WO2017110830A1 - Method for predicting effect of combination therapy on cancer using l-asparaginase agent and autophagy inhibitor, and cancer therapeutic agent - Google Patents

Method for predicting effect of combination therapy on cancer using l-asparaginase agent and autophagy inhibitor, and cancer therapeutic agent Download PDF

Info

Publication number
WO2017110830A1
WO2017110830A1 PCT/JP2016/087989 JP2016087989W WO2017110830A1 WO 2017110830 A1 WO2017110830 A1 WO 2017110830A1 JP 2016087989 W JP2016087989 W JP 2016087989W WO 2017110830 A1 WO2017110830 A1 WO 2017110830A1
Authority
WO
WIPO (PCT)
Prior art keywords
cancer
gene
asp
mutation
asparaginase
Prior art date
Application number
PCT/JP2016/087989
Other languages
French (fr)
Japanese (ja)
Inventor
寛吉 高橋
井上 純
稲澤 譲治
Original Assignee
国立大学法人東京医科歯科大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人東京医科歯科大学 filed Critical 国立大学法人東京医科歯科大学
Publication of WO2017110830A1 publication Critical patent/WO2017110830A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/335Heterocyclic compounds having oxygen as the only ring hetero atom, e.g. fungichromin
    • A61K31/35Heterocyclic compounds having oxygen as the only ring hetero atom, e.g. fungichromin having six-membered rings with one oxygen as the only ring hetero atom
    • A61K31/351Heterocyclic compounds having oxygen as the only ring hetero atom, e.g. fungichromin having six-membered rings with one oxygen as the only ring hetero atom not condensed with another ring
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/435Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with one nitrogen as the only ring hetero atom
    • A61K31/47Quinolines; Isoquinolines
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/495Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with two or more nitrogen atoms as the only ring heteroatoms, e.g. piperazine or tetrazines
    • A61K31/505Pyrimidines; Hydrogenated pyrimidines, e.g. trimethoprim
    • A61K31/519Pyrimidines; Hydrogenated pyrimidines, e.g. trimethoprim ortho- or peri-condensed with heterocyclic rings
    • A61K31/52Purines, e.g. adenine
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/535Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with at least one nitrogen and one oxygen as the ring hetero atoms, e.g. 1,2-oxazines
    • A61K31/53751,4-Oxazines, e.g. morpholine
    • A61K31/53771,4-Oxazines, e.g. morpholine not condensed and containing further heterocyclic rings, e.g. timolol
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K38/00Medicinal preparations containing peptides
    • A61K38/16Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • A61K38/43Enzymes; Proenzymes; Derivatives thereof
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K45/00Medicinal preparations containing active ingredients not provided for in groups A61K31/00 - A61K41/00
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor

Definitions

  • the present invention relates to an invention relating to a means for predicting the effect of drug therapy on cancer and an invention relating to a cancer therapeutic agent.
  • Asparagine one of the amino acids that constitute proteins, is one of them.
  • Asparagine is produced by asparagine synthase and degraded by L-asparaginase (L-asp).
  • Non-patent Document 1 an anticancer agent (L-asp agent) using L-asp has been put into practical use for leukemia, malignant lymphoma and the like.
  • ALL Acute lymphocytic leukemia
  • L-asp drugs are key drugs.
  • treatment results have improved due to advances in treatment means, 20% of childhood ALL and 40% of adult ALL become treatment refractory and still have a poor prognosis (Non-Patent Documents 2 and 3).
  • the L-asp agent alone can bring about complete remission in 60% of ALL, and further, by devising the dose and frequency of administration of L-asp, the disease-free survival rate for ALL (Non-patent Document 4).
  • Non-patent Document 5 a decrease in the sensitivity of ALL cells to L-asp leads to an increased recurrence rate and treatment refractory.
  • autophagy is one of the intracellular degradation systems by lysosomes. Long-lived proteins, intracellular organelles, and protein aggregation are trapped in autophagosomes and then fused and degraded by lysosomes. It is a highly controlled process. In particular, it is an amino acid supply source that enables cells to survive under adverse conditions of various stresses such as amino acid deficiency and oxidative stress. In recent years, it has been reported that L-asp induces autophagy in ovarian cancer cells and ALL (Non-patent Documents 6 and 7).
  • Non-patent Document 8 In chronic myelogenous leukemia, autophagy induced by L-asp works favorably for the survival of cancer cells, and the combined use of L-asp and an autophagy inhibitor reduces the cell killing effect of L-asp. It was reported to be enhanced (Non-patent Document 8).
  • the present invention reveals the mechanism of action of this combination of L-asp and an autophagy inhibitor in cancer cells, finds an index as to whether or not the combination therapy is successful, and can utilize the index.
  • the present invention has been made with the object of providing a therapeutic agent for cancer.
  • L-asp causes autophagy in ALL cells
  • L-asp-induced autophagy is important for the maintenance of mitochondrial quality
  • the combined use of L-asp and autophagy inhibitors causes accumulation of oxidative stress in ALL cells
  • DNA damage caused by excessively accumulated active oxygen (ROS) induces further oxidative stress via the p53 gene, and induces apoptotic cell death of ALL cells
  • p53 gene knockdown ALL strains and ALL clinical specimens having a mutated p53 gene have a poor effect of L-asp and autophagy inhibitor combination therapy
  • the effect of combined therapy with L-asp and an autophagy inhibitor is restored by introducing a normal p53 gene into an ALL clinical specimen having a mutant p53 gene lacking function
  • (6) L-asp-resistant ALL which shows increased
  • the above items (1) to (6) are based on the use of a combination of L-asp and an autophagy inhibitor in cancer patients by using as an index the presence or absence of a mutation that causes a loss of function in the p53 gene of the subject. It shows that it is possible to judge the effectiveness of therapy.
  • the present invention provides a combination of L-asp (L-asparaginase) or a derivative thereof and an autophagy inhibitor in a cancer sample when a loss of p53 function due to a gene mutation is observed in the cancer sample.
  • a method for acquiring drug effect prediction data (hereinafter also referred to as the data acquisition method of the present invention), which is negative data on the effect of therapy.
  • the data acquisition method of the present invention is a method for the combination therapy of L-asp or a derivative thereof and an autophagy inhibitor in a cancer sample when a mutation resulting in loss of function of the p53 gene is observed in the cancer specimen. It can also be expressed as a method for predicting the effect of a drug that performs a negative prediction of the effect.
  • L-asp or L-asparaginase means L-asparaginase itself.
  • examples of the “L-asp derivative or L-asparaginase derivative” include polyethylene glycolated asparaginase.
  • L-asp or a derivative thereof is an agent having anti-cancer use, and is an L-asp or L-asp derivative itself as an active ingredient, and a substance obtained by applying some formulation means (pharmaceuticals) Composition). Further, “L-asp or a derivative thereof” is hereinafter referred to as “L-asps”.
  • autophagy inhibitor is a concept including an autophagy-inhibiting ingredient that is an active ingredient thereof and a substance (pharmaceutical composition) obtained by subjecting it to some formulation means.
  • the cancer samples subject to the data acquisition method of the present invention are basically confirmed to be effective in the administration of L-asps, that is, the administration of L-asps is selected as an option for the cancer treatment.
  • L-asps are used as first-line drugs for acute lymphoblastic leukemia (ALL), and are typical cancers as subjects for performing the data acquisition method of the present invention.
  • ALL acute lymphoblastic leukemia
  • the cancer specimen used in the data acquisition method of the present invention includes cancer cells directly because of the necessity of detecting a mutation that causes a loss of function of the p53 gene of the cancer cells in the specimen. There is a need. Therefore, a blood sample and / or bone marrow sample containing leukemia cells if it is a blood cancer such as leukemia, and if it is a solid cancer, a biopsy sample of the cancer or a body fluid sample containing the cancer, It is mentioned as a cancer sample used in the data acquisition method of the present invention.
  • the present invention secondly provides a therapeutic agent for cancer having resistance to single administration of L-asps, which comprises L-asps and an autophagy inhibitor (hereinafter referred to as the present invention).
  • a therapeutic agent for cancer having resistance to single administration of L-asps, which comprises L-asps and an autophagy inhibitor (hereinafter referred to as the present invention).
  • the present invention an autophagy inhibitor
  • the autophagy inhibitor is not particularly limited, and examples thereof include chloroquines such as chloroquine (chloroquinoline) and hydroxychloroquine, 3-methyladenine, bafilomycin A, urtomannin and the like, but are not limited thereto. Absent.
  • the cancer therapeutic agent of the present invention is a pharmaceutical composition containing (a) L-asps and an autophagy inhibitor, (b) the L-asps and the autophagy inhibitor are separately used. It may be a set of drugs included as a constituent drug.
  • the cancer therapeutic agent of the present invention may further contain an L-asparagine synthase inhibitor (sulfoximine-based inhibitor, Bioorganic® & Medicinal® Chemistry® 20 (2012) 5915-5927, etc.).
  • This L-asparagine synthase inhibitor is contained in a form separate from (b) L-asps and autophagy inhibitors, even though it is contained in (a) a pharmaceutical composition as described above. It may be contained as a constituent drug.
  • Subjects for administration of the cancer therapeutic agent of the present invention are those that are resistant to the administration of L-asps alone and that do not show a mutation that results in loss of function of the p53 gene.
  • Cancers that have been confirmed to be effective, and specific types of cancer are the same as those of the data acquisition method of the present invention, such as leukemia, malignant lymphoma, ovarian cancer, preferably acute lymphocytic leukemia, acute bone marrow Include, but are not limited to, sexual leukemia, chronic myeloid leukemia, NK / T cell lymphoma.
  • the cancer therapeutic agent of the present invention will be administered. . Repair of mutations resulting in loss of function of the p53 gene can be performed by so-called gene therapy.
  • Whether or not the cancer therapeutic agent of the present invention is administered using the presence or absence of a mutation causing loss of function of the p53 gene as an index can be determined based on the data obtained by the data acquisition method of the present invention. is there. That is, if the data obtained by the data acquisition method of the present invention indicates the presence of a mutation in the p53 gene that results in loss of function, immediate administration of the cancer therapeutic agent of the present invention is not appropriate, Other treatment means may be selected, or a schedule for administering the cancer therapeutic agent of the present invention may be selected after repair of a mutation that results in loss of function of the p53 gene. When the data acquisition method of the present invention is performed before treatment with L-asps, treatment with L-asps can be selected first.
  • the cancer therapeutic agent of the present invention can be administered.
  • treatment with L-asps can be selected first.
  • the subject of administration of the cancer therapeutic agent of the present invention is at least “cancer having resistance to L-asps alone administration”, and the resistant cancer is administered in advance by in vivo administration of L-asps.
  • a means for predicting the effect of combination therapy with an agent of L-asp or a derivative thereof and an autophagy inhibitor is provided, and further a cancer therapeutic agent capable of utilizing the prediction result is provided.
  • FIG. 6 is a drawing showing the results of examining the viable cell rate of L-asp resistant strain 697-R with respect to an increase in L-asp addition amount.
  • FIG. 6 is a drawing showing the results of examining the influence of L-asp and autophagy inhibitor CQ on the viable cell rate in L-asp resistant strain 697-R.
  • the protein expression level of asparagine synthase (ASNS) in the L-asp resistant strain 697-R is caused when L-asp and the autophagy inhibitor Chloroquine (CQ) are used alone or in combination, or both are not allowed to act.
  • ASNS asparagine synthase
  • CQ Chloroquine
  • CQ Chloroquine
  • FIG. 3 is a drawing showing the results of examining the effect on cell killing effect when acetylcysteine (NAC), an ROS inhibitor, is added to the cell culture system of FIG. It is drawing which shows the result of having performed cell cycle evaluation by the flow cytometry which used Propidium Iodide dyeing
  • NAC acetylcysteine
  • FIG. 3 is a graph showing the results of whole survival analysis in which the survival rate over time of immunodeficient mice transplanted with REH / Luc2 cells in FIGS. 3-K and 3-L was examined on a daily basis.
  • FIG. 4 shows the results of Western blotting analysis of DNA damage over time when L-asp and autophagy inhibitor Chloroquine (CQ) are used alone or in combination with REH cells, an ALL cell line. It is a drawing.
  • CQ Chloroquine
  • FIG. 4-C shows the result of having investigated accumulation of intracellular ROS in p53 knockdown REH cell line (sh-p53) similarly to FIG. 4-C.
  • the suppression of cell death in the p53 knockdown REH cell line (sh-p53) was examined by Annexin V incorporation (left graph) and Western blotting analysis (right electrophoretic diagram).
  • FIG. The effect of combined administration of L-asp and chloroquine (CQ), which is an autophagy inhibitor, in ALL clinical blood samples (total of 12 cases of initial cases and 2 cases of relapses) It is the figure which showed the result examined together with the presence or absence of the mutation which becomes.
  • CQ chloroquine
  • FIG. 5-A the results of autophagy activity evaluation in 3 clinical blood samples of ALL in which the effect of combined administration of L-asp and chloroquine (CQ), an autophagy inhibitor, was shown by Western blotting analysis. It is a drawing.
  • FIG. 5-A a clinical blood sample of ALL (case 14) in which p53 was lost in function due to a gene mutation in which the effect of combined administration of L-asp and the autophagy inhibitor Chloroquine (CQ) was not observed.
  • CQ chloroquine
  • FIG. 1 is a chart showing the mechanism of apoptosis induction of ALL cells by the combined administration of L-asp and an autophagy inhibitor, Chloroquine (CQ).
  • the basic data of the data acquisition method of the present invention is detection data of a mutation that results in loss of function of the p53 gene, and detection of a mutation that results in loss of function of the p53 gene in a cancer sample Is the premise.
  • the p53 gene is evolutionarily conserved and is found in species other than humans.
  • the human p53 gene is present on the short arm of chromosome 17 (17p13.1).
  • the p53 gene is known as a tumor suppressor gene, and is known to play a role in regulating cell growth such as maintenance of intracellular homeostasis, metabolic regulation, regulation of intracellular ROS production, and induction of apoptosis. It has been.
  • a mutation resulting in loss of function of p53 is one in which the p53 gene in both alleles on the chromosome is inactivated. The following four types are listed as basic types of this loss-of-function mutation.
  • a type in which one allele has a loss-of-function mutation of the p53 gene, and the other allele has a loss of heterozygosity (LOH) of the p53 gene existing region of the short arm of chromosome 17 (hereinafter referred to as the first type) Also called).
  • the first type of loss-of-function mutations that occur in cancer cells are those in which loss-of-function missense mutations (such as R175H and R248Q), nonsense mutations, and frameshift mutations have occurred prior to the LOH of the p53 gene.
  • loss-of-function mutation occurs in the p53 gene of one allele, and the loss-of-function mutation also occurs in the p53 gene of the other allele, and a homo mutation or a compound hetero mutation Type (hereinafter also referred to as the second type).
  • Deletion mutation of chromosome 17 short arm or deletion mutation of chromosome 17 (hereinafter also referred to as type 3)
  • Only the loss-of-function mutation of the p53 gene is observed in one allele, and no mutation is observed in the p53 gene of the other allele.
  • a mutant p53 subunit is randomly combined to exert function inhibition, thereby reducing the overall cancer suppression effect (apoptosis inducing action) efficiency (hereinafter also referred to as a fourth type).
  • the first type is the most frequent.
  • the mutation that results in loss of function of the first type of p53 gene is in a cancer cell in which the mutation of the p53 gene has advanced to a high degree. Therefore, by detecting only LOH, the loss of function of other alleles that exist together is detected. Detection can include detection of a mutation. Of course, for example, LOH detection and direct sequence analysis can be performed together.
  • Examples of the detection of the first type of LOH include a genomic instability test (microsatellite instability test) using a microsatellite marker, the FISH method, the method described in JP-A-2000-93185, the Southern blot method, and the like. .
  • the “genomic instability” in the gene of the target cancer cell is expressed as a repetitive sequence of microsatellite ((A) n, (CA) n, etc. in the genome from a single base to several base units).
  • the first type of LOH can be detected using a specific one of the markers (from several to several tens of repetitions and 10 4 to 10 5 repetitions) (Vita Vol .15 NO.3 1998 / 7.8.9).
  • FISH Fluorescence in situ hybridization
  • the first type of LOH can be detected.
  • the LOH of the p53 gene can be detected by preparing a FISH probe of the p53 gene region, performing hybridization with a chromosome in a cancer specimen, and observing the change in the number of signals.
  • the method described in Japanese Patent Application Laid-Open No. 2000-93185 identifies loss of heterozygosity in a gene polymorphism marker in the Na / K-ATPase beta2 subunit gene that is present in the downstream region of the p53 gene of the cancer sample gene. This method can also detect the LOH of the p53 gene.
  • the second type of loss-of-function p53 gene mutation can be detected, for example, by direct sequence analysis. More specifically, it can be detected by the Sanger method or the so-called next-generation sequencing method.
  • the p53 gene mutation detected in Examples described later is this second type. However, the second type is less frequent than the first type described above.
  • the Sanger method consists of i) annealing an oligonucleotide complementary to a single-stranded DNA of the p53 gene, synthesizing a complementary strand with a DNA polymerase using this as a primer, and ii) using four deoxynucleotide triphosphates and dideoxy as substrates. Nucleotide triphosphate is added to synthesize a complementary strand. Iii) Further, a primer or dNTP labeled with a chemiluminescent substance is added to label the synthesized DNA and determine the base sequence. By comparing this sequence with a reference sequence, it is possible to detect a mutation that results in loss of function of the second type of p53 gene.
  • the base sequences of tens of millions of randomly cut DNA fragments can be simultaneously determined. Deep sequencing of the gene region of p53 can be performed with high efficiency by pooled sequencing of PCR products. As a result, a mutation that causes a loss of function of the second type p53 gene can be detected even at a low frequency.
  • a deletion mutation of the third type of chromosome 17 short arm or a deletion mutation of chromosome 17 can be detected by the above FISH method or chromosome examination.
  • Chromosome testing is typically chromosomal testing such as G-separation. Is an abbreviation for Giemsa, and is used for Giemsa staining after trypsin treatment. Thereby, the presence or absence of the deletion of the short arm of chromosome 17 where the p53 gene is located, or the deletion of the chromosome 17 itself (monosomy) can be confirmed.
  • the p53 protein mutation lacking function due to the tertiary structure of the subunits of the fourth type of p53 protein has a half-life extended in the cell (particularly in the nucleus).
  • the immunohistochemical staining of the p53 protein utilizing the accumulation in (1), and the detection of autoantibodies using an ELISA kit against the p53 protein having a mutation can be performed.
  • FIG. 1 is a flow chart showing an embodiment of a process for detecting a loss-of-function mutation of the p53 gene in the data acquisition method of the present invention.
  • Box A1 indicates the start of the detection process when the cancer specimen is a “solid cancer tissue specimen”.
  • Tissue specimens include visceral tissue, bone tissue, muscle tissue, skin tissue, nerve tissue, and the like.
  • Box A2 indicates the start of the detection process when the cancer sample is a “solid cancer liquid sample”. The liquid specimen is pleural effusion, ascites, urine residue and the like.
  • Box A3 shows the start of the detection process when the cancer specimen is “leukemia or malignant lymphoma”.
  • the first stage of the detection process of the solid cancer tissue specimen (A1) is “LOH analysis by microsatellite marker” (box B1).
  • the first stage of the detection process of the solid cancer liquid specimen (A2) is “LOH analysis by microsatellite marker” (B1) or “FISH analysis” (box B2).
  • the first stage of the detection process of the leukemia or malignant lymphoma cancer specimen (A3) is “LOH analysis by microsatellite marker” (B1), “FISH analysis” (B2), or “chromosome test”.
  • the purification of cancer sample nucleic acid performed when detecting the above-mentioned loss-of-function p53 gene mutation may be preferable for reducing background noise, ensuring hybridization performance, efficient labeling, and the like.
  • “Purification” is used synonymously with extraction, separation and fractionation.
  • a method using a cartridge carrying a nucleic acid-adsorbing membrane such as silica or cellulose derivative, ethanol precipitation, isopropanol precipitation, phenol-chloroform extraction, hydrophobic substituents such as ion exchange resin or octadecyl group, etc.
  • a solid-phase extraction cartridge using a bound silica carrier or a resin exhibiting a size exclusion effect, a method by chromatography, and the like can be included. Furthermore, purification by electrophoresis can also be included. Solvent replacement is also a purification in a broad sense. A refinement
  • purification process can be performed once or several times as needed.
  • the presence / absence of a mutation that results in a loss of function of the p53 gene in the cancer specimen specified by the above detection step is basic data for the data acquisition method of the present invention.
  • a mutation causing a loss of function of the p53 gene is observed in a cancer sample (positive)
  • the repair treatment of the p53 gene is so-called gene therapy, and is performed by introducing a normal p53 gene into at least a cancer cell.
  • a normal p53 gene is cancerated using a modified viral vector such as a retrovirus vector such as a mouse leukemia virus vector or lentivirus vector, an adenovirus vector, an adeno-associated virus vector, a herpes simplex type I vector, or an HVJ-liposome. Can be introduced into cells.
  • adenovirus vector introduction by adenovirus vector will be explained.
  • an adenoviral vector incorporating the p53 gene When an adenoviral vector incorporating the p53 gene is injected into a tumor, it binds to a receptor on the tumor cell, and the adenoviral vector is taken into the tumor cell to express the encoded foreign p53 gene. After that, it is expected that the effect of the combination therapy of L-asps and autophagy inhibitors will be effective.
  • Cancer therapeutic agent of the present invention comprises L-asps and an autophagy inhibitor as active ingredients.
  • L-asps L-asparaginases
  • Asparagine one of the amino acids that make up proteins, is one of them.
  • Asparagine is produced by asparagine synthase and degraded by L-asparaginase (L-asp).
  • Non-patent Document 1 an anticancer agent using L-asp has been put into practical use for leukemia, malignant lymphoma and the like.
  • L-asp itself can be produced by a known method using a microorganism transformed with a gene encoding L-asp (utilized in Escherichia coli and potato black rot) as a host, and commercially available products can be obtained. It is also possible to use it.
  • L-asp derivatives obtained by chemically modifying L-asp are also included in L-asps as long as the above-described anticancer effects are observed.
  • the derivative include polyethylene glycolated asparaginase.
  • the L-asps may be in a form that has undergone some kind of formulation treatment, and examples thereof include erythrocyte encapsulated asparaginase.
  • the dose of L-asps (active ingredients) by the cancer therapeutic agent of the present invention is about 50 to 200 units / kg body weight per adult per day, and can be increased or decreased depending on the effect.
  • the dosing interval can be performed once a day and every other day or every few days.
  • Autophagy inhibitor As mentioned above, autophagy is one of the intracellular degradation systems by lysosomes, and long-existing proteins, intracellular organelles, and protein aggregation are trapped in the autophagosome. It is a highly controlled process that is subsequently fused and degraded by lysosomes, and is known to enable cell survival, particularly under adverse conditions of various stresses such as oxidative stress. Due to this phenomenon, it is considered that cancer in which intracellular ROS produced by mitochondria damaged by L-asps is retained.
  • the active ingredient of the autophagy inhibitor is a component having a function of inhibiting this autophagy, and specifically includes chloroquines such as chloroquine (chloroquinoline) and hydroxychloroquine, 3-methyladenine, bafilomycin A
  • chloroquines such as chloroquine (chloroquinoline) and hydroxychloroquine, 3-methyladenine, bafilomycin A
  • these autophagy-inhibiting components can be produced by known methods, and commercially available products can be used.
  • the dose (active ingredient) of the autophagy inhibitor by the cancer therapeutic agent of the present invention varies depending on the type of the drug and the administration interval. For example, in the case of chloroquine, it is about 200 to 400 mg per adult per day. Yes, it can be increased or decreased depending on the effect.
  • the dosing interval can be performed once a day and every other day or every few days.
  • the target cancer cells are depleted of L-asparagine by the action of L-asps, and at the same time, emergency life support is achieved. Because of this, autophagy is induced.
  • enhancement of asparagine synthase is observed in “cancer resistant to L-asps alone administration” which is a target cancer cell of the cancer therapeutic agent of the present invention.
  • the autophagy inhibitor in the cancer therapeutic agent of the present invention inhibits the above autophagy, and at that time, a large amount of active oxygen accumulates in the cancer cell, and then the cancer is caused by the action of the p53 protein. Cells are induced to apoptosis.
  • the cancer therapeutic agent of the present invention By repeating the accumulation of active oxygen in the cancer cells and the cycle of apoptosis, the cancer therapeutic agent of the present invention exhibits a very excellent cancer therapeutic effect. This is an effectiveness irrespective of the presence or absence of the above-mentioned “resistance to L-asps alone administration”. However, for cancer cells in which a mutation resulting in loss of function of the p53 gene is observed, the above-described process leading to apoptosis is impaired, and even if the cancer therapeutic agent of the present invention is administered as it is, cancer treatment is performed. The effect cannot be expected.
  • the cancer treatment agent of the present invention comprises (a) a form in which L-asps and an autophagy inhibitor are contained in a single pharmaceutical composition, (b) L- The asps and the autophagy inhibitor are roughly classified into two forms: a set of forms combined as separate pharmaceutical compositions.
  • the single form (a) has an advantage that only one agent is required for administration, but on the other hand, it has a drawback that it is difficult to finely adjust the drug amount and the administration interval in order to combine drugs having different properties.
  • the set form (b) is a two-drug administration, fine adjustment of the drug amount and the administration interval is easy.
  • the cancer therapeutic agent of the present invention can further contain an L-asparagine synthase inhibitor in addition to L-asps and an autophagy inhibitor. This is by inhibiting the depletion of L-asparagine in the cancer cells by inhibiting L-asparagine synthase enhanced in “cancer resistant to L-asps alone administration”. Based on being able to improve the cancer treatment effect.
  • the L-asparagine synthase inhibitor can be contained in the cancer therapeutic agent of the present invention in any of the above-mentioned (a) single agent type and (b) set type.
  • the set type in addition to the case where the three agents are different compositions, there may be a case where the pharmaceutical composition is a combination of any two agents.
  • a combination composition of L-asps and an L-asparagine synthase inhibitor is a preferred combination because of its mechanism of action.
  • Both of the cancer therapeutic agents of the present invention are administered to the human body as a “pharmaceutical composition”. Also in the case of direct administration of the active ingredient of the cancer therapeutic agent, for example, an injection or the like is mixed at the time of use, and this is also included in the pharmaceutical composition.
  • the pharmaceutical composition used as the cancer therapeutic agent of the present invention is prepared in the form of a pharmaceutical composition by blending an appropriate pharmaceutical carrier together with the above active ingredients.
  • a pharmaceutical carrier it is possible to select a carrier according to the use form, and excipients or diluents such as a filler, a bulking agent, a binder, a moistening agent, a disintegrant, and a surfactant are used. can do.
  • the form of the composition is not particularly limited as long as it can effectively contain the cancer therapeutic agent of the present invention, and it may be a solid agent such as a tablet, powder, granule, or pill. Usually, it is preferably in the form of an injection such as a solution, suspension or emulsion.
  • the cancer therapeutic agent of the present invention can be made into a dry product that can be made liquid at the time of use by adding an appropriate carrier.
  • drug delivery systems such as nanoparticles, polymer micelles, erythrocytes, stable nucleic acid lipid particles (SNALP), multifunctional envelope nanostructures (MEND) composed of cyclodextrin-containing polymers are provided. By utilizing this, it is possible to further improve the effect of the cancer therapeutic agent of the present invention.
  • the obtained pharmaceutical composition is administered in an appropriate administration route according to its form, for example, an injectable pharmaceutical composition is administered in a solid form by intravenous, intramuscular, subcutaneous, intradermal, intraperitoneal administration, etc.
  • the pharmaceutical composition is administered orally or enterally.
  • the amount of the therapeutic agent for cancer of the present invention in the pharmaceutical composition is appropriately selected according to the administration method, administration mode, purpose of use, patient symptom, etc. of the composition, but is usually constant according to the present invention. It is preferable that the therapeutic agent is prepared in a composition form containing about 0.1 to 95% by mass and administered in the above-mentioned dosage form.
  • TS2 (MEF2D -DAZAP1 translocation positive) (Yoshinari, M., Imaizumi, M., Eguchi, M., Ogasawara, M., Saito, T., Suzuki, H., Koizumi, Y., Cui, Y., Sato, A ., Saisho, T., et al. (1998).
  • TS-2 novel cell line of pre-B acute lymphoblastic leukemia with at (1; 19) not involving the E2A gene.
  • L-asp leinase (registered trademark) derived from E. coli, Kyowa Hakko Kirin Co., Ltd.) was examined. Chloroquinone (Chloroquine (CQ): Sigma-Aldrich Co., Catalog No. C6628) and bafilomycin (Bafilomycin A (Baf): Sigma-Aldrich Co., Catalog No. B1793 for the assessment of autophagy ) was used.
  • the medium is 500 ml of RPMI 1640 (Wako Pure Chemical Industries, Catalog No.
  • One well of a 6-well plate was seeded with 1 ⁇ 10 6 cells / 2 ml of the above medium. L-asp 1 U / ml was added, and after 45 hours, CQ 10 ⁇ M to Bafilomycin A1 100 nM was further added. After 3 hours, the cells were collected, and then analyzed by Western blotting, fluorescent immunostaining, and electron microscopy.
  • polyacrylamide gel electrophoresis was performed using a cell lysate and transferred to a polyvinylidene fluoride (PVDF) membrane.
  • PVDF polyvinylidene fluoride
  • LC3B antibody and ⁇ -actin antibody both Sigma-Aldrich
  • SuperSignal West Dura was reacted as the secondary antibody.
  • detection was performed with LAS-3000 (GE Healthcare).
  • the cells were collected, adhered to a slide glass with CytoSpin3 (ThermoFisher Scientific Inc.), fixed with methanol, and then fixed with methanol.
  • Fetal bovine serum 1% and Triton X-100 0.01% phosphate buffered physiological Blocking was performed with saline (PBS).
  • PBS saline
  • an LC3B antibody Sigma-Aldrich
  • VECTASHIELD with DAPI Vector Laboratories
  • FIG. 2-A shows the autophagy induction of autophagosome when L-asp and an autophagy inhibitor are used alone or in combination with the above three types of ALL cell lines, or when both are not applied.
  • the results of investigation by electrophoresis using LC3B-II indicating the presence as an index are shown.
  • the expression of LC3B-II was increased when L-asp and CQ or Baf were administered in combination, compared to when CQ or Baf was administered alone. This indicates that L-asp induces autophagy compared to the steady state.
  • FIG. 2-B shows autophagy induction when L-asp and Chloroquine (CQ) are used alone or in combination on REH cells among the above three types, using LC3B-II as an index. It is a tissue immunostaining image examined under the same conditions as in 2-A. As a result, it was confirmed that the protein expression of LC3B was increased in the combined administration of L-asp and CQ as compared with the single administration of CQ and single administration of L-asp, and autophagy was induced by L-asp. It was shown that
  • FIG. 2-C is an electron microscopic image of autophagy induction in the system of FIG. 2-B
  • FIG. 2-D shows the number and area of autophagy vesicles per cell in the electromicroscopic image. ing. When L-asp and CQ were used together, autophagosomes containing mitochondria were also observed (Fig. 2-C triangle) along with many autolysosomes (Fig. 2-C arrowheads). Significantly more were observed in both the number and area of autophagy vesicles per cell when L-asp and CQ were combined.
  • FIG. 2-E shows the case where L-asp and the autophagy inhibitor Chloroquine (CQ) are used alone or in combination with the above-described system shown in FIG. 2-B, that is, the ALLH cell line REH cells.
  • 3 shows the results of counting the number of impaired mitochondria based on the color development of MitoTracker (registered trademark) Red, which is a staining fluorescent dye for mitochondria. As shown here, when L-asp and CQ were used in combination, the peak shifted to the right, and impaired mitochondria were remarkably observed.
  • FIG. 2-F shows the result of examining the membrane potential of intracellular mitochondria using TMRE (tetramethylrhodamine methyl ester) in the system of FIG. 2-E.
  • TMRE tetramethylrhodamine methyl ester
  • FIG. 2-G shows an evaluation of intracellular reactive oxygen species (ROS) using DCFDA (left figure) and mitochondrial ROS using MitoSox (registered trademark) -Red in the system shown in FIG. 2-E. Results are shown. As shown here, it was revealed that ROS accumulated significantly when L-asp was combined with CQ.
  • ROS reactive oxygen species
  • FIG. 2A-G promotes the induction of autophagy by L-asp administration to the ALL cell line, and this autophagy is very important in the removal of impaired mitochondria and reactive oxygen species in cancer cells. It became clear that there was.
  • Western blotting was carried out in the same manner as in FIG. 2, and the primary antibody was cPARP antibody, cCASP3 antibody, CASP3 antibody, CHOP antibody was cell Signaling, ASNS was Sigma-Aldrich, and ATF4 antibody was Santa Cruz Biotechnology.
  • the number of dead cells was analyzed using Annexin V staining with MEBCYTO-Apoptosis Kit (MBL) and using flow cytometer Accuri C6 (Becton, Dickinson and Company).
  • DMSO dimethyl sulfoxide
  • Anti-ROS drug NAC (Sigma-Aldrich) was administered 2 mM simultaneously with L-asp and CQ, and the number of dead cells using Annexin V staining was evaluated 48 hours later using a flow cytometer.
  • sh short hairpin
  • ASNS1 target sequence: 5'-GCTGTATGTTCAGAAGCTAAA-3 '(sequence number 1)
  • sh-ASNS2 target sequence: 5'-CGTCAAGTCTTTGAACGCCAT-3' (sequence number 2)
  • KOD-Plus-Mutageness Kit TOYOBO CO., LTD.
  • the PCR product was cloned into the BamHI-EcoRI region of the lentiviral vector pGreenPuro shRNA Cloning and Expression Lentivector (System Biosciences) to prepare a recombinant vector. Thereafter, the PCR product, which is a linear plasmid, was ligated to cyclize. Next, E. coli was transformed, and the plasmid was extracted and then introduced into HEK293TN cells to prepare sh-ASNS1-expressing lentivirus and sh-ASNS2-expressing lentivirus. About each recombinant lentivirus obtained in this way, the titer was measured using Global UltraRapid Lenticular Titer Kit (System Biosciences). MOI (multiplicity of infection) was determined according to the attached manual, the viral load was adjusted to 5 MOI, and REH cells were transfected.
  • MOI multiplicity of infection
  • sh-ASNS1-sense 5'-GATCCGCTGTATGTTCAGAAGCTAAACTTCCTGTCAGATTTAGCTTCTGAACATACAGCTTTTTG-3 '(SEQ ID NO: 3)
  • sh-ASNS1-antisense 5'-AATTCAAAAAGCTGTATGTTCAGAAGCTAAATCTGACAGGAAGTTTAGCTTCTGAACATACAGCG-3 '(SEQ ID NO: 4)
  • sh-ASNS2-antisense 5'-AATTCAAAAACGTCAAGTCTTTGAACGCCATTCTGACAGGAAGATGGCGTTCAAAGACTTGACGG-3 '(SEQ ID NO: 6)
  • E. coli was transformed with a lentiviral vector in which the luciferase gene Luc2 was incorporated, and the recombinant E. coli was amplified to produce a plasmid.
  • This plasmid was introduced into HEK293TN cells to produce Luc2-expressing lentivirus.
  • the titer was measured using Global Ultra Rapid Lenticular Titer Kit (System Biosciences). MOI was determined according to the attached manual, the viral load was adjusted to 5 MOI, and REH cells were transfected to establish REH / Luc2 cells.
  • 3-A shows the degree of cell death when L-asp and an autophagy inhibitor are used alone or in combination with the above three ALL cell lines using flow cytometry and Western blotting analysis. Shows the results.
  • the combination group of L-asp and autophagy inhibitor CQ (L-asp + CQ group, both administered for 48 hours) is divided into CQ single agent administration group (CQ group) and L-asp single agent administration group (L-asp group). Compared with that, cell death was significantly induced.
  • FIG. 3-B is a pan-apoptosis-related molecular inhibitor against cell death caused by the action of L-asp and the autophagy inhibitor Chloroquine (CQ) on REH cells among the above three types.
  • CQ Chloroquine
  • FIG. 3-A and FIG. 3-B show that cell death induced by the combined use of L-asp and an autophagy inhibitor is mediated by apoptosis.
  • FIG. 3-C shows the results of examining the viable cell rate of the established L-asp resistant strain 697-R with respect to the increase in the amount of L-asp added. It can be confirmed that the resistant strain has a certain resistance to L-asp.
  • FIG. 3-D shows the results of examining the effect of L-asp and autophagy inhibitor (CQ) in combination on the viable cell rate in the L-asp resistant strain 697-R. As shown here, even in the L-asp resistant strain, the death-cell rate increased in a dose-dependent manner by the combined addition of L-asp and an autophagy inhibitor.
  • CQ autophagy inhibitor
  • FIG. 3E shows the expression level of asparagine synthase (ASNS) in L-asp resistant strain 697-R when L-asp and an autophagy inhibitor are used alone or in combination, or both.
  • ASNS asparagine synthase
  • FIG. 3F shows L-asp and Chloroquine (autophagy inhibitor) in “sh-ASNS1” and “sh-ASNS2” in which the ASNS gene of REH cell, which is an ALL cell line, was knocked down at different sites.
  • CQ CQ
  • the results of Western blotting analysis in FIG. 3-G show the results of examining the mechanism responsible for apoptotic cell death induced by the combined use of L-asp and an autophagy inhibitor for the REH cell line.
  • L-asp it has been reported that apoptotic cell death is induced by ATF4-CHOP pathway (Ye, J. et al., The EMBO journal 29, 2082-2096, doi: 10.1038 / emboj.2010.81 ( 2010)), there was no clear difference in the expression of ATF4 and CHOP between the L-asp group and the L-asp + CQ group, suggesting that apoptotic cell death due to other causes was induced in the L-asp + CQ group.
  • ASNS downstream of ATF4 was not clearly different between the L-asp group and the L-asp + CQ group.
  • FIG. 3-H shows the results of examining the effect on cell killing effect when acetylcysteine (NAC), an ROS inhibitor, is added to the cell culture system of FIG. 3-G.
  • NAC acetylcysteine
  • Fig. 3-I shows the evaluation of the cell cycle using flow cytometry with Propidium Iodide staining when L-asp and autophagy inhibitor were used alone or in combination, or when both were not allowed to act. Results are shown. As shown here, the G0 / G1 phase increased in the L-asp alone group, but the G0 / G1 phase decreased and the sub-G1 phase increased in the L-asp + CQ group. Therefore, when the L-asp single agent is added, the cell cycle is stopped at the G0 / G1 phase to escape cell death, but it is difficult to stop the cell cycle by using an anti-autophagy inhibitor in combination with this. It was shown that apoptosis was induced without escape from cell death.
  • Fig. 3-J shows the effect of continuous drug contact for 9 days by counting the number of living cells. This count was checked with a TC20 automatic cell counter using Trypan blue staining. Each drug was added when the cell culture medium was changed every 72 hours, and the number of viable cells was measured. As a result, a gradual cell increase was observed in the CQ group and the L-asp group, but in the L-asp + CQ group, the ratio of the number of viable cells decreased with time.
  • FIG. 3-K and Fig. 3-L show the establishment of REH / Luc2 cells introduced with a luciferase gene for evaluation of treatment in vivo, and immunodeficient mice (NOD / SCID mice (Charles River Laboratories Japan)). The result of transcranial vein transplantation was examined and the course was examined.
  • FIG. 3-K shows the results of examining the degree of proliferation based on the fluorescence distribution 7, 16, and 22 days after transplantation of REH / LUC2 cells.
  • FIG. 3-L shows the degree of proliferation of REH / Luc2 cells over time. The photon flux rate was investigated. Both figures show that the transplanted REH / Luc2 cells proliferated rapidly in the mice of the control group and the single administration group, but the proliferation was significantly suppressed in the L-asp + CQ group.
  • FIG. 3-M shows the results of an overall survival analysis in which the survival rate over time of immunodeficient mice transplanted with the above REH / Luc2 cells was examined on a daily basis. As shown here, a significant prolongation of the survival period was observed in the L-asp + CQ group compared to the control group, CQ group and L-asp group.
  • the knock-down of p53 with sh (short hairpin) RNA was performed in the same manner as in FIG. 3 described above, and a lentivirus expressing sh-p53 (target sequence: 5′-GACTCCAGTGGTAATCTAC-3 ′ (SEQ ID NO: 7)) was prepared.
  • a recombinant vector was prepared using the following primers, and Escherichia coli was transformed. After amplification of the recombinant E. coli, a plasmid was generated. This plasmid was introduced into HEK293TN cells to produce Luc2-expressing lentivirus.
  • the titer was measured using Global UltraRapid Lenticular Titer Kit (System Biosciences). The MOI was determined according to the attached manual, and the viral load was adjusted to 5 MOI and transfected into REH cells.
  • sh-p53-sense 5'-GATCCGACTCCAGTGGTAATCTACCTTCCTGTCAGAGTAGATTACCACTGGAGTCTTTTTG-3 '(SEQ ID NO: 8)
  • sh-p53-antisense 5'-AATTCAAAAAGACTCCAGTGGTAATCTACTCTGACACAGGAAGGTAGATTACCACTGGAGTCG-3 '(SEQ ID NO: 9)
  • FIG. 4-A shows the results of examination of DNA damage over time by Western blotting analysis when L-asp and an autophagy inhibitor are used alone or in combination with the REH cell line which is an ALL cell line. Is shown. Accumulation of ROS is known to cause DNA damage (Kruiswijk, F., Labuschagne, C. F. & Vousden, Nature reviews. Molecular cell biology 16, 393-405, doi: 10.1038 / nrm4007 (2015) ).
  • FIG. 4-B shows the increase / decrease in p53 protein as well as ⁇ H2AX, which is an indicator of DNA damage, when acetylcysteine (NAC), a ROS inhibitor, is further acted on in the test system of FIG. 4-A.
  • NAC acetylcysteine
  • FIG. 4-B shows the increase / decrease in p53 protein as well as ⁇ H2AX, which is an indicator of DNA damage, when acetylcysteine (NAC), a ROS inhibitor, is further acted on in the test system of FIG. 4-A.
  • NAC acetylcysteine
  • FIG. 4-C shows DNA damage when LHasp and CQ are combined in an REH cell line (sh-p53), which is an ALL cell line in which the p53 gene is knocked down by sh (short hairpin) RNA. It is the result examined by Western blotting analysis. As shown here, in sh-p53, not only the PUMA downstream of the p53 gene but also DNA damage was not induced.
  • FIG. 4-D shows the result of examining intracellular ROC accumulation in sh-p53. As shown here, sh-p53 significantly suppressed the accumulation of intracellular ROS in the L-asp + CQ group.
  • FIG. 4-E shows the results of examination of inhibition of cell death in sh-p53 by Annexin V uptake (left graph) and Western blotting analysis (right electrophoretic diagram). As shown here, sh-p53 significantly suppressed cell death in the L-asp + CQ group, and p53 expression was also strongly suppressed.
  • the combination therapy of L-asp and anti-autophagy inhibitor showed that (a) ROS accumulation, (b) DNA damage, (c) p53 activity (D) additional ROS accumulation, forming a “ROS-DNA damage-p53 loop” and inducing cell death, and this loop is broken in the p53 knockdown strain, It was shown that cell death was suppressed.
  • Clinical specimens used leukemia cells isolated from bone marrow specimens of patients with more than 90% occupied by ALL leukemia cells using density gradient centrifugation with Ficoll. The collection was approved by the parents in writing after approval by the Ethics Committee. For the analysis of the number of viable cells, L-asp 1 U / ml and CQ 10 ⁇ M were added, and after 48 hours, the cells were examined using an automatic cell counter TC20 (Bio-Rad) using trypan blue staining.
  • the detection of mutations that resulted in loss of function of p53 was carried out by direct sequence analysis by the Sanger method. After the addition of PUREGENE Cell Lysis Solution and Protein Precipitation Solution (both from QIAGEN) to the collected cells, DNA was precipitated with ethanol and dissolved with Tris-EDTA Buffer. The exon part (exon 2-11) was amplified by reverse transcription polymerase chain reaction using the following primers. The amplified product was subjected to direct sequencing (double-strand analysis) using Applied Biosystems 3130xl Genetic Analyzer (Thermo Fisher). Mutation analysis was performed from the obtained analysis waveform chart using software GENETYX (Genetics Co., Ltd.).
  • exon2-3 sense: 5'-tctcatgctggatccccact-3 '(SEQ ID NO: 10) exon2-3 antisense: 5'-agtcagaggaccaggtcctc-3 '(SEQ ID NO: 11) exon4 sense: 5'-tgaggacctggtcctctgac-3 '(SEQ ID NO: 12) exon4 antisense: 5'-agaggaatcccaaagttcca-3 '(SEQ ID NO: 13) exon5-6 sense: 5'-tgttcacttgtgccctgact-3 '(SEQ ID NO: 14) exon5-6 antisense: 5'-ttaacccctctcccagaga-3 '(SEQ ID NO: 15) exon7 sense: 5'-cttgccacaggtctccccaa-3 '(SEQ ID NO: 16) exon7 antisense: 5'-agg
  • Recombinant adenovirus was used for gene transfer of p53.
  • Recombinant adenovirus was prepared using Adenovirus Expression Vector Kit (Takara). Specifically, a cosmid vector (pAxCAwtit-p53) into which wild-type p53 was inserted was prepared, a recombinant adenovirus genome containing the p53 gene was excised and introduced into HEK293TN cells, and a p53 recombinant adenovirus was prepared. About each recombinant adenovirus obtained in this way, the titer was measured using Global UltraRapid Lenticular Titer Kit (System Biosciences). The MOI was determined according to the attached manual, the amount of virus was adjusted to 5 MOI, and the target cells were transfected.
  • Knockdown of p53 was performed on REH cells using shRNA (sh-p53) in the same manner as in FIG.
  • the p53 knockdown REH cells were injected from the tail vein of immunodeficient mice (NOD / SCID mice) at a concentration and volume of 100 ⁇ l of 5 ⁇ 10 6 / PBS. From 7 days after the injection, L-asp 6000 U / kg mouse body weight and CQ 50 mg / kg mouse body weight were intraperitoneally administered once a day, and the survival period was analyzed.
  • FIG. 5-A shows the effect of combined administration of L-asp and chloroquine (CQ), which is an autophagy inhibitor, on ALL clinical blood samples (total of 14 cases of initial cases and 2 cases of relapses). The results are shown together with the presence or absence of a mutation that causes a loss of function of the gene. Among these 14 specimens, 7 specimens with a sufficient amount of preserved specimens were subjected to p53 analysis by the Sanger method, and a homozygous mutation (R248Q) of the p53 gene was observed in 1 case (case 14).
  • CQ chloroquine
  • FIG. 5-B shows the results of autophagy activity evaluation in 3 clinical blood samples of ALL (cases 4, 5, and 7) in which the effect of combined administration of L-asp and CQ was recognized among the 14 cases described above. Shown by Western blotting analysis. The numbers at the bottom of the figure indicate the relative ratio of LC3B-II / ACTB when the control is 1. In all cases, LC3B-II protein expression was increased when L-asp was combined with CQ. This indicates that autophagy activity is enhanced upon administration of L-asp, which is consistent with the in vitro findings described above.
  • FIG. 5-C and FIG. 5-D the clinical blood sample of ALL (case 14) in which the effect of the combined administration of L-asp and CQ was not observed among the 14 cases described above was normal due to adenovirus.
  • the effect of introducing the p53 gene was shown by Western blotting analysis (FIG. 5-C) and viable cell count (FIG. 5-D).
  • FIG. 5-C Western blotting analysis
  • FIG. 5-D viable cell count
  • FIG. 5-E shows the results of examining the effects of medication when the above-mentioned REH cell line knocked down from the p53 gene (sh-p53) was transplanted into the immunodeficient mouse via the tail vein.
  • the luciferase gene was introduced into p53 knockdown REH cells by shRNA, and transvenous vein transplantation into NOD / SCID mice was performed for treatment experiments.
  • sh-p53 in the p53 knockdown strain, sh-p53, the combined use of L-asp and CQ did not extend the survival time.
  • FIG. 5-F shows a chart showing the mechanism of apoptosis induction of ALL cells by the combined administration of L-asp and the autophagy inhibitor Chloroquine (CQ).

