WO2017109916A1 - Electronic device and light-emission control program - Google Patents

Electronic device and light-emission control program Download PDF

Info

Publication number
WO2017109916A1
WO2017109916A1 PCT/JP2015/086121 JP2015086121W WO2017109916A1 WO 2017109916 A1 WO2017109916 A1 WO 2017109916A1 JP 2015086121 W JP2015086121 W JP 2015086121W WO 2017109916 A1 WO2017109916 A1 WO 2017109916A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
light emission
unit
amount
reflected light
Prior art date
Application number
PCT/JP2015/086121
Other languages
French (fr)
Japanese (ja)
Inventor
笠間 晃一朗
Original Assignee
富士通株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士通株式会社 filed Critical 富士通株式会社
Priority to PCT/JP2015/086121 priority Critical patent/WO2017109916A1/en
Publication of WO2017109916A1 publication Critical patent/WO2017109916A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/02Detecting, measuring or recording pulse, heart rate, blood pressure or blood flow; Combined pulse/heart-rate/blood pressure determination; Evaluating a cardiovascular condition not otherwise provided for, e.g. using combinations of techniques provided for in this group with electrocardiography or electroauscultation; Heart catheters for measuring blood pressure
    • A61B5/024Detecting, measuring or recording pulse rate or heart rate
    • A61B5/0245Detecting, measuring or recording pulse rate or heart rate by using sensing means generating electric signals, i.e. ECG signals

Definitions

  • Embodiments described herein relate generally to an electronic device and a light emission control program.
  • an electronic device for measuring a pulse is attached to a subject (user) and the pulse rate of the user is measured.
  • this electronic device light is emitted to a user's living body (skin and the like), and the user's pulse rate is measured based on a change in the amount of reflected light.
  • the measurement accuracy of the pulse rate may be reduced by reducing the amount of reflected light when the blood flow changes due to the user's exercise state or the like. For example, when the user is exercising, the blood flow volume increases, the amount of light absorbed by hemoglobin in the blood increases, and the amount of reflected light may decrease. When such a decrease in the amount of reflected light occurs, it is difficult to accurately grasp the change in the amount of reflected light, and the pulse rate measurement accuracy is reduced.
  • An object of one aspect of the present invention is to provide an electronic device and a light emission control program that can improve pulse measurement accuracy.
  • the electronic device includes a light emitting unit, a light receiving unit, a pulse calculating unit, and a driving unit.
  • the pulse calculating unit calculates the user's pulse based on the change transition of the reflected light amount obtained by the light receiving unit receiving the reflected light of the light emitted from the light emitting unit.
  • the drive unit adjusts at least one of the light emission intensity of the light emitting unit and the light emission time length per unit time based on the amount of reflected light.
  • pulse measurement accuracy can be improved.
  • FIG. 1 is a block diagram illustrating a configuration example of an electronic device according to the embodiment.
  • FIG. 2 is an explanatory diagram for explaining the light emission condition table.
  • FIG. 3 is an explanatory diagram for explaining an initial calibration matrix.
  • FIG. 4 is an explanatory diagram for explaining the sequential calibration matrix.
  • FIG. 5 is a flowchart illustrating an operation example of the electronic apparatus according to the embodiment.
  • FIG. 6 is a flowchart illustrating the initial calibration process.
  • FIG. 7 is a flowchart illustrating the sequential calibration process.
  • FIG. 1 is a block diagram illustrating a configuration example of an electronic device 1 according to the embodiment.
  • An electronic device 1 illustrated in FIG. 1 is, for example, a computer worn by a user who measures a pulse in daily life.
  • the electronic device 1 is, for example, a wristwatch-type, batch-type, or tag-type terminal, and acquires data related to a user.
  • the user is a subject to be measured for pulse, for example, an on-site worker, a patient undergoing rehabilitation, a training gym user, or the like.
  • the electronic device 1 transmits the acquired data to the external device 2.
  • a smart phone, a personal computer, a server device, or the like can be applied to the external device 2.
  • the external device 2 is a terminal device connected to the electronic device 1 through a BLE (Bluetooth (registered trademark) Low Energy) so as to be able to communicate with each other.
  • the output of data acquired by the electronic device 1 is not limited to that via the external device 2.
  • it may be a display output to a display device (not shown) such as an LCD (Liquid Crystal Display) provided in the electronic apparatus 1.
  • the electronic device 1 includes a control unit 10, an LED 20 (Light Emitting Diode), an optical sensor 30, an acceleration sensor 40, a timer unit 50, a communication unit 60, and a storage unit 70.
  • a control unit 10 an LED 20 (Light Emitting Diode), an optical sensor 30, an acceleration sensor 40, a timer unit 50, a communication unit 60, and a storage unit 70.
  • Control unit 10 controls the operation of electronic device 1.
  • the control unit 10 is a hardware device such as a CPU (Central Processing Unit) or MPU (Micro-Processing Unit), and the program 76 stored in the storage unit 70 is a work area of a RAM (Random Access Memory). And execute sequentially.
  • the control unit 10 has functions as a sensor value acquisition processing unit 101, a drive processing unit 102, a pulse rate calculation unit 103, and a notification unit 104 by executing the program 76 (details will be described later).
  • the control unit 10 may be realized by an integrated circuit such as ASIC (Application Specific Integrated Circuit) or FPGA (Field Programmable Gate Array).
  • ASIC Application Specific Integrated Circuit
  • FPGA Field Programmable Gate Array
  • the LED 20 is a light emitting unit that emits light to a living body such as a user's skin under the control of the control unit 10.
  • the optical sensor 30 is a light receiving unit that receives reflected light reflected by the user from the LED 20. A detection value indicating the amount of reflected light received by the optical sensor 30 is output to the control unit 10.
  • the amount of reflected light from the user obtained by receiving light by the optical sensor 30 changes in response to a change in blood flow caused by the pulsation of the user's blood, that is, a pulse wave indicating the user's pulse.
  • the control unit 10 can calculate the pulse rate of the user, for example, by analyzing the change transition of the reflected light amount that changes corresponding to the pulse wave.
  • the acceleration sensor 40 is a device that detects acceleration.
  • the acceleration sensor 40 is a three-axis acceleration sensor that detects accelerations in the three-axis directions of the X-axis direction, the Y-axis direction, and the Z-axis direction that are orthogonal to each other.
  • the acceleration sensor 40 outputs the detected acceleration data to the control unit 10.
  • any method such as a semiconductor method, a mechanical method, or an optical method can be adopted.
  • the acceleration sensor 40 is a triaxial acceleration sensor that measures acceleration in the triaxial direction, but may be a G (gravation) sensor that detects acceleration in the gravitational direction.
  • the timekeeping unit 50 is an RTC (Real Time Clock) or the like and measures time.
  • the time measuring unit 50 outputs time data indicating the time measured to the control unit 10.
  • the communication unit 60 is a communication device that performs wireless communication under a communication standard such as BLE or wireless LAN (Local Area Network) under the control of the control unit 10. For example, the communication unit 60 communicates with the external device 2 via BLE under the control of the control unit 10.
  • a communication standard such as BLE or wireless LAN (Local Area Network)
  • BLE Wireless Local Area Network
  • the storage unit 70 is realized by, for example, a semiconductor memory element such as a RAM or a flash memory, or a storage device such as an HDD (Hard Disk Drive).
  • the storage unit 70 stores various information such as data acquired from the optical sensor 30 and the acceleration sensor 40, time data measured by the time measuring unit 50, programs used for processing in the control unit 10, and setting data.
  • the storage unit 70 stores a light emission condition table 71, an initial calibration matrix 72, a sequential calibration matrix 73, acquired data 74, a counter 75, and a program 76.
  • the light emission condition table 71 is a table showing the light emission conditions of the LED 20 at the time of pulse measurement. This light emission condition corresponds to the light emission amount of the LED 20 per unit time (for example, one light emission), and is a combination of the current value of the LED 20 and the light emission time length per unit time (for example, one light emission). is there.
  • the current value of the LED 20 corresponds to the emission intensity. Accordingly, the product of the current value of the LED 20 and the light emission time length corresponds to the light emission amount of the LED 20 per time.
  • FIG. 2 is an explanatory diagram for explaining the light emission condition table 71.
  • the light emission condition table 71 indicates the current value and light emission time length of the LED 20 per measurement for each light emission condition that can be set by the LED 20 in the light emission condition numbers 1 to 24.
  • the current value has 4 steps in 5 mA increments in the range of 5 mA to 20 mA.
  • the light emission time length is in six stages in increments of 50 ⁇ sec in the range of 50 ⁇ sec to 300 ⁇ sec.
  • the light emission condition table 71 light emission condition numbers 1 to 24 in descending order of the amount of reflected light detected by the optical sensor 30 for the 24 light emission conditions in the combination of the four current values illustrated and the six light emission time lengths. Is attached and managed.
  • the initial calibration matrix 72 is data indicating the contents of the initial calibration process performed when determining the light emission condition of the LED 20 in the initial setting such as when the user attaches the electronic device 1 to the body.
  • FIG. 3 is an explanatory diagram for explaining the initial calibration matrix 72.
  • the initial calibration matrix 72 includes “number of times”, “execution number”, “execution result is less than threshold (OK)”, and “execution result is greater than or equal to threshold (N / A (Not Applicable))”. Have items.
  • “execution result is less than threshold (OK)” and “execution result is greater than or equal to threshold (N / A)” for the second and subsequent times have items of “previous OK” and “previous N / A”.
  • “Number of times” is an item indicating the number of trials in which the LED 20 is caused to emit light in the initial calibration process and whether or not the amount of reflected light detected by the optical sensor 30 satisfies a predetermined condition.
  • the trial order from the first time to the sixth time is shown.
  • “Performance number” is an item indicating a number (light emission condition number) to be implemented as the light emission condition of the LED 20 in the trial order. For example, in the first trial order, the emission condition number No. 12 is shown to implement. In the second and subsequent times, it is shown that the execution number obtained last time is executed.
  • the execution result is less than the threshold (OK)” is an item indicating an expression for obtaining an execution number when the LED 20 emits light in the trial order and the amount of reflected light detected by the optical sensor 30 satisfies a predetermined condition (OK). . More specifically, an equation for obtaining an execution number when the reflected light quantity detected by the optical sensor 30 in the trial order is less than a threshold value (OK) and the condition is satisfied is shown. For example, when the trial order is the first time, it is shown that the next execution number is obtained by subtracting 6 from the execution number (No. 12) of the current trial order. For the second and subsequent times, the formula for the previous OK and the formula for the previous N / A are shown. For example, both the previous OK and the previous N / A in the second trial order indicate that the next execution number is obtained by subtracting 3 from the execution number in the current trial order.
  • the execution result is equal to or greater than the threshold (N / A)” is an expression for obtaining an execution number when the amount of reflected light detected by the optical sensor 30 does not satisfy a predetermined condition (N / A) by causing the LED 20 to emit light in the trial order. It is an item indicating. More specifically, when the amount of reflected light detected by the optical sensor 30 in the trial order is less than the threshold value (OK), an equation for obtaining the execution number is shown when the condition is not satisfied (N / A). ing. For example, when the trial order is the first time, it is shown that the next execution number is obtained by adding 6 to the execution number (No. 12) of the current trial order.
  • the formula for the previous OK and the formula for the previous N / A are shown.
  • the trial order is the third time in the previous trial, it is indicated that the next execution number is obtained by subtracting 1 from the execution number of the current trial order.
  • the trial order is the previous N / A at the third time, it is indicated that the next execution number is obtained by adding 1 to the execution number of the current trial order.
  • the control unit 10 performs an initial calibration process based on the initial calibration matrix 72, and sets, for example, an execution number obtained through trials up to the sixth time as a light emission condition in the LED 20.
  • the initial calibration matrix 72 illustrated in FIG. 3 is an example, and is not particularly limited to this example.
  • the sequential calibration matrix 73 is data indicating the content of the sequential calibration process performed when the light emission condition of the sequential LED 20 is determined after performing the initial calibration process. This sequential calibration process is performed, for example, at a predetermined cycle (for example, 1 second cycle) when measuring a user's pulse. Further, the sequential calibration process may be performed immediately after the electronic device 1 is activated.
  • FIG. 4 is an explanatory diagram for explaining the sequential calibration matrix 73.
  • the sequential calibration matrix 73 includes items of “case”, “current light emission condition”, and “changed light emission condition”. “Case” is an item indicating seven cases classified by “current light emission conditions”.
  • the “current light emission condition” indicates a current light emission condition (“first condition”) in the LED 20 and a reflected light amount condition (“second condition”) detected by the optical sensor 30 under the light emission condition. It is an item. Specifically, the “first condition” indicates a condition for the current value of the LED 20. In the “second condition”, a condition for the average value of the optical sensor (the amount of reflected light) detected by the optical sensor 30 is shown. In the sequential calibration matrix 73, seven cases are classified according to the combination of the “first condition” and the “second condition” described above.
  • the changed light emission condition is an item indicating the light emission condition to be changed in each case described above. Specifically, an arithmetic expression (light emission condition number ⁇ 1 or light emission condition number +1) for changing from the current light emission condition number is shown. Further, when individually specifying the current value and the light emission time length, the current value of the LED 20 is indicated in the “first condition”, and the light emission time length of the LED 20 is indicated in the “second condition”.
  • the current light emission conditions are “current value is 20 mA” and “light sensor average value ⁇ (light sensor upper limit value / 2)”, and there is a slight decrease in the amount of reflected light. Therefore, in the “changed light emission condition” in the first case, the current value remains at the upper limit, the light emission time length is doubled, and the light emission amount is increased.
  • the current value is set to the upper limit (20 mA)
  • the emission time length is left as it is, and the emission amount is increased.
  • the current light emission conditions are “current value is 15 mA” and “photosensor average value ⁇ (photosensor upper limit value / 2)”, and there is a slight decrease in the amount of reflected light.
  • the adjustment width based on the amount of reflected light is smaller than a predetermined threshold compared to the second case where the current values are the same. Therefore, in the “changed light emission condition” in the third case, the current value is kept as it is (15 mA), the light emission time length is doubled, and the light emission amount is increased.
  • the light emission time length is the upper limit (for example, 300 ⁇ sec)
  • the current value is increased by one level (for example, 20 mA).
  • fine adjustment may be performed with the light emission time length.
  • the current light emission conditions are “current value is 10 mA or less” and “light sensor average value ⁇ (light sensor upper limit value / 2)”, and the amount of reflected light is reduced. Therefore, in the “changed light emission condition” in the fourth case, the current value is doubled, the light emission time length is left as it is, and the light emission amount is increased.
  • the current value is 10 mA or less” and “the optical sensor upper limit value ⁇ the optical sensor average value> 1000 (predetermined value)”, and there is a decrease in the amount of reflected light. Therefore, in the “changed light emission condition” in the fifth case, the light emission condition number is increased by subtracting 1 from the current light emission condition number in the light emission condition numbers arranged in the order of the light emission quantity.
  • the light emission condition number is reduced by adding 1 to the current light emission condition number in the light emission condition numbers arranged in order of the light emission quantity.
  • the current state is maintained without changing the light emission conditions.
  • the control unit 10 sequentially refers to the calibration matrix 73 based on the current light emission condition of the LED 20 and the amount of reflected light detected by the optical sensor 30 (for example, the average value of the optical sensor), so that the seven cases described above. Into one of the cases. And the control part 10 adjusts the light emission conditions of LED20 according to seven cases. That is, in the electronic device 1, the light emission condition of the LED 20 is adjusted in response to a case where the amount of light absorbed by hemoglobin in the blood increases due to the user's exercise or the like and the amount of reflected light decreases. Therefore, the electronic device 1 can obtain a sufficient amount of reflected light, and can accurately detect changes in the amount of reflected light to improve pulse measurement accuracy.
  • the acquisition data 74 is data acquired by the control unit 10 from the optical sensor 30 and the acceleration sensor 40.
  • the control unit 10 stores the data acquired from the optical sensor 30 and the acceleration sensor 40 in the storage unit 70 as the acquisition data 74 in chronological order.
  • control unit 10 causes the LED 20 to emit light, and stores the data about the reflected light amount obtained by receiving the reflected light reflected from the user by the optical sensor 30 in the storage unit 70 as the acquisition data 74. Further, the control unit 10 sequentially stores the acceleration data acquired from the acceleration sensor 40 in the storage unit 70 as acquired data 74.
  • the control unit 10 calculates, for example, the pulse rate of the user based on the acquired data 74 regarding the amount of reflected light stored in chronological order. Further, the control unit 10 acquires the user's exercise state such as the user's exercise intensity, the number of steps per unit time, and the amount of change in the number of steps, based on the acquired data 74 regarding the acceleration stored in time series.
  • the counter 75 is a counter that holds various accumulated values.
  • the counter 75 holds a number counter indicating the number of times various processes have been performed.
  • the counter 75 may hold a cumulative value for the driving time required for the light emission of the LED 20.
  • the counter 75 may hold a cumulative number of steps obtained by counting the number of steps of the user.
  • the program 76 is program data executed by the control unit 10.
  • the control unit 10 provides functions as the sensor value acquisition processing unit 101, the drive processing unit 102, the pulse rate calculation unit 103, and the notification unit 104 by developing the program 76 in the RAM work area and sequentially executing the program 76.
  • the sensor value acquisition processing unit 101 performs various processes on the data acquired by the optical sensor 30, the acceleration sensor 40, and the time measuring unit 50. Specifically, the sensor value acquisition processing unit 101 performs processing for storing data acquired from the optical sensor 30 and the acceleration sensor 40 in the storage unit 70 as the acquisition data 74 in time series order. Further, the sensor value acquisition processing unit 101 obtains a driving time required for light emission of the LED 20 based on the time data timed by the time measuring unit 50. The sensor value acquisition processing unit 101 counts the obtained drive time as a cumulative value in the counter 75.
  • the sensor value acquisition processing unit 101 acquires data indicating the user's exercise state. Specifically, the sensor value acquisition processing unit 101 acquires the number of steps per unit time of the user based on the acquisition data 74 regarding acceleration stored in chronological order. As an example, the sensor value acquisition processing unit 101 acquires the number of steps in a cycle of 10 seconds, and stores the obtained number of steps as a cumulative number of steps in the counter 75. The counter 75 sequentially holds the accumulated number of steps counted every 10 second period.
  • the sensor value acquisition processing unit 101 acquires the exercise intensity of the user based on the acquisition data 74 regarding acceleration stored in time series. Specifically, the sensor value acquisition processing unit 101 holds an arithmetic expression for converting from acceleration to exercise intensity, and calculates exercise intensity by substituting acceleration data into the arithmetic expression. As an example, the sensor value acquisition processing unit 101 calculates exercise intensity at a cycle of 1 second, and obtains an average value of exercise intensity for 10 seconds.
  • the drive processing unit 102 performs a process of driving each unit when measuring the pulse of the user. Specifically, the drive processing unit 102 performs initial calibration processing with reference to the initial calibration matrix 72 based on the amount of reflected light detected by the optical sensor 30, and performs initial setting of the light emission conditions of the LED 20. . Next, the drive processing unit 102 drives the LED 20 under the light emission conditions set by the initial calibration process. In addition, the drive processing unit 102 sequentially performs a calibration process with reference to the sequential calibration matrix 73 based on the amount of reflected light detected by the optical sensor 30, and sequentially updates the light emission conditions of the LEDs 20.
  • the pulse rate calculation unit 103 calculates the user's pulse rate by analyzing the change of the reflected light amount based on the acquired data 74 regarding the reflected light amount stored in chronological order. For example, the pulse rate calculation unit 103 calculates the pulse rate by converting the peak time interval into a unit time, for example, a value per minute, from the change in the amount of reflected light.
  • the notification unit 104 performs processing related to notification (output) of the pulse rate calculated by the pulse rate calculation unit 103. Specifically, the notification unit 104 transmits the pulse rate calculated by the pulse rate calculation unit 103 to the external device 2 via the communication unit 60.
  • FIG. 5 is a flowchart illustrating an operation example of the electronic apparatus 1 according to the embodiment. As shown in FIG. 5, when the process is started when the power is turned on or the user wears the electronic device 1, the drive processing unit 102 activates the LED 20 and the optical sensor 30 (S1).
  • the drive processing unit 102 sequentially tries the light emission conditions that can be set by the LED 20 and obtains the amount of reflected light detected by the optical sensor 30.
  • the drive processing unit 102 rearranges the light emission conditions by assigning the light emission condition numbers 1 to 24 in descending order of the amount of reflected light based on the amount of reflected light for each light emission condition.
  • a table 71 is generated (S2).
  • the drive processing unit 102 performs an initial calibration process with reference to the initial calibration matrix 72 (S3).
  • the drive processing unit 102 drives the LED 20 based on the initial calibration matrix 72 under the light emission condition of a predetermined number (No. 12 in the example of FIG. 3) determined as the execution number in the first process. (S11).
  • the sensor value acquisition processing unit 101 detects the reflected light (the amount of reflected light) due to the light emission of the LED 20 by the optical sensor 30, and stores the detected value in the storage unit 70 as acquisition data 74 (S12).
  • the drive processing unit 102 determines whether or not the detected reflected light amount satisfies a predetermined condition, that is, whether or not the implementation result (reflected light amount) is less than a threshold value (OK) (S13).
  • the drive processing unit 102 determines whether or not the number counter is the initial value (first time) (S14). When the number counter is an initial value (S14: YES), the drive processing unit 102, based on the contents shown in the initial calibration matrix 72 (the first time, the item whose execution result is less than the threshold (OK)), An execution number obtained by subtracting a predetermined number from the executed number is set as the next condition (S15).
  • the drive processing unit 102 determines whether or not the previous time is OK (S16). If it is the last time OK (S16: YES), the drive processing unit 102 determines the execution number based on the item “less than threshold (OK), last time OK” in the corresponding number of times (S17). For example, in the second case, the execution number is determined by subtracting 3 from the current execution number. If it is not the previous OK (S16: NO), the drive processing unit 102 determines the execution number based on the item “less than threshold (OK), previous N / A” in the corresponding number of times (S18). For example, in the second case, the execution number is determined by subtracting 3 from the current execution number.
  • the drive processing unit 102 determines whether or not the number counter is an initial value (first time) (S19). When the number counter is the initial value (S19: YES), the drive processing unit 102 is based on the contents (the first time, the item whose implementation result is equal to or greater than the threshold (N / A)) indicated in the initial calibration matrix 72. In addition, an execution number obtained by adding a predetermined number to the executed number is set as the next condition (S20).
  • the drive processing unit 102 determines whether or not the previous time is OK (S21). When it is the last time OK (S21: YES), the drive processing unit 102 determines the execution number based on the item “above threshold (N / A), last time OK” at the corresponding number of times (S22). For example, in the case of the second time, the execution number is determined by adding 3 to the current execution number. If the previous time is not OK (S21: NO), the drive processing unit 102 determines an execution number based on the item “above threshold (N / A), previous N / A” at the corresponding number of times (S23). For example, in the case of the second time, the execution number is determined by adding 3 to the current execution number.
  • the drive processing unit 102 drives the LED 20 under the light emission conditions of the determined number (S24).
  • the drive processing unit 102 increments the number counter (S25), and determines whether or not the number counter is a predetermined value (for example, the seventh time when performing up to the sixth time) (S26).
  • the drive processing unit 102 If the number counter is not a predetermined value (S26: NO), the drive processing unit 102 returns the process to S12 and continues the initial calibration process. When the number counter is a predetermined value (S26: YES), the drive processing unit 102 ends the initial calibration process.
  • the drive processing unit 102 performs sequential calibration processing with reference to the sequential calibration matrix 73 at a predetermined cycle such as a 1 second cycle (S4).
  • the control unit 10 determines the presence / absence of an attachment state in which the user attaches the electronic device 1 based on the presence / absence of a sudden change in the value detected by the optical sensor 30 (S5).
  • the control unit 10 determines that the device is in the attached state. While the attachment state is maintained (S5: YES), the control unit 10 returns the process to S4 and sequentially performs the calibration process at a predetermined cycle.
  • FIG. 7 is a flowchart illustrating a sequential calibration process.
  • the drive processing unit 102 drives the LED 20 under the light emission conditions currently determined, and detects the reflected light with the optical sensor 30 (S30).
  • the sensor value acquisition processing unit 101 stores the detected reflected light value (output value of the optical sensor 30) in the storage unit 70 as acquisition data 74.
  • the sensor value acquisition processing unit 101 calculates the average value of the output values of the optical sensor 30 based on the acquisition data 74 stored in the storage unit 70 (S31).
  • the light emission conditions determined in the current state in S30 are the light emission conditions determined in the initial calibration process in the first case of the sequential calibration process.
  • the sequential calibration process is performed after the initial calibration process, the light emission conditions are determined by the latest sequential calibration process.
  • the drive processing unit 102 acquires the current light emission condition (S32), and sequentially refers to the calibration matrix 73 on the basis of the acquired current light emission condition and the calculated average value of the photosensors. It is determined which of the first to seventh cases is applicable (S33 to S38).
  • the drive processing unit 102 determines in order from the first case to the sixth case whether or not the current light emission condition and the calculated average value of the photosensor are true (S33 to S38). ). And when it is not applicable in the sixth case (S38: NO), it is assumed that it is the seventh case.
  • the drive processing unit 102 uses the sequential calibration matrix 73 as a light emission condition for doubling the light emission time length while keeping the current value at 20 mA (S39). .
  • the drive processing unit 102 sets light emission conditions based on the sequential calibration matrix 73, with a current value of 20 mA and a light emission time length as it is (S40).
  • the drive processing unit 102 sets light emission conditions for doubling the light emission time length while keeping the current value at 15 mA based on the sequential calibration matrix 73 (S41). ).
  • the drive processing unit 102 sets the light emission condition such that the current value is doubled and the light emission time length remains unchanged (S42).
  • the drive processing unit 102 refers to the light emission condition numbers arranged in order of the light emission amount in the light emission condition table 71, and subtracts 1 from the current light emission condition number as the light emission condition. (S43).
  • the drive processing unit 102 refers to the light emission condition numbers arranged in order of the light emission amount in the light emission condition table 71, and adds the current light emission condition number to 1 as the light emission condition. (S44).
  • the drive processing unit 102 keeps the current light emission conditions without changing the light emission conditions (S45).
  • the electronic device 1 includes the LED 20, the optical sensor 30, the sensor value acquisition processing unit 101, the drive processing unit 102, and the pulse rate calculation unit 103.
  • the sensor value acquisition processing unit 101 acquires the amount of reflected light from the LED 20.
  • the drive processing unit 102 drives the LED 20 by adjusting at least one of the light emission intensity of the LED 20 and the light emission time length per unit time based on the obtained reflected light amount.
  • the light emission condition of the LED 20 is adjusted in response to the case where the amount of light absorbed by hemoglobin in the blood increases due to the user's exercise or the like, and the amount of reflected light decreases. For this reason, the electronic device 1 can obtain a sufficient amount of reflected light, and can accurately measure changes in the amount of reflected light and improve the measurement accuracy of the pulse.
  • each component of the illustrated electronic device 1 does not necessarily need to be physically configured as illustrated.
  • the specific form of distribution / integration of each device is not limited to that shown in the figure, and all or a part thereof may be functionally or physically distributed or arbitrarily distributed in arbitrary units according to various loads or usage conditions. Can be integrated and configured.
  • control unit 10 may be executed entirely or arbitrarily on a CPU (or a microcomputer such as an MPU or MCU (Micro Controller Unit)).
  • various processing functions may be executed in whole or in any part on a program that is analyzed and executed by a CPU (or a microcomputer such as an MPU or MCU) or hardware based on wired logic. Needless to say, it is good.
  • the program 76 may not be stored in the storage unit 70.
  • the program 76 stored in a storage medium readable by the control unit 10 may be read and executed.
  • the storage medium readable by the control unit 10 corresponds to, for example, a portable recording medium such as a CD-ROM or DVD disk, a USB (Universal Serial Bus) memory, a semiconductor memory such as a flash memory, a hard disk drive, or the like.
  • the program 76 may be stored in a device connected to a public line, the Internet, a LAN, or the like, and the control unit 10 may read and execute the program 76 therefrom.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Cardiology (AREA)
  • Pathology (AREA)
  • Medical Informatics (AREA)
  • Physiology (AREA)
  • Biophysics (AREA)
  • Signal Processing (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Physics & Mathematics (AREA)
  • Molecular Biology (AREA)
  • Surgery (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Measuring Pulse, Heart Rate, Blood Pressure Or Blood Flow (AREA)

Abstract

An electronic device having a light-emission unit, a light-reception unit, a pulse rate calculation unit, and a drive unit. The pulse rate calculation unit calculates the pulse rate of a user, on the basis of change in reflected light amounts obtained when the light-reception unit receives reflected light from light emitted by the light-emission unit on to the user. The drive unit adjusts at least either the light-emission intensity or light-emission time length per unit time, of the light-emission unit, on the basis of the amount of reflected light.

Description

電子機器および発光制御プログラムElectronic device and light emission control program
 本発明の実施形態は、電子機器および発光制御プログラムに関する。 Embodiments described herein relate generally to an electronic device and a light emission control program.
 従来、脈拍を計測する電子機器を被験者(利用者)に装着し、利用者の脈拍数を計測することが行われている。この電子機器では、利用者の生体(皮膚など)に対して光を発光し、光の反射光量の変化推移をもとに利用者の脈拍数を測定する。 Conventionally, an electronic device for measuring a pulse is attached to a subject (user) and the pulse rate of the user is measured. In this electronic device, light is emitted to a user's living body (skin and the like), and the user's pulse rate is measured based on a change in the amount of reflected light.
特開2014-212796号公報Japanese Patent Application Laid-Open No. 2014-212796
 しかしながら、上記の従来技術では、利用者の運動状態などにより血流量が変化した場合に反射光量が減ることで、脈拍数の測定精度が低減する場合がある。例えば、利用者が運動中の場合には、血流量が増加して血液中のヘモグロビンによる光の吸収量が上がり、反射光量が減ることがある。このような反射光量の減少が生じた場合には、反射光量の変化推移を正確に捉えることが困難となり、脈拍数の測定精度が低減する。 However, in the above-described conventional technology, the measurement accuracy of the pulse rate may be reduced by reducing the amount of reflected light when the blood flow changes due to the user's exercise state or the like. For example, when the user is exercising, the blood flow volume increases, the amount of light absorbed by hemoglobin in the blood increases, and the amount of reflected light may decrease. When such a decrease in the amount of reflected light occurs, it is difficult to accurately grasp the change in the amount of reflected light, and the pulse rate measurement accuracy is reduced.
 1つの側面では、脈拍の測定精度を向上させることができる電子機器および発光制御プログラムを提供することを目的とする。 An object of one aspect of the present invention is to provide an electronic device and a light emission control program that can improve pulse measurement accuracy.
 第1の案では、電子機器は、発光部と、受光部と、脈拍算出部と、駆動部とを有する。脈拍算出部は、利用者に対して発光部が発光した光の反射光を受光部が受光して得られる反射光量の変化推移をもとに、利用者の脈拍を算出する。駆動部は、反射光量に基づいて、発光部の発光強度および単位時間あたりの発光時間長の少なくとも一方を調整する。 In the first proposal, the electronic device includes a light emitting unit, a light receiving unit, a pulse calculating unit, and a driving unit. The pulse calculating unit calculates the user's pulse based on the change transition of the reflected light amount obtained by the light receiving unit receiving the reflected light of the light emitted from the light emitting unit. The drive unit adjusts at least one of the light emission intensity of the light emitting unit and the light emission time length per unit time based on the amount of reflected light.
 本発明の1実施態様によれば、脈拍の測定精度を向上させることができる。 According to one embodiment of the present invention, pulse measurement accuracy can be improved.
図1は、実施形態にかかる電子機器の構成例を示すブロック図である。FIG. 1 is a block diagram illustrating a configuration example of an electronic device according to the embodiment. 図2は、発光条件テーブルを説明する説明図である。FIG. 2 is an explanatory diagram for explaining the light emission condition table. 図3は、初期キャリブレーションマトリクスを説明する説明図である。FIG. 3 is an explanatory diagram for explaining an initial calibration matrix. 図4は、逐次キャリブレーションマトリクスを説明する説明図である。FIG. 4 is an explanatory diagram for explaining the sequential calibration matrix. 図5は、実施形態にかかる電子機器の動作例を示すフローチャートである。FIG. 5 is a flowchart illustrating an operation example of the electronic apparatus according to the embodiment. 図6は、初期キャリブレーション処理を例示するフローチャートである。FIG. 6 is a flowchart illustrating the initial calibration process. 図7は、逐次キャリブレーション処理を例示するフローチャートである。FIG. 7 is a flowchart illustrating the sequential calibration process.
 以下、図面を参照して、実施形態にかかる電子機器および発光制御プログラムを説明する。実施形態において同一の機能を有する構成には同一の符号を付し、重複する説明は省略する。なお、以下の実施形態で説明する電子機器および発光制御プログラムは、一例を示すに過ぎず、実施形態を限定するものではない。また、以下の実施形態は、矛盾しない範囲内で適宜組みあわせてもよい。 Hereinafter, an electronic device and a light emission control program according to the embodiment will be described with reference to the drawings. In the embodiment, configurations having the same functions are denoted by the same reference numerals, and redundant description is omitted. In addition, the electronic device and light emission control program which are demonstrated by the following embodiment show only an example, and do not limit embodiment. Further, the following embodiments may be appropriately combined within a consistent range.
 図1は、実施形態にかかる電子機器1の構成例を示すブロック図である。図1に例示する電子機器1は、例えば、日常生活における脈拍が計測される利用者が装着するコンピュータである。電子機器1は、例えば、腕時計型、バッチ型およびタグ型等の端末であり、利用者に関するデータを取得する。なお、利用者は、脈拍の測定対象となる被験者であり、例えば、現場の作業者、リハビリを受ける患者、トレーニングジムの利用者などである。 FIG. 1 is a block diagram illustrating a configuration example of an electronic device 1 according to the embodiment. An electronic device 1 illustrated in FIG. 1 is, for example, a computer worn by a user who measures a pulse in daily life. The electronic device 1 is, for example, a wristwatch-type, batch-type, or tag-type terminal, and acquires data related to a user. The user is a subject to be measured for pulse, for example, an on-site worker, a patient undergoing rehabilitation, a training gym user, or the like.
 電子機器1は、取得したデータを外部機器2に送信する。外部機器2には、スマートフォン、パーソナルコンピュータ、サーバ装置などを適用できる。本実施形態では、外部機器2はBLE(Bluetooth(登録商標) Low Energy)を介して電子機器1と相互に通信可能に接続された端末装置であるものとする。なお、電子機器1が取得したデータの出力は、外部機器2を介するものに限定しない。例えば、電子機器1に設けられたLCD(Liquid Crystal Display)などの表示デバイス(図示しない)への表示出力であってもよい。 The electronic device 1 transmits the acquired data to the external device 2. A smart phone, a personal computer, a server device, or the like can be applied to the external device 2. In the present embodiment, it is assumed that the external device 2 is a terminal device connected to the electronic device 1 through a BLE (Bluetooth (registered trademark) Low Energy) so as to be able to communicate with each other. Note that the output of data acquired by the electronic device 1 is not limited to that via the external device 2. For example, it may be a display output to a display device (not shown) such as an LCD (Liquid Crystal Display) provided in the electronic apparatus 1.
 図1に示すように、電子機器1は、制御部10、LED20(Light Emitting Diode)、光センサ30、加速度センサ40、計時部50、通信部60および記憶部70を有する。 As shown in FIG. 1, the electronic device 1 includes a control unit 10, an LED 20 (Light Emitting Diode), an optical sensor 30, an acceleration sensor 40, a timer unit 50, a communication unit 60, and a storage unit 70.
 制御部10は、電子機器1の動作を制御する。例えば、制御部10は、CPU(Central Processing Unit)やMPU(Micro-Processing Unit)等のハードウェアデバイスであって、記憶部70に記憶されているプログラム76をRAM(Random Access Memory)の作業領域に展開し、順次実行する。制御部10は、プログラム76を実行することで、センサ値取得処理部101、駆動処理部102、脈拍数算出部103および通知部104としての機能を有する(詳細は後述する)。なお、制御部10は、例えば、ASIC(Application Specific Integrated Circuit)やFPGA(Field Programmable Gate Array)等の集積回路により実現されるようにしてもよい。 Control unit 10 controls the operation of electronic device 1. For example, the control unit 10 is a hardware device such as a CPU (Central Processing Unit) or MPU (Micro-Processing Unit), and the program 76 stored in the storage unit 70 is a work area of a RAM (Random Access Memory). And execute sequentially. The control unit 10 has functions as a sensor value acquisition processing unit 101, a drive processing unit 102, a pulse rate calculation unit 103, and a notification unit 104 by executing the program 76 (details will be described later). The control unit 10 may be realized by an integrated circuit such as ASIC (Application Specific Integrated Circuit) or FPGA (Field Programmable Gate Array).
 LED20は、制御部10の制御のもと、利用者の皮膚などの生体に対して光を発光する発光部である。光センサ30は、LED20の光が利用者より反射する反射光を受光する受光部である。光センサ30が受光した光の反射光量を示す検出値は制御部10に出力される。光センサ30が受光して得られる利用者からの反射光量は、利用者の血液の脈動によって生じる血流量の変化、すなわち利用者の脈拍を示す脈波に対応して変化する。制御部10では、脈波に対応して変化する反射光量の変化推移を解析することで、例えば利用者の脈拍数を算出することができる。 The LED 20 is a light emitting unit that emits light to a living body such as a user's skin under the control of the control unit 10. The optical sensor 30 is a light receiving unit that receives reflected light reflected by the user from the LED 20. A detection value indicating the amount of reflected light received by the optical sensor 30 is output to the control unit 10. The amount of reflected light from the user obtained by receiving light by the optical sensor 30 changes in response to a change in blood flow caused by the pulsation of the user's blood, that is, a pulse wave indicating the user's pulse. The control unit 10 can calculate the pulse rate of the user, for example, by analyzing the change transition of the reflected light amount that changes corresponding to the pulse wave.
 加速度センサ40は、加速度を検出するデバイスである。例えば、加速度センサ40は、互いに直交するX軸方向、Y軸方向およびZ軸方向の3軸方向の加速度を検出する3軸加速度センサである。加速度センサ40は、検出した加速度データを制御部10に出力する。加速度センサ40における加速度の検出方式には、半導体式を始め、機械式や光学式などの任意の方式を採用できる。なお、本実施形態では、加速度センサ40は、3軸方向の加速度を測定する3軸加速度センサとしたが、重力方向の加速度を検出するG(gravitation)センサとしてもよい。 The acceleration sensor 40 is a device that detects acceleration. For example, the acceleration sensor 40 is a three-axis acceleration sensor that detects accelerations in the three-axis directions of the X-axis direction, the Y-axis direction, and the Z-axis direction that are orthogonal to each other. The acceleration sensor 40 outputs the detected acceleration data to the control unit 10. As an acceleration detection method in the acceleration sensor 40, any method such as a semiconductor method, a mechanical method, or an optical method can be adopted. In the present embodiment, the acceleration sensor 40 is a triaxial acceleration sensor that measures acceleration in the triaxial direction, but may be a G (gravation) sensor that detects acceleration in the gravitational direction.
 計時部50は、RTC(Real Time Clock)などであり、時刻を計時する。計時部50は、計時した時刻を示す時刻データを制御部10に出力する。 The timekeeping unit 50 is an RTC (Real Time Clock) or the like and measures time. The time measuring unit 50 outputs time data indicating the time measured to the control unit 10.
 通信部60は、制御部10の制御のもとでBLEや無線LAN(Local Area Network)などの通信規格で無線通信を行う通信デバイスである。例えば、通信部60は、制御部10の制御のもと、BLEを介して外部機器2と相互に通信する。 The communication unit 60 is a communication device that performs wireless communication under a communication standard such as BLE or wireless LAN (Local Area Network) under the control of the control unit 10. For example, the communication unit 60 communicates with the external device 2 via BLE under the control of the control unit 10.
 記憶部70は、例えば、RAM、フラッシュメモリ(Flash Memory)などの半導体メモリ素子やHDD(Hard Disk Drive)などの記憶装置によって実現される。記憶部70は、光センサ30および加速度センサ40より取得したデータ、計時部50が計時した時刻データ、制御部10での処理に用いるプログラムや設定データなど、各種情報を記憶する。具体的には、記憶部70は、発光条件テーブル71、初期キャリブレーションマトリクス72、逐次キャリブレーションマトリクス73、取得データ74、カウンタ75およびプログラム76を記憶する。 The storage unit 70 is realized by, for example, a semiconductor memory element such as a RAM or a flash memory, or a storage device such as an HDD (Hard Disk Drive). The storage unit 70 stores various information such as data acquired from the optical sensor 30 and the acceleration sensor 40, time data measured by the time measuring unit 50, programs used for processing in the control unit 10, and setting data. Specifically, the storage unit 70 stores a light emission condition table 71, an initial calibration matrix 72, a sequential calibration matrix 73, acquired data 74, a counter 75, and a program 76.
 発光条件テーブル71は、脈拍測定時におけるLED20の発光条件を示すテーブルである。この発光条件は、単位時間(例えば1回の発光)あたりのLED20の発光量に相当するものであり、LED20の電流値と、単位時間(例えば1回の発光)あたり発光時間長との組み合わせである。 The light emission condition table 71 is a table showing the light emission conditions of the LED 20 at the time of pulse measurement. This light emission condition corresponds to the light emission amount of the LED 20 per unit time (for example, one light emission), and is a combination of the current value of the LED 20 and the light emission time length per unit time (for example, one light emission). is there.
 例えば、LED20では、発光にかかる電流値の増加に応じて発光強度も増加する関係がある。よって、LED20の電流値は発光強度に対応している。したがって、LED20の電流値と発光時間長とを掛けあわせたものは、1回あたりのLED20の発光量に対応する。 For example, in the LED 20, there is a relationship in which the light emission intensity increases as the current value for light emission increases. Therefore, the current value of the LED 20 corresponds to the emission intensity. Accordingly, the product of the current value of the LED 20 and the light emission time length corresponds to the light emission amount of the LED 20 per time.
 図2は、発光条件テーブル71を説明する説明図である。図2に示すように、発光条件テーブル71では、発光条件番号1~24におけるLED20で設定可能な発光条件ごとに、1回の測定あたりのLED20の電流値および発光時間長が示されている。 FIG. 2 is an explanatory diagram for explaining the light emission condition table 71. As shown in FIG. 2, the light emission condition table 71 indicates the current value and light emission time length of the LED 20 per measurement for each light emission condition that can be set by the LED 20 in the light emission condition numbers 1 to 24.
 具体的には、電流値については、5mA~20mAの範囲において5mA刻みで4段階ある。また、発光時間長については、50μsec~300μsecの範囲において50μsec刻みで6段階ある。発光条件テーブル71では、例示した4段階の電流値と、6段階の発光時間長との組み合わせにおける24通りの発光条件について、光センサ30により検出された反射光量が大きい順に発光条件番号1~24を付して管理している。 Specifically, the current value has 4 steps in 5 mA increments in the range of 5 mA to 20 mA. Further, the light emission time length is in six stages in increments of 50 μsec in the range of 50 μsec to 300 μsec. In the light emission condition table 71, light emission condition numbers 1 to 24 in descending order of the amount of reflected light detected by the optical sensor 30 for the 24 light emission conditions in the combination of the four current values illustrated and the six light emission time lengths. Is attached and managed.
 初期キャリブレーションマトリクス72は、利用者が電子機器1を身体に取り付けた場合などの初期設定においてLED20の発光条件を決める際に行われる初期キャリブレーション処理の内容を示すデータである。 The initial calibration matrix 72 is data indicating the contents of the initial calibration process performed when determining the light emission condition of the LED 20 in the initial setting such as when the user attaches the electronic device 1 to the body.
 図3は、初期キャリブレーションマトリクス72を説明する説明図である。図3に示すように、初期キャリブレーションマトリクス72は、「回数」、「実施番号」、「実施結果が閾値未満(OK)」、「実施結果が閾値以上(N/A(Not Applicable))」の項目を有する。また、2回目以降の「実施結果が閾値未満(OK)」、「実施結果が閾値以上(N/A)」については、「前回OK」、「前回N/A」の項目を有する。 FIG. 3 is an explanatory diagram for explaining the initial calibration matrix 72. As shown in FIG. 3, the initial calibration matrix 72 includes “number of times”, “execution number”, “execution result is less than threshold (OK)”, and “execution result is greater than or equal to threshold (N / A (Not Applicable))”. Have items. In addition, “execution result is less than threshold (OK)” and “execution result is greater than or equal to threshold (N / A)” for the second and subsequent times have items of “previous OK” and “previous N / A”.
 「回数」は、初期キャリブレーション処理においてLED20を発光させて光センサ30により検出された反射光量が所定の条件を満たすか否かを試行する試行回数を示す項目である。初期キャリブレーションマトリクス72の例では、1回目から順に6回目までの試行順が示されている。 “Number of times” is an item indicating the number of trials in which the LED 20 is caused to emit light in the initial calibration process and whether or not the amount of reflected light detected by the optical sensor 30 satisfies a predetermined condition. In the example of the initial calibration matrix 72, the trial order from the first time to the sixth time is shown.
 「実施番号」は、試行順においてLED20の発光条件として実施する番号(発光条件番号)を示す項目である。例えば、1回目の試行順では、発光条件番号のNo.12を実施することが示されている。また、2回目以降では、前回に求めた実施番号を実施することが示されている。 “Performance number” is an item indicating a number (light emission condition number) to be implemented as the light emission condition of the LED 20 in the trial order. For example, in the first trial order, the emission condition number No. 12 is shown to implement. In the second and subsequent times, it is shown that the execution number obtained last time is executed.
 「実施結果が閾値未満(OK)」は、試行順においてLED20を発光させて光センサ30により検出された反射光量が所定の条件を満たす(OK)場合の実施番号を求める式を示す項目である。より具体的には、試行順において光センサ30により検出された反射光量が閾値未満であることを(OK)とし、その条件を満たす場合に実施番号を求める式が示されている。例えば、試行順が1回目の場合、今回の試行順の実施番号(No.12)から6を引いて次の実施番号を求めることが示されている。なお、2回目以降については、前回OKの場合の式と、前回N/Aの場合の式とが示されている。例えば、試行順が2回目における前回OKおよび前回N/Aともに、今回の試行順の実施番号から3を引いて次の実施番号を求めることが示されている。 “The execution result is less than the threshold (OK)” is an item indicating an expression for obtaining an execution number when the LED 20 emits light in the trial order and the amount of reflected light detected by the optical sensor 30 satisfies a predetermined condition (OK). . More specifically, an equation for obtaining an execution number when the reflected light quantity detected by the optical sensor 30 in the trial order is less than a threshold value (OK) and the condition is satisfied is shown. For example, when the trial order is the first time, it is shown that the next execution number is obtained by subtracting 6 from the execution number (No. 12) of the current trial order. For the second and subsequent times, the formula for the previous OK and the formula for the previous N / A are shown. For example, both the previous OK and the previous N / A in the second trial order indicate that the next execution number is obtained by subtracting 3 from the execution number in the current trial order.
 「実施結果が閾値以上(N/A)」は、試行順においてLED20を発光させて光センサ30により検出された反射光量が所定の条件を満たさない(N/A)場合の実施番号を求める式を示す項目である。より具体的には、試行順において光センサ30により検出された反射光量が閾値未満であることを(OK)とし、その条件を満たさない場合(N/A)に実施番号を求める式が示されている。例えば、試行順が1回目の場合、今回の試行順の実施番号(No.12)に6を足して次の実施番号を求めることが示されている。なお、2回目以降については、前回OKの場合の式と、前回N/Aの場合の式とが示されている。例えば、試行順が3回目において前回OKの場合、今回の試行順の実施番号から1を引いて次の実施番号を求めることが示されている。また、試行順が3回目において前回N/Aの場合、今回の試行順の実施番号に1を足して次の実施番号を求めることが示されている。 “The execution result is equal to or greater than the threshold (N / A)” is an expression for obtaining an execution number when the amount of reflected light detected by the optical sensor 30 does not satisfy a predetermined condition (N / A) by causing the LED 20 to emit light in the trial order. It is an item indicating. More specifically, when the amount of reflected light detected by the optical sensor 30 in the trial order is less than the threshold value (OK), an equation for obtaining the execution number is shown when the condition is not satisfied (N / A). ing. For example, when the trial order is the first time, it is shown that the next execution number is obtained by adding 6 to the execution number (No. 12) of the current trial order. For the second and subsequent times, the formula for the previous OK and the formula for the previous N / A are shown. For example, when the trial order is the third time in the previous trial, it is indicated that the next execution number is obtained by subtracting 1 from the execution number of the current trial order. In addition, when the trial order is the previous N / A at the third time, it is indicated that the next execution number is obtained by adding 1 to the execution number of the current trial order.
 制御部10では、初期キャリブレーションマトリクス72をもとに初期キャリブレーション処理を行い、例えば6回目まで試行して求めた実施番号をLED20における発光条件として設定する。なお、図3に例示した初期キャリブレーションマトリクス72は、一例であり、特にこの例に限定するものではない。 The control unit 10 performs an initial calibration process based on the initial calibration matrix 72, and sets, for example, an execution number obtained through trials up to the sixth time as a light emission condition in the LED 20. Note that the initial calibration matrix 72 illustrated in FIG. 3 is an example, and is not particularly limited to this example.
 逐次キャリブレーションマトリクス73は、初期キャリブレーション処理を行った後に、逐次LED20の発光条件を決める際に行われる逐次キャリブレーション処理の内容を示すデータである。この逐次キャリブレーション処理は、例えば利用者の脈拍測定を行っている際に所定の周期(例えば1秒周期)で行われる。また、逐次キャリブレーション処理は、電子機器1の起動直後などに行われてもよい。 The sequential calibration matrix 73 is data indicating the content of the sequential calibration process performed when the light emission condition of the sequential LED 20 is determined after performing the initial calibration process. This sequential calibration process is performed, for example, at a predetermined cycle (for example, 1 second cycle) when measuring a user's pulse. Further, the sequential calibration process may be performed immediately after the electronic device 1 is activated.
 図4は、逐次キャリブレーションマトリクス73を説明する説明図である。図4に示すように、逐次キャリブレーションマトリクス73は、「ケース」、「現状の発光条件」、「変更後の発光条件」の項目を有する。「ケース」は、「現状の発光条件」で分類される7つのケースを示す項目である。 FIG. 4 is an explanatory diagram for explaining the sequential calibration matrix 73. As shown in FIG. 4, the sequential calibration matrix 73 includes items of “case”, “current light emission condition”, and “changed light emission condition”. “Case” is an item indicating seven cases classified by “current light emission conditions”.
 「現状の発光条件」は、LED20における現在の発光条件(「第1の条件」)と、その発光条件において光センサ30により検出された反射光量の条件(「第2の条件」)とを示す項目である。具体的には、「第1の条件」では、LED20の電流値についての条件が示されている。また、「第2の条件」では、光センサ30により検出された光センサ平均値(反射光量)についての条件が示されている。逐次キャリブレーションマトリクス73では、上述した「第1の条件」と「第2の条件」の組み合わせで7つのケースに分類している。 The “current light emission condition” indicates a current light emission condition (“first condition”) in the LED 20 and a reflected light amount condition (“second condition”) detected by the optical sensor 30 under the light emission condition. It is an item. Specifically, the “first condition” indicates a condition for the current value of the LED 20. In the “second condition”, a condition for the average value of the optical sensor (the amount of reflected light) detected by the optical sensor 30 is shown. In the sequential calibration matrix 73, seven cases are classified according to the combination of the “first condition” and the “second condition” described above.
 具体的には、第1のケースでは、「電流値が20mA」および「光センサ平均値<(光センサ上限値/2)」を満たすケースとしている。また、第2のケースでは、「電流値が15mA」および「光センサ平均値>=(光センサ上限値/2)かつ光センサ値<(光センサ上限値/1.5)」を満たすケースとしている。また、第3のケースでは、「電流値が15mA」および「光センサ平均値<(光センサ上限値/2)」を満たすケースとしている。また、第4のケースでは、「電流値が10mA以下」および「光センサ平均値<(光センサ上限値/2)」を満たすケースとしている。また、第5のケースでは、「電流値が10mA以下」および「光センサ上限値-光センサ平均値>1000(所定値)」を満たすケースとしている。また、第6のケースでは、「光センサ平均値>光センサ上限値」を満たすケースとしている。また、第7のケースでは、上記の条件以外のケースとしている。 Specifically, in the first case, “current value is 20 mA” and “light sensor average value <(light sensor upper limit value / 2)” are satisfied. In the second case, “current value is 15 mA” and “optical sensor average value> = (photosensor upper limit value / 2) and photosensor value <(photosensor upper limit value / 1.5)” are satisfied. Yes. In the third case, “current value is 15 mA” and “photosensor average value <(photosensor upper limit value / 2)” are satisfied. Further, in the fourth case, “current value is 10 mA or less” and “photosensor average value <(photosensor upper limit value / 2)” are satisfied. In the fifth case, “current value is 10 mA or less” and “optical sensor upper limit value−optical sensor average value> 1000 (predetermined value)” are satisfied. In the sixth case, “light sensor average value> light sensor upper limit value” is satisfied. Further, in the seventh case, cases other than the above-mentioned conditions are set.
 「変更後の発光条件」は、上述した各ケースの場合において変更する発光条件を示す項目である。具体的には、現在の発光条件番号から変更するための演算式(発光条件番号-1または発光条件番号+1など)を示している。また、電流値および発光時間長を個別に指定する場合には、「第1の条件」にLED20の電流値を、「第2の条件」にLED20の発光時間長を示している。 “The changed light emission condition” is an item indicating the light emission condition to be changed in each case described above. Specifically, an arithmetic expression (light emission condition number −1 or light emission condition number +1) for changing from the current light emission condition number is shown. Further, when individually specifying the current value and the light emission time length, the current value of the LED 20 is indicated in the “first condition”, and the light emission time length of the LED 20 is indicated in the “second condition”.
 例えば、第1のケースでは、現在の発光条件が「電流値が20mA」および「光センサ平均値<(光センサ上限値/2)」であり、反射光量について若干の減少がある。したがって、第1のケースにおける「変更後の発光条件」では、電流値は上限のままとし、発光時間長を2倍として、発光量を増やすようにしている。 For example, in the first case, the current light emission conditions are “current value is 20 mA” and “light sensor average value <(light sensor upper limit value / 2)”, and there is a slight decrease in the amount of reflected light. Therefore, in the “changed light emission condition” in the first case, the current value remains at the upper limit, the light emission time length is doubled, and the light emission amount is increased.
 また、第2のケースでは、現在の発光条件が「電流値が15mA」および「光センサ平均値>=(光センサ上限値/2)かつ光センサ値<(光センサ上限値/1.5)」であり、反射光量について減少がある。したがって、第2のケースにおける「変更後の発光条件」では、電流値を上限(20mA)とし、発光時間長をそのままとして、発光量を増やすようにしている。 In the second case, the current light emission conditions are “current value is 15 mA” and “average value of optical sensor> = (optical sensor upper limit value / 2) and optical sensor value <(optical sensor upper limit value / 1.5). There is a decrease in the amount of reflected light. Therefore, in the “changed emission condition” in the second case, the current value is set to the upper limit (20 mA), the emission time length is left as it is, and the emission amount is increased.
 また、第3のケースでは、現在の発光条件が「電流値が15mA」および「光センサ平均値<(光センサ上限値/2)」であり、反射光量について若干の減少がある。なお、電流値が同じである第2のケースと比較すると、第3のケースでは、反射光量に基づいた調整幅は所定の閾値よりも小さいものとする。したがって、第3のケースにおける「変更後の発光条件」では、電流値をそのまま(15mA)とし、発光時間長を2倍として、発光量を増やすようにしている。ただし、発光時間長が上限(例えば300μsec)である場合には、電流値を一段上げる(例えば20mA)ものとする。このように調整幅が小さい場合には、細かく調整できる(本実施形態では6段階)発光時間長で調整を行うようにしてもよい。 In the third case, the current light emission conditions are “current value is 15 mA” and “photosensor average value <(photosensor upper limit value / 2)”, and there is a slight decrease in the amount of reflected light. Note that in the third case, the adjustment width based on the amount of reflected light is smaller than a predetermined threshold compared to the second case where the current values are the same. Therefore, in the “changed light emission condition” in the third case, the current value is kept as it is (15 mA), the light emission time length is doubled, and the light emission amount is increased. However, when the light emission time length is the upper limit (for example, 300 μsec), the current value is increased by one level (for example, 20 mA). When the adjustment range is small as described above, fine adjustment (six levels in the present embodiment) may be performed with the light emission time length.
 また、第4のケースでは、現在の発光条件が「電流値が10mA以下」および「光センサ平均値<(光センサ上限値/2)」であり、反射光量について減少がある。したがって、第4のケースにおける「変更後の発光条件」では、電流値を2倍とし、発光時間長はそのままとして、発光量を増やすようにしている。 In the fourth case, the current light emission conditions are “current value is 10 mA or less” and “light sensor average value <(light sensor upper limit value / 2)”, and the amount of reflected light is reduced. Therefore, in the “changed light emission condition” in the fourth case, the current value is doubled, the light emission time length is left as it is, and the light emission amount is increased.
 また、第5のケースでは、「電流値が10mA以下」および「光センサ上限値-光センサ平均値>1000(所定値)」であり、反射光量について減少がある。したがって、第5のケースにおける「変更後の発光条件」では、発光量順に並ぶ発光条件番号における現在の発光条件番号から1を引いた発光条件番号とし、発光量を増やすようにしている。 In the fifth case, “the current value is 10 mA or less” and “the optical sensor upper limit value−the optical sensor average value> 1000 (predetermined value)”, and there is a decrease in the amount of reflected light. Therefore, in the “changed light emission condition” in the fifth case, the light emission condition number is increased by subtracting 1 from the current light emission condition number in the light emission condition numbers arranged in the order of the light emission quantity.
 また、第6のケースでは、「光センサ平均値>光センサ上限値」であり、反射光量が大きく、光センサ30で測りきれていない状態である。したがって、第6のケースにおける「変更後の発光条件」では、発光量順に並ぶ発光条件番号における現在の発光条件番号に1を足した発光条件番号とし、発光量を減らすようにしている。なお、第7のケースでは、十分な反射光量があることから、発光条件の変更を行うことなく、現状のままとしている。 In the sixth case, “optical sensor average value> optical sensor upper limit value”, the amount of reflected light is large, and the optical sensor 30 has not measured it. Therefore, in the “changed light emission condition” in the sixth case, the light emission condition number is reduced by adding 1 to the current light emission condition number in the light emission condition numbers arranged in order of the light emission quantity. In the seventh case, since there is a sufficient amount of reflected light, the current state is maintained without changing the light emission conditions.
 制御部10は、LED20における現在の発光条件と、光センサ30により検出された反射光量(例えば光センサ平均値)とをもとに逐次キャリブレーションマトリクス73を参照することで、上述した7つのケースの中のいずれかのケースに分類する。そして、制御部10は、7つのケースに応じてLED20の発光条件を調整する。すなわち、電子機器1では、利用者の運動などによって血液中のヘモグロビンによる光の吸収量が上がり、反射光量が減るケースに対応してLED20の発光条件を調整する。したがって、電子機器1では、十分な反射光量を得ることができ、反射光量の変化推移を正確に捉えて脈拍の測定精度を向上させることができる。 The control unit 10 sequentially refers to the calibration matrix 73 based on the current light emission condition of the LED 20 and the amount of reflected light detected by the optical sensor 30 (for example, the average value of the optical sensor), so that the seven cases described above. Into one of the cases. And the control part 10 adjusts the light emission conditions of LED20 according to seven cases. That is, in the electronic device 1, the light emission condition of the LED 20 is adjusted in response to a case where the amount of light absorbed by hemoglobin in the blood increases due to the user's exercise or the like and the amount of reflected light decreases. Therefore, the electronic device 1 can obtain a sufficient amount of reflected light, and can accurately detect changes in the amount of reflected light to improve pulse measurement accuracy.
 取得データ74は、制御部10が光センサ30および加速度センサ40より取得したデータである。制御部10は、光センサ30および加速度センサ40より取得したデータを時系列順に取得データ74として記憶部70に記憶する。 The acquisition data 74 is data acquired by the control unit 10 from the optical sensor 30 and the acceleration sensor 40. The control unit 10 stores the data acquired from the optical sensor 30 and the acceleration sensor 40 in the storage unit 70 as the acquisition data 74 in chronological order.
 例えば、制御部10は、LED20を発光させ、利用者より反射する反射光を光センサ30で受光して得られる反射光量についてのデータを取得データ74として記憶部70に記憶する。また、制御部10は、加速度センサ40より取得した加速度データを順次取得データ74として記憶部70に記憶する。 For example, the control unit 10 causes the LED 20 to emit light, and stores the data about the reflected light amount obtained by receiving the reflected light reflected from the user by the optical sensor 30 in the storage unit 70 as the acquisition data 74. Further, the control unit 10 sequentially stores the acceleration data acquired from the acceleration sensor 40 in the storage unit 70 as acquired data 74.
 制御部10は、時系列順に記憶された反射光量についての取得データ74をもとに、例えば利用者の脈拍数を算出する。また、制御部10は、時系列順に記憶された加速度についての取得データ74をもとに、利用者の運動強度、単位時間あたりの歩数および歩数変化量などの利用者の運動状態を取得する。 The control unit 10 calculates, for example, the pulse rate of the user based on the acquired data 74 regarding the amount of reflected light stored in chronological order. Further, the control unit 10 acquires the user's exercise state such as the user's exercise intensity, the number of steps per unit time, and the amount of change in the number of steps, based on the acquired data 74 regarding the acceleration stored in time series.
 カウンタ75は、種々の累積値を保持するカウンタである。例えば、カウンタ75は、各種処理を行った回数を示す回数カウンタを保持する。また、カウンタ75は、LED20の発光にかかる駆動時間についての累積値を保持してもよい。また、カウンタ75は、利用者の歩数をカウントした累積歩数を保持してもよい。 The counter 75 is a counter that holds various accumulated values. For example, the counter 75 holds a number counter indicating the number of times various processes have been performed. Further, the counter 75 may hold a cumulative value for the driving time required for the light emission of the LED 20. Further, the counter 75 may hold a cumulative number of steps obtained by counting the number of steps of the user.
 プログラム76は、制御部10が実行するプログラムデータである。制御部10は、プログラム76をRAMの作業領域に展開して順次実行することで、センサ値取得処理部101、駆動処理部102、脈拍数算出部103および通知部104としての機能を提供する。 The program 76 is program data executed by the control unit 10. The control unit 10 provides functions as the sensor value acquisition processing unit 101, the drive processing unit 102, the pulse rate calculation unit 103, and the notification unit 104 by developing the program 76 in the RAM work area and sequentially executing the program 76.
 センサ値取得処理部101は、光センサ30、加速度センサ40および計時部50において取得したデータについての各種処理を行う。具体的には、センサ値取得処理部101は、光センサ30および加速度センサ40より取得したデータを時系列順に取得データ74として記憶部70に記憶する処理を行う。また、センサ値取得処理部101は、計時部50が計時した時刻データをもとに、LED20の発光にかかる駆動時間を求める。センサ値取得処理部101は、得られた駆動時間をカウンタ75において累積値としてカウントする。 The sensor value acquisition processing unit 101 performs various processes on the data acquired by the optical sensor 30, the acceleration sensor 40, and the time measuring unit 50. Specifically, the sensor value acquisition processing unit 101 performs processing for storing data acquired from the optical sensor 30 and the acceleration sensor 40 in the storage unit 70 as the acquisition data 74 in time series order. Further, the sensor value acquisition processing unit 101 obtains a driving time required for light emission of the LED 20 based on the time data timed by the time measuring unit 50. The sensor value acquisition processing unit 101 counts the obtained drive time as a cumulative value in the counter 75.
 また、センサ値取得処理部101は、利用者の運動状態を示すデータを取得する。具体的には、センサ値取得処理部101は、時系列順に記憶された加速度についての取得データ74をもとに、利用者の単位時間あたりの歩数を取得する。一例として、センサ値取得処理部101は、10秒周期で歩数を取得し、得られた歩数をカウンタ75において累積歩数として保持する。カウンタ75では、10秒周期の周期ごとにカウントされた累積歩数を順次保持する。 Also, the sensor value acquisition processing unit 101 acquires data indicating the user's exercise state. Specifically, the sensor value acquisition processing unit 101 acquires the number of steps per unit time of the user based on the acquisition data 74 regarding acceleration stored in chronological order. As an example, the sensor value acquisition processing unit 101 acquires the number of steps in a cycle of 10 seconds, and stores the obtained number of steps as a cumulative number of steps in the counter 75. The counter 75 sequentially holds the accumulated number of steps counted every 10 second period.
 また、センサ値取得処理部101は、時系列順に記憶された加速度についての取得データ74をもとに、利用者の運動強度を取得する。具体的には、センサ値取得処理部101は、加速度より運動強度に換算する演算式を保持し、加速度データをこの演算式に代入することで運動強度を算出する。一例として、センサ値取得処理部101は、運動強度を1秒周期で算出し、10秒間の運動強度の平均値を求める。 Further, the sensor value acquisition processing unit 101 acquires the exercise intensity of the user based on the acquisition data 74 regarding acceleration stored in time series. Specifically, the sensor value acquisition processing unit 101 holds an arithmetic expression for converting from acceleration to exercise intensity, and calculates exercise intensity by substituting acceleration data into the arithmetic expression. As an example, the sensor value acquisition processing unit 101 calculates exercise intensity at a cycle of 1 second, and obtains an average value of exercise intensity for 10 seconds.
 駆動処理部102は、利用者の脈拍を測定する際などにおいて、各部を駆動する処理を行う。具体的には、駆動処理部102は、光センサ30により検出された反射光量をもとに、初期キャリブレーションマトリクス72を参照して初期キャリブレーション処理を行い、LED20の発光条件の初期設定を行う。次いで、駆動処理部102は、初期キャリブレーション処理により設定された発光条件でLED20を駆動する。また、駆動処理部102は、光センサ30により検出された反射光量をもとに、逐次キャリブレーションマトリクス73を参照して逐次キャリブレーション処理を行い、LED20の発光条件を逐次更新する。 The drive processing unit 102 performs a process of driving each unit when measuring the pulse of the user. Specifically, the drive processing unit 102 performs initial calibration processing with reference to the initial calibration matrix 72 based on the amount of reflected light detected by the optical sensor 30, and performs initial setting of the light emission conditions of the LED 20. . Next, the drive processing unit 102 drives the LED 20 under the light emission conditions set by the initial calibration process. In addition, the drive processing unit 102 sequentially performs a calibration process with reference to the sequential calibration matrix 73 based on the amount of reflected light detected by the optical sensor 30, and sequentially updates the light emission conditions of the LEDs 20.
 脈拍数算出部103は、時系列順に記憶された反射光量についての取得データ74をもとに、反射光量の変化推移を解析して利用者の脈拍数を算出する。例えば、脈拍数算出部103は、反射光量の変化推移より、ピークの時間間隔を単位時間、例えば、1分間あたりの値に換算することによって、脈拍数を算出する。 The pulse rate calculation unit 103 calculates the user's pulse rate by analyzing the change of the reflected light amount based on the acquired data 74 regarding the reflected light amount stored in chronological order. For example, the pulse rate calculation unit 103 calculates the pulse rate by converting the peak time interval into a unit time, for example, a value per minute, from the change in the amount of reflected light.
 通知部104は、脈拍数算出部103が算出した脈拍数の通知(出力)にかかる処理を行う。具体的には、通知部104は、脈拍数算出部103が算出した脈拍数を通信部60を介して外部機器2へ送信する。 The notification unit 104 performs processing related to notification (output) of the pulse rate calculated by the pulse rate calculation unit 103. Specifically, the notification unit 104 transmits the pulse rate calculated by the pulse rate calculation unit 103 to the external device 2 via the communication unit 60.
 図5は、実施形態にかかる電子機器1の動作例を示すフローチャートである。図5に示すように、電源投入や利用者が電子機器1を装着した際に処理が開始されると、駆動処理部102は、LED20および光センサ30を起動する(S1)。 FIG. 5 is a flowchart illustrating an operation example of the electronic apparatus 1 according to the embodiment. As shown in FIG. 5, when the process is started when the power is turned on or the user wears the electronic device 1, the drive processing unit 102 activates the LED 20 and the optical sensor 30 (S1).
 次いで、駆動処理部102は、LED20で設定可能な発光条件を順次試行して光センサ30により検出された反射光量を得る。次いで、駆動処理部102は、発光条件ごとの反射光量をもとに、反射光量が大きい順に発光条件番号1~24を付して発光条件の並べ替えを行い、反射光量が大きい順の発光条件テーブル71を生成する(S2)。次いで、駆動処理部102は、初期キャリブレーションマトリクス72を参照して初期キャリブレーション処理を行う(S3)。 Next, the drive processing unit 102 sequentially tries the light emission conditions that can be set by the LED 20 and obtains the amount of reflected light detected by the optical sensor 30. Next, the drive processing unit 102 rearranges the light emission conditions by assigning the light emission condition numbers 1 to 24 in descending order of the amount of reflected light based on the amount of reflected light for each light emission condition. A table 71 is generated (S2). Next, the drive processing unit 102 performs an initial calibration process with reference to the initial calibration matrix 72 (S3).
 図6は、初期キャリブレーション処理を例示するフローチャートである。図6に示すように、初期キャリブレーション処理が開始されると、駆動処理部102は、カウンタ75における回数カウンタを初期化(例えば回数カウンタ=1回目)する(S10)。 FIG. 6 is a flowchart illustrating the initial calibration process. As shown in FIG. 6, when the initial calibration process is started, the drive processing unit 102 initializes the number counter in the counter 75 (for example, the number counter = 1) (S10).
 次いで、駆動処理部102は、初期キャリブレーションマトリクス72をもとに、1回目の処理における実施番号として定められている所定番号(図3の例ではNo.12)の発光条件でLED20を駆動する(S11)。 Next, the drive processing unit 102 drives the LED 20 based on the initial calibration matrix 72 under the light emission condition of a predetermined number (No. 12 in the example of FIG. 3) determined as the execution number in the first process. (S11).
 次いで、センサ値取得処理部101は、LED20の発光による反射光(反射光量)を光センサ30で検知し、検知した値を取得データ74として記憶部70に記憶する(S12)。 Next, the sensor value acquisition processing unit 101 detects the reflected light (the amount of reflected light) due to the light emission of the LED 20 by the optical sensor 30, and stores the detected value in the storage unit 70 as acquisition data 74 (S12).
 次いで、駆動処理部102は、検知した反射光量が所定の条件を満たすか否か、すなわち実施結果(反射光量)が閾値未満(OK)であるか否かを判定する(S13)。 Next, the drive processing unit 102 determines whether or not the detected reflected light amount satisfies a predetermined condition, that is, whether or not the implementation result (reflected light amount) is less than a threshold value (OK) (S13).
 実施結果が閾値未満(OK)の場合(S13:YES)、駆動処理部102は、回数カウンタが初期値(1回目)であるか否かを判定する(S14)。回数カウンタが初期値である場合(S14:YES)、駆動処理部102は、初期キャリブレーションマトリクス72に示された内容(1回目、実施結果が閾値未満(OK)の項目)をもとに、実施した番号から所定数引いた実施番号を次回条件とする(S15)。 If the implementation result is less than the threshold (OK) (S13: YES), the drive processing unit 102 determines whether or not the number counter is the initial value (first time) (S14). When the number counter is an initial value (S14: YES), the drive processing unit 102, based on the contents shown in the initial calibration matrix 72 (the first time, the item whose execution result is less than the threshold (OK)), An execution number obtained by subtracting a predetermined number from the executed number is set as the next condition (S15).
 回数カウンタが初期値でない場合(S14:NO)、駆動処理部102は、前回OKであるか否かを判定する(S16)。前回OKである場合(S16:YES)、駆動処理部102は、該当の回数における「閾値未満(OK)、前回OK」の項目をもとに実施番号を決定する(S17)。例えば、2回目の場合には、現在の実施番号から3を引いた実施番号に決定する。前回OKでない場合(S16:NO)、駆動処理部102は、該当の回数における「閾値未満(OK)、前回N/A」の項目をもとに実施番号を決定する(S18)。例えば、2回目の場合には、現在の実施番号から3を引いた実施番号に決定する。 When the number counter is not the initial value (S14: NO), the drive processing unit 102 determines whether or not the previous time is OK (S16). If it is the last time OK (S16: YES), the drive processing unit 102 determines the execution number based on the item “less than threshold (OK), last time OK” in the corresponding number of times (S17). For example, in the second case, the execution number is determined by subtracting 3 from the current execution number. If it is not the previous OK (S16: NO), the drive processing unit 102 determines the execution number based on the item “less than threshold (OK), previous N / A” in the corresponding number of times (S18). For example, in the second case, the execution number is determined by subtracting 3 from the current execution number.
 S13において、実施結果が閾値未満(OK)でない場合(S13:NO)、駆動処理部102は、回数カウンタが初期値(1回目)であるか否かを判定する(S19)。回数カウンタが初期値である場合(S19:YES)、駆動処理部102は、初期キャリブレーションマトリクス72に示された内容(1回目、実施結果が閾値以上(N/A)の項目)をもとに、実施した番号に所定数足した実施番号を次回条件とする(S20)。 In S13, when the execution result is not less than the threshold (OK) (S13: NO), the drive processing unit 102 determines whether or not the number counter is an initial value (first time) (S19). When the number counter is the initial value (S19: YES), the drive processing unit 102 is based on the contents (the first time, the item whose implementation result is equal to or greater than the threshold (N / A)) indicated in the initial calibration matrix 72. In addition, an execution number obtained by adding a predetermined number to the executed number is set as the next condition (S20).
 回数カウンタが初期値でない場合(S19:NO)、駆動処理部102は、前回OKであるか否かを判定する(S21)。前回OKである場合(S21:YES)、駆動処理部102は、該当の回数における「閾値以上(N/A)、前回OK」の項目をもとに実施番号を決定する(S22)。例えば、2回目の場合には、現在の実施番号に3を足した実施番号に決定する。前回OKでない場合(S21:NO)、駆動処理部102は、該当の回数における「閾値以上(N/A)、前回N/A」の項目をもとに実施番号を決定する(S23)。例えば、2回目の場合には、現在の実施番号に3を足した実施番号に決定する。 When the number counter is not the initial value (S19: NO), the drive processing unit 102 determines whether or not the previous time is OK (S21). When it is the last time OK (S21: YES), the drive processing unit 102 determines the execution number based on the item “above threshold (N / A), last time OK” at the corresponding number of times (S22). For example, in the case of the second time, the execution number is determined by adding 3 to the current execution number. If the previous time is not OK (S21: NO), the drive processing unit 102 determines an execution number based on the item “above threshold (N / A), previous N / A” at the corresponding number of times (S23). For example, in the case of the second time, the execution number is determined by adding 3 to the current execution number.
 S15、S17、S18、S20、S22、S23に次いで、駆動処理部102は、決定した番号の発光条件でLED20を駆動する(S24)。次いで、駆動処理部102は、回数カウンタをインクリメントし(S25)、回数カウンタが所定値(例えば6回目まで行う場合は7回目)であるか否かを判定する(S26)。 Next to S15, S17, S18, S20, S22, and S23, the drive processing unit 102 drives the LED 20 under the light emission conditions of the determined number (S24). Next, the drive processing unit 102 increments the number counter (S25), and determines whether or not the number counter is a predetermined value (for example, the seventh time when performing up to the sixth time) (S26).
 回数カウンタが所定値でない場合(S26:NO)、駆動処理部102は、S12へ処理を戻し、初期キャリブレーション処理を継続する。回数カウンタが所定値である場合(S26:YES)、駆動処理部102は、初期キャリブレーション処理を終了する。 If the number counter is not a predetermined value (S26: NO), the drive processing unit 102 returns the process to S12 and continues the initial calibration process. When the number counter is a predetermined value (S26: YES), the drive processing unit 102 ends the initial calibration process.
 次いで、駆動処理部102は、例えば1秒周期などの所定の周期で逐次キャリブレーションマトリクス73を参照して逐次キャリブレーション処理を行う(S4)。次いで、制御部10は、光センサ30により検出された値の急激な変化の有無などをもとに、利用者が電子機器1を取り付けている取り付け状態の有無を判定する(S5)。 Next, the drive processing unit 102 performs sequential calibration processing with reference to the sequential calibration matrix 73 at a predetermined cycle such as a 1 second cycle (S4). Next, the control unit 10 determines the presence / absence of an attachment state in which the user attaches the electronic device 1 based on the presence / absence of a sudden change in the value detected by the optical sensor 30 (S5).
 例えば、利用者が電子機器1を取り外した場合には、光センサ30が外光を検知することから急激な値の変化が検知される。したがって、光センサ30により検出された値の急激な変化がない場合、制御部10は、取り付け状態であるものと判定する。取り付け状態が維持されている間(S5:YES)、制御部10は、S4へ処理を戻し、所定の周期で逐次キャリブレーション処理を行う。 For example, when the user removes the electronic device 1, since the optical sensor 30 detects external light, a sudden change in value is detected. Therefore, when there is no sudden change in the value detected by the optical sensor 30, the control unit 10 determines that the device is in the attached state. While the attachment state is maintained (S5: YES), the control unit 10 returns the process to S4 and sequentially performs the calibration process at a predetermined cycle.
 図7は、逐次キャリブレーション処理を例示するフローチャートである。図7に示すように、逐次キャリブレーション処理が開始されると、駆動処理部102は、現状で決定している発光条件でLED20を駆動し、反射光を光センサ30で検知する(S30)。センサ値取得処理部101は、検知した反射光の値(光センサ30の出力値)を取得データ74として記憶部70に記憶する。次いで、センサ値取得処理部101は、記憶部70に記憶した取得データ74をもとに、光センサ30の出力値の平均値を算出する(S31)。 FIG. 7 is a flowchart illustrating a sequential calibration process. As shown in FIG. 7, when the sequential calibration process is started, the drive processing unit 102 drives the LED 20 under the light emission conditions currently determined, and detects the reflected light with the optical sensor 30 (S30). The sensor value acquisition processing unit 101 stores the detected reflected light value (output value of the optical sensor 30) in the storage unit 70 as acquisition data 74. Next, the sensor value acquisition processing unit 101 calculates the average value of the output values of the optical sensor 30 based on the acquisition data 74 stored in the storage unit 70 (S31).
 なお、S30における現状で決定している発光条件とは、逐次キャリブレーション処理の初回の場合には、初期キャリブレーション処理で決定した発光条件である。また、初期キャリブレーション処理の後に逐次キャリブレーション処理が行われている場合は、直近の逐次キャリブレーション処理で決定した発光条件である。 Note that the light emission conditions determined in the current state in S30 are the light emission conditions determined in the initial calibration process in the first case of the sequential calibration process. In addition, when the sequential calibration process is performed after the initial calibration process, the light emission conditions are determined by the latest sequential calibration process.
 次いで、駆動処理部102は、現状の発光条件を取得し(S32)、取得した現状の発光条件と、算出された光センサの平均値とをもとに逐次キャリブレーションマトリクス73を参照し、第1~第7のケースのいずれに当てはまるかを判定する(S33~S38)。 Next, the drive processing unit 102 acquires the current light emission condition (S32), and sequentially refers to the calibration matrix 73 on the basis of the acquired current light emission condition and the calculated average value of the photosensors. It is determined which of the first to seventh cases is applicable (S33 to S38).
 具体的には、駆動処理部102は、第1のケースから第6のケースまで順に、現状の発光条件と、算出された光センサの平均値とが当てはまるか否かを判定する(S33~S38)。そして、第6のケースで当てはまらない時は(S38:NO)、第7のケースであるものとする。 Specifically, the drive processing unit 102 determines in order from the first case to the sixth case whether or not the current light emission condition and the calculated average value of the photosensor are true (S33 to S38). ). And when it is not applicable in the sixth case (S38: NO), it is assumed that it is the seventh case.
 第1のケースに当てはまる場合(S33:YES)、駆動処理部102は、逐次キャリブレーションマトリクス73をもとに、電流値は20mAのまま発光時間長を2倍とする発光条件とする(S39)。 When the first case is true (S33: YES), the drive processing unit 102 uses the sequential calibration matrix 73 as a light emission condition for doubling the light emission time length while keeping the current value at 20 mA (S39). .
 第2のケースに当てはまる場合(S34:YES)、駆動処理部102は、逐次キャリブレーションマトリクス73をもとに、電流値は20mAで発光時間長はそのままとする発光条件とする(S40)。 When the second case is applied (S34: YES), the drive processing unit 102 sets light emission conditions based on the sequential calibration matrix 73, with a current value of 20 mA and a light emission time length as it is (S40).
 第3のケースに当てはまる場合(S35:YES)、駆動処理部102は、逐次キャリブレーションマトリクス73をもとに、電流値は15mAのままで発光時間長を2倍とする発光条件とする(S41)。 When the third case is satisfied (S35: YES), the drive processing unit 102 sets light emission conditions for doubling the light emission time length while keeping the current value at 15 mA based on the sequential calibration matrix 73 (S41). ).
 第4のケースに当てはまる場合(S36:YES)、駆動処理部102は、電流値は2倍で発光時間長はそのままとする発光条件とする(S42)。 If the fourth case is applicable (S36: YES), the drive processing unit 102 sets the light emission condition such that the current value is doubled and the light emission time length remains unchanged (S42).
 第5のケースに当てはまる場合(S37:YES)、駆動処理部102は、発光条件テーブル71において発光量順に並ぶ発光条件番号を参照し、現在の発光条件番号から1を引いたものを発光条件とする(S43)。 When the fifth case is true (S37: YES), the drive processing unit 102 refers to the light emission condition numbers arranged in order of the light emission amount in the light emission condition table 71, and subtracts 1 from the current light emission condition number as the light emission condition. (S43).
 第6のケースに当てはまる場合(S38:YES)、駆動処理部102は、発光条件テーブル71において発光量順に並ぶ発光条件番号を参照し、現在の発光条件番号に1を足したものを発光条件とする(S44)。 When the sixth case is true (S38: YES), the drive processing unit 102 refers to the light emission condition numbers arranged in order of the light emission amount in the light emission condition table 71, and adds the current light emission condition number to 1 as the light emission condition. (S44).
 第7のケースに当てはまらない場合(S38:NO)、駆動処理部102は、発光条件の変更を行うことなく、現状の発光条件のままとする(S45)。 If this is not the case (S38: NO), the drive processing unit 102 keeps the current light emission conditions without changing the light emission conditions (S45).
 以上のように、電子機器1は、LED20と、光センサ30と、センサ値取得処理部101と、駆動処理部102と、脈拍数算出部103とを有する。センサ値取得処理部101は、LED20より反射光量を取得する。駆動処理部102は、得られた反射光量をもとに、LED20の発光強度および単位時間あたりの発光時間長の少なくとも一方を調整してLED20を駆動する。 As described above, the electronic device 1 includes the LED 20, the optical sensor 30, the sensor value acquisition processing unit 101, the drive processing unit 102, and the pulse rate calculation unit 103. The sensor value acquisition processing unit 101 acquires the amount of reflected light from the LED 20. The drive processing unit 102 drives the LED 20 by adjusting at least one of the light emission intensity of the LED 20 and the light emission time length per unit time based on the obtained reflected light amount.
 したがって、電子機器1では、利用者の運動などによって血液中のヘモグロビンによる光の吸収量が上がり、反射光量が減るケースに対応してLED20の発光条件を調整する。このため、電子機器1では、十分な反射光量を得ることができ、反射光量の変化推移を正確に捉えて脈拍の測定精度を向上させることができる。 Therefore, in the electronic device 1, the light emission condition of the LED 20 is adjusted in response to the case where the amount of light absorbed by hemoglobin in the blood increases due to the user's exercise or the like, and the amount of reflected light decreases. For this reason, the electronic device 1 can obtain a sufficient amount of reflected light, and can accurately measure changes in the amount of reflected light and improve the measurement accuracy of the pulse.
 なお、図示した電子機器1の各構成要素は、必ずしも物理的に図示の如く構成されていることを要しない。すなわち、各装置の分散・統合の具体的形態は図示のものに限られず、その全部または一部を、各種の負荷や使用状況などに応じて、任意の単位で機能的または物理的に分散・統合して構成することができる。 In addition, each component of the illustrated electronic device 1 does not necessarily need to be physically configured as illustrated. In other words, the specific form of distribution / integration of each device is not limited to that shown in the figure, and all or a part thereof may be functionally or physically distributed or arbitrarily distributed in arbitrary units according to various loads or usage conditions. Can be integrated and configured.
 また、制御部10で行われる各種処理機能は、CPU(またはMPU、MCU(Micro Controller Unit)等のマイクロ・コンピュータ)上で、その全部または任意の一部を実行するようにしてもよい。また、各種処理機能は、CPU(またはMPU、MCU等のマイクロ・コンピュータ)で解析実行されるプログラム上、またはワイヤードロジックによるハードウエア上で、その全部または任意の一部を実行するようにしてもよいことは言うまでもない。 The various processing functions performed by the control unit 10 may be executed entirely or arbitrarily on a CPU (or a microcomputer such as an MPU or MCU (Micro Controller Unit)). In addition, various processing functions may be executed in whole or in any part on a program that is analyzed and executed by a CPU (or a microcomputer such as an MPU or MCU) or hardware based on wired logic. Needless to say, it is good.
 また、プログラム76は、記憶部70に記憶されていなくてもよい。例えば、制御部10が読み取り可能な記憶媒体に記憶されたプログラム76を読み出して実行するようにしてもよい。制御部10が読み取り可能な記憶媒体は、例えば、CD-ROMやDVDディスク、USB(Universal Serial Bus)メモリ等の可搬型記録媒体、フラッシュメモリ等の半導体メモリ、ハードディスクドライブ等が対応する。また、公衆回線、インターネット、LAN等に接続された装置にこのプログラム76を記憶させておき、制御部10がこれらからプログラム76を読み出して実行するようにしてもよい。 Further, the program 76 may not be stored in the storage unit 70. For example, the program 76 stored in a storage medium readable by the control unit 10 may be read and executed. The storage medium readable by the control unit 10 corresponds to, for example, a portable recording medium such as a CD-ROM or DVD disk, a USB (Universal Serial Bus) memory, a semiconductor memory such as a flash memory, a hard disk drive, or the like. Alternatively, the program 76 may be stored in a device connected to a public line, the Internet, a LAN, or the like, and the control unit 10 may read and execute the program 76 therefrom.
1…電子機器
2…外部機器
10…制御部
20…LED
30…光センサ
40…加速度センサ
50…計時部
60…通信部
70…記憶部
71…発光条件テーブル
72…初期キャリブレーションマトリクス
73…逐次キャリブレーションマトリクス
74…取得データ
75…カウンタ
76…プログラム
101…センサ値取得処理部
102…駆動処理部
103…脈拍数算出部
104…通知部
DESCRIPTION OF SYMBOLS 1 ... Electronic device 2 ... External device 10 ... Control part 20 ... LED
DESCRIPTION OF SYMBOLS 30 ... Optical sensor 40 ... Acceleration sensor 50 ... Time measuring part 60 ... Communication part 70 ... Memory | storage part 71 ... Light emission condition table 72 ... Initial calibration matrix 73 ... Sequential calibration matrix 74 ... Acquisition data 75 ... Counter 76 ... Program 101 ... Sensor Value acquisition processing unit 102 ... drive processing unit 103 ... pulse rate calculation unit 104 ... notification unit

Claims (4)

  1.  発光部と、
     受光部と、
     利用者に対して前記発光部が発光した光の反射光を前記受光部が受光して得られる反射光量の変化推移をもとに、前記利用者の脈拍を算出する脈拍算出部と、
     前記反射光量に基づいて、前記発光部の発光強度および単位時間あたりの発光時間長の少なくとも一方を調整する駆動部と
     を有することを特徴とする電子機器。
    A light emitting unit;
    A light receiver;
    Based on the change transition of the amount of reflected light obtained by receiving the reflected light of the light emitted by the light emitting unit for the user, a pulse calculating unit that calculates the pulse of the user;
    An electronic device comprising: a drive unit that adjusts at least one of a light emission intensity of the light emitting unit and a light emission time length per unit time based on the amount of reflected light.
  2.  前記駆動部は、前記反射光量に基づいた調整幅が所定の閾値よりも小さい場合には前記発光時間長を調整する
     ことを特徴とする請求項1に記載の電子機器。
    The electronic device according to claim 1, wherein the drive unit adjusts the light emission time length when an adjustment range based on the amount of reflected light is smaller than a predetermined threshold.
  3.  利用者に対して発光部が発光した光の反射光を受光部が受光して得られる反射光量の変化推移をもとに、前記利用者の脈拍を算出する際の前記反射光量に基づいて、前記発光部の発光強度および単位時間あたりの発光時間長の少なくとも一方を調整する
     処理をコンピュータに実行させることを特徴とする発光制御プログラム。
    Based on the reflected light amount when calculating the pulse of the user based on the change transition of the reflected light amount obtained by the light receiving unit receiving the reflected light of the light emitted by the light emitting unit for the user, A light emission control program for causing a computer to execute a process of adjusting at least one of a light emission intensity of the light emitting unit and a light emission time length per unit time.
  4.  前記調整する処理は、前記反射光量に基づいた調整幅が所定の閾値よりも小さい場合には前記発光時間長を調整する
     ことを特徴とする請求項3に記載の発光制御プログラム。
    The light emission control program according to claim 3, wherein the adjustment process adjusts the light emission time length when an adjustment range based on the amount of reflected light is smaller than a predetermined threshold.
PCT/JP2015/086121 2015-12-24 2015-12-24 Electronic device and light-emission control program WO2017109916A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2015/086121 WO2017109916A1 (en) 2015-12-24 2015-12-24 Electronic device and light-emission control program

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2015/086121 WO2017109916A1 (en) 2015-12-24 2015-12-24 Electronic device and light-emission control program

Publications (1)

Publication Number Publication Date
WO2017109916A1 true WO2017109916A1 (en) 2017-06-29

Family

ID=59089812

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/086121 WO2017109916A1 (en) 2015-12-24 2015-12-24 Electronic device and light-emission control program

Country Status (1)

Country Link
WO (1) WO2017109916A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61154639A (en) * 1984-12-28 1986-07-14 カシオ計算機株式会社 Cardiac pulse detection circuit
JP2010004972A (en) * 2008-06-25 2010-01-14 Fujitsu Ltd Photoelectric pulse wave measuring apparatus and program
JP2013202288A (en) * 2012-03-29 2013-10-07 Seiko Epson Corp Biological information detector, biological information detection apparatus, and biological information detection method

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61154639A (en) * 1984-12-28 1986-07-14 カシオ計算機株式会社 Cardiac pulse detection circuit
JP2010004972A (en) * 2008-06-25 2010-01-14 Fujitsu Ltd Photoelectric pulse wave measuring apparatus and program
JP2013202288A (en) * 2012-03-29 2013-10-07 Seiko Epson Corp Biological information detector, biological information detection apparatus, and biological information detection method

Similar Documents

Publication Publication Date Title
US7980999B2 (en) Body motion discriminating apparatus and activity monitor
JP6464113B2 (en) Energy consumption
US9993204B2 (en) Cadence detection based on inertial harmonics
JP6064431B2 (en) Exercise determination program, portable electronic device, exercise determination method, and information processing apparatus
US20130231575A1 (en) Monitoring accumulated activity
CN110366387B (en) Measuring and assessing sleep quality
US20170056725A1 (en) Walking-load-degree calculation apparatus, maximum-oxygen-consumption calculation apparatus, recording medium, and control method
US20170127992A1 (en) Fatigue-degree monitoring device, fatigue-degree monitoring system, and fatigue-degree determining method
KR101038990B1 (en) Apparatus and methods for timely correction of life patterns
JP2018513722A (en) Vital sign monitoring system
US20160151672A1 (en) Recommending an exercise activity for a user
JP2015133072A (en) List band type arm motion determination device
JP2010253204A (en) Physical activity detecting device
JP2010240158A (en) Energy consumption calculator
JP6766463B2 (en) Biometric information processing equipment, programs and biometric information processing methods
JP2010165088A (en) Pedometer, and method of counting steps
US20150150491A1 (en) Movement estimation device, and activity tracker
WO2017109916A1 (en) Electronic device and light-emission control program
JP2017113191A (en) Electronic equipment and pulse rate calculation program
JP3916228B2 (en) Biological data estimation device during walking activity
WO2017109914A1 (en) Electronic device and attachment/detachment determination program
WO2017109915A1 (en) Electronic device and pulse rate detection program
JP2012118724A (en) Electronic apparatus, pedometer, and program
US20160367172A1 (en) Biological information measuring device and method of controlling biological information measuring device
CN112617363A (en) Dynamic step counting bracelet, step counting method thereof and body temperature monitoring method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15911354

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15911354

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP