部分である切刃19とを有している。
Each blade portion 13 is a portion where the rake face 15 through which chips generated by cutting flow, the flank face 17 which escapes to avoid unnecessary contact with the finished surface, and the rake face 15 is connected to the flank face 17. And a cutting edge 19.
刃部13は、例えば、主面9の中央側に対して厚さ方向(z軸方向)に突出するように形成されている。具体的には、例えば、すくい面15は、主面9の中央側に連続しており、中央側の主面9から厚さ方向に立ち上がるように形成されている。また、例えば、逃げ面17は、側面11に連続しており、中央側の主面9を厚さ方向に超えて延びている。また、例えば、切刃19は、コーナ21側ほど主面9の中央側からの高さが高くなっている。
The blade portion 13 is formed, for example, so as to protrude in the thickness direction (z-axis direction) with respect to the center side of the main surface 9. Specifically, for example, the rake face 15 is continuous to the center side of the main surface 9 and is formed to rise in the thickness direction from the main surface 9 on the center side. For example, the flank 17 is continuous with the side surface 11 and extends beyond the central main surface 9 in the thickness direction. Further, for example, the cutting edge 19 has a height from the center side of the main surface 9 that is higher toward the corner 21 side.
図3(a)のような縦断面において、すくい面15及び逃げ面17の、厚さ方向(z軸方向)に対する傾斜の有無、傾斜方向及び傾斜角は適宜に設定されてよい。図示の例では、逃げ面17は、切刃19側ほど主面9の中央側に位置するように厚さ方向に対して傾斜している。図示の例とは異なり、例えば、逃げ面17は、厚さ方向に平行であったり、切刃19側ほど主面9の外周縁側に位置するように厚さ方向に傾斜したりしてもよい。
In the longitudinal section as shown in FIG. 3A, the presence / absence of the rake face 15 and the flank face 17 with respect to the thickness direction (z-axis direction), the inclination direction, and the inclination angle may be set as appropriate. In the illustrated example, the flank 17 is inclined with respect to the thickness direction so that the flank 17 is located closer to the center of the main surface 9 toward the cutting edge 19 side. Unlike the illustrated example, for example, the flank 17 may be parallel to the thickness direction, or may be inclined in the thickness direction so as to be positioned on the outer peripheral edge side of the main surface 9 toward the cutting edge 19 side. .
上記のように、本実施形態においては、刃部13は、主面9から突出しているから、チップ5は、主面9及び側面11を有する基部23と、基部23から突出する刃部13とを有していると捉えられてもよい。また、刃部13が主面9から突出していることから、本実施形態においては、外周面12の上端部および下端部の少なくとも一方に切刃19が形成されていると捉えられてもよい。
As described above, in the present embodiment, since the blade portion 13 protrudes from the main surface 9, the tip 5 includes the base portion 23 having the main surface 9 and the side surface 11, and the blade portion 13 protruding from the base portion 23. May be perceived as having Further, since the blade portion 13 protrudes from the main surface 9, in the present embodiment, it may be considered that the cutting blade 19 is formed on at least one of the upper end portion and the lower end portion of the outer peripheral surface 12.
(取付孔の構成)
チップ5は、穴部を有している。穴部は、例えば、貫通孔からなり、ねじ7などの固定部材が挿通される取付孔25である。図3(a)に示すように、取付孔25は、開口部26側(主面9側)に位置する受け部27と、その奥に位置する挿入部29とを有している。受け部27は、ねじ7のねじ頭7bを収容するとともにねじ頭7bが当接する部分であり、挿入部29は、ねじ7の雄ねじ部7aが挿通される部分である。受け部27は、取付孔25の貫通方向両側に設けられている。 (Configuration of mounting holes)
Thechip 5 has a hole. The hole is, for example, a mounting hole 25 made of a through hole and through which a fixing member such as the screw 7 is inserted. As shown in FIG. 3A, the attachment hole 25 has a receiving portion 27 located on the opening 26 side (main surface 9 side) and an insertion portion 29 located in the back thereof. The receiving portion 27 is a portion that receives the screw head 7 b of the screw 7 and abuts the screw head 7 b, and the insertion portion 29 is a portion through which the male screw portion 7 a of the screw 7 is inserted. The receiving portions 27 are provided on both sides of the mounting hole 25 in the penetrating direction.
チップ5は、穴部を有している。穴部は、例えば、貫通孔からなり、ねじ7などの固定部材が挿通される取付孔25である。図3(a)に示すように、取付孔25は、開口部26側(主面9側)に位置する受け部27と、その奥に位置する挿入部29とを有している。受け部27は、ねじ7のねじ頭7bを収容するとともにねじ頭7bが当接する部分であり、挿入部29は、ねじ7の雄ねじ部7aが挿通される部分である。受け部27は、取付孔25の貫通方向両側に設けられている。 (Configuration of mounting holes)
The
なお、本実施形態においては、取付孔25が一対の主面9の一方から他方にかけて設けられた貫通孔であり、開口部26が主面9に位置しているが、取付孔25の構成としてはこのような構成に限定されるものではない。例えば、穴部は、側面11に開口部26が位置する構成であってもよい。具体的には、取付孔25は、互いに反対側に位置する側面11の一方から他方にかけて設けられた貫通孔からなる構成であってもよい。
In the present embodiment, the mounting hole 25 is a through hole provided from one side of the pair of main surfaces 9 to the other, and the opening 26 is located on the main surface 9. Is not limited to such a configuration. For example, the hole may be configured such that the opening 26 is located on the side surface 11. Specifically, the mounting hole 25 may be configured by a through hole provided from one side of the side surface 11 located on the opposite side to the other side.
受け部27は、例えば、主面9側から挿入部29側へ縮径しつつ延びている。そして、挿入部29は、取付孔25において最も径が小さい部分となっている。受け部27の最大径は、ねじ頭7bの径以上である。また、挿入部29の径(受け部27の最小径)は、ねじ頭7bの径よりも小さく、かつ雄ねじ部7aの径よりも大きい。
The receiving portion 27 extends, for example, while reducing the diameter from the main surface 9 side to the insertion portion 29 side. The insertion portion 29 is a portion having the smallest diameter in the attachment hole 25. The maximum diameter of the receiving portion 27 is equal to or larger than the diameter of the screw head 7b. Further, the diameter of the insertion portion 29 (minimum diameter of the receiving portion 27) is smaller than the diameter of the screw head 7b and larger than the diameter of the male screw portion 7a.
(ゲート跡)
図3(b)は、図3(a)の領域IIIbの拡大図である。図3(c)は、取付孔25を
示す平面図である。 (Gate trace)
FIG. 3B is an enlarged view of region IIIb in FIG. FIG. 3C is a plan view showing theattachment hole 25.
図3(b)は、図3(a)の領域IIIbの拡大図である。図3(c)は、取付孔25を
示す平面図である。 (Gate trace)
FIG. 3B is an enlarged view of region IIIb in FIG. FIG. 3C is a plan view showing the
チップ5におけるゲート跡30は、母材における一対の主面9の間の高さであって、外周面12に囲まれた部位に位置している。本実施形態においては、ゲート跡30は取付孔25内に位置している。すなわち、後に詳述するように、チップ5の母材6は、成形型内に原料を射出する射出成形によって形成され、成形型のうちの母材6を形成するキャビティへは、取付孔25に位置するゲートから原料が注入される。
The gate mark 30 in the chip 5 is a height between the pair of main surfaces 9 in the base material, and is located at a portion surrounded by the outer peripheral surface 12. In the present embodiment, the gate mark 30 is located in the mounting hole 25. That is, as will be described in detail later, the base material 6 of the chip 5 is formed by injection molding in which a raw material is injected into a mold, and the cavity that forms the base material 6 of the mold is formed in the mounting hole 25. Raw material is injected from the gate located.
具体的には、ゲート跡30は、取付孔25のうち、挿入部29の内面に位置している。挿入部29の内面とねじ7の雄ねじ部7aとの間には、所定の余裕(隙間)が介在している。従って、ねじ7は、ゲート跡30に対して非接触の状態で、チップ5をホルダ3に対して固定することになる。また、ねじ7(ねじ頭7b)は、ゲート跡30よりも外方で、母材6と直接又はコーティング層を介して間接に、ねじ7の軸方向及び/又は径方向に係合することになる。
Specifically, the gate mark 30 is located on the inner surface of the insertion portion 29 in the mounting hole 25. A predetermined margin (gap) is interposed between the inner surface of the insertion portion 29 and the male screw portion 7 a of the screw 7. Therefore, the screw 7 fixes the chip 5 to the holder 3 in a non-contact state with respect to the gate mark 30. Further, the screw 7 (screw head 7b) is engaged with the base material 6 directly or indirectly through the coating layer in the axial direction and / or the radial direction of the screw 7 outside the gate mark 30. Become.
ゲート跡30の大きさは適宜に設定されてよい。例えば、図3(b)に示すように、ゲート跡30は、取付孔25の軸を含む断面(縦断面)において、挿入部29の貫通長さ(z軸方向)全体に亘って形成されている。ただし、ゲート跡30は、挿入部29の貫通長さの一部においてのみ形成されていてもよい。挿入部29の貫通長さの一部においてのみ形成されている場合には、ねじ頭7bがゲート跡30に当接する可能性を小さくできる。そのため、ねじ頭7bを安定して受け部27に当接させることができる。
The size of the gate mark 30 may be set as appropriate. For example, as shown in FIG. 3B, the gate mark 30 is formed over the entire penetrating length (z-axis direction) of the insertion portion 29 in the cross section (vertical cross section) including the axis of the mounting hole 25. Yes. However, the gate mark 30 may be formed only in a part of the penetration length of the insertion portion 29. When it is formed only in a part of the penetration length of the insertion portion 29, the possibility that the screw head 7b abuts on the gate mark 30 can be reduced. Therefore, the screw head 7b can be stably brought into contact with the receiving portion 27.
また、例えば、図3(c)に示すように、ゲート跡30は、挿入部29の全周に亘って形成されており、平面視において環状である。ただし、ゲート跡30は、挿入部29の周方向の一部においてのみ形成されていてもよい。また、例えば、特に図示しないが、ゲート跡30のz軸方向の位置及び/又は大きさは、挿入部29の全周に亘って一定である。ただし、ゲート跡30のz軸方向の位置及び/又は大きさは、挿入部29の周方向の位置によって異なっていてもよい。
Further, for example, as shown in FIG. 3C, the gate trace 30 is formed over the entire circumference of the insertion portion 29 and is annular in plan view. However, the gate trace 30 may be formed only in a part of the insertion portion 29 in the circumferential direction. For example, although not particularly illustrated, the position and / or size of the gate mark 30 in the z-axis direction is constant over the entire circumference of the insertion portion 29. However, the position and / or size of the gate mark 30 in the z-axis direction may vary depending on the circumferential position of the insertion portion 29.
本実施形態では、切刃部14は、図3(a)のような縦断面において、チップ5の厚さ方向(z軸方向)の端に位置している。従って、ゲート跡30を基準に考えると、切刃部14は、ゲート跡30から取付孔25の軸方向(別の観点ではz軸方向)に最も離れた位置に設けられている。
In the present embodiment, the cutting edge portion 14 is located at the end of the chip 5 in the thickness direction (z-axis direction) in the longitudinal section as shown in FIG. Therefore, considering the gate mark 30 as a reference, the cutting edge portion 14 is provided at a position farthest from the gate mark 30 in the axial direction of the attachment hole 25 (in another aspect, the z-axis direction).
また、縦断面において、1対の受け部27が傾斜していることから、挿入部29の内面は、切刃部14の切刃19が突出する方向(概ねz軸方向)に対して交差(例えば直交)する方向(y軸方向)に突出している。ひいては、挿入部29の内面に形成されているゲート跡30は、切刃部14の切刃19が突出する方向に対して交差する方向に突出している。
In addition, since the pair of receiving portions 27 are inclined in the longitudinal section, the inner surface of the insertion portion 29 intersects the direction in which the cutting blade 19 of the cutting blade portion 14 projects (generally the z-axis direction) ( For example, it protrudes in a direction (y-axis direction) orthogonal. As a result, the gate mark 30 formed on the inner surface of the insertion portion 29 protrudes in a direction intersecting the direction in which the cutting edge 19 of the cutting edge portion 14 protrudes.
なお、切刃部14の切刃19が突出する方向は、例えば、逃げ面15とすくい面17との中間の線(曲線の場合は近似直線でよい)が延びる方向によって規定されてよい。同様に、ゲート跡30(挿入部29の内面)が突出する方向も、1対の受け部27の中間の線が延びる方向によって規定されてよい。
It should be noted that the direction in which the cutting edge 19 of the cutting edge portion 14 protrudes may be defined by the direction in which an intermediate line between the flank 15 and the rake face 17 (which may be an approximate straight line in the case of a curve) extends. Similarly, the direction in which the gate mark 30 (the inner surface of the insertion portion 29) protrudes may also be defined by the direction in which the middle line of the pair of receiving portions 27 extends.
ゲート跡30は、一般に目視可能である。これは、例えば、ランナー等に形成された不要部分の除去方法にもよるが、除去時に加えられた力によって、不要部分が除去された面がその周囲の面よりも若干いびつに盛り上がることからである。及び/又は、例えば、不要部分が除去された面(例えば切断面)は、その周囲であって隣接する領域の、成形型の内面が転写された面と比べて表面粗さが異なり(一般には切断面の表面粗さの方が大きい)、ひいては、光の反射の仕方が異なることからである。
The gate trace 30 is generally visible. This is because, for example, depending on the method for removing unnecessary parts formed on the runner, etc., the surface from which the unnecessary parts are removed rises slightly from the surrounding surface due to the force applied during removal. is there. And / or, for example, the surface from which unnecessary portions have been removed (for example, a cut surface) has a surface roughness different from that of the surface around the adjacent region in which the inner surface of the mold is transferred (generally, This is because the surface roughness of the cut surface is larger) and, in turn, the way in which the light is reflected is different.
図3(b)及び図3(c)では、ゲート跡30における表面粗さが他の面(成形型の内面が転写された面)の表面粗さに比較して大きいことを模式的に(多少誇張して)示している。なお、ゲート跡30及び他の面の表面粗さの差は、当該差に起因する表面の見え方(例えば光沢)に現れやすい。従って、例えば、両者の表面粗さが異なるか否かを判断するときに、算術平均粗さ等を測定してまで両者の表面粗さを比較することは、多くの場合必要ない。
3B and 3C schematically show that the surface roughness of the gate mark 30 is larger than the surface roughness of the other surface (the surface on which the inner surface of the mold is transferred) ( Somewhat exaggerated). Note that the difference in surface roughness between the gate trace 30 and other surfaces tends to appear in the appearance of the surface (for example, gloss) due to the difference. Therefore, for example, when determining whether or not the surface roughness of the two is different, it is often unnecessary to compare the surface roughness of the two until the arithmetic average roughness or the like is measured.
チップ5が母材6のみからなる場合、ゲート跡30は取付孔25内に露出する。母材6の表面が不図示のコーティング層によって覆われる場合、ゲート跡30は、コーティング層に覆われていてもよいし、覆われずに取付孔25内に露出していてもよい。ゲート跡30がコーティング層に覆われている場合、コーティング層の厚さは、ゲート跡30を目視できない厚さとされてもよいし、依然としてゲート跡30を目視できる厚さとされてもよい。
When the chip 5 is composed only of the base material 6, the gate mark 30 is exposed in the mounting hole 25. When the surface of the base material 6 is covered with a coating layer (not shown), the gate mark 30 may be covered with the coating layer, or may be exposed in the mounting hole 25 without being covered. When the gate trace 30 is covered with the coating layer, the thickness of the coating layer may be a thickness at which the gate trace 30 cannot be seen, or a thickness at which the gate trace 30 can still be seen.
(チップの製造方法)
図4は、チップ5の製造方法を示すフローチャートである。図5(a)~図5(e)は、チップ5の製造方法の手順の概要を説明するための模式図である。製造方法は、図5(a)から図5(e)へ順に進行する。 (Chip manufacturing method)
FIG. 4 is a flowchart showing a method for manufacturing thechip 5. FIG. 5A to FIG. 5E are schematic diagrams for explaining the outline of the procedure of the manufacturing method of the chip 5. The manufacturing method proceeds in order from FIG. 5 (a) to FIG. 5 (e).
図4は、チップ5の製造方法を示すフローチャートである。図5(a)~図5(e)は、チップ5の製造方法の手順の概要を説明するための模式図である。製造方法は、図5(a)から図5(e)へ順に進行する。 (Chip manufacturing method)
FIG. 4 is a flowchart showing a method for manufacturing the
まず、図4において符号S301で示すとともに、図5(a)に示すように、チップ5の原料31を準備する。具体的には、例えば、主成分となる比較的硬質の原料粉末、この硬質の原料粉末の結合相成分となる原料粉末、これらの原料粉末に流動性を付与するとともに成形後の保形性を付与するためのバインダ等の有機物の混合などを行う。
First, the raw material 31 of the chip 5 is prepared as indicated by reference numeral S301 in FIG. 4 and as shown in FIG. Specifically, for example, a relatively hard raw material powder that is a main component, a raw material powder that is a binder phase component of this hard raw material powder, imparts fluidity to these raw material powders, and retains shape retention after molding. Mixing of organic substances such as a binder for imparting is performed.
チップ5が超硬合金からなる場合を例にとると、原料粉末は、主成分としての炭化タングステンと、結合相成分としてのコバルトと、炭化タンタル及び炭化チタンとを含んでいる。バインダ又はバインダに類似する役割を果たすものとしては、例えば、パラフィン又は適宜な種類の樹脂を挙げることができる。なお、チップ5が超硬合金に限定されないことは、既に述べたとおりである。
Taking the case where the chip 5 is made of cemented carbide as an example, the raw material powder includes tungsten carbide as a main component, cobalt as a binder component, tantalum carbide and titanium carbide. Examples of the binder or a role similar to the binder include paraffin or an appropriate type of resin. As described above, the tip 5 is not limited to the cemented carbide.
次に、図4において符号S302で示すとともに、図5(b)に示すように、成形型33内にチップ5の原料31を射出して充填する。すなわち、図4において符号S302で示す工程は、切削工具用チップとなる成形体を形成する成形工程である。成形型33内の形状は、チップ5となる成形体と概略同じの形状となっている。従って、射出された原料31が成形型33内で固化することによって、チップ5と概略同様の形状の成形体35(図5(c))が形成される。
Next, as indicated by reference numeral S302 in FIG. 4 and as shown in FIG. 5B, the raw material 31 of the chip 5 is injected and filled into the molding die 33. That is, the process indicated by reference numeral S302 in FIG. 4 is a molding process for forming a molded body to be a cutting tool chip. The shape in the molding die 33 is substantially the same as that of the molded body to be the chip 5. Therefore, when the injected raw material 31 is solidified in the molding die 33, a molded body 35 (FIG. 5C) having a shape substantially similar to that of the chip 5 is formed.
次に、図4において符号S303で示すとともに、図5(c)に示すように、成形型33から取り出された成形体35のうち、チップ5として不要な部分を除去する。当該不要な部分は、例えば、いわゆるスプルー及びランナー(後述)にて固化した部分である。除去は、適宜な方法によってなされてよいが、例えば、カッター37によるゲート53の切断によってなされる。
Next, as indicated by reference numeral S <b> 303 in FIG. 4 and as shown in FIG. 5C, an unnecessary portion as the chip 5 is removed from the molded body 35 taken out from the molding die 33. The unnecessary portion is, for example, a portion solidified by a so-called sprue and runner (described later). The removal may be performed by an appropriate method, for example, by cutting the gate 53 by the cutter 37.
次に、図4において符号S304で示すとともに、図5(d)に示すように、成形体35を焼成する(熱処理工程を行う。)。これにより、チップ5となる焼結体39(図5(e))が形成される。この際、原料31に流動性を付与するために加えられていたバインダは蒸発乃至は燃焼し、焼結体39から除去される。
Next, as shown in FIG. 4 by reference numeral S304 and as shown in FIG. 5D, the molded body 35 is fired (a heat treatment step is performed). As a result, a sintered body 39 (FIG. 5E) to be the chip 5 is formed. At this time, the binder added to impart fluidity to the raw material 31 evaporates or burns and is removed from the sintered body 39.
その後、図4において符号S305で示すとともに、図5(e)に示すように、焼結体39の切刃の研削乃至は研磨(ホーニング)を行って、切刃の丸み等を調整する。これにより、チップ5が得られる。ホーニングは、例えば、図5(e)で例示しているように、サンドブラストによって行われる。
Then, as indicated by reference numeral S305 in FIG. 4 and as shown in FIG. 5 (e), the cutting edge of the sintered body 39 is ground or polished (honed) to adjust the roundness of the cutting edge. Thereby, the chip 5 is obtained. Honing is performed, for example, by sandblasting as illustrated in FIG.
なお、上述の手順は、あくまで手順の一例の概略であり、適宜に変形されてよい。例えば、不要部分の除去(図5(c))は、焼成(図5(d))の後であってもよい。
Note that the above procedure is merely an outline of an example of the procedure, and may be modified as appropriate. For example, the removal of unnecessary portions (FIG. 5 (c)) may be after firing (FIG. 5 (d)).
(射出成形)
図6は、図4において符号S302で示した射出による成形工程を示すフローチャートである。図7(a)~図7(d)は、図5(b)の射出成形の手順を説明するための模式図である。射出成形は、図7(a)から図7(d)へ順に進行する。 (injection molding)
FIG. 6 is a flowchart showing a molding process by injection indicated by S302 in FIG. 7 (a) to 7 (d) are schematic diagrams for explaining the injection molding procedure of FIG. 5 (b). Injection molding proceeds in order from FIG. 7 (a) to FIG. 7 (d).
図6は、図4において符号S302で示した射出による成形工程を示すフローチャートである。図7(a)~図7(d)は、図5(b)の射出成形の手順を説明するための模式図である。射出成形は、図7(a)から図7(d)へ順に進行する。 (injection molding)
FIG. 6 is a flowchart showing a molding process by injection indicated by S302 in FIG. 7 (a) to 7 (d) are schematic diagrams for explaining the injection molding procedure of FIG. 5 (b). Injection molding proceeds in order from FIG. 7 (a) to FIG. 7 (d).
まず、図6において符号S401で示すとともに、図7(a)に示すように、複数の分割型(41:41A~41C)からなる成形型33の型閉じを行う。なお、ここでいう分割型は、例えば、固定型及び移動型の他、中子乃至はスライドコアを含む。
First, as indicated by reference numeral S401 in FIG. 6 and as shown in FIG. 7A, the mold 33 composed of a plurality of divided molds (41: 41A to 41C) is closed. The split type here includes, for example, a core or a slide core in addition to a fixed type and a movable type.
型閉じにより、図7(b)に示すように、複数の分割型41によって囲まれた空間が構成される。なお、このとき、成形型33内には、適宜な気体(例えば空気)が存在している。
By closing the mold, a space surrounded by a plurality of divided molds 41 is formed as shown in FIG. At this time, an appropriate gas (for example, air) exists in the mold 33.
型締め後、図6において符号S402で示すとともに、図7(c)に示すように、(狭義の)射出装置によって射出が行われる。具体的には、成形型33内に通じるスリーブ43(シリンダ)内の原料31が、スリーブ43内のプランジャ45によって成形型33内に押し出される。射出速度は、適宜に設定されてよく、適宜な変速制御がなされてもよい。
After the mold clamping, the injection is performed by the injection device (in a narrow sense) as indicated by reference numeral S402 in FIG. 6 and as shown in FIG. 7 (c). Specifically, the raw material 31 in the sleeve 43 (cylinder) communicating with the molding die 33 is pushed into the molding die 33 by the plunger 45 in the sleeve 43. The injection speed may be set as appropriate, and appropriate shift control may be performed.
原料31が成形型33内に射出されていく過程において、成形型33内の気体は適宜に成形型33の外部へ排出される。
In the process in which the raw material 31 is injected into the mold 33, the gas in the mold 33 is appropriately discharged to the outside of the mold 33.
図7(c)では、不図示のベントによって気体が排出される様子を矢印y1によって模式的に示している。なお、図7(c)では、全ての合わせ目から気体が排出されている。ただし、全ての合わせ目から気体が排出される必要はない。
FIG. 7C schematically shows a state in which the gas is discharged by a vent (not shown) by an arrow y1. In FIG. 7C, gas is discharged from all joints. However, it is not necessary to discharge gas from all joints.
図6において符号S403で示すとともに、図7(d)に示すように、原料31が成形型33内に略充填されると、射出成形は、(狭義の)射出工程から昇圧(増圧)工程に移行する。すなわち、成形型33内の原料31の圧力は、プランジャ45によって付与される圧力によって所定の圧力(終圧)まで昇圧される。その後、その終圧が維持される(保圧工程)。成形型33内に充填された原料31は、プランジャ45から圧力を受けつつ、成形型33に熱を奪われて凝固する。
As indicated by reference numeral S403 in FIG. 6 and as shown in FIG. 7D, when the raw material 31 is substantially filled in the mold 33, the injection molding is performed from the (narrow sense) injection step to the pressure increase (pressure increase) step. Migrate to That is, the pressure of the raw material 31 in the mold 33 is increased to a predetermined pressure (final pressure) by the pressure applied by the plunger 45. Thereafter, the final pressure is maintained (pressure holding step). The raw material 31 filled in the molding die 33 is solidified by receiving heat from the plunger 45 and depriving the molding die 33 of heat.
その後、不図示の型締装置によって成形型33の型開きが行われる。成形体35は、複数の分割型41のいずれかに残り、当該分割型41からは不図示のピンによって押し出される。
Thereafter, the mold 33 is opened by a mold clamping device (not shown). The molded body 35 remains in one of the plurality of split dies 41 and is pushed out from the split dies 41 by pins (not shown).
(成形型の構成)
図8は、成形型33を示す断面図である。図8においては、ハッチングを施した、いわゆる断面だけでなく、この断面より奥に位置する分割型41の合わせ面等も示している。図9は、成形型33の平面図である。これらは、いずれも成形型33を型閉状態で示している。 (Configuration of mold)
FIG. 8 is a cross-sectional view showing themold 33. In FIG. 8, not only a so-called cross section that is hatched but also a mating surface of the split mold 41 that is located behind the cross section is shown. FIG. 9 is a plan view of the mold 33. All of these show the mold 33 in a closed state.
図8は、成形型33を示す断面図である。図8においては、ハッチングを施した、いわゆる断面だけでなく、この断面より奥に位置する分割型41の合わせ面等も示している。図9は、成形型33の平面図である。これらは、いずれも成形型33を型閉状態で示している。 (Configuration of mold)
FIG. 8 is a cross-sectional view showing the
成形型33は、例えば、金型によって構成されている。図8に示すように、型閉じされた成形型33に構成される空間は、チップ5となる部分を形成するキャビティ47と、キャビティ47へ成形型33の外部から原料31を流れ込ませるためのランナー49及びスプルー51とを含む。また、成形型33は、ランナー49とキャビティ47とを接続する開口であるゲート(ゲート部)53を有している。
The molding die 33 is constituted by, for example, a mold. As shown in FIG. 8, the space formed in the closed mold 33 includes a cavity 47 that forms a portion to be the chip 5, and a runner for causing the raw material 31 to flow into the cavity 47 from the outside of the mold 33. 49 and sprue 51. The molding die 33 has a gate (gate portion) 53 that is an opening for connecting the runner 49 and the cavity 47.
キャビティ47の形状及び寸法は、基本的に、チップ5となる成形体35と概略同じ形状及び寸法とされている。すなわち、成形型33は、チップ5の一対の主面9、側面11、刃部13等に対応する面を有している。本実施形態では、刃部13は、主面9から突出していることから、成形型33は、主面9に対応する面から後退する凹部47rを有している。
The shape and dimensions of the cavity 47 are basically the same shape and dimensions as the molded body 35 that becomes the chip 5. That is, the mold 33 has surfaces corresponding to the pair of main surfaces 9, the side surfaces 11, the blade portions 13, and the like of the chip 5. In the present embodiment, since the blade portion 13 protrudes from the main surface 9, the molding die 33 has a recess 47 r that retreats from the surface corresponding to the main surface 9.
ゲート53は、上述したゲート跡30の説明から理解されるように、成形型33の、上面及び下面の間の高さに位置し、外周面に囲まれた部位に存在している。具体的には、ゲート53は、成形型33の、取付孔25の内面に対応する取付孔形成面33aにて開口している。より具体的には、ゲート53は、取付孔形成面33aのうち、取付孔25の挿入部29に対応する位置(突部41pの先端側)にて開口している。また、ゲート53は、例えば、いわゆるリングゲートとして構成されており、z軸回りの360°に亘って開口している。
As can be understood from the description of the gate mark 30 described above, the gate 53 is located at a height between the upper surface and the lower surface of the mold 33 and is present at a portion surrounded by the outer peripheral surface. Specifically, the gate 53 opens at the mounting hole forming surface 33 a corresponding to the inner surface of the mounting hole 25 of the mold 33. More specifically, the gate 53 opens at a position corresponding to the insertion portion 29 of the mounting hole 25 (the tip side of the protruding portion 41p) on the mounting hole forming surface 33a. The gate 53 is configured as a so-called ring gate, for example, and is open over 360 ° around the z-axis.
従って、ランナー49に供給された原料31は、ゲート53を介して注入される。具体的には原料31は、キャビティ47の中央側から外周側へ流れていくことになる。換言すれば、取付孔25から複数の切刃19へ流れていくことになる。
Therefore, the raw material 31 supplied to the runner 49 is injected through the gate 53. Specifically, the raw material 31 flows from the center side of the cavity 47 to the outer peripheral side. In other words, it flows from the mounting hole 25 to the plurality of cutting blades 19.
ランナー49は、例えば、上記のようにゲート53がリングゲートであることに対応して、円盤状の流路となっている。なお、ランナー49の厚さ方向(z軸方向)の大きさは、ゲート53と異なっていてもよいし、同一であってもよい。
The runner 49 is a disc-shaped flow path, for example, corresponding to the gate 53 being a ring gate as described above. The size of the runner 49 in the thickness direction (z-axis direction) may be different from that of the gate 53 or may be the same.
スプルー51は、ランナー49に通じるとともに、成形型33の外表面にて開口している。スプルー51は、例えば、厚さ方向(z軸方向)に延びており、成形型33の外部側が縮径するようにテーパ状に形成されている。
The sprue 51 communicates with the runner 49 and opens on the outer surface of the molding die 33. The sprue 51 extends, for example, in the thickness direction (z-axis direction), and is formed in a tapered shape so that the outer side of the mold 33 is reduced in diameter.
成形型33は、例えば、キャビティ47に対して上下左右に分割されて、合計4つの分割型41を有している。すなわち、成形型33は、チップ5の一方の主面9側を構成する第1主面分割型41Aと、チップ5の他方の主面9側を構成する第2主面分割型41Bと、チップ5の外周側を構成する2つの側面分割型41Cとを含んでいる。上述したスプルー51は、例えば、第1主面分割型41Aに設けられている。ランナー49は、例えば、第1主面分割型41Aと第2主面分割型41Bとの間に構成される。
The molding die 33 is divided into, for example, the top, bottom, left and right with respect to the cavity 47, and has a total of four split dies 41. That is, the mold 33 includes a first main surface split mold 41A that constitutes one main surface 9 side of the chip 5, a second main surface split mold 41B that constitutes the other main surface 9 side of the chip 5, and a chip. 5 and two side surface split molds 41 </ b> C constituting the outer peripheral side. The sprue 51 described above is provided, for example, in the first main surface split mold 41A. The runner 49 is configured, for example, between the first main surface split mold 41A and the second main surface split mold 41B.
第1主面分割型41Aと側面分割型41Cとは、例えば、キャビティ47における切刃19に対応する稜線47aに沿って分割されており、両者の境界(境界部)である合わせ面47bは、稜線47aにつながっている。
The first main surface split mold 41A and the side split mold 41C are divided, for example, along a ridge line 47a corresponding to the cutting edge 19 in the cavity 47, and a mating surface 47b that is a boundary (boundary portion) between them is It is connected to the ridgeline 47a.
第1主面分割型41A又は第2主面分割型41Bと側面分割型41Cとの合わせ面47bは、例えば、すくい面15に対応する面と逃げ面17に対応する面とをこれらが交差する側(切刃19に対応する稜線47a側)に延長した2つの仮想面VSを考えたときに、2つの仮想面VSの間(仮想面VSに一致する位置は除く)に位置している。
The mating surface 47b of the first main surface split mold 41A or the second main surface split mold 41B and the side split mold 41C, for example, intersects the surface corresponding to the rake face 15 and the surface corresponding to the flank face 17. When the two virtual surfaces VS extended to the side (the ridge line 47a side corresponding to the cutting edge 19) are considered, they are located between the two virtual surfaces VS (excluding the position matching the virtual surface VS).
2つの側面分割型41Cは、例えば、平面視における短辺の中央にて分割されており、両者の合わせ面は、短辺中央につながっている。
The two side surface split molds 41C are divided, for example, at the center of the short side in plan view, and the mating surfaces of both are connected to the center of the short side.
以上のとおり、本実施形態に係る切削工具用チップ5は、1対の主面9(上面及び下面)と、当該1対の主面9の間に位置して1対の主面9をつなぐ4つの側面11とを有する母材を備えており、母材における一対の主面9の間の高さであって、外周面12に囲まれた部位にゲート跡30が位置している。具体的には、本実施形態に係る切削工具用チップ5は、母材6に切刃部14と穴部(取付孔25)とを有しており、取付孔25内にゲート跡30が位置している。
As described above, the cutting tool tip 5 according to the present embodiment is located between the pair of main surfaces 9 (upper surface and lower surface) and the pair of main surfaces 9 and connects the pair of main surfaces 9. A base material having four side surfaces 11 is provided, and a gate mark 30 is located at a height between a pair of main surfaces 9 in the base material and surrounded by the outer peripheral surface 12. Specifically, the cutting tool tip 5 according to the present embodiment has a cutting edge 14 and a hole (attachment hole 25) in the base material 6, and the gate mark 30 is located in the attachment hole 25. is doing.
従って、例えば、ゲート跡30が側面11に位置する場合のように、ゲート跡30が被削材に干渉するおそれがない。すなわち、ゲート跡30が切削性能に悪影響を及ぼすおそれが低減される。また、ゲート跡30が切削性能に悪影響を及ぼすおそれが低い領域(取付孔25内)にあることから、当該領域内で設計上の制約が少ない。その結果、例えば、原料31の流れを考慮して適宜な位置にゲート53を設けることができる。
Therefore, there is no possibility that the gate trace 30 interferes with the work material as in the case where the gate trace 30 is located on the side surface 11, for example. That is, the possibility that the gate mark 30 adversely affects the cutting performance is reduced. In addition, since the gate mark 30 is in a region where the possibility of adversely affecting the cutting performance is low (in the mounting hole 25), there are few design restrictions in the region. As a result, for example, the gate 53 can be provided at an appropriate position in consideration of the flow of the raw material 31.
さらに、チップ5をホルダ3に取り付ける際に一対の主面9の一方がホルダ3に当接する場合においては、ゲート跡30がホルダ3に当接する面から離れる。そのため、チップ5におけるホルダ3に当接する面の平滑性がゲート跡30によって低下することが避けられる。従って、チップ5を安定してホルダ3に取り付けることができる。
Furthermore, when one of the pair of main surfaces 9 comes into contact with the holder 3 when the chip 5 is attached to the holder 3, the gate mark 30 is separated from the surface in contact with the holder 3. Therefore, it is possible to avoid the smoothness of the surface of the chip 5 that contacts the holder 3 from being deteriorated by the gate mark 30. Therefore, the chip 5 can be stably attached to the holder 3.
また、本実施形態では、固定用の穴部である取付孔25は、この取付孔25の第1開口部(一方の開口部26)側に位置している第1部位(一方の受け部27)と、該第1部位よりも幅が狭く、第1部位よりも奥に位置している第2部位(挿入部29)とを有しており、該第2部位にゲート跡30が設けられている。
Further, in the present embodiment, the mounting hole 25 which is a fixing hole is a first portion (one receiving portion 27) located on the first opening (one opening 26) side of the mounting hole 25. ) And a second part (insertion portion 29) that is narrower than the first part and located deeper than the first part, and a gate mark 30 is provided in the second part. ing.
従って、例えば、取付孔25に挿入されたねじ7によるチップ5の固定において、チップ5に当接させなければならないねじ頭7bをゲート跡30の非配置領域(受け部27)に当接させ、チップ5に当接させる必要が必ずしもない雄ねじ部7aをゲート跡30の配置領域(挿入部29)に位置させることができる。その結果、ねじ7とゲート跡30とが非接触の状態となるので、ゲート跡30がチップ5の固定に悪影響を及ぼすおそれを低減し、高精度にチップ5をホルダ3に対して位置決めすることができる。
Therefore, for example, in fixing the chip 5 with the screw 7 inserted into the mounting hole 25, the screw head 7b that must be brought into contact with the chip 5 is brought into contact with the non-arranged region (receiving portion 27) of the gate mark 30; The male screw portion 7 a that does not necessarily need to contact the chip 5 can be located in the arrangement region (insertion portion 29) of the gate mark 30. As a result, since the screw 7 and the gate trace 30 are in a non-contact state, the possibility that the gate trace 30 adversely affects the fixing of the chip 5 is reduced, and the chip 5 is positioned with respect to the holder 3 with high accuracy. Can do.
また、本実施形態において、取付孔25は貫通孔である。そして、取付孔25は第1開口部(一方の開口部26)とは反対側の第2開口部(他方の開口部26)側に位置している第3部位(他方の受け部27)を有しており、第2部位(挿入部29)は第1部位(一方の受け部27)と第3部位との間に位置している。
In the present embodiment, the mounting hole 25 is a through hole. The mounting hole 25 has a third portion (the other receiving portion 27) located on the second opening (the other opening 26) side opposite to the first opening (the one opening 26). The second part (insertion part 29) is located between the first part (one receiving part 27) and the third part.
従って、例えば、ゲート跡30は、チップ5の表面(両主面9)から離れた位置に設けられていることになるから、ゲート跡30が切削性能に悪影響を及ぼすおそれがより低減される。また、上述した雄ねじ部7aをゲート跡30から離す効果が、チップ5を上下のいずれの向きでホルダ3に対して固定した場合においても奏される。
Therefore, for example, since the gate trace 30 is provided at a position away from the surface (both main surfaces 9) of the chip 5, the possibility that the gate trace 30 adversely affects the cutting performance is further reduced. In addition, the effect of separating the male screw portion 7a from the gate trace 30 described above is exhibited even when the chip 5 is fixed to the holder 3 in any of the upper and lower directions.
また、本実施形態では、ゲート跡30(挿入部29)の表面粗さが、ゲート跡30に隣接する領域(例えば第1部分:受け部27)よりも大きい。
In this embodiment, the surface roughness of the gate mark 30 (insertion part 29) is larger than the area adjacent to the gate mark 30 (for example, the first part: the receiving part 27).
従って、例えば、挿入部29は、受け部27に比較して、占有面積乃至は投影面積に対して表面積の比が大きくなり、放熱性が向上する。その結果、例えば、切削に伴って母材6の内部に蓄積される熱を好適に放散させることができる。この効果は、ゲート跡30(母材6)が露出しているときはもちろん、ゲート跡30がコーティング層によって覆われている場合にも奏される。例えば、ゲート跡30の表面粗さの影響でコーティング層の表面が粗ければ、コーティング層の表面積が大きくなり、放熱性が向上する。また、コーティング層の表面が粗くなくても、ゲート跡30の表面が粗いことによってゲート跡30とコーティング層との接触面積が大きくなるから、母材6からコーティング層へ熱を伝え易くなり、ひいては、母材6の熱を放散させやすくなる。
Therefore, for example, the insertion portion 29 has a larger surface area ratio with respect to the occupied area or the projected area than the receiving portion 27, and heat dissipation is improved. As a result, for example, heat accumulated in the base material 6 with cutting can be suitably dissipated. This effect is exhibited not only when the gate trace 30 (base material 6) is exposed, but also when the gate trace 30 is covered with the coating layer. For example, if the surface of the coating layer is rough due to the influence of the surface roughness of the gate trace 30, the surface area of the coating layer increases and heat dissipation is improved. Even if the surface of the coating layer is not rough, the contact area between the gate mark 30 and the coating layer increases due to the rough surface of the gate mark 30, so that heat can be easily transferred from the base material 6 to the coating layer. It becomes easy to dissipate the heat of the base material 6.
また、本実施形態では、切刃部14が、ゲート跡30に対して取付孔25の軸方向に最も離れている位置に設けられている。
Further, in the present embodiment, the cutting edge portion 14 is provided at a position farthest from the gate mark 30 in the axial direction of the mounting hole 25.
従って、ゲート跡30が切削性能に悪影響を及ぼすおそれを更に低減することができる。また、製造工程に着目すると、切刃部14の成形精度が向上する。具体的には、例えば、以下のとおりである。射出成形においては、図7(d)を参照して説明したように、原料31に比較的高い圧力を付与しつつ原料31を凝固させる。その結果、原料31が凝固してその体積が縮小し、原料31と成形型33の内面との間に隙間が生じると、原料31はさらに押しこまれることになる。このとき、凝固した原料31の成形型33に対するずれ量は、ゲート53に近いほど大きく、ひいては、成形体35の成形精度は低下する。しかし、本実施形態では、ゲート53から離れた位置に切刃部14が位置していることから、そのようなずれによって切刃部14の成形精度が低下するおそれが低減される。
Therefore, the possibility that the gate mark 30 adversely affects the cutting performance can be further reduced. Further, when focusing on the manufacturing process, the molding accuracy of the cutting edge portion 14 is improved. Specifically, for example, it is as follows. In the injection molding, as described with reference to FIG. 7D, the raw material 31 is solidified while applying a relatively high pressure to the raw material 31. As a result, when the raw material 31 is solidified and its volume is reduced and a gap is generated between the raw material 31 and the inner surface of the mold 33, the raw material 31 is further pushed in. At this time, the amount of deviation of the solidified raw material 31 with respect to the molding die 33 increases as the distance from the gate 53 increases. However, in this embodiment, since the cutting edge part 14 is located in the position away from the gate 53, a possibility that the shaping | molding precision of the cutting edge part 14 may fall by such deviation | shift is reduced.
また、本実施形態では、取付孔25の軸方向(z軸方向)に沿った方向から見た場合に、ゲート跡30は取付孔25の軸を囲む環状である。
In this embodiment, when viewed from the direction along the axial direction (z-axis direction) of the mounting hole 25, the gate mark 30 has an annular shape surrounding the axis of the mounting hole 25.
従って、例えば、上述した放熱性向上の効果が取付孔25の全周に亘って奏される。また、例えば、製造工程に着目すると、リングゲートとして設けられたゲート53から全方位に向かって原料31が流れるから、原料31が合流することによって生じるウェルドラインの発生が抑制される。
Therefore, for example, the effect of improving the heat dissipation described above is exhibited over the entire circumference of the mounting hole 25. For example, when attention is paid to the manufacturing process, since the raw material 31 flows from the gate 53 provided as a ring gate in all directions, the generation of the weld line caused by the joining of the raw material 31 is suppressed.
また、本実施形態では、取付孔25の軸を含む断面(縦断面)において、ゲート跡30が突出している方向(y軸方向)は、切刃部14における切刃19が突出している方向(z軸方向)に対して傾斜している。
In the present embodiment, in the cross section (longitudinal cross section) including the axis of the mounting hole 25, the direction in which the gate mark 30 protrudes (y-axis direction) is the direction in which the cutting edge 19 in the cutting edge portion 14 protrudes ( It is inclined with respect to the z-axis direction).
従って、例えば、切刃19とゲート跡30との間で突出方向の応力が伝わりにくくなる。その結果、例えば、ゲート跡30がねじ7等に押し付けられるようなチップ5の変形が生じたり、ゲート跡30から意図しない応力が切刃19に伝達されたりするおそれが低減される。
Therefore, for example, the stress in the protruding direction is hardly transmitted between the cutting edge 19 and the gate mark 30. As a result, for example, the possibility that the chip 5 is deformed such that the gate mark 30 is pressed against the screw 7 or the like, or that unintended stress is transmitted from the gate mark 30 to the cutting blade 19 is reduced.
また、本実施形態では、切削工具1は、上記のようなチップ5と、チップ5が固定されているホルダ3とを備えている。さらに、チップ5が取付孔25に挿入されているねじ7によってホルダ3に固定されている。
In the present embodiment, the cutting tool 1 includes the tip 5 as described above and the holder 3 to which the tip 5 is fixed. Further, the chip 5 is fixed to the holder 3 by a screw 7 inserted into the mounting hole 25.
従って、ゲート跡30が設けられた穴部(取付孔25)を、チップ5の取り付けに用いることができる。別の観点では、チップ5の取り付けのための取付孔25を、ゲート跡30を配置するための穴部として利用でき、ゲート跡30を隠すための穴部をわざわざ設ける必要はない。その結果、例えば、チップ5の簡素化が図られる。
Therefore, the hole (mounting hole 25) provided with the gate mark 30 can be used for mounting the chip 5. From another viewpoint, the mounting hole 25 for mounting the chip 5 can be used as a hole for arranging the gate mark 30, and it is not necessary to provide a hole for hiding the gate mark 30. As a result, for example, the chip 5 can be simplified.
また、本実施形態では、ねじ7とゲート跡30とが非接触の状態である。別の観点では、ねじ7がゲート跡30よりも外方で母材6と係合している。ここで外方とは、取付孔25における開口部26に近づく方向を意味している。
In this embodiment, the screw 7 and the gate trace 30 are not in contact with each other. In another aspect, the screw 7 is engaged with the base material 6 outside the gate mark 30. Here, “outward” means a direction approaching the opening 26 in the mounting hole 25.
従って、既に述べたように、ゲート跡30がチップ5の取り付けに悪影響を及ぼすおそれが低減される。また、ゲート跡30によってねじ7の雄ねじ部7aが損傷するおそれが低減される。その結果、例えば、雄ねじ部7aを再利用できなくなるおそれが低減される。
Therefore, as described above, the possibility that the gate trace 30 adversely affects the mounting of the chip 5 is reduced. Moreover, the possibility that the male screw portion 7a of the screw 7 is damaged by the gate mark 30 is reduced. As a result, for example, the possibility that the male screw portion 7a cannot be reused is reduced.
<他の実施形態>
第1実施形態では、概ね直方体状であり、エンドミルを構成するチップ5を例に挙げた。ただし、第1実施形態のゲート跡30の位置は、他の種々の切削工具用チップに対して適用可能である。以下では、そのいくつかを例示する。 <Other embodiments>
In the first embodiment, thetip 5 that is generally a rectangular parallelepiped and forms an end mill is taken as an example. However, the position of the gate mark 30 of the first embodiment is applicable to other various cutting tool tips. Below, some are illustrated.
第1実施形態では、概ね直方体状であり、エンドミルを構成するチップ5を例に挙げた。ただし、第1実施形態のゲート跡30の位置は、他の種々の切削工具用チップに対して適用可能である。以下では、そのいくつかを例示する。 <Other embodiments>
In the first embodiment, the
<第2実施形態>
図10(a)は、第2実施形態に係る切削工具用チップ205を示す斜視図である。 Second Embodiment
FIG. 10A is a perspective view showing acutting tool tip 205 according to the second embodiment.
図10(a)は、第2実施形態に係る切削工具用チップ205を示す斜視図である。 Second Embodiment
FIG. 10A is a perspective view showing a
チップ205は、平面視において概略三角形のチップであり、例えば、バイトのチップとして用いられるものである。チップ205は、1対の主面209と、3つの側面211とを有しており、1対の主面209の一方と、3つの側面211との角部に3つの刃部213(本実施形態では切刃部と同じ。)が構成されている。なお、他方の主面209と3つの側面211との角部にも3つの刃部213が構成されていてもよい。
The chip 205 is a substantially triangular chip in plan view, and is used, for example, as a bite chip. The tip 205 has a pair of main surfaces 209 and three side surfaces 211, and three blade portions 213 (this embodiment) are formed at corners of one of the pair of main surfaces 209 and the three side surfaces 211. In the form, it is the same as the cutting edge portion). Three blade portions 213 may be formed at the corners of the other main surface 209 and the three side surfaces 211.
刃部213は、例えば、主面209の中央側の部分に平行なランドからなるすくい面215と、側面211により構成された逃げ面217と、これらの交差部である切刃219(及びコーナ221)とから構成されている。このように、刃部213は、主面又は側面に対して突出せずに、主面若しくは側面又はこれらに平行な面の角部によって構成されていてもよい。
The blade part 213 includes, for example, a rake face 215 made of a land parallel to a central portion of the main surface 209, a flank face 217 formed by the side face 211, and a cutting edge 219 (and a corner 221) that intersect with these. ). Thus, the blade part 213 may be comprised by the corner | angular part of the main surface or side surface, or a surface parallel to these, without protruding with respect to a main surface or a side surface.
また、チップ205は、取付孔225を有している。
Further, the chip 205 has a mounting hole 225.
図10(b)は、チップ205となる成形体を形成するための成形型233の断面図であり、図10(a)のXb-Xb線に対応している。図10(c)は、成形型233の一部(側面分割型241C)を示す平面図である。
FIG. 10B is a cross-sectional view of a molding die 233 for forming a molded body to be the chip 205, and corresponds to the Xb-Xb line in FIG. FIG. 10C is a plan view showing a part of the molding die 233 (side split mold 241C).
成形型233の内部には、チップ205に対応するキャビティ247と、キャビティ247に通じるランナー249とが形成されている。キャビティ247とランナー249とをつなぐゲート253は、例えば、第1実施形態と同様に、取付孔225の内面を形成する取付孔形成面233aの、挿入部(貫通方向において径が一定の部分)に対応する領域に、リング状に設けられている。
In the molding die 233, a cavity 247 corresponding to the chip 205 and a runner 249 communicating with the cavity 247 are formed. The gate 253 connecting the cavity 247 and the runner 249 is, for example, in the insertion portion (a portion having a constant diameter in the penetration direction) of the mounting hole forming surface 233a that forms the inner surface of the mounting hole 225, as in the first embodiment. It is provided in a ring shape in the corresponding region.
ゲート跡は、チップ205の厚さ方向の中央又は中央よりも下方に位置し、刃部213(切刃部)は、ゲート跡から取付孔225の軸方向に最も離れた位置に設けられる。また、図示の例とは異なるが、取付孔225の両端に受け部が設けられれば、縦断面において、ゲート跡が突出する方向は、刃部213の切刃219が突出する方向(斜め45°上方)に対して傾斜する。
The gate mark is located at the center of the chip 205 in the thickness direction or below the center, and the blade part 213 (cutting edge part) is provided at the position farthest from the gate mark in the axial direction of the mounting hole 225. Further, although different from the illustrated example, if receiving portions are provided at both ends of the mounting hole 225, the direction in which the gate mark protrudes in the longitudinal section is the direction in which the cutting edge 219 of the blade 213 protrudes (oblique 45 °). Inclined with respect to (upward).
このとき、ゲート253は、刃部213が設けられていない主面209から離れていてよい。この場合、例えば、第1の実施形態において説明したように、チップ5におけるホルダ3に当接する面の平滑性がゲート跡によって低下することが避けられる。
At this time, the gate 253 may be separated from the main surface 209 where the blade portion 213 is not provided. In this case, for example, as described in the first embodiment, it is possible to avoid the smoothness of the surface of the chip 5 that contacts the holder 3 from being deteriorated by the gate mark.
成形型233は適宜に分割されてよい。例えば、成形型233は、第1実施形態と同様に、切刃219に対応する稜線247a(図10(b))に沿って分割され、第1主面分割型241A、第2主面分割型241B及び3つの側面分割型241Cを有している。
Mold 233 may be appropriately divided. For example, the mold 233 is divided along the ridge line 247a (FIG. 10B) corresponding to the cutting edge 219, as in the first embodiment, and the first main surface split mold 241A and the second main surface split mold. 241B and three side surface split molds 241C.
<第3実施形態>
図11(a)は、第3実施形態に係る切削工具用チップ305を示す斜視図である。 <Third Embodiment>
FIG. 11A is a perspective view showing acutting tool tip 305 according to the third embodiment.
図11(a)は、第3実施形態に係る切削工具用チップ305を示す斜視図である。 <Third Embodiment>
FIG. 11A is a perspective view showing a
チップ305は、平面視において概略6角形のチップであり、例えば、正面フライスのチップとして用いられるものである。チップ305は、1対の主面309と、6つの側面311とを有しており、1対の主面309と6個の側面311との角部に12個の刃部313が構成されている。
The chip 305 is a substantially hexagonal chip in a plan view, and is used, for example, as a face milling chip. The chip 305 has a pair of main surfaces 309 and six side surfaces 311, and twelve blade portions 313 are formed at corners of the pair of main surfaces 309 and the six side surfaces 311. Yes.
6角形は、120°回転対称の形状とされており、また、120°回転対称の位置にある3つの角が他の3つの角よりも小さくされている。その相対的に小さい角に位置するコーナ321によってつながる2つの切刃319が同時に使用される切刃であり、切刃部314を構成している。
The hexagon has a 120 ° rotationally symmetric shape, and three corners at 120 ° rotationally symmetric positions are smaller than the other three corners. Two cutting blades 319 connected by a corner 321 located at a relatively small corner are used simultaneously, and constitute a cutting blade portion 314.
すくい面315は、主面309の中央側から連続するとともに主面309の外周縁で立ち上がるように延びており、逃げ面317は、側面311の厚み方向の中央領域から連続するとともに主面309の中央側を超えて延びており、切刃319は、主面309の中央側よりも高い位置にある。
The rake face 315 extends from the central side of the main surface 309 and extends so as to rise at the outer peripheral edge of the main surface 309, and the flank 317 continues from the central region in the thickness direction of the side surface 311 and The cutting edge 319 extends beyond the center side and is higher than the center side of the main surface 309.
また、チップ305は、取付孔325を有している。
Further, the chip 305 has a mounting hole 325.
図11(b)は、チップ305となる成形体を形成するための成形型333の断面図であり、図11(a)のXIb-XIb線に対応している。図11(c)は、成形型333の一部(側面分割型341C)を示す平面図である。
FIG. 11B is a cross-sectional view of a molding die 333 for forming a molded body to be the chip 305, and corresponds to the line XIb-XIb in FIG. FIG. 11C is a plan view showing a part of the molding die 333 (side split mold 341C).
成形型333の内部には、チップ305に対応するキャビティ347と、キャビティ347に通じるランナー349とが形成されている。キャビティ347とランナー349とをつなぐゲート353は、例えば、第1実施形態と同様に、取付孔325の内面を形成する取付孔形成面333aの、挿入部に対応する領域に、リング状に設けられている。
In the molding die 333, a cavity 347 corresponding to the chip 305 and a runner 349 communicating with the cavity 347 are formed. The gate 353 that connects the cavity 347 and the runner 349 is provided in a ring shape in a region corresponding to the insertion portion of the mounting hole forming surface 333a that forms the inner surface of the mounting hole 325, for example, as in the first embodiment. ing.
ゲート跡は、チップ305の厚さ方向の中央に位置し、刃部313(切刃部314)は、ゲート跡から取付孔325の軸方向に最も離れた位置に設けられる。また、縦断面において、ゲート跡が突出する方向は、刃部313の切刃319が突出する方向(斜め上下方向)に対して傾斜する。
The gate mark is located at the center of the chip 305 in the thickness direction, and the blade part 313 (cutting edge part 314) is provided at a position farthest from the gate mark in the axial direction of the mounting hole 325. In the longitudinal section, the direction in which the gate mark protrudes is inclined with respect to the direction in which the cutting edge 319 of the blade portion 313 protrudes (oblique vertical direction).
成形型333は適宜に分割されてよい。例えば、成形型333は、第1実施形態と同様に、切刃319に対応する稜線347a(図11(b))に沿って分割され、第1主面分割型341A、第2主面分割型341B及び3つの側面分割型341Cを有している。3つの側面分割型341C同士は、例えば、図示のように、チップ305のコーナ321に対応する位置にて分割されていてもよいし、図示とは異なり、チップ305の各辺の中央に対応する位置にて分割されていてもよい。
Mold 333 may be divided as appropriate. For example, the molding die 333 is divided along the ridge line 347a (FIG. 11B) corresponding to the cutting edge 319, as in the first embodiment, and the first main surface dividing die 341A and the second main surface dividing die. 341B and three side split molds 341C are provided. The three side surface split molds 341C may be divided, for example, at positions corresponding to the corners 321 of the chip 305 as shown in the figure, or different from the figure, corresponding to the center of each side of the chip 305. It may be divided at a position.
<第4実施形態>
図12(a)は、第4実施形態に係る切削工具用チップ405を示す斜視図である。 <Fourth embodiment>
FIG. 12A is a perspective view showing acutting tool tip 405 according to the fourth embodiment.
図12(a)は、第4実施形態に係る切削工具用チップ405を示す斜視図である。 <Fourth embodiment>
FIG. 12A is a perspective view showing a
上述した第1~第3実施形態は、主面と外周面との角部に切刃が位置していたのに対して、チップ405では、外周面に切刃が位置している。このような態様においても、既述のゲート跡の位置が適用されてよい。具体的には、以下のとおりである。
In the first to third embodiments described above, the cutting edge is located at the corner between the main surface and the outer peripheral surface, whereas in the tip 405, the cutting edge is located on the outer peripheral surface. Also in such an aspect, the above-described gate trace position may be applied. Specifically, it is as follows.
チップ405は、平面視において概略3角形のチップであり、例えば、溝切り(突切り)バイトのチップとして用いられるものである。チップ405は、概略、1対の主面409と、3つの側面411(外周面412)とを有しており、3つの側面411同士の角部に3つの刃部413(本実施形態では切刃部と同じ。)を有している。
The chip 405 is a roughly triangular chip in plan view, and is used, for example, as a chip for a grooving tool. The tip 405 generally has a pair of main surfaces 409 and three side surfaces 411 (outer peripheral surface 412), and three blade portions 413 (cut in this embodiment) at corners of the three side surfaces 411. The same as the blade part).
刃部413は、例えば、一の側面411の角部側に位置する凹状のすくい面415と、このすくい面415に連続する他の側面411を面取りして形成した部分である逃げ面417と、すくい面415と逃げ面417との交差部に位置する切刃419とを有している。切刃419は、チップ405の厚さ方向に延びている。
The blade portion 413 includes, for example, a concave rake face 415 positioned on the corner side of one side face 411, and a relief face 417 that is a part formed by chamfering another side face 411 continuous to the rake face 415, It has a cutting edge 419 located at the intersection of the rake face 415 and the flank face 417. The cutting edge 419 extends in the thickness direction of the tip 405.
また、チップ405は、取付孔425を有している。
Further, the chip 405 has a mounting hole 425.
図12(b)は、チップ405となる成形体を形成するための成形型433の断面図であり、図12(a)のXIIb-XIIb線に対応している。図12(c)は、成形型433の一部(側面分割型441C)を示す平面図である。
FIG. 12B is a cross-sectional view of a molding die 433 for forming a molded body to be the chip 405, and corresponds to the XIIb-XIIb line in FIG. FIG. 12C is a plan view showing a part of the molding die 433 (side split mold 441C).
成形型433の内部には、チップ405に対応するキャビティ447と、キャビティ447に通じるランナー449とが形成されている。キャビティ447とランナー449とをつなぐゲート453は、例えば、第1実施形態と同様に、取付孔425の内面を形成する取付孔形成面433aの、挿入部に対応する領域に、リング状に設けられている。
In the mold 433, a cavity 447 corresponding to the chip 405 and a runner 449 communicating with the cavity 447 are formed. The gate 453 that connects the cavity 447 and the runner 449 is provided in a ring shape in a region corresponding to the insertion portion of the mounting hole forming surface 433a that forms the inner surface of the mounting hole 425, for example, as in the first embodiment. ing.
ただし、他の実施形態と異なり、刃部413(切刃部)は、ゲート跡から取付孔425の軸方向に最も離れた位置に設けられてはいない。また、縦断面において、ゲート跡が突出する方向は、刃部413の切刃419が突出する方向(本実施形態では左右方向)に対して傾斜していない。
However, unlike the other embodiments, the blade portion 413 (cutting blade portion) is not provided at the position farthest from the gate mark in the axial direction of the mounting hole 425. In the longitudinal section, the direction in which the gate mark protrudes is not inclined with respect to the direction in which the cutting edge 419 of the blade portion 413 protrudes (the left-right direction in this embodiment).
なお、第2実施形態と同様に、ゲート453は、受け部から受け部とは反対側の主面まで延びている挿入部のうち、適宜な位置に設けられてよい。図示の例では、第2実施形態と同様に、キャビティ447に対して厚さ方向の中央側に設けられている。
As in the second embodiment, the gate 453 may be provided at an appropriate position in the insertion portion that extends from the receiving portion to the main surface on the opposite side of the receiving portion. In the illustrated example, like the second embodiment, the cavity 447 is provided on the center side in the thickness direction.
成形型433は適宜に分割されてよい。例えば、成形型433は、他の実施形態と同様に、切刃419に対応する稜線447a(図12(c))に沿って分割され、第1主面分割型441A、第2主面分割型441B及び3つの側面分割型441Cを有している。ただし、他の実施形態とは異なり、稜線447aを構成する面は、主面409に沿った断面図に現れる。
Mold 433 may be appropriately divided. For example, the mold 433 is divided along the ridge line 447a (FIG. 12C) corresponding to the cutting edge 419, as in the other embodiments, and the first main surface split mold 441A and the second main surface split mold. 441B and three side surface split molds 441C. However, unlike the other embodiments, the surface constituting the ridge line 447a appears in a cross-sectional view along the main surface 409.
<第5実施形態>
図13(a)は、第5実施形態に係るインサート式の切削工具501の先端の一部を示す断面図である。 <Fifth Embodiment>
FIG. 13A is a cross-sectional view showing a part of the tip of an insert-type cutting tool 501 according to the fifth embodiment.
図13(a)は、第5実施形態に係るインサート式の切削工具501の先端の一部を示す断面図である。 <Fifth Embodiment>
FIG. 13A is a cross-sectional view showing a part of the tip of an insert-
切削工具501は、いわゆるクランプによってチップ505をホルダ503に取り付ける点が第1実施形態の切削工具1と相違する。具体的には、以下のとおりである。
The cutting tool 501 is different from the cutting tool 1 of the first embodiment in that the tip 505 is attached to the holder 503 by so-called clamping. Specifically, it is as follows.
切削工具501は、例えば、ホルダ503及びチップ505に加えて、チップ505をクランプするためのクランプ部材504と、クランプ部材504をホルダ503に締結するためのねじ507とを有している。
The cutting tool 501 has, for example, a clamp member 504 for clamping the tip 505 and a screw 507 for fastening the clamp member 504 to the holder 503 in addition to the holder 503 and the tip 505.
クランプ部材504は、例えば、先端がチップ505の取付凹部525(穴部)に挿入される当接部504aを有している。当接部504aは、取付凹部525の内周面に当接してチップ505を紙面左右方向において位置決め可能であるとともに、チップ505の上面に当接してチップ505を位置決め可能である。
The clamp member 504 has, for example, a contact portion 504a into which the tip is inserted into the mounting recess 525 (hole) of the chip 505. The contact portion 504a can contact the inner peripheral surface of the mounting recess 525 to position the chip 505 in the left-right direction on the paper surface, and can contact the upper surface of the chip 505 to position the chip 505.
また、クランプ部材504は、ホルダ503に形成された傾斜面503aに対して摺動可能な摺動部504bを有している。傾斜面503aは、ホルダ503に形成された雌ねじ部503bを挟んでチップ505とは反対側に位置するとともにチップ505とは反対側に面しており、また、下方側ほどチップ505から離れるように傾斜している。
Further, the clamp member 504 has a sliding portion 504b that is slidable with respect to the inclined surface 503a formed on the holder 503. The inclined surface 503a is located on the opposite side of the chip 505 with the female screw portion 503b formed on the holder 503 interposed therebetween, and faces the opposite side of the chip 505, and further away from the chip 505 toward the lower side. Inclined.
チップ505のホルダ503への固定の際には、ねじ507が上方からクランプ部材504に挿入され、ねじ507の雄ねじ部507aがホルダ503の雌ねじ部503bに螺合される。そして、クランプ部材504は、ねじ507のねじ頭507bから下方への力を受ける。これにより、矢印y5で示すように、当接部504aによってチップ505の上面に対して下方への力が加えられる。また、傾斜面503aを摺動部504bが摺動することにより、クランプ部材504は、矢印y6で示す方向へ移動しようとする。これにより、当接部504aによって取付凹部525の内周面に対してチップ505をクランプ部材504側へ引き寄せる力が加えられる。その結果、チップ505は、ホルダ503の凹部503rの底面及び内周面に押し付けられ、位置決めされる。
When the chip 505 is fixed to the holder 503, the screw 507 is inserted into the clamp member 504 from above, and the male screw portion 507a of the screw 507 is screwed into the female screw portion 503b of the holder 503. The clamp member 504 receives a downward force from the screw head 507b of the screw 507. As a result, as indicated by an arrow y5, a downward force is applied to the upper surface of the chip 505 by the contact portion 504a. Further, as the sliding portion 504b slides on the inclined surface 503a, the clamp member 504 tries to move in the direction indicated by the arrow y6. As a result, a force that draws the tip 505 toward the clamp member 504 is applied to the inner peripheral surface of the mounting recess 525 by the contact portion 504a. As a result, the chip 505 is positioned by being pressed against the bottom surface and the inner peripheral surface of the recess 503r of the holder 503.
このようなチップ505の固定方法においては、チップ505の固定用の穴部(取付凹部525)は、貫通孔である必要はなく、本実施形態でも穴部は凹部とされている。ただし、このような固定方法においても、チップ505の穴部は、貫通孔とされてよい。
In such a method of fixing the chip 505, the hole for fixing the chip 505 (attachment recess 525) does not need to be a through hole, and the hole is also a recess in this embodiment. However, even in such a fixing method, the hole portion of the chip 505 may be a through hole.
図13(b)は、チップ505となる成形体を形成するための成形型533の断面図である。
FIG. 13B is a cross-sectional view of a molding die 533 for forming a molded body that becomes the chip 505.
成形型533の内部には、チップ505に対応するキャビティ547と、キャビティ547に通じるスプルー551とが形成されている。なお、本実施形態では、ランナーが設けられないダイレクトゲートとされているが、ランナーが設けられてもよい。
In the molding die 533, a cavity 547 corresponding to the chip 505 and a sprue 551 communicating with the cavity 547 are formed. In addition, in this embodiment, although it is set as the direct gate where a runner is not provided, a runner may be provided.
キャビティ447とスプルー551とをつなぐゲート553は、例えば、他の実施形態と同様に、取付凹部525の内面を形成する取付凹部形成面533aに設けられている。ただし、取付凹部形成面533aは、取付凹部525が凹部であることに対応して、取付凹部525の底面を形成する面を含んでおり、ゲート553は、当該底面を形成する面に開口している。
The gate 553 that connects the cavity 447 and the sprue 551 is provided on the mounting recess forming surface 533a that forms the inner surface of the mounting recess 525, for example, as in the other embodiments. However, the mounting recess forming surface 533a includes a surface that forms the bottom surface of the mounting recess 525, corresponding to the mounting recess 525 being a recess, and the gate 553 is open to the surface that forms the bottom surface. Yes.
なお、成形型533は適宜に分割されてよい。図13(b)では、上下方向の中央で2分割され、分割面がチップ505の側面に位置している場合を例示している。ただし、他の実施形態と同様に、切刃を構成する稜線に沿って分割が行われてもよい。
Note that the mold 533 may be appropriately divided. FIG. 13B illustrates a case where the image is divided into two at the center in the vertical direction, and the dividing surface is positioned on the side surface of the chip 505. However, similarly to the other embodiments, the division may be performed along the ridgeline constituting the cutting edge.
図13(c)は、図13(b)の成形型533によって形成された成形体535を示す断面図である。成形体535は、他の実施形態と同様に、チップ505となる部分と、不要部分とを有している。ただし、成形体535では、不要部分は、取付凹部525となる凹部の底面から突出している。そして、成形体535における不要部分の除去及び成形体535の焼成等が行われて、チップ505が形成される。
FIG. 13C is a cross-sectional view showing a molded body 535 formed by the mold 533 of FIG. 13B. The molded body 535 has a portion that becomes the chip 505 and an unnecessary portion, as in the other embodiments. However, in the molded body 535, the unnecessary portion protrudes from the bottom surface of the recess that becomes the mounting recess 525. Then, unnecessary parts in the molded body 535 are removed, the molded body 535 is baked, and the like, and the chip 505 is formed.
図13(d)は、不要部分が除去されて形成されたチップ505の断面図である。
FIG. 13D is a cross-sectional view of the chip 505 formed by removing unnecessary portions.
上記の説明から理解されるように、チップ505では、取付凹部525の底面の一部(例えば中央)にゲート跡530が形成される。なお、チップ505は、例えば、第2実施形態(図10(a))と同様に、上面(主面509)と、側面511との稜線によって刃部513(切刃部)が構成されてよい。
As understood from the above description, in the chip 505, the gate trace 530 is formed on a part (for example, the center) of the bottom surface of the mounting recess 525. In addition, as for the chip | tip 505, the blade part 513 (cut blade part) may be comprised by the ridgeline of the upper surface (main surface 509) and the side surface 511 similarly to 2nd Embodiment (FIG. 10 (a)), for example. .
以上の実施形態において、取付孔25、225、325及び425並びに取付凹部525は穴部の一例である。1対の受け部27は第1部位及び第3部位の一例である。挿入部29は第2部位の一例である。
In the above embodiment, the mounting holes 25, 225, 325 and 425 and the mounting recess 525 are examples of holes. The pair of receiving portions 27 is an example of a first part and a third part. The insertion part 29 is an example of a second part.
本発明は、以上の実施形態に限定されず、種々の態様で実施されてよい。
The present invention is not limited to the above embodiment, and may be implemented in various modes.
例えば、切削工具は、インサート式のものに限定されず、チップがろう付けされるものであってもよい。ろう付けされたチップにおいても、ゲート跡が穴部に位置していれば、ゲート跡が切削性能に悪影響を及ぼすおそれが低減される。また、切削工具がインサート式のものである場合において、チップの着脱方法は、ねじとクランプとの組み合わせによるものであってもよい。
For example, the cutting tool is not limited to the insert type, and may be one in which the chip is brazed. Even in the brazed tip, if the gate mark is located in the hole, the possibility that the gate mark adversely affects the cutting performance is reduced. Moreover, when the cutting tool is of an insert type, the chip attaching / detaching method may be a combination of a screw and a clamp.
チップの穴部は、第5実施形態でも例示したように、テーパ部(ねじ受け部)を有さないものであってもよい。これは、ねじによって固定が行われる場合(別の観点では貫通孔の場合)も同様である。
The hole portion of the chip may have no taper portion (screw receiving portion) as exemplified in the fifth embodiment. The same applies to the case where fixing is performed with screws (in the case of through holes from another viewpoint).
ゲート跡は、穴部に挿入されたねじ又はクランプ部材等に当接してもよい。この場合であっても、例えば、ゲート跡が被削材に干渉するおそれは低減される。
The gate mark may come into contact with a screw or a clamp member inserted into the hole. Even in this case, for example, the possibility that the gate trace interferes with the work material is reduced.
1…切削工具、5…切削工具用チップ、6…母材、9…主面、11…側面、12…外周面、14…切刃部、19…切刃、25…取付孔(穴部)、30…ゲート跡、31原料、33…成形型、33a…取付孔形成面、35…成形体、39…焼結体、41(41A~41C)…分割型、47…キャビティ、47a…稜線、47b…合わせ面(境界部)、47r…凹部、53…ゲート。
DESCRIPTION OF SYMBOLS 1 ... Cutting tool, 5 ... Chip for cutting tool, 6 ... Base material, 9 ... Main surface, 11 ... Side surface, 12 ... Outer peripheral surface, 14 ... Cutting blade part, 19 ... Cutting blade, 25 ... Mounting hole (hole part) 30 ... Gate mark, 31 raw material, 33 ... Mold, 33a ... Mounting hole forming surface, 35 ... Molded body, 39 ... Sintered body, 41 (41A-41C) ... Split mold, 47 ... Cavity, 47a ... Ridge line, 47b ... mating surface (boundary part), 47r ... concave part, 53 ... gate.
Claims (13)
- 上面と、下面と、前記上面及び前記下面の間に位置する外周面とを有する母材を備えており、前記母材の前記上面及び前記下面の間の高さであって、前記外周面に囲まれた部位にゲート跡が位置している切削工具用チップ。 A base material having an upper surface, a lower surface, and an outer peripheral surface located between the upper surface and the lower surface, the height between the upper surface and the lower surface of the base material, Cutting tool insert with gate marks located in the enclosed area.
- 前記母材は穴部を具備し、該穴部内に前記ゲート跡が位置している請求項1に記載の切削工具用チップ。 2. The cutting tool tip according to claim 1, wherein the base material has a hole, and the gate mark is located in the hole.
- 前記穴部は、該穴部の第1開口部側に位置している第1部位と、該第1部位よりも幅が狭く、前記第1部位よりも奥に位置している第2部位とを有しており、該第2部位に前記ゲート跡が設けられている請求項2に記載の切削工具用チップ。 The hole includes a first part located on the first opening side of the hole, and a second part that is narrower than the first part and located deeper than the first part. The cutting tool tip according to claim 2, wherein the gate mark is provided at the second portion.
- 前記穴部は貫通孔であって、
前記穴部は前記第1開口部とは反対側の第2開口部側に位置している第3部位を有しており、前記第2部位は前記第1部位と前記第3部位との間に位置している請求項3に記載の切削工具用チップ。 The hole is a through hole,
The hole has a third part located on the second opening side opposite to the first opening, and the second part is between the first part and the third part. The cutting tool tip according to claim 3, which is located in - 前記母材は切刃部を具備し、該切刃部が、前記ゲート跡に対して前記穴部の軸方向に最も離れている位置に設けられている請求項2~4のいずれか1つに記載の切削工具用チップ。 The base material includes a cutting edge portion, and the cutting edge portion is provided at a position furthest away from the gate mark in the axial direction of the hole portion. Cutting tool tips as described in 1.
- 前記穴部の軸方向に沿った方向から見た場合に、前記ゲート跡は前記穴部の軸を囲む環状である請求項2~5のいずれか1つに記載の切削工具用チップ。 The cutting tool tip according to any one of claims 2 to 5, wherein when viewed from a direction along the axial direction of the hole portion, the gate mark has an annular shape surrounding the shaft of the hole portion.
- 前記母材は切刃部を具備し、前記穴部の軸を含む断面において、前記ゲート跡が突出している方向は、前記切刃部における切刃が突出している方向に対して傾斜している請求項2~6のいずれか1つに記載の切削工具用チップ。 The base material includes a cutting edge, and in a cross section including the axis of the hole, the direction in which the gate mark protrudes is inclined with respect to the direction in which the cutting edge in the cutting edge protrudes. The cutting tool tip according to any one of claims 2 to 6.
- 前記ゲート跡の表面粗さが、前記ゲート跡に隣接する領域の表面粗さよりも大きい請求項1~7に記載の切削工具用チップ。 The tip for a cutting tool according to any one of claims 1 to 7, wherein a surface roughness of the gate trace is larger than a surface roughness of a region adjacent to the gate trace.
- 請求項1乃至請求項8のいずれか1つに記載の切削工具用チップと、
該切削工具用チップが固定されているホルダとを備えた切削工具。 A cutting tool tip according to any one of claims 1 to 8,
A cutting tool comprising a holder to which the cutting tool tip is fixed. - 前記切削工具用チップにおける前記母材が穴部を具備し、
前記切削工具用チップが前記穴部に挿入されているねじによって前記ホルダに固定されている請求項9に記載の切削工具。 The base material in the cutting tool tip comprises a hole,
The cutting tool according to claim 9, wherein the cutting tool tip is fixed to the holder by a screw inserted into the hole. - 前記ねじと前記ゲート跡とが非接触の状態である請求項10に記載の切削工具。 The cutting tool according to claim 10, wherein the screw and the gate mark are in a non-contact state.
- 前記ねじが前記ゲート跡よりも外方で前記母材と係合している請求項10又は11に記載の切削工具。 The cutting tool according to claim 10 or 11, wherein the screw is engaged with the base material outside the gate mark.
- 切削工具用チップの製造方法であって、
成形型の内部にゲート部を介して原料を注入する工程と、
前記ゲート部を切断して、上面と、下面と、前記上面及び前記下面の間に位置する外周面とを有する成形体を得る工程とを有し、
前記ゲート部は、前記成形体の前記上面及び前記下面の間の高さに位置し、前記外周面に囲まれた部位に存在する切削工具用チップの製造方法。 A method for manufacturing a cutting tool tip,
Injecting the raw material into the mold through the gate part;
Cutting the gate portion to obtain a molded body having an upper surface, a lower surface, and an outer peripheral surface located between the upper surface and the lower surface,
The said gate part is located in the height between the said upper surface and the said lower surface of the said molded object, The manufacturing method of the chip | tip for cutting tools which exists in the site | part enclosed by the said outer peripheral surface.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2015253404A JP6723010B2 (en) | 2015-12-25 | 2015-12-25 | Cutting tool tip and manufacturing method thereof |
JP2015-253404 | 2015-12-25 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2017111001A1 true WO2017111001A1 (en) | 2017-06-29 |
Family
ID=59089507
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2016/088347 WO2017111001A1 (en) | 2015-12-25 | 2016-12-22 | Tip for cutting tool, cutting tool, and method for manufacturing same |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP6723010B2 (en) |
WO (1) | WO2017111001A1 (en) |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2008528306A (en) * | 2005-01-27 | 2008-07-31 | イスカーリミテッド | Method and apparatus for manufacturing cutting insert |
JP2011110673A (en) * | 2009-11-28 | 2011-06-09 | Kyocera Corp | Cutting tool |
US20110189046A1 (en) * | 2008-05-13 | 2011-08-04 | Seco Tools Ab | Mold for injection molding of cutting tool inserts having air gap of controlled width and method of making such inserts |
-
2015
- 2015-12-25 JP JP2015253404A patent/JP6723010B2/en active Active
-
2016
- 2016-12-22 WO PCT/JP2016/088347 patent/WO2017111001A1/en active Application Filing
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2008528306A (en) * | 2005-01-27 | 2008-07-31 | イスカーリミテッド | Method and apparatus for manufacturing cutting insert |
US20110189046A1 (en) * | 2008-05-13 | 2011-08-04 | Seco Tools Ab | Mold for injection molding of cutting tool inserts having air gap of controlled width and method of making such inserts |
JP2011110673A (en) * | 2009-11-28 | 2011-06-09 | Kyocera Corp | Cutting tool |
Also Published As
Publication number | Publication date |
---|---|
JP6723010B2 (en) | 2020-07-15 |
JP2017113850A (en) | 2017-06-29 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN102266955B (en) | Carbide chip and the carbide alloy base substrate for the manufacture of this cutting tip | |
JP6347258B2 (en) | Radius end mill and cutting method | |
US10124421B2 (en) | End milling cutter for heat-resistant superalloys | |
US10343226B2 (en) | Cutting insert and cutting tool | |
JP6875515B2 (en) | Cemented Carbide Pressed Product Manufacturing Method and Equipment and Cemented Carbide Pressed Product | |
RU2764058C2 (en) | Double-sided indexable insert for embedding at an angle and tool for embedding at an angle | |
JP6961151B1 (en) | Turning tool | |
JP6723042B2 (en) | Method for manufacturing chips for cutting tools | |
WO2017111001A1 (en) | Tip for cutting tool, cutting tool, and method for manufacturing same | |
JP6179165B2 (en) | Radius end mill | |
JP6618746B2 (en) | Cutting tool insert manufacturing method | |
WO2017038929A1 (en) | Method for manufacturing tip for cutting tool | |
JP6723041B2 (en) | Method for manufacturing chips for cutting tools | |
JP6603082B2 (en) | Cutting tool insert manufacturing method | |
JP6603083B2 (en) | Cutting tool insert manufacturing method | |
WO2017038928A1 (en) | Method for producing cutting tool tip | |
CN107921534B (en) | Method for manufacturing cutting insert for cutting tool | |
JP5272693B2 (en) | Insert detachable cutter | |
JP6755119B2 (en) | Cutting tool tips and their manufacturing methods | |
JP6658806B2 (en) | Cutting tools | |
EP3461577A1 (en) | Cutting tool | |
JP6179879B1 (en) | Cutting inserts and cutting tools | |
JP6745637B2 (en) | Method for manufacturing chips for cutting tools | |
JP6658805B2 (en) | Cutting insert | |
JP2015208810A (en) | Cutting tool and automatic processor |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 16878888 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 16878888 Country of ref document: EP Kind code of ref document: A1 |