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Epidemiology (AREA)
  • Animal Behavior & Ethology (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Engineering & Computer Science (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Organic Chemistry (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • Immunology (AREA)
  • Biochemistry (AREA)
  • Molecular Biology (AREA)
  • Biophysics (AREA)
  • Microbiology (AREA)
  • Biotechnology (AREA)
  • Physics & Mathematics (AREA)
  • Analytical Chemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • Genetics & Genomics (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)

Abstract

The present invention addresses the problem of finding an index of whether or not a combination therapy using L-asparaginase and an autophagy inhibitor is effective, and providing a cancer therapeutic agent for which the index can be used, and provides: a method for obtaining data on prediction of the effect of a pharmaceutical agent, wherein, when the functional deletion of p53 due to gene mutation is identified in a cancer specimen, the data is determined to be negative in terms of the effect of a combination therapy using L-asparaginase and an autophagy inhibitor on cancer; and a therapeutic agent which is for a cancer showing resistance to sole administration of an L-asparaginase agent, and which is characterized by containing L-asparaginase and an autophagy inhibitor.

Description

がんに対するL-アスパラギナーゼ剤とオートファジー阻害剤の併用療法の効果の予測方法、及び、がん治療剤Prediction method of effect of combined therapy of L-asparaginase agent and autophagy inhibitor for cancer, and cancer therapeutic agent 関連出願Related applications
 本出願は、2015年12月22日に出願された日本国特許出願2015-250112号に基づく優先権を主張し、その開示の全てが参照によりここに取り込まれる。 This application claims priority based on Japanese Patent Application No. 2015-250112 filed on Dec. 22, 2015, the entire disclosure of which is incorporated herein by reference.
 本発明は、がんに対する薬剤療法の効果の予測手段に関する発明、及び、がん治療剤に関する発明である。 The present invention relates to an invention relating to a means for predicting the effect of drug therapy on cancer and an invention relating to a cancer therapeutic agent.
 がん細胞が増殖するには、様々な物質が必要であり、蛋白質を構成するアミノ酸の一つであるアスパラギン(Asp)もその一つである。アスパラギンは、アスパラギン合成酵素によって生成され、L-アスパラギナーゼ(L-asparaginase(L-asp))によって分解される。 In order for cancer cells to grow, various substances are required, and asparagine (Asp), one of the amino acids that constitute proteins, is one of them. Asparagine is produced by asparagine synthase and degraded by L-asparaginase (L-asp).
 がんの中には、細胞中のアスパラギン合成酵素が不足しており、アスパラギン不足になっているものがあり、さらにL-aspを与えると当該がん細胞の増殖が阻害されることが知られており(非特許文献1)、L-aspを用いた抗がん剤(L-asp剤)が、白血病や悪性リンパ腫等を対象として実用化されている。 Some cancers are deficient in asparagine synthase in the cells and are deficient in asparagine. Further, when L-asp is given, the growth of the cancer cells is known to be inhibited. (Non-patent Document 1), an anticancer agent (L-asp agent) using L-asp has been put into practical use for leukemia, malignant lymphoma and the like.
 L-asp剤がキードラッグとなるがんの一つとして、急性リンパ性白血病(ALL)が知られている。治療手段の進歩により、治療成績は向上しているものの、小児ALLの20%、成人ALLの40%は治療不応性となり、依然として予後不良である(非特許文献2、3)。 Acute lymphocytic leukemia (ALL) is known as one of the cancers for which L-asp drugs are key drugs. Although treatment results have improved due to advances in treatment means, 20% of childhood ALL and 40% of adult ALL become treatment refractory and still have a poor prognosis (Non-Patent Documents 2 and 3).
 その中にあって、L-asp剤は単剤で60%のALLに完全寛解をもたらすことが可能であり、さらにL-aspの投与量や投与頻度を工夫することで、ALLに対する無病生存率を向上させることが可能になっている(非特許文献4)。 Among them, the L-asp agent alone can bring about complete remission in 60% of ALL, and further, by devising the dose and frequency of administration of L-asp, the disease-free survival rate for ALL (Non-patent Document 4).
 しかしながら、ALL細胞のL-aspに対する感受性の低下により再発率の上昇や治療不応につながることも知られている(非特許文献5)。 However, it is also known that a decrease in the sensitivity of ALL cells to L-asp leads to an increased recurrence rate and treatment refractory (Non-patent Document 5).
 ところで、オートファジーはリソソームによる細胞内の分解系の一つであり、長く存在した蛋白質、細胞内小器官、及び、蛋白質凝集態がオートファゴソーム内に捕捉され、その後リソソームと融合して分解されるという、高度に制御されたプロセスである。特に、アミノ酸欠乏や酸化ストレスといった各種ストレスの悪条件下で細胞の生存を可能にするためのアミノ酸供給源となるものである。近年、卵巣がん細胞とALLにおいて、L-aspがオートファジーを誘導することが報告されている(非特許文献6、7)。また慢性骨髄性白血病においては、L-aspにより誘導されるオートファジーががん細胞の生存に有利に働き、L-aspとオートファジー阻害薬を併用することで、L-aspの殺細胞効果が増強されることが報告された(非特許文献8)。 By the way, autophagy is one of the intracellular degradation systems by lysosomes. Long-lived proteins, intracellular organelles, and protein aggregation are trapped in autophagosomes and then fused and degraded by lysosomes. It is a highly controlled process. In particular, it is an amino acid supply source that enables cells to survive under adverse conditions of various stresses such as amino acid deficiency and oxidative stress. In recent years, it has been reported that L-asp induces autophagy in ovarian cancer cells and ALL (Non-patent Documents 6 and 7). In chronic myelogenous leukemia, autophagy induced by L-asp works favorably for the survival of cancer cells, and the combined use of L-asp and an autophagy inhibitor reduces the cell killing effect of L-asp. It was reported to be enhanced (Non-patent Document 8).
 しかしながら、上記のL-aspとオートファジー阻害薬の併用療法においても、奏功する場合と、抵抗性を示す場合が認められる。本発明は、このL-aspとオートファジー阻害薬の組合せのがん細胞における作用機序を明らかにし、当該併用療法が奏功するか否かの指標を見出し、かつ、当該指標を活用し得るがん治療剤を提供することを課題としてなされた発明である。 However, even in the above-mentioned combination therapy of L-asp and an autophagy inhibitor, there are cases where the treatment is successful and resistance is exhibited. The present invention reveals the mechanism of action of this combination of L-asp and an autophagy inhibitor in cancer cells, finds an index as to whether or not the combination therapy is successful, and can utilize the index. The present invention has been made with the object of providing a therapeutic agent for cancer.
 本発明者らは、今般下記(1)~(6)を見出し、L-aspとオートファジー阻害薬の併用療法を行う上で、p53遺伝子が決定的な役割を果たしていることを見出した。
(1) ALL細胞においてL-aspがオートファジーを惹起すること、
(2) L-asp誘導性オートファジーはミトコンドリアの質の維持に重要であり、L-aspとオートファジー阻害薬の併用によりALL細胞内の酸化ストレスが蓄積すること、
(3) 過剰に蓄積した活性酸素(ROS)によるDNAダメージがp53遺伝子を介して更なる酸化ストレスを誘導し、ALL細胞のアポトーシス細胞死を惹起すること、
(4) p53遺伝子のノックダウンALL株と変異p53遺伝子を有するALL臨床検体においては、L-aspとオートファジー阻害剤の併用療法の効果が乏しいこと、
(5) 機能が欠失した変異p53遺伝子を有するALL臨床検体に対して正常p53遺伝子の導入処理を行うことにより、L-aspとオートファジー阻害剤の併用療法の効果が回復すること、
(6) アスパラギン合成酵素の発現上昇を示すL-asp耐性ALLにおいてもL-aspとオートファジー阻害剤の併用療法による効果が認められること。
The present inventors have now found the following (1) to (6) and found that the p53 gene plays a decisive role in the combined therapy of L-asp and an autophagy inhibitor.
(1) L-asp causes autophagy in ALL cells,
(2) L-asp-induced autophagy is important for the maintenance of mitochondrial quality, and the combined use of L-asp and autophagy inhibitors causes accumulation of oxidative stress in ALL cells,
(3) DNA damage caused by excessively accumulated active oxygen (ROS) induces further oxidative stress via the p53 gene, and induces apoptotic cell death of ALL cells,
(4) p53 gene knockdown ALL strains and ALL clinical specimens having a mutated p53 gene have a poor effect of L-asp and autophagy inhibitor combination therapy,
(5) The effect of combined therapy with L-asp and an autophagy inhibitor is restored by introducing a normal p53 gene into an ALL clinical specimen having a mutant p53 gene lacking function,
(6) L-asp-resistant ALL, which shows increased expression of asparagine synthase, also has the effect of combined therapy with L-asp and an autophagy inhibitor.
 上記(1)~(6)の事項は、第1に、被験者のp53遺伝子の機能欠失となる変異の有無を指標にすることにより、がん患者におけるL-aspとオートファジー阻害薬の併用療法の有効性を判断することが可能であることを示すものである。 The above items (1) to (6) are based on the use of a combination of L-asp and an autophagy inhibitor in cancer patients by using as an index the presence or absence of a mutation that causes a loss of function in the p53 gene of the subject. It shows that it is possible to judge the effectiveness of therapy.
 すなわち、本発明は、がん検体における遺伝子変異によるp53の機能欠失を認めた場合に、当該がんにおけるL-asp(L-アスパラギナーゼ)若しくはその誘導体の剤、及び、オートファジー阻害剤の併用療法の効果の否定的データとする、薬剤の効果の予測データの取得方法(以下、本発明のデータ取得方法ともいう)を提供する。本発明のデータ取得方法は、がん検体におけるp53遺伝子の機能欠失となる変異を認めた場合に、当該がんにおけるL-asp若しくはその誘導体の剤、及び、オートファジー阻害剤の併用療法の効果の否定的予測を行う、薬剤の効果の予測方法、として表現することも可能である。 That is, the present invention provides a combination of L-asp (L-asparaginase) or a derivative thereof and an autophagy inhibitor in a cancer sample when a loss of p53 function due to a gene mutation is observed in the cancer sample. Provided is a method for acquiring drug effect prediction data (hereinafter also referred to as the data acquisition method of the present invention), which is negative data on the effect of therapy. The data acquisition method of the present invention is a method for the combination therapy of L-asp or a derivative thereof and an autophagy inhibitor in a cancer sample when a mutation resulting in loss of function of the p53 gene is observed in the cancer specimen. It can also be expressed as a method for predicting the effect of a drug that performs a negative prediction of the effect.
 本発明において「L-asp又はL-アスパラギナーゼ」は、L-アスパラギナーゼそのものを意味するものである。また、「L-asp誘導体又はL-アスパラギナーゼ誘導体」としては、ポリエチレングリコール化アスパラギナーゼ等が例示される。「L-asp又はその誘導体の剤」とは、抗がん用途を有する剤であり、有効成分であるL-asp又はL-asp誘導体そのもの、及び、これに何らかの製剤手段を施したもの(医薬組成物)を含む概念である。さらに、以下「L-asp若しくはその誘導体の剤」を、「L-asp類」ともいう。 In the present invention, “L-asp or L-asparaginase” means L-asparaginase itself. Examples of the “L-asp derivative or L-asparaginase derivative” include polyethylene glycolated asparaginase. “L-asp or a derivative thereof” is an agent having anti-cancer use, and is an L-asp or L-asp derivative itself as an active ingredient, and a substance obtained by applying some formulation means (pharmaceuticals) Composition). Further, “L-asp or a derivative thereof” is hereinafter referred to as “L-asps”.
 また「オートファジー阻害剤」は、その有効成分であるオートファジー阻害成分と、これに何らかの製剤手段を施したもの(医薬組成物)を含む概念である。 Further, the “autophagy inhibitor” is a concept including an autophagy-inhibiting ingredient that is an active ingredient thereof and a substance (pharmaceutical composition) obtained by subjecting it to some formulation means.
 本発明のデータ取得方法の対象となるがん検体は、基礎的にL-asp類の投与の有効可能性が認められる、すなわち、当該がん治療の選択肢として、L-asp類の投与が選択され得るがんの検体である。この選択は、がん治療の過程として通常的に認められる場合のみならず、それ以外のチャレンジ的な選択も含まれる。具体的には、白血病、悪性リンパ腫、卵巣がん等が挙げられるが、これらに限定されるものではない。上述のようにL-asp類は、急性リンパ性白血病(ALL)の第1選択薬として用いられており、本発明のデータ取得方法を行う対象として典型的ながんである。 The cancer samples subject to the data acquisition method of the present invention are basically confirmed to be effective in the administration of L-asps, that is, the administration of L-asps is selected as an option for the cancer treatment. A specimen of cancer that can be done. This choice includes not only the case generally accepted as a course of cancer treatment but also other challenging choices. Specific examples include leukemia, malignant lymphoma, ovarian cancer and the like, but are not limited thereto. As described above, L-asps are used as first-line drugs for acute lymphoblastic leukemia (ALL), and are typical cancers as subjects for performing the data acquisition method of the present invention.
 本発明のデータ取得方法において用いられるがん検体は、当該検体中のがん細胞のp53遺伝子の機能欠失となる変異を検出する必要性から、直接的にがん細胞が含まれるものである必要がある。よって、白血病等の血液がんであれば白血病細胞が含まれる血液検体及び/又は骨髄検体が、固形がんの場合には、当該がんの生検検体又は当該がんが含まれる体液検体が、本発明のデータ取得方法において用いられるがん検体として挙げられる。 The cancer specimen used in the data acquisition method of the present invention includes cancer cells directly because of the necessity of detecting a mutation that causes a loss of function of the p53 gene of the cancer cells in the specimen. There is a need. Therefore, a blood sample and / or bone marrow sample containing leukemia cells if it is a blood cancer such as leukemia, and if it is a solid cancer, a biopsy sample of the cancer or a body fluid sample containing the cancer, It is mentioned as a cancer sample used in the data acquisition method of the present invention.
 上記(1)~(6)の事項は、L-asp類単独投与に対して抵抗性を有するがんに対しても、L-asp類とオートファジー阻害剤の併用投与が有効であることを示している。 Items (1) to (6) above show that the combined administration of L-asps and autophagy inhibitors is effective even for cancers that are resistant to L-asps alone. Show.
 よって本発明は、第2に、L-asp類とオートファジー阻害剤を含有することを特徴とする、L-asp類単独投与に対して抵抗性を有するがんの治療剤(以下、本発明のがん治療剤ともいう)を提供する。 Accordingly, the present invention secondly provides a therapeutic agent for cancer having resistance to single administration of L-asps, which comprises L-asps and an autophagy inhibitor (hereinafter referred to as the present invention). (Also referred to as a cancer therapeutic agent).
 オートファジー阻害剤は特に限定されず、例えば、クロロキン(クロロキノリン)、ハイドロオキシクロロキン等のクロロキン類、3-メチルアデニン、バフィロマイシンA、ウゥルトマニン等が挙げられるが、これらに限定されるものではない。 The autophagy inhibitor is not particularly limited, and examples thereof include chloroquines such as chloroquine (chloroquinoline) and hydroxychloroquine, 3-methyladenine, bafilomycin A, urtomannin and the like, but are not limited thereto. Absent.
 本発明のがん治療剤は、(a)L-asp類とオートファジー阻害剤を含有する医薬用組成物であっても、(b)L-asp類、及び、オートファジー阻害剤を別個の構成薬剤として含む薬剤のセットであってもよい。 Even if the cancer therapeutic agent of the present invention is a pharmaceutical composition containing (a) L-asps and an autophagy inhibitor, (b) the L-asps and the autophagy inhibitor are separately used. It may be a set of drugs included as a constituent drug.
 本発明のがん治療剤は、さらにL-アスパラギン合成酵素阻害剤(sulfoximine-based inhibitor、Bioorganic & Medicinal Chemistry 20 (2012) 5915-5927等)が含有されていてもよい。このL-アスパラギン合成酵素阻害剤の含有形態は、上記と同様に(a)医薬用組成物中に含有されていても、(b)L-asp類、及び、オートファジー阻害剤とは別個の構成薬剤として含有されていてもよい。 The cancer therapeutic agent of the present invention may further contain an L-asparagine synthase inhibitor (sulfoximine-based inhibitor, Bioorganic® & Medicinal® Chemistry® 20 (2012) 5915-5927, etc.). This L-asparagine synthase inhibitor is contained in a form separate from (b) L-asps and autophagy inhibitors, even though it is contained in (a) a pharmaceutical composition as described above. It may be contained as a constituent drug.
 本発明のがん治療剤の投与対象は、L-asp類単独投与に対して抵抗性を有し、かつ、p53遺伝子の機能欠失となる変異が認められない、L-asp類の投与の有効可能性が認められるがんであり、具体的ながんの種類は、本発明のデータ取得方法の対象と同じく、白血病、悪性リンパ腫、卵巣がん等、好適には急性リンパ性白血病、急性骨髄性白血病、慢性骨髄性白血病、NK/T細胞リンパ腫が挙げられるが、チャレンジ的なものも含み、これらに限定されるものではない。また、元々はp53遺伝子の機能欠失となる変異が認められたものであっても、事後的に当該遺伝子の修復がなされたがんであれば、本発明のがん治療剤の投与対象となる。p53遺伝子の機能欠失となる変異の修復は、いわゆる遺伝子治療によって行うことができる。 Subjects for administration of the cancer therapeutic agent of the present invention are those that are resistant to the administration of L-asps alone and that do not show a mutation that results in loss of function of the p53 gene. Cancers that have been confirmed to be effective, and specific types of cancer are the same as those of the data acquisition method of the present invention, such as leukemia, malignant lymphoma, ovarian cancer, preferably acute lymphocytic leukemia, acute bone marrow Include, but are not limited to, sexual leukemia, chronic myeloid leukemia, NK / T cell lymphoma. In addition, even if a mutation that results in a loss of function of the p53 gene was originally observed, if the cancer was subsequently repaired, the cancer therapeutic agent of the present invention will be administered. . Repair of mutations resulting in loss of function of the p53 gene can be performed by so-called gene therapy.
 p53遺伝子の機能欠失となる変異の有無を指標とした、本発明のがん治療剤の投与の適否については、本発明のデータ取得方法によって得られたデータに基づいて判断することが可能である。すなわち、本発明のデータ取得方法によって得られたデータが、機能欠失となるp53遺伝子の変異の存在を示していれば、本発明のがん治療剤の即時の投与は適当とはいえず、他の治療手段を選択するか、又は、p53遺伝子の機能欠失となる変異の修復を行った後に改めて本発明のがん治療剤の投与を行うスケジュールが選択され得る。なお、L-asp類投与による治療前に本発明のデータ取得方法が行われた場合には、まずはL-asp類投与による治療も選択され得る。逆に、当該データにおいてp53遺伝子の機能欠失となる変異が認められない場合には、本発明のがん治療剤の投与の対象となり得る。なお、L-asp類投与による治療前に本発明のデータ取得方法が行われた場合には、まずはL-asp類投与による治療も選択され得る。 Whether or not the cancer therapeutic agent of the present invention is administered using the presence or absence of a mutation causing loss of function of the p53 gene as an index can be determined based on the data obtained by the data acquisition method of the present invention. is there. That is, if the data obtained by the data acquisition method of the present invention indicates the presence of a mutation in the p53 gene that results in loss of function, immediate administration of the cancer therapeutic agent of the present invention is not appropriate, Other treatment means may be selected, or a schedule for administering the cancer therapeutic agent of the present invention may be selected after repair of a mutation that results in loss of function of the p53 gene. When the data acquisition method of the present invention is performed before treatment with L-asps, treatment with L-asps can be selected first. On the other hand, if no mutation that results in a loss of function of the p53 gene is observed in the data, the cancer therapeutic agent of the present invention can be administered. When the data acquisition method of the present invention is performed before treatment with L-asps, treatment with L-asps can be selected first.
 本発明のがん治療剤の投与対象は、少なくとも「L-asp類単独投与に対して抵抗性を有するがん」であり、当該抵抗性のがんは、事前のL-asp類の体内投与による当該がんに対する否定的な抗がん効果データ、又は、事前の当該がん細胞の体外におけるL-asp類との接触による否定的な抗がん効果データ、に基づいて規定することができる。 The subject of administration of the cancer therapeutic agent of the present invention is at least “cancer having resistance to L-asps alone administration”, and the resistant cancer is administered in advance by in vivo administration of L-asps. Can be defined based on negative anti-cancer effect data against the cancer in question or negative anti-cancer effect data obtained by contacting the cancer cells with L-asps outside the body in advance. .
 本発明により、L-asp若しくはその誘導体の剤、及び、オートファジー阻害剤の併用療法の効果の予測手段が提供され、さらに当該予測結果を活かすことが可能ながん治療剤が提供される。 According to the present invention, a means for predicting the effect of combination therapy with an agent of L-asp or a derivative thereof and an autophagy inhibitor is provided, and further a cancer therapeutic agent capable of utilizing the prediction result is provided.
本発明のデータ取得方法におけるp53遺伝子の機能欠失変異の検出工程の一態様をフロー化した図面である。It is drawing which flow-ized one aspect | mode of the detection process of the function deletion mutation of the p53 gene in the data acquisition method of this invention. 3種のALL細胞株に対してL-aspとオートファジー阻害剤を、単独又は組み合わせて作用させた場合、あるいは両者共に作用させない場合のオートファジー誘導を、LC3B-IIを指標として電気泳動で検討した結果を示した図面である。Induction of autophagy when L-asp and an autophagy inhibitor are used alone or in combination with three types of ALL cell lines, or when both are not acted on by electrophoresis using LC3B-II as an indicator It is the figure which showed the result. ALL細胞株であるREH細胞に対して、L-aspとオートファジー阻害剤であるChloroquine(CQ)を、単独又は組み合わせて作用させた場合のオートファジー誘導を、LC3B-IIを指標として検討した組織免疫染色像を示した図面である。Tissues examined for LC3B-II as an indicator of autophagy induction when RE-cells, an ALL cell line, and L-asp and an autophagy inhibitor, Chloroquine (CQ), are used alone or in combination. It is drawing which showed the immuno-staining image. ALL細胞株であるREH細胞に対して、L-aspとオートファジー阻害剤であるChloroquine(CQ)を、単独又は組み合わせて作用させた場合、あるいは両者共に作用させない場合のオートファジー誘導について、電子顕微鏡像により示した図面である。Regarding autophagy induction when RE-cell, which is an ALL cell line, and L-asp and an autophagy inhibitor, Chloroquine (CQ), are used alone or in combination, or both are not allowed to act, an electron microscope It is drawing shown by the image. 図2-Cの電気顕微鏡像における1細胞当たりのオートファジー小胞の個数と面積を示した図面である。2C is a drawing showing the number and area of autophagy vesicles per cell in the electric microscope image of FIG. 2-C. ALL細胞株であるREH細胞に対して、L-aspとオートファジー阻害剤であるChloroquine(CQ)を単独又は組み合わせて作用させた場合の、障害性ミトコンドリア数を蛍光色素染色に基づいて計数した結果を示した図面である。Results of counting the number of damaged mitochondria based on fluorescent dye staining when RE-cell, an ALL cell line, was allowed to act on L-asp and autophagy inhibitor Chloroquine (CQ) alone or in combination It is drawing which showed. ALL細胞株であるREH細胞に対して、L-aspとオートファジー阻害剤であるChloroquine(CQ)を単独又は組み合わせて作用させた場合の、細胞内ミトコンドリアの膜電位を、TMRE(tetramethlrhodamine methyl ester)を用いて検討した結果を示した図面である。The membrane potential of intracellular mitochondria when L-asp and autophagy inhibitor Chloroquine (CQ) are used alone or in combination with REH cells, which are ALL cell lines, is TMRE (tetramethylrhodamine methylester). It is drawing which showed the result examined using this. ALL細胞株であるREH細胞に対して、L-aspとオートファジー阻害剤であるChloroquine(CQ)を単独又は組み合わせて作用させた場合の、DCFDA(5-(and-6)-carboxy-2′,7′-dichlorofluorescein diacetate)を用いた細胞内活性酸素種(ROS)(左図)と、MitoSox(登録商標)-Redを用いたミトコンドリアROSの評価を行った結果を示した図面である。DCFDA (5- (and-6) -carboxy-2 ′ when L-asp and autophagy inhibitor Chloroquine (CQ) are allowed to act on REH cells, which are ALL cell lines, alone or in combination. , 7'-dichlorofluorescein diacetate, intracellular reactive oxygen species (ROS) (left figure), and mitochondrial ROS evaluation using MitoSox (registered trademark) -Red. 3種のALL細胞株に対してL-aspとオートファジー阻害剤を、単独又は組み合わせて作用させた場合の細胞死の度合いを、フローサイトメトリーとウェスタンブロッティング解析で検討した結果を示した図面である。Drawing showing the results of examination of the degree of cell death when L-asp and an autophagy inhibitor were used alone or in combination on three types of ALL cell lines by flow cytometry and Western blotting analysis. is there. ALL細胞株であるREH細胞に対して、L-aspとオートファジー阻害剤であるChloroquine(CQ)を作用させることにより惹起される細胞死に対する、汎アポトーシス関連分子阻害薬であるz-VADによる抑制作用を検討した結果を示した図面である。Suppression of cell death induced by the action of L-asp and autophagy inhibitor Chloroquine (CQ) against REH cells, an ALL cell line, by z-VAD, a pan-apoptosis-related molecular inhibitor It is drawing which showed the result of examining an effect | action. L-asp耐性株697-Rの、L-asp添加量増加に対する生細胞率を検討した結果を示す図面である。FIG. 6 is a drawing showing the results of examining the viable cell rate of L-asp resistant strain 697-R with respect to an increase in L-asp addition amount. L-asp耐性株697-Rにおける、L-aspと、オートファジー阻害剤CQの組合せ添加の生細胞率に与える影響を検討した結果を示す図面である。FIG. 6 is a drawing showing the results of examining the influence of L-asp and autophagy inhibitor CQ on the viable cell rate in L-asp resistant strain 697-R. L-asp耐性株697-Rにおけるアスパラギン合成酵素(ASNS)の蛋白発現レベルを、L-aspとオートファジー阻害剤であるChloroquine(CQ)を単独又は組み合わせて作用させた場合、あるいは両者共に作用させない場合について、ウェスタンブロッティング解析を行った結果を示す図面である。The protein expression level of asparagine synthase (ASNS) in the L-asp resistant strain 697-R is caused when L-asp and the autophagy inhibitor Chloroquine (CQ) are used alone or in combination, or both are not allowed to act. It is drawing which shows the result of having performed western blotting analysis about the case. ALL細胞株であるREH細胞のASNS遺伝子を異なる部位においてノックダウンを行った「sh-ASNS1」と「sh-ASNS2」における、L-aspとオートファジー阻害剤であるChloroquine(CQ)を単独又は組み合わせて作用させた場合、あるいは両者共に作用させない場合について検討した結果を示す図面である。L-asp and Chloroquine (CQ), an autophagy inhibitor, alone or in combination in “sh-ASNS1” and “sh-ASNS2” in which the ASNS gene of REH cell, an ALL cell line, was knocked down at different sites It is drawing which shows the result of having examined about the case where it is made to act, or the case where neither is made to act. L-aspとオートファジー阻害剤の併用により誘導されるアポトーシス細胞死の原因となる機構を検討したウェスタンブロッティング解析の結果を示す図面である。It is a figure which shows the result of the western blotting analysis which examined the mechanism which causes the apoptotic cell death induced by combined use of L-asp and an autophagy inhibitor. 図3-Gの細胞培養系にROSの阻害薬であるアセチルシステイン(NAC)を添加した場合の殺細胞効果に対する影響を検討した結果を示す図面である。FIG. 3 is a drawing showing the results of examining the effect on cell killing effect when acetylcysteine (NAC), an ROS inhibitor, is added to the cell culture system of FIG. Propidium Iodide染色を用いたフローサイトメトリーにより、細胞周期評価を行った結果を示す図面である。It is drawing which shows the result of having performed cell cycle evaluation by the flow cytometry which used Propidium Iodide dyeing | staining. 日単位の継続的薬剤接触による影響を、生細胞数をカウントすることにより検討した結果を示す図面である。It is a figure which shows the result of having examined the influence by the continuous drug contact of a day unit by counting the number of living cells. in vivoでの治療評価を行うため、ルシフェラーゼ遺伝子を導入したREH/Luc2細胞を、免疫不全マウスに対して経尾静脈移植を行い、その経過を蛍光分布検出により検討した結果を示す図面である。It is a figure which shows the result of having carried out the transvenous vein transplantation to the immunodeficient mouse | mouth, and having investigated the progress by fluorescence distribution detection, for REH / Luc2 cell which introduce | transduced the luciferase gene in order to perform the treatment evaluation in vivo. in vivoでの治療評価を行うため、ルシフェラーゼ遺伝子を導入したREH/Luc2細胞を、免疫不全マウスに対して経尾静脈移植を行い、その経過を蛍光の光子フラックス率を基に検討した結果を示す図面である。In order to evaluate the treatment in vivo, REH / Luc2 cells introduced with luciferase gene were transplanted via tail vein into immunodeficient mice, and the results were examined based on the photon flux rate of fluorescence. It is a drawing. 図3-Kと図3-LにおけるREH/Luc2細胞を移植した免疫不全マウスの経時的な生存率を日単位で検討した全生存解析結果を示す図面である。FIG. 3 is a graph showing the results of whole survival analysis in which the survival rate over time of immunodeficient mice transplanted with REH / Luc2 cells in FIGS. 3-K and 3-L was examined on a daily basis. ALL細胞株であるREH細胞に対して、L-aspとオートファジー阻害剤であるChloroquine(CQ)を単独又は組み合わせて作用させた場合の経時的なDNAダメージをウェスタンブロッティング解析により検討した結果を示す図面である。FIG. 4 shows the results of Western blotting analysis of DNA damage over time when L-asp and autophagy inhibitor Chloroquine (CQ) are used alone or in combination with REH cells, an ALL cell line. It is a drawing. ALL細胞株であるREH細胞に対して、L-aspとオートファジー阻害剤であるChloroquine(CQ)を単独又は組み合わせて作用させ、さらにこれにROS抑制薬であるアセチルシステイン(NAC)を作用させた場合の、DNAダメージの指標であるγH2AXと共に、p53蛋白の増減をウェスタンブロッティング解析により検討した結果を示す図面である。LHasp and autophagy inhibitor Chloroquine (CQ) were allowed to act on REH cells, which are ALL cell lines, alone or in combination, and ROS inhibitor acetylcysteine (NAC) was allowed to act on this. It is drawing which shows the result of having examined the increase / decrease of p53 protein by Western blotting analysis with (gamma) H2AX which is a parameter | index of DNA damage in the case. sh(short hairpin)RNAによりp53遺伝子をノックダウンしたREH細胞株(sh-p53)における、L-aspとオートファジー阻害剤であるChloroquine(CQ)を組み合わせて作用させた場合のDNAダメージを、ウェスタンブロッティング解析により検討した結果を示す図面である。In the REH cell line (sh-p53) in which the p53 gene was knocked down by sh (short hairpin) RNA, DNA damage caused by combining L-asp and the autophagy inhibitor Chloroquine (CQ) It is drawing which shows the result examined by blotting analysis. 図4-Cと同じくp53ノックダウンREH細胞株(sh-p53)における、細胞内ROSの蓄積を検討した結果を示す図面である。It is a figure which shows the result of having investigated accumulation of intracellular ROS in p53 knockdown REH cell line (sh-p53) similarly to FIG. 4-C. 図4-Cと同じくp53ノックダウンREH細胞株(sh-p53)における細胞死の抑制について、Annexin Vの取り込み(左のグラフ)と、ウェスタンブロッティング解析(右の電気泳動図)により検討した結果を示す図面である。As in FIG. 4-C, the suppression of cell death in the p53 knockdown REH cell line (sh-p53) was examined by Annexin V incorporation (left graph) and Western blotting analysis (right electrophoretic diagram). FIG. ALLの臨床血液検体(初発例12例と再発例2例の計14例)における、L-aspとオートファジー阻害剤であるChloroquine(CQ)の組み合わせ投与の効果を、p53遺伝子の機能欠失となる変異の有無と併せて検討した結果を示した図面である。The effect of combined administration of L-asp and chloroquine (CQ), which is an autophagy inhibitor, in ALL clinical blood samples (total of 12 cases of initial cases and 2 cases of relapses) It is the figure which showed the result examined together with the presence or absence of the mutation which becomes. 図5-Aにおいて、L-aspとオートファジー阻害剤であるChloroquine(CQ)の組み合わせ投与の効果が認められたALLの臨床血液検体3例におけるオートファジー活性評価の結果をウェスタンブロッティング解析により示した図面である。In FIG. 5-A, the results of autophagy activity evaluation in 3 clinical blood samples of ALL in which the effect of combined administration of L-asp and chloroquine (CQ), an autophagy inhibitor, was shown by Western blotting analysis. It is a drawing. 図5-Aにおいて、L-aspとオートファジー阻害剤であるChloroquine(CQ)の組み合わせ投与の効果が認められなかった、遺伝子変異によりp53が機能欠失したALLの臨床血液検体(症例14)に対して、アデノウイルスによる正常p53遺伝子の導入を行った場合の効果を、ウェスタンブロッティング解析により示した図面である。In FIG. 5-A, a clinical blood sample of ALL (case 14) in which p53 was lost in function due to a gene mutation in which the effect of combined administration of L-asp and the autophagy inhibitor Chloroquine (CQ) was not observed. On the other hand, it is the figure which showed the effect at the time of introduce | transducing the normal p53 gene by adenovirus by Western blotting analysis. 図5-Aにおいて、L-aspとオートファジー阻害剤であるChloroquine(CQ)の組み合わせ投与の効果が認められなかった、遺伝子変異によりp53が機能欠失したALLの臨床血液検体(症例14)に対して、アデノウイルスによる正常p53遺伝子の導入を行った場合の効果を、生細胞数で検討した結果を示した図面である。In FIG. 5-A, a clinical blood sample of ALL (case 14) in which p53 was lost in function due to a gene mutation in which the effect of combined administration of L-asp and the autophagy inhibitor Chloroquine (CQ) was not observed. On the other hand, it is the figure which showed the result of having examined the effect at the time of introduce | transducing the normal p53 gene by adenovirus by the number of living cells. sh(short hairpin)RNAによりp53遺伝子をノックダウンしたREH細胞株(sh-p53)を、免疫不全マウスに経尾静脈移植した場合の投薬の効果を検討した結果を示した図面である。It is the figure which showed the result of having examined the effect of the administration when the REH cell line (sh-p53) which knocked down the p53 gene by sh (short hairpin) RNA was transplanted into the immunodeficient mouse via the tail vein. L-aspとオートファジー阻害剤であるChloroquine(CQ)の組み合わせ投与による、ALL細胞のアポトーシス誘導の仕組みをチャート化して示した図面である。BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a chart showing the mechanism of apoptosis induction of ALL cells by the combined administration of L-asp and an autophagy inhibitor, Chloroquine (CQ).
1.本発明のデータ取得方法
 本発明のデータ取得方法の基礎データは、p53遺伝子の機能欠失となる変異の検出データであり、がん検体におけるp53遺伝子の機能欠失となる変異の検出を行うことが前提となる。
1. Data acquisition method of the present invention The basic data of the data acquisition method of the present invention is detection data of a mutation that results in loss of function of the p53 gene, and detection of a mutation that results in loss of function of the p53 gene in a cancer sample Is the premise.
 p53遺伝子は進化的に保存されており、ヒト以外の種にも認められる。ヒトp53遺伝子は、第17番染色体短腕上(17p13.1)に存在する。p53遺伝子は、がん抑制遺伝子として知られており、細胞内の恒常性の維持や代謝調節、細胞内ROS産生の調節、アポトーシスの誘導等の細胞増殖を制御する働きを担っていることが知られている。p53の機能欠失となる変異は、染色体上の両アレルにおけるp53遺伝子が失活するものである。この機能欠失変異の基本的類型として下記4種が挙げられる。
(1) 一方のアレルにp53遺伝子の機能欠失型の変異があり、他方のアレルで第17染色体短腕のp53遺伝子存在領域のLOH(loss of heterozygosity)が認められる類型(以下、第1類型ともいう)。がん細胞に生じる第1類型の機能欠失型変異は、p53遺伝子のLOHに先だって機能欠失型のミスセンス変異(R175HやR248Q等)、ナンセンス変異、フレームシフト変異等が生じたものである。
(2) 一方のアレルのp53遺伝子に上記のような機能欠失型の変異が生じ、他方のアレルのp53遺伝子にも同じく機能欠失型の変異が生じ、ホモ変異、又は、コンパウンドヘテロ変異となっている類型(以下、第2類型ともいう)。
(3) 第17番染色体短腕の欠失変異、若しくは、第17番染色体の欠失変異(以下、第3類型ともいう)
(4) 一方のアレルにp53遺伝子の機能欠失型変異のみが認められ、他方のアレルのp53遺伝子には変異は認められないが、ドミナント・ネガティブ作用によって、四量体構造を取るp53分子のサブユニットとして、変異p53サブユニットがランダムに組み合わされて機能阻害を及ぼし、全体としてのがん抑制作用(アポトーシス誘導作用)の効率を低下させる類型(以下、第4類型ともいう)。
The p53 gene is evolutionarily conserved and is found in species other than humans. The human p53 gene is present on the short arm of chromosome 17 (17p13.1). The p53 gene is known as a tumor suppressor gene, and is known to play a role in regulating cell growth such as maintenance of intracellular homeostasis, metabolic regulation, regulation of intracellular ROS production, and induction of apoptosis. It has been. A mutation resulting in loss of function of p53 is one in which the p53 gene in both alleles on the chromosome is inactivated. The following four types are listed as basic types of this loss-of-function mutation.
(1) A type in which one allele has a loss-of-function mutation of the p53 gene, and the other allele has a loss of heterozygosity (LOH) of the p53 gene existing region of the short arm of chromosome 17 (hereinafter referred to as the first type) Also called). The first type of loss-of-function mutations that occur in cancer cells are those in which loss-of-function missense mutations (such as R175H and R248Q), nonsense mutations, and frameshift mutations have occurred prior to the LOH of the p53 gene.
(2) The above-mentioned loss-of-function mutation occurs in the p53 gene of one allele, and the loss-of-function mutation also occurs in the p53 gene of the other allele, and a homo mutation or a compound hetero mutation Type (hereinafter also referred to as the second type).
(3) Deletion mutation of chromosome 17 short arm or deletion mutation of chromosome 17 (hereinafter also referred to as type 3)
(4) Only the loss-of-function mutation of the p53 gene is observed in one allele, and no mutation is observed in the p53 gene of the other allele. As a subunit, a mutant p53 subunit is randomly combined to exert function inhibition, thereby reducing the overall cancer suppression effect (apoptosis inducing action) efficiency (hereinafter also referred to as a fourth type).
 これらの4種類のp53遺伝子の機能欠失となる変異の類型のうち、第1類型が最も高頻度である。第1類型のp53遺伝子の機能欠失となる変異は、高度にp53遺伝子の変異が進行したがん細胞におけるものであるから、LOHのみを検出することによって、併せて存在する他アレルの機能欠失型変異を含めての検出とすることができる。無論のこと、例えば、LOHの検出とダイレクトシークエンス解析を併せて行うことも可能である。 Of these four types of mutations that result in loss of function of the p53 gene, the first type is the most frequent. The mutation that results in loss of function of the first type of p53 gene is in a cancer cell in which the mutation of the p53 gene has advanced to a high degree. Therefore, by detecting only LOH, the loss of function of other alleles that exist together is detected. Detection can include detection of a mutation. Of course, for example, LOH detection and direct sequence analysis can be performed together.
 第1類型のLOHの検出は、例えば、マイクロサテライトマーカーを用いたゲノム不安定性試験(マイクロサテライト不安定性検査)、FISH法、特開2000-93185号に記載の方法、サザンブロット法等が挙げられる。 Examples of the detection of the first type of LOH include a genomic instability test (microsatellite instability test) using a microsatellite marker, the FISH method, the method described in JP-A-2000-93185, the Southern blot method, and the like. .
 マイクロサテライト不安定性検査においては、標的がん細胞の遺伝子における「ゲノムの不安定状態」を、マイクロサテライト(ゲノム中における(A)n、(CA)n等の単塩基から数塩基単位の反復配列(数回から数十回の反復)であって、10~10個存在する)のうち、特定のものをマーカーとして用いて、第1類型のLOHの検出を行うことができる(Vita Vol.15 NO.3 1998 / 7.8.9)。 In the microsatellite instability test, the “genomic instability” in the gene of the target cancer cell is expressed as a repetitive sequence of microsatellite ((A) n, (CA) n, etc. in the genome from a single base to several base units). The first type of LOH can be detected using a specific one of the markers (from several to several tens of repetitions and 10 4 to 10 5 repetitions) (Vita Vol .15 NO.3 1998 / 7.8.9).
 FISH法[蛍光in situ ハイブリダイゼーション(FISH:Fluorescence in situ hybridization):Yasui,K., Imoto,I., Fukuda,Y., Pimkhaokham,A., Yang,Z.Q., Naruto,T., Shimada,Y., Nakamura,Y., and Inazawa,J: Identification of target genes within an amplicon at 14q12-q13 in esophageal squamous cell carcinoma. Genes Chromosomes Cancer, 32, 112-118, 2001]では、核酸のハイブリダイゼーションによるシグナルを基に、第1類型のLOHを検出することができる。この場合、p53遺伝子領域のFISHプローブを作成し、がん検体における染色体とハイブリダイゼーションを行い、シグナル数の変化を観察することで、p53遺伝子のLOHを検出することができる。 FISH method [fluorescence in situ hybridization (FISH: Fluorescence in situ hybridization): Yasui, K., Imoto, I., Fukuda, Y., Pimkhaokham, A., Yang, ZQ, Naruto, T., Shimada, Y. , Nakamura, Y., And Inazawa, J: Identification of target genes within an amplicon at 14q12-q13 in esophageal squamous cell carcinoma. Genes Chromosomes Cancer, 32, 112-118, 2001] In addition, the first type of LOH can be detected. In this case, the LOH of the p53 gene can be detected by preparing a FISH probe of the p53 gene region, performing hybridization with a chromosome in a cancer specimen, and observing the change in the number of signals.
 特開2000-93185号に記載の方法は、がん検体の遺伝子のp53遺伝子の下流域に存在する、Na/K-ATPase beta2 subunit遺伝子内の遺伝子多型マーカーにおけるヘテロ接合性の消失を特定する方法であり、この方法によってもp53遺伝子のLOHを検出することができる。 The method described in Japanese Patent Application Laid-Open No. 2000-93185 identifies loss of heterozygosity in a gene polymorphism marker in the Na / K-ATPase beta2 subunit gene that is present in the downstream region of the p53 gene of the cancer sample gene. This method can also detect the LOH of the p53 gene.
 サザンブロット法を用いる場合、がん検体から得られるゲノムDNAを制限酵素消化し、それをゲル電気泳動後、ニトロセルロース膜上に固定し、これと、標識したp53遺伝子領域のDNAとハイブリダイゼーションを行い検出することにより、検体中のp53遺伝子のLOHの存在を検出する。正常由来の検体から得られる検出量(バンドの濃さ)に対し、がん検体から得られる検出量が少ないことと共に、異なるバンドの出現が認められることにより、検体中のp53遺伝子のLOHの存在を検出することができる。 When Southern blotting is used, genomic DNA obtained from a cancer specimen is digested with a restriction enzyme, gel-electrophoresed, immobilized on a nitrocellulose membrane, and hybridized with labeled p53 gene region DNA. By performing detection, the presence of LOH of the p53 gene in the specimen is detected. Presence of L53 of p53 gene in the specimen due to the presence of a different band in addition to the small quantity of detection obtained from the cancer specimen compared to the detection quantity (band density) obtained from the normal specimen. Can be detected.
 第2類型の機能欠失型のp53遺伝子変異は、例えば、ダイレクトシークエンス解析により検出することができる。さらに具体的には、サンガー法や、いわゆる次世代シークエンス法により検出することができる。後述する実施例で検出されたp53遺伝子変異は、この第2類型である。ただし、第2類型は、上述の第1類型に比べると低頻度である。 The second type of loss-of-function p53 gene mutation can be detected, for example, by direct sequence analysis. More specifically, it can be detected by the Sanger method or the so-called next-generation sequencing method. The p53 gene mutation detected in Examples described later is this second type. However, the second type is less frequent than the first type described above.
 サンガー法は、i)p53遺伝子の一本鎖DNAに相補的なオリゴヌクレオチドをアニールさせ、これをプライマーとして相補鎖をDNAポリメラーゼによって合成させ、ii)基質として4種のデオキシヌクレオチド三リン酸およびジデオキシヌクレオチド三リン酸を加え、相補鎖を合成させ、iii)さらに化学発光物質で標識したプライマーやdNTPを加えることにより、合成されるDNAを標識し、塩基配列を決定する。この配列とリファレンス配列を比較することで第2類型のp53遺伝子の機能欠失となる変異を検出することが可能である。 The Sanger method consists of i) annealing an oligonucleotide complementary to a single-stranded DNA of the p53 gene, synthesizing a complementary strand with a DNA polymerase using this as a primer, and ii) using four deoxynucleotide triphosphates and dideoxy as substrates. Nucleotide triphosphate is added to synthesize a complementary strand. Iii) Further, a primer or dNTP labeled with a chemiluminescent substance is added to label the synthesized DNA and determine the base sequence. By comparing this sequence with a reference sequence, it is possible to detect a mutation that results in loss of function of the second type of p53 gene.
 次世代シークエンス法では、ランダムに切断された数千万のDNA断片の塩基配列を同時並行的に決定することができる。PCR産物のプールシークエンスにより、高効率にp53の遺伝子領域のディープシークエンスを行うことができる。これにより低頻度でも第2類型のp53遺伝子の機能欠失となる変異を検出することができる。 In the next generation sequencing method, the base sequences of tens of millions of randomly cut DNA fragments can be simultaneously determined. Deep sequencing of the gene region of p53 can be performed with high efficiency by pooled sequencing of PCR products. As a result, a mutation that causes a loss of function of the second type p53 gene can be detected even at a low frequency.
 第3類型の第17番染色体短腕の欠失変異、又は、第17番染色体の欠失変異は、上記のFISH法又は染色体検査で検出することができる。染色体検査は、典型的にはG分染法等の染色体検査である。とはギムザ(Giemsa)の略で、トリプシン処理後ギムザ染色を行うものである。これにより、p53遺伝子が座位する第17番染色体短腕の欠失や、第17番染色体そのものの欠失(モノソミー)の有無を確認することができる。 A deletion mutation of the third type of chromosome 17 short arm or a deletion mutation of chromosome 17 can be detected by the above FISH method or chromosome examination. Chromosome testing is typically chromosomal testing such as G-separation. Is an abbreviation for Giemsa, and is used for Giemsa staining after trypsin treatment. Thereby, the presence or absence of the deletion of the short arm of chromosome 17 where the p53 gene is located, or the deletion of the chromosome 17 itself (monosomy) can be confirmed.
 第4類型のp53蛋白のサブユニットの立体構造による機能欠失型のp53遺伝子変異は、上記のサンガーシークエンス法の他、変異を有するp53蛋白については半減期が延長して細胞内(特に核内)に蓄積することを利用したp53蛋白の免疫組織化学染色、さらに変異を有するp53蛋白に対する、ELISAキットによる自己抗体の検出等を行うことができる。 In addition to the above-mentioned Sanger sequencing method, the p53 protein mutation lacking function due to the tertiary structure of the subunits of the fourth type of p53 protein has a half-life extended in the cell (particularly in the nucleus). The immunohistochemical staining of the p53 protein utilizing the accumulation in (1), and the detection of autoantibodies using an ELISA kit against the p53 protein having a mutation can be performed.
 上記のように、p53遺伝子の機能欠失となる変異についてのがん検体からのデータを取得することができる。上記の検出手法を組み合わせて、第1類型、第2類型、第3類型、及び、第4類型、全てのp53遺伝子の機能欠失となる遺伝子変異についての検出を行うことができるが、これらを類型毎に個別の検出を行うことも可能である。この場合、頻度の高い第1類型を優先させて行うことが好ましい。 As described above, it is possible to obtain data from cancer specimens regarding mutations that result in loss of function of the p53 gene. By combining the above detection methods, it is possible to detect the first type, the second type, the third type, the fourth type, and the genetic mutation that results in the loss of function of all p53 genes. It is also possible to perform individual detection for each type. In this case, it is preferable to prioritize the first type with high frequency.
 図1は、本発明のデータ取得方法におけるp53遺伝子の機能欠失変異の検出工程の一態様をフロー化した図面である。 FIG. 1 is a flow chart showing an embodiment of a process for detecting a loss-of-function mutation of the p53 gene in the data acquisition method of the present invention.
 ボックスA1は、がん検体が「固形がんの組織検体」である場合の検出工程開始を示す。組織検体とは、内臓組織、骨組織、筋肉組織、皮膚組織、神経組織等である。ボックスA2は、がん検体が「固形がんの液性検体」である場合の検出工程開始を示す。液性検体とは、胸水、腹水、尿残渣等である。ボックスA3は、がん検体が「白血病又は悪性リンパ腫」である場合の検出工程開始を示す。 Box A1 indicates the start of the detection process when the cancer specimen is a “solid cancer tissue specimen”. Tissue specimens include visceral tissue, bone tissue, muscle tissue, skin tissue, nerve tissue, and the like. Box A2 indicates the start of the detection process when the cancer sample is a “solid cancer liquid sample”. The liquid specimen is pleural effusion, ascites, urine residue and the like. Box A3 shows the start of the detection process when the cancer specimen is “leukemia or malignant lymphoma”.
 固形がんの組織検体(A1)の検出工程の第1段階は、「マイクロサテライトマーカーによるLOH解析」である(ボックスB1)。固形がんの液性検体(A2)の検出工程の第1段階は、「マイクロサテライトマーカーによるLOH解析」(B1)又は「FISH解析」(ボックスB2)である。また、白血病又は悪性リンパ腫のがん検体(A3)の検出工程の第1段階は、「マイクロサテライトマーカーによるLOH解析」(B1)、「FISH解析」(B2)又は「染色体検査」である。 The first stage of the detection process of the solid cancer tissue specimen (A1) is “LOH analysis by microsatellite marker” (box B1). The first stage of the detection process of the solid cancer liquid specimen (A2) is “LOH analysis by microsatellite marker” (B1) or “FISH analysis” (box B2). In addition, the first stage of the detection process of the leukemia or malignant lymphoma cancer specimen (A3) is “LOH analysis by microsatellite marker” (B1), “FISH analysis” (B2), or “chromosome test”.
 マイクロサテライトマーカーによるLOH解析(B1)の結果、「LOH陽性」(R1/1)である場合は、がん検体の種類によらず「機能欠失変異陽性」(J1/1)として検出が行われる。当該LOH解析(B1)の結果、「正常」(R1/0)である場合は、第2段階の検出工程である「ダイレクトシークエンス解析」(ボックスC1)がさらに行われる。ダイレクトシークエンス解析は、サンガー法又はNGS法等が用いられる。 If the result of LOH analysis (B1) using a microsatellite marker is “LOH positive” (R1 / 1), detection is performed as “positive for loss of function mutation” (J1 / 1) regardless of the type of cancer specimen. Is called. If the result of the LOH analysis (B1) is “normal” (R1 / 0), a “direct sequence analysis” (box C1), which is a second-stage detection process, is further performed. For the direct sequence analysis, the Sanger method or the NGS method is used.
 「FISH解析」(B2)又は「染色体検査」(B3)の結果、「正常」(R2/0)である場合には、初発のがん検体の種類によらずに前記「ダイレクトシークエンス解析」(C1)がさらに行われる。「FISH解析」(B2)又は「染色体検査」(B3)の結果、「第17番染色体短腕の欠失(17p-)又は第17番染色体そのものの欠失(-17)」(R2/0)である場合には、初発のがん検体の種類によらずに「機能欠失変異陽性」(J1/2)として検出が行われる。 If the result of “FISH analysis” (B2) or “chromosome test” (B3) is “normal” (R2 / 0), the “direct sequence analysis” ( C1) is further performed. As a result of “FISH analysis” (B2) or “chromosome test” (B3), “deletion of short arm of chromosome 17 (17p−) or deletion of chromosome 17 itself (−17)” (R2 / 0) ), The detection is performed as “positive for loss of mutation” (J1 / 2) regardless of the type of the first cancer specimen.
 ダイレクトシークエンス解析(C1)の結果、既知のホモ又はコンパウンドへテロの機能欠失変異(R3/1)が認められた場合には、初発のがん検体の種類によらずに「機能欠失変異陽性」(J1/1)として検出が行われる。ダイレクトシークエンス解析(C1)の結果、「正常」(R3/0)と認められた場合には、初発のがん検体の種類によらずに「機能欠失変異陰性」(J0)として検出が行われる。ダイレクトシークエンス解析(C1)の結果、「未知のミスセンス変異」(R3/2)が検出された場合には、初発のがん検体の種類によらずに、第3段階の検出工程である「免疫組織化学染色」(ボックスD1)が行われ、その結果「核淡染」(R4/0)の場合には。「「機能欠失変異陰性」(J0)として検出が行われ、「核濃染」(R4/1)の場合には、「機能欠失変異陽性」(J1/2)として検出が行われる。 As a result of the direct sequence analysis (C1), when a known homo- or compound heterozygous loss-of-function mutation (R3 / 1) is observed, the “function-deficient mutation” is used regardless of the type of the first cancer specimen. Detection is performed as "positive" (J1 / 1). If the result of direct sequence analysis (C1) indicates “normal” (R3 / 0), detection is performed as “negative loss-of-function mutation” (J0) regardless of the type of the first cancer sample. Is called. If “unknown missense mutation” (R3 / 2) is detected as a result of the direct sequence analysis (C1), the “immunity”, which is the third stage detection step, is performed regardless of the type of the first cancer specimen. If "histochemical staining" (box D1) is performed and the result is "nuclear light staining" (R4 / 0). Detection is performed as “negative for loss of function mutation” (J0), and in the case of “nuclear dark staining” (R4 / 1), detection is performed as “positive for function deletion mutation” (J1 / 2).
 また、p53遺伝子の機能欠失変異の検出手段として、ファンクショナルアッセイ(Kato, Ishioka et al., PNAS, vol. 100, no. 13, pp. 8424-8429 (2003)、Shimada, Kato, Ishioka et al., Cancer Res. 59, 2781-2786 (1999)、Ishioka et al., NATURE GENETICS (Oct;5(2): 124-129) (1993))を行うことも可能である。この方法によれば、新規のp53遺伝子の変異が認められた場合においても、その機能欠失評価を行うことが可能である。 Moreover, as a means for detecting a loss-of-function mutation of the p53 gene, a functional assay (Kato, Ishioka et al., PNAS, vol. 100, no. 13, pp. 8424-8429 (2003), Shimada, Kato, Ishioka et al., Cancer Res. 59, 2781-2786 (1999), Ishioka et al., NATURE GENETICS (Oct; 5 (2): 124-129) (1993)). According to this method, even when a novel mutation in the p53 gene is observed, it is possible to evaluate the loss of function.
 なお、上記の機能欠失型p53遺伝子変異を検出する際に行われるがん検体核酸の精製は、バックグランドノイズの低減、ハイブリダイゼーション性能の確保、効率の良い標識等を行う上で好ましい場合が多い。「精製」とは、抽出、分離、分取と同義語の意味で使用される。また、そのための手段として、シリカやセルロース誘導体などの核酸吸着性膜を担持したカートリッジを用いた方法、エタノール沈殿やイソプロパノール沈殿、フェノール-クロロホルム抽出、イオン交換樹脂やオクタデシル基などの疎水性置換基を結合したシリカ担体やサイズ排除効果を示す樹脂を使用した固相抽出カートリッジ、クロマトグラフィーなどによる方法を含むことができる。さらに、電気泳動法による精製も含めることができる。また、溶媒置換も広い意味で精製である。精製工程は、単回又は複数回を必要に応じて行うことができる。 The purification of cancer sample nucleic acid performed when detecting the above-mentioned loss-of-function p53 gene mutation may be preferable for reducing background noise, ensuring hybridization performance, efficient labeling, and the like. Many. “Purification” is used synonymously with extraction, separation and fractionation. As a means for this, a method using a cartridge carrying a nucleic acid-adsorbing membrane such as silica or cellulose derivative, ethanol precipitation, isopropanol precipitation, phenol-chloroform extraction, hydrophobic substituents such as ion exchange resin or octadecyl group, etc. A solid-phase extraction cartridge using a bound silica carrier or a resin exhibiting a size exclusion effect, a method by chromatography, and the like can be included. Furthermore, purification by electrophoresis can also be included. Solvent replacement is also a purification in a broad sense. A refinement | purification process can be performed once or several times as needed.
 上記の検出工程により特定された、がん検体におけるp53遺伝子の機能欠失となる変異の有無は、本発明のデータ取得方法の基礎データとなる。すなわち、がん検体におけるp53遺伝子の機能欠失となる変異が認められる場合(陽性)は、L-asp類とオートファジー阻害剤の併用療法に対して抵抗性を有することが予測されるために、当該併用療法を、少なくとも当初のがん治療のスケジュールから除外することが好ましいと判断することができる。この場合は、当該併用療法以外の治療手段を選択することの他に、事前にp53遺伝子の修復治療を行ってから当該併用療法を行うスケジュールとすることも可能である。 The presence / absence of a mutation that results in a loss of function of the p53 gene in the cancer specimen specified by the above detection step is basic data for the data acquisition method of the present invention. In other words, when a mutation causing a loss of function of the p53 gene is observed in a cancer sample (positive), it is predicted that the cancer sample is resistant to a combination therapy of L-asps and an autophagy inhibitor. It can be determined that it is preferable to exclude the combination therapy from at least the initial cancer treatment schedule. In this case, in addition to selecting a treatment means other than the combination therapy, it is also possible to set a schedule for performing the combination therapy after performing a repair treatment of the p53 gene in advance.
 p53遺伝子の修復治療は、いわゆる遺伝子治療であり、正常のp53遺伝子を少なくともがん細胞に導入することにより行われる。例えば、マウス白血病ウイルスベクター、レンチウイルスベクター等のレトロウイルスベクター、アデノウイルスベクター、アデノ随伴ウイルスベクター、単純ヘルペスI型ベクター、HVJ-リポソーム等の改変ウイルス性ベクターを用いて正常のp53遺伝子をがん細胞に導入することができる。 The repair treatment of the p53 gene is so-called gene therapy, and is performed by introducing a normal p53 gene into at least a cancer cell. For example, a normal p53 gene is cancerated using a modified viral vector such as a retrovirus vector such as a mouse leukemia virus vector or lentivirus vector, an adenovirus vector, an adeno-associated virus vector, a herpes simplex type I vector, or an HVJ-liposome. Can be introduced into cells.
 例としてアデノウイルスベクターによる導入を説明する。p53遺伝子の組み込まれたアデノウイルスベクターを腫瘍内注射すると、腫瘍細胞上のレセプターと結合し、アデノウイルスベクターは腫瘍細胞内に取り込まれエンコードされた外来性p53遺伝子が発現される。そののちにL-asp類とオートファジー阻害剤の併用療法の効果が有効となることが予想される。 As an example, introduction by adenovirus vector will be explained. When an adenoviral vector incorporating the p53 gene is injected into a tumor, it binds to a receptor on the tumor cell, and the adenoviral vector is taken into the tumor cell to express the encoded foreign p53 gene. After that, it is expected that the effect of the combination therapy of L-asps and autophagy inhibitors will be effective.
 本発明のデータ取得方法において、がん検体におけるp53遺伝子の機能欠失となる変異が認められない場合(陰性)は、L-asp類とオートファジー阻害剤の併用療法が有効であることが予測されるために、当該療法を積極的に治療スケジュールに組み込むことが可能となる。 In the data acquisition method of the present invention, it is predicted that a combination therapy of L-asps and an autophagy inhibitor is effective when a mutation resulting in loss of function of the p53 gene is not observed in a cancer sample (negative). In order to be actively incorporated into the treatment schedule.
2.本発明のがん治療剤
 本発明のがん治療剤は、L-asp類とオートファジー阻害剤を有効成分とするものである。
2. Cancer therapeutic agent of the present invention The cancer therapeutic agent of the present invention comprises L-asps and an autophagy inhibitor as active ingredients.
(1)L-asp類(L-アスパラギナーゼ類)
 上述のようにL-aspは、蛋白質を構成するアミノ酸の一つであるアスパラギン(Asn)を分解する酵素であり、アスパラギン合成酵素の不足により慢性的なアスパラギン不足となっているがんに対して投与を行うことにより、当該がんの増殖を阻害するがん治療剤として既に急性リンパ性白血病等に対して用いられている。
(1) L-asps (L-asparaginases)
As described above, L-asp is an enzyme that degrades asparagine (Asn), which is one of the amino acids that make up proteins, and is used to treat cancer that is chronically asparagine-deficient due to a lack of asparagine synthase. It has already been used for acute lymphoblastic leukemia and the like as a cancer therapeutic agent that inhibits the growth of the cancer by administration.
 がん細胞が増殖するには、様々な物質が必要であり、蛋白質を構成するアミノ酸の一つであるアスパラギン(Asn)もその一つである。アスパラギンは、アスパラギン合成酵素によって生成され、L-アスパラギナーゼ(L-asparaginase(L-asp))によって分解される。 For cancer cells to grow, various substances are required, and asparagine (Asn), one of the amino acids that make up proteins, is one of them. Asparagine is produced by asparagine synthase and degraded by L-asparaginase (L-asp).
 がんの中には、細胞中のアスパラギン合成酵素が不足しており、アスパラギン不足になっているものがあり、さらにL-aspを与えると当該がん細胞の増殖が阻害されることが知られており(非特許文献1)、L-aspを用いた抗がん剤が、白血病や悪性リンパ腫等を対象として実用化されている。L-asp自体は、L-aspをコードする遺伝子で形質転換を行った微生物(大腸菌やジャガイモ黒あし病菌において実用化)を宿主として、公知の方法により製造することが可能であり、市販品を用いることも可能である。また上述したように、L-aspに化学的な修飾を施したL-aspの誘導体も、上記のような抗がん効果が認められる限りにおいて、L-asp類に含まれる。当該誘導体としては、例えば、ポリエチレングリコール化アスパラギナーゼ等が挙げられる。またL-asp類は、何らかの製剤処理を施した形態であっても良く、例えば、赤血球内封入アスパラギナーゼ等が挙げられる。 Some cancers are deficient in asparagine synthase in the cells and are deficient in asparagine. Further, when L-asp is given, the growth of the cancer cells is known to be inhibited. (Non-patent Document 1), an anticancer agent using L-asp has been put into practical use for leukemia, malignant lymphoma and the like. L-asp itself can be produced by a known method using a microorganism transformed with a gene encoding L-asp (utilized in Escherichia coli and potato black rot) as a host, and commercially available products can be obtained. It is also possible to use it. As described above, L-asp derivatives obtained by chemically modifying L-asp are also included in L-asps as long as the above-described anticancer effects are observed. Examples of the derivative include polyethylene glycolated asparaginase. The L-asps may be in a form that has undergone some kind of formulation treatment, and examples thereof include erythrocyte encapsulated asparaginase.
 本発明のがん治療剤によるL-asp類(有効成分)の投与量は、1日成人1人当たり50~200単位/体重kg程度であり、効果に応じて増減することが可能である。投与間隔は、1日1回、さらに連日ないし数日おきに行うことも可能である。 The dose of L-asps (active ingredients) by the cancer therapeutic agent of the present invention is about 50 to 200 units / kg body weight per adult per day, and can be increased or decreased depending on the effect. The dosing interval can be performed once a day and every other day or every few days.
(2)オートファジー阻害剤
 前述の通りにオートファジーは、リソソームによる細胞内の分解系の一つであり、長く存在した蛋白質、細胞内小器官、及び、蛋白質凝集態がオートファゴソーム内に捕捉され、その後リソソームと融合して分解されるという、高度に制御されたプロセスであり、特に、酸化ストレスなどの種々のストレスの悪条件下で細胞の生存を可能にすることが知られている。この現象により、L-asp類によって障害を受けたミトコンドリアが産生する細胞内ROSが貯留したがんが、その生存を確保しているものと考えられている。
(2) Autophagy inhibitor As mentioned above, autophagy is one of the intracellular degradation systems by lysosomes, and long-existing proteins, intracellular organelles, and protein aggregation are trapped in the autophagosome. It is a highly controlled process that is subsequently fused and degraded by lysosomes, and is known to enable cell survival, particularly under adverse conditions of various stresses such as oxidative stress. Due to this phenomenon, it is considered that cancer in which intracellular ROS produced by mitochondria damaged by L-asps is retained.
 オートファジー阻害剤の有効成分は、このオートファジーを阻害する機能を有する成分であり、具体的には、クロロキン(クロロキノリン)、ハイドロオキシクロロキン等のクロロキン類、3-メチルアデニン、バフィロマイシンA等が挙げられるが、これらに限定されるものではない。これらのオートファジー阻害成分は、公知の方法により製造が可能であり、市販品を用いることが可能である。 The active ingredient of the autophagy inhibitor is a component having a function of inhibiting this autophagy, and specifically includes chloroquines such as chloroquine (chloroquinoline) and hydroxychloroquine, 3-methyladenine, bafilomycin A However, it is not limited to these. These autophagy-inhibiting components can be produced by known methods, and commercially available products can be used.
 本発明のがん治療剤によるオートファジー阻害剤の投与量(有効成分)は、当該薬剤の種類や投与間隔によっても異なるが、例えば、クロロキン類の場合は1日成人1人当たり200~400mg程度であり、効果に応じて増減することが可能である。投与間隔は、1日1回、さらに連日ないし数日おきに行うことも可能である。 The dose (active ingredient) of the autophagy inhibitor by the cancer therapeutic agent of the present invention varies depending on the type of the drug and the administration interval. For example, in the case of chloroquine, it is about 200 to 400 mg per adult per day. Yes, it can be increased or decreased depending on the effect. The dosing interval can be performed once a day and every other day or every few days.
(3)がん治療剤の効果
 本発明のがん治療剤を投与することにより、L-asp類の作用により、標的のがん細胞はL-アスパラギンが枯渇状態となると同時に、緊急的生命維持のためにオートファジーが誘導される。特に、本発明のがん治療剤の標的のがん細胞である「L-asp類単独投与に対して抵抗性を有するがん」においては、アスパラギン合成酵素の増強が認められる。しかしながら、本発明のがん治療剤におけるオートファジー阻害剤により、上記のオートファジーが阻害されて、その際にがん細胞内に多量の活性酸素が蓄積し、次いでp53蛋白質の作用により当該がん細胞はアポトーシスへと誘導される。このがん細胞内における活性酸素の蓄積とアポトーシスのサイクルの繰り返しにより、本発明のがん治療剤においては非常に優れたがん治療効果が発揮される。これは、上記の「L-asp類単独投与に対する抵抗性」の有無に係わらない有効性である。しかしながら、p53遺伝子の機能欠失となる変異が認められるがん細胞に対しては、上記のアポトーシスに至る過程が損なわれてしまい、本発明のがん治療剤をそのまま投与してもがん治療効果を期待することはできない。
(3) Effect of cancer therapeutic agent By administering the cancer therapeutic agent of the present invention, the target cancer cells are depleted of L-asparagine by the action of L-asps, and at the same time, emergency life support is achieved. Because of this, autophagy is induced. In particular, enhancement of asparagine synthase is observed in “cancer resistant to L-asps alone administration” which is a target cancer cell of the cancer therapeutic agent of the present invention. However, the autophagy inhibitor in the cancer therapeutic agent of the present invention inhibits the above autophagy, and at that time, a large amount of active oxygen accumulates in the cancer cell, and then the cancer is caused by the action of the p53 protein. Cells are induced to apoptosis. By repeating the accumulation of active oxygen in the cancer cells and the cycle of apoptosis, the cancer therapeutic agent of the present invention exhibits a very excellent cancer therapeutic effect. This is an effectiveness irrespective of the presence or absence of the above-mentioned “resistance to L-asps alone administration”. However, for cancer cells in which a mutation resulting in loss of function of the p53 gene is observed, the above-described process leading to apoptosis is impaired, and even if the cancer therapeutic agent of the present invention is administered as it is, cancer treatment is performed. The effect cannot be expected.
(4)がん治療剤の態様
 本発明のがん治療剤は、(a)L-asp類とオートファジー阻害剤が単一の医薬組成物中に含有されている形態、(b)L-asp類とオートファジー阻害剤が、互いに別個の医薬組成物として組み合わさったセットの形態、の2通りの形態に大別される。
(4) Aspect of Cancer Treatment Agent The cancer treatment agent of the present invention comprises (a) a form in which L-asps and an autophagy inhibitor are contained in a single pharmaceutical composition, (b) L- The asps and the autophagy inhibitor are roughly classified into two forms: a set of forms combined as separate pharmaceutical compositions.
 単一形態(a)は、投与が一剤で済むという利点があるが、その反面で性質の異なる薬剤を組み合わせるために、薬剤量と投与間隔の細かな調節が難しい欠点がある。 The single form (a) has an advantage that only one agent is required for administration, but on the other hand, it has a drawback that it is difficult to finely adjust the drug amount and the administration interval in order to combine drugs having different properties.
 セット形態(b)は、二剤投与になるものの、薬剤量と投与間隔等の細かな調節が容易である。 Although the set form (b) is a two-drug administration, fine adjustment of the drug amount and the administration interval is easy.
 前述のように、本発明のがん治療剤には、L-asp類とオートファジー阻害剤に加えて、さらにL-アスパラギン合成酵素阻害剤を含有させることができる。これは、「L-asp類単独投与に対して抵抗性を有するがん」において増強されるL-アスパラギン合成酵素を阻害することで、当該がん細胞におけるL-アスパラギンの枯渇を促進させるこ
とで、がん治療効果を向上させることが可能であることに基づいている。
As described above, the cancer therapeutic agent of the present invention can further contain an L-asparagine synthase inhibitor in addition to L-asps and an autophagy inhibitor. This is by inhibiting the depletion of L-asparagine in the cancer cells by inhibiting L-asparagine synthase enhanced in “cancer resistant to L-asps alone administration”. Based on being able to improve the cancer treatment effect.
 L-アスパラギン合成酵素阻害剤は、上記の(a)単剤型、(b)セット型、いずれの態様においても、本発明のがん治療剤に含有させることが可能である。セット型の場合は、3剤共に異なる組成物である場合以外に、いずれか2剤が組み合わさった医薬組成物である場合も有り得る形態である。特に、L-asp類とL-アスパラギン合成酵素阻害剤の組合せ組成物は、その作用機序から好ましい組合せである。 The L-asparagine synthase inhibitor can be contained in the cancer therapeutic agent of the present invention in any of the above-mentioned (a) single agent type and (b) set type. In the case of the set type, in addition to the case where the three agents are different compositions, there may be a case where the pharmaceutical composition is a combination of any two agents. In particular, a combination composition of L-asps and an L-asparagine synthase inhibitor is a preferred combination because of its mechanism of action.
 本発明のがん治療剤は、両者とも「医薬組成物」として人体に投与される。当該がん治療剤の有効成分の直接投与の場合も、例えば、注射剤等を用時混合することになるので、これも医薬組成物に含められる。 Both of the cancer therapeutic agents of the present invention are administered to the human body as a “pharmaceutical composition”. Also in the case of direct administration of the active ingredient of the cancer therapeutic agent, for example, an injection or the like is mixed at the time of use, and this is also included in the pharmaceutical composition.
 本発明のがん治療剤として用いられる医薬組成物は、上記の有効成分と共に適切な医薬製剤担体を配合して製剤組成物の形態に調製される。当該製剤担体としては、使用形態に応じた担体を選択することが可能であり、充填剤、増量剤、結合剤、付湿剤、崩壊剤、界面活性剤等の賦形剤ないし希釈剤を使用することができる。組成物の形態は、本発明のがん治療剤を効果的に含有可能な形態であれば特に限定されるものではなく、錠剤、粉末剤、顆粒剤、丸剤等の固剤であってもよいが、通常は、液剤、懸濁剤、乳剤等の注射剤形態とするのが好適である。また、本発明のがん治療剤を適切な担体の添加によって使用時に液状となし得る乾燥品とすることも可能である。さらに本発明の医薬品組成物において、シクロデキストリン含有ポリマーで構成されたナノ粒子、高分子ミセル、赤血球、安定核酸脂質粒子(SNALP)、多機能エンベローブ型ナノ構造体(MEND)等のドラッグデリバリーシステムを活用して、本発明のがん治療剤の効果をより向上させることが可能である。 The pharmaceutical composition used as the cancer therapeutic agent of the present invention is prepared in the form of a pharmaceutical composition by blending an appropriate pharmaceutical carrier together with the above active ingredients. As the preparation carrier, it is possible to select a carrier according to the use form, and excipients or diluents such as a filler, a bulking agent, a binder, a moistening agent, a disintegrant, and a surfactant are used. can do. The form of the composition is not particularly limited as long as it can effectively contain the cancer therapeutic agent of the present invention, and it may be a solid agent such as a tablet, powder, granule, or pill. Usually, it is preferably in the form of an injection such as a solution, suspension or emulsion. In addition, the cancer therapeutic agent of the present invention can be made into a dry product that can be made liquid at the time of use by adding an appropriate carrier. Furthermore, in the pharmaceutical composition of the present invention, drug delivery systems such as nanoparticles, polymer micelles, erythrocytes, stable nucleic acid lipid particles (SNALP), multifunctional envelope nanostructures (MEND) composed of cyclodextrin-containing polymers are provided. By utilizing this, it is possible to further improve the effect of the cancer therapeutic agent of the present invention.
 得られた医薬品組成物は、その形態に応じた適切な投与経路、例えば、注射剤形態の医薬品組成物は、静脈内、筋肉内、皮下、皮内、腹腔内投与等により、固剤形態の医薬品組成物は、経口ないし経腸にて投与される。医薬品組成物中の本発明のがん治療剤の量は、当該組成物の投与方法、投与形態、使用目的、患者の症状等に応じて適宜選択され一定ではないが、通常、本発明のがん治療剤を、0.1~95質量%程度含有する組成物形態に調製して、上述した投与形態にて投与を行うことが好ましい。 The obtained pharmaceutical composition is administered in an appropriate administration route according to its form, for example, an injectable pharmaceutical composition is administered in a solid form by intravenous, intramuscular, subcutaneous, intradermal, intraperitoneal administration, etc. The pharmaceutical composition is administered orally or enterally. The amount of the therapeutic agent for cancer of the present invention in the pharmaceutical composition is appropriately selected according to the administration method, administration mode, purpose of use, patient symptom, etc. of the composition, but is usually constant according to the present invention. It is preferable that the therapeutic agent is prepared in a composition form containing about 0.1 to 95% by mass and administered in the above-mentioned dosage form.
 以下、本発明の実施例を開示する。 Hereinafter, embodiments of the present invention will be disclosed.
1.L-aspによって誘導されるオートファジーの検討
 遺伝的な背景の異なる3種のALL細胞株である、(a)REH(ETV6-RUNX1転座陽性)(Venuat, A. M., Testu, M. J., and Rosenfeld, C. (1981). Cytogenetic abnormalities in a human null cell leukemia line (REH). Cancer Genet Cytogenet 3, 327-334.)、(b)697(TCF3-PBX1転座陽性)(Findley, H. W., Jr., Cooper, M. D., Kim, T. H., Alvarado, C., and Ragab, A. H. (1982). Two new acute lymphoblastic leukemia cell lines with early B-cell phenotypes. Blood 60, 1305-1309.)、(c)TS2(MEF2D-DAZAP1転座陽性)(Yoshinari, M., Imaizumi, M., Eguchi, M., Ogasawara, M., Saito, T., Suzuki, H., Koizumi, Y., Cui, Y., Sato, A., Saisho, T., et al. (1998). Establishment of a novel cell line (TS-2) of pre-B acute lymphoblastic leukemia with a t(1;19) not involving the E2A gene. Cancer Genet Cytogenet 101, 95-102.)において、L-asp(大腸菌由来L-aspロイナーゼ(登録商標)、協和発酵キリン社)のオートファジー活性の検討を行った。オートファジーの評価のためにオートファジー阻害剤であるクロロキノン(Chloroquine(CQ):Sigma-Aldrich Co., カタログ番号C6628)及びバフィロマイシン(Bafilomycin A(Baf):Sigma-Aldrich Co., カタログ番号B1793)を用いた。培地はRPMI1640(和光純薬工業社、カタログ番号189-02025)500mlに胎児ウシ血清(和光純薬工業社、カタログ番号35-010-CV、添加濃度10%)と抗生物質Penicillin-Streptomycin(ThermoFisher Scientific Inc.,カタログ番号15140-122、添加濃度0.5%)を加えたものを用いた。
1. Examination of L-asp-induced autophagy Three types of ALL cell lines with different genetic backgrounds, (a) REH (ETV6-RUNX1 translocation positive) (Venuat, AM, Testu, MJ, and Rosenfeld, C. (1981). Cytogenetic abnormalities in a human null cell leukemia line (REH). Cancer Genet Cytogenet 3, 327-334.), (B) 697 (TCF3-PBX1 translocation positive) (Findley, HW, Jr., Cooper, MD, Kim, TH, Alvarado, C., and Ragab, AH (1982). Two new acute lymphoblastic leukemia cell lines with early B-cell phenotypes. Blood 60, 1305-1309.), (C) TS2 (MEF2D -DAZAP1 translocation positive) (Yoshinari, M., Imaizumi, M., Eguchi, M., Ogasawara, M., Saito, T., Suzuki, H., Koizumi, Y., Cui, Y., Sato, A ., Saisho, T., et al. (1998). Establishment of a novel cell line (TS-2) of pre-B acute lymphoblastic leukemia with at (1; 19) not involving the E2A gene. Cancer Genet Cytogenet 101, 95-102 ), The autophagy activity of L-asp (L-asp leinase (registered trademark) derived from E. coli, Kyowa Hakko Kirin Co., Ltd.) was examined. Chloroquinone (Chloroquine (CQ): Sigma-Aldrich Co., Catalog No. C6628) and bafilomycin (Bafilomycin A (Baf): Sigma-Aldrich Co., Catalog No. B1793 for the assessment of autophagy ) Was used. The medium is 500 ml of RPMI 1640 (Wako Pure Chemical Industries, Catalog No. 189-02025), fetal bovine serum (Wako Pure Chemical Industries, Catalog No. 35-010-CV, added concentration 10%), and the antibiotic Penicillin-Streptomycin (ThermoFisher Scientific). Inc., catalog number 15140-122, addition concentration 0.5%) was used.
 6ウェルプレートの1ウェルにそれぞれ1×10個/上記培地2mlの細胞を播種した。L-asp 1U/mlを添加し、45時間後にさらにCQ 10μMないしBafilomycin A1 100nMを添加し、その3時間後に細胞を回収したのちにウェスタンブロッティング法、蛍光免疫染色、電子顕微鏡による解析を行った。 One well of a 6-well plate was seeded with 1 × 10 6 cells / 2 ml of the above medium. L-asp 1 U / ml was added, and after 45 hours, CQ 10 μM to Bafilomycin A1 100 nM was further added. After 3 hours, the cells were collected, and then analyzed by Western blotting, fluorescent immunostaining, and electron microscopy.
 ウェスタンブロッティング法では細胞溶解液を用いてポリアクリルアミドゲル電気泳動を行い、ポリフッ化ビニリデン(PVDF)膜に転写した。スキムミルクを用いてブロッキングを行った後に一次抗体としてLC3B抗体、β-actin抗体(いずれもSigma-Aldrich社)を反応させ、その後二次抗体としてSuperSignal West Dura(ThermoFisher Scientific Inc.)を反応させた。その後LAS-3000(GEヘルスケア社)にて検出を行った。 In Western blotting, polyacrylamide gel electrophoresis was performed using a cell lysate and transferred to a polyvinylidene fluoride (PVDF) membrane. After blocking using skim milk, LC3B antibody and β-actin antibody (both Sigma-Aldrich) were reacted as the primary antibody, and then SuperSignal West Dura (ThermoFisher Scientific Inc.) was reacted as the secondary antibody. Thereafter, detection was performed with LAS-3000 (GE Healthcare).
 蛍光免疫染色による解析では、細胞を回収後CytoSpin3(ThermoFisher Scientific Inc.)でスライドグラスに密着させ、メタノールで固定後胎児ウシ血清1%とTriton X-100 0.01%を含んだリン酸緩衝生理食塩水(PBS)でブロッキングを行った。その後LC3B抗体(Sigma-Aldrich社)およびVECTASHIELD with DAPI(Vector Laboratories社)を反応させ、蛍光顕微鏡で観察を行った。 In the analysis by fluorescent immunostaining, the cells were collected, adhered to a slide glass with CytoSpin3 (ThermoFisher Scientific Inc.), fixed with methanol, and then fixed with methanol. Fetal bovine serum 1% and Triton X-100 0.01% phosphate buffered physiological Blocking was performed with saline (PBS). Thereafter, an LC3B antibody (Sigma-Aldrich) and VECTASHIELD with DAPI (Vector Laboratories) were reacted and observed with a fluorescence microscope.
 電子顕微鏡解析ではパラホルムアルデヒドで固定後、エタノールによる脱水および乾燥を行う。エポキシ樹脂に包埋しミクロトームで薄切して試料台に貼付後、酢酸ウランおよびクエン酸鉛で電子染色を行い透過型電子顕微鏡で観察を行った。 In electron microscope analysis, after fixing with paraformaldehyde, dehydration with ethanol and drying. After embedding in an epoxy resin, slicing with a microtome and pasting on a sample stage, electron staining was performed with uranium acetate and lead citrate, and observation was performed with a transmission electron microscope.
 図2-Aは、上記3種のALL細胞株に対してL-aspとオートファジー阻害剤を、単独又は組み合わせて作用させた場合、あるいは両者共に作用させない場合のオートファジー誘導を、オートファゴソームの存在を示すLC3B-IIを指標として電気泳動で検討した結果を示している。これにより3株いずれにおいても、CQもしくはBaf単剤投与時に比べ、L-aspとCQもしくはBafの併用投与時において、LC3B-IIの発現が上昇していた。このことは、定常状態に比べL-aspがオートファジーを誘導していることを示している。 FIG. 2-A shows the autophagy induction of autophagosome when L-asp and an autophagy inhibitor are used alone or in combination with the above three types of ALL cell lines, or when both are not applied. The results of investigation by electrophoresis using LC3B-II indicating the presence as an index are shown. As a result, in all three strains, the expression of LC3B-II was increased when L-asp and CQ or Baf were administered in combination, compared to when CQ or Baf was administered alone. This indicates that L-asp induces autophagy compared to the steady state.
 図2-Bは、上記3種のうち、REH細胞に対して、L-aspとChloroquine(CQ)を単独又は組み合わせて作用させた場合のオートファジー誘導を、LC3B-IIを指標として、上記図2-Aの場合と同条件下で検討した組織免疫染色像である。これにより、CQ単剤投与、L-asp単剤投与に比べ、L-aspとCQの併用投与においてLC3Bの蛋白発現が上昇していることが確認され、L-aspによりオートファジーが誘導されていることが示された。 FIG. 2-B shows autophagy induction when L-asp and Chloroquine (CQ) are used alone or in combination on REH cells among the above three types, using LC3B-II as an index. It is a tissue immunostaining image examined under the same conditions as in 2-A. As a result, it was confirmed that the protein expression of LC3B was increased in the combined administration of L-asp and CQ as compared with the single administration of CQ and single administration of L-asp, and autophagy was induced by L-asp. It was shown that
 図2-Cは、上記図2-Bの系におけるオートファジー誘導についての電子顕微鏡像であり、図2-Dは、当該電気顕微鏡像における1細胞当たりのオートファジー小胞の個数と面積を示している。L-aspとCQの併用時には多数のオートリソソーム(図2-C矢頭)に交じってミトコンドリアを含むオートファゴソームも観察された(図2-C 三角)。1細胞あたりのオートファジー小胞の個数および面積において、いずれもL-aspとCQの併用時に有意に多く観察された。 FIG. 2-C is an electron microscopic image of autophagy induction in the system of FIG. 2-B, and FIG. 2-D shows the number and area of autophagy vesicles per cell in the electromicroscopic image. ing. When L-asp and CQ were used together, autophagosomes containing mitochondria were also observed (Fig. 2-C triangle) along with many autolysosomes (Fig. 2-C arrowheads). Significantly more were observed in both the number and area of autophagy vesicles per cell when L-asp and CQ were combined.
 図2-Eは、上記図2-Bの系、すなわちALL細胞株であるREH細胞に対して、L-aspとオートファジー阻害剤であるChloroquine(CQ)を単独又は組み合わせて作用させた場合の、障害性ミトコンドリア数をミトコンドリア用の染色蛍光色素であるMitoTracker(登録商標)Redの発色に基づいて計数した結果を示している。ここに示すように、L-aspとCQの併用時にピークが右に移行しており障害性ミトコンドリアが顕著に観察された。 FIG. 2-E shows the case where L-asp and the autophagy inhibitor Chloroquine (CQ) are used alone or in combination with the above-described system shown in FIG. 2-B, that is, the ALLH cell line REH cells. 3 shows the results of counting the number of impaired mitochondria based on the color development of MitoTracker (registered trademark) Red, which is a staining fluorescent dye for mitochondria. As shown here, when L-asp and CQ were used in combination, the peak shifted to the right, and impaired mitochondria were remarkably observed.
 図2-Fは、上記図2-Eの系において、細胞内ミトコンドリアの膜電位を、TMRE(tetramethlrhodamine methyl ester)を用いて検討した結果を示している。ここに示すように、L-aspとCQの併用時に、膜電位の低下したミトコンドリア、すなわち障害性ミトコンドリアを有する細胞の割合が有意に増えていた。 FIG. 2-F shows the result of examining the membrane potential of intracellular mitochondria using TMRE (tetramethylrhodamine methyl ester) in the system of FIG. 2-E. As shown here, when L-asp and CQ were used in combination, the proportion of mitochondria with decreased membrane potential, that is, cells with impaired mitochondria, was significantly increased.
 図2-Gは、上記図2-Eの系において、DCFDAを用いた細胞内活性酸素種(ROS)(左図)と、MitoSox(登録商標)-Redを用いたミトコンドリアROSの評価を行った結果を示している。ここに示すように、L-aspとCQの併用時に有意にROSが蓄積していることが明らかになった。 FIG. 2-G shows an evaluation of intracellular reactive oxygen species (ROS) using DCFDA (left figure) and mitochondrial ROS using MitoSox (registered trademark) -Red in the system shown in FIG. 2-E. Results are shown. As shown here, it was revealed that ROS accumulated significantly when L-asp was combined with CQ.
 この図2-A~Gにより、ALL細胞株に対するL-asp投与により、オートファジーの誘導が促進され、かつこのオートファジーはがん細胞において障害性ミトコンドリアと活性酸素種の除去において非常に重要であることが明らかになった。 This FIG. 2A-G promotes the induction of autophagy by L-asp administration to the ALL cell line, and this autophagy is very important in the removal of impaired mitochondria and reactive oxygen species in cancer cells. It became clear that there was.
2.L-aspとオートファジー阻害剤の併用による細胞死誘導の検討
 6ウェルプレートの1ウェルにREH細胞1×10個/培地2mlの細胞を播種した。同時にL-aspおよびCQを図に示す濃度(記載がない場合はL-asp 1U/ml、CQ 10μM)で添加し、48時間後に細胞を回収した。
2. Examination of cell death induction by combined use of L-asp and autophagy inhibitor One well of a 6-well plate was seeded with 1 × 10 6 REH cells / 2 ml of medium. At the same time, L-asp and CQ were added at the concentrations shown in the figure (L-asp 1 U / ml, CQ 10 μM if not indicated), and cells were collected 48 hours later.
 ウェスタンブロッティング法は図2と同様に行い、一次抗体はcPARP抗体、cCASP3抗体、CASP3抗体、CHOP抗体はcell Signaling社,ASNSはSigma-Aldrich社、ATF4抗体はSanta Cruz Biotechnology社のものを用いた。 Western blotting was carried out in the same manner as in FIG. 2, and the primary antibody was cPARP antibody, cCASP3 antibody, CASP3 antibody, CHOP antibody was cell Signaling, ASNS was Sigma-Aldrich, and ATF4 antibody was Santa Cruz Biotechnology.
 死細胞数はMEBCYTO-Apoptosis Kit(MBL社)によるAnnexin V染色後にフローサイトメーターAccuri C6(Becton,Dickinson and Company)を用いて解析した。 The number of dead cells was analyzed using Annexin V staining with MEBCYTO-Apoptosis Kit (MBL) and using flow cytometer Accuri C6 (Becton, Dickinson and Company).
 汎アポトーシス因子阻害薬zVAD-fmv(ペプチド株式会社)による死細胞数評価は、L-aspおよびCQを添加した後24時間目で培地に添加し、さらに24時間後に死細胞数を評価した。コントロールとして、zVAD-fmvの溶媒であるジメチルスルホキシド(DMSO)を用いた。 In the evaluation of the number of dead cells by the pan-apoptotic factor inhibitor zVAD-fmv (Peptide Co., Ltd.), L-asp and CQ were added to the medium 24 hours later, and the number of dead cells was evaluated 24 hours later. As a control, dimethyl sulfoxide (DMSO) which is a solvent of zVAD-fmv was used.
 L-aspに対する耐性株(697-R)の樹立にあたっては、既報(Hutson RG, et al. Am J Physiol 1997;272:c1691-1699)のとおり行った。すなわち697細胞において培地中にL-aspを加えて培養し、L-aspに対する耐性を獲得して増殖する細胞を回収した。加えるL-aspは0.1U/mlから開始し、6か月以上かけて徐々に増やしつつ最終的に1U/mlまで増加した。 Establishment of a strain resistant to L-asp (697-R) was performed as described previously (Hutson RG, et al. Am J Physiol 1997; 272: c1691-1699). That is, in 697 cells, L-asp was added to the medium and cultured, and the cells that proliferated after acquiring resistance to L-asp were collected. The L-asp to be added started from 0.1 U / ml and gradually increased to 1 U / ml while gradually increasing over 6 months.
 抗ROS薬NAC(Sigma-Aldrich社)は、2mMをL-aspおよびCQと同時に投与し、48時間後にAnnexin V染色を用いた死細胞数をフローサイトメーターで評価した。 Anti-ROS drug NAC (Sigma-Aldrich) was administered 2 mM simultaneously with L-asp and CQ, and the number of dead cells using Annexin V staining was evaluated 48 hours later using a flow cytometer.
 細胞周期解析は、L-aspおよびCQを添加し48時間後に細胞を回収し、PBSで洗浄後70%エタノール・‐20℃で固定した。8時間後、PBSで洗浄しRNaseを加えて38度、30分静置し、propidium iodide(Thermo Fisher Scientific社)で染色した後にAccuri C6フローサイトメーターで測定した。 For cell cycle analysis, L-asp and CQ were added, and the cells were collected 48 hours later, washed with PBS and fixed at 70% ethanol at -20 ° C. Eight hours later, the plate was washed with PBS, RNase was added, left to stand at 38 ° C. for 30 minutes, stained with productiodide (Thermo Fisher Scientific), and then measured with an Accu C6 flow cytometer.
 下記ASNSに対するsh(short hairpin)-ASNS1(標的配列:5'-GCTGTATGTTCAGAAGCTAAA-3'(配列番号1))あるいはsh-ASNS2(標的配列:5'-CGTCAAGTCTTTGAACGCCAT-3'(配列番号2))を発現するレンチウイルスを作成した。まずKOD-Plus-Mutagenesis Kit(TOYOBO CO.,LTD.)を用いてプロトコールに従いInverse PCR法を行った。すなわち環状DNA(プラスミド)を鋳型として下記のプライマーを用いてPCRを行い、プラスミド全周の増幅を行った。次にレンチウイルスベクターpGreenPuro shRNA Cloning and Expression Lentivector(System Biosciences)のBamHI-EcoRI領域にPCR産物をクローニングし、組み換えベクターを作成した。その後直鎖状プラスミドであるPCR産物をライゲーションすることにより環状化した。次に大腸菌への形質転換を行い、プラスミドを抽出後HEK293TN細胞に導入し、sh-ASNS1発現レンチウイルス、sh-ASNS2発現レンチウイルスを作成した。こうして得られた各組換えレンチウイルスについて、Global UltraRapid Lentiviral Titer Kit(System Biosciences)を用いてタイターを測定した。MOI(multiplicity of infection)を添付マニュアルに従って決定し、5MOIとなるようウイルス量を調節しREH細胞にトランスフェクトした。 Expressing sh (short hairpin) -ASNS1 (target sequence: 5'-GCTGTATGTTCAGAAGCTAAA-3 '(sequence number 1)) or sh-ASNS2 (target sequence: 5'-CGTCAAGTCTTTGAACGCCAT-3' (sequence number 2)) for the following ASNS Created a lentivirus. First, the Inverse PCR method was performed according to the protocol using KOD-Plus-Mutageness Kit (TOYOBO CO., LTD.). That is, PCR was performed using circular DNA (plasmid) as a template and the following primers, and the entire plasmid was amplified. Next, the PCR product was cloned into the BamHI-EcoRI region of the lentiviral vector pGreenPuro shRNA Cloning and Expression Lentivector (System Biosciences) to prepare a recombinant vector. Thereafter, the PCR product, which is a linear plasmid, was ligated to cyclize. Next, E. coli was transformed, and the plasmid was extracted and then introduced into HEK293TN cells to prepare sh-ASNS1-expressing lentivirus and sh-ASNS2-expressing lentivirus. About each recombinant lentivirus obtained in this way, the titer was measured using Global UltraRapid Lenticular Titer Kit (System Biosciences). MOI (multiplicity of infection) was determined according to the attached manual, the viral load was adjusted to 5 MOI, and REH cells were transfected.
sh-ASNS1-sense: 
5'-GATCCGCTGTATGTTCAGAAGCTAAACTTCCTGTCAGATTTAGCTTCTGAACATACAGCTTTTTG-3'(配列番号3)
sh-ASNS1-antisense:
5'-AATTCAAAAAGCTGTATGTTCAGAAGCTAAATCTGACAGGAAGTTTAGCTTCTGAACATACAGCG-3'(配列番号4)
sh-ASNS2-sense:
5'-GATCCCGTCAAGTCTTTGAACGCCATCTTCCTGTCAGAATGGCGTTCAAAGACTTGACGTTTTTG-3'(配列番号5)
sh-ASNS2-antisense:
5'-AATTCAAAAACGTCAAGTCTTTGAACGCCATTCTGACAGGAAGATGGCGTTCAAAGACTTGACGG-3'(配列番号6)
sh-ASNS1-sense:
5'-GATCCGCTGTATGTTCAGAAGCTAAACTTCCTGTCAGATTTAGCTTCTGAACATACAGCTTTTTG-3 '(SEQ ID NO: 3)
sh-ASNS1-antisense:
5'-AATTCAAAAAGCTGTATGTTCAGAAGCTAAATCTGACAGGAAGTTTAGCTTCTGAACATACAGCG-3 '(SEQ ID NO: 4)
sh-ASNS2-sense:
5'-GATCCCGTCAAGTCTTTGAACGCCATCTTCCTGTCAGAATGGCGTTCAAAGACTTGACGTTTTTG-3 '(SEQ ID NO: 5)
sh-ASNS2-antisense:
5'-AATTCAAAAACGTCAAGTCTTTGAACGCCATTCTGACAGGAAGATGGCGTTCAAAGACTTGACGG-3 '(SEQ ID NO: 6)
 REH/Luc2細胞は、ルシフェラーゼ遺伝子Luc2を組み込んだレンチウイルスベクターで大腸菌を形質転換し、当該組み換え大腸菌を増幅後、プラスミドを生成した。このプラスミドをHEK293TN細胞に導入し、Luc2発現レンチウイルスを作成した。こうして得られた各組換えレンチウイルスについて、Global UltraRapid Lentiviral Titer Kit(System Biosciences社)を用いてタイターを測定した。MOIを添付マニュアルに従って決定し、5MOIとなるようウイルス量を調節しREH細胞にトランスフェクトし、REH/Luc2細胞を樹立した。このREH/Luc2細胞を5×10/PBS100μlの濃度および量で免疫不全マウス(NOD/SCIDマウス)の尾静脈から注入した。注入7日後よりL-asp 6000U/マウス体重kgおよびCQ 50mg/マウス体重kgを1日1回、毎日腹腔内投与し生体内白血病増殖量および生存期間を解析した。マウス生体内腫瘍増殖量の測定にあたってはD-ルシフェリン(Synchem社)150mg/マウス体重kgを腹腔内投与し、Photon Imager(Biospace Lab社)を用いて生物発光イメージング解析を行った。図3-Aは、上記3種のALL細胞株に対してL-aspとオートファジー阻害剤を、単独又は組み合わせて作用させた場合の細胞死の度合いを、フローサイトメトリーとウェスタンブロッティング解析で検討した結果を示している。L-aspとオートファジー阻害薬CQの併用群(L-asp+CQ群、いずれも48時間投与)は、CQ単剤投与群(CQ群)およびL-asp単剤投与群(L-asp群)に比べ有意に細胞死を誘導した。 In REH / Luc2 cells, E. coli was transformed with a lentiviral vector in which the luciferase gene Luc2 was incorporated, and the recombinant E. coli was amplified to produce a plasmid. This plasmid was introduced into HEK293TN cells to produce Luc2-expressing lentivirus. About each recombinant lentivirus obtained in this way, the titer was measured using Global Ultra Rapid Lenticular Titer Kit (System Biosciences). MOI was determined according to the attached manual, the viral load was adjusted to 5 MOI, and REH cells were transfected to establish REH / Luc2 cells. It was injected from the tail vein of immunocompromised mice (NOD / SCID mice) at a concentration and amount of the REH / Luc2 cells 5 × 10 6 / PBS100μl. From 7 days after the injection, L-asp 6000 U / kg mouse body weight and CQ 50 mg / kg mouse body weight were intraperitoneally administered once a day, and the in vivo leukemia growth amount and survival period were analyzed. For measurement of tumor growth in vivo in mice, D-luciferin (Synchem) 150 mg / kg body weight of mouse was intraperitoneally administered, and bioluminescence imaging analysis was performed using Photon Imager (Biospace Lab). Fig. 3-A shows the degree of cell death when L-asp and an autophagy inhibitor are used alone or in combination with the above three ALL cell lines using flow cytometry and Western blotting analysis. Shows the results. The combination group of L-asp and autophagy inhibitor CQ (L-asp + CQ group, both administered for 48 hours) is divided into CQ single agent administration group (CQ group) and L-asp single agent administration group (L-asp group). Compared with that, cell death was significantly induced.
 フローサイトメトリーによる死細胞の評価は、Annexin V染色陽性細胞の割合で明らかにした。またウェスタンブロッティング解析により、L-asp群に比較し、L-asp+CQ群において、アポトーシス関連蛋白であるcCASP3やcPARPの発現の増加が認められた。 The evaluation of dead cells by flow cytometry was made clear by the ratio of Annexin V staining positive cells. Western blotting analysis also showed increased expression of cCASP3 and cPARP, which are apoptosis-related proteins, in the L-asp + CQ group compared to the L-asp group.
 図3-Bは、上記3種のうちREH細胞に対して、L-aspとオートファジー阻害剤であるChloroquine(CQ)を作用させることにより惹起される細胞死に対する、汎アポトーシス関連分子阻害薬であるz-VADによる抑制作用を検討した結果を示している。ここに示すように、z-VADは当該細胞死を抑制した。 FIG. 3-B is a pan-apoptosis-related molecular inhibitor against cell death caused by the action of L-asp and the autophagy inhibitor Chloroquine (CQ) on REH cells among the above three types. The result of having investigated the inhibitory effect by a certain z-VAD is shown. As shown here, z-VAD inhibited the cell death.
 図3-Aと図3-Bにより、L-aspとオートファジー阻害剤の併用により誘導される細胞死は、アポトーシスを介すことが示された。 FIG. 3-A and FIG. 3-B show that cell death induced by the combined use of L-asp and an autophagy inhibitor is mediated by apoptosis.
 図3-Cは、確立されたL-asp耐性株697-Rの、L-asp添加量増加に対する生細胞率を検討した結果を示している。当該耐性株は、L-aspに対する一定の耐性を有していることが確認できる。 FIG. 3-C shows the results of examining the viable cell rate of the established L-asp resistant strain 697-R with respect to the increase in the amount of L-asp added. It can be confirmed that the resistant strain has a certain resistance to L-asp.
 図3-Dは、上記L-asp耐性株697-Rにおける、L-aspと、オートファジー阻害剤(CQ)の組合せ添加の生細胞率に与える影響を検討した結果を示している。ここに示すように、L-asp耐性株であってもL-aspと、オートファジー阻害剤の組合せ添加により、用量依存的に死細胞率が上昇した。 FIG. 3-D shows the results of examining the effect of L-asp and autophagy inhibitor (CQ) in combination on the viable cell rate in the L-asp resistant strain 697-R. As shown here, even in the L-asp resistant strain, the death-cell rate increased in a dose-dependent manner by the combined addition of L-asp and an autophagy inhibitor.
 図3-Eは、同じくL-asp耐性株697-Rにおけるアスパラギン合成酵素(ASNS)の蛋白発現レベルを、L-aspとオートファジー阻害剤を単独又は組み合わせて作用させた場合、あるいは両者共に作用させない場合について、ウェスタンブロッティング解析を行った結果を示している。ここに示すように、当該耐性株においては、いずれの薬剤投与環境においても、ASNS発現レベルが697株に比べて増加していた。上記の図3-Cに示す結果は、このようなASNSレベルの増加にも係わらず、L-aspと、オートファジー阻害剤の組合せ添加により、用量依存的にL-asp耐性株の死細胞率が上昇したことになる。 FIG. 3E shows the expression level of asparagine synthase (ASNS) in L-asp resistant strain 697-R when L-asp and an autophagy inhibitor are used alone or in combination, or both. The result of performing Western blotting analysis is shown for the case where it is not used. As shown here, in the resistant strain, the ASNS expression level was increased compared to the 697 strain in any drug administration environment. The results shown in FIG. 3-C show that, despite the increase in the ASNS level, the dead cell rate of the L-asp resistant strain was increased in a dose-dependent manner by the combined addition of L-asp and an autophagy inhibitor. Will rise.
 図3-Fは、ALL細胞株であるREH細胞のASNS遺伝子を異なる部位においてノックダウンを行った「sh-ASNS1」と「sh-ASNS2」における、L-aspとオートファジー阻害剤であるChloroquine(CQ)を単独又は組み合わせて作用させた場合、あるいは両者共に作用させない場合について検討した結果を示している。ここに示すように、ASNS遺伝子のノックダウンにより、L-aspとオートファジー阻害剤の組合せ添加による殺細胞効果が増強されることが明らかになった。 FIG. 3F shows L-asp and Chloroquine (autophagy inhibitor) in “sh-ASNS1” and “sh-ASNS2” in which the ASNS gene of REH cell, which is an ALL cell line, was knocked down at different sites. The result of examining the case where CQ) is allowed to act alone or in combination, or the case where both are not acted on is shown. As shown here, it was found that knocking down the ASNS gene enhances the cell killing effect by the combined addition of L-asp and an autophagy inhibitor.
 上記図3-A~図3-Fに示す結果から、L-aspとオートファジー阻害剤の併用療法はL-asp耐性ALL細胞においても有効であることが示された。また、ASNS阻害薬、L-asp、オートファジー阻害剤の3剤併用は、ALL治療において非常に有用であることが示された。 From the results shown in FIGS. 3-A to 3-F above, it was shown that the combined therapy of L-asp and an autophagy inhibitor is also effective in L-asp resistant ALL cells. Moreover, it was shown that the triple combination of ASNS inhibitor, L-asp and autophagy inhibitor is very useful in ALL treatment.
 図3-Gのウェスタンブロッティング解析結果は、REH細胞株に対するL-aspとオートファジー阻害剤の併用により誘導されるアポトーシス細胞死の原因となる機構を検討した結果を示している。L-aspにおいてはATF4-CHOP pathwayによりアポトーシス細胞死が誘導されることが報告されているが(Ye, J. et al., The EMBO journal 29, 2082-2096, doi:10.1038/emboj.2010.81 (2010))、L-asp群とL-asp+CQ群ではATF4およびCHOPの発現に明らかな差を認めず、L-asp+CQ群では他の原因によるアポトーシス細胞死が誘導されていることが示唆された。またATF4の下流にあるASNSの発現もL-asp群とL-asp+CQ群で明らかな差を認めなかった。 The results of Western blotting analysis in FIG. 3-G show the results of examining the mechanism responsible for apoptotic cell death induced by the combined use of L-asp and an autophagy inhibitor for the REH cell line. In L-asp, it has been reported that apoptotic cell death is induced by ATF4-CHOP pathway (Ye, J. et al., The EMBO journal 29, 2082-2096, doi: 10.1038 / emboj.2010.81 ( 2010)), there was no clear difference in the expression of ATF4 and CHOP between the L-asp group and the L-asp + CQ group, suggesting that apoptotic cell death due to other causes was induced in the L-asp + CQ group. In addition, the expression of ASNS downstream of ATF4 was not clearly different between the L-asp group and the L-asp + CQ group.
 図3-Hでは、図3-Gの細胞培養系にROSの阻害薬であるアセチルシステイン(NAC)を添加した場合の殺細胞効果に対する影響を検討した結果を示している。ここに示したように、NACの添加によりL-asp+CQ群における殺細胞効果は減弱した。このことからL-aspとオートファジー阻害剤の併用効果の発揮には、標的細胞におけるROSの蓄積が重要な要素であることが明らかになった。 FIG. 3-H shows the results of examining the effect on cell killing effect when acetylcysteine (NAC), an ROS inhibitor, is added to the cell culture system of FIG. 3-G. As shown here, the addition of NAC attenuated the cell killing effect in the L-asp + CQ group. From this, it became clear that accumulation of ROS in the target cells is an important factor for exerting the combined effect of L-asp and an autophagy inhibitor.
 図3-Iは、Propidium Iodide染色によるフローサイトメトリーを用いた細胞周期の評価を、L-aspとオートファジー阻害剤を、単独又は組み合わせて作用させた場合、あるいは両者共に作用させない場合において行った結果を示している。ここに示すように、L-asp単独群ではG0/G1期が増加したが、L-asp+CQ群では逆にG0/G1期が減少し、sub-G1期が増加していた。このことから、L-asp単剤添加時には細胞周期をG0/G1期で停止させ細胞死から逃れているが、これに抗オートファジー阻害薬を併用することにより、細胞周期を停止することが困難になり、細胞死を逃れられずアポトーシスが誘導されることが示された。 Fig. 3-I shows the evaluation of the cell cycle using flow cytometry with Propidium Iodide staining when L-asp and autophagy inhibitor were used alone or in combination, or when both were not allowed to act. Results are shown. As shown here, the G0 / G1 phase increased in the L-asp alone group, but the G0 / G1 phase decreased and the sub-G1 phase increased in the L-asp + CQ group. Therefore, when the L-asp single agent is added, the cell cycle is stopped at the G0 / G1 phase to escape cell death, but it is difficult to stop the cell cycle by using an anti-autophagy inhibitor in combination with this. It was shown that apoptosis was induced without escape from cell death.
 図3-Jは、9日間の継続的薬剤接触による影響を、生細胞数をカウントすることにより検討したものである。このカウントは、Trypan blue染色を用いたTC20自動細胞カウンターにより調べた。細胞培地を72時間毎に交換する際に各薬剤を添加し、生細胞数を測定した。その結果、CQ群およびL-asp群では緩やかな細胞増加を認めたが、L-asp+CQ群では時間経過とともに生細胞数の割合が減少していた。 Fig. 3-J shows the effect of continuous drug contact for 9 days by counting the number of living cells. This count was checked with a TC20 automatic cell counter using Trypan blue staining. Each drug was added when the cell culture medium was changed every 72 hours, and the number of viable cells was measured. As a result, a gradual cell increase was observed in the CQ group and the L-asp group, but in the L-asp + CQ group, the ratio of the number of viable cells decreased with time.
 図3-Kと図3-Lは、in vivoでの治療評価を行うため、ルシフェラーゼ遺伝子を導入したREH/Luc2細胞を樹立し、免疫不全マウス(NOD/SCIDマウス(Charles River Laboratories Japan社))に対して経尾静脈移植を行い、その経過を検討した結果を示した。図3-Kは、その増殖度合いをREH/LUC2細胞の移植7、16、22日後の蛍光分布により検討した結果を示し、図3-Lでは、経時的なREH/Luc2細胞の増殖度合いを蛍光の光子フラックス率により検討した。両図共に、移植されたREH/Luc2細胞はcontrol群および単独投与群のマウス体内で速やかに増殖したが、L-asp+CQ群では増殖が有意に抑制されたことを示している。 Fig. 3-K and Fig. 3-L show the establishment of REH / Luc2 cells introduced with a luciferase gene for evaluation of treatment in vivo, and immunodeficient mice (NOD / SCID mice (Charles River Laboratories Japan)). The result of transcranial vein transplantation was examined and the course was examined. FIG. 3-K shows the results of examining the degree of proliferation based on the fluorescence distribution 7, 16, and 22 days after transplantation of REH / LUC2 cells. FIG. 3-L shows the degree of proliferation of REH / Luc2 cells over time. The photon flux rate was investigated. Both figures show that the transplanted REH / Luc2 cells proliferated rapidly in the mice of the control group and the single administration group, but the proliferation was significantly suppressed in the L-asp + CQ group.
 図3-Mは、上記のREH/Luc2細胞を移植した免疫不全マウスの経時的な生存率を日単位で検討した全生存解析結果である。ここに示すように、control群、CQ群、L-asp群に比較し、L-asp+CQ群で有意な生存期間の延長を認めた。 FIG. 3-M shows the results of an overall survival analysis in which the survival rate over time of immunodeficient mice transplanted with the above REH / Luc2 cells was examined on a daily basis. As shown here, a significant prolongation of the survival period was observed in the L-asp + CQ group compared to the control group, CQ group and L-asp group.
 このように、ALLにおけるL-aspと抗オートファジー阻害薬との併用療法はin vitroおよびin vivoで有効であることが示された。 Thus, it was shown that the combined therapy of L-asp and anti-autophagy inhibitor in ALL is effective in vitro and in vivo.
3.L-aspとオートファジー阻害剤の併用と活性酸素種の関係
 6ウェルプレートに、1ウェルあたりREH細胞1×10個/培地2mlを播種した。L-asp 1U/mlおよびCQ 10μMを添加し、継時的もしくは48時間後に観察した。
3. Relationship between combined use of L-asp and autophagy inhibitor and reactive oxygen species 6 well plates were seeded with 1 × 10 6 REH cells / well 2 ml of medium. L-asp 1 U / ml and CQ 10 μM were added and observed over time or after 48 hours.
 ウェスタンブロッティング法は図2と同様に行い、一次抗体は、γHAX抗体はAbcam社から、PUMA抗体はSanta Cruz Biotechnology社から購入した。 Western blotting was performed in the same manner as in FIG. 2, and the primary antibody was purchased from Abcam for γH 2 AX antibody, and from Santa Cruz Biotechnology for PUMA antibody.
 sh(short hairpin)RNAによるp53のノックダウンは、上記図3と同様に行いsh-p53(標的配列:5'-GACTCCAGTGGTAATCTAC-3'(配列番号7))を発現するレンチウイルスを作成した。下記のプライマーを用いて組み換えベクターを作成し、大腸菌を形質転換した。当該組み換え大腸菌を増幅後、プラスミドを生成した。このプラスミドをHEK293TN細胞に導入し、Luc2発現レンチウイルスを作成した。こうして得られた各組換えレンチウイルスについて、Global UltraRapid Lentiviral Titer Kit(System Biosciences社)を用いてタイターを測定した。MOIを添付マニュアルに従って決定し、5MOIとなるようウイルス量を調節しREH細胞にトランスフェクトした。 The knock-down of p53 with sh (short hairpin) RNA was performed in the same manner as in FIG. 3 described above, and a lentivirus expressing sh-p53 (target sequence: 5′-GACTCCAGTGGTAATCTAC-3 ′ (SEQ ID NO: 7)) was prepared. A recombinant vector was prepared using the following primers, and Escherichia coli was transformed. After amplification of the recombinant E. coli, a plasmid was generated. This plasmid was introduced into HEK293TN cells to produce Luc2-expressing lentivirus. About each recombinant lentivirus obtained in this way, the titer was measured using Global UltraRapid Lenticular Titer Kit (System Biosciences). The MOI was determined according to the attached manual, and the viral load was adjusted to 5 MOI and transfected into REH cells.
sh-p53-sense:
5'- GATCCGACTCCAGTGGTAATCTACCTTCCTGTCAGAGTAGATTACCACTGGAGTCTTTTTG-3'(配列番号8)
sh-p53-antisense:
5'-AATTCAAAAAGACTCCAGTGGTAATCTACTCTGACACAGGAAGGTAGATTACCACTGGAGTCG-3'(配列番号9)
sh-p53-sense:
5'-GATCCGACTCCAGTGGTAATCTACCTTCCTGTCAGAGTAGATTACCACTGGAGTCTTTTTG-3 '(SEQ ID NO: 8)
sh-p53-antisense:
5'-AATTCAAAAAGACTCCAGTGGTAATCTACTCTGACACAGGAAGGTAGATTACCACTGGAGTCG-3 '(SEQ ID NO: 9)
 図4-Aは、ALL細胞株であるREH細胞株に対して、L-aspとオートファジー阻害剤を単独又は組み合わせて作用させた場合の、経時的なDNAダメージをウェスタンブロッティング解析により検討した結果を示している。ROSの蓄積はDNAダメージを惹起することが知られている(Kruiswijk, F., Labuschagne, C. F. & Vousden, Nature reviews. Molecular cell biology 16, 393-405, doi:10.1038/nrm4007 (2015))。ここに示すように、REH細胞株において、L-asp+CQ群ではDNAダメージの指標であるγH2AXの蛋白発現が上昇し、それとともにP53およびPUMA (P53 upregulated modulator of apoptosis)も上昇した。 FIG. 4-A shows the results of examination of DNA damage over time by Western blotting analysis when L-asp and an autophagy inhibitor are used alone or in combination with the REH cell line which is an ALL cell line. Is shown. Accumulation of ROS is known to cause DNA damage (Kruiswijk, F., Labuschagne, C. F. & Vousden, Nature reviews. Molecular cell biology 16, 393-405, doi: 10.1038 / nrm4007 (2015) ). As shown here, in the REH cell line, in the L-asp + CQ group, the protein expression of γH2AX, which is an indicator of DNA damage, increased, and at the same time, P53 and PUMA (P53-upregulated modulator-ofapoptosis) also increased.
 図4-Bは、図4-Aの試験系において、さらにこれにROS抑制薬であるアセチルシステイン(NAC)を作用させた場合の、DNAダメージの指標であるγH2AXと共に、p53蛋白の増減をウェスタンブロッティング解析により検討した結果を示している。ここに示すように、ROS抑制薬を添加すると、DNAダメージおよびP53活性が抑制された。 FIG. 4-B shows the increase / decrease in p53 protein as well as γH2AX, which is an indicator of DNA damage, when acetylcysteine (NAC), a ROS inhibitor, is further acted on in the test system of FIG. 4-A. The result examined by blotting analysis is shown. As shown here, the addition of ROS inhibitors suppressed DNA damage and P53 activity.
 図4-Aと図4-Bから、ALL細胞において、L-aspとオートファジー阻害剤の併用により、過剰なROSが当該細胞内に蓄積することによるDNAダメージにより、P53誘導性アポトーシスが惹起されることが示された。 From FIG. 4-A and FIG. 4-B, P53-induced apoptosis is caused by DNA damage due to accumulation of excess ROS in the cells by the combined use of L-asp and an autophagy inhibitor in ALL cells. Rukoto has been shown.
 図4-Cは、sh(short hairpin)RNAによりp53遺伝子をノックダウンしたALL細胞株であるREH細胞株(sh-p53)における、L-aspとCQを組み合わせて作用させた場合のDNAダメージを、ウェスタンブロッティング解析により検討した結果である。ここに示すように、sh-p53では、p53遺伝子の下流にあるPUMAのみならず、DNAダメージも誘導されていなかった。 FIG. 4-C shows DNA damage when LHasp and CQ are combined in an REH cell line (sh-p53), which is an ALL cell line in which the p53 gene is knocked down by sh (short hairpin) RNA. It is the result examined by Western blotting analysis. As shown here, in sh-p53, not only the PUMA downstream of the p53 gene but also DNA damage was not induced.
 図4-Dは、sh-p53における、細胞内ROCの蓄積を検討した結果である。ここに示すようにsh-p53では、L-asp+CQ群における細胞内ROSの蓄積が、有意に抑制されていた。 FIG. 4-D shows the result of examining intracellular ROC accumulation in sh-p53. As shown here, sh-p53 significantly suppressed the accumulation of intracellular ROS in the L-asp + CQ group.
 図4-Eは、sh-p53における細胞死の抑制について、Annexin Vの取り込み(左のグラフ)と、ウェスタンブロッティング解析(右の電気泳動図)により検討した結果である。ここに示すようにsh-p53では、L-asp+CQ群における細胞死が有意に抑制され、p53の発現も強く抑制されていた。 FIG. 4-E shows the results of examination of inhibition of cell death in sh-p53 by Annexin V uptake (left graph) and Western blotting analysis (right electrophoretic diagram). As shown here, sh-p53 significantly suppressed cell death in the L-asp + CQ group, and p53 expression was also strongly suppressed.
 図4-A~図4-Eに示した結果により、L-aspと抗オートファジー阻害薬の併用療法は、(a)ROSの蓄積、(b)DNAへのダメージ、(c)p53の活性化、(d)更なる過剰なROSの蓄積、という「ROS-DNAダメージ-p53ループ」を形成し、細胞死を誘導すること、及び、p53のノックダウン株ではこのループが絶たれるために、細胞死が抑制されることが示された。 Based on the results shown in FIG. 4-A to FIG. 4-E, the combination therapy of L-asp and anti-autophagy inhibitor showed that (a) ROS accumulation, (b) DNA damage, (c) p53 activity (D) additional ROS accumulation, forming a “ROS-DNA damage-p53 loop” and inducing cell death, and this loop is broken in the p53 knockdown strain, It was shown that cell death was suppressed.
4.臨床検体とマウス生体を用いた検討
 臨床検体は、9割以上がALL白血病細胞で占められる患者の骨髄検体から、Ficollによる密度勾配遠心分離法を用いて分離した白血病細胞を使用した。採取に当たっては倫理委員会の承認ののち両親から書面にて同意を得た。 生細胞数の解析にあたっては、L-asp 1U/mlおよびCQ 10μMを加え、48時間後にトリパンブルー染色を用い自動細胞カウンターTC20(Bio-Rad社)を使って調べた。
4). Examination using clinical specimens and mouse organisms Clinical specimens used leukemia cells isolated from bone marrow specimens of patients with more than 90% occupied by ALL leukemia cells using density gradient centrifugation with Ficoll. The collection was approved by the parents in writing after approval by the Ethics Committee. For the analysis of the number of viable cells, L-asp 1 U / ml and CQ 10 μM were added, and after 48 hours, the cells were examined using an automatic cell counter TC20 (Bio-Rad) using trypan blue staining.
 ウェスタンブロッティング法は図2と同様に行った。 Western blotting was performed in the same manner as in FIG.
 p53の機能欠失となる変異の検出は、Sanger法によるダイレクトシークエンス解析を行った。回収した細胞にPUREGENE Cell Lysis SolutionおよびProtein Precipitation Solution(いずれもQIAGEN社)を添加後、DNAをエタノールで沈殿させTris-EDTA Bufferで溶解した。エキソン部(exon 2-11)を下記のプライマーを用いて逆転写ポリメラーゼ連鎖反応で増幅した。この増幅産物についてダイレクトシークエンス(両鎖解析)をApplied Biosystems 3130xl Genetic Analyzer(サーモフィッシャー社)により行った。得られた解析波形チャートからソフトウェアGENETYX(ゼネティックス株式会社)を用いて変異解析を行った。 The detection of mutations that resulted in loss of function of p53 was carried out by direct sequence analysis by the Sanger method. After the addition of PUREGENE Cell Lysis Solution and Protein Precipitation Solution (both from QIAGEN) to the collected cells, DNA was precipitated with ethanol and dissolved with Tris-EDTA Buffer. The exon part (exon 2-11) was amplified by reverse transcription polymerase chain reaction using the following primers. The amplified product was subjected to direct sequencing (double-strand analysis) using Applied Biosystems 3130xl Genetic Analyzer (Thermo Fisher). Mutation analysis was performed from the obtained analysis waveform chart using software GENETYX (Genetics Co., Ltd.).
exon2-3 sense: 5'-tctcatgctggatccccact-3'(配列番号10)
exon2-3 antisense: 5'-agtcagaggaccaggtcctc-3'(配列番号11)
exon4 sense: 5'-tgaggacctggtcctctgac-3'(配列番号12)
exon4 antisense: 5'-agaggaatcccaaagttcca-3'(配列番号13)
exon5-6 sense: 5'-tgttcacttgtgccctgact-3'(配列番号14)
exon5-6 antisense: 5'-ttaacccctcctcccagaga-3'(配列番号15)
exon7 sense: 5'-cttgccacaggtctccccaa-3'(配列番号16)
exon7 antisense: 5'-aggggtcagaggcaagcaga-3'(配列番号17)
exon8-9 sense: 5'-ttgggagtagatggagcct-3'(配列番号18)
exon8-9 antisense: 5'-agtgttagactggaaacttt-3'(配列番号19)
exon10 sense: 5'-caattgtaacttgaaccatc-3'(配列番号20)
exon10 antisense: 5'-ggatgagaatggaatcctat-3'(配列番号21)
exon11 sense: 5'-agaccctctcactcatgtga-3'(配列番号22)
exon11 antisense: 5'-tgacgcacacctattgcaag-3'(配列番号23)
exon2-3 sense: 5'-tctcatgctggatccccact-3 '(SEQ ID NO: 10)
exon2-3 antisense: 5'-agtcagaggaccaggtcctc-3 '(SEQ ID NO: 11)
exon4 sense: 5'-tgaggacctggtcctctgac-3 '(SEQ ID NO: 12)
exon4 antisense: 5'-agaggaatcccaaagttcca-3 '(SEQ ID NO: 13)
exon5-6 sense: 5'-tgttcacttgtgccctgact-3 '(SEQ ID NO: 14)
exon5-6 antisense: 5'-ttaacccctcctcccagaga-3 '(SEQ ID NO: 15)
exon7 sense: 5'-cttgccacaggtctccccaa-3 '(SEQ ID NO: 16)
exon7 antisense: 5'-aggggtcagaggcaagcaga-3 '(SEQ ID NO: 17)
exon8-9 sense: 5'-ttgggagtagatggagcct-3 '(SEQ ID NO: 18)
exon8-9 antisense: 5'-agtgttagactggaaacttt-3 '(SEQ ID NO: 19)
exon10 sense: 5'-caattgtaacttgaaccatc-3 '(SEQ ID NO: 20)
exon10 antisense: 5'-ggatgagaatggaatcctat-3 '(SEQ ID NO: 21)
exon11 sense: 5'-agaccctctcactcatgtga-3 '(SEQ ID NO: 22)
exon11 antisense: 5'-tgacgcacacctattgcaag-3 '(SEQ ID NO: 23)
 p53の遺伝子導入は組み換えアデノウイルスを用いた。組み換えアデノウイルスはAdenovirus Expression Vector Kit (Takara社)を用いて作成した。具体的には野生型p53を挿入したコスミドベクター(pAxCAwtit-p53)を作成し、p53遺伝子を含む組み換えアデノウイルスゲノムを切り出してHEK293TN細胞に導入し、p53組み換えアデノウイルスを作成した。こうして得られた各組換えアデノウイルスについて、Global UltraRapid Lentiviral Titer Kit(System Biosciences社)を用いてタイターを測定した。MOIを添付マニュアルに従って決定し、5MOIとなるようウイルス量を調節し目的細胞にトランスフェクトした。 Recombinant adenovirus was used for gene transfer of p53. Recombinant adenovirus was prepared using Adenovirus Expression Vector Kit (Takara). Specifically, a cosmid vector (pAxCAwtit-p53) into which wild-type p53 was inserted was prepared, a recombinant adenovirus genome containing the p53 gene was excised and introduced into HEK293TN cells, and a p53 recombinant adenovirus was prepared. About each recombinant adenovirus obtained in this way, the titer was measured using Global UltraRapid Lenticular Titer Kit (System Biosciences). The MOI was determined according to the attached manual, the amount of virus was adjusted to 5 MOI, and the target cells were transfected.
 p53のノックダウンは図4と同様の方法でshRNA(sh-p53)を用いてREH細胞に対し行った。このp53ノックダウンREH細胞を5×10/PBS100μlの濃度および量で免疫不全マウス(NOD/SCIDマウス)の尾静脈から注入した。注入7日後より、L-asp 6000U/マウス体重kgおよびCQ 50mg/マウス体重kgを1日1回、毎日腹腔内投与し生存期間を解析した。 Knockdown of p53 was performed on REH cells using shRNA (sh-p53) in the same manner as in FIG. The p53 knockdown REH cells were injected from the tail vein of immunodeficient mice (NOD / SCID mice) at a concentration and volume of 100 μl of 5 × 10 6 / PBS. From 7 days after the injection, L-asp 6000 U / kg mouse body weight and CQ 50 mg / kg mouse body weight were intraperitoneally administered once a day, and the survival period was analyzed.
 図5-Aは、ALLの臨床血液検体(初発例12例と再発例2例の計14例)における、L-aspとオートファジー阻害剤であるChloroquine(CQ)の組み合わせ投与の効果を、p53遺伝子の機能欠失となる変異の有無と併せて検討した結果を示している。これらの検体14例のうち、保存検体量が十分であった7例でSanger法によるp53解析を行い、1例(症例14)でp53遺伝子のホモ変異(R248Q)を認めた。L-asp群とL-asp+CQ群の比較では、p53の機能欠失となる変異を有さない13例においてL-asp+CQ群で有意に生存細胞数が低下していたが、p53遺伝子の機能欠失となる変異を有する1例(症例14)では、L-aspとオートファジー阻害剤の併用効果を認めなかった。 FIG. 5-A shows the effect of combined administration of L-asp and chloroquine (CQ), which is an autophagy inhibitor, on ALL clinical blood samples (total of 14 cases of initial cases and 2 cases of relapses). The results are shown together with the presence or absence of a mutation that causes a loss of function of the gene. Among these 14 specimens, 7 specimens with a sufficient amount of preserved specimens were subjected to p53 analysis by the Sanger method, and a homozygous mutation (R248Q) of the p53 gene was observed in 1 case (case 14). In comparison between the L-asp group and the L-asp + CQ group, the number of viable cells was significantly decreased in the L-asp + CQ group in 13 cases that did not have a mutation that resulted in loss of p53 function. In one case (case 14) having a loss mutation, the combined effect of L-asp and an autophagy inhibitor was not observed.
 図5-Bは、前記した14症例のうち、L-aspとCQの組み合わせ投与の効果が認められたALLの臨床血液検体3例(症例4、5、7)におけるオートファジー活性評価の結果を、ウェスタンブロッティング解析により示した。図の最下段の数字は、LC3B-II/ACTBについて、コントロールを1とした場合の相対比を示す。いずれの症例の検体も、L-aspとCQの併用時にLC3B-IIの蛋白発現が上昇していた。これはL-asp投与時にオートファジー活性が亢進することを示しており、これは前述したin vitroにおける知見と一致している。 FIG. 5-B shows the results of autophagy activity evaluation in 3 clinical blood samples of ALL ( cases 4, 5, and 7) in which the effect of combined administration of L-asp and CQ was recognized among the 14 cases described above. Shown by Western blotting analysis. The numbers at the bottom of the figure indicate the relative ratio of LC3B-II / ACTB when the control is 1. In all cases, LC3B-II protein expression was increased when L-asp was combined with CQ. This indicates that autophagy activity is enhanced upon administration of L-asp, which is consistent with the in vitro findings described above.
 図5-Cと図5-Dでは、前記した14症例のうち、L-aspとCQの組み合わせ投与の効果が認められなかったALLの臨床血液検体(症例14)に対して、アデノウイルスによる正常p53遺伝子の導入を行った場合の効果を、ウェスタンブロッティング解析(図5-C)と生細胞数(図5-D)により示した。これらに示したように、アデノウイルスによる正常p53遺伝子の導入を行うと、L-asp+CQ群においてp53の蛋白発現が亢進し細胞死が惹起された。 In FIG. 5-C and FIG. 5-D, the clinical blood sample of ALL (case 14) in which the effect of the combined administration of L-asp and CQ was not observed among the 14 cases described above was normal due to adenovirus. The effect of introducing the p53 gene was shown by Western blotting analysis (FIG. 5-C) and viable cell count (FIG. 5-D). As shown above, when the normal p53 gene was introduced by adenovirus, p53 protein expression was increased in the L-asp + CQ group, and cell death was induced.
 図5-Eは、前述したp53遺伝子をノックダウンしたREH細胞株(sh-p53)を、免疫不全マウスに経尾静脈移植した場合の投薬の効果を検討した結果を示している。具体的には、shRNAによるp53ノックダウンREH細胞にルシフェラーゼ遺伝子を導入し、NOD/SCIDマウスに経尾静脈移植して治療実験を行った。その結果、本図に示したように、p53ノックダウン株であるsh-p53では、L-aspとCQの併用でも生存期間の延長を認めなかった。 FIG. 5-E shows the results of examining the effects of medication when the above-mentioned REH cell line knocked down from the p53 gene (sh-p53) was transplanted into the immunodeficient mouse via the tail vein. Specifically, the luciferase gene was introduced into p53 knockdown REH cells by shRNA, and transvenous vein transplantation into NOD / SCID mice was performed for treatment experiments. As a result, as shown in this figure, in the p53 knockdown strain, sh-p53, the combined use of L-asp and CQ did not extend the survival time.
 本実施例により、p53遺伝子は、L-aspと抗オートファジー阻害薬の併用療法において本質的な役割を果たしており、ALL等の治療の層別化を行う上で極めて重要であることが示された。図5-Fにおいて、L-aspとオートファジー阻害剤であるChloroquine(CQ)の組み合わせ投与による、ALL細胞のアポトーシス誘導の仕組みをチャート化して示した。 This example shows that the p53 gene plays an essential role in the combination therapy of L-asp and an anti-autophagy inhibitor and is extremely important in stratifying treatments such as ALL. It was. FIG. 5-F shows a chart showing the mechanism of apoptosis induction of ALL cells by the combined administration of L-asp and the autophagy inhibitor Chloroquine (CQ).

Claims (15)

  1.  がん検体におけるp53遺伝子の機能欠失となる変異を認めた場合に、当該がんにおけるL-アスパラギナーゼ若しくはその誘導体の剤、及び、オートファジー阻害剤の併用療法の効果の否定的データとする、薬剤の効果の予測データの取得方法。 When a mutation resulting in a loss of function of the p53 gene in a cancer sample is observed, negative data on the effect of a combination therapy of an L-asparaginase or a derivative thereof and an autophagy inhibitor in the cancer, A method for obtaining prediction data of drug effects.
  2.  p53遺伝子の機能欠失となる変異は、
     (1)一方のアレルにp53遺伝子の機能欠失型の変異があり、他方のアレルで第17染色体短腕のp53遺伝子存在領域のLOH(loss of heterozygosity)が認められる変異、(2)双方のアレルにおけるp53遺伝子の機能欠失型のホモ変異もしくはコンパウンドヘテロ変異、(3)第17番染色体短腕の欠失変異、若しくは、第17番染色体の欠失変異、及び、(4)一方のアレルにp53遺伝子の機能欠失型変異のみが認められ、他方のアレルのp53遺伝子には変異は認められないが、四量体構造を取るp53分子のサブユニットとして、変異p53サブユニットがランダムに組み合わされて機能阻害が認められる変異、から選ばれる1種以上の変異である、請求項1に記載の予測データの取得方法。
    Mutations resulting in loss of function of the p53 gene are:
    (1) Mutation in which one of the alleles has a loss-of-function mutation of the p53 gene, and the other allele has LOH (loss of heterozygosity) in the region of the short arm of chromosome 17 in which the p53 gene is present (2) P53 gene function-deficient homo mutation or compound hetero mutation in the allele, (3) deletion mutation of chromosome 17 short arm, or deletion mutation of chromosome 17, and (4) one allele Only p53 gene lacking function mutation is observed in p53 gene, and no mutation is observed in p53 gene of the other allele, but mutant p53 subunits are randomly combined as subunits of p53 molecule having a tetrameric structure. The method for obtaining predicted data according to claim 1, wherein the mutation is one or more mutations selected from mutations in which functional inhibition is observed.
  3.  一方のアレルにp53遺伝子の機能欠失型の変異があり、他方のアレルで第17染色体短腕のp53遺伝子存在領域のLOH(loss of heterozygosity)が認められる変異、の検出は、LOHの検出によって行われる、請求項2に記載の予測データの取得方法。 Detection of LOH (loss of heterozygosity) in which one of the alleles has a loss-of-function mutation in the p53 gene and the other allele has a p53 gene existing region in the short arm of chromosome 17 is detected by detecting LOH. The prediction data acquisition method according to claim 2, wherein the prediction data is acquired.
  4.  がんの種類は、基礎的にL-アスパラギナーゼ又はその誘導体の剤の投与の有効可能性が認められるがんである、請求項1~3のいずれか1項に記載の予測データの取得方法。 The method for acquiring predicted data according to any one of claims 1 to 3, wherein the cancer type is a cancer in which the effectiveness of administration of an agent of L-asparaginase or a derivative thereof is basically recognized.
  5.  がんの種類は、白血病、悪性リンパ腫、又は、卵巣がんである、請求項1~4のいずれか1項に記載の予測データの取得方法。 The method for obtaining prediction data according to any one of claims 1 to 4, wherein the type of cancer is leukemia, malignant lymphoma, or ovarian cancer.
  6.  L-アスパラギナーゼ若しくはその誘導体の剤、及び、オートファジー阻害剤を含有することを特徴とする、L-アスパラギナーゼ又はその誘導体の剤の単独投与に対して抵抗性を有するがんの治療剤。 A therapeutic agent for cancer having resistance to single administration of an agent of L-asparaginase or a derivative thereof, comprising an agent of L-asparaginase or a derivative thereof and an autophagy inhibitor.
  7.  L-アスパラギナーゼ若しくはその誘導体の剤の単独投与に対するがんの抵抗性は、事前のL-アスパラギナーゼ若しくはその誘導体の剤の体内投与による当該がんに対する否定的な抗がん効果データ、又は、事前の当該がん細胞の体外におけるL-アスパラギナーゼ若しくはその誘導体の剤との接触による否定的な抗がん効果データ、に基づいて規定されることを特徴とする、請求項6に記載のがんの治療剤。 Cancer resistance to single administration of L-asparaginase or a derivative thereof can be determined based on negative anti-cancer effect data against the cancer caused by prior administration of L-asparaginase or a derivative thereof in advance. The cancer treatment according to claim 6, characterized in that it is defined based on negative anticancer effect data by contact with an agent of L-asparaginase or a derivative thereof outside the body of the cancer cell. Agent.
  8.  オートファジー阻害剤は、クロロキン類、3-メチルアデニン、バフィロマイシンA、又は、ウォルトマニンである、請求項6又は7に記載のがんの治療剤。 The cancer therapeutic agent according to claim 6 or 7, wherein the autophagy inhibitor is chloroquine, 3-methyladenine, bafilomycin A, or wortmannin.
  9.  クロロキン類は、クロロキン(クロロキノリン)、又は、ハイドロオキシクロロキンである、請求項8に記載のがんの治療剤。 The cancer therapeutic agent according to claim 8, wherein the chloroquine is chloroquine (chloroquinoline) or hydroxychloroquine.
  10.  L-アスパラギナーゼ若しくはその誘導体の剤、及び、オートファジー阻害剤を含有する医薬用組成物である、請求項6~9のいずれか1項に記載のがんの治療剤。 The cancer therapeutic agent according to any one of claims 6 to 9, which is a pharmaceutical composition containing an agent of L-asparaginase or a derivative thereof and an autophagy inhibitor.
  11.  L-アスパラギナーゼ若しくはその誘導体の剤、及び、オートファジー阻害剤を別個の構成薬剤として含む薬剤のセットである、請求項6~9のいずれか1項に記載のがんの治療剤。 10. The therapeutic agent for cancer according to any one of claims 6 to 9, which is a set of drugs containing L-asparaginase or a derivative thereof and an autophagy inhibitor as separate constituent drugs.
  12.  さらにL-アスパラギン合成酵素阻害薬を含有する、請求項6~11のいずれか1項に記載のがんの治療剤。 The cancer therapeutic agent according to any one of claims 6 to 11, further comprising an L-asparagine synthase inhibitor.
  13.  L-アスパラギナーゼ若しくはその誘導体の剤の単独投与に対して抵抗性を有するがんの種類は、p53遺伝子の機能欠失となる変異が認められないがん、又は、事後的にp53遺伝子の機能欠失となる変異の修復がなされたがんである、請求項6~12のいずれか1項に記載のがんの治療剤。 Cancer types that are resistant to single administration of L-asparaginase or a derivative thereof are cancers that do not show mutations that result in loss of function of the p53 gene, or that subsequently lack of function of the p53 gene. The cancer therapeutic agent according to any one of claims 6 to 12, which is a cancer in which a mutation to be lost is repaired.
  14.  L-アスパラギナーゼ若しくはその誘導体の剤の単独投与に対して抵抗性を有するがんの種類は、基礎的にL-アスパラギナーゼ若しくはその誘導体の剤の投与の有効可能性が認められるがんである、請求項13に記載のがんの治療剤。 The type of cancer having resistance to single administration of an agent of L-asparaginase or a derivative thereof is basically a cancer in which the effectiveness of administration of an agent of L-asparaginase or a derivative thereof is recognized. The therapeutic agent for cancer according to 13.
  15.  L-アスパラギナーゼ若しくはその誘導体の剤の単独投与に対して抵抗性を有するがんの種類は、白血病、悪性リンパ腫、又は、卵巣がんである、請求項13又は14に記載のがんの治療剤。 15. The cancer therapeutic agent according to claim 13 or 14, wherein the type of cancer resistant to single administration of L-asparaginase or a derivative thereof is leukemia, malignant lymphoma, or ovarian cancer.
PCT/JP2016/087989 2015-12-22 2016-12-20 Method for predicting effect of combination therapy on cancer using l-asparaginase agent and autophagy inhibitor, and cancer therapeutic agent WO2017110830A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015-250112 2015-12-22
JP2015250112A JP6719900B2 (en) 2015-12-22 2015-12-22 Method for predicting effect of combined therapy of L-asparaginase agent and autophagy inhibitor on cancer, and cancer therapeutic agent

Publications (1)

Publication Number Publication Date
WO2017110830A1 true WO2017110830A1 (en) 2017-06-29

Family

ID=59089594

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/087989 WO2017110830A1 (en) 2015-12-22 2016-12-20 Method for predicting effect of combination therapy on cancer using l-asparaginase agent and autophagy inhibitor, and cancer therapeutic agent

Country Status (2)

Country Link
JP (1) JP6719900B2 (en)
WO (1) WO2017110830A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111936627A (en) * 2018-01-18 2020-11-13 奥斯瓦道·克鲁兹基金会 Asparaginase activity polypeptides, expression cassettes, expression vectors, host cells, compositions, methods, cancer prevention or treatment uses

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013051606A1 (en) * 2011-10-03 2013-04-11 国立大学法人 東京大学 Monoclonal antibody capable of specifically recognizing asparagine synthase

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013051606A1 (en) * 2011-10-03 2013-04-11 国立大学法人 東京大学 Monoclonal antibody capable of specifically recognizing asparagine synthase

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
EHSANIPOUR , EHSAN A. ET AL.: "Adipocytes cause leukemia cell resistance to L-asparaginase via release of glutamine", CANCER RES., vol. 73, no. 10, 2013, pages 2998 - 3006, XP055395814 *
HIROYOSHI TAKAHASHI ET AL.: "Kyusei Lymph-sei Hakketsubyo Saibo ni Oite Autophagy Sogai wa L-asparaginase ni yoru Apoptosis o Zokyo suru", THE 60TH ANNUAL MEETING OF THE JAPAN SOCIETY OF HUMAN GENETICS PROGRAM·SHOROKUSHU, 14 October 2015 (2015-10-14), pages 243, O-83 *
HUTSON , RICHARD G. ET AL.: "Amino acid control of asparagine synthetase: relation to asparaginase resistance in human leukemia cells", AM. J. PHYSIOL., vol. 272, 1997, pages C1691 - C1699, page C1696, XP008175096 *
SONG, PING ET AL.: "Asparaginase induces apoptosis and cytoprotective autophagy in chronic myeloid leukemia cells", ONCOTARGET, vol. 6, no. 6, 8 January 2015 (2015-01-08), pages 3861 - 3873, XP055395810 *
TAKAHASHI ET AL.: "Autophagy Inhibition Sensitizes Acute Lymphoblastic Leukemia Cells to L-Asparaginase", BLOOD, vol. 126, pages 3772, Retrieved from the Internet <URL:http://www.bloodjournal.org/content/126/23/3772> [retrieved on 20170317] *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111936627A (en) * 2018-01-18 2020-11-13 奥斯瓦道·克鲁兹基金会 Asparaginase activity polypeptides, expression cassettes, expression vectors, host cells, compositions, methods, cancer prevention or treatment uses

Also Published As

Publication number Publication date
JP2017114795A (en) 2017-06-29
JP6719900B2 (en) 2020-07-08

Similar Documents

Publication Publication Date Title
EP2808338B1 (en) Mutant calreticulin for the diagnosis of myeloid malignancies
US10221459B2 (en) Compositions and methods of treating cancer harboring PIKC3A mutations
Stefancikova et al. Prognostic impact of p53 aberrations for R-CHOP-treated patients with diffuse large B-cell lymphoma
Yanagawa et al. Detection of ESR1 mutations in plasma and tumors from metastatic breast cancer patients using next-generation sequencing
Jin et al. Genetic heterogeneity of pseudoxanthoma elasticum: the Chinese signature profile of ABCC6 and ENPP1 mutations
US20220011312A1 (en) Novel method for monitoring and treating oral cancer
Zhang et al. TRIM66 promotes malignant progression of hepatocellular carcinoma by inhibiting E-cadherin expression through the EMT pathway.
WO2020150480A1 (en) Methods for treatment of lung cancers
CN113876953B (en) Novel cell aging intervention target and targeted application thereof in chemotherapy and cancer resistance
ES2684548T3 (en) Fusion protein comprising AXL and composition for treating cancer comprising the same
CN109793749B (en) Application of miR-145-3p in preparation of cell apoptosis and autophagy enhancer
WO2017110830A1 (en) Method for predicting effect of combination therapy on cancer using l-asparaginase agent and autophagy inhibitor, and cancer therapeutic agent
Chebel et al. Rapamycin safeguards lymphocytes from DNA damage accumulation in vivo
US11155879B2 (en) Method of predicting effects of CDC7 inhibitor
Deng et al. Zbtb14 regulates monocyte and macrophage development through inhibiting pu. 1 expression in zebrafish
AU2022210692A1 (en) Methods to quantify rate of clonal expansion and methods for treating clonal hematopoiesis and hematologic malignancies
CN112029866B (en) Application of WWP1 in pancreatic cancer
US20230042367A1 (en) Methods and compositions for treating cancers having f-box and wd-repeat protein 7 (fbxw7) alterations and/or cyclin l1 (ccnl1) gain or amplification
WO2010050268A1 (en) Molecular marker for cancer stem cell
US10865415B2 (en) Prevention, diagnosis and treatment of cancer overexpressing GPR160
JPWO2010024374A1 (en) Method for detecting drug effect of DNA methylation inhibitor
KR101797281B1 (en) Multiple biomarker for diagnosing cancer
KR101897322B1 (en) A method for diagnosing a metastasis of a primary thyroid cancer and a diagnostic kit using the method
CN109420169B (en) Novel tumor-associated target Zscan4 and application thereof in tumor inhibition
Latif NFATc1 driven ER-stress responses in the progression of non-alcoholic fatty liver disease

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16878719

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16878719

Country of ref document: EP

Kind code of ref document: A1