WO2017110029A1 - Wireless communication apparatus, wireless communication system, and wireless communication method - Google Patents

Wireless communication apparatus, wireless communication system, and wireless communication method Download PDF

Info

Publication number
WO2017110029A1
WO2017110029A1 PCT/JP2016/004799 JP2016004799W WO2017110029A1 WO 2017110029 A1 WO2017110029 A1 WO 2017110029A1 JP 2016004799 W JP2016004799 W JP 2016004799W WO 2017110029 A1 WO2017110029 A1 WO 2017110029A1
Authority
WO
WIPO (PCT)
Prior art keywords
wireless transmission
baseband signal
wireless
signal
baseband
Prior art date
Application number
PCT/JP2016/004799
Other languages
French (fr)
Japanese (ja)
Inventor
琢爾 飯塚
Original Assignee
日本電気株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電気株式会社 filed Critical 日本電気株式会社
Publication of WO2017110029A1 publication Critical patent/WO2017110029A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03MCODING; DECODING; CODE CONVERSION IN GENERAL
    • H03M7/00Conversion of a code where information is represented by a given sequence or number of digits to a code where the same, similar or subset of information is represented by a different sequence or number of digits
    • H03M7/30Compression; Expansion; Suppression of unnecessary data, e.g. redundancy reduction
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/02Traffic management, e.g. flow control or congestion control
    • H04W28/06Optimizing the usage of the radio link, e.g. header compression, information sizing, discarding information
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/16Central resource management; Negotiation of resources or communication parameters, e.g. negotiating bandwidth or QoS [Quality of Service]
    • H04W28/18Negotiating wireless communication parameters
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W88/00Devices specially adapted for wireless communication networks, e.g. terminals, base stations or access point devices
    • H04W88/08Access point devices

Definitions

  • the present invention relates to a wireless communication device, a wireless communication system, and a wireless communication method, for example, a wireless communication device, a wireless communication system, and a wireless communication method suitable for efficient wireless communication.
  • Patent Document 1 discloses a technique related to an interface between a baseband processing device (BBU (Base Band Unit)) and a radio device (RRH (Remote Radio ⁇ Head)) constituting a base station device.
  • BBU Base Band Unit
  • RRH Remote Radio ⁇ Head
  • the configuration disclosed in Patent Document 1 transmits IQ data between a baseband processing device and a wireless device via a CPRI transfer path (wired).
  • the configuration of Patent Document 1 has a problem that the cost for arranging a cable such as an optical cable increases.
  • Patent Document 2 discloses a transmission method of IQ data between a baseband processing device (BBU (Base Band Unit)) and a wireless device (RRH (Remote Radio Head) constituting a base station device. As described above, a wireless transmission method is used.
  • BBU Base Band Unit
  • RRH Remote Radio Head
  • wireless transmission using a high-level modulation method is usually performed on a wireless transmission path between a baseband processing device and a wireless device. This enables wireless transmission at a wireless transmission rate that is equal to or higher than the required IQ data transmission rate.
  • the communication quality of the wireless transmission path is deteriorated due to external factors such as rainy weather, there is a problem that wireless transmission using a high multilevel modulation method becomes difficult.
  • the present invention has been made to solve such problems, and provides a wireless communication apparatus, a wireless communication system, and a wireless communication method capable of efficient wireless communication according to the communication quality of a wireless transmission path.
  • the purpose is to do.
  • a wireless communication device includes: a baseband processing unit that outputs a compressed compressed baseband signal; a first signal wireless transmission unit that transmits the compressed baseband signal as a wireless signal; A second signal wireless transmission unit that receives a compressed baseband signal by wireless transmission; and a wireless unit that transmits a wireless signal based on the compressed baseband signal received by the second signal wireless transmission unit.
  • the wireless communication apparatus includes a wireless unit that compresses a baseband signal corresponding to a wireless signal received wirelessly and outputs a compressed baseband signal, and the compressed baseband signal is a wireless signal.
  • a second signal wireless transmission unit that transmits the compressed baseband signal, a first signal wireless transmission unit that receives the compressed baseband signal by wireless transmission, and the compressed baseband signal received by the first signal wireless transmission unit.
  • a baseband processing unit that performs predetermined processing by decoding.
  • a wireless communication device includes a baseband processing device that generates a first baseband signal, and a first wireless transmission device that modulates the first baseband signal into a first microwave and wirelessly transmits the first baseband signal. And a second wireless transmission device that demodulates the first microwave received wirelessly via a wireless transmission path with the first wireless transmission device into the first baseband signal, and a demodulation by the second wireless transmission device A wireless device that modulates the first baseband signal thus generated into a first high-frequency signal and wirelessly transmits the signal to the outside, wherein the baseband processing device has a compression rate according to communication quality in the wireless transmission path.
  • the first wireless transmission device compresses the first baseband signal, and the first wireless transmission device uses the modulation method according to the communication quality in the wireless transmission path to convert the compressed first baseband signal to the first wireless baseband signal. To modulate the microwave.
  • a wireless communication device includes: a baseband processing device that generates a first baseband signal; and first and second divided baseband signals obtained by dividing the first baseband signal.
  • a first wireless transmission device that modulates the first divided baseband signal into a first microwave and wirelessly transmits the first wireless transmission device, and a second wireless transmission device that modulates the second divided baseband signal into a second microwave and wirelessly transmits the modulated signal
  • a third wireless transmission device that demodulates a first microwave received wirelessly via a first wireless transmission path between the first wireless transmission device and the first divided baseband signal, and the second wireless transmission
  • a fourth wireless transmission device that demodulates the second microwave received wirelessly via the second wireless transmission path to the device into the second divided baseband signal; and demodulated by the third and fourth wireless transmission devices Is A wireless device that modulates the first baseband signal reproduced by combining the first and second divided baseband signals into a first high-frequency signal and wirelessly transmits the first high-frequency signal to the outside; And the first baseband signal or the first and second
  • a wireless communication method includes generating a first baseband signal by a baseband processing device, modulating the first baseband signal to a first microwave, and wirelessly transmitting the first baseband signal, Demodulating the first microwave received wirelessly into the first baseband signal; and modulating the demodulated first baseband signal into a first high frequency signal and wirelessly transmitting to the outside,
  • the first baseband signal is compressed at a compression rate according to the communication quality of the wireless transmission path through which the microwave is transmitted, and a modulation method according to the communication quality in the wireless transmission path is used.
  • the compressed first baseband signal is modulated into the first microwave.
  • a wireless communication method includes: generating a first baseband signal; and first and second divided baseband signals obtained by dividing the first baseband signal. Modulating the divided baseband signal to a first microwave and wirelessly transmitting; modulating the second divided baseband signal to a second microwave and wirelessly transmitting; and receiving the first microwave received wirelessly Demodulating the first divided baseband signal, demodulating the second microwave received wirelessly to the second divided baseband signal, and combining the first and second divided baseband signals to reproduce Modulating the first baseband signal thus obtained into a first high-frequency signal and wirelessly transmitting the signal to the outside, through a wireless transmission path through which microwaves are transmitted.
  • the first baseband signal or the first and second divided baseband signals are compressed at a compression rate according to quality, and using a modulation scheme according to the communication quality of the wireless transmission path,
  • the compressed first and second divided baseband signals are modulated into the first and second microwaves, respectively.
  • the embodiment it is possible to provide a wireless communication device, a wireless communication system, and a wireless communication method capable of efficient wireless communication according to the communication quality of the wireless transmission path.
  • FIG. 1 is a block diagram showing a wireless communication apparatus according to a first exemplary embodiment.
  • FIG. 3 is a block diagram of a base station apparatus according to a second embodiment. It is a figure which shows the relationship between the compression rate and modulation system of IQ data, and a radio transmission rate. It is a table
  • FIG. 3 is a block diagram illustrating a specific configuration example of a baseband processing device provided in the base station device illustrated in FIG. 2 and a wireless transmission device on the baseband processing device side.
  • FIG. 3 is a block diagram illustrating a specific configuration example of a wireless device provided in the base station device illustrated in FIG.
  • FIG. 10 is a block diagram illustrating a specific configuration example of a baseband processing device provided in the base station device illustrated in FIG. 9 and a wireless transmission device on the baseband processing device side.
  • FIG. 10 is a block diagram illustrating a specific configuration example of a wireless device provided in the base station device illustrated in FIG. 9 and a wireless transmission device on the wireless device side.
  • FIG. 6 is a block diagram illustrating a specific configuration example of a wireless device and a wireless transmission device on a wireless device side provided in a second modification of the base station device illustrated in FIG. 2. It is a figure which shows the structural example of the signal of the Ethernet standard applied in the structure shown in FIG.13 and FIG.14.
  • FIG. 7 is a block diagram of a base station apparatus according to a third embodiment.
  • FIG. 17 is a block diagram showing a first specific configuration example of two radio transmission apparatuses provided on the baseband processing apparatus side of the base station apparatus shown in FIG. 16. It is a block diagram which shows the 2nd specific structural example of the radio transmission apparatus provided in the baseband processing apparatus side of the base station apparatus shown in FIG.
  • FIG. 17 is a block diagram illustrating a third specific configuration example of the radio transmission apparatus provided on the baseband processing apparatus side of the base station apparatus illustrated in FIG. 16.
  • FIG. 6 is a block diagram of a base station apparatus according to a fourth embodiment.
  • FIG. 21 is a block diagram illustrating a specific configuration example of a baseband processing device provided in the base station device illustrated in FIG. 20 and a wireless transmission device on the baseband processing device side.
  • FIG. 21 is a block diagram illustrating a specific configuration example of a radio apparatus provided in the base station apparatus illustrated in FIG. 20 and a radio transmission apparatus on the radio apparatus side.
  • FIG. 21 is a block diagram illustrating a specific configuration example of a baseband processing device and a wireless transmission device on the baseband processing device side in a modification of the base station device illustrated in FIG. 20.
  • FIG. 21 is a block diagram illustrating a specific configuration example of a radio apparatus and a radio transmission apparatus on the radio apparatus side in a modification example of the base station apparatus illustrated in FIG. 20. It is a block diagram which shows the structural example of the base station apparatus which concerns on embodiment.
  • the constituent elements are not necessarily essential unless otherwise specified or apparently essential in principle.
  • the shapes when referring to the shapes, positional relationships, etc. of the components, etc., the shapes are substantially the same unless otherwise specified, or otherwise apparent in principle. And the like are included. The same applies to the above numbers and the like (including the number, numerical value, quantity, range, etc.).
  • FIG. 1 is a block diagram of a base station apparatus (wireless communication apparatus) 10 according to the first embodiment.
  • base station apparatus 10 according to the present embodiment, a baseband signal is compressed at a compression rate corresponding to the communication quality of the wireless transmission path between the baseband processing unit and the wireless unit, and wireless transmission is performed.
  • a desired wireless transmission rate can be maintained, so that efficient wireless communication is possible. This will be specifically described below.
  • the base station apparatus 10 performs wireless communication with a user terminal (not shown).
  • a radio communication system such as C-RAN is configured by the base station apparatus 10 and user terminals.
  • the user terminal is, for example, a mobile terminal such as a mobile phone or a notebook PC.
  • the base station device 10 includes a baseband processing unit 20, a radio unit 30, a first signal radio transmission unit 40 and a first radio transmission unit 40 for wirelessly transferring data between the baseband processing unit 20 and the radio unit 30. 2 signal wireless transmission units 50.
  • the baseband processing unit 20 generates a baseband signal based on data received from a host device (not shown), and then compresses the baseband signal to output a compressed baseband signal.
  • the first signal wireless transmission unit 40 modulates the compressed baseband signal output from the baseband processing unit 20 into a microwave and wirelessly transmits it.
  • the second signal wireless transmission unit 50 wirelessly receives the microwave transmitted from the first signal wireless transmission unit 40.
  • the second signal wireless transmission unit 50 demodulates the wirelessly received microwave into a compressed baseband signal. Then, the second signal radio transmission unit 50 outputs this compressed baseband signal to the radio unit 30.
  • the radio unit 30 decodes the compressed baseband signal output from the second signal radio transmission unit 50, modulates the compressed baseband signal into a high frequency signal, and wirelessly transmits the signal to the outside.
  • the wireless transmission path L1 between the first signal wireless transmission units 40 and 50 uses a high-value modulation method. Wireless transmission is performed. This enables wireless transmission at a wireless transmission rate that is equal to or higher than the required transmission rate of the baseband signal.
  • the baseband processing unit 20 compresses the baseband signal at a compression rate corresponding to the communication quality of the wireless transmission path L1, and outputs a compressed baseband signal.
  • the baseband processing unit 20 compresses the baseband signal by switching from the low magnification to the high magnification compression rate. As a result, even when the communication quality of the wireless transmission path L1 is deteriorated, the wireless transmission rate can be maintained at or higher than the required transmission rate of the baseband signal, so that reliable wireless communication is possible.
  • the baseband processing unit 20 compresses the baseband signal by switching from the high magnification to the low magnification.
  • the baseband signal can be modulated into a microwave by switching from the low-multilevel modulation system to the high-multilevel modulation system, high-quality wireless communication is possible.
  • the radio unit 30 demodulates a high-frequency signal received wirelessly from the outside into a baseband signal, and then compresses the baseband signal to output a compressed baseband signal.
  • the second signal wireless transmission unit 50 modulates the compressed baseband signal output from the wireless unit 30 into a microwave and wirelessly transmits it.
  • the first signal radio transmission unit 40 wirelessly receives the microwave transmitted from the second signal radio transmission unit 50.
  • the first signal wireless transmission unit 40 demodulates the wirelessly received microwave into a compressed baseband signal. Then, the first signal radio transmission unit 40 outputs the compressed baseband signal to the baseband processing unit 20.
  • the baseband processing unit 20 decodes the compressed baseband signal output from the first signal radio transmission unit 40 and performs predetermined processing. For example, the baseband processing unit 20 outputs the processing result to a higher-level device (not shown).
  • the radio unit 30 compresses the baseband signal at a compression rate corresponding to the communication quality of the radio transmission path L1 between the first signal radio transmission units 40 and 50, and outputs the compressed baseband signal.
  • the wireless unit 30 compresses the baseband signal by switching from a low magnification to a high magnification compression rate. As a result, even when the communication quality of the wireless transmission path L1 is deteriorated, the wireless transmission rate can be maintained at or higher than the required transmission rate of the baseband signal, so that reliable wireless communication is possible.
  • the wireless unit 30 compresses the baseband signal by switching from the high magnification to the low magnification compression rate.
  • the baseband signal can be modulated into a microwave by switching from the low-multilevel modulation system to the high-multilevel modulation system, high-quality wireless communication is possible.
  • FIG. 2 is a block diagram of the base station device (wireless communication device) 1 according to the second embodiment.
  • the baseband signal is compressed at a compression rate corresponding to the communication quality of the radio transmission path between the baseband processing apparatus and the radio apparatus, and the communication quality of the radio transmission path
  • the baseband signal after compression is modulated into a microwave by using a modulation method according to the above, and then wirelessly transmitted.
  • a desired wireless transmission rate can be maintained, so that efficient wireless communication is possible. This will be specifically described below.
  • the base station apparatus 1 corresponds to the base station apparatus 10 of FIG. 1 and performs wireless communication with a user terminal (not shown).
  • a radio communication system such as C-RAN is configured by the base station apparatus 1 and user terminals.
  • the user terminal is, for example, a mobile terminal such as a mobile phone or a notebook PC.
  • the base station device 1 includes a baseband processing device (BBU) 2 corresponding to the baseband processing unit 20, a radio device (RRH) 3 corresponding to the radio unit 30, and between the baseband processing device 2 and the radio device 3.
  • BBU baseband processing device
  • RRH radio device
  • the wireless transmission device 4 (corresponding to the first signal wireless transmission unit 40) and the wireless transmission device 5 (corresponding to the second signal wireless transmission unit 50) are provided.
  • the wireless transmission device 4 is provided with an antenna A1
  • the wireless transmission device 5 is provided with an antenna A2
  • the wireless device 3 is provided with an antenna A3.
  • the baseband processing device 2 generates IQ data (baseband signal) based on data received from a host device (not shown).
  • the CPRI standard is adopted for the data interface between the baseband processing device 2 and the wireless device 3. Accordingly, the baseband processing device 2 outputs IQ data of the CPRI standard (hereinafter also referred to as “CPRI signal”) to the wireless transmission device 4.
  • the wireless transmission device 4 modulates IQ data of the CPRI standard supplied from the baseband processing device 2 via an optical cable into a microwave and wirelessly transmits the microwave data via the antenna A1.
  • the wireless transmission device 5 wirelessly receives the microwave transmitted from the wireless transmission device 4 via the antenna A1 via the antenna A2.
  • the wireless transmission device 5 demodulates the wirelessly received microwave into IQ data (baseband signal). Then, the wireless transmission device 5 outputs this CPRI standard IQ data to the wireless device 3.
  • the wireless device 3 modulates the CPRI standard IQ data supplied from the wireless transmission device 5 via the optical cable into a high-frequency signal. This high frequency signal is wirelessly transmitted to the outside via the antenna A3 and received by the user terminal.
  • wireless transmission using a high-level modulation method is performed on the wireless transmission path L1 between the wireless transmission devices 4 and 5. .
  • This enables wireless transmission at a wireless transmission rate that is equal to or higher than the required IQ data transmission rate.
  • wireless transmission using a high multilevel modulation method becomes difficult.
  • the baseband processing device 2 compresses IQ data (baseband signal) at a compression rate corresponding to the communication quality of the wireless transmission path L1, and the wireless transmission device 4 responds to the communication quality of the wireless transmission path L1.
  • the IQ data is modulated into a microwave for wireless transmission using a modulation method.
  • the baseband processing device 2 switches the compression rate from the low magnification to the high magnification and compresses the IQ data.
  • the wireless transmission device 4 switches from the high multilevel to the low multilevel modulation method, and modulates the compressed IQ data into microwaves.
  • a modulation method capable of wireless transmission can be selected and the wireless transmission rate can be maintained higher than the required IQ data transmission rate. Wireless communication is possible.
  • the baseband processing device 2 switches the compression rate from high to low and compresses IQ data.
  • the wireless transmission device 4 switches from the low multi-value to the high multi-value modulation method, and modulates the compressed IQ data into microwaves. Thereby, high-quality wireless communication becomes possible.
  • the wireless device 3 demodulates a high frequency signal wirelessly received from the outside via the antenna A3 into IQ data (baseband signal). Then, the wireless device 3 outputs the CPRI standard IQ data to the wireless transmission device 5.
  • the wireless transmission device 5 modulates IQ data of the CPRI standard supplied from the wireless device 3 via the optical cable into a microwave and wirelessly transmits the microwave data via the antenna A2.
  • the wireless transmission device 4 wirelessly receives the microwave transmitted from the wireless transmission device 5 via the antenna A2 via the antenna A1. Then, the wireless transmission device 4 demodulates the wirelessly received microwave into IQ data (baseband signal). The wireless transmission device 4 then outputs this CPRI standard IQ data to the baseband processing device 2.
  • the baseband processing device 2 executes predetermined processing based on IQ data of the CPRI standard supplied from the wireless transmission device 4 via the optical cable. For example, the baseband processing device 2 outputs the processing result to a higher-level device (not shown).
  • the wireless device 3 compresses IQ data (baseband signal) at a compression rate according to the communication quality of the wireless transmission path L1 between the wireless transmission devices 4 and 5, and the wireless transmission device 5
  • the IQ data is modulated into microwaves using a modulation method corresponding to the communication quality of L1.
  • the wireless device 3 switches the compression rate from low to high and compresses IQ data. Further, the wireless transmission device 5 switches the high multi-value to the low multi-value modulation method, and modulates the compressed IQ data into microwaves. As a result, even when the communication quality of the wireless transmission path L1 deteriorates, a modulation scheme capable of wireless transmission can be selected and a wireless transmission rate higher than the required IQ data transmission rate can be maintained. Wireless communication is possible.
  • the wireless device 3 compresses the IQ data by switching from a high magnification to a low magnification.
  • the wireless transmission device 5 switches the low-multilevel to the high-multilevel modulation method, and modulates the compressed IQ data into microwaves. Thereby, high-quality wireless communication becomes possible.
  • a difference may be provided between the communication quality level (threshold) when switching the compression rate and the communication quality level (threshold) when switching the modulation method.
  • the modulation method is switched from the low multivalue to the high multivalue, and then the compression rate is switched from the high magnification to the low magnification.
  • the communication quality of the wireless transmission path L1 deteriorates, first, the compression rate is switched from low to high, and then the modulation method is switched from high to low.
  • FIG. 3 is a diagram showing the relationship between the compression rate and modulation method of IQ data and the wireless transmission rate.
  • FIG. 4 is a table corresponding to the diagram shown in FIG. Referring to FIGS. 3 and 4, the radio transmission rate increases as the modulation scheme becomes higher and lower as the modulation scheme becomes lower. In addition, the wireless transmission rate decreases as the compression rate decreases, and increases as the compression rate increases.
  • the modulation method is preferably as high as possible and the compression rate is preferably as low as possible.
  • the highest multi-level modulation method capable of communicating under the communication quality of the wireless transmission path L1 is adopted, and in this case, the compression ratio of the minimum magnification is set such that the wireless transmission rate is equal to or higher than the IQ data rate. Preferably it is selected.
  • a compression ratio of 1 is selected.
  • a compression ratio of 1.5 is selected.
  • a compression ratio of 2 is selected.
  • the QPSK modulation method is employed, a compression ratio of 3.5 times is selected.
  • the base station apparatus 1 switches the IQ data compression rate and the compressed IQ data modulation scheme according to the communication quality of the wireless transmission path L1, thereby enabling efficient wireless communication. Is possible.
  • the IQ data is compressed not in the wireless transmission apparatuses 4 and 5 but in the baseband processing apparatus 2 and the wireless apparatus 3, respectively. Accordingly, the CPRI signal propagating through the optical cable between the baseband processing device 2 and the radio transmission device 4 is compressed, and the CPRI signal propagating through the optical cable between the radio device 3 and the radio transmission device 5 is compressed.
  • the power consumed in each optical cable can be reduced by lowering the option of the standard.
  • IQ data is compressed in the baseband processing device 2, so that the plurality of wireless transmission devices 4.
  • the IQ data compression can be centrally managed and the number of devices for compressing IQ data can be reduced.
  • each IO data compression unit is configured to perform irreversible compression from the viewpoint of compression efficiency and ease of compression.
  • irreversible compression for example, Fast Fourier Transform (FFT) is adopted.
  • FFT Fast Fourier Transform
  • Lossy compression has an advantage that transmission delay due to compression processing is less than lossless compression.
  • each IO data compression unit may be configured to perform lossless compression as long as a certain compression efficiency is desired.
  • a lossless compression method predictive coding, run length, etc.
  • the structure which performs irreversible compression and the structure which performs lossless compression may be switched according to a modulation system. The same can be said for the third and fourth embodiments described below.
  • FIG. 5 is a block diagram illustrating a specific configuration example of the baseband processing device 2 and the wireless transmission device 4 provided on the baseband processing device 2 side.
  • FIG. 6 is a block diagram illustrating a specific configuration example of the wireless device 3 and the wireless transmission device 5 provided on the wireless device 3 side.
  • the baseband processing device 2 includes a baseband signal generation unit 200, an IQ data compression unit 201, a CPRI signal transmission unit 202, a CPRI signal reception unit 203, and an IQ data decoding unit 204.
  • the wireless transmission device 4 includes a CPRI signal reception unit 401, an OVH multiplexing unit 402, a wireless transmission unit 403, a wireless reception unit 404, a requested compression rate determination unit 405, an OVH extraction unit 406, and a CPRI signal transmission unit 407. And comprising.
  • the wireless transmission device 5 includes a wireless reception unit 501, a required compression rate determination unit 502, an OVH extraction unit 503, a CPRI signal transmission unit 504, a CPRI signal reception unit 505, an OVH multiplexing unit 506, and a wireless transmission unit 507. And comprising.
  • the wireless device 3 includes a CPRI signal reception unit 301, an IQ data decoding unit 302, a wireless transmission unit 303, a wireless reception unit 304, an IQ data compression unit 305, and a CPRI signal transmission unit 306.
  • the baseband signal generation unit 200 generates IQ data (baseband signal) D1 based on data received from a host device (not shown).
  • the IQ data compression unit 201 is a compression rate according to the communication quality of the wireless transmission path L1 (in this example, the compression rate of the compression rate information RQ1 received by the CPRI signal receiving unit 203 and requested from the wireless device 3 side) RQ1.
  • the IQ data D1 is compressed.
  • the IQ data compression unit 201 compresses the IQ data D1 by switching from a low magnification to a high magnification compression rate.
  • the IQ data compression unit 201 compresses the IQ data D1 by switching from a high magnification to a low magnification (details will be described later).
  • the CPRI signal transmission unit 202 transmits the compressed IQ data D1 and the compression rate information RQ1 after converting the data so as to satisfy the CPRI standard.
  • FIG. 7 is a diagram showing a frame format of a CPRI standard signal.
  • a CPRI standard signal is provided with a Vendor specific area where IQ data is not transmitted and received at regular intervals. Using this Vendor custom-specific area, IQ data compression rate information and compression requests are transmitted and received.
  • the CPRI signal receiving unit 401 receives the CPRI standard IQ data D1 (including the compression rate information RQ1) supplied from the CPRI signal transmitting unit 202 of the baseband processing device 2 via the optical cable.
  • the required compression rate determination unit 405 is configured on the wireless device 3 side.
  • the compression rate of the IQ data D2 before being modulated by the microwave MW2 is determined and output as new compression rate information RQ2.
  • the requested compression rate determination unit 405 compresses the IQ data D2 newly transmitted from the wireless device 3 side. Increase On the other hand, when the communication quality of the wireless transmission path L1 is improved and the CN noise ratio of the microwave MW2 is increased, the requested compression rate determination unit 405 compresses the IQ data D2 newly transmitted from the wireless device 3 side. Make it smaller.
  • OVH multiplexing section 402 multiplexes compressed IQ data D1 (including compression ratio information RQ1) and new compression ratio information RQ2 for IQ data D2.
  • the wireless transmission unit 403 modulates the data (baseband signal) multiplexed by the OVH multiplexing unit 402 into the microwave MW1 and wirelessly transmits it via the antenna A1.
  • FIG. 8 is a diagram showing a frame format of a radio signal transmitted and received between the radio transmission apparatuses 4 and 5.
  • the radio signal is provided with an overhead area (OVH area) before an area where IQ data is transmitted and received.
  • OVH area overhead area
  • compression rate information of IQ data and a compression request are transmitted and received.
  • the wireless transmission unit 403 uses the modulation method according to the communication quality of the wireless transmission path L1 (in other words, the compression rate RQ1 of the IQ data D1) to convert the data multiplexed by the OVH multiplexing unit 402 into the microwave. Modulate to MW1.
  • the wireless transmission unit 403 switches from a high multivalue to a low multivalue modulation method.
  • the compressed IQ data D1 is modulated into the microwave MW1.
  • the wireless transmission unit 403 switches from the low multi-value modulation method to the high multi-value modulation method.
  • the compressed IQ data D1 is modulated into the microwave MW1.
  • the wireless reception unit 501 wirelessly receives the microwave MW1 wirelessly transmitted from the wireless transmission device 4 via the antenna A1 via the antenna A2. Then, the wireless reception unit 501 demodulates the wirelessly received microwave MW1 into a baseband signal.
  • the OVH extraction unit 503 extracts the compressed IQ data D1 and its compression rate information RQ1 and the compression rate information RQ2 of the IQ data D2 from the baseband signal demodulated by the radio reception unit 501.
  • the CPRI signal transmission unit 504 converts the compressed IQ data D1 and its compression rate information RQ1 and the compression rate information RQ2 of the IQ data D2 so as to satisfy the CPRI standard and transmits the converted data.
  • the CPRI signal receiving unit 301 receives IQ data D1 (including compression rate information RQ1 and RQ2) of the CPRI standard supplied from the CPRI signal transmitting unit 504 of the wireless transmission device 5 via the optical cable.
  • the IQ data decoding unit 302 decodes the compressed IQ data D1 based on the compression rate information RQ1.
  • the wireless transmission unit 303 modulates the IQ data D1 decoded by the IQ data decoding unit 302 into a high frequency signal RF1.
  • the high-frequency signal RF1 is wirelessly transmitted to the outside via the antenna A3 and received by the user terminal.
  • the wireless reception unit 304 demodulates the high frequency signal RF1 wirelessly received from the outside via the antenna A3 into IQ data (baseband signal) D2.
  • the IQ data compression unit 305 is a compression rate according to the communication quality of the wireless transmission path L1 (in this example, the compression rate of the compression rate information RQ2 received by the CPRI signal reception unit 301 and requested from the baseband processing device 2 side) )
  • the IQ data D2 is compressed with RQ2.
  • the IQ data compression unit 305 switches the compression rate from the low magnification to the high magnification and compresses the IQ data D2.
  • the IQ data compression unit 305 switches the compression rate from high to low and compresses the IQ data D2.
  • the CPRI signal transmission unit 306 converts the compressed IQ data D2 and the compression rate information RQ2 so as to satisfy the CPRI standard and transmits the converted data.
  • the CPRI signal reception unit 505 receives the CPRI standard IQ data D2 (including the compression rate information RQ2) supplied from the CPRI signal transmission unit 306 of the wireless device 3 via the optical cable.
  • the required compression rate determination unit 502 is based on the CN noise ratio of the microwave MW1 wirelessly received by the wireless reception unit 501, which is one of the indexes representing the communication quality of the wireless transmission path L1. On the side, the compression rate of the IQ data D1 before being modulated to the microwave MW1 is determined and output as new compression rate information RQ1.
  • the required compression rate determination unit 502 performs processing for IQ data D1 newly transmitted from the baseband processing device 2 side. Increase the compression ratio.
  • the requested compression rate determination unit 502 performs the processing for the IQ data D1 newly transmitted from the baseband processing device 2 side. Reduce the compression rate.
  • the OVH multiplexing unit 506 multiplexes the compressed IQ data D2 (including the compression rate information RQ2) and the new compression rate information RQ1 for the IQ data D1.
  • the wireless transmission unit 507 modulates the data (baseband signal) multiplexed by the OVH multiplexing unit 506 into the microwave MW2 and wirelessly transmits it via the antenna A2.
  • the wireless transmission unit 507 uses the modulation scheme corresponding to the communication quality of the wireless transmission path L1 (in other words, the compression rate DQ2 of the IQ data D2) to microwave the data multiplexed by the OVH multiplexing unit 506. Modulate to MW2.
  • the wireless transmission unit 507 switches from a high-multilevel modulation scheme to a low-multilevel modulation scheme.
  • the compressed IQ data D2 is modulated into the microwave MW2.
  • the wireless transmission unit 507 switches from a low multi-value modulation method to a high multi-value modulation method.
  • the compressed IQ data D2 is modulated into the microwave MW2.
  • the wireless reception unit 404 wirelessly receives the microwave MW2 wirelessly transmitted from the wireless transmission device 5 via the antenna A2 via the antenna A1.
  • the wireless reception unit 404 demodulates the wirelessly received microwave MW1 into a baseband signal.
  • the OVH extraction unit 406 extracts the compressed IQ data D2 and its compression rate information RQ2 and the compression rate information RQ1 of the IQ data D1 from the baseband signal demodulated by the radio reception unit 404.
  • the CPRI signal transmission unit 407 converts the compressed IQ data D2 and its compression rate information RQ2 and the compression rate information RQ1 of the IQ data D1 after converting them so as to satisfy the CPRI standard.
  • the CPRI signal receiving unit 203 receives the CPRI standard IQ data D2 (including compression rate information RQ1 and RQ2) supplied from the CPRI signal transmitting unit 407 of the wireless transmission device 4 via the optical cable. .
  • the IQ data decoding unit 204 decodes the compressed IQ data D2 based on the compression rate information RQ2.
  • the baseband signal generation unit 200 performs a predetermined process based on the IQ data D2 decoded by the IQ data decoding unit 204. For example, the baseband processing device 2 outputs the processing result to a higher-level device (not shown).
  • the specific configuration of the base station apparatus 1 shown in FIGS. 5 and 6 is merely an example, and can be appropriately changed to another configuration having an equivalent function.
  • the CN noise ratio of the microwaves MW1 and MW2 is used as one of the indexes indicating the communication quality of the wireless transmission path L1 has been described as an example.
  • the present invention is not limited to this, and the microwave MW1 , MW2 field strength may be used. The same can be said for the third and fourth embodiments described below.
  • FIG. 9 is a block diagram illustrating a first modification of the base station device 1 as the base station device 1a.
  • the base station apparatus 1a includes a baseband processing apparatus (BBU) 2a, a radio apparatus (RRH) 3a, and radio transmission apparatuses 4a and 5a.
  • BBU baseband processing apparatus
  • RRH radio apparatus
  • the baseband processing device 2a, the wireless device 3a, and the wireless transmission devices 4a and 5a in the base station device 1a correspond to the baseband processing device 2, the wireless device 3, and the wireless transmission devices 4 and 5 in the base station device 1, respectively. To do.
  • CPRI signal CPRI standard signal
  • ETH signals trademark
  • FIG. 10 is a block diagram illustrating a specific configuration example of the baseband processing device 2a and the wireless transmission device 4a.
  • FIG. 11 is a block diagram illustrating a specific configuration example of the wireless device 3a and the wireless transmission device 5a.
  • the baseband processing device 2a replaces the CPRI signal transmission unit 202 and the CPRI signal reception unit 203 with an ETH signal transmission unit 205, a compression rate information packet generation unit 206, and an ETH signal.
  • a receiving unit 207 is provided.
  • the wireless transmission device 4a replaces the CPRI signal reception unit 401 and the CPRI signal transmission unit 407 with an ETH signal reception unit 408, an ETH signal transmission unit 409, and a compression rate information packet generation unit. 410.
  • the wireless transmission device 5a replaces the CPRI signal transmission unit 504 and the CPRI signal reception unit 505 with an ETH signal transmission unit 508, a compression rate information packet generation unit 509, and an ETH signal reception unit. 510.
  • the wireless device 3a replaces the CPRI signal receiving unit 301 and the CPRI signal transmitting unit 306 with an ETH signal receiving unit 307, a compression rate information packet extracting unit 308, an ETH signal transmitting unit 309, and A compression rate information packet generator 310 is provided.
  • the transmission path of the base station apparatus 1a will be described. Below, a different point from the base station apparatus 1 is mainly demonstrated.
  • the compression rate information packet generation unit 206 converts the compression rate information RQ1 of the IQ data D1 compressed by the IQ data compression unit 201 into an Ethernet standard packet.
  • the ETH signal transmission unit 205 converts the IQ data D1 compressed by the IQ data compression unit 201 into an Ethernet standard packet and transmits the packet at a constant interval, and in a section where the packet of the IQ data D1 is not transmitted, Information RQ1 and a compression request packet are transmitted.
  • FIG. 12 is a diagram illustrating a configuration example of a signal of the Ethernet standard adopted in the base station apparatus 1a.
  • packets of compressed IQ data are transmitted and received with a period T and a packet length L (L ⁇ T). Thereby, it is possible to transmit and receive IQ data which is continuous data.
  • the compression rate information and the compression request packet are transmitted and received in a section where the compressed IQ data packet is not transmitted and received.
  • the ETH signal reception unit 408 receives the packets of the Ethernet standard IQ data D1 and the compression rate information RQ1 transmitted from the ETH signal transmission unit 205 of the baseband processing device 2a.
  • the reception result of the ETH signal receiving unit 408 is supplied to the OVH multiplexing unit 402.
  • the compression rate information packet generation unit 509 converts the compression rate information RQ1 of the compressed IQ data D1 extracted by the OVH extraction unit 503 and the compression rate information RQ2 for the IQ data D2 into the Ethernet standard packet. Convert to The ETH signal transmission unit 508 converts the compressed IQ data D1 extracted by the OVH extraction unit 503 into an Ethernet standard packet and transmits it at a constant interval, and in a section where the IQ data D1 packet is not transmitted, The compression rate information RQ1, RQ2 and a compression request packet are transmitted.
  • the ETH signal receiving unit 307 receives the packet of the Ethernet standard IQ data D1 (including compression rate information RQ1 and RQ2) transmitted from the ETH signal transmitting unit 508 of the wireless transmission device 5a.
  • the IQ data D1 received by the ETH signal receiving unit 307 and the compression rate information RQ1 are supplied to the IQ data decoding unit 302 provided in the subsequent stage.
  • the compression rate information packet extraction unit 308 extracts the packet of the compression rate information RQ2 for the IQ data D2 from the data packets received by the ETH signal reception unit 307.
  • the compression rate information RQ2 extracted by the compression rate information packet extraction unit 308 is supplied to the IQ data compression unit 305 provided on the reception path.
  • the compression rate information packet generation unit 310 converts the compression rate information RQ2 of the IQ data D2 compressed by the IQ data compression unit 305 into an Ethernet standard packet.
  • the ETH signal transmission unit 309 converts the IQ data D2 compressed by the IQ data compression unit 305 into an Ethernet standard packet and transmits the packet at a constant interval, and in a section where the IQ data D2 packet is not transmitted, Information RQ2 and a compression request packet are transmitted.
  • the ETH signal reception unit 510 receives the packets of the Ethernet standard IQ data D2 and the compression rate information RQ2 transmitted from the ETH signal transmission unit 309. The reception result of the ETH signal receiving unit 510 is supplied to the OVH multiplexing unit 506.
  • the compression rate information packet generation unit 410 converts the compression rate information RQ2 of the compressed IQ data D2 extracted by the OVH extraction unit 406 and the compression rate information RQ1 for the IQ data D1 into an Ethernet standard packet. Convert to The ETH signal transmission unit 409 converts the compressed IQ data D2 extracted by the OVH extraction unit 406 into an Ethernet standard packet and transmits it at a constant interval, and in a section in which the IQ data D2 packet is not transmitted, The compression rate information RQ1, RQ2 and a compression request packet are transmitted.
  • the ETH signal receiving unit 207 receives a packet of Ethernet standard IQ data D2 (including compression rate information RQ1, RQ2) transmitted from the ETH signal transmitting unit 409 of the wireless transmission device 4a.
  • the IQ data D2 received by the ETH signal receiving unit 207 and its compression rate information RQ2 are supplied to the IQ data decoding unit 204 provided in the subsequent stage.
  • the compression rate information packet extraction unit 208 extracts the packet of the compression rate information RQ1 for the IQ data D1 from the data packets received by the ETH signal reception unit 207.
  • the compression rate information RQ1 extracted by the compression rate information packet extraction unit 208 is supplied to the IQ data compression unit 201 provided on the transmission path.
  • a base station device 1b as a second modification of the base station device 1 includes a baseband processing device 2b, a wireless device 3b, and wireless transmission devices 4b and 5b. Note that the baseband processing device 2b, the wireless device 3b, and the wireless transmission devices 4b and 5b in the base station device 1b correspond to the baseband processing device 2, the wireless device 3, and the wireless transmission devices 4 and 5 in the base station device 1, respectively. To do.
  • Ethernet is used for data transfer between the baseband processing device 2b and the radio transmission device 4b and data transfer between the radio transmission device 5b and the radio device 3b.
  • Standard signals are used.
  • FIG. 13 is a block diagram illustrating a specific configuration example of the baseband processing device 2b and the wireless transmission device 4b.
  • FIG. 14 is a block diagram illustrating a specific configuration example of the wireless device 3b and the wireless transmission device 5b.
  • the baseband processing device 2b includes a compression rate information extraction unit 209 instead of including the compression rate information packet generation unit 206 and the compression rate information packet extraction unit 208.
  • the wireless transmission device 4b does not include the compression rate information packet generation unit 410 as compared with the wireless transmission device 4a.
  • the wireless transmission device 5b does not include the compression rate information packet generation unit 509 as compared with the wireless transmission device 5b.
  • the wireless device 3b includes a compression rate information extraction unit 311 instead of including the compression rate information packet extraction unit 308 and the compression rate information packet generation unit 310.
  • the ETH signal transmission unit 205 converts the IQ data D1 compressed by the IQ data compression unit 201 and the compression rate information RQ1 into a single packet of the Ethernet standard and transmits it at regular intervals.
  • FIG. 15 is a diagram illustrating a configuration example of a signal of the Ethernet standard adopted in the base station apparatus 1b.
  • the compression rate information and the compression request stored in the OVH area are transmitted and received as a single packet at regular intervals.
  • the ETH signal reception unit 408 receives the packet of the Ethernet standard IQ data D1 and the compression rate information RQ1 transmitted from the ETH signal transmission unit 205 of the wireless transmission device 4b.
  • the reception result of the ETH signal receiving unit 408 is supplied to the OVH multiplexing unit 402.
  • the ETH signal transmission unit 508 converts the compressed IQ data D1 extracted by the OVH extraction unit 503, the compression rate information RQ1, and the compression rate information RQ2 for the IQ data D2 into a single unit of the Ethernet standard. Are converted into packets and sent at regular intervals.
  • the ETH signal receiving unit 307 receives the packet of the Ethernet standard IQ data D1 (including compression rate information RQ1 and RQ2) transmitted from the ETH signal transmitting unit 508 of the wireless transmission device 5b.
  • the IQ data D1 received by the ETH signal receiving unit 307 and the compression rate information RQ1 are supplied to the IQ data decoding unit 302 provided in the subsequent stage.
  • the compression rate information extraction unit 311 extracts the compression rate information RQ2 for the IQ data D2 from the OVH region of the data packet received by the ETH signal reception unit 307.
  • the compression rate information RQ2 extracted by the compression rate information extraction unit 311 is supplied to the IQ data compression unit 305 provided on the reception path.
  • the ETH signal transmission unit 309 converts the IQ data D2 compressed by the IQ data compression unit 305 and its compression rate information RQ2 into a single packet of the Ethernet standard and transmits the packet at regular intervals.
  • the ETH signal reception unit 510 receives the Ethernet standard IQ data D2 and the compression rate information RQ2 packet transmitted from the ETH signal transmission unit 309 of the wireless device 3b.
  • the reception result of the ETH signal receiving unit 510 is supplied to the OVH multiplexing unit 506.
  • the ETH signal transmission unit 409 converts the compressed IQ data D2 extracted by the OVH extraction unit 406, the compression rate information RQ2, and the compression rate information RQ1 for the IQ data D1 into a single unit of the Ethernet standard. Are converted into packets and sent at regular intervals.
  • the ETH signal receiving unit 207 receives a packet of Ethernet standard IQ data D2 (including compression rate information RQ1 and RQ2) transmitted from the ETH signal transmitting unit 409 of the wireless transmission device 4b.
  • the IQ data D2 received by the ETH signal receiving unit 207 and its compression rate information RQ2 are supplied to the IQ data decoding unit 204 provided in the subsequent stage.
  • the compression rate information extraction unit 209 extracts the compression rate information RQ1 for the IQ data D1 from the OVH area of the data packet received by the ETH signal reception unit 207.
  • the compression rate information RQ1 extracted by the compression rate information extraction unit 209 is supplied to the IQ data compression unit 201 provided on the transmission path.
  • FIG. 16 is a block diagram of the base station device 1c according to the third embodiment.
  • the base station device 1 c includes two sets of wireless transmission devices between the baseband processing device 2 and the wireless device 3 as compared with the base station device 1. This will be specifically described below.
  • the base station device 1c wirelessly transfers data between the baseband processing device (BBU) 2, the wireless device (RRH) 3, and the baseband processing device 2 and the wireless device 3.
  • Wireless transmission devices 41c and 42c and wireless transmission devices 51c and 52c for performing are provided.
  • the wireless transmission devices 41c and 42c are provided with antennas A11 and A12
  • the wireless transmission devices 51c and 52c are provided with antennas A21 and A22, respectively
  • the wireless device 3 is provided with an antenna A3. That is, the base station apparatus 1c has a so-called RTA (Radio Traffic Aggregation) configuration.
  • RTA Radio Traffic Aggregation
  • a combination of the wireless transmission devices 41 c and 42 c corresponds to the wireless transmission device 4, and a combination of the wireless transmission devices 51 c and 52 c corresponds to the wireless transmission device 5.
  • the combination of antennas A11 and A12 corresponds to antenna A1
  • the combination of antennas A21 and A22 corresponds to antenna A2.
  • FIG. 17 is a block diagram illustrating a first specific configuration example of the wireless transmission devices 41c and 42c provided on the baseband processing device 2 side.
  • the wireless transmission device 41c includes a CPRI signal reception unit 411, a CPRI signal distribution unit 412, an OVH multiplexing unit 414, a wireless transmission unit 415, a wireless reception unit 416, a requested compression rate determination unit 417, and an OVH extraction unit. 418, a CPRI signal assembly unit 420 and a CPRI signal transmission unit 421 are provided.
  • the wireless transmission device 42 c includes a CPRI signal reception unit 422, an OVH multiplexing unit 424, a wireless transmission unit 425, a wireless reception unit 426, a requested compression rate determination unit 427, an OVH extraction unit 428, and a CPRI signal transmission unit 430.
  • the CPRI signal reception unit 411, the OVH multiplexing unit 414, the wireless transmission unit 415, the wireless reception unit 416, the requested compression rate determination unit 417, the OVH extraction unit 418, and the CPRI signal transmission unit 421 are respectively a CPRI signal reception unit 401, This corresponds to the OVH multiplexing unit 402, the wireless transmission unit 403, the wireless reception unit 404, the requested compression rate determination unit 405, the OVH extraction unit 406, and the CPRI signal transmission unit 407.
  • the CPRI signal receiving unit 422, the OVH multiplexing unit 424, the wireless transmission unit 425, the wireless reception unit 426, the request compression rate determination unit 427, the OVH extraction unit 428, and the CPRI signal transmission unit 430 are respectively connected to the CPRI signal reception unit 401, This corresponds to the OVH multiplexing unit 402, the wireless transmission unit 403, the wireless reception unit 404, the requested compression rate determination unit 405, the OVH extraction unit 406, and the CPRI signal transmission unit 407.
  • the wireless transmission device 41 c further includes a CPRI signal distribution unit 412 and a CPRI signal assembly unit 420 as compared with the wireless transmission device 4.
  • Other configurations of the wireless transmission device 41 c are the same as those of the wireless transmission device 4.
  • the wireless transmission device 42 c has the same configuration as the wireless transmission device 4.
  • the CPRI signal distribution unit 412 is provided on a transmission path between the CPRI signal reception unit 411 and the OVH multiplexing unit 414, and two CPRI signals from the baseband processing device 2 received by the CPRI signal reception unit 411 are provided. Divide (sort). Therefore, one of the signals distributed by the CPRI signal distribution unit 412 is wirelessly transmitted via the wireless transmission path L11 between the wireless transmission devices 41c and 51c, and the other of the signals distributed by the CPRI signal distribution unit 412 is The wireless transmission is performed via the wireless transmission path L12 between the wireless transmission devices 42c and 52c.
  • the CPRI signal assembling unit 420 is provided on the reception path between the OVH extraction unit 418 and the CPRI signal transmission unit 421, and combines the extraction results of the OVH extraction units 418 and 428 and outputs the result to the CPRI signal transmission unit 421. To do.
  • the OVH extraction unit 418 includes the compressed IQ data D21 (data wirelessly received via the wireless transmission path L11) and its compression rate information RQ21, and the IQ data D11 (through the wireless transmission path L11). And compression rate information RQ11 for the data scheduled to be wirelessly transmitted).
  • the OVH extraction unit 428 includes the compressed IQ data D22 (data wirelessly received via the wireless transmission line L12) and its compression rate information RQ22, and the IQ data D12 (wirelessly received via the wireless transmission line L12). Compression rate information RQ12 for (data).
  • the CPRI signal assembling unit 420 combines the extraction results of the OVH extraction units 418 and 428 and outputs the compressed IQ data D2, its compression rate information RQ2, and the compression rate information RQ1 for the IQ data D1.
  • the configurations and operations of the wireless transmission devices 51c and 52c are the same as those of the wireless transmission device 5 except that a CPRI signal distribution unit is provided on the transmission path and a CPRI signal assembly unit is provided on the reception path. Therefore, the description thereof is omitted.
  • the base station device 1c divides IQ data into two signal components and performs wireless transmission via the two wireless transmission paths L11 and L12 formed between the two sets of wireless transmission devices.
  • wireless transmission of IQ data at a more reliable transmission rate can be realized.
  • the case where the CPRI standard is adopted as the data interface between the baseband processing device 2 and the wireless device 3 has been described as an example.
  • the present invention is not limited to this, and the Ethernet standard may be adopted, for example.
  • the configuration when the Ethernet standard is adopted may be referred to the configurations of FIGS. 9 to 12, and the description thereof is omitted.
  • FIG. 18 is a block diagram illustrating a second specific configuration example of the wireless transmission devices 41c and 42c as the wireless transmission devices 41d and 42d.
  • the baseband processing device 2d, the wireless device 3d, and the wireless transmission devices 51d and 52d constitute a base station device 1d corresponding to the base station device 1c.
  • the baseband processing device 2d does not have the IQ data compression unit 201 and the IQ data decoding unit 204 as compared with the baseband processing device 2, but the wireless transmission device 41d compares with the wireless transmission device 41c.
  • the CPRI signal compression unit 413 and the CPRI signal restoration unit 419 are further provided, and the wireless transmission device 42d further includes the CPRI signal compression unit 423 and the CPRI signal restoration unit 429 as compared with the wireless transmission device 42c.
  • the CPRI signal compression unit 413 is provided on the transmission path between the CPRI signal reception unit 411 and the OVH multiplexing unit 414. Then, the CPRI signal compressing unit 413 extracts one of the CPRI signals distributed by the CPRI signal receiving unit 411 by the compression rate according to the communication quality of the wireless transmission path L11 (in this example, the OVH extracting unit 418 extracts the wireless (Compression rate of compression rate information RQ11 requested from the apparatus 3 side) RQ11 is used for compression.
  • the CPRI signal compression unit 423 is provided on the transmission path between the CPRI signal reception unit 422 and the OVH multiplexing unit 424. Then, the CPRI signal compression unit 423 extracts the other of the CPRI signals distributed by the CPRI signal reception unit 411 by the compression rate (in this example, the OVH extraction unit 428) according to the communication quality of the wireless transmission line L12, Compression is performed with the compression ratio RQ12 (compression ratio of the compression ratio information RQ12 requested from the apparatus 3 side).
  • the IQ data modulation method and compression rate can be set independently of each other.
  • the CPRI signal distribution unit 412 distributes the CPRI signal component having a high priority to the radio transmission path side adopting the high-multilevel modulation method, and the CPRI signal component having a low priority is low
  • the value is distributed to the wireless transmission line that uses the value modulation method. This enables high-quality wireless transmission of a CPRI signal component with a high priority, and more reliable wireless transmission with a poor quality of a CPRI signal component with a low priority.
  • the CPRI signal restoration unit 419 is provided on the reception path between the OVH extraction unit 418 and the CPRI signal assembly unit 420, and the compressed IQ data D21 extracted by the OVH extraction unit 418 is used. Similarly, restoration is performed based on the compression rate information RQ21 extracted by the OVH extraction unit 418.
  • the CPRI signal restoration unit 429 is provided on the reception path between the OVH extraction unit 428 and the CPRI signal transmission unit 430, and the compressed IQ data D22 extracted by the OVH extraction unit 428 is Similarly, restoration is performed based on the compression rate information RQ22 extracted by the OVH extraction unit 428.
  • the CPRI signal assembling unit 420 combines the IQ data D21 restored by the CPRI signal restoring unit 419 and the IQ data D22 restored by the CPRI signal restoring unit 429, and outputs the synthesized IQ data D2.
  • the CPRI signal assembling unit 420 also synthesizes the compression rate information RQ11 and RQ12 for the IQ data D11 and D12.
  • the wireless transmission devices 41d and 42d are the same as those of the wireless transmission devices 41c and 42c, description thereof is omitted.
  • the configurations and operations of the wireless transmission devices 51d and 52d are the same as the wireless transmission devices 51c, 51c except that a CPRI signal compression unit is provided on the transmission path and a CPRI signal decoding unit is provided on the reception path. Since it is the same as 52c, its description is omitted. Accordingly, the wireless device 3d does not include the IQ data compression unit 305 and the IQ data decoding unit 302.
  • the base station apparatus 1d can achieve the same effects as the base station apparatus 1c, and can divide IQ data into two signal components and perform wireless transmission with different modulation schemes and compression rates, respectively. Can do. Thereby, for example, high-quality wireless transmission of a high-priority CPRI signal component can be performed, and more reliable wireless transmission can be performed although the quality of a low-priority CPRI signal component is inferior.
  • FIG. 19 is a block diagram illustrating a third specific configuration example of the wireless transmission devices 41c and 42c as the wireless transmission devices 41e and 42e.
  • the baseband processing device 2d, the wireless device 3d, and the wireless transmission devices 51e and 52e constitute a base station device 1e corresponding to the base station device 1c.
  • the baseband processing device 2e does not have the IQ data compression unit 201 and the IQ data decoding unit 204 as compared with the baseband processing device 2, but the wireless transmission device 41e compares with the wireless transmission device 41c.
  • the CPRI signal compression unit 413 and the CPRI signal restoration unit 419 are further provided.
  • the context of the OVH multiplexing unit 414 and the CPRI signal receiving unit 411 is reversed, and the context of the CPRI signal assembling unit 420 and the OVH extraction unit 418 is reversed.
  • the wireless transmission device 42e does not include the OVH multiplexing unit 424 and the OVH extraction unit 428 as compared with the wireless transmission device 42c.
  • the CPRI signal compression unit 413 provided only in the wireless transmission device 41e compresses the CPRI signal before the distribution, and the CPRI signal restoration unit 419 provided only in the wireless transmission device 41e performs synthesis ( The CPRI signal after assembly is restored.
  • the CPRI signal distribution unit is provided on the transmission path of the wireless transmission device 51e
  • the CPRI signal assembly unit is provided on the reception path of the wireless transmission device 51e. Basically, both are the same as those of the wireless transmission device 5, and the description thereof is omitted.
  • the base station device 1e can achieve the same effects as the base station device 1c.
  • FIG. 20 is a block diagram of a base station device (wireless communication device) 1f according to the fourth embodiment.
  • the base station device 1f includes a baseband processing device 2f, a wireless device 3f, wireless transmission devices 41f and 42f, and wireless transmission devices 51f and 52f.
  • the wireless transmission devices 41f and 42f are provided with antennas A11 and A12
  • the wireless transmission devices 51f and 52f are provided with antennas A21 and A22, respectively
  • the wireless device 3f is provided with an antenna A3.
  • the base station device 1f has a so-called LAG (Link Aggregation) configuration.
  • FIG. 21 is a block diagram illustrating a specific configuration example of the baseband processing device 2f and the wireless transmission devices 41f and 42f.
  • FIG. 22 is a block diagram illustrating a specific configuration example of the wireless device 3f and the wireless transmission devices 51f and 52f.
  • the baseband processing device 2f includes a baseband signal generation unit 200f, IQ data compression units 2011 and 2012, CPRI signal transmission units 2021 and 2022, CPRI signal reception units 2031 and 2032, IQ data decoding units 2041 and 2042, and , Compression rate information etc. extraction units 2101 and 2102.
  • the baseband processing device 2 f has a double configuration of the baseband processing device 2 other than the baseband signal generation unit 200.
  • the baseband signal generation unit 200f includes a QoS control unit 211, a distribution OVH multiplexing unit 231, 234, an IQ data generation unit 213, 223, and a network (NW) data generation unit 220, 230.
  • the wireless transmission device 41f includes a CPRI signal reception unit 4011, an OVH multiplexing unit 4021, a wireless transmission unit 4031, a wireless reception unit 4041, a required compression rate determination unit 4051, an OVH extraction unit 4061, and a CPRI signal transmission unit 4071.
  • the wireless transmission device 42f includes a CPRI signal reception unit 4012, an OVH multiplexing unit 4022, a wireless transmission unit 4032, a wireless reception unit 4042, a required compression rate determination unit 4052, an OVH extraction unit 4062, and a CPRI signal transmission unit 4072.
  • the wireless transmission devices 41 f and 42 f both have the same configuration and operation as the wireless transmission device 4.
  • the wireless device 3f includes a CPRI signal reception unit 3011 and 3012, an IQ data decoding unit 3021 and 3022, a wireless transmission unit 303, a wireless reception unit 304, an IQ data compression unit 3051 and 3052, and a CPRI signal transmission unit 3061. 3062, a distribution OVH extraction unit 312, and an IQ data distribution unit 313.
  • the wireless device 3 f has a double configuration of the wireless device 3.
  • the wireless transmission unit 303 and the wireless reception unit 304 are both shared by a double configuration.
  • the wireless transmission device 51f includes a wireless reception unit 5011, a required compression rate determination unit 5021, an OVH extraction unit 5031, a CPRI signal transmission unit 5041, a CPRI signal reception unit 5051, an OVH multiplexing unit 5061, and a wireless transmission unit 5071.
  • the wireless transmission device 52f includes a wireless reception unit 5012, a required compression rate determination unit 5022, an OVH extraction unit 5032, a CPRI signal transmission unit 5042, a CPRI signal reception unit 5052, an OVH multiplexing unit 5062, and a wireless transmission unit 5072.
  • the wireless transmission devices 51 f and 52 f both have the same configuration and operation as the wireless transmission device 5.
  • the operation of the transmission path of the base station device 1f will be described. Since the base station apparatus 1f includes many configurations similar to those already described as described above, the description will be simplified.
  • the QoS control unit 211 is provided to face the compression rate information S11, S12, S21, S22 of the IQ data compression units 2011, 2012, 3051, and 3052 and the base station device 1f. Based on the compression rate information (information included in S21 and S22) acquired from another base station device (hereinafter referred to as an opposite base station device) (not shown), the network data supplied from the host device is distributed.
  • an opposite base station device another base station device
  • the QoS control unit 211 distributes network data having a high priority to transmission / reception paths in which a low compression rate is adopted (in other words, transmission / reception paths in which a high-multilevel modulation method is adopted), and a high compression ratio is obtained.
  • Network data having a low priority is allocated to a transmission / reception path to be employed (in other words, a transmission / reception path to which a low-value modulation scheme is employed).
  • the distribution OVH multiplexing units 231 and 234 multiplex the network data distributed by the QoS control unit 211 and information related to the data, respectively.
  • Information about data is stored in the OVH area of the data frame.
  • the QoS control information required for the opposite base station apparatus is also stored in the OVH area.
  • the IQ data generation unit 213 converts the network data output from the distribution OVH multiplexing unit 231 into IQ data D11 and outputs the IQ data D11.
  • the IQ data D11 is compressed, and then supplied to the wireless transmission device 41f through the same operation as the baseband processing device 2.
  • the wireless transmission device 41f modulates the compressed IQ data D11 into the microwave MW11, and then wirelessly transmits it through the antenna A11.
  • the wireless transmission device 51f demodulates the microwave MW11 wirelessly received via the antenna A12 into compressed IQ data D11 and outputs the compressed IQ data D11 to the wireless device 3f.
  • the IQ data generation unit 223 converts the network data output from the distribution OVH multiplexing unit 234 into IQ data D12 and outputs the IQ data D12.
  • the IQ data D12 is compressed and then supplied to the wireless transmission device 42f through the same operation as that of the baseband processing device 2.
  • the wireless transmission device 42f modulates the compressed IQ data D12 into the microwave MW12, and then wirelessly transmits the modulated data via the antenna A12.
  • the wireless transmission device 52f demodulates the microwave MW12 received wirelessly via the antenna A22 into compressed IQ data D12 and outputs the compressed IQ data D12 to the wireless device 3f.
  • the wireless device 3f decodes the compressed IQ data D11 and D12, combines them, and reproduces the IQ data D1.
  • the reproduced IQ data D1 is wirelessly transmitted via the antenna A3.
  • the OVH area of the radio signal wirelessly transmitted via the antenna A3 includes QoS control information for the opposite base station apparatus by the QoS control unit 211.
  • the received IQ data D1 is distributed based on the QoS control information.
  • the sorting OVH extraction unit 312 extracts, for example, QoS control information for the own station by the QoS control unit 211 from the OVH region of the wireless signal wirelessly received via the antenna A3.
  • the IQ data distribution unit 313 distributes the IQ data D2 wirelessly received via the antenna A3 based on the QoS control information for the own station.
  • the distributed IQ data D21 and D22 are respectively compressed and then supplied to the baseband processing device 2f via the wireless transmission devices 51f and 52f and the wireless transmission devices 41f and 42f.
  • the compressed IQ data D21 and D22 are respectively decoded and converted into network data by the NW data generation units 220 and 230. This network data is output to a host device (not shown).
  • the base station device 1f divides the IQ data into two signal components and performs wireless transmission via the two wireless transmission paths L11 and L12 formed between the two sets of wireless transmission devices.
  • wireless transmission of IQ data at a higher transmission rate can be realized.
  • the base station apparatus 1f performs QoS control in the baseband processing apparatus, thereby performing high-quality wireless transmission of high-priority IQ data, and lower-priority IQ data quality is lower but more reliable. Wireless transmission can be performed.
  • the baseband processing device 2f is provided with two IQ data compression units and the wireless device 3f is provided with two IQ data compression units has been described as an example.
  • the baseband processing device 2f may be provided with a common IQ data compression unit, and the wireless device 3f may be provided with a common IQ data compression unit.
  • FIG. 23 is a block diagram illustrating a specific configuration example of a baseband processing device 2g and wireless transmission devices 41g and 42g provided in a base station device 1g which is a modification of the base station device 1f.
  • FIG. 24 is a block diagram illustrating a specific configuration example of the wireless device 3g and the wireless transmission devices 51g and 52g provided in the base station device 1g which is a modification of the base station device 1f.
  • a CPRI standard signal (CPRI signal) is used to exchange data between the baseband processing device 2g and the wireless transmission devices 41g and 42g and to exchange data between the wireless transmission devices 51g and 52g and the wireless device 3g.
  • Ethernet standard signals (hereinafter also referred to as ETH signals) are used.
  • the baseband processing device 2g includes an ETH signal transmission unit 2051 and a compression rate information packet generation unit 2061 instead of the CPRI signal transmission unit 2021, and includes a CPRI signal reception unit 2031 and Instead of the compression rate information extraction unit 2101, an ETH signal reception unit 2071 and a compression rate information packet extraction unit 2081 are provided. Further, an ETH signal transmission unit 2052 and a compression rate information packet generation unit 2062 are provided instead of the CPRI signal transmission unit 2022, and an ETH signal reception unit 2072 is provided instead of the CPRI signal reception unit 2032 and the compression rate information extraction unit 2102. And a packet extraction unit 2082 such as compression rate information.
  • the wireless transmission device 41g Compared with the wireless transmission device 41f, the wireless transmission device 41g has an ETH signal reception unit 4081 instead of the CPRI signal 4011, and an ETH signal transmission unit 4091 instead of the CPRI signal transmission unit 4071, compression rate information, and the like.
  • a packet generation unit 4101 is included.
  • the wireless transmission device 42g Compared with the wireless transmission device 42f, the wireless transmission device 42g has an ETH signal reception unit 4082 instead of the CPRI signal 4012, and an ETH signal transmission unit 4092 instead of the CPRI signal transmission unit 4072, compression rate information, and the like.
  • a packet generation unit 4102 is included.
  • the wireless transmission device 51g includes an ETH signal reception unit 5101 instead of the CPRI signal reception unit 5051, and replaces the CPRI signal transmission unit 5041 with an ETH signal transmission unit 5081 and a compression rate.
  • An information packet generation unit 5091 is included.
  • the wireless transmission device 52g includes an ETH signal reception unit 5102 instead of the CPRI signal reception unit 5052, and replaces the CPRI signal transmission unit 5042 with an ETH signal transmission unit 5082 and a compression rate.
  • An information packet generation unit 5092 is included.
  • the wireless device 3g includes an ETH signal transmitting unit 3091 and a compression rate information packet generating unit 3101 instead of the CPRI signal transmitting unit 3061, and an ETH signal instead of the CPRI signal receiving unit 3011.
  • a receiving unit 3071 and a compression rate information packet extracting unit 3081 are included.
  • an ETH signal transmission unit 3092 and a compression rate information packet generation unit 3102 are provided instead of the CPRI signal transmission unit 3062, and an ETH signal reception unit 3072 and a compression rate information packet extraction unit 3082 are provided instead of the CPRI signal reception unit 3012.
  • the base station device 1g can achieve the same effects as the base station device 1f.
  • the case where the CPRI standard or the Ethernet standard is adopted as the data interface between the baseband processing device and the wireless device has been described as an example.
  • the present invention is not limited to this, and other high-speed data interface standards or A local interface standard may be employed.
  • FIG. 10 is a block diagram showing a configuration example of the base station apparatus 10 according to the first embodiment.
  • the structural example of the base station apparatus 10 which concerns on Embodiment 1 is demonstrated, the same thing can be said also about the base station apparatus which concerns on other embodiment.
  • the base station device 10 includes an RF transceiver 1001, a network interface 1003, a processor 1004, and a memory 1005.
  • the RF transceiver 1001 performs analog RF signal processing to communicate with user terminals (UEs).
  • the RF transceiver 1001 may include multiple transceivers.
  • RF transceiver 1001 is coupled to antenna 1002 and processor 1004.
  • the RF transceiver 1001 receives modulation symbol data (or OFDM symbol data) from the processor 1004, generates a transmission RF signal, and supplies the transmission RF signal to the antenna 1002. Further, the RF transceiver 1001 generates a baseband received signal based on the received RF signal received by the antenna 1002, and supplies this to the processor 1004.
  • the network interface 1003 is used to communicate with network nodes (e.g., other eNBs, Mobility Management Entity (MME), Serving Gateway (S-GW), and TSS or ITS server).
  • the network interface 1003 may include, for example, a network interface card (NIC) compliant with IEEE 802.3 series.
  • the processor 1004 performs data plane processing including digital baseband signal processing for wireless communication and control plane processing.
  • the digital baseband signal processing by the processor 1004 may include signal processing of a PDCP layer, an RLC layer, a MAC layer, and a PHY layer.
  • the signal processing by the processor 1004 may include signal processing of the GTP-U / UDP / IP layer at the X2-U interface and the S1-U interface.
  • the control plane processing by the processor 1004 may include processing of the X2AP protocol, the S1-MME protocol, and the RRC protocol.
  • the processor 1004 may include a plurality of processors.
  • the processor 1004 includes a modem processor (eg, DSP) that performs digital baseband signal processing, a processor (eg, processor) that performs signal processing of the GTP-U • UDP / IP layer in the X2-U interface and the S1-U interface. DSP) and a protocol stack processor (eg, CPU or MPU) that performs control plane processing may be included.
  • DSP modem processor
  • processor eg, processor
  • a protocol stack processor eg, CPU or MPU
  • the memory 1005 is configured by a combination of a volatile memory and a nonvolatile memory.
  • the memory 1005 may include a plurality of physically independent memory devices.
  • the volatile memory is, for example, Static Random Access Memory (SRAM), Dynamic RAM (DRAM), or a combination thereof.
  • the non-volatile memory is a mask Read Only Memory (MROM), Electrically Erasable Programmable ROM (EEPROM), flash memory, hard disk drive, or any combination thereof.
  • Memory 1005 may include storage located remotely from processor 1004. In this case, the processor 1004 may access the memory 1005 via the network interface 1003 or an I / O interface not shown.
  • the memory 1005 may store a software module (computer program) including an instruction group and data for performing processing by the base station apparatus 10.
  • the processor 1004 may be configured to perform processing of the base station apparatus 10 by reading the software module from the memory 1005 and executing the software module.
  • the processor included in the base station apparatus 10 executes one or a plurality of programs including a group of instructions for causing a computer to execute the algorithm described with reference to the drawings.
  • the program can be stored and supplied to a computer using various types of non-transitory computer readable media.
  • Non-transitory computer readable media include various types of tangible storage media (tangible storage medium).
  • non-transitory computer-readable media are magnetic recording media (eg flexible disks, magnetic tapes, hard disk drives), magneto-optical recording media (eg magneto-optical discs), Compact Disc Read Only Memory (CD-ROM), CD-ROM R, CD-R / W, semiconductor memory (for example, mask ROM, Programmable ROM (PROM), Erasable PROM (EPROM), flash ROM, Random Access Memory (RAM)).
  • the program may also be supplied to the computer by various types of temporary computer-readable media. Examples of transitory computer readable media include electrical signals, optical signals, and electromagnetic waves.
  • the temporary computer-readable medium can supply the program to the computer via a wired communication path such as an electric wire and an optical fiber, or a wireless communication path.
  • Base station device 1, 1a to 1g Base station device 2, 2a to 2g Baseband processing device 3, 3a to 3g Wireless device 4, 4a, 4b Wireless transmission device 5, 5a, 5b Wireless transmission device 10 Base station device 20 Baseband processing unit 30 Radio unit 40 First signal radio transmission unit 50 Second signal radio transmission unit 41c-41g, 42c-42g Radio transmission device 51c-51g, 52c-52g Radio transmission device 200, 200f Baseband signal generation unit 201 IQ data compression Unit 202 CPRI signal transmission unit 203 CPRI signal reception unit 204 IQ data decoding unit 205 ETH signal transmission unit 206 compression rate information packet generation unit 207 ETH signal reception unit 208 compression rate information packet extraction unit 209 compression rate information extraction unit 211 QoS control unit 213, 223 IQ data generator 220, 230 NW data Data generator 231, 234 Sorting OVH multiplexer 301 CPRI signal receiver 302 IQ data decoder 303 Radio transmitter 304 Radio receiver 305 IQ data compressor 306 CPRI signal transmitter 307 ETH signal receiver 308 Com

Abstract

A wireless communication apparatus according to one embodiment of the present invention is provided with: a baseband processing device (2) that generates IQ data; a wireless transmission device (4) that modulates the IQ data into microwaves and wirelessly transmits the microwaves; a wireless transmission device (5) that demodulates, into IO data, the microwaves received wirelessly via a wireless transmission path (L1) to the wireless transmission device (4); and a wireless device (3) that modulates, into a high-frequency signal, the IO data demodulated by the wireless transmission device (5), and transmits said high-frequency signal outwards, wherein the baseband processing device (2) compresses the IQ data by a data compression ratio depending on the communication quality in the wireless transmission path (L1), and the wireless transmission device (4) modulates the IQ data into microwaves by using an appropriate modulation format in accordance with the communication quality in the wireless transmission path (L1).

Description

無線通信装置、無線通信システム及び無線通信方法Wireless communication apparatus, wireless communication system, and wireless communication method
 本発明は、無線通信装置、無線通信システム及び無線通信方法に関し、例えば効率的な無線通信に適した無線通信装置、無線通信システム及び無線通信方法に関する。 The present invention relates to a wireless communication device, a wireless communication system, and a wireless communication method, for example, a wireless communication device, a wireless communication system, and a wireless communication method suitable for efficient wireless communication.
 基地局装置を構成するベースバンド処理装置(BBU(Base Band Unit))及び無線装置(RRH(Remote Radio Head))間のインターフェースに関する技術が特許文献1に開示されている。特許文献1に開示された構成は、ベースバンド処理装置及び無線装置間のIQデータの伝送をCPRI転送路(有線)を介して行っている。しかしながら、特許文献1の構成では、光ケーブル等の有線を配設するためのコストが増大してしまうという問題があった。 Patent Document 1 discloses a technique related to an interface between a baseband processing device (BBU (Base Band Unit)) and a radio device (RRH (Remote Radio を Head)) constituting a base station device. The configuration disclosed in Patent Document 1 transmits IQ data between a baseband processing device and a wireless device via a CPRI transfer path (wired). However, the configuration of Patent Document 1 has a problem that the cost for arranging a cable such as an optical cable increases.
 そこで、近年では、基地局装置を構成するベースバンド処理装置(BBU(Base Band Unit))及び無線装置(RRH(Remote Radio Head))間のIQデータの伝送方式として、例えば特許文献2に示されるように、無線伝送方式が用いられている。 Therefore, in recent years, for example, Patent Document 2 discloses a transmission method of IQ data between a baseband processing device (BBU (Base Band Unit)) and a wireless device (RRH (Remote Radio Head)) constituting a base station device. As described above, a wireless transmission method is used.
国際公開第2014/136193号International Publication No. 2014/136193 特開2014-230098号公報JP 2014-230098 A
 無線通信システムでは、高速なIQデータの伝送レートが求められるため、通常、ベースバンド処理装置及び無線装置間の無線伝送路では、高多値の変調方式を用いた無線伝送が行われる。それにより、要求されるIQデータの伝送レート以上の無線伝送レートでの無線伝送が可能となる。しかしながら、雨天等の外部要因によって無線伝送路の通信品質が劣化すると、高多値の変調方式を用いた無線伝送が困難になってしまうという問題があった。その他の課題と新規な特徴は、本明細書の記述および添付図面から明らかになるであろう。 Since a high-speed IQ data transmission rate is required in a wireless communication system, wireless transmission using a high-level modulation method is usually performed on a wireless transmission path between a baseband processing device and a wireless device. This enables wireless transmission at a wireless transmission rate that is equal to or higher than the required IQ data transmission rate. However, when the communication quality of the wireless transmission path is deteriorated due to external factors such as rainy weather, there is a problem that wireless transmission using a high multilevel modulation method becomes difficult. Other problems and novel features will become apparent from the description of the specification and the accompanying drawings.
 本発明は、このような問題点を解決するためになされたものであり、無線伝送路の通信品質に応じた効率的な無線通信が可能な無線通信装置、無線通信システム及び無線通信方法を提供することを目的とする。 The present invention has been made to solve such problems, and provides a wireless communication apparatus, a wireless communication system, and a wireless communication method capable of efficient wireless communication according to the communication quality of a wireless transmission path. The purpose is to do.
 一実施の形態によれば、無線通信装置は、圧縮された圧縮ベースバンド信号を出力するベースバンド処理部と、前記圧縮ベースバンド信号を無線信号で伝送する第1の信号無線伝送部と、前記圧縮ベースバンド信号を無線伝送で受信する第2の信号無線伝送部と、前記第2の信号無線伝送部により受信された前記圧縮ベースバンド信号に基づいて無線信号を送信する無線部と、を備える。 According to an embodiment, a wireless communication device includes: a baseband processing unit that outputs a compressed compressed baseband signal; a first signal wireless transmission unit that transmits the compressed baseband signal as a wireless signal; A second signal wireless transmission unit that receives a compressed baseband signal by wireless transmission; and a wireless unit that transmits a wireless signal based on the compressed baseband signal received by the second signal wireless transmission unit. .
 また、他の実施の形態によれば、無線通信装置は、無線受信した無線信号に応じたベースバンド信号を圧縮して圧縮ベースバンド信号を出力する無線部と、前記圧縮ベースバンド信号を無線信号で伝送する第2の信号無線伝送部と、前記圧縮ベースバンド信号を無線伝送で受信する第1の信号無線伝送部と、前記第1の信号無線伝送部により受信された前記圧縮ベースバンド信号を復号して所定の処理を行うベースバンド処理部と、を備える。 According to another embodiment, the wireless communication apparatus includes a wireless unit that compresses a baseband signal corresponding to a wireless signal received wirelessly and outputs a compressed baseband signal, and the compressed baseband signal is a wireless signal. A second signal wireless transmission unit that transmits the compressed baseband signal, a first signal wireless transmission unit that receives the compressed baseband signal by wireless transmission, and the compressed baseband signal received by the first signal wireless transmission unit. And a baseband processing unit that performs predetermined processing by decoding.
 一実施の形態によれば、無線通信装置は、第1ベースバンド信号を生成するベースバンド処理装置と、前記第1ベースバンド信号を第1マイクロ波に変調して無線送信する第1無線伝送装置と、前記第1無線伝送装置との間の無線伝送路を介して無線受信した第1マイクロ波を前記第1ベースバンド信号に復調する第2無線伝送装置と、前記第2無線伝送装置によって復調された前記第1ベースバンド信号を第1高周波信号に変調して外部に無線送信する無線装置と、を備え、前記ベースバンド処理装置は、前記無線伝送路における通信品質に応じた圧縮率で前記第1ベースバンド信号を圧縮し、かつ、前記第1無線伝送装置は、前記無線伝送路における通信品質に応じた変調方式を用いて、圧縮された前記第1ベースバンド信号を前記第1マイクロ波に変調する。 According to one embodiment, a wireless communication device includes a baseband processing device that generates a first baseband signal, and a first wireless transmission device that modulates the first baseband signal into a first microwave and wirelessly transmits the first baseband signal. And a second wireless transmission device that demodulates the first microwave received wirelessly via a wireless transmission path with the first wireless transmission device into the first baseband signal, and a demodulation by the second wireless transmission device A wireless device that modulates the first baseband signal thus generated into a first high-frequency signal and wirelessly transmits the signal to the outside, wherein the baseband processing device has a compression rate according to communication quality in the wireless transmission path. The first wireless transmission device compresses the first baseband signal, and the first wireless transmission device uses the modulation method according to the communication quality in the wireless transmission path to convert the compressed first baseband signal to the first wireless baseband signal. To modulate the microwave.
 また、他の実施の形態によれば、無線通信装置は、第1ベースバンド信号を生成するベースバンド処理装置と、前記第1ベースバンド信号を分割した第1及び第2分割ベースバンド信号のうち前記第1分割ベースバンド信号を第1マイクロ波に変調して無線送信する第1無線伝送装置と、前記第2分割ベースバンド信号を第2マイクロ波に変調して無線送信する第2無線伝送装置と、前記第1無線伝送装置との間の第1無線伝送路を介して無線受信した第1マイクロ波を前記第1分割ベースバンド信号に復調する第3無線伝送装置と、前記第2無線伝送装置との間の第2無線伝送路を介して無線受信した第2マイクロ波を前記第2分割ベースバンド信号に復調する第4無線伝送装置と、前記第3及び前記第4無線伝送装置によって復調された前記第1及び前記第2分割ベースバンド信号を合成することで再生された前記第1ベースバンド信号を、第1高周波信号に変調して外部に無線送信する無線装置と、を備え、前記第1及び前記第2無線伝送路のそれぞれの通信品質に応じた圧縮率で、前記第1ベースバンド信号、又は、前記第1及び前記第2分割ベースバンド信号が圧縮され、かつ、前記第1及び前記第2無線伝送路のそれぞれの通信品質に応じた変調方式を用いて、圧縮された前記第1及び前記第2分割ベースバンド信号がそれぞれ前記第1及び前記第2マイクロ波に変調される。 According to another embodiment, a wireless communication device includes: a baseband processing device that generates a first baseband signal; and first and second divided baseband signals obtained by dividing the first baseband signal. A first wireless transmission device that modulates the first divided baseband signal into a first microwave and wirelessly transmits the first wireless transmission device, and a second wireless transmission device that modulates the second divided baseband signal into a second microwave and wirelessly transmits the modulated signal And a third wireless transmission device that demodulates a first microwave received wirelessly via a first wireless transmission path between the first wireless transmission device and the first divided baseband signal, and the second wireless transmission A fourth wireless transmission device that demodulates the second microwave received wirelessly via the second wireless transmission path to the device into the second divided baseband signal; and demodulated by the third and fourth wireless transmission devices Is A wireless device that modulates the first baseband signal reproduced by combining the first and second divided baseband signals into a first high-frequency signal and wirelessly transmits the first high-frequency signal to the outside; And the first baseband signal or the first and second divided baseband signals are compressed at a compression rate according to the communication quality of each of the second wireless transmission lines, and the first and the second The compressed first and second divided baseband signals are modulated into the first and second microwaves, respectively, using a modulation scheme corresponding to the communication quality of each second wireless transmission path.
 一実施の形態によれば、無線通信方法は、第1ベースバンド信号をベースバンド処理装置により生成するステップと、前記第1ベースバンド信号を第1マイクロ波に変調して無線送信するステップと、無線受信した前記第1マイクロ波を前記第1ベースバンド信号に復調するステップと、復調された前記第1ベースバンド信号を第1高周波信号に変調して外部に無線送信するステップと、を備え、前記ベースバンド処理装置ではマイクロ波が伝送される無線伝送路の通信品質に応じた圧縮率で前記第1ベースバンド信号が圧縮され、かつ、前記無線伝送路における通信品質に応じた変調方式を用いて、圧縮された前記第1ベースバンド信号が前記第1マイクロ波に変調される。 According to an embodiment, a wireless communication method includes generating a first baseband signal by a baseband processing device, modulating the first baseband signal to a first microwave, and wirelessly transmitting the first baseband signal, Demodulating the first microwave received wirelessly into the first baseband signal; and modulating the demodulated first baseband signal into a first high frequency signal and wirelessly transmitting to the outside, In the baseband processing device, the first baseband signal is compressed at a compression rate according to the communication quality of the wireless transmission path through which the microwave is transmitted, and a modulation method according to the communication quality in the wireless transmission path is used. Thus, the compressed first baseband signal is modulated into the first microwave.
 また、他の実施の形態によれば、無線通信方法は、第1ベースバンド信号を生成するステップと、前記第1ベースバンド信号を分割した第1及び第2分割ベースバンド信号のうち前記第1分割ベースバンド信号を第1マイクロ波に変調して無線送信するステップと、前記第2分割ベースバンド信号を第2マイクロ波に変調して無線送信するステップと、無線受信した第1マイクロ波を前記第1分割ベースバンド信号に復調するステップと、無線受信した第2マイクロ波を前記第2分割ベースバンド信号に復調するステップと、前記第1及び前記第2分割ベースバンド信号を合成することで再生された前記第1ベースバンド信号を、第1高周波信号に変調して外部に無線送信するステップと、を備え、マイクロ波が伝送される無線伝送路の通信品質に応じた圧縮率で、前記第1ベースバンド信号、又は、前記第1及び前記第2分割ベースバンド信号が圧縮され、かつ、前記無線伝送路の通信品質に応じた変調方式を用いて、圧縮された前記第1及び前記第2分割ベースバンド信号がそれぞれ前記第1及び前記第2マイクロ波に変調される。 According to another embodiment, a wireless communication method includes: generating a first baseband signal; and first and second divided baseband signals obtained by dividing the first baseband signal. Modulating the divided baseband signal to a first microwave and wirelessly transmitting; modulating the second divided baseband signal to a second microwave and wirelessly transmitting; and receiving the first microwave received wirelessly Demodulating the first divided baseband signal, demodulating the second microwave received wirelessly to the second divided baseband signal, and combining the first and second divided baseband signals to reproduce Modulating the first baseband signal thus obtained into a first high-frequency signal and wirelessly transmitting the signal to the outside, through a wireless transmission path through which microwaves are transmitted. The first baseband signal or the first and second divided baseband signals are compressed at a compression rate according to quality, and using a modulation scheme according to the communication quality of the wireless transmission path, The compressed first and second divided baseband signals are modulated into the first and second microwaves, respectively.
 前記一実施の形態によれば、無線伝送路の通信品質に応じた効率的な無線通信が可能な無線通信装置、無線通信システム及び無線通信方法を提供することができる。 According to the embodiment, it is possible to provide a wireless communication device, a wireless communication system, and a wireless communication method capable of efficient wireless communication according to the communication quality of the wireless transmission path.
実施の形態1にかかる無線通信装置を示すブロック図である。1 is a block diagram showing a wireless communication apparatus according to a first exemplary embodiment. 実施の形態2にかかる基地局装置を示すブロック図である。FIG. 3 is a block diagram of a base station apparatus according to a second embodiment. IQデータの圧縮率及び変調方式と、無線伝送レートと、の関係を示す図である。It is a figure which shows the relationship between the compression rate and modulation system of IQ data, and a radio transmission rate. IQデータの圧縮率及び変調方式と、無線伝送レートと、の関係を表す表であるである。It is a table | surface showing the relationship between the compression rate and modulation system of IQ data, and a radio | wireless transmission rate. 図2に示す基地局装置に設けられたベースバンド処理装置及びベースバンド処理装置側の無線伝送装置の具体的構成例を示すブロック図である。FIG. 3 is a block diagram illustrating a specific configuration example of a baseband processing device provided in the base station device illustrated in FIG. 2 and a wireless transmission device on the baseband processing device side. 図2に示す基地局装置に設けられた無線装置及び無線装置側の無線伝送装置の具体的構成例を示すブロック図である。FIG. 3 is a block diagram illustrating a specific configuration example of a wireless device provided in the base station device illustrated in FIG. 2 and a wireless transmission device on the wireless device side. CPRI規格の信号のフレーム形式を示す図である。It is a figure which shows the frame format of the signal of a CPRI standard. 無線伝送装置間で送受信される無線信号のフレーム形式を示す図である。It is a figure which shows the frame format of the radio signal transmitted / received between radio | wireless transmission apparatuses. 図2に示す基地局装置の第1変形例を示すブロック図である。It is a block diagram which shows the 1st modification of the base station apparatus shown in FIG. 図9に示す基地局装置に設けられたベースバンド処理装置及びベースバンド処理装置側の無線伝送装置の具体的構成例を示すブロック図である。FIG. 10 is a block diagram illustrating a specific configuration example of a baseband processing device provided in the base station device illustrated in FIG. 9 and a wireless transmission device on the baseband processing device side. 図9に示す基地局装置に設けられた無線装置及び無線装置側の無線伝送装置の具体的構成例を示すブロック図である。FIG. 10 is a block diagram illustrating a specific configuration example of a wireless device provided in the base station device illustrated in FIG. 9 and a wireless transmission device on the wireless device side. 図10及び図11に示す構成において適用されたイーサネット規格の信号の構成例を示す図である。It is a figure which shows the structural example of the signal of the Ethernet standard applied in the structure shown in FIG.10 and FIG.11. 図2に示す基地局装置の第2変形例に設けられたベースバンド処理装置及びベースバンド処理装置側の無線伝送装置の具体的構成例を示すブロック図である。It is a block diagram which shows the specific structural example of the radio transmission apparatus by the baseband processing apparatus and baseband processing apparatus side provided in the 2nd modification of the base station apparatus shown in FIG. 図2に示す基地局装置の第2変形例に設けられた無線装置及び無線装置側の無線伝送装置の具体的構成例を示すブロック図である。FIG. 6 is a block diagram illustrating a specific configuration example of a wireless device and a wireless transmission device on a wireless device side provided in a second modification of the base station device illustrated in FIG. 2. 図13及び図14に示す構成において適用されたイーサネット規格の信号の構成例を示す図である。It is a figure which shows the structural example of the signal of the Ethernet standard applied in the structure shown in FIG.13 and FIG.14. 実施の形態3にかかる基地局装置を示すブロック図である。FIG. 7 is a block diagram of a base station apparatus according to a third embodiment. 図16に示す基地局装置のベースバンド処理装置側に設けられた2つの無線伝送装置の第1の具体的構成例を示すブロック図である。FIG. 17 is a block diagram showing a first specific configuration example of two radio transmission apparatuses provided on the baseband processing apparatus side of the base station apparatus shown in FIG. 16. 図16に示す基地局装置のベースバンド処理装置側に設けられた無線伝送装置の第2の具体的構成例を示すブロック図である。It is a block diagram which shows the 2nd specific structural example of the radio transmission apparatus provided in the baseband processing apparatus side of the base station apparatus shown in FIG. 図16に示す基地局装置のベースバンド処理装置側に設けられた無線伝送装置の第3の具体的構成例を示すブロック図である。FIG. 17 is a block diagram illustrating a third specific configuration example of the radio transmission apparatus provided on the baseband processing apparatus side of the base station apparatus illustrated in FIG. 16. 実施の形態4にかかる基地局装置を示すブロック図である。FIG. 6 is a block diagram of a base station apparatus according to a fourth embodiment. 図20に示す基地局装置に設けられたベースバンド処理装置及びベースバンド処理装置側の無線伝送装置の具体的構成例を示すブロック図である。FIG. 21 is a block diagram illustrating a specific configuration example of a baseband processing device provided in the base station device illustrated in FIG. 20 and a wireless transmission device on the baseband processing device side. 図20に示す基地局装置に設けられた無線装置及び無線装置側の無線伝送装置の具体的構成例を示すブロック図である。FIG. 21 is a block diagram illustrating a specific configuration example of a radio apparatus provided in the base station apparatus illustrated in FIG. 20 and a radio transmission apparatus on the radio apparatus side. 図20に示す基地局装置の変形例におけるベースバンド処理装置及びベースバンド処理装置側の無線伝送装置の具体的構成例を示すブロック図である。FIG. 21 is a block diagram illustrating a specific configuration example of a baseband processing device and a wireless transmission device on the baseband processing device side in a modification of the base station device illustrated in FIG. 20. 図20に示す基地局装置に変形例における無線装置及び無線装置側の無線伝送装置の具体的構成例を示すブロック図である。FIG. 21 is a block diagram illustrating a specific configuration example of a radio apparatus and a radio transmission apparatus on the radio apparatus side in a modification example of the base station apparatus illustrated in FIG. 20. 実施形態に係る基地局装置の構成例を示すブロック図である。It is a block diagram which shows the structural example of the base station apparatus which concerns on embodiment.
 以下、図面を参照しつつ、実施の形態について説明する。なお、図面は簡略的なものであるから、この図面の記載を根拠として実施の形態の技術的範囲を狭く解釈してはならない。また、同一の要素には、同一の符号を付し、重複する説明は省略する。 Hereinafter, embodiments will be described with reference to the drawings. Since the drawings are simple, the technical scope of the embodiments should not be narrowly interpreted based on the description of the drawings. Moreover, the same code | symbol is attached | subjected to the same element and the overlapping description is abbreviate | omitted.
 以下の実施の形態においては便宜上その必要があるときは、複数のセクションまたは実施の形態に分割して説明するが、特に明示した場合を除き、それらはお互いに無関係なものではなく、一方は他方の一部または全部の変形例、応用例、詳細説明、補足説明等の関係にある。また、以下の実施の形態において、要素の数等(個数、数値、量、範囲等を含む)に言及する場合、特に明示した場合および原理的に明らかに特定の数に限定される場合等を除き、その特定の数に限定されるものではなく、特定の数以上でも以下でもよい。 In the following embodiments, when it is necessary for the sake of convenience, the description will be divided into a plurality of sections or embodiments. However, unless otherwise specified, they are not irrelevant to each other. Are partly or entirely modified, application examples, detailed explanations, supplementary explanations, and the like. Further, in the following embodiments, when referring to the number of elements (including the number, numerical value, quantity, range, etc.), especially when clearly indicated and when clearly limited to a specific number in principle, etc. Except, it is not limited to the specific number, and may be more or less than the specific number.
 さらに、以下の実施の形態において、その構成要素(動作ステップ等も含む)は、特に明示した場合および原理的に明らかに必須であると考えられる場合等を除き、必ずしも必須のものではない。同様に、以下の実施の形態において、構成要素等の形状、位置関係等に言及するときは、特に明示した場合および原理的に明らかにそうでないと考えられる場合等を除き、実質的にその形状等に近似または類似するもの等を含むものとする。このことは、上記数等(個数、数値、量、範囲等を含む)についても同様である。 Furthermore, in the following embodiments, the constituent elements (including operation steps and the like) are not necessarily essential unless otherwise specified or apparently essential in principle. Similarly, in the following embodiments, when referring to the shapes, positional relationships, etc. of the components, etc., the shapes are substantially the same unless otherwise specified, or otherwise apparent in principle. And the like are included. The same applies to the above numbers and the like (including the number, numerical value, quantity, range, etc.).
<実施の形態1>
 図1は、実施の形態1にかかる基地局装置(無線通信装置)10を示すブロック図である。本実施の形態に係る基地局装置10では、ベースバンド処理部と無線部との間の無線伝送路の通信品質に応じた圧縮率でベースバンド信号を圧縮して無線伝送を行う。それにより、雨天等の外部要因により無線伝送路の通信品質が劣化した場合でも、所望の無線伝送レートを維持することができるため、効率的な無線通信が可能になる。以下、具体的に説明する。
<Embodiment 1>
FIG. 1 is a block diagram of a base station apparatus (wireless communication apparatus) 10 according to the first embodiment. In base station apparatus 10 according to the present embodiment, a baseband signal is compressed at a compression rate corresponding to the communication quality of the wireless transmission path between the baseband processing unit and the wireless unit, and wireless transmission is performed. Thereby, even when the communication quality of the wireless transmission path deteriorates due to external factors such as rainy weather, a desired wireless transmission rate can be maintained, so that efficient wireless communication is possible. This will be specifically described below.
 図1に示すように、基地局装置10は、ユーザ端末(不図示)と無線通信を行う。なお、基地局装置10とユーザ端末とによりC-RAN等の無線通信システムが構成される。ユーザ端末は、例えば、携帯電話やノートPC等の移動端末である。 As shown in FIG. 1, the base station apparatus 10 performs wireless communication with a user terminal (not shown). A radio communication system such as C-RAN is configured by the base station apparatus 10 and user terminals. The user terminal is, for example, a mobile terminal such as a mobile phone or a notebook PC.
 基地局装置10は、ベースバンド処理部20と、無線部30と、ベースバンド処理部20と無線部30との間のデータの受け渡しを無線で行うための第1の信号無線伝送部40及び第2の信号無線伝送部50と、を備える。 The base station device 10 includes a baseband processing unit 20, a radio unit 30, a first signal radio transmission unit 40 and a first radio transmission unit 40 for wirelessly transferring data between the baseband processing unit 20 and the radio unit 30. 2 signal wireless transmission units 50.
 まず、基地局装置10の送信経路について説明する。
 ベースバンド処理部20は、図示しない上位装置から受信したデータに基づいてベースバンド信号を生成した後、当該ベースバンド信号を圧縮して圧縮ベースバンド信号を出力する。
First, the transmission path of the base station apparatus 10 will be described.
The baseband processing unit 20 generates a baseband signal based on data received from a host device (not shown), and then compresses the baseband signal to output a compressed baseband signal.
 第1の信号無線伝送部40は、ベースバンド処理部20から出力された圧縮ベースバンド信号をマイクロ波に変調して、無線送信する。 The first signal wireless transmission unit 40 modulates the compressed baseband signal output from the baseband processing unit 20 into a microwave and wirelessly transmits it.
 第2の信号無線伝送部50は、第1の信号無線伝送部40から無線送信されたマイクロ波を、無線受信する。第2の信号無線伝送部50は、無線受信したマイクロ波を圧縮ベースバンド信号に復調する。そして、第2の信号無線伝送部50は、この圧縮ベースバンド信号を無線部30に対して出力する。 The second signal wireless transmission unit 50 wirelessly receives the microwave transmitted from the first signal wireless transmission unit 40. The second signal wireless transmission unit 50 demodulates the wirelessly received microwave into a compressed baseband signal. Then, the second signal radio transmission unit 50 outputs this compressed baseband signal to the radio unit 30.
 無線部30は、第2の信号無線伝送部50から出力された圧縮ベースバンド信号を復号して高周波信号に変調した後、外部に無線送信する。 The radio unit 30 decodes the compressed baseband signal output from the second signal radio transmission unit 50, modulates the compressed baseband signal into a high frequency signal, and wirelessly transmits the signal to the outside.
 ここで、無線通信システムでは、要求されるベースバンド信号の伝送レートが高速であるため、第1の信号無線伝送部40,50間の無線伝送路L1では、高多値の変調方式を用いた無線伝送が行われる。それにより、要求されるベースバンド信号の伝送レート以上の無線伝送レートでの無線伝送が可能となる。しかしながら、雨天等の外部要因によって第1の信号無線伝送部40,50間の無線伝送路L1の通信品質が劣化すると、高多値の変調方式を用いた無線伝送が困難になってしまう。そこで、ベースバンド処理部20は、無線伝送路L1の通信品質に応じた圧縮率でベースバンド信号を圧縮して、圧縮ベースバンド信号を出力する。 Here, in the wireless communication system, since the required transmission rate of the baseband signal is high, the wireless transmission path L1 between the first signal wireless transmission units 40 and 50 uses a high-value modulation method. Wireless transmission is performed. This enables wireless transmission at a wireless transmission rate that is equal to or higher than the required transmission rate of the baseband signal. However, if the communication quality of the wireless transmission path L1 between the first signal wireless transmission units 40 and 50 deteriorates due to external factors such as rainy weather, wireless transmission using a high-level modulation method becomes difficult. Therefore, the baseband processing unit 20 compresses the baseband signal at a compression rate corresponding to the communication quality of the wireless transmission path L1, and outputs a compressed baseband signal.
 具体的には、無線伝送路L1の通信品質が劣化した場合、ベースバンド処理部20は、低倍率から高倍率の圧縮率に切り替えてベースバンド信号を圧縮する。それにより、無線伝送路L1の通信品質が劣化した場合でも、要求されるベースバンド信号の伝送レート以上に無線伝送レートを維持することができるため、確実な無線通信が可能である。 Specifically, when the communication quality of the wireless transmission path L1 deteriorates, the baseband processing unit 20 compresses the baseband signal by switching from the low magnification to the high magnification compression rate. As a result, even when the communication quality of the wireless transmission path L1 is deteriorated, the wireless transmission rate can be maintained at or higher than the required transmission rate of the baseband signal, so that reliable wireless communication is possible.
 それに対し、無線伝送路L1の通信品質が向上した場合、ベースバンド処理部20は、高倍率から低倍率の圧縮率に切り替えてベースバンド信号を圧縮する。それにより、低多値から高多値の変調方式に切り替えてベースバンド信号をマイクロ波に変調したうえで無線伝送することができるため、高品質な無線通信が可能になる。 On the other hand, when the communication quality of the wireless transmission path L1 is improved, the baseband processing unit 20 compresses the baseband signal by switching from the high magnification to the low magnification. As a result, since the baseband signal can be modulated into a microwave by switching from the low-multilevel modulation system to the high-multilevel modulation system, high-quality wireless communication is possible.
 続いて、基地局装置10の受信経路について説明する。
 無線部30は、外部から無線受信した高周波信号をベースバンド信号に復調した後、当該ベースバンド信号を圧縮して圧縮ベースバンド信号を出力する。
Next, the reception path of the base station device 10 will be described.
The radio unit 30 demodulates a high-frequency signal received wirelessly from the outside into a baseband signal, and then compresses the baseband signal to output a compressed baseband signal.
 第2の信号無線伝送部50は、無線部30から出力された圧縮ベースバンド信号をマイクロ波に変調して、無線送信する。 The second signal wireless transmission unit 50 modulates the compressed baseband signal output from the wireless unit 30 into a microwave and wirelessly transmits it.
 第1の信号無線伝送部40は、第2の信号無線伝送部50から無線送信されたマイクロ波を、無線受信する。第1の信号無線伝送部40は、無線受信したマイクロ波を圧縮ベースバンド信号に復調する。そして、第1の信号無線伝送部40は、この圧縮ベースバンド信号をベースバンド処理部20に対して出力する。 The first signal radio transmission unit 40 wirelessly receives the microwave transmitted from the second signal radio transmission unit 50. The first signal wireless transmission unit 40 demodulates the wirelessly received microwave into a compressed baseband signal. Then, the first signal radio transmission unit 40 outputs the compressed baseband signal to the baseband processing unit 20.
 ベースバンド処理部20は、第1の信号無線伝送部40から出力された圧縮ベースバンド信号を復号して所定の処理を行う。例えば、ベースバンド処理部20は、その処理結果を上位装置(不図示)に対して出力する。 The baseband processing unit 20 decodes the compressed baseband signal output from the first signal radio transmission unit 40 and performs predetermined processing. For example, the baseband processing unit 20 outputs the processing result to a higher-level device (not shown).
 ここで、無線部30は、第1の信号無線伝送部40,50間の無線伝送路L1の通信品質に応じた圧縮率でベースバンド信号を圧縮して、圧縮ベースバンド信号を出力する。 Here, the radio unit 30 compresses the baseband signal at a compression rate corresponding to the communication quality of the radio transmission path L1 between the first signal radio transmission units 40 and 50, and outputs the compressed baseband signal.
 具体的には、無線伝送路L1の通信品質が劣化した場合、無線部30は、低倍率から高倍率の圧縮率に切り替えてベースバンド信号を圧縮する。それにより、無線伝送路L1の通信品質が劣化した場合でも、要求されるベースバンド信号の伝送レート以上に無線伝送レートを維持することができるため、確実な無線通信が可能である。 Specifically, when the communication quality of the wireless transmission path L1 deteriorates, the wireless unit 30 compresses the baseband signal by switching from a low magnification to a high magnification compression rate. As a result, even when the communication quality of the wireless transmission path L1 is deteriorated, the wireless transmission rate can be maintained at or higher than the required transmission rate of the baseband signal, so that reliable wireless communication is possible.
 それに対し、無線伝送路L1の通信品質が向上した場合、無線部30は、高倍率から低倍率の圧縮率に切り替えてベースバンド信号を圧縮する。それにより、低多値から高多値の変調方式に切り替えてベースバンド信号をマイクロ波に変調したうえで無線伝送することができるため、高品質な無線通信が可能になる。 On the other hand, when the communication quality of the wireless transmission line L1 is improved, the wireless unit 30 compresses the baseband signal by switching from the high magnification to the low magnification compression rate. As a result, since the baseband signal can be modulated into a microwave by switching from the low-multilevel modulation system to the high-multilevel modulation system, high-quality wireless communication is possible.
<実施の形態2>
 図2は、実施の形態2にかかる基地局装置(無線通信装置)1を示すブロック図である。本実施の形態に係る基地局装置1では、ベースバンド処理装置と無線装置との間の無線伝送路の通信品質に応じた圧縮率でベースバンド信号が圧縮され、かつ、無線伝送路の通信品質に応じた変調方式を用いて圧縮後のベースバンド信号がマイクロ波に変調された後、無線伝送される。それにより、雨天等の外部要因により無線伝送路の通信品質が劣化した場合でも、所望の無線伝送レートを維持することができるため、効率的な無線通信が可能になる。以下、具体的に説明する。
<Embodiment 2>
FIG. 2 is a block diagram of the base station device (wireless communication device) 1 according to the second embodiment. In base station apparatus 1 according to the present embodiment, the baseband signal is compressed at a compression rate corresponding to the communication quality of the radio transmission path between the baseband processing apparatus and the radio apparatus, and the communication quality of the radio transmission path The baseband signal after compression is modulated into a microwave by using a modulation method according to the above, and then wirelessly transmitted. Thereby, even when the communication quality of the wireless transmission path deteriorates due to external factors such as rainy weather, a desired wireless transmission rate can be maintained, so that efficient wireless communication is possible. This will be specifically described below.
 図2に示すように、基地局装置1は、図1の基地局装置10に対応し、ユーザ端末(不図示)と無線通信を行う。なお、基地局装置1とユーザ端末とによりC-RAN等の無線通信システムが構成される。ユーザ端末は、例えば、携帯電話やノートPC等の移動端末である。 As shown in FIG. 2, the base station apparatus 1 corresponds to the base station apparatus 10 of FIG. 1 and performs wireless communication with a user terminal (not shown). A radio communication system such as C-RAN is configured by the base station apparatus 1 and user terminals. The user terminal is, for example, a mobile terminal such as a mobile phone or a notebook PC.
 基地局装置1は、ベースバンド処理部20に対応するベースバンド処理装置(BBU)2と、無線部30に対応する無線装置(RRH)3と、ベースバンド処理装置2と無線装置3との間のデータの受け渡しを無線で行うための無線伝送装置4(第1の信号無線伝送部40に対応)及び無線伝送装置5(第2の信号無線伝送部50に対応)と、を備える。また、無線伝送装置4にはアンテナA1が設けられ、無線伝送装置5にはアンテナA2が設けられ、無線装置3にはアンテナA3が設けられる。 The base station device 1 includes a baseband processing device (BBU) 2 corresponding to the baseband processing unit 20, a radio device (RRH) 3 corresponding to the radio unit 30, and between the baseband processing device 2 and the radio device 3. The wireless transmission device 4 (corresponding to the first signal wireless transmission unit 40) and the wireless transmission device 5 (corresponding to the second signal wireless transmission unit 50) are provided. The wireless transmission device 4 is provided with an antenna A1, the wireless transmission device 5 is provided with an antenna A2, and the wireless device 3 is provided with an antenna A3.
 まず、基地局装置1の送信経路について説明する。
 ベースバンド処理装置2は、図示しない上位装置から受信したデータに基づいてIQデータ(ベースバンド信号)を生成する。なお、図2の例では、ベースバンド処理装置2と無線装置3との間のデータインタフェースには、CPRI規格が採用されている。したがって、ベースバンド処理装置2は、CPRI規格のIQデータ(以下、CPRI信号とも称す)を無線伝送装置4に対して出力する。
First, the transmission path of the base station apparatus 1 will be described.
The baseband processing device 2 generates IQ data (baseband signal) based on data received from a host device (not shown). In the example of FIG. 2, the CPRI standard is adopted for the data interface between the baseband processing device 2 and the wireless device 3. Accordingly, the baseband processing device 2 outputs IQ data of the CPRI standard (hereinafter also referred to as “CPRI signal”) to the wireless transmission device 4.
 無線伝送装置4は、ベースバンド処理装置2から光ケーブルを介して供給されたCPRI規格のIQデータをマイクロ波に変調して、アンテナA1を介して無線送信する。 The wireless transmission device 4 modulates IQ data of the CPRI standard supplied from the baseband processing device 2 via an optical cable into a microwave and wirelessly transmits the microwave data via the antenna A1.
 無線伝送装置5は、無線伝送装置4からアンテナA1を介して無線送信されたマイクロ波を、アンテナA2を介して無線受信する。そして、無線伝送装置5は、無線受信したマイクロ波をIQデータ(ベースバンド信号)に復調する。そして、無線伝送装置5は、このCPRI規格のIQデータを無線装置3に対して出力する。 The wireless transmission device 5 wirelessly receives the microwave transmitted from the wireless transmission device 4 via the antenna A1 via the antenna A2. The wireless transmission device 5 demodulates the wirelessly received microwave into IQ data (baseband signal). Then, the wireless transmission device 5 outputs this CPRI standard IQ data to the wireless device 3.
 無線装置3は、無線伝送装置5から光ケーブルを介して供給されたCPRI規格のIQデータを高周波信号に変調する。この高周波信号は、アンテナA3を介して外部に無線送信され、ユーザ端末によって受信される。 The wireless device 3 modulates the CPRI standard IQ data supplied from the wireless transmission device 5 via the optical cable into a high-frequency signal. This high frequency signal is wirelessly transmitted to the outside via the antenna A3 and received by the user terminal.
 ここで、無線通信システムでは、要求されるIQデータの伝送レートが高速であるため、無線伝送装置4,5間の無線伝送路L1では、高多値の変調方式を用いた無線伝送が行われる。それにより、要求されるIQデータの伝送レート以上の無線伝送レートでの無線伝送が可能となる。しかしながら、雨天等の外部要因によって無線伝送装置4,5間の無線伝送路L1の通信品質が劣化すると、高多値の変調方式を用いた無線伝送が困難になってしまう。 Here, since the required IQ data transmission rate is high in the wireless communication system, wireless transmission using a high-level modulation method is performed on the wireless transmission path L1 between the wireless transmission devices 4 and 5. . This enables wireless transmission at a wireless transmission rate that is equal to or higher than the required IQ data transmission rate. However, when the communication quality of the wireless transmission path L1 between the wireless transmission devices 4 and 5 deteriorates due to external factors such as rainy weather, wireless transmission using a high multilevel modulation method becomes difficult.
 そこで、ベースバンド処理装置2は、無線伝送路L1の通信品質に応じた圧縮率でIQデータ(ベースバンド信号)を圧縮するとともに、無線伝送装置4は、無線伝送路L1の通信品質に応じた変調方式を用いてIQデータを無線伝送用のマイクロ波に変調する。 Therefore, the baseband processing device 2 compresses IQ data (baseband signal) at a compression rate corresponding to the communication quality of the wireless transmission path L1, and the wireless transmission device 4 responds to the communication quality of the wireless transmission path L1. The IQ data is modulated into a microwave for wireless transmission using a modulation method.
 具体的には、無線伝送路L1の通信品質が劣化した場合、ベースバンド処理装置2は、低倍率から高倍率の圧縮率に切り替えてIQデータを圧縮する。また、無線伝送装置4は、高多値から低多値の変調方式に切り替えて圧縮後のIQデータをマイクロ波に変調する。それにより、無線伝送路L1の通信品質が劣化した場合でも、無線伝送可能な変調方式を選択し、かつ、要求されるIQデータの伝送レート以上に無線伝送レートを維持することができるため、確実な無線通信が可能である。 Specifically, when the communication quality of the wireless transmission path L1 deteriorates, the baseband processing device 2 switches the compression rate from the low magnification to the high magnification and compresses the IQ data. In addition, the wireless transmission device 4 switches from the high multilevel to the low multilevel modulation method, and modulates the compressed IQ data into microwaves. As a result, even when the communication quality of the wireless transmission path L1 is deteriorated, a modulation method capable of wireless transmission can be selected and the wireless transmission rate can be maintained higher than the required IQ data transmission rate. Wireless communication is possible.
 それに対し、無線伝送路L1の通信品質が向上した場合、ベースバンド処理装置2は、高倍率から低倍率の圧縮率に切り替えてIQデータを圧縮する。また、無線伝送装置4は、低多値から高多値の変調方式に切り替えて圧縮後のIQデータをマイクロ波に変調する。それにより、高品質な無線通信が可能になる。 On the other hand, when the communication quality of the wireless transmission path L1 is improved, the baseband processing device 2 switches the compression rate from high to low and compresses IQ data. In addition, the wireless transmission device 4 switches from the low multi-value to the high multi-value modulation method, and modulates the compressed IQ data into microwaves. Thereby, high-quality wireless communication becomes possible.
 続いて、基地局装置1の受信経路について説明する。
 無線装置3は、外部からアンテナA3を介して無線受信した高周波信号をIQデータ(ベースバンド信号)に復調する。そして、無線装置3は、このCPRI規格のIQデータを無線伝送装置5に対して出力する。
Subsequently, the reception path of the base station apparatus 1 will be described.
The wireless device 3 demodulates a high frequency signal wirelessly received from the outside via the antenna A3 into IQ data (baseband signal). Then, the wireless device 3 outputs the CPRI standard IQ data to the wireless transmission device 5.
 無線伝送装置5は、無線装置3から光ケーブルを介して供給されたCPRI規格のIQデータをマイクロ波に変調して、アンテナA2を介して無線送信する。 The wireless transmission device 5 modulates IQ data of the CPRI standard supplied from the wireless device 3 via the optical cable into a microwave and wirelessly transmits the microwave data via the antenna A2.
 無線伝送装置4は、無線伝送装置5からアンテナA2を介して無線送信されたマイクロ波を、アンテナA1を介して無線受信する。そして、無線伝送装置4は、無線受信したマイクロ波をIQデータ(ベースバンド信号)に復調する。そして、無線伝送装置4は、このCPRI規格のIQデータをベースバンド処理装置2に対して出力する。 The wireless transmission device 4 wirelessly receives the microwave transmitted from the wireless transmission device 5 via the antenna A2 via the antenna A1. Then, the wireless transmission device 4 demodulates the wirelessly received microwave into IQ data (baseband signal). The wireless transmission device 4 then outputs this CPRI standard IQ data to the baseband processing device 2.
 ベースバンド処理装置2は、無線伝送装置4から光ケーブルを介して供給されたCPRI規格のIQデータに基づいて所定の処理を実行する。例えば、ベースバンド処理装置2は、その処理結果を上位装置(不図示)に対して出力する。 The baseband processing device 2 executes predetermined processing based on IQ data of the CPRI standard supplied from the wireless transmission device 4 via the optical cable. For example, the baseband processing device 2 outputs the processing result to a higher-level device (not shown).
 ここで、無線装置3は、無線伝送装置4,5間の無線伝送路L1の通信品質に応じた圧縮率でIQデータ(ベースバンド信号)を圧縮するとともに、無線伝送装置5は、無線伝送路L1の通信品質に応じた変調方式を用いてIQデータをマイクロ波に変調する。 Here, the wireless device 3 compresses IQ data (baseband signal) at a compression rate according to the communication quality of the wireless transmission path L1 between the wireless transmission devices 4 and 5, and the wireless transmission device 5 The IQ data is modulated into microwaves using a modulation method corresponding to the communication quality of L1.
 具体的には、無線伝送路L1の通信品質が劣化した場合、無線装置3は、低倍率から高倍率の圧縮率に切り替えてIQデータを圧縮する。また、無線伝送装置5は、高多値から低多値の変調方式に切り替えて圧縮後のIQデータをマイクロ波に変調する。それにより、無線伝送路L1の通信品質が劣化した場合でも、無線伝送可能な変調方式を選択し、かつ、要求されるIQデータの伝送レート以上の無線伝送レートを維持することができるため、確実な無線通信が可能である。 Specifically, when the communication quality of the wireless transmission path L1 deteriorates, the wireless device 3 switches the compression rate from low to high and compresses IQ data. Further, the wireless transmission device 5 switches the high multi-value to the low multi-value modulation method, and modulates the compressed IQ data into microwaves. As a result, even when the communication quality of the wireless transmission path L1 deteriorates, a modulation scheme capable of wireless transmission can be selected and a wireless transmission rate higher than the required IQ data transmission rate can be maintained. Wireless communication is possible.
 それに対し、無線伝送路L1の通信品質が向上した場合、無線装置3は、高倍率から低倍率の圧縮率に切り替えてIQデータを圧縮する。また、無線伝送装置5は、低多値から高多値の変調方式に切り替えて圧縮後のIQデータをマイクロ波に変調する。それにより、高品質な無線通信が可能になる。 On the other hand, when the communication quality of the wireless transmission line L1 is improved, the wireless device 3 compresses the IQ data by switching from a high magnification to a low magnification. In addition, the wireless transmission device 5 switches the low-multilevel to the high-multilevel modulation method, and modulates the compressed IQ data into microwaves. Thereby, high-quality wireless communication becomes possible.
 なお、IQデータの圧縮に要する時間を考慮して、圧縮率を切り替えるときの通信品質レベル(閾値)と変調方式を切り替えるときの通信品質レベル(閾値)とに差を設けてもよい。それにより、例えば、無線伝送路L1の通信品質が向上した場合、まず、変調方式が低多値から高多値に切り替わり、その後、圧縮率が高倍率から低倍率に切り替わる。他方、無線伝送路L1の通信品質が劣化した場合、まず、圧縮率が低倍率から高倍率に切り替わり、その後、変調方式が高多値から低多値に切り替わる。それにより、常に、要求されるIQデータの伝送レート以上の無線伝送レートを維持することができるため、確実な無線通信が可能である。 Note that in consideration of the time required for IQ data compression, a difference may be provided between the communication quality level (threshold) when switching the compression rate and the communication quality level (threshold) when switching the modulation method. Thereby, for example, when the communication quality of the wireless transmission line L1 is improved, first, the modulation method is switched from the low multivalue to the high multivalue, and then the compression rate is switched from the high magnification to the low magnification. On the other hand, when the communication quality of the wireless transmission path L1 deteriorates, first, the compression rate is switched from low to high, and then the modulation method is switched from high to low. As a result, a wireless transmission rate equal to or higher than the required IQ data transmission rate can be maintained at all times, so that reliable wireless communication is possible.
 図3は、IQデータの圧縮率及び変調方式と、無線伝送レートと、の関係を示す図である。図4は、図3に示す図に対応する表である。図3及び図4を参照すると、無線伝送レートは、変調方式が高多値になるほど大きくなり、低多値になるほど小さくなっている。また、無線伝送レートは、圧縮率が低倍率になるほど小さくなり、高倍率になるほど大きくなっている。 FIG. 3 is a diagram showing the relationship between the compression rate and modulation method of IQ data and the wireless transmission rate. FIG. 4 is a table corresponding to the diagram shown in FIG. Referring to FIGS. 3 and 4, the radio transmission rate increases as the modulation scheme becomes higher and lower as the modulation scheme becomes lower. In addition, the wireless transmission rate decreases as the compression rate decreases, and increases as the compression rate increases.
 ここで、高品質の無線通信を実現するには、変調方式はできるだけ高多値であることが好ましく、圧縮率はできるだけ低倍率であることが好ましい。そのため、無線伝送路L1の通信品質のもとで通信可能な最も高多値の変調方式が採用されるとともに、その場合に無線伝送レートがIQデータレート以上となるような最小倍率の圧縮率が選択されることが好ましい。 Here, in order to realize high-quality wireless communication, the modulation method is preferably as high as possible and the compression rate is preferably as low as possible. For this reason, the highest multi-level modulation method capable of communicating under the communication quality of the wireless transmission path L1 is adopted, and in this case, the compression ratio of the minimum magnification is set such that the wireless transmission rate is equal to or higher than the IQ data rate. Preferably it is selected.
 例えば、IQデータレートが2500Mbpsである場合において、256QAMや128QAMの変調方式が採用された場合、1倍の圧縮率が選択される。64QAMや32QAMの変調方式が採用された場合、1.5倍の圧縮率が選択される。16QAMの変調方式が採用された場合、2倍の圧縮率が選択される。また、QPSKの変調方式が採用された場合、3.5倍の圧縮率が選択される。 For example, when the IQ data rate is 2500 Mbps and the 256QAM or 128QAM modulation scheme is adopted, a compression ratio of 1 is selected. When a 64QAM or 32QAM modulation scheme is employed, a compression ratio of 1.5 is selected. When the 16QAM modulation scheme is adopted, a compression ratio of 2 is selected. When the QPSK modulation method is employed, a compression ratio of 3.5 times is selected.
 このように、本実施の形態にかかる基地局装置1では、無線伝送路L1の通信品質に応じてIQデータの圧縮率及び圧縮後のIQデータの変調方式を切り替えることにより、効率的な無線通信が可能である。 As described above, the base station apparatus 1 according to the present embodiment switches the IQ data compression rate and the compressed IQ data modulation scheme according to the communication quality of the wireless transmission path L1, thereby enabling efficient wireless communication. Is possible.
 また、本実施の形態にかかる基地局装置1では、IQデータの圧縮が、無線伝送装置4,5ではなく、ベースバンド処理装置2及び無線装置3内でそれぞれ行われている。それにより、ベースバンド処理装置2及び無線伝送装置4間の光ケーブルを伝搬するCPRI信号が圧縮されるとともに、無線装置3及び無線伝送装置5間の光ケーブルを伝搬するCPRI信号が圧縮されるため、CPRI規格のOptionを下げることにより各光ケーブルにおいて消費される電力を低減することができる。 Further, in the base station apparatus 1 according to the present embodiment, the IQ data is compressed not in the wireless transmission apparatuses 4 and 5 but in the baseband processing apparatus 2 and the wireless apparatus 3, respectively. Accordingly, the CPRI signal propagating through the optical cable between the baseband processing device 2 and the radio transmission device 4 is compressed, and the CPRI signal propagating through the optical cable between the radio device 3 and the radio transmission device 5 is compressed. The power consumed in each optical cable can be reduced by lowering the option of the standard.
 また、1つのベースバンド処理装置2に対して複数の無線装置3が設けられる構成が採用された場合、ベースバンド処理装置2内でIQデータの圧縮が行われることにより、複数の無線伝送装置4内でそれぞれIQデータの圧縮が行われる場合と比較して、IQデータの圧縮を一元管理することができるとともに、IQデータを圧縮するための装置を少なくすることができる。 Further, when a configuration in which a plurality of wireless devices 3 are provided for one baseband processing device 2 is adopted, IQ data is compressed in the baseband processing device 2, so that the plurality of wireless transmission devices 4. Compared to the case where IQ data is compressed in each, the IQ data compression can be centrally managed and the number of devices for compressing IQ data can be reduced.
 なお、本実施の形態では、各IOデータ圧縮部が、圧縮効率及び圧縮容易性の観点から、非可逆圧縮を行う構成であることを想定している。非可逆圧縮には、例えば高速フーリエ変換(FFT;Fast Fourier Transform)が採用される。非可逆圧縮は、可逆圧縮と比較して、圧縮処理による伝送遅延が少ないというメリットがある。しかしながら、各IOデータ圧縮部は、一定の圧縮効率を望めるのであれば、可逆圧縮を行う構成であってもよい。その場合、例えば、変調方式に応じて可逆圧縮の手法(予測符号化、ランレングス等)が切り替えられてもよい。あるいは、変調方式に応じて非可逆圧縮を行う構成と可逆圧縮を行う構成とが切り替えられてもよい。これは、以下に説明する実施の形態3,4においても同様のことが言える。 In this embodiment, it is assumed that each IO data compression unit is configured to perform irreversible compression from the viewpoint of compression efficiency and ease of compression. For the irreversible compression, for example, Fast Fourier Transform (FFT) is adopted. Lossy compression has an advantage that transmission delay due to compression processing is less than lossless compression. However, each IO data compression unit may be configured to perform lossless compression as long as a certain compression efficiency is desired. In this case, for example, a lossless compression method (predictive coding, run length, etc.) may be switched according to the modulation method. Or the structure which performs irreversible compression and the structure which performs lossless compression may be switched according to a modulation system. The same can be said for the third and fourth embodiments described below.
 また、本実施の形態ではIQデータが用いられた場合を例に説明したが、これに限られず、IQデータ以外の任意のPayloadデータが用いられてもよい。これは、以下に説明する実施の形態3,4においても同様のことが言える。 In the present embodiment, the case where IQ data is used has been described as an example. However, the present invention is not limited to this, and arbitrary payload data other than IQ data may be used. The same can be said for the third and fourth embodiments described below.
(基地局装置1の具体的構成例)
 続いて、図2に示す基地局装置1の具体的構成例について説明する。
 図5は、ベースバンド処理装置2及び当該ベースバンド処理装置2側に設けられた無線伝送装置4の具体的構成例を示すブロック図である。図6は、無線装置3及び当該無線装置3側に設けられた無線伝送装置5の具体的構成例を示すブロック図である。
(Specific configuration example of base station apparatus 1)
Then, the specific structural example of the base station apparatus 1 shown in FIG. 2 is demonstrated.
FIG. 5 is a block diagram illustrating a specific configuration example of the baseband processing device 2 and the wireless transmission device 4 provided on the baseband processing device 2 side. FIG. 6 is a block diagram illustrating a specific configuration example of the wireless device 3 and the wireless transmission device 5 provided on the wireless device 3 side.
 ベースバンド処理装置2は、ベースバンド信号生成部200と、IQデータ圧縮部201と、CPRI信号送信部202と、CPRI信号受信部203と、IQデータ復号部204と、を備える。 The baseband processing device 2 includes a baseband signal generation unit 200, an IQ data compression unit 201, a CPRI signal transmission unit 202, a CPRI signal reception unit 203, and an IQ data decoding unit 204.
 無線伝送装置4は、CPRI信号受信部401と、OVH多重部402と、無線送信部403と、無線受信部404と、要求圧縮率決定部405と、OVH抽出部406と、CPRI信号送信部407と、を備える。 The wireless transmission device 4 includes a CPRI signal reception unit 401, an OVH multiplexing unit 402, a wireless transmission unit 403, a wireless reception unit 404, a requested compression rate determination unit 405, an OVH extraction unit 406, and a CPRI signal transmission unit 407. And comprising.
 無線伝送装置5は、無線受信部501と、要求圧縮率決定部502と、OVH抽出部503と、CPRI信号送信部504と、CPRI信号受信部505と、OVH多重部506と、無線送信部507と、を備える。 The wireless transmission device 5 includes a wireless reception unit 501, a required compression rate determination unit 502, an OVH extraction unit 503, a CPRI signal transmission unit 504, a CPRI signal reception unit 505, an OVH multiplexing unit 506, and a wireless transmission unit 507. And comprising.
 無線装置3は、CPRI信号受信部301と、IQデータ復号部302と、無線送信部303と、無線受信部304と、IQデータ圧縮部305と、CPRI信号送信部306と、を備える。 The wireless device 3 includes a CPRI signal reception unit 301, an IQ data decoding unit 302, a wireless transmission unit 303, a wireless reception unit 304, an IQ data compression unit 305, and a CPRI signal transmission unit 306.
 まず、基地局装置1の送信経路について説明する。
 ベースバンド処理装置2において、ベースバンド信号生成部200は、上位装置(不図示)から受信したデータに基づいてIQデータ(ベースバンド信号)D1を生成する。
First, the transmission path of the base station apparatus 1 will be described.
In the baseband processing device 2, the baseband signal generation unit 200 generates IQ data (baseband signal) D1 based on data received from a host device (not shown).
 IQデータ圧縮部201は、無線伝送路L1の通信品質に応じた圧縮率(本例では、CPRI信号受信部203によって受信され、無線装置3側から要求された圧縮率情報RQ1の圧縮率)RQ1で、IQデータD1を圧縮する。 The IQ data compression unit 201 is a compression rate according to the communication quality of the wireless transmission path L1 (in this example, the compression rate of the compression rate information RQ1 received by the CPRI signal receiving unit 203 and requested from the wireless device 3 side) RQ1. Thus, the IQ data D1 is compressed.
 例えば、無線伝送路L1の通信品質が劣化した場合、IQデータ圧縮部201は、低倍率から高倍率の圧縮率に切り替えてIQデータD1を圧縮する。他方、無線伝送路L1の通信品質が向上した場合、IQデータ圧縮部201は、高倍率から低倍率の圧縮率に切り替えてIQデータD1を圧縮する(詳細は後述)。 For example, when the communication quality of the wireless transmission path L1 deteriorates, the IQ data compression unit 201 compresses the IQ data D1 by switching from a low magnification to a high magnification compression rate. On the other hand, when the communication quality of the wireless transmission line L1 is improved, the IQ data compression unit 201 compresses the IQ data D1 by switching from a high magnification to a low magnification (details will be described later).
 CPRI信号送信部202は、圧縮されたIQデータD1及びその圧縮率情報RQ1を、CPRI規格を満たすように変換したうえで送信する。 The CPRI signal transmission unit 202 transmits the compressed IQ data D1 and the compression rate information RQ1 after converting the data so as to satisfy the CPRI standard.
 図7は、CPRI規格の信号のフレーム形式を示す図である。図7を参照すると、CPRI規格の信号には、IQデータの送受信が行われないVendor specific領域が一定間隔で設けられている。このVendor specific領域を用いて、IQデータの圧縮率情報及び圧縮要求が送受信される。 FIG. 7 is a diagram showing a frame format of a CPRI standard signal. Referring to FIG. 7, a CPRI standard signal is provided with a Vendor specific area where IQ data is not transmitted and received at regular intervals. Using this Vendor custom-specific area, IQ data compression rate information and compression requests are transmitted and received.
 無線伝送装置4において、CPRI信号受信部401は、ベースバンド処理装置2のCPRI信号送信部202から光ケーブルを介して供給されたCPRI規格のIQデータD1(圧縮率情報RQ1含む)を受信する。 In the wireless transmission device 4, the CPRI signal receiving unit 401 receives the CPRI standard IQ data D1 (including the compression rate information RQ1) supplied from the CPRI signal transmitting unit 202 of the baseband processing device 2 via the optical cable.
 要求圧縮率決定部405は、無線伝送路L1の通信品質を表す指標の一つである、無線受信部404によって無線受信されたマイクロ波MW2のCN雑音比、に基づいて、無線装置3側においてマイクロ波MW2に変調される前のIQデータD2の圧縮率を決定し、新たな圧縮率情報RQ2として出力する。 Based on the CN noise ratio of the microwave MW2 wirelessly received by the wireless reception unit 404, which is one of the indices indicating the communication quality of the wireless transmission path L1, the required compression rate determination unit 405 is configured on the wireless device 3 side. The compression rate of the IQ data D2 before being modulated by the microwave MW2 is determined and output as new compression rate information RQ2.
 例えば、無線伝送路L1の通信品質が劣化してマイクロ波MW2のCN雑音比が小さくなった場合、要求圧縮率決定部405は、無線装置3側から新たに送信されるIQデータD2に対する圧縮率を大きくする。他方、無線伝送路L1の通信品質が向上してマイクロ波MW2のCN雑音比が大きくなった場合、要求圧縮率決定部405は、無線装置3側から新たに送信されるIQデータD2に対する圧縮率を小さくする。 For example, when the communication quality of the wireless transmission path L1 deteriorates and the CN noise ratio of the microwave MW2 becomes small, the requested compression rate determination unit 405 compresses the IQ data D2 newly transmitted from the wireless device 3 side. Increase On the other hand, when the communication quality of the wireless transmission path L1 is improved and the CN noise ratio of the microwave MW2 is increased, the requested compression rate determination unit 405 compresses the IQ data D2 newly transmitted from the wireless device 3 side. Make it smaller.
 OVH多重部402は、圧縮されたIQデータD1(圧縮率情報RQ1含む)と、IQデータD2に対する新たな圧縮率情報RQ2と、を多重化する。 OVH multiplexing section 402 multiplexes compressed IQ data D1 (including compression ratio information RQ1) and new compression ratio information RQ2 for IQ data D2.
 無線送信部403は、OVH多重部402によって多重化されたデータ(ベースバンド信号)をマイクロ波MW1に変調して、アンテナA1を介して無線送信する。 The wireless transmission unit 403 modulates the data (baseband signal) multiplexed by the OVH multiplexing unit 402 into the microwave MW1 and wirelessly transmits it via the antenna A1.
 図8は、無線伝送装置4,5間で送受信される無線信号のフレーム形式を示す図である。図8を参照すると、無線信号には、IQデータの送受信が行われる領域の前にオーバーヘッド領域(OVH領域)が設けられている。このOVH領域を用いて、IQデータの圧縮率情報及び圧縮要求が送受信される。 FIG. 8 is a diagram showing a frame format of a radio signal transmitted and received between the radio transmission apparatuses 4 and 5. Referring to FIG. 8, the radio signal is provided with an overhead area (OVH area) before an area where IQ data is transmitted and received. Using this OVH area, compression rate information of IQ data and a compression request are transmitted and received.
 ここで、無線送信部403は、無線伝送路L1の通信品質(換言すると、IQデータD1の圧縮率RQ1)に応じた変調方式を用いて、OVH多重部402によって多重化されたデータをマイクロ波MW1に変調する。 Here, the wireless transmission unit 403 uses the modulation method according to the communication quality of the wireless transmission path L1 (in other words, the compression rate RQ1 of the IQ data D1) to convert the data multiplexed by the OVH multiplexing unit 402 into the microwave. Modulate to MW1.
 例えば、無線伝送路L1の通信品質の劣化に伴って、IQデータD1が高倍率の圧縮率で圧縮されている場合、無線送信部403は、高多値から低多値の変調方式に切り替えて圧縮後のIQデータD1をマイクロ波MW1に変調する。他方、無線伝送路L1の通信品質の向上に伴って、IQデータD1が低倍率の圧縮率で圧縮されている場合、無線送信部403は、低多値から高多値の変調方式に切り替えて圧縮後のIQデータD1をマイクロ波MW1に変調する。 For example, when the IQ data D1 is compressed at a high-magnification compression rate as the communication quality of the wireless transmission line L1 deteriorates, the wireless transmission unit 403 switches from a high multivalue to a low multivalue modulation method. The compressed IQ data D1 is modulated into the microwave MW1. On the other hand, when the IQ data D1 is compressed with a low-magnification compression rate as the communication quality of the wireless transmission path L1 improves, the wireless transmission unit 403 switches from the low multi-value modulation method to the high multi-value modulation method. The compressed IQ data D1 is modulated into the microwave MW1.
 無線伝送装置5において、無線受信部501は、無線伝送装置4からアンテナA1を介して無線送信されたマイクロ波MW1を、アンテナA2を介して無線受信する。そして、無線受信部501は、無線受信したマイクロ波MW1をベースバンド信号に復調する。 In the wireless transmission device 5, the wireless reception unit 501 wirelessly receives the microwave MW1 wirelessly transmitted from the wireless transmission device 4 via the antenna A1 via the antenna A2. Then, the wireless reception unit 501 demodulates the wirelessly received microwave MW1 into a baseband signal.
 OVH抽出部503は、無線受信部501によって復調されたベースバンド信号から、圧縮されたIQデータD1及びその圧縮率情報RQ1と、IQデータD2の圧縮率情報RQ2と、を抽出する。CPRI信号送信部504は、圧縮されたIQデータD1及びその圧縮率情報RQ1と、IQデータD2の圧縮率情報RQ2とを、CPRI規格を満たすように変換したうえで送信する。 The OVH extraction unit 503 extracts the compressed IQ data D1 and its compression rate information RQ1 and the compression rate information RQ2 of the IQ data D2 from the baseband signal demodulated by the radio reception unit 501. The CPRI signal transmission unit 504 converts the compressed IQ data D1 and its compression rate information RQ1 and the compression rate information RQ2 of the IQ data D2 so as to satisfy the CPRI standard and transmits the converted data.
 無線装置3において、CPRI信号受信部301は、無線伝送装置5のCPRI信号送信部504から光ケーブルを介して供給されたCPRI規格のIQデータD1(圧縮率情報RQ1、RQ2含む)を受信する。IQデータ復号部302は、圧縮されたIQデータD1を圧縮率情報RQ1に基づき復号する。無線送信部303は、IQデータ復号部302によって復号されたIQデータD1を高周波信号RF1に変調する。この高周波信号RF1は、アンテナA3を介して外部に無線送信され、ユーザ端末によって受信される。 In the wireless device 3, the CPRI signal receiving unit 301 receives IQ data D1 (including compression rate information RQ1 and RQ2) of the CPRI standard supplied from the CPRI signal transmitting unit 504 of the wireless transmission device 5 via the optical cable. The IQ data decoding unit 302 decodes the compressed IQ data D1 based on the compression rate information RQ1. The wireless transmission unit 303 modulates the IQ data D1 decoded by the IQ data decoding unit 302 into a high frequency signal RF1. The high-frequency signal RF1 is wirelessly transmitted to the outside via the antenna A3 and received by the user terminal.
 続いて、基地局装置1の受信経路について説明する。
 無線装置3において、無線受信部304は、外部からアンテナA3を介して無線受信した高周波信号RF1をIQデータ(ベースバンド信号)D2に復調する。
Subsequently, the reception path of the base station apparatus 1 will be described.
In the wireless device 3, the wireless reception unit 304 demodulates the high frequency signal RF1 wirelessly received from the outside via the antenna A3 into IQ data (baseband signal) D2.
 IQデータ圧縮部305は、無線伝送路L1の通信品質に応じた圧縮率(本例では、CPRI信号受信部301によって受信され、ベースバンド処理装置2側から要求された圧縮率情報RQ2の圧縮率)RQ2で、IQデータD2を圧縮する。 The IQ data compression unit 305 is a compression rate according to the communication quality of the wireless transmission path L1 (in this example, the compression rate of the compression rate information RQ2 received by the CPRI signal reception unit 301 and requested from the baseband processing device 2 side) ) The IQ data D2 is compressed with RQ2.
 例えば、無線伝送路L1の通信品質が劣化した場合、IQデータ圧縮部305は、低倍率から高倍率の圧縮率に切り替えてIQデータD2を圧縮する。他方、無線伝送路L1の通信品質が向上した場合、IQデータ圧縮部305は、高倍率から低倍率の圧縮率に切り替えてIQデータD2を圧縮する。 For example, when the communication quality of the wireless transmission path L1 deteriorates, the IQ data compression unit 305 switches the compression rate from the low magnification to the high magnification and compresses the IQ data D2. On the other hand, when the communication quality of the wireless transmission path L1 is improved, the IQ data compression unit 305 switches the compression rate from high to low and compresses the IQ data D2.
 CPRI信号送信部306は、圧縮されたIQデータD2及びその圧縮率情報RQ2を、CPRI規格を満たすように変換したうえで送信する。 The CPRI signal transmission unit 306 converts the compressed IQ data D2 and the compression rate information RQ2 so as to satisfy the CPRI standard and transmits the converted data.
 無線伝送装置5において、CPRI信号受信部505は、無線装置3のCPRI信号送信部306から光ケーブルを介して供給されたCPRI規格のIQデータD2(圧縮率情報RQ2含む)を受信する。 In the wireless transmission device 5, the CPRI signal reception unit 505 receives the CPRI standard IQ data D2 (including the compression rate information RQ2) supplied from the CPRI signal transmission unit 306 of the wireless device 3 via the optical cable.
 要求圧縮率決定部502は、無線伝送路L1の通信品質を表す指標の一つである、無線受信部501によって無線受信されたマイクロ波MW1のCN雑音比、に基づいて、ベースバンド処理装置2側においてマイクロ波MW1に変調される前のIQデータD1の圧縮率を決定し、新たな圧縮率情報RQ1として出力する。 The required compression rate determination unit 502 is based on the CN noise ratio of the microwave MW1 wirelessly received by the wireless reception unit 501, which is one of the indexes representing the communication quality of the wireless transmission path L1. On the side, the compression rate of the IQ data D1 before being modulated to the microwave MW1 is determined and output as new compression rate information RQ1.
 例えば、無線伝送路L1の通信品質が劣化してマイクロ波MW1のCN雑音比が小さくなった場合、要求圧縮率決定部502は、ベースバンド処理装置2側から新たに送信されるIQデータD1に対する圧縮率を大きくする。他方、無線伝送路L1の通信品質が向上してマイクロ波MW1のCN雑音比が小さくなった場合、要求圧縮率決定部502は、ベースバンド処理装置2側から新たに送信されるIQデータD1に対する圧縮率を小さくする。 For example, when the communication quality of the wireless transmission path L1 deteriorates and the CN noise ratio of the microwave MW1 becomes small, the required compression rate determination unit 502 performs processing for IQ data D1 newly transmitted from the baseband processing device 2 side. Increase the compression ratio. On the other hand, when the communication quality of the wireless transmission path L1 is improved and the CN noise ratio of the microwave MW1 is reduced, the requested compression rate determination unit 502 performs the processing for the IQ data D1 newly transmitted from the baseband processing device 2 side. Reduce the compression rate.
 OVH多重部506は、圧縮されたIQデータD2(圧縮率情報RQ2含む)と、IQデータD1に対する新たな圧縮率情報RQ1と、を多重化する。 The OVH multiplexing unit 506 multiplexes the compressed IQ data D2 (including the compression rate information RQ2) and the new compression rate information RQ1 for the IQ data D1.
 無線送信部507は、OVH多重部506によって多重化されたデータ(ベースバンド信号)をマイクロ波MW2に変調して、アンテナA2を介して無線送信する。 The wireless transmission unit 507 modulates the data (baseband signal) multiplexed by the OVH multiplexing unit 506 into the microwave MW2 and wirelessly transmits it via the antenna A2.
 ここで、無線送信部507は、無線伝送路L1の通信品質(換言すると、IQデータD2の圧縮率DQ2)に応じた変調方式を用いて、OVH多重部506によって多重化されたデータをマイクロ波MW2に変調する。 Here, the wireless transmission unit 507 uses the modulation scheme corresponding to the communication quality of the wireless transmission path L1 (in other words, the compression rate DQ2 of the IQ data D2) to microwave the data multiplexed by the OVH multiplexing unit 506. Modulate to MW2.
 例えば、無線伝送路L1の通信品質の劣化に伴って、IQデータD2が高倍率の圧縮率で圧縮されている場合、無線送信部507は、高多値から低多値の変調方式に切り替えて圧縮後のIQデータD2をマイクロ波MW2に変調する。他方、無線伝送路L1の通信品質の向上に伴って、IQデータD2が低倍率の圧縮率で圧縮されている場合、無線送信部507は、低多値から高多値の変調方式に切り替えて圧縮後のIQデータD2をマイクロ波MW2に変調する。 For example, when the IQ data D2 is compressed at a high-magnification compression rate as the communication quality of the wireless transmission line L1 deteriorates, the wireless transmission unit 507 switches from a high-multilevel modulation scheme to a low-multilevel modulation scheme. The compressed IQ data D2 is modulated into the microwave MW2. On the other hand, when the IQ data D2 is compressed with a low-magnification compression rate as the communication quality of the wireless transmission path L1 improves, the wireless transmission unit 507 switches from a low multi-value modulation method to a high multi-value modulation method. The compressed IQ data D2 is modulated into the microwave MW2.
 無線伝送装置4において、無線受信部404は、無線伝送装置5からアンテナA2を介して無線送信されたマイクロ波MW2を、アンテナA1を介して無線受信する。そして、無線受信部404は、無線受信したマイクロ波MW1をベースバンド信号に復調する。 In the wireless transmission device 4, the wireless reception unit 404 wirelessly receives the microwave MW2 wirelessly transmitted from the wireless transmission device 5 via the antenna A2 via the antenna A1. The wireless reception unit 404 demodulates the wirelessly received microwave MW1 into a baseband signal.
 OVH抽出部406は、無線受信部404によって復調されたベースバンド信号から、圧縮されたIQデータD2及びその圧縮率情報RQ2と、IQデータD1の圧縮率情報RQ1と、を抽出する。CPRI信号送信部407は、圧縮されたIQデータD2及びその圧縮率情報RQ2と、IQデータD1の圧縮率情報RQ1とを、CPRI規格を満たすように変換したうえで送信する。 The OVH extraction unit 406 extracts the compressed IQ data D2 and its compression rate information RQ2 and the compression rate information RQ1 of the IQ data D1 from the baseband signal demodulated by the radio reception unit 404. The CPRI signal transmission unit 407 converts the compressed IQ data D2 and its compression rate information RQ2 and the compression rate information RQ1 of the IQ data D1 after converting them so as to satisfy the CPRI standard.
 ベースバンド処理装置2において、CPRI信号受信部203は、無線伝送装置4のCPRI信号送信部407から光ケーブルを介して供給されたCPRI規格のIQデータD2(圧縮率情報RQ1,RQ2含む)を受信する。IQデータ復号部204は、圧縮されたIQデータD2を圧縮率情報RQ2に基づき復号する。ベースバンド信号生成部200は、IQデータ復号部204によって復号されたIQデータD2に基づいて所定の処理を実行する。例えば、ベースバンド処理装置2は、その処理結果を上位装置(不図示)に対して出力する。 In the baseband processing device 2, the CPRI signal receiving unit 203 receives the CPRI standard IQ data D2 (including compression rate information RQ1 and RQ2) supplied from the CPRI signal transmitting unit 407 of the wireless transmission device 4 via the optical cable. . The IQ data decoding unit 204 decodes the compressed IQ data D2 based on the compression rate information RQ2. The baseband signal generation unit 200 performs a predetermined process based on the IQ data D2 decoded by the IQ data decoding unit 204. For example, the baseband processing device 2 outputs the processing result to a higher-level device (not shown).
 図5及び図6に示される基地局装置1の具体的構成は一例にすぎず、同等の機能を有する他の構成に適宜変更可能である。 The specific configuration of the base station apparatus 1 shown in FIGS. 5 and 6 is merely an example, and can be appropriately changed to another configuration having an equivalent function.
 本実施の形態では、無線伝送路L1の通信品質を表す指標の一つとして、マイクロ波MW1,MW2のCN雑音比が用いられた場合を例に説明したが、これに限られず、マイクロ波MW1,MW2の電界強度が用いられてもよい。これは、以下に説明する実施の形態3,4においても同様のことが言える。 In the present embodiment, the case where the CN noise ratio of the microwaves MW1 and MW2 is used as one of the indexes indicating the communication quality of the wireless transmission path L1 has been described as an example. However, the present invention is not limited to this, and the microwave MW1 , MW2 field strength may be used. The same can be said for the third and fourth embodiments described below.
(基地局装置1の第1変形例)
 続いて、基地局装置1の第1変形例について説明する。
 図9は、基地局装置1の第1変形例を基地局装置1aとして示すブロック図である。
(First modification of base station apparatus 1)
Then, the 1st modification of the base station apparatus 1 is demonstrated.
FIG. 9 is a block diagram illustrating a first modification of the base station device 1 as the base station device 1a.
 図9に示すように、基地局装置1aは、ベースバンド処理装置(BBU)2aと、無線装置(RRH)3aと、無線伝送装置4a,5aと、を備える。なお、基地局装置1aにおけるベースバンド処理装置2a、無線装置3a、無線伝送装置4a,5aは、それぞれ、基地局装置1におけるベースバンド処理装置2、無線装置3、無線伝送装置4,5に対応する。 As shown in FIG. 9, the base station apparatus 1a includes a baseband processing apparatus (BBU) 2a, a radio apparatus (RRH) 3a, and radio transmission apparatuses 4a and 5a. Note that the baseband processing device 2a, the wireless device 3a, and the wireless transmission devices 4a and 5a in the base station device 1a correspond to the baseband processing device 2, the wireless device 3, and the wireless transmission devices 4 and 5 in the base station device 1, respectively. To do.
 ここで、ベースバンド処理装置2a及び無線伝送装置4a間のデータの受け渡し、及び無線伝送装置5a及び無線装置3a間のデータの受け渡しに、CPRI規格の信号(CPRI信号)に代えて、イーサネット(登録商標)規格の信号(以下、ETH信号とも称す)が用いられる。 Here, instead of the CPRI standard signal (CPRI signal), data is exchanged between the baseband processing device 2a and the wireless transmission device 4a and between the wireless transmission device 5a and the wireless device 3a. Trademark) standard signals (hereinafter also referred to as ETH signals) are used.
(基地局装置1aの具体的構成例)
 図10は、ベースバンド処理装置2a及び無線伝送装置4aの具体的構成例を示すブロック図である。図11は、無線装置3a及び無線伝送装置5aの具体的構成例を示すブロック図である。
(Specific configuration example of base station apparatus 1a)
FIG. 10 is a block diagram illustrating a specific configuration example of the baseband processing device 2a and the wireless transmission device 4a. FIG. 11 is a block diagram illustrating a specific configuration example of the wireless device 3a and the wireless transmission device 5a.
 ベースバンド処理装置2aは、ベースバンド処理装置2と比較して、CPRI信号送信部202及びCPRI信号受信部203に代えて、ETH信号送信部205、圧縮率情報パケット生成部206、及び、ETH信号受信部207を備える。 Compared with the baseband processing device 2, the baseband processing device 2a replaces the CPRI signal transmission unit 202 and the CPRI signal reception unit 203 with an ETH signal transmission unit 205, a compression rate information packet generation unit 206, and an ETH signal. A receiving unit 207 is provided.
 無線伝送装置4aは、無線伝送装置4と比較して、CPRI信号受信部401及びCPRI信号送信部407に代えて、ETH信号受信部408、ETH信号送信部409、及び、圧縮率情報パケット生成部410を備える。 Compared with the wireless transmission device 4, the wireless transmission device 4a replaces the CPRI signal reception unit 401 and the CPRI signal transmission unit 407 with an ETH signal reception unit 408, an ETH signal transmission unit 409, and a compression rate information packet generation unit. 410.
 無線伝送装置5aは、無線伝送装置5と比較して、CPRI信号送信部504及びCPRI信号受信部505に代えて、ETH信号送信部508、圧縮率情報パケット生成部509、及び、ETH信号受信部510を備える。 Compared with the wireless transmission device 5, the wireless transmission device 5a replaces the CPRI signal transmission unit 504 and the CPRI signal reception unit 505 with an ETH signal transmission unit 508, a compression rate information packet generation unit 509, and an ETH signal reception unit. 510.
 無線装置3aは、無線装置3と比較して、CPRI信号受信部301及びCPRI信号送信部306に代えて、ETH信号受信部307、圧縮率情報パケット抽出部308、ETH信号送信部309、及び、圧縮率情報パケット生成部310を備える。 Compared with the wireless device 3, the wireless device 3a replaces the CPRI signal receiving unit 301 and the CPRI signal transmitting unit 306 with an ETH signal receiving unit 307, a compression rate information packet extracting unit 308, an ETH signal transmitting unit 309, and A compression rate information packet generator 310 is provided.
 まず、基地局装置1aの送信経路について説明する。
 以下では、主に基地局装置1と異なる点について説明する。
First, the transmission path of the base station apparatus 1a will be described.
Below, a different point from the base station apparatus 1 is mainly demonstrated.
 ベースバンド処理装置2aにおいて、圧縮率情報パケット生成部206は、IQデータ圧縮部201によって圧縮されたIQデータD1の圧縮率情報RQ1をイーサネット規格のパケットに変換する。ETH信号送信部205は、IQデータ圧縮部201によって圧縮されたIQデータD1をイーサネット規格のパケットに変換して一定間隔で送信するとともに、IQデータD1のパケットを送信していない区間において、圧縮率情報RQ1及び圧縮要求のパケットを送信する。 In the baseband processing device 2a, the compression rate information packet generation unit 206 converts the compression rate information RQ1 of the IQ data D1 compressed by the IQ data compression unit 201 into an Ethernet standard packet. The ETH signal transmission unit 205 converts the IQ data D1 compressed by the IQ data compression unit 201 into an Ethernet standard packet and transmits the packet at a constant interval, and in a section where the packet of the IQ data D1 is not transmitted, Information RQ1 and a compression request packet are transmitted.
 図12は、基地局装置1aにおいて採用されているイーサネット規格の信号の構成例を示す図である。図12を参照すると、圧縮されたIQデータのパケットが周期Tかつパケット長L(L<T)で送受信されている。それにより、連続データであるIQデータの送受信が可能となる。そして、圧縮されたIQデータのパケットが送受信されていない区間において、圧縮率情報及び圧縮要求のパケットが送受信されている。 FIG. 12 is a diagram illustrating a configuration example of a signal of the Ethernet standard adopted in the base station apparatus 1a. Referring to FIG. 12, packets of compressed IQ data are transmitted and received with a period T and a packet length L (L <T). Thereby, it is possible to transmit and receive IQ data which is continuous data. The compression rate information and the compression request packet are transmitted and received in a section where the compressed IQ data packet is not transmitted and received.
 無線伝送装置4aにおいて、ETH信号受信部408は、ベースバンド処理装置2aのETH信号送信部205から送信されたイーサネット規格のIQデータD1及び圧縮率情報RQ1のそれぞれのパケットを受信する。ETH信号受信部408の受信結果は、OVH多重部402に供給される。 In the wireless transmission device 4a, the ETH signal reception unit 408 receives the packets of the Ethernet standard IQ data D1 and the compression rate information RQ1 transmitted from the ETH signal transmission unit 205 of the baseband processing device 2a. The reception result of the ETH signal receiving unit 408 is supplied to the OVH multiplexing unit 402.
 無線伝送装置5aにおいて、圧縮率情報パケット生成部509は、OVH抽出部503によって抽出された圧縮後のIQデータD1の圧縮率情報RQ1、及び、IQデータD2に対する圧縮率情報RQ2をイーサネット規格のパケットに変換する。ETH信号送信部508は、OVH抽出部503によって抽出された圧縮後のIQデータD1をイーサネット規格のパケットに変換して一定間隔で送信するとともに、IQデータD1のパケットを送信していない区間において、圧縮率情報RQ1,RQ2及び圧縮要求のパケットを送信する。 In the wireless transmission device 5a, the compression rate information packet generation unit 509 converts the compression rate information RQ1 of the compressed IQ data D1 extracted by the OVH extraction unit 503 and the compression rate information RQ2 for the IQ data D2 into the Ethernet standard packet. Convert to The ETH signal transmission unit 508 converts the compressed IQ data D1 extracted by the OVH extraction unit 503 into an Ethernet standard packet and transmits it at a constant interval, and in a section where the IQ data D1 packet is not transmitted, The compression rate information RQ1, RQ2 and a compression request packet are transmitted.
 無線装置3aにおいて、ETH信号受信部307は、無線伝送装置5aのETH信号送信部508から送信されたイーサネット規格のIQデータD1(圧縮率情報RQ1、RQ2含む)のパケットを受信する。ETH信号受信部307により受信されたIQデータD1及びその圧縮率情報RQ1は、後段に設けられたIQデータ復号部302に供給される。圧縮率情報パケット抽出部308は、ETH信号受信部307により受信されたデータパケットの中から、IQデータD2に対する圧縮率情報RQ2のパケットを抽出する。圧縮率情報パケット抽出部308により抽出された圧縮率情報RQ2は、受信経路上に設けられたIQデータ圧縮部305に供給される。 In the wireless device 3a, the ETH signal receiving unit 307 receives the packet of the Ethernet standard IQ data D1 (including compression rate information RQ1 and RQ2) transmitted from the ETH signal transmitting unit 508 of the wireless transmission device 5a. The IQ data D1 received by the ETH signal receiving unit 307 and the compression rate information RQ1 are supplied to the IQ data decoding unit 302 provided in the subsequent stage. The compression rate information packet extraction unit 308 extracts the packet of the compression rate information RQ2 for the IQ data D2 from the data packets received by the ETH signal reception unit 307. The compression rate information RQ2 extracted by the compression rate information packet extraction unit 308 is supplied to the IQ data compression unit 305 provided on the reception path.
 基地局装置1aの送信経路のその他の構成及び動作については、基地局装置1の場合と同様であるため、その説明を省略する。 Since other configurations and operations of the transmission path of the base station apparatus 1a are the same as those of the base station apparatus 1, description thereof is omitted.
 続いて、基地局装置1aの受信経路について説明する。
 以下では、主に基地局装置1と異なる点について説明する。
Next, the reception path of the base station device 1a will be described.
Below, a different point from the base station apparatus 1 is mainly demonstrated.
 無線装置3aにおいて、圧縮率情報パケット生成部310は、IQデータ圧縮部305によって圧縮されたIQデータD2の圧縮率情報RQ2をイーサネット規格のパケットに変換する。ETH信号送信部309は、IQデータ圧縮部305によって圧縮されたIQデータD2をイーサネット規格のパケットに変換して一定間隔で送信するとともに、IQデータD2のパケットを送信していない区間において、圧縮率情報RQ2及び圧縮要求のパケットを送信する。 In the wireless device 3a, the compression rate information packet generation unit 310 converts the compression rate information RQ2 of the IQ data D2 compressed by the IQ data compression unit 305 into an Ethernet standard packet. The ETH signal transmission unit 309 converts the IQ data D2 compressed by the IQ data compression unit 305 into an Ethernet standard packet and transmits the packet at a constant interval, and in a section where the IQ data D2 packet is not transmitted, Information RQ2 and a compression request packet are transmitted.
 無線伝送装置5aにおいて、ETH信号受信部510は、ETH信号送信部309から送信されたイーサネット規格のIQデータD2及び圧縮率情報RQ2のそれぞれのパケットを受信する。ETH信号受信部510の受信結果は、OVH多重部506に供給される。 In the wireless transmission device 5a, the ETH signal reception unit 510 receives the packets of the Ethernet standard IQ data D2 and the compression rate information RQ2 transmitted from the ETH signal transmission unit 309. The reception result of the ETH signal receiving unit 510 is supplied to the OVH multiplexing unit 506.
 無線伝送装置4aにおいて、圧縮率情報パケット生成部410は、OVH抽出部406によって抽出された圧縮後のIQデータD2の圧縮率情報RQ2、及び、IQデータD1に対する圧縮率情報RQ1をイーサネット規格のパケットに変換する。ETH信号送信部409は、OVH抽出部406によって抽出された圧縮後のIQデータD2をイーサネット規格のパケットに変換して一定間隔で送信するとともに、IQデータD2のパケットを送信していない区間において、圧縮率情報RQ1,RQ2及び圧縮要求のパケットを送信する。 In the wireless transmission device 4a, the compression rate information packet generation unit 410 converts the compression rate information RQ2 of the compressed IQ data D2 extracted by the OVH extraction unit 406 and the compression rate information RQ1 for the IQ data D1 into an Ethernet standard packet. Convert to The ETH signal transmission unit 409 converts the compressed IQ data D2 extracted by the OVH extraction unit 406 into an Ethernet standard packet and transmits it at a constant interval, and in a section in which the IQ data D2 packet is not transmitted, The compression rate information RQ1, RQ2 and a compression request packet are transmitted.
 ベースバンド処理装置2aにおいて、ETH信号受信部207は、無線伝送装置4aのETH信号送信部409から送信されたイーサネット規格のIQデータD2(圧縮率情報RQ1,RQ2含む)のパケットを受信する。ETH信号受信部207により受信されたIQデータD2及びその圧縮率情報RQ2は、後段に設けられたIQデータ復号部204に供給される。圧縮率情報パケット抽出部208は、ETH信号受信部207により受信されたデータパケットの中から、IQデータD1に対する圧縮率情報RQ1のパケットを抽出する。圧縮率情報パケット抽出部208により抽出された圧縮率情報RQ1は、送信経路上に設けられたIQデータ圧縮部201に供給される。 In the baseband processing device 2a, the ETH signal receiving unit 207 receives a packet of Ethernet standard IQ data D2 (including compression rate information RQ1, RQ2) transmitted from the ETH signal transmitting unit 409 of the wireless transmission device 4a. The IQ data D2 received by the ETH signal receiving unit 207 and its compression rate information RQ2 are supplied to the IQ data decoding unit 204 provided in the subsequent stage. The compression rate information packet extraction unit 208 extracts the packet of the compression rate information RQ1 for the IQ data D1 from the data packets received by the ETH signal reception unit 207. The compression rate information RQ1 extracted by the compression rate information packet extraction unit 208 is supplied to the IQ data compression unit 201 provided on the transmission path.
 基地局装置1aの受信経路のその他の構成及び動作については、基地局装置1の場合と同様であるため、その説明を省略する。 Since other configurations and operations of the reception path of the base station apparatus 1a are the same as those of the base station apparatus 1, description thereof is omitted.
(基地局装置1の第2変形例)
 続いて、基地局装置1の第2変形例について説明する。
 基地局装置1の第2変形例としての基地局装置1bは、ベースバンド処理装置2bと、無線装置3bと、無線伝送装置4b,5bと、を備える。なお、基地局装置1bにおけるベースバンド処理装置2b、無線装置3b、無線伝送装置4b,5bは、それぞれ、基地局装置1におけるベースバンド処理装置2、無線装置3、無線伝送装置4,5に対応する。
(Second modification of base station apparatus 1)
Then, the 2nd modification of the base station apparatus 1 is demonstrated.
A base station device 1b as a second modification of the base station device 1 includes a baseband processing device 2b, a wireless device 3b, and wireless transmission devices 4b and 5b. Note that the baseband processing device 2b, the wireless device 3b, and the wireless transmission devices 4b and 5b in the base station device 1b correspond to the baseband processing device 2, the wireless device 3, and the wireless transmission devices 4 and 5 in the base station device 1, respectively. To do.
 基地局装置1bでは、基地局装置1aの場合と同様に、ベースバンド処理装置2b及び無線伝送装置4b間のデータの受け渡し、及び、無線伝送装置5b及び無線装置3b間のデータの受け渡しに、イーサネット規格の信号が用いられる。 In the base station device 1b, as in the case of the base station device 1a, Ethernet is used for data transfer between the baseband processing device 2b and the radio transmission device 4b and data transfer between the radio transmission device 5b and the radio device 3b. Standard signals are used.
(基地局装置1bの具体的構成例)
 図13は、ベースバンド処理装置2b及び無線伝送装置4bの具体的構成例を示すブロック図である。図14は、無線装置3b及び無線伝送装置5bの具体的構成例を示すブロック図である。
(Specific configuration example of base station apparatus 1b)
FIG. 13 is a block diagram illustrating a specific configuration example of the baseband processing device 2b and the wireless transmission device 4b. FIG. 14 is a block diagram illustrating a specific configuration example of the wireless device 3b and the wireless transmission device 5b.
 ベースバンド処理装置2bは、ベースバンド処理装置2aと比較して、圧縮率情報パケット生成部206及び圧縮率情報パケット抽出部208を備えていない代わりに、圧縮率情報抽出部209を備える。無線伝送装置4bは、無線伝送装置4aと比較して、圧縮率情報パケット生成部410を備えていない。無線伝送装置5bは、無線伝送装置5bと比較して、圧縮率情報パケット生成部509を備えていない。無線装置3bは、無線伝送装置4aと比較して、圧縮率情報パケット抽出部308及び圧縮率情報パケット生成部310を備えていない代わりに、圧縮率情報抽出部311を備える。 Compared with the baseband processing device 2a, the baseband processing device 2b includes a compression rate information extraction unit 209 instead of including the compression rate information packet generation unit 206 and the compression rate information packet extraction unit 208. The wireless transmission device 4b does not include the compression rate information packet generation unit 410 as compared with the wireless transmission device 4a. The wireless transmission device 5b does not include the compression rate information packet generation unit 509 as compared with the wireless transmission device 5b. Compared with the wireless transmission device 4a, the wireless device 3b includes a compression rate information extraction unit 311 instead of including the compression rate information packet extraction unit 308 and the compression rate information packet generation unit 310.
 まず、基地局装置1bの送信経路について説明する。
 ベースバンド処理装置2aにおいて、ETH信号送信部205は、IQデータ圧縮部201によって圧縮されたIQデータD1及びその圧縮率情報RQ1を、イーサネット規格の単体のパケットに変換して一定間隔で送信する。
First, the transmission path of the base station apparatus 1b will be described.
In the baseband processing device 2a, the ETH signal transmission unit 205 converts the IQ data D1 compressed by the IQ data compression unit 201 and the compression rate information RQ1 into a single packet of the Ethernet standard and transmits it at regular intervals.
 図15は、基地局装置1bにおいて採用されているイーサネット規格の信号の構成例を示す図である。図15を参照すると、圧縮されたIQデータに加えて、OVH領域に格納された圧縮率情報及び圧縮要求が、単体のパケットとして一定間隔で送受信されている。 FIG. 15 is a diagram illustrating a configuration example of a signal of the Ethernet standard adopted in the base station apparatus 1b. Referring to FIG. 15, in addition to the compressed IQ data, the compression rate information and the compression request stored in the OVH area are transmitted and received as a single packet at regular intervals.
 無線伝送装置4bにおいて、ETH信号受信部408は、無線伝送装置4bのETH信号送信部205から送信されたイーサネット規格のIQデータD1及び圧縮率情報RQ1のパケットを受信する。ETH信号受信部408の受信結果は、OVH多重部402に供給される。 In the wireless transmission device 4b, the ETH signal reception unit 408 receives the packet of the Ethernet standard IQ data D1 and the compression rate information RQ1 transmitted from the ETH signal transmission unit 205 of the wireless transmission device 4b. The reception result of the ETH signal receiving unit 408 is supplied to the OVH multiplexing unit 402.
 無線伝送装置5bにおいて、ETH信号送信部508は、OVH抽出部503によって抽出された圧縮後のIQデータD1、その圧縮率情報RQ1、及び、IQデータD2に対する圧縮率情報RQ2を、イーサネット規格の単体のパケットに変換して一定間隔で送信する。 In the wireless transmission device 5b, the ETH signal transmission unit 508 converts the compressed IQ data D1 extracted by the OVH extraction unit 503, the compression rate information RQ1, and the compression rate information RQ2 for the IQ data D2 into a single unit of the Ethernet standard. Are converted into packets and sent at regular intervals.
 無線装置3bにおいて、ETH信号受信部307は、無線伝送装置5bのETH信号送信部508から送信されたイーサネット規格のIQデータD1(圧縮率情報RQ1,RQ2含む)のパケットを受信する。ETH信号受信部307により受信されたIQデータD1及びその圧縮率情報RQ1は、後段に設けられたIQデータ復号部302に供給される。圧縮率情報抽出部311は、ETH信号受信部307により受信されたデータパケットのOVH領域の中から、IQデータD2に対する圧縮率情報RQ2を抽出する。圧縮率情報抽出部311により抽出された圧縮率情報RQ2は、受信経路上に設けられたIQデータ圧縮部305に供給される。 In the wireless device 3b, the ETH signal receiving unit 307 receives the packet of the Ethernet standard IQ data D1 (including compression rate information RQ1 and RQ2) transmitted from the ETH signal transmitting unit 508 of the wireless transmission device 5b. The IQ data D1 received by the ETH signal receiving unit 307 and the compression rate information RQ1 are supplied to the IQ data decoding unit 302 provided in the subsequent stage. The compression rate information extraction unit 311 extracts the compression rate information RQ2 for the IQ data D2 from the OVH region of the data packet received by the ETH signal reception unit 307. The compression rate information RQ2 extracted by the compression rate information extraction unit 311 is supplied to the IQ data compression unit 305 provided on the reception path.
 基地局装置1bの送信経路のその他の構成及び動作については、基地局装置1aの場合と同様であるため、その説明を省略する。 Since other configurations and operations of the transmission path of the base station apparatus 1b are the same as those of the base station apparatus 1a, description thereof is omitted.
 続いて、基地局装置1bの受信経路について説明する。
 無線装置3bにおいて、ETH信号送信部309は、IQデータ圧縮部305によって圧縮されたIQデータD2及びその圧縮率情報RQ2を、イーサネット規格の単体のパケットに変換して一定間隔で送信する。
Next, the reception path of the base station device 1b will be described.
In the wireless device 3b, the ETH signal transmission unit 309 converts the IQ data D2 compressed by the IQ data compression unit 305 and its compression rate information RQ2 into a single packet of the Ethernet standard and transmits the packet at regular intervals.
 無線伝送装置5bにおいて、ETH信号受信部510は、無線装置3bのETH信号送信部309から送信されたイーサネット規格のIQデータD2及び圧縮率情報RQ2のパケットを受信する。ETH信号受信部510の受信結果は、OVH多重部506に供給される。 In the wireless transmission device 5b, the ETH signal reception unit 510 receives the Ethernet standard IQ data D2 and the compression rate information RQ2 packet transmitted from the ETH signal transmission unit 309 of the wireless device 3b. The reception result of the ETH signal receiving unit 510 is supplied to the OVH multiplexing unit 506.
 無線伝送装置4bにおいて、ETH信号送信部409は、OVH抽出部406によって抽出された圧縮後のIQデータD2、その圧縮率情報RQ2、及び、IQデータD1に対する圧縮率情報RQ1を、イーサネット規格の単体のパケットに変換して一定間隔で送信する。 In the wireless transmission device 4b, the ETH signal transmission unit 409 converts the compressed IQ data D2 extracted by the OVH extraction unit 406, the compression rate information RQ2, and the compression rate information RQ1 for the IQ data D1 into a single unit of the Ethernet standard. Are converted into packets and sent at regular intervals.
 ベースバンド処理装置2bにおいて、ETH信号受信部207は、無線伝送装置4bのETH信号送信部409から送信されたイーサネット規格のIQデータD2(圧縮率情報RQ1,RQ2含む)のパケットを受信する。ETH信号受信部207により受信されたIQデータD2及びその圧縮率情報RQ2は、後段に設けられたIQデータ復号部204に供給される。圧縮率情報抽出部209は、ETH信号受信部207により受信されたデータパケットのOVH領域の中から、IQデータD1に対する圧縮率情報RQ1を抽出する。圧縮率情報抽出部209により抽出された圧縮率情報RQ1は、送信経路上に設けられたIQデータ圧縮部201に供給される。 In the baseband processing device 2b, the ETH signal receiving unit 207 receives a packet of Ethernet standard IQ data D2 (including compression rate information RQ1 and RQ2) transmitted from the ETH signal transmitting unit 409 of the wireless transmission device 4b. The IQ data D2 received by the ETH signal receiving unit 207 and its compression rate information RQ2 are supplied to the IQ data decoding unit 204 provided in the subsequent stage. The compression rate information extraction unit 209 extracts the compression rate information RQ1 for the IQ data D1 from the OVH area of the data packet received by the ETH signal reception unit 207. The compression rate information RQ1 extracted by the compression rate information extraction unit 209 is supplied to the IQ data compression unit 201 provided on the transmission path.
 基地局装置1bの受信経路のその他の構成及び動作については、基地局装置1aの場合と同様であるため、その説明を省略する。 Since other configurations and operations of the reception path of the base station apparatus 1b are the same as those of the base station apparatus 1a, description thereof is omitted.
<実施の形態3>
 図16は、実施の形態3にかかる基地局装置1cを示すブロック図である。基地局装置1cは、基地局装置1と比較して、ベースバンド処理装置2及び無線装置3間に2組の無線伝送装置を備える。以下、具体的に説明する。
<Embodiment 3>
FIG. 16 is a block diagram of the base station device 1c according to the third embodiment. The base station device 1 c includes two sets of wireless transmission devices between the baseband processing device 2 and the wireless device 3 as compared with the base station device 1. This will be specifically described below.
 図16に示すように、基地局装置1cは、ベースバンド処理装置(BBU)2と、無線装置(RRH)3と、ベースバンド処理装置2と無線装置3との間のデータの受け渡しを無線で行うための無線伝送装置41c,42c及び無線伝送装置51c,52cを備える。また、無線伝送装置41c,42cにはアンテナA11,A12がそれぞれ設けられ、無線伝送装置51c,52cにはアンテナA21,A22がそれぞれ設けられ、無線装置3にはアンテナA3が設けられている。即ち、基地局装置1cは、いわゆるRTA(Radio Traffic Aggregation)構成を有している。 As shown in FIG. 16, the base station device 1c wirelessly transfers data between the baseband processing device (BBU) 2, the wireless device (RRH) 3, and the baseband processing device 2 and the wireless device 3. Wireless transmission devices 41c and 42c and wireless transmission devices 51c and 52c for performing are provided. The wireless transmission devices 41c and 42c are provided with antennas A11 and A12, the wireless transmission devices 51c and 52c are provided with antennas A21 and A22, respectively, and the wireless device 3 is provided with an antenna A3. That is, the base station apparatus 1c has a so-called RTA (Radio Traffic Aggregation) configuration.
 なお、無線伝送装置41c,42cの組み合わせが無線伝送装置4に対応し、無線伝送装置51c,52cの組み合わせが無線伝送装置5に対応する。また、アンテナA11,A12の組み合わせがアンテナA1に対応し、アンテナA21,A22の組み合わせがアンテナA2に対応する。 A combination of the wireless transmission devices 41 c and 42 c corresponds to the wireless transmission device 4, and a combination of the wireless transmission devices 51 c and 52 c corresponds to the wireless transmission device 5. The combination of antennas A11 and A12 corresponds to antenna A1, and the combination of antennas A21 and A22 corresponds to antenna A2.
(無線伝送装置41c,42cの第1の具体的構成例)
 図17は、ベースバンド処理装置2側に設けられた無線伝送装置41c,42cの第1の具体的構成例を示すブロック図である。
(First specific configuration example of the wireless transmission devices 41c and 42c)
FIG. 17 is a block diagram illustrating a first specific configuration example of the wireless transmission devices 41c and 42c provided on the baseband processing device 2 side.
 図17に示すように、無線伝送装置41cは、CPRI信号受信部411、CPRI信号振り分け部412、OVH多重部414、無線送信部415、無線受信部416、要求圧縮率決定部417、OVH抽出部418、CPRI信号組み立て部420及びCPRI信号送信部421を備える。また、無線伝送装置42cは、CPRI信号受信部422、OVH多重部424、無線送信部425、無線受信部426、要求圧縮率決定部427、OVH抽出部428及びCPRI信号送信部430を備える。 As illustrated in FIG. 17, the wireless transmission device 41c includes a CPRI signal reception unit 411, a CPRI signal distribution unit 412, an OVH multiplexing unit 414, a wireless transmission unit 415, a wireless reception unit 416, a requested compression rate determination unit 417, and an OVH extraction unit. 418, a CPRI signal assembly unit 420 and a CPRI signal transmission unit 421 are provided. The wireless transmission device 42 c includes a CPRI signal reception unit 422, an OVH multiplexing unit 424, a wireless transmission unit 425, a wireless reception unit 426, a requested compression rate determination unit 427, an OVH extraction unit 428, and a CPRI signal transmission unit 430.
 なお、CPRI信号受信部411、OVH多重部414、無線送信部415、無線受信部416、要求圧縮率決定部417、OVH抽出部418及びCPRI信号送信部421は、それぞれ、CPRI信号受信部401、OVH多重部402、無線送信部403、無線受信部404、要求圧縮率決定部405、OVH抽出部406及びCPRI信号送信部407に対応する。また、CPRI信号受信部422、OVH多重部424、無線送信部425、無線受信部426、要求圧縮率決定部427、OVH抽出部428及びCPRI信号送信部430は、それぞれ、CPRI信号受信部401、OVH多重部402、無線送信部403、無線受信部404、要求圧縮率決定部405、OVH抽出部406及びCPRI信号送信部407に対応する。 Note that the CPRI signal reception unit 411, the OVH multiplexing unit 414, the wireless transmission unit 415, the wireless reception unit 416, the requested compression rate determination unit 417, the OVH extraction unit 418, and the CPRI signal transmission unit 421 are respectively a CPRI signal reception unit 401, This corresponds to the OVH multiplexing unit 402, the wireless transmission unit 403, the wireless reception unit 404, the requested compression rate determination unit 405, the OVH extraction unit 406, and the CPRI signal transmission unit 407. Further, the CPRI signal receiving unit 422, the OVH multiplexing unit 424, the wireless transmission unit 425, the wireless reception unit 426, the request compression rate determination unit 427, the OVH extraction unit 428, and the CPRI signal transmission unit 430 are respectively connected to the CPRI signal reception unit 401, This corresponds to the OVH multiplexing unit 402, the wireless transmission unit 403, the wireless reception unit 404, the requested compression rate determination unit 405, the OVH extraction unit 406, and the CPRI signal transmission unit 407.
 無線伝送装置41cは、無線伝送装置4と比較して、CPRI信号振り分け部412及びCPRI信号組み立て部420をさらに有する。無線伝送装置41cのその他の構成は無線伝送装置4と同様である。無線伝送装置42cは、無線伝送装置4と同様の構成を有する。 The wireless transmission device 41 c further includes a CPRI signal distribution unit 412 and a CPRI signal assembly unit 420 as compared with the wireless transmission device 4. Other configurations of the wireless transmission device 41 c are the same as those of the wireless transmission device 4. The wireless transmission device 42 c has the same configuration as the wireless transmission device 4.
 CPRI信号振り分け部412は、CPRI信号受信部411とOVH多重部414との間の送信経路上に設けられ、CPRI信号受信部411によって受信されたベースバンド処理装置2からのCPRI信号を2つに分割する(振り分ける)。したがって、CPRI信号振り分け部412によって振り分けられた信号の一方は、無線伝送装置41c,51c間の無線伝送路L11を介して無線伝送されるとともに、CPRI信号振り分け部412によって振り分けられた信号の他方は、無線伝送装置42c,52c間の無線伝送路L12を介して無線伝送される。 The CPRI signal distribution unit 412 is provided on a transmission path between the CPRI signal reception unit 411 and the OVH multiplexing unit 414, and two CPRI signals from the baseband processing device 2 received by the CPRI signal reception unit 411 are provided. Divide (sort). Therefore, one of the signals distributed by the CPRI signal distribution unit 412 is wirelessly transmitted via the wireless transmission path L11 between the wireless transmission devices 41c and 51c, and the other of the signals distributed by the CPRI signal distribution unit 412 is The wireless transmission is performed via the wireless transmission path L12 between the wireless transmission devices 42c and 52c.
 CPRI信号組み立て部420は、OVH抽出部418とCPRI信号送信部421との間の受信経路上に設けられ、OVH抽出部418,428のそれぞれの抽出結果を合成してCPRI信号送信部421に出力する。 The CPRI signal assembling unit 420 is provided on the reception path between the OVH extraction unit 418 and the CPRI signal transmission unit 421, and combines the extraction results of the OVH extraction units 418 and 428 and outputs the result to the CPRI signal transmission unit 421. To do.
 より具体的には、OVH抽出部418は、圧縮後のIQデータD21(無線伝送路L11を介して無線受信されたデータ)及びその圧縮率情報RQ21と、IQデータD11(無線伝送路L11を介して無線送信する予定のデータ)に対する圧縮率情報RQ11と、を抽出する。OVH抽出部428は、圧縮後のIQデータD22(無線伝送路L12を介して無線受信されたデータ)及びその圧縮率情報RQ22と、IQデータD12(無線伝送路L12を介して無線受信する予定のデータ)に対する圧縮率情報RQ12と、を抽出する。そして、CPRI信号組み立て部420は、OVH抽出部418,428のそれぞれの抽出結果を合成して、圧縮後のIQデータD2及びその圧縮率情報RQ2並びにIQデータD1に対する圧縮率情報RQ1として出力する。 More specifically, the OVH extraction unit 418 includes the compressed IQ data D21 (data wirelessly received via the wireless transmission path L11) and its compression rate information RQ21, and the IQ data D11 (through the wireless transmission path L11). And compression rate information RQ11 for the data scheduled to be wirelessly transmitted). The OVH extraction unit 428 includes the compressed IQ data D22 (data wirelessly received via the wireless transmission line L12) and its compression rate information RQ22, and the IQ data D12 (wirelessly received via the wireless transmission line L12). Compression rate information RQ12 for (data). Then, the CPRI signal assembling unit 420 combines the extraction results of the OVH extraction units 418 and 428 and outputs the compressed IQ data D2, its compression rate information RQ2, and the compression rate information RQ1 for the IQ data D1.
 無線伝送装置41c,42cのその他の構成及び動作については、何れも無線伝送装置4と同様であるためその説明を省略する。また、無線伝送装置51c,52cの構成及び動作については、送信経路上にCPRI信号振り分け部が設けられ、受信経路上にCPRI信号組み立て部が設けられる以外は、何れも無線伝送装置5と同様であるため、その説明を省略する。 Since the other configurations and operations of the wireless transmission devices 41c and 42c are the same as those of the wireless transmission device 4, description thereof will be omitted. The configurations and operations of the wireless transmission devices 51c and 52c are the same as those of the wireless transmission device 5 except that a CPRI signal distribution unit is provided on the transmission path and a CPRI signal assembly unit is provided on the reception path. Therefore, the description thereof is omitted.
 このように、基地局装置1cは、IQデータを2つの信号成分に分割して、2組の無線伝送装置間に形成された2つの無線伝送路L11,L12を介して無線伝送を行うことにより、より確実な伝送レートでのIQデータの無線伝送を実現することができる。 As described above, the base station device 1c divides IQ data into two signal components and performs wireless transmission via the two wireless transmission paths L11 and L12 formed between the two sets of wireless transmission devices. Thus, wireless transmission of IQ data at a more reliable transmission rate can be realized.
 本実施の形態では、2組の無線伝送装置41c,51c及び無線伝送装置42c,52cが設けられた場合を例に説明したが、これに限られず、当然ながら3組以上の無線伝送装置が設けられてもよい。 In this embodiment, the case where two sets of wireless transmission devices 41c and 51c and wireless transmission devices 42c and 52c are provided has been described as an example. However, the present invention is not limited to this, and naturally, three or more sets of wireless transmission devices are provided. May be.
 また、本実施の形態では、ベースバンド処理装置2及び無線装置3間のデータインタフェースにCPRI規格が採用された場合を例に説明したが、これに限られず、例えばイーサネット規格が採用されてもよい。イーサネット規格が採用された場合の構成については、図9~図12等の構成を参照すればよいため、その説明を省略する。 In the present embodiment, the case where the CPRI standard is adopted as the data interface between the baseband processing device 2 and the wireless device 3 has been described as an example. However, the present invention is not limited to this, and the Ethernet standard may be adopted, for example. . The configuration when the Ethernet standard is adopted may be referred to the configurations of FIGS. 9 to 12, and the description thereof is omitted.
(無線伝送装置41c,42cの第2の具体的構成例)
 図18は、無線伝送装置41c,42cの第2の具体的構成例を無線伝送装置41d,42dとして示すブロック図である。なお、無線伝送装置41d,42dに加えて、ベースバンド処理装置2d、無線装置3d、及び、無線伝送装置51d,52dにより、基地局装置1cに対応する基地局装置1dが構成される。
(Second specific configuration example of the wireless transmission devices 41c and 42c)
FIG. 18 is a block diagram illustrating a second specific configuration example of the wireless transmission devices 41c and 42c as the wireless transmission devices 41d and 42d. In addition to the wireless transmission devices 41d and 42d, the baseband processing device 2d, the wireless device 3d, and the wireless transmission devices 51d and 52d constitute a base station device 1d corresponding to the base station device 1c.
 基地局装置1dでは、ベースバンド処理装置2dがベースバンド処理装置2と比較してIQデータ圧縮部201及びIQデータ復号部204を有しない代わりに、無線伝送装置41dが無線伝送装置41cと比較してCPRI信号圧縮部413及びCPRI信号復元部419をさらに備え、無線伝送装置42dが無線伝送装置42cと比較してCPRI信号圧縮部423及びCPRI信号復元部429をさらに備える。 In the base station device 1d, the baseband processing device 2d does not have the IQ data compression unit 201 and the IQ data decoding unit 204 as compared with the baseband processing device 2, but the wireless transmission device 41d compares with the wireless transmission device 41c. The CPRI signal compression unit 413 and the CPRI signal restoration unit 419 are further provided, and the wireless transmission device 42d further includes the CPRI signal compression unit 423 and the CPRI signal restoration unit 429 as compared with the wireless transmission device 42c.
 具体的には、無線伝送装置41dにおいて、CPRI信号圧縮部413は、CPRI信号受信部411及びOVH多重部414間の送信経路上に設けられる。そして、CPRI信号圧縮部413は、CPRI信号受信部411によって振り分けられたCPRI信号の一方を、無線伝送路L11の通信品質に応じた圧縮率(本例では、OVH抽出部418によって抽出され、無線装置3側から要求された圧縮率情報RQ11の圧縮率)RQ11で圧縮する。 Specifically, in the wireless transmission device 41d, the CPRI signal compression unit 413 is provided on the transmission path between the CPRI signal reception unit 411 and the OVH multiplexing unit 414. Then, the CPRI signal compressing unit 413 extracts one of the CPRI signals distributed by the CPRI signal receiving unit 411 by the compression rate according to the communication quality of the wireless transmission path L11 (in this example, the OVH extracting unit 418 extracts the wireless (Compression rate of compression rate information RQ11 requested from the apparatus 3 side) RQ11 is used for compression.
 また、無線伝送装置42dにおいて、CPRI信号圧縮部423は、CPRI信号受信部422及びOVH多重部424間の送信経路上に設けられる。そして、CPRI信号圧縮部423は、CPRI信号受信部411によって振り分けられたCPRI信号の他方を、無線伝送路L12の通信品質に応じた圧縮率(本例では、OVH抽出部428によって抽出され、無線装置3側から要求された圧縮率情報RQ12の圧縮率)RQ12で圧縮する。 In the wireless transmission device 42d, the CPRI signal compression unit 423 is provided on the transmission path between the CPRI signal reception unit 422 and the OVH multiplexing unit 424. Then, the CPRI signal compression unit 423 extracts the other of the CPRI signals distributed by the CPRI signal reception unit 411 by the compression rate (in this example, the OVH extraction unit 428) according to the communication quality of the wireless transmission line L12, Compression is performed with the compression ratio RQ12 (compression ratio of the compression ratio information RQ12 requested from the apparatus 3 side).
 ここで、無線伝送装置41c,51c間の無線伝送路L11を介して無線伝送されるIQデータの変調方式及び圧縮率と、無線伝送装置42c,52c間の無線伝送路L12を介して無線伝送されるIQデータの変調方式及び圧縮率とは、それぞれ独立して設定可能である。 Here, the modulation method and compression rate of IQ data wirelessly transmitted via the wireless transmission path L11 between the wireless transmission apparatuses 41c and 51c, and the wireless transmission via the wireless transmission path L12 between the wireless transmission apparatuses 42c and 52c. The IQ data modulation method and compression rate can be set independently of each other.
 そこで、CPRI信号振り分け部412は、例えば、優先度の高いCPRI信号成分を、高多値の変調方式を採用している無線伝送路側に振り分け、かつ、優先度の低いCPRI信号成分を、低多値の変調方式を採用している無線伝送路側に振り分ける。それにより、優先度の高いCPRI信号成分の高品質な無線伝送が可能になるとともに、優先度の低いCPRI信号成分の品質は劣るがより確実な無線伝送が可能になる。 Therefore, for example, the CPRI signal distribution unit 412 distributes the CPRI signal component having a high priority to the radio transmission path side adopting the high-multilevel modulation method, and the CPRI signal component having a low priority is low The value is distributed to the wireless transmission line that uses the value modulation method. This enables high-quality wireless transmission of a CPRI signal component with a high priority, and more reliable wireless transmission with a poor quality of a CPRI signal component with a low priority.
 次に、無線伝送装置41dにおいて、CPRI信号復元部419は、OVH抽出部418及びCPRI信号組み立て部420間の受信経路上に設けられ、OVH抽出部418によって抽出された圧縮後のIQデータD21を、同じくOVH抽出部418によって抽出された圧縮率情報RQ21を基に復元する。 Next, in the wireless transmission device 41d, the CPRI signal restoration unit 419 is provided on the reception path between the OVH extraction unit 418 and the CPRI signal assembly unit 420, and the compressed IQ data D21 extracted by the OVH extraction unit 418 is used. Similarly, restoration is performed based on the compression rate information RQ21 extracted by the OVH extraction unit 418.
 また、無線伝送装置42dにおいて、CPRI信号復元部429は、OVH抽出部428及びCPRI信号送信部430間の受信経路上に設けられ、OVH抽出部428によって抽出された圧縮後のIQデータD22を、同じくOVH抽出部428によって抽出された圧縮率情報RQ22を基に復元する。 In the wireless transmission device 42d, the CPRI signal restoration unit 429 is provided on the reception path between the OVH extraction unit 428 and the CPRI signal transmission unit 430, and the compressed IQ data D22 extracted by the OVH extraction unit 428 is Similarly, restoration is performed based on the compression rate information RQ22 extracted by the OVH extraction unit 428.
 そして、CPRI信号組み立て部420は、CPRI信号復元部419により復元されたIQデータD21、及び、CPRI信号復元部429により復元されたIQデータD22を合成してIQデータD2として出力する。なお、CPRI信号組み立て部420は、IQデータD11,D12に対する圧縮率情報RQ11,RQ12も合成する。 Then, the CPRI signal assembling unit 420 combines the IQ data D21 restored by the CPRI signal restoring unit 419 and the IQ data D22 restored by the CPRI signal restoring unit 429, and outputs the synthesized IQ data D2. The CPRI signal assembling unit 420 also synthesizes the compression rate information RQ11 and RQ12 for the IQ data D11 and D12.
 無線伝送装置41d,42dのその他の構成及び動作については、無線伝送装置41c,42cと同様であるためその説明を省略する。また、無線伝送装置51d,52dの構成及び動作については、送信経路上にCPRI信号圧縮部がそれぞれ設けられ、かつ、受信経路上にCPRI信号復号部がそれぞれ設けられる以外は、無線伝送装置51c,52cと同様であるためその説明を省略する。なお、それに伴って、無線装置3dは、IQデータ圧縮部305及びIQデータ復号部302を備えていない。 Since the other configurations and operations of the wireless transmission devices 41d and 42d are the same as those of the wireless transmission devices 41c and 42c, description thereof is omitted. The configurations and operations of the wireless transmission devices 51d and 52d are the same as the wireless transmission devices 51c, 51c except that a CPRI signal compression unit is provided on the transmission path and a CPRI signal decoding unit is provided on the reception path. Since it is the same as 52c, its description is omitted. Accordingly, the wireless device 3d does not include the IQ data compression unit 305 and the IQ data decoding unit 302.
 このように、基地局装置1dは、基地局装置1cと同等の効果を奏することができるとともに、IQデータを2つの信号成分に分割して、それぞれ異なる変調方式及び圧縮率で無線伝送を行うことができる。それにより、例えば、優先度の高いCPRI信号成分の高品質な無線伝送を行うとともに、優先度の低いCPRI信号成分の品質は劣るがより確実な無線伝送を行うことが可能となる。 As described above, the base station apparatus 1d can achieve the same effects as the base station apparatus 1c, and can divide IQ data into two signal components and perform wireless transmission with different modulation schemes and compression rates, respectively. Can do. Thereby, for example, high-quality wireless transmission of a high-priority CPRI signal component can be performed, and more reliable wireless transmission can be performed although the quality of a low-priority CPRI signal component is inferior.
(無線伝送装置41c,42cの第3の具体的構成例)
 図19は、無線伝送装置41c,42cの第3の具体的構成例を無線伝送装置41e,42eとして示すブロック図である。なお、無線伝送装置41e,42eに加えて、ベースバンド処理装置2d、無線装置3d、及び、無線伝送装置51e,52eにより、基地局装置1cに対応する基地局装置1eが構成される。
(Third specific configuration example of the wireless transmission devices 41c and 42c)
FIG. 19 is a block diagram illustrating a third specific configuration example of the wireless transmission devices 41c and 42c as the wireless transmission devices 41e and 42e. In addition to the wireless transmission devices 41e and 42e, the baseband processing device 2d, the wireless device 3d, and the wireless transmission devices 51e and 52e constitute a base station device 1e corresponding to the base station device 1c.
 基地局装置1eでは、ベースバンド処理装置2eがベースバンド処理装置2と比較してIQデータ圧縮部201及びIQデータ復号部204を有しない代わりに、無線伝送装置41eが無線伝送装置41cと比較してCPRI信号圧縮部413及びCPRI信号復元部419をさらに備える。なお、本例では、OVH多重部414及びCPRI信号受信部411の前後関係が逆になっており、CPRI信号組み立て部420及びOVH抽出部418の前後関係が逆になっている。また、無線伝送装置42eは、無線伝送装置42cと比較して、OVH多重部424及びOVH抽出部428を有しない。 In the base station device 1e, the baseband processing device 2e does not have the IQ data compression unit 201 and the IQ data decoding unit 204 as compared with the baseband processing device 2, but the wireless transmission device 41e compares with the wireless transmission device 41c. The CPRI signal compression unit 413 and the CPRI signal restoration unit 419 are further provided. In this example, the context of the OVH multiplexing unit 414 and the CPRI signal receiving unit 411 is reversed, and the context of the CPRI signal assembling unit 420 and the OVH extraction unit 418 is reversed. Further, the wireless transmission device 42e does not include the OVH multiplexing unit 424 and the OVH extraction unit 428 as compared with the wireless transmission device 42c.
 図19では、無線伝送装置41eにのみ設けられたCPRI信号圧縮部413によって、振り分け前のCPRI信号に対する圧縮が行われ、無線伝送装置41eにのみ設けられたCPRI信号復元部419によって、合成後(組み立て後)のCPRI信号に対する復元が行われる。 In FIG. 19, the CPRI signal compression unit 413 provided only in the wireless transmission device 41e compresses the CPRI signal before the distribution, and the CPRI signal restoration unit 419 provided only in the wireless transmission device 41e performs synthesis ( The CPRI signal after assembly is restored.
 無線伝送装置41e,42eのその他の構成及び動作については、何れも無線伝送装置4と同様であるためその説明を省略する。また、無線伝送装置51e,52eの構成及び動作については、無線伝送装置51eの送信経路上にCPRI信号振分け部が設けられ、無線伝送装置51eの受信経路上にCPRI信号組み立て部が設けられる以外は、基本的には何れも無線伝送装置5と同様であるため、その説明を省略する。 Since the other configurations and operations of the wireless transmission devices 41e and 42e are the same as those of the wireless transmission device 4, description thereof will be omitted. As for the configurations and operations of the wireless transmission devices 51e and 52e, the CPRI signal distribution unit is provided on the transmission path of the wireless transmission device 51e, and the CPRI signal assembly unit is provided on the reception path of the wireless transmission device 51e. Basically, both are the same as those of the wireless transmission device 5, and the description thereof is omitted.
 基地局装置1eは、基地局装置1cと同等の効果を奏することができる。 The base station device 1e can achieve the same effects as the base station device 1c.
<実施の形態4>
 図20は、実施の形態4にかかる基地局装置(無線通信装置)1fを示すブロック図である。
<Embodiment 4>
FIG. 20 is a block diagram of a base station device (wireless communication device) 1f according to the fourth embodiment.
 図20に示すように、基地局装置1fは、ベースバンド処理装置2fと、無線装置3fと、無線伝送装置41f,42fと、無線伝送装置51f,52fと、を備える。無線伝送装置41f,42fにはアンテナA11,A12がそれぞれ設けられ、無線伝送装置51f,52fにはアンテナA21,A22がそれぞれ設けられ、無線装置3fにはアンテナA3が設けられている。基地局装置1fは、いわゆるLAG(Link Aggregation)構成を有している。 As shown in FIG. 20, the base station device 1f includes a baseband processing device 2f, a wireless device 3f, wireless transmission devices 41f and 42f, and wireless transmission devices 51f and 52f. The wireless transmission devices 41f and 42f are provided with antennas A11 and A12, the wireless transmission devices 51f and 52f are provided with antennas A21 and A22, respectively, and the wireless device 3f is provided with an antenna A3. The base station device 1f has a so-called LAG (Link Aggregation) configuration.
(基地局装置1fの具体的構成例)
 図21は、ベースバンド処理装置2f及び無線伝送装置41f,42fの具体的構成例を示すブロック図である。図22は、無線装置3f及び無線伝送装置51f,52fの具体的構成例を示すブロック図である。
(Specific configuration example of base station apparatus 1f)
FIG. 21 is a block diagram illustrating a specific configuration example of the baseband processing device 2f and the wireless transmission devices 41f and 42f. FIG. 22 is a block diagram illustrating a specific configuration example of the wireless device 3f and the wireless transmission devices 51f and 52f.
 ベースバンド処理装置2fは、ベースバンド信号生成部200fと、IQデータ圧縮部2011,2012と、CPRI信号送信部2021,2022と、CPRI信号受信部2031,2032と、IQデータ復号部2041,2042と、圧縮率情報等抽出部2101,2102と、を備える。ここで、ベースバンド処理装置2fは、ベースバンド信号生成部200以外のベースバンド処理装置2の構成を2重に有する。 The baseband processing device 2f includes a baseband signal generation unit 200f, IQ data compression units 2011 and 2012, CPRI signal transmission units 2021 and 2022, CPRI signal reception units 2031 and 2032, IQ data decoding units 2041 and 2042, and , Compression rate information etc. extraction units 2101 and 2102. Here, the baseband processing device 2 f has a double configuration of the baseband processing device 2 other than the baseband signal generation unit 200.
 ベースバンド信号生成部200fは、QoS制御部211と、振り分けOVH多重部231,234と、IQデータ生成部213,223と、ネットワーク(NW)データ生成部220,230と、を有する。 The baseband signal generation unit 200f includes a QoS control unit 211, a distribution OVH multiplexing unit 231, 234, an IQ data generation unit 213, 223, and a network (NW) data generation unit 220, 230.
 無線伝送装置41fは、CPRI信号受信部4011、OVH多重部4021、無線送信部4031、無線受信部4041、要求圧縮率決定部4051、OVH抽出部4061及びCPRI信号送信部4071を有する。無線伝送装置42fは、CPRI信号受信部4012、OVH多重部4022、無線送信部4032、無線受信部4042、要求圧縮率決定部4052、OVH抽出部4062及びCPRI信号送信部4072を有する。ここで、無線伝送装置41f,42fは、何れも無線伝送装置4と同様の構成及び動作を示す。 The wireless transmission device 41f includes a CPRI signal reception unit 4011, an OVH multiplexing unit 4021, a wireless transmission unit 4031, a wireless reception unit 4041, a required compression rate determination unit 4051, an OVH extraction unit 4061, and a CPRI signal transmission unit 4071. The wireless transmission device 42f includes a CPRI signal reception unit 4012, an OVH multiplexing unit 4022, a wireless transmission unit 4032, a wireless reception unit 4042, a required compression rate determination unit 4052, an OVH extraction unit 4062, and a CPRI signal transmission unit 4072. Here, the wireless transmission devices 41 f and 42 f both have the same configuration and operation as the wireless transmission device 4.
 無線装置3fは、CPRI信号受信部3011,3012と、IQデータ復号部3021,3022と、無線送信部303と、無線受信部304と、IQデータ圧縮部3051,3052と、CPRI信号送信部3061,3062と、振り分けOVH抽出部312と、IQデータ振り分け部313と、を有する。ここで、無線装置3fは、無線装置3の構成を2重に有する。ただし、無線送信部303及び無線受信部304は、何れも2重の構成によって共用されている。 The wireless device 3f includes a CPRI signal reception unit 3011 and 3012, an IQ data decoding unit 3021 and 3022, a wireless transmission unit 303, a wireless reception unit 304, an IQ data compression unit 3051 and 3052, and a CPRI signal transmission unit 3061. 3062, a distribution OVH extraction unit 312, and an IQ data distribution unit 313. Here, the wireless device 3 f has a double configuration of the wireless device 3. However, the wireless transmission unit 303 and the wireless reception unit 304 are both shared by a double configuration.
 無線伝送装置51fは、無線受信部5011、要求圧縮率決定部5021、OVH抽出部5031、CPRI信号送信部5041、CPRI信号受信部5051、OVH多重部5061及び無線送信部5071を有する。無線伝送装置52fは、無線受信部5012、要求圧縮率決定部5022、OVH抽出部5032、CPRI信号送信部5042、CPRI信号受信部5052、OVH多重部5062及び無線送信部5072を有する。ここで、無線伝送装置51f,52fは、何れも無線伝送装置5と同様の構成及び動作を示す。 The wireless transmission device 51f includes a wireless reception unit 5011, a required compression rate determination unit 5021, an OVH extraction unit 5031, a CPRI signal transmission unit 5041, a CPRI signal reception unit 5051, an OVH multiplexing unit 5061, and a wireless transmission unit 5071. The wireless transmission device 52f includes a wireless reception unit 5012, a required compression rate determination unit 5022, an OVH extraction unit 5032, a CPRI signal transmission unit 5042, a CPRI signal reception unit 5052, an OVH multiplexing unit 5062, and a wireless transmission unit 5072. Here, the wireless transmission devices 51 f and 52 f both have the same configuration and operation as the wireless transmission device 5.
 まず、基地局装置1fの送信経路の動作について説明する。なお、基地局装置1fには、上述したように、既に説明した構成と同様の構成が多く含まれているため、簡略化して説明する。 First, the operation of the transmission path of the base station device 1f will be described. Since the base station apparatus 1f includes many configurations similar to those already described as described above, the description will be simplified.
 ベースバンド信号生成部200fにおいて、QoS制御部211は、IQデータ圧縮部2011,2012,3051,3052の圧縮率情報S11,S12,S21,S22、及び、基地局装置1fに対向して設けられた図示しない別の基地局装置(以下、対向基地局装置と称す)から取得した圧縮率情報(S21,S22に含まれる情報)に基づいて、上位装置から供給されたネットワークデータを振り分ける。 In the baseband signal generation unit 200f, the QoS control unit 211 is provided to face the compression rate information S11, S12, S21, S22 of the IQ data compression units 2011, 2012, 3051, and 3052 and the base station device 1f. Based on the compression rate information (information included in S21 and S22) acquired from another base station device (hereinafter referred to as an opposite base station device) (not shown), the network data supplied from the host device is distributed.
 例えば、QoS制御部211は、低い圧縮率が採用される送受信経路(換言すると、高多値の変調方式が採用される送受信経路)に対して優先度の高いネットワークデータを振り分け、高い圧縮率が採用される送受信経路(換言すると、低多値の変調方式が採用される送受信経路)に対して優先度の低いネットワークデータを振り分ける。 For example, the QoS control unit 211 distributes network data having a high priority to transmission / reception paths in which a low compression rate is adopted (in other words, transmission / reception paths in which a high-multilevel modulation method is adopted), and a high compression ratio is obtained. Network data having a low priority is allocated to a transmission / reception path to be employed (in other words, a transmission / reception path to which a low-value modulation scheme is employed).
 振り分けOVH多重部231,234は、それぞれQoS制御部211により振り分けられたネットワークデータと、そのデータに関する情報と、を多重化する。なお、データに関する情報は、データフレームのOVH領域に格納される。ここで、対向基地局装置に要求されているQoS制御情報もOVH領域に格納される。 The distribution OVH multiplexing units 231 and 234 multiplex the network data distributed by the QoS control unit 211 and information related to the data, respectively. Information about data is stored in the OVH area of the data frame. Here, the QoS control information required for the opposite base station apparatus is also stored in the OVH area.
 IQデータ生成部213は、振り分けOVH多重部231から出力されたネットワークデータをIQデータD11に変換して出力する。このIQデータD11は、圧縮された後、ベースバンド処理装置2と同様の動作を経て、無線伝送装置41fに供給される。無線伝送装置41fは、圧縮後のIQデータD11をマイクロ波MW11に変調した後、アンテナA11を介して無線送信する。無線伝送装置51fは、アンテナA12を介して無線受信したマイクロ波MW11を圧縮されたIQデータD11に復調し、無線装置3fに対して出力する。 The IQ data generation unit 213 converts the network data output from the distribution OVH multiplexing unit 231 into IQ data D11 and outputs the IQ data D11. The IQ data D11 is compressed, and then supplied to the wireless transmission device 41f through the same operation as the baseband processing device 2. The wireless transmission device 41f modulates the compressed IQ data D11 into the microwave MW11, and then wirelessly transmits it through the antenna A11. The wireless transmission device 51f demodulates the microwave MW11 wirelessly received via the antenna A12 into compressed IQ data D11 and outputs the compressed IQ data D11 to the wireless device 3f.
 IQデータ生成部223は、振り分けOVH多重部234から出力されたネットワークデータをIQデータD12に変換して出力する。このIQデータD12は、圧縮された後、ベースバンド処理装置2と同様の動作を経て、無線伝送装置42fに供給される。無線伝送装置42fは、圧縮後のIQデータD12をマイクロ波MW12に変調した後、アンテナA12を介して無線送信する。無線伝送装置52fは、アンテナA22を介して無線受信したマイクロ波MW12を圧縮されたIQデータD12に復調し、無線装置3fに対して出力する。 The IQ data generation unit 223 converts the network data output from the distribution OVH multiplexing unit 234 into IQ data D12 and outputs the IQ data D12. The IQ data D12 is compressed and then supplied to the wireless transmission device 42f through the same operation as that of the baseband processing device 2. The wireless transmission device 42f modulates the compressed IQ data D12 into the microwave MW12, and then wirelessly transmits the modulated data via the antenna A12. The wireless transmission device 52f demodulates the microwave MW12 received wirelessly via the antenna A22 into compressed IQ data D12 and outputs the compressed IQ data D12 to the wireless device 3f.
 無線装置3fは、圧縮されたIQデータD11,D12をそれぞれ復号し、合成してIQデータD1を再生する。再生されたIQデータD1は、アンテナA3を介して無線送信される。 The wireless device 3f decodes the compressed IQ data D11 and D12, combines them, and reproduces the IQ data D1. The reproduced IQ data D1 is wirelessly transmitted via the antenna A3.
 ここで、アンテナA3を介して無線送信される無線信号のOVH領域には、QoS制御部211による対向基地局装置に対するQoS制御情報が含まれる。対向基地局装置では、このQoS制御情報に基づいて、無線受信したIQデータD1の振り分けが行われる。 Here, the OVH area of the radio signal wirelessly transmitted via the antenna A3 includes QoS control information for the opposite base station apparatus by the QoS control unit 211. In the opposite base station apparatus, the received IQ data D1 is distributed based on the QoS control information.
 続いて、基地局装置1fの受信経路の動作について説明する。
 無線装置3fにおいて、振り分けOVH抽出部312は、例えば、アンテナA3を介して無線受信した無線信号のOVH領域から、QoS制御部211による自局に対するQoS制御情報を抽出する。IQデータ振り分け部313は、自局に対するQoS制御情報に基づいて、アンテナA3を介して無線受信したIQデータD2の振り分けを行う。振り分けられたIQデータD21,D22は、それぞれ、圧縮された後、無線伝送装置51f,52f及び無線伝送装置41f,42fを経由して、ベースバンド処理装置2fに供給される。ベースバンド処理装置2fでは、圧縮されたIQデータD21,D22がそれぞれ復号され、NWデータ生成部220,230によってネットワークデータに変換される。このネットワークデータは、図示しない上位装置に向けて出力される。
Next, the operation of the reception path of the base station device 1f will be described.
In the wireless device 3f, the sorting OVH extraction unit 312 extracts, for example, QoS control information for the own station by the QoS control unit 211 from the OVH region of the wireless signal wirelessly received via the antenna A3. The IQ data distribution unit 313 distributes the IQ data D2 wirelessly received via the antenna A3 based on the QoS control information for the own station. The distributed IQ data D21 and D22 are respectively compressed and then supplied to the baseband processing device 2f via the wireless transmission devices 51f and 52f and the wireless transmission devices 41f and 42f. In the baseband processing device 2f, the compressed IQ data D21 and D22 are respectively decoded and converted into network data by the NW data generation units 220 and 230. This network data is output to a host device (not shown).
 このように、基地局装置1fは、IQデータを2つの信号成分に分割して、2組の無線伝送装置間に形成された2つの無線伝送路L11,L12を介して無線伝送を行うことにより、より高速な伝送レートでのIQデータの無線伝送を実現することができる。さらに、基地局装置1fは、ベースバンド処理装置においてQoS制御を行うことにより、優先度の高いIQデータの高品質な無線伝送を行うとともに、優先度の低いIQデータの品質は劣るがより確実な無線伝送を行うことが可能となる。 As described above, the base station device 1f divides the IQ data into two signal components and performs wireless transmission via the two wireless transmission paths L11 and L12 formed between the two sets of wireless transmission devices. Thus, wireless transmission of IQ data at a higher transmission rate can be realized. Furthermore, the base station apparatus 1f performs QoS control in the baseband processing apparatus, thereby performing high-quality wireless transmission of high-priority IQ data, and lower-priority IQ data quality is lower but more reliable. Wireless transmission can be performed.
 本実施の形態では、2組の無線伝送装置が設けられた場合を例に説明したが、これに限られず、当然ながら3組以上の無線伝送装置が設けられてもよい。 In this embodiment, the case where two sets of wireless transmission devices are provided has been described as an example. However, the present invention is not limited to this, and naturally, three or more sets of wireless transmission devices may be provided.
 また、本実施の形態では、ベースバンド処理装置2fに2つのIQデータ圧縮部が設けられ、無線装置3fに2つのIQデータ圧縮部が設けられた場合を例に説明したが、これに限られず、ベースバンド処理装置2fに共通のIQデータ圧縮部が設けられ、無線装置3fに共通のIQデータ圧縮部が設けられてもよい。 In the present embodiment, the case where the baseband processing device 2f is provided with two IQ data compression units and the wireless device 3f is provided with two IQ data compression units has been described as an example. However, the present invention is not limited to this. The baseband processing device 2f may be provided with a common IQ data compression unit, and the wireless device 3f may be provided with a common IQ data compression unit.
(基地局装置1fの変形例)
 図23は、基地局装置1fの変形例である基地局装置1gに設けられたベースバンド処理装置2g及び無線伝送装置41g,42gの具体的構成例を示すブロック図である。図24は、基地局装置1fの変形例である基地局装置1gに設けられた無線装置3g及び無線伝送装置51g,52gの具体的構成例を示すブロック図である。
(Modification of base station apparatus 1f)
FIG. 23 is a block diagram illustrating a specific configuration example of a baseband processing device 2g and wireless transmission devices 41g and 42g provided in a base station device 1g which is a modification of the base station device 1f. FIG. 24 is a block diagram illustrating a specific configuration example of the wireless device 3g and the wireless transmission devices 51g and 52g provided in the base station device 1g which is a modification of the base station device 1f.
 基地局装置1gでは、ベースバンド処理装置2g及び無線伝送装置41g,42g間のデータの受け渡し、及び、無線伝送装置51g,52g及び無線装置3g間のデータの受け渡しに、CPRI規格の信号(CPRI信号)に代えて、イーサネット規格の信号(以下、ETH信号とも称す)が用いられる。 In the base station device 1g, a CPRI standard signal (CPRI signal) is used to exchange data between the baseband processing device 2g and the wireless transmission devices 41g and 42g and to exchange data between the wireless transmission devices 51g and 52g and the wireless device 3g. ), Ethernet standard signals (hereinafter also referred to as ETH signals) are used.
 ベースバンド処理装置2gは、ベースバンド処理装置2fと比較して、CPRI信号送信部2021に代えてETH信号送信部2051及び圧縮率情報パケット生成部2061を有し、かつ、CPRI信号受信部2031及び圧縮率情報等抽出部2101に代えてETH信号受信部2071及び圧縮率情報等パケット抽出部2081を有する。また、CPRI信号送信部2022に代えてETH信号送信部2052及び圧縮率情報パケット生成部2062を有し、かつ、CPRI信号受信部2032及び圧縮率情報等抽出部2102に代えてETH信号受信部2072及び圧縮率情報等パケット抽出部2082を有する。 Compared to the baseband processing device 2f, the baseband processing device 2g includes an ETH signal transmission unit 2051 and a compression rate information packet generation unit 2061 instead of the CPRI signal transmission unit 2021, and includes a CPRI signal reception unit 2031 and Instead of the compression rate information extraction unit 2101, an ETH signal reception unit 2071 and a compression rate information packet extraction unit 2081 are provided. Further, an ETH signal transmission unit 2052 and a compression rate information packet generation unit 2062 are provided instead of the CPRI signal transmission unit 2022, and an ETH signal reception unit 2072 is provided instead of the CPRI signal reception unit 2032 and the compression rate information extraction unit 2102. And a packet extraction unit 2082 such as compression rate information.
 無線伝送装置41gは、無線伝送装置41fと比較して、CPRI信号4011に代えてETH信号受信部4081を有し、かつ、CPRI信号送信部4071に代えてETH信号送信部4091及び圧縮率情報等パケット生成部4101を有する。無線伝送装置42gは、無線伝送装置42fと比較して、CPRI信号4012に代えてETH信号受信部4082を有し、かつ、CPRI信号送信部4072に代えてETH信号送信部4092及び圧縮率情報等パケット生成部4102を有する。 Compared with the wireless transmission device 41f, the wireless transmission device 41g has an ETH signal reception unit 4081 instead of the CPRI signal 4011, and an ETH signal transmission unit 4091 instead of the CPRI signal transmission unit 4071, compression rate information, and the like. A packet generation unit 4101 is included. Compared with the wireless transmission device 42f, the wireless transmission device 42g has an ETH signal reception unit 4082 instead of the CPRI signal 4012, and an ETH signal transmission unit 4092 instead of the CPRI signal transmission unit 4072, compression rate information, and the like. A packet generation unit 4102 is included.
 無線伝送装置51gは、無線伝送装置51fと比較して、CPRI信号受信部5051に代えてETH信号受信部5101を有し、かつ、CPRI信号送信部5041に代えてETH信号送信部5081及び圧縮率情報パケット生成部5091を有する。無線伝送装置52gは、無線伝送装置52fと比較して、CPRI信号受信部5052に代えてETH信号受信部5102を有し、かつ、CPRI信号送信部5042に代えてETH信号送信部5082及び圧縮率情報パケット生成部5092を有する。 Compared with the wireless transmission device 51f, the wireless transmission device 51g includes an ETH signal reception unit 5101 instead of the CPRI signal reception unit 5051, and replaces the CPRI signal transmission unit 5041 with an ETH signal transmission unit 5081 and a compression rate. An information packet generation unit 5091 is included. Compared with the wireless transmission device 52f, the wireless transmission device 52g includes an ETH signal reception unit 5102 instead of the CPRI signal reception unit 5052, and replaces the CPRI signal transmission unit 5042 with an ETH signal transmission unit 5082 and a compression rate. An information packet generation unit 5092 is included.
 無線装置3gは、無線装置3fと比較して、CPRI信号送信部3061に代えてETH信号送信部3091及び圧縮率情報パケット生成部3101を有し、かつ、CPRI信号受信部3011に代えてETH信号受信部3071及び圧縮率情報パケット抽出部3081を有する。また、CPRI信号送信部3062に代えてETH信号送信部3092及び圧縮率情報パケット生成部3102を有し、かつ、CPRI信号受信部3012に代えてETH信号受信部3072及び圧縮率情報パケット抽出部3082を有する。 Compared with the wireless device 3f, the wireless device 3g includes an ETH signal transmitting unit 3091 and a compression rate information packet generating unit 3101 instead of the CPRI signal transmitting unit 3061, and an ETH signal instead of the CPRI signal receiving unit 3011. A receiving unit 3071 and a compression rate information packet extracting unit 3081 are included. Further, an ETH signal transmission unit 3092 and a compression rate information packet generation unit 3102 are provided instead of the CPRI signal transmission unit 3062, and an ETH signal reception unit 3072 and a compression rate information packet extraction unit 3082 are provided instead of the CPRI signal reception unit 3012. Have
 基地局装置1gの動作については、CPRI規格からイーサネット規格に変更された以外、基地局装置1fと同様であるため、その説明を省略する。基地局装置1gは、基地局装置1fと同等の効果を奏することができる。 Since the operation of the base station apparatus 1g is the same as that of the base station apparatus 1f except that the CPRI standard is changed to the Ethernet standard, the description thereof is omitted. The base station device 1g can achieve the same effects as the base station device 1f.
 上記実施の形態2~4では、ベースバンド処理装置及び無線装置間のデータインタフェースにCPRI規格又はイーサネット規格が採用された場合を例に説明したが、これに限られず、他の高速データインタフェース規格やローカルインタフェース規格が採用されてもよい。 In the second to fourth embodiments, the case where the CPRI standard or the Ethernet standard is adopted as the data interface between the baseband processing device and the wireless device has been described as an example. However, the present invention is not limited to this, and other high-speed data interface standards or A local interface standard may be employed.
 続いて以下では、上述の複数の実施形態で説明された基地局装置の構成例について説明する。図10は、実施の形態1に係る基地局装置10の構成例を示すブロック図である。ここでは、実施形態1に係る基地局装置10の構成例について説明するが、他の実施形態に係る基地局装置についても同様のことが言える。 Subsequently, a configuration example of the base station apparatus described in the above-described embodiments will be described below. FIG. 10 is a block diagram showing a configuration example of the base station apparatus 10 according to the first embodiment. Here, although the structural example of the base station apparatus 10 which concerns on Embodiment 1 is demonstrated, the same thing can be said also about the base station apparatus which concerns on other embodiment.
 図10を参照すると、基地局装置10は、RFトランシーバ1001、ネットワークインターフェース1003、プロセッサ1004、及びメモリ1005を含む。RFトランシーバ1001は、ユーザ端末(UEs)と通信するためにアナログRF信号処理を行う。RFトランシーバ1001は、複数のトランシーバを含んでもよい。RFトランシーバ1001は、アンテナ1002及びプロセッサ1004と結合される。RFトランシーバ1001は、変調シンボルデータ(又はOFDMシンボルデータ)をプロセッサ1004から受信し、送信RF信号を生成し、送信RF信号をアンテナ1002に供給する。また、RFトランシーバ1001は、アンテナ1002によって受信された受信RF信号に基づいてベースバンド受信信号を生成し、これをプロセッサ1004に供給する。 Referring to FIG. 10, the base station device 10 includes an RF transceiver 1001, a network interface 1003, a processor 1004, and a memory 1005. The RF transceiver 1001 performs analog RF signal processing to communicate with user terminals (UEs). The RF transceiver 1001 may include multiple transceivers. RF transceiver 1001 is coupled to antenna 1002 and processor 1004. The RF transceiver 1001 receives modulation symbol data (or OFDM symbol data) from the processor 1004, generates a transmission RF signal, and supplies the transmission RF signal to the antenna 1002. Further, the RF transceiver 1001 generates a baseband received signal based on the received RF signal received by the antenna 1002, and supplies this to the processor 1004.
 ネットワークインターフェース1003は、ネットワークノード(e.g., 他のeNBs、Mobility Management Entity (MME)、Serving Gateway(S-GW)、及びTSS又はITSサーバ)と通信するために使用される。ネットワークインターフェース1003は、例えば、IEEE 802.3 seriesに準拠したネットワークインターフェースカード(NIC)を含んでもよい。 The network interface 1003 is used to communicate with network nodes (e.g., other eNBs, Mobility Management Entity (MME), Serving Gateway (S-GW), and TSS or ITS server). The network interface 1003 may include, for example, a network interface card (NIC) compliant with IEEE 802.3 series.
 プロセッサ1004は、無線通信のためのデジタルベースバンド信号処理を含むデータプレーン処理とコントロールプレーン処理を行う。例えば、LTEおよびLTE-Advancedの場合、プロセッサ1004によるデジタルベースバンド信号処理は、PDCPレイヤ、RLCレイヤ、MACレイヤ、およびPHYレイヤの信号処理を含んでもよい。さらに、プロセッサ1004による信号処理は、X2-Uインターフェース及びS1-UインターフェースでのGTP-U・UDP/IPレイヤの信号処理を含んでもよい。また、プロセッサ1004によるコントロールプレーン処理は、X2APプロトコル、S1-MMEプロトコルおよびRRCプロトコルの処理を含んでもよい。 The processor 1004 performs data plane processing including digital baseband signal processing for wireless communication and control plane processing. For example, in the case of LTE and LTE-Advanced, the digital baseband signal processing by the processor 1004 may include signal processing of a PDCP layer, an RLC layer, a MAC layer, and a PHY layer. Further, the signal processing by the processor 1004 may include signal processing of the GTP-U / UDP / IP layer at the X2-U interface and the S1-U interface. Further, the control plane processing by the processor 1004 may include processing of the X2AP protocol, the S1-MME protocol, and the RRC protocol.
 プロセッサ1004は、複数のプロセッサを含んでもよい。例えば、プロセッサ1004は、デジタルベースバンド信号処理を行うモデム・プロセッサ(e.g., DSP)、X2-Uインターフェース及びS1-UインターフェースでのGTP-U・UDP/IPレイヤの信号処理を行うプロセッサ(e.g., DSP)、及びコントロールプレーン処理を行うプロトコルスタック・プロセッサ(e.g., CPU又はMPU)を含んでもよい。 The processor 1004 may include a plurality of processors. For example, the processor 1004 includes a modem processor (eg, DSP) that performs digital baseband signal processing, a processor (eg, processor) that performs signal processing of the GTP-U • UDP / IP layer in the X2-U interface and the S1-U interface. DSP) and a protocol stack processor (eg, CPU or MPU) that performs control plane processing may be included.
 メモリ1005は、揮発性メモリ及び不揮発性メモリの組み合わせによって構成される。メモリ1005は、物理的に独立した複数のメモリデバイスを含んでもよい。揮発性メモリは、例えば、Static Random Access Memory(SRAM)若しくはDynamic RAM(DRAM)又はこれらの組み合わせである。不揮発性メモリは、マスクRead Only Memory(MROM)、Electrically Erasable Programmable ROM(EEPROM)、フラッシュメモリ、若しくはハードディスクドライブ、又はこれらの任意の組合せである。メモリ1005は、プロセッサ1004から離れて配置されたストレージを含んでもよい。この場合、プロセッサ1004は、ネットワークインターフェース1003又は図示されていないI/Oインターフェースを介してメモリ1005にアクセスしてもよい。 The memory 1005 is configured by a combination of a volatile memory and a nonvolatile memory. The memory 1005 may include a plurality of physically independent memory devices. The volatile memory is, for example, Static Random Access Memory (SRAM), Dynamic RAM (DRAM), or a combination thereof. The non-volatile memory is a mask Read Only Memory (MROM), Electrically Erasable Programmable ROM (EEPROM), flash memory, hard disk drive, or any combination thereof. Memory 1005 may include storage located remotely from processor 1004. In this case, the processor 1004 may access the memory 1005 via the network interface 1003 or an I / O interface not shown.
 メモリ1005は、基地局装置10による処理を行うための命令群およびデータを含むソフトウェアモジュール(コンピュータプログラム)を格納してもよい。いくつかの実装において、プロセッサ1004は、当該ソフトウェアモジュールをメモリ1005から読み出して実行することで、基地局装置10の処理を行うよう構成されてもよい。 The memory 1005 may store a software module (computer program) including an instruction group and data for performing processing by the base station apparatus 10. In some implementations, the processor 1004 may be configured to perform processing of the base station apparatus 10 by reading the software module from the memory 1005 and executing the software module.
 ここで、基地局装置10が有するプロセッサは、図面を用いて説明されたアルゴリズムをコンピュータに行わせるための命令群を含む1又は複数のプログラムを実行する。このプログラムは、様々なタイプの非一時的なコンピュータ可読媒体(non-transitory computer readable medium)を用いて格納され、コンピュータに供給することができる。非一時的なコンピュータ可読媒体は、様々なタイプの実体のある記録媒体(tangible storage medium)を含む。非一時的なコンピュータ可読媒体の例は、磁気記録媒体(例えばフレキシブルディスク、磁気テープ、ハードディスクドライブ)、光磁気記録媒体(例えば光磁気ディスク)、Compact Disc Read Only Memory(CD-ROM)、CD-R、CD-R/W、半導体メモリ(例えば、マスクROM、Programmable ROM(PROM)、Erasable PROM(EPROM)、フラッシュROM、Random Access Memory(RAM))を含む。また、プログラムは、様々なタイプの一時的なコンピュータ可読媒体(transitory computer readable medium)によってコンピュータに供給されてもよい。一時的なコンピュータ可読媒体の例は、電気信号、光信号、及び電磁波を含む。一時的なコンピュータ可読媒体は、電線及び光ファイバ等の有線通信路、又は無線通信路を介して、プログラムをコンピュータに供給できる。 Here, the processor included in the base station apparatus 10 executes one or a plurality of programs including a group of instructions for causing a computer to execute the algorithm described with reference to the drawings. The program can be stored and supplied to a computer using various types of non-transitory computer readable media. Non-transitory computer readable media include various types of tangible storage media (tangible storage medium). Examples of non-transitory computer-readable media are magnetic recording media (eg flexible disks, magnetic tapes, hard disk drives), magneto-optical recording media (eg magneto-optical discs), Compact Disc Read Only Memory (CD-ROM), CD-ROM R, CD-R / W, semiconductor memory (for example, mask ROM, Programmable ROM (PROM), Erasable PROM (EPROM), flash ROM, Random Access Memory (RAM)). The program may also be supplied to the computer by various types of temporary computer-readable media. Examples of transitory computer readable media include electrical signals, optical signals, and electromagnetic waves. The temporary computer-readable medium can supply the program to the computer via a wired communication path such as an electric wire and an optical fiber, or a wireless communication path.
 以上、実施の形態を参照して本願発明を説明したが、本願発明は上記によって限定されるものではない。本願発明の構成や詳細には、発明のスコープ内で当業者が理解し得る様々な変更をすることができる。 The present invention has been described above with reference to the embodiment, but the present invention is not limited to the above. Various changes that can be understood by those skilled in the art can be made to the configuration and details of the present invention within the scope of the invention.
 この出願は、2015年12月21日に出願された日本出願特願2015-248725を基礎とする優先権を主張し、その開示の全てをここに取り込む。 This application claims priority based on Japanese Patent Application No. 2015-248725 filed on Dec. 21, 2015, the entire disclosure of which is incorporated herein.
 1,1a~1g 基地局装置
 2,2a~2g ベースバンド処理装置
 3,3a~3g 無線装置
 4,4a,4b 無線伝送装置
 5,5a,5b 無線伝送装置
 10 基地局装置
 20 ベースバンド処理部
 30 無線部
 40 第1の信号無線伝送部
 50 第2の信号無線伝送部
 41c~41g,42c~42g 無線伝送装置
 51c~51g,52c~52g 無線伝送装置
 200,200f ベースバンド信号生成部
 201 IQデータ圧縮部
 202 CPRI信号送信部
 203 CPRI信号受信部
 204 IQデータ復号部
 205 ETH信号送信部
 206 圧縮率情報パケット生成部
 207 ETH信号受信部
 208 圧縮率情報パケット抽出部
 209 圧縮率情報抽出部
 211 QoS制御部
 213,223 IQデータ生成部
 220,230 NWデータ生成部
 231,234 振り分けOVH多重部
 301 CPRI信号受信部
 302 IQデータ復号部
 303 無線送信部
 304 無線受信部
 305 IQデータ圧縮部
 306 CPRI信号送信部
 307 ETH信号受信部
 308 圧縮率情報パケット抽出部
 309 ETH信号送信部
 310 圧縮率情報パケット生成部
 311 圧縮率情報抽出部
 312 振り分けOVH抽出部
 313 IQデータ振り分け部
 401 CPRI信号受信部
 402 OVH多重部
 403 無線送信部
 404 無線受信部
 405 要求圧縮率決定部
 406 OVH抽出部
 407 CPRI信号送信部
 408 ETH信号受信部
 409 ETH信号送信部
 410 圧縮率情報パケット生成部
 411 CPRI信号受信部
 412 CPRI信号振り分け部
 413 CPRI信号圧縮部
 414 OVH多重部
 415 無線送信部
 416 無線受信部
 417 要求圧率決定部
 418 OVH抽出部
 419 CPRI信号復元部
 420 CPRI信号組み立て部
 421 CPRI信号送信部
 422 CPRI信号受信部
 423 CPRI信号圧縮部
 424 OVH多重部
 425 無線送信部
 426 無線受信部
 427 要求圧縮率決定部
 428 OVH抽出部
 429 CPRI信号復元部
 430 CPRI信号送信部
 501 無線受信部
 502 要求圧縮率決定部
 503 OVH抽出部
 504 CPRI信号送信部
 505 CPRI信号受信部
 506 OVH多重部
 507 無線送信部
 508 ETH信号送信部
 509 圧縮率情報パケット生成部
 510 ETH信号受信部
 A1~A3 アンテナ
 A11,A12 アンテナ
 A21,A22 アンテナ
 L1,L11,L12 無線伝送路
1, 1a to 1g Base station device 2, 2a to 2g Baseband processing device 3, 3a to 3g Wireless device 4, 4a, 4b Wireless transmission device 5, 5a, 5b Wireless transmission device 10 Base station device 20 Baseband processing unit 30 Radio unit 40 First signal radio transmission unit 50 Second signal radio transmission unit 41c-41g, 42c-42g Radio transmission device 51c-51g, 52c-52g Radio transmission device 200, 200f Baseband signal generation unit 201 IQ data compression Unit 202 CPRI signal transmission unit 203 CPRI signal reception unit 204 IQ data decoding unit 205 ETH signal transmission unit 206 compression rate information packet generation unit 207 ETH signal reception unit 208 compression rate information packet extraction unit 209 compression rate information extraction unit 211 QoS control unit 213, 223 IQ data generator 220, 230 NW data Data generator 231, 234 Sorting OVH multiplexer 301 CPRI signal receiver 302 IQ data decoder 303 Radio transmitter 304 Radio receiver 305 IQ data compressor 306 CPRI signal transmitter 307 ETH signal receiver 308 Compression rate information packet extraction Unit 309 ETH signal transmission unit 310 compression rate information packet generation unit 311 compression rate information extraction unit 312 distribution OVH extraction unit 313 IQ data distribution unit 401 CPRI signal reception unit 402 OVH multiplexing unit 403 wireless transmission unit 404 wireless reception unit 405 required compression rate Determination unit 406 OVH extraction unit 407 CPRI signal transmission unit 408 ETH signal reception unit 409 ETH signal transmission unit 410 Compression rate information packet generation unit 411 CPRI signal reception unit 412 CPRI signal distribution unit 413 CPRI signal pressure Unit 414 OVH multiplexing unit 415 wireless transmission unit 416 wireless reception unit 417 required pressure ratio determination unit 418 OVH extraction unit 419 CPRI signal restoration unit 420 CPRI signal assembly unit 421 CPRI signal transmission unit 422 CPRI signal reception unit 423 CPRI signal compression unit 424 OVH Multiplexer 425 Radio transmitter 426 Radio receiver 427 Request compression rate determination unit 428 OVH extraction unit 429 CPRI signal restoration unit 430 CPRI signal transmission unit 501 Radio reception unit 502 Request compression rate determination unit 503 OVH extraction unit 504 CPRI signal transmission unit 505 CPRI signal reception unit 506 OVH multiplexing unit 507 Wireless transmission unit 508 ETH signal transmission unit 509 Compression rate information packet generation unit 510 ETH signal reception unit A1 to A3 Antenna A11, A12 Antenna A21, A22 Antenna L1, L11, L12 wireless transmission path

Claims (24)

  1.  圧縮された圧縮ベースバンド信号を出力するベースバンド処理手段と、
     前記圧縮ベースバンド信号を無線信号で伝送する第1の信号無線伝送手段と、
     前記圧縮ベースバンド信号を無線伝送で受信する第2の信号無線伝送手段と、
     前記第2の信号無線伝送手段により受信された前記圧縮ベースバンド信号に基づいて無線信号を送信する無線手段と、
     を備えた無線通信装置。
    Baseband processing means for outputting a compressed compressed baseband signal;
    First signal wireless transmission means for transmitting the compressed baseband signal as a wireless signal;
    Second signal wireless transmission means for receiving the compressed baseband signal by wireless transmission;
    Wireless means for transmitting a wireless signal based on the compressed baseband signal received by the second signal wireless transmission means;
    A wireless communication device comprising:
  2.  無線受信した無線信号に応じたベースバンド信号を圧縮して圧縮ベースバンド信号を出力する無線手段と、
     前記圧縮ベースバンド信号を無線信号で伝送する第2の信号無線伝送手段と、
     前記圧縮ベースバンド信号を無線伝送で受信する第1の信号無線伝送手段と、
     前記第1の信号無線伝送手段により受信された前記圧縮ベースバンド信号を復号して所定の処理を行うベースバンド処理手段と、
     を備えた無線通信装置。
    A wireless means for compressing a baseband signal corresponding to a wireless signal received wirelessly and outputting a compressed baseband signal;
    Second signal wireless transmission means for transmitting the compressed baseband signal as a wireless signal;
    First signal wireless transmission means for receiving the compressed baseband signal by wireless transmission;
    Baseband processing means for decoding the compressed baseband signal received by the first signal wireless transmission means and performing predetermined processing;
    A wireless communication device comprising:
  3.  第1ベースバンド信号を生成するベースバンド処理装置と、
     前記第1ベースバンド信号を第1マイクロ波に変調して無線送信する第1無線伝送装置と、
     前記第1無線伝送装置との間の無線伝送路を介して無線受信した第1マイクロ波を前記第1ベースバンド信号に復調する第2無線伝送装置と、
     前記第2無線伝送装置によって復調された前記第1ベースバンド信号を第1高周波信号に変調して外部に無線送信する無線装置と、を備え、
     前記ベースバンド処理装置は、前記無線伝送路における通信品質に応じた圧縮率で前記第1ベースバンド信号を圧縮し、かつ、前記第1無線伝送装置は、前記無線伝送路における通信品質に応じた変調方式を用いて、圧縮された前記第1ベースバンド信号を前記第1マイクロ波に変調する、無線通信装置。
    A baseband processing device for generating a first baseband signal;
    A first wireless transmission device configured to wirelessly transmit the first baseband signal by modulating the first baseband signal;
    A second wireless transmission device that demodulates a first microwave received wirelessly via a wireless transmission path with the first wireless transmission device into the first baseband signal;
    A wireless device that modulates the first baseband signal demodulated by the second wireless transmission device into a first high-frequency signal and wirelessly transmits the modulated signal to the outside,
    The baseband processing device compresses the first baseband signal at a compression rate according to communication quality in the wireless transmission path, and the first wireless transmission device responds to communication quality in the wireless transmission path. A wireless communication apparatus that modulates the compressed first baseband signal into the first microwave using a modulation method.
  4.  前記ベースバンド処理装置は、前記第1マイクロ波のCN雑音比又は電界強度に応じた圧縮率で前記第1ベースバンド信号を圧縮し、かつ、前記第1無線伝送装置は、前記第1マイクロ波のCN雑音比又は電界強度に応じた変調方式を用いて、圧縮された前記第1ベースバンド信号を前記第1マイクロ波に変調する、
     請求項3に記載の無線通信装置。
    The baseband processing device compresses the first baseband signal at a compression rate according to a CN noise ratio or electric field strength of the first microwave, and the first wireless transmission device transmits the first microwave Modulating the compressed first baseband signal to the first microwave using a modulation scheme according to the CN noise ratio or electric field strength of
    The wireless communication apparatus according to claim 3.
  5.  前記無線装置は、さらに、外部から無線受信した第2高周波信号を第2ベースバンド信号に復調し、
     前記第2無線伝送装置は、さらに、前記第2ベースバンド信号を第2マイクロ波に変調して無線送信し、
     前記第1無線伝送装置は、さらに、前記無線伝送路を介して無線受信した前記第2マイクロ波を前記第2ベースバンド信号に復調し、
     前記ベースバンド処理装置は、さらに、前記第1無線伝送装置によって復調された前記第2ベースバンド信号に基づいて所定の処理を行い、
     前記第2無線伝送装置は、
     前記第1マイクロ波のCN雑音比又は電界強度を検出する第1検出手段を有し、
     前記第1検出手段の検出結果を、前記第2ベースバンド信号とともに、前記第2マイクロ波として、前記第1無線伝送装置に向けて無線送信する、
     請求項4に記載の無線通信装置。
    The wireless device further demodulates a second high-frequency signal wirelessly received from outside into a second baseband signal,
    The second wireless transmission device further modulates the second baseband signal to a second microwave and wirelessly transmits the second baseband signal,
    The first wireless transmission device further demodulates the second microwave received wirelessly via the wireless transmission path into the second baseband signal,
    The baseband processing device further performs predetermined processing based on the second baseband signal demodulated by the first wireless transmission device,
    The second wireless transmission device is:
    First detection means for detecting a CN noise ratio or electric field strength of the first microwave;
    The detection result of the first detection means is wirelessly transmitted to the first wireless transmission device as the second microwave together with the second baseband signal.
    The wireless communication apparatus according to claim 4.
  6.  前記無線伝送路における通信品質が第1所定レベルまで向上したことに応じて、前記第1無線伝送装置が、前記第1ベースバンド信号の変調方式を低多値から高多値の変調方式に切り替え、
     前記無線伝送路における通信品質が前記第1所定レベルよりも高い第2所定レベルまでさらに向上したことに応じて、前記ベースバンド処理装置が、前記第1ベースバンド信号の圧縮率を高倍率から低倍率の圧縮率に切り替える、
     請求項3~5の何れか一項に記載の無線通信装置。
    The first radio transmission apparatus switches the modulation scheme of the first baseband signal from a low multi-level modulation scheme to a high multi-level modulation scheme in response to the communication quality in the radio transmission path being improved to a first predetermined level. ,
    In response to the communication quality in the wireless transmission path being further improved to a second predetermined level higher than the first predetermined level, the baseband processing device reduces the compression rate of the first baseband signal from a high magnification to a low level. Switch to the compression ratio of magnification,
    The wireless communication device according to any one of claims 3 to 5.
  7.  前記無線伝送路における通信品質が第3所定レベルまで劣化したことに応じて、前記ベースバンド処理装置が、前記第1ベースバンド信号の圧縮率を低倍率から高倍率の圧縮率に切り替え、
     前記無線伝送路における通信品質が前記第3所定レベルよりも低い第4所定レベルまでさらに劣化したことに応じて、前記第1無線伝送装置が、前記第1ベースバンド信号の変調方式を高多値から低多値の変調方式に切り替える、
     請求項3~6の何れか一項に記載の無線通信装置。
    The baseband processing device switches the compression rate of the first baseband signal from a low magnification to a high magnification compression rate in response to the communication quality in the wireless transmission path being deteriorated to a third predetermined level.
    When the communication quality in the wireless transmission path is further deteriorated to a fourth predetermined level that is lower than the third predetermined level, the first wireless transmission device sets the modulation method of the first baseband signal to a multi-valued value. Switch from low to multi-level modulation,
    The wireless communication device according to any one of claims 3 to 6.
  8.  前記無線装置は、さらに、外部から無線受信した第2高周波信号を第2ベースバンド信号に復調し、
     前記第2無線伝送装置は、さらに、前記第2ベースバンド信号を第2マイクロ波に変調して無線送信し、
     前記第1無線伝送装置は、さらに、前記無線伝送路を介して無線受信した前記第2マイクロ波を前記第2ベースバンド信号に復調し、
     前記ベースバンド処理装置は、さらに、前記第1無線伝送装置によって復調された前記第2ベースバンド信号に基づいて所定の処理を行い、
     前記無線装置は、前記無線伝送路における通信品質に応じた圧縮率で前記第2ベースバンド信号を圧縮し、かつ、前記第2無線伝送装置は、前記無線伝送路における通信品質に応じた変調方式を用いて、圧縮された前記第2ベースバンド信号を前記第2マイクロ波に変調する、
     請求項3に記載の無線通信装置。
    The wireless device further demodulates a second high-frequency signal wirelessly received from outside into a second baseband signal,
    The second wireless transmission device further modulates the second baseband signal to a second microwave and wirelessly transmits the second baseband signal,
    The first wireless transmission device further demodulates the second microwave received wirelessly via the wireless transmission path into the second baseband signal,
    The baseband processing device further performs predetermined processing based on the second baseband signal demodulated by the first wireless transmission device,
    The radio apparatus compresses the second baseband signal at a compression rate according to communication quality in the radio transmission path, and the second radio transmission apparatus modulates a modulation scheme according to communication quality in the radio transmission path. To modulate the compressed second baseband signal into the second microwave,
    The wireless communication apparatus according to claim 3.
  9.  前記ベースバンド処理装置は、前記第1マイクロ波のCN雑音比又は電界強度に応じた圧縮率で前記第1ベースバンド信号を圧縮し、かつ、前記第1無線伝送装置は、前記第1マイクロ波のCN雑音比又は電界強度に応じた変調方式を用いて、圧縮された前記第1ベースバンド信号を前記第1マイクロ波に変調し、
     前記無線装置は、前記第2マイクロ波のCN雑音比又は電界強度に応じた圧縮率で前記第2ベースバンド信号を圧縮し、かつ、前記第2無線伝送装置は、前記第2マイクロ波のCN雑音比又は電界強度に応じた変調方式を用いて、圧縮された前記第2ベースバンド信号を前記第2マイクロ波に変調する、
     請求項8に記載の無線通信装置。
    The baseband processing device compresses the first baseband signal at a compression rate according to a CN noise ratio or electric field strength of the first microwave, and the first wireless transmission device transmits the first microwave Modulating the compressed first baseband signal into the first microwave using a modulation scheme according to the CN noise ratio or electric field strength of
    The wireless device compresses the second baseband signal at a compression rate according to the CN noise ratio or electric field strength of the second microwave, and the second wireless transmission device transmits the CN of the second microwave. Modulating the compressed second baseband signal into the second microwave using a modulation scheme according to a noise ratio or electric field strength;
    The wireless communication apparatus according to claim 8.
  10.  前記無線伝送路における通信品質が第1所定レベルまで向上したことに応じて、前記第1及び前記第2無線伝送装置が、それぞれ、前記第1及び前記第2ベースバンド信号の変調方式を低多値から高多値の変調方式に切り替え、
     前記無線伝送路における通信品質が前記第1所定レベルよりも高い第2所定レベルまでさらに向上したことに応じて、前記ベースバンド処理装置及び前記無線装置が、それぞれ、前記第1及び前記第2ベースバンド信号の圧縮率を高倍率から低倍率の圧縮率に切り替える、
     請求項8又は9に記載の無線通信装置。
    In response to the communication quality in the wireless transmission path being improved to a first predetermined level, the first and second wireless transmission devices respectively reduce the modulation schemes of the first and second baseband signals. Switch from high-value to high-value modulation method,
    In response to the communication quality in the wireless transmission path being further improved to a second predetermined level that is higher than the first predetermined level, the baseband processing device and the wireless device are connected to the first and second bases, respectively. Switch the compression rate of the band signal from high to low.
    The wireless communication apparatus according to claim 8 or 9.
  11.  前記無線伝送路における通信品質が第3所定レベルまで劣化したことに応じて、前記ベースバンド処理装置及び前記無線装置が、それぞれ、前記第1及び前記第2ベースバンド信号の圧縮率を低倍率から高倍率の圧縮率に切り替え、
     前記無線伝送路における通信品質が前記第3所定レベルよりも低い第4所定レベルまでさらに劣化したことに応じて、前記第1及び前記第2無線伝送装置が、それぞれ、前記第1及び前記第2ベースバンド信号の変調方式を高多値から低多値の変調方式に切り替える、
     請求項8~10の何れか一項に記載の無線通信装置。
    In response to the deterioration of the communication quality in the wireless transmission path to the third predetermined level, the baseband processing device and the wireless device respectively reduce the compression rate of the first and second baseband signals from a low magnification. Switch to high compression ratio,
    In response to the fact that the communication quality in the wireless transmission path has further deteriorated to a fourth predetermined level that is lower than the third predetermined level, the first and second wireless transmission devices are connected to the first and second, respectively. Switch the baseband signal modulation method from high multi-level to low multi-level modulation.
    The wireless communication device according to any one of claims 8 to 10.
  12.  前記ベースバンド処理装置と前記第1無線伝送装置との間のインターフェース、及び、前記第2無線伝送装置と前記無線装置との間のインターフェースには、CPRI規格又はイーサネット規格が採用されている、請求項3~11の何れか一項に記載の無線通信装置。 A CPRI standard or an Ethernet standard is adopted for an interface between the baseband processing device and the first wireless transmission device and an interface between the second wireless transmission device and the wireless device. Item 12. The wireless communication device according to any one of Items 3 to 11.
  13.  請求項3~12の何れか一項に記載の無線通信装置と、
     前記無線通信装置と無線で通信を行う移動端末と、を備えた無線通信システム。
    A wireless communication device according to any one of claims 3 to 12,
    A wireless communication system comprising: a mobile terminal that communicates wirelessly with the wireless communication device.
  14.  第1ベースバンド信号を生成するベースバンド処理装置と、
     前記第1ベースバンド信号を分割した第1及び第2分割ベースバンド信号のうち前記第1分割ベースバンド信号を第1マイクロ波に変調して無線送信する第1無線伝送装置と、
     前記第2分割ベースバンド信号を第2マイクロ波に変調して無線送信する第2無線伝送装置と、
     前記第1無線伝送装置との間の第1無線伝送路を介して無線受信した第1マイクロ波を前記第1分割ベースバンド信号に復調する第3無線伝送装置と、
     前記第2無線伝送装置との間の第2無線伝送路を介して無線受信した第2マイクロ波を前記第2分割ベースバンド信号に復調する第4無線伝送装置と、
     前記第3及び前記第4無線伝送装置によって復調された前記第1及び前記第2分割ベースバンド信号を合成することで再生された前記第1ベースバンド信号を、第1高周波信号に変調して外部に無線送信する無線装置と、を備え、
     前記第1及び前記第2無線伝送路のそれぞれの通信品質に応じた圧縮率で、前記第1ベースバンド信号、又は、前記第1及び前記第2分割ベースバンド信号が圧縮され、かつ、前記第1及び前記第2無線伝送路のそれぞれの通信品質に応じた変調方式を用いて、圧縮された前記第1及び前記第2分割ベースバンド信号がそれぞれ前記第1及び前記第2マイクロ波に変調される、無線通信装置。
    A baseband processing device for generating a first baseband signal;
    A first wireless transmission device configured to wirelessly transmit the first divided baseband signal by modulating the first divided baseband signal among the first and second divided baseband signals obtained by dividing the first baseband signal;
    A second wireless transmission device configured to wirelessly transmit the second divided baseband signal after being modulated into a second microwave;
    A third wireless transmission device that demodulates a first microwave received wirelessly via a first wireless transmission path with the first wireless transmission device into the first divided baseband signal;
    A fourth wireless transmission device that demodulates a second microwave received wirelessly via a second wireless transmission path with the second wireless transmission device into the second divided baseband signal;
    The first baseband signal reproduced by combining the first and second divided baseband signals demodulated by the third and fourth wireless transmission devices is modulated into a first high-frequency signal to be externally A wireless device for wirelessly transmitting to
    The first baseband signal or the first and second divided baseband signals are compressed at a compression rate according to the communication quality of each of the first and second wireless transmission paths, and the first The compressed first and second divided baseband signals are modulated into the first and second microwaves, respectively, using modulation schemes according to the communication qualities of the first and second radio transmission paths. Wireless communication device.
  15.  前記第1及び前記第2マイクロ波のそれぞれのCN雑音比又は電界強度に応じた圧縮率で、前記第1ベースバンド信号、又は、前記第1及び前記第2分割ベースバンド信号が圧縮され、かつ、前記第1及び前記第2マイクロ波のそれぞれのCN雑音比又は電界強度に応じた変調方式を用いて、圧縮された前記第1及び前記第2分割ベースバンド信号がそれぞれ前記第1及び前記第2マイクロ波に変調される、
     請求項14に記載の無線通信装置。
    The first baseband signal or the first and second divided baseband signals are compressed at a compression ratio corresponding to the respective CN noise ratio or electric field strength of the first and second microwaves; and The compressed first and second divided baseband signals are converted into the first and second divided baseband signals using a modulation scheme corresponding to the respective CN noise ratios or electric field strengths of the first and second microwaves, respectively. Modulated to 2 microwaves,
    The wireless communication apparatus according to claim 14.
  16.  前記無線装置は、さらに、外部から無線受信した第2高周波信号を第2ベースバンド信号に復調し、
     前記第3無線伝送装置は、さらに、前記第2ベースバンド信号を分割した第3及び第4分割ベースバンド信号のうち前記第3分割ベースバンド信号を第3マイクロ波に変調して無線送信し、
     前記第4無線伝送装置は、さらに、前記第4分割ベースバンド信号を第4マイクロ波に変調して無線送信し、
     前記第1無線伝送装置は、さらに、前記第1無線伝送路を介して無線受信した前記第3マイクロ波を前記第3分割ベースバンド信号に復調し、
     前記第2無線伝送装置は、さらに、前記第2無線伝送路を介して無線受信した前記第4マイクロ波を前記第4分割ベースバンド信号に復調し、
     前記ベースバンド処理装置は、さらに、前記第1及び前記第2無線伝送装置によって復調された前記第3及び前記第4分割ベースバンド信号を合成することで再生された前記第2ベースバンド信号に基づいて所定の処理を行い、
     前記第3無線伝送装置は、
     前記第1マイクロ波のCN雑音比又は電界強度を検出する第1検出手段を有し、
     前記第1検出手段の検出結果を、前記第3分割ベースバンド信号とともに、前記第3マイクロ波として、前記第1無線伝送装置に向けて無線送信し、
     前記第4無線伝送装置は、
     前記第2マイクロ波のCN雑音比又は電界強度を検出する第2検出手段を有し、
     前記第2検出手段の検出結果を、前記第4分割ベースバンド信号とともに、前記第4マイクロ波として、前記第2無線伝送装置に向けて無線送信する、
    請求項15に記載の無線通信装置。
    The wireless device further demodulates a second high-frequency signal wirelessly received from outside into a second baseband signal,
    The third wireless transmission device further modulates the third divided baseband signal out of the third and fourth divided baseband signals obtained by dividing the second baseband signal into a third microwave and wirelessly transmits the modulated signal.
    The fourth wireless transmission device further modulates the fourth divided baseband signal into a fourth microwave and wirelessly transmits the modulated signal.
    The first wireless transmission device further demodulates the third microwave received wirelessly via the first wireless transmission path into the third divided baseband signal,
    The second wireless transmission device further demodulates the fourth microwave received wirelessly via the second wireless transmission path into the fourth divided baseband signal,
    The baseband processing device is further based on the second baseband signal reproduced by combining the third and fourth divided baseband signals demodulated by the first and second wireless transmission devices. To perform the prescribed process
    The third wireless transmission device is:
    First detection means for detecting a CN noise ratio or electric field strength of the first microwave;
    The detection result of the first detection means is wirelessly transmitted to the first wireless transmission device as the third microwave together with the third divided baseband signal,
    The fourth wireless transmission device is
    Second detection means for detecting a CN noise ratio or electric field strength of the second microwave;
    The detection result of the second detection means is wirelessly transmitted to the second wireless transmission device as the fourth microwave together with the fourth divided baseband signal.
    The wireless communication apparatus according to claim 15.
  17.  前記第1及び前記第2無線伝送路のそれぞれの通信品質に応じた圧縮率で、前記第2ベースバンド信号、又は、前記第3及び前記第4分割ベースバンド信号が圧縮され、かつ、前記第1及び前記第2無線伝送路のそれぞれの通信品質に応じた変調方式を用いて、圧縮された前記第3及び前記第4分割ベースバンド信号がそれぞれ前記第3及び前記第4マイクロ波に変調される、
     請求項16に記載の無線通信装置。
    The second baseband signal or the third and fourth divided baseband signals are compressed at a compression rate according to the communication quality of each of the first and second wireless transmission paths, and the first The compressed third and fourth divided baseband signals are modulated into the third and fourth microwaves, respectively, using a modulation scheme according to the communication quality of each of the first and second wireless transmission paths. The
    The wireless communication apparatus according to claim 16.
  18.  前記第1無線伝送装置は、
     前記第1ベースバンド信号を前記第1及び前記第2分割ベースバンド信号に振り分ける第1データ振分け手段と、
     前記第1無線伝送路の通信品質に応じた圧縮率で前記第1分割ベースバンド信号を圧縮する第1データ圧縮手段と、
     前記第1データ圧縮手段によって圧縮された前記第1分割ベースバンド信号を前記第1マイクロ波に変調して無線送信する第1無線送信手段と、を備え、
     前記第2無線伝送装置は、
     前記第2無線伝送路の通信品質に応じた圧縮率で前記第2分割ベースバンド信号を圧縮する第2データ圧縮手段と、
     前記第2データ圧縮手段によって圧縮された前記第2分割ベースバンド信号を前記第2マイクロ波に変調して無線送信する第2無線送信手段と、を備える、
     請求項14~17の何れか一項に記載の無線通信装置。
    The first wireless transmission device is
    First data distribution means for distributing the first baseband signal to the first and second divided baseband signals;
    First data compression means for compressing the first divided baseband signal at a compression rate according to the communication quality of the first wireless transmission path;
    First wireless transmission means for modulating and transmitting the first divided baseband signal compressed by the first data compression means to the first microwave;
    The second wireless transmission device is:
    Second data compression means for compressing the second divided baseband signal at a compression rate according to the communication quality of the second wireless transmission path;
    Second wireless transmission means for modulating and transmitting the second divided baseband signal compressed by the second data compression means to the second microwave,
    The wireless communication device according to any one of claims 14 to 17.
  19.  前記第1無線伝送装置は、
     前記第1及び前記第2無線伝送路のそれぞれの通信品質に応じた圧縮率で前記第1ベースバンド信号を圧縮するデータ圧縮手段と、
     前記データ圧縮手段によって圧縮された前記第1ベースバンド信号を、圧縮された前記第1及び前記第2分割ベースバンド信号に振り分ける第1データ振分け手段と、
     圧縮された前記第1分割ベースバンド信号を前記第1マイクロ波に変調して無線送信する第1無線送信手段と、を備え、
     前記第2無線伝送装置は、
     圧縮された前記第2分割ベースバンド信号を前記第2マイクロ波に変調して無線送信する第2無線送信手段を備える、
     請求項14~17の何れか一項に記載の無線通信装置。
    The first wireless transmission device is
    Data compression means for compressing the first baseband signal at a compression rate according to the communication quality of each of the first and second wireless transmission paths;
    First data distribution means for distributing the first baseband signal compressed by the data compression means to the compressed first and second divided baseband signals;
    First wireless transmission means for modulating and transmitting the compressed first divided baseband signal to the first microwave;
    The second wireless transmission device is:
    A second wireless transmission unit configured to modulate and compress the compressed second divided baseband signal into the second microwave;
    The wireless communication device according to any one of claims 14 to 17.
  20.  前記ベースバンド処理装置は、
     前記第1ベースバンド信号を前記第1及び前記第2分割ベースバンド信号に振り分けるデータ振分け手段と、
     前記第1無線伝送路の通信品質に応じた圧縮率で前記第1分割ベースバンド信号を圧縮する第1データ圧縮手段と、
     前記第2無線伝送路の通信品質に応じた圧縮率で前記第2分割ベースバンド信号を圧縮する第2データ圧縮手段と、を備える、
     請求項14~17の何れか一項に記載の無線通信装置。
    The baseband processing device includes:
    Data distribution means for distributing the first baseband signal to the first and second divided baseband signals;
    First data compression means for compressing the first divided baseband signal at a compression rate according to the communication quality of the first wireless transmission path;
    Second data compression means for compressing the second divided baseband signal at a compression rate according to the communication quality of the second wireless transmission path,
    The wireless communication device according to any one of claims 14 to 17.
  21.  前記ベースバンド処理装置と前記第1無線伝送装置との間のインターフェース、及び、前記第2無線伝送装置と前記無線装置との間のインターフェースには、CPRI規格又はイーサネット規格が採用されている、請求項14~20の何れか一項に記載の無線通信装置。 A CPRI standard or an Ethernet standard is adopted for an interface between the baseband processing device and the first wireless transmission device and an interface between the second wireless transmission device and the wireless device. Item 21. The wireless communication device according to any one of Items 14 to 20.
  22.  請求項14~21の何れか一項に記載の無線通信装置と、
     前記無線通信装置と無線で通信を行う移動端末と、を備えた無線通信システム。
    A wireless communication device according to any one of claims 14 to 21,
    A wireless communication system comprising: a mobile terminal that communicates wirelessly with the wireless communication device.
  23.  第1ベースバンド信号をベースバンド処理装置により生成するステップと、
     前記第1ベースバンド信号を第1マイクロ波に変調して無線送信するステップと、
     無線受信した前記第1マイクロ波を前記第1ベースバンド信号に復調するステップと、
     復調された前記第1ベースバンド信号を第1高周波信号に変調して外部に無線送信するステップと、を備え、
     前記ベースバンド処理装置ではマイクロ波が伝送される無線伝送路の通信品質に応じた圧縮率で前記第1ベースバンド信号が圧縮され、かつ、前記無線伝送路における通信品質に応じた変調方式を用いて、圧縮された前記第1ベースバンド信号が前記第1マイクロ波に変調される、無線通信方法。
    Generating a first baseband signal by a baseband processor;
    Modulating the first baseband signal to a first microwave and wirelessly transmitting;
    Demodulating the first microwave received wirelessly into the first baseband signal;
    Modulating the demodulated first baseband signal into a first high-frequency signal and wirelessly transmitting to the outside,
    In the baseband processing device, the first baseband signal is compressed at a compression rate according to the communication quality of the wireless transmission path through which the microwave is transmitted, and a modulation method according to the communication quality in the wireless transmission path is used. And the compressed first baseband signal is modulated into the first microwave.
  24.  第1ベースバンド信号を生成するステップと、
     前記第1ベースバンド信号を分割した第1及び第2分割ベースバンド信号のうち前記第1分割ベースバンド信号を第1マイクロ波に変調して無線送信するステップと、
     前記第2分割ベースバンド信号を第2マイクロ波に変調して無線送信するステップと、
     無線受信した第1マイクロ波を前記第1分割ベースバンド信号に復調するステップと、
     無線受信した第2マイクロ波を前記第2分割ベースバンド信号に復調するステップと、
     前記第1及び前記第2分割ベースバンド信号を合成することで再生された前記第1ベースバンド信号を、第1高周波信号に変調して外部に無線送信するステップと、を備え、
     マイクロ波が伝送される無線伝送路の通信品質に応じた圧縮率で、前記第1ベースバンド信号、又は、前記第1及び前記第2分割ベースバンド信号が圧縮され、かつ、前記無線伝送路の通信品質に応じた変調方式を用いて、圧縮された前記第1及び前記第2分割ベースバンド信号がそれぞれ前記第1及び前記第2マイクロ波に変調される、無線通信方法。
    Generating a first baseband signal;
    Modulating the first divided baseband signal out of the first and second divided baseband signals obtained by dividing the first baseband signal into a first microwave and wirelessly transmitting;
    Modulating the second divided baseband signal to a second microwave and wirelessly transmitting;
    Demodulating the first microwave received wirelessly into the first divided baseband signal;
    Demodulating the second microwave received wirelessly into the second divided baseband signal;
    Modulating the first baseband signal reproduced by synthesizing the first and second divided baseband signals into a first high frequency signal and wirelessly transmitting to the outside,
    The first baseband signal or the first and second divided baseband signals are compressed at a compression rate according to the communication quality of the wireless transmission path through which the microwave is transmitted, and the wireless transmission path A wireless communication method, wherein the compressed first and second divided baseband signals are modulated into the first and second microwaves, respectively, using a modulation scheme according to communication quality.
PCT/JP2016/004799 2015-12-21 2016-11-02 Wireless communication apparatus, wireless communication system, and wireless communication method WO2017110029A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015-248725 2015-12-21
JP2015248725 2015-12-21

Publications (1)

Publication Number Publication Date
WO2017110029A1 true WO2017110029A1 (en) 2017-06-29

Family

ID=59089839

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/004799 WO2017110029A1 (en) 2015-12-21 2016-11-02 Wireless communication apparatus, wireless communication system, and wireless communication method

Country Status (1)

Country Link
WO (1) WO2017110029A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020031710A1 (en) * 2018-08-10 2020-02-13 ソニー株式会社 Wireless communication device and communication control method

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009231970A (en) * 2008-03-19 2009-10-08 Fujitsu Ltd Radio control device, radio device, and communication system
WO2014192041A1 (en) * 2013-05-29 2014-12-04 Kddi株式会社 Base station system and communication apparatus
JP2014230098A (en) * 2013-05-22 2014-12-08 Kddi株式会社 Communication device and control method thereof
WO2015015715A1 (en) * 2013-07-30 2015-02-05 日本電気株式会社 Network management apparatus, connection-status improvement method, and program-containing non-transitory computer-readable medium
JP2015156602A (en) * 2014-02-21 2015-08-27 株式会社モバイルテクノ Complex digital signal compression device and program, complex digital signal expansion device and program, and communication device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009231970A (en) * 2008-03-19 2009-10-08 Fujitsu Ltd Radio control device, radio device, and communication system
JP2014230098A (en) * 2013-05-22 2014-12-08 Kddi株式会社 Communication device and control method thereof
WO2014192041A1 (en) * 2013-05-29 2014-12-04 Kddi株式会社 Base station system and communication apparatus
WO2015015715A1 (en) * 2013-07-30 2015-02-05 日本電気株式会社 Network management apparatus, connection-status improvement method, and program-containing non-transitory computer-readable medium
JP2015156602A (en) * 2014-02-21 2015-08-27 株式会社モバイルテクノ Complex digital signal compression device and program, complex digital signal expansion device and program, and communication device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020031710A1 (en) * 2018-08-10 2020-02-13 ソニー株式会社 Wireless communication device and communication control method

Similar Documents

Publication Publication Date Title
US10341880B2 (en) Telecommunication systems with distributed base station functionality
Nanba et al. A new IQ data compression scheme for front-haul link in centralized RAN
US8989088B2 (en) OFDM signal processing in a base transceiver system
JP7345098B2 (en) Communication device, communication method, and integrated circuit
IL266740A (en) Controller for a suda system
US9300377B2 (en) Method for downlink communication by means of a downlink superimposed radio signal, a base station and a user terminal therefor
US11245741B2 (en) Video aware multiplexing for wireless communication
JP7078851B2 (en) Relay device and relay method
EP3285416B1 (en) Optical communication system and optical communication method
US9553954B1 (en) Method and apparatus utilizing packet segment compression parameters for compression in a communication system
JP6023103B2 (en) Distributed wireless communication base station system and communication method
US8761063B2 (en) Method and apparatus for transmitting a packet in a wireless network
US9203933B1 (en) Method and apparatus for efficient data compression in a communication system
CN113796029B (en) Unit and method for a base station system for transmission on a forward link
EP3462623B1 (en) Method and device for transmitting and receiving data
EP3285417B1 (en) Optical communication system and optical communication method
WO2017110029A1 (en) Wireless communication apparatus, wireless communication system, and wireless communication method
US11700547B2 (en) Method and device for transmitting/receiving signal in wireless communication system
KR20210021851A (en) Method and apparatus for function split in wireless communication system
JPWO2020031602A1 (en) Wireless communication device and communication control method
JP6052410B2 (en) Base station apparatus, mobile station apparatus and communication method
US20220159787A1 (en) Communication device comprising mobile termination device and radio base station
JP2016163267A (en) Radio base station device, base station system and baseband unit
KR20240008305A (en) Base station, terminal, and communication method
JPWO2020031710A1 (en) Wireless communication device and communication control method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16877934

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16877934

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP