WO2017108927A1 - Process for preparation of ingenol 3-(3.5-diethylisoxazole-4-carboxylate) - Google Patents

Process for preparation of ingenol 3-(3.5-diethylisoxazole-4-carboxylate) Download PDF

Info

Publication number
WO2017108927A1
WO2017108927A1 PCT/EP2016/082140 EP2016082140W WO2017108927A1 WO 2017108927 A1 WO2017108927 A1 WO 2017108927A1 EP 2016082140 W EP2016082140 W EP 2016082140W WO 2017108927 A1 WO2017108927 A1 WO 2017108927A1
Authority
WO
WIPO (PCT)
Prior art keywords
ingenol
compound
diethylisoxazole
carboxylate
polymorphic form
Prior art date
Application number
PCT/EP2016/082140
Other languages
French (fr)
Inventor
Bjørn METZLER
Anders KLARSKOV
Bjarne NØRREMARK
Kim Troensegaard Nielsen
Mike SONG
Original Assignee
Leo Laboratories Limited
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Leo Laboratories Limited filed Critical Leo Laboratories Limited
Publication of WO2017108927A1 publication Critical patent/WO2017108927A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D261/00Heterocyclic compounds containing 1,2-oxazole or hydrogenated 1,2-oxazole rings
    • C07D261/02Heterocyclic compounds containing 1,2-oxazole or hydrogenated 1,2-oxazole rings not condensed with other rings
    • C07D261/06Heterocyclic compounds containing 1,2-oxazole or hydrogenated 1,2-oxazole rings not condensed with other rings having two or more double bonds between ring members or between ring members and non-ring members
    • C07D261/10Heterocyclic compounds containing 1,2-oxazole or hydrogenated 1,2-oxazole rings not condensed with other rings having two or more double bonds between ring members or between ring members and non-ring members with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals, directly attached to ring carbon atoms
    • C07D261/18Carbon atoms having three bonds to hetero atoms, with at the most one bond to halogen

Definitions

  • the invention describes specific polymorphic forms of Ingenol 3-(3,5-diethylisoxazole-4- carboxylate), and a process for preparation of the polymorphic forms.
  • Figure 1 the amount of residual heptane in the crystals.
  • Figure 2 The DSC (solid) and the TGA (dash) curve of polymorph F of compound 4.
  • Figure 3 The DSC (solid) and the TGA (dash) curve of polymorph B of compound 4.
  • Figure 4 Comparison of the DSC curves for polymorph F (solid) and B (dash).
  • Figure 5 The m-ATR FTIR spectrum of polymorph F of compound 4.
  • Figure 7 Comparison of the m-ATR FTIR spectre of polymorph F (solid) vs B (dash) of compound 4.
  • Figure 8 The XRPD pattern of polymorph F of compound 4.
  • Figure 10 Comparison of the XRPD pattern of polymorph F (solid) and B (dash) of compound 4.
  • the present invention provides novel crystalline forms of Ingenol 3-(3,5- diethylisoxazole-4-carboxylate).
  • the present invention provides methods for their preparation.
  • the characteristics of the crystalline forms are provided by the present invention.
  • the compound refers to Ingenol 3-(3,5- diethylisoxazole-4-carboxylate). Also in the context of the present disclosure, the compound is named compound 4.
  • Ingenol 3-(3,5-diethylisoxazole-4-carboxylate) being prepared from the starting material, ingenol, by protection using acetonide.
  • Ingenol-5.20-acetonide-3-(3,5-diethylisoxazole-4-carboxylate) was prepared by using 3,5-Diethylisoxazole-4-carbonyl chloride, which together with the ingenol-5,20- acetonide, were stirred in a microwave oven at 150 °C in acetonitrile for 10-30 min.
  • Deprotection was performed in tetrahydrofuran (0.47 ml_) under argon with HCI, followed by chromatography.
  • the present invention provides a number of improvements to the above process.
  • An improvement is in the preparation of the intermediate acid chloride (compound E below).
  • the process disclosed by the present invention provides a product, which leads to a high purity end-product as the intermediate compound, 3, obtained using this acid chloride, is crystalline and with the crystalline properties allows for simple purification.
  • Another improvement in the process eliminates the need for microwave oven in the process as disclosed in the prior art.
  • the present invention also provides crystallization processes for the final compound, which controls the crystalline structure of the compounds and the preferred form of the final product can be obtained.
  • the starting material was dissolved in an inert organic solvent.
  • the solvent is an ether.
  • the solvent is methyl- tert-butyl-ether (MTBE).
  • a base is added together with propionylchloride.
  • the base is selected from calcium hydroxide, Potassium hydroxide, Sodium hydroxide or similar.
  • the base is calcium hydroxide. The reaction was quenched by addition of acid, and worked up to afford B as an oil.
  • Step 2a Process description, Step 2a :
  • Step 3a Process description, Step 3a :
  • Compound D organic solvent and thionyl chloride is heated to about 95°C for about 60 minutes.
  • the solvents are heptane and toluene.
  • the product is isolated as a crude liquid which can be distilled under vacuum while heating to provide a colourless to pale yellow liquid.
  • the intermediate, E is used in step 2 of the process below:
  • Ingenol was dissolved in acidified acetone.
  • the acid used was MSA (methane sulfonic acid).
  • the acid was p-toluene sulfonic acid.
  • the reaction was performed at about 45 °C.
  • base was added .
  • the base was triethylamine. The reaction mixture was then worked up and the compound isolated as a white solid from ethylacetate/heptane.
  • the optimized reaction eliminates the use of the microwave oven of the prior art process.
  • the yield of the present process provides excellent yield of a highly purified product.
  • Step 3 as outlined below provides the different polymorphs of the present invention.
  • the deprotection of compound 3 was performed in organic solvent, water and MSA under elevated temperatures.
  • MSA methanesulfonic acid
  • other acids such as p-toluenesulfonic acid.
  • the organic solvent is THF.
  • the polymorphic form A can be isolated, which can then be converted into either form B or form F dependent on the conditions.
  • One form (hereinafter called form B) is a fluffy crystalline form containing some heptane.
  • the fluffy character of the polymorphic form presents some safety issues in the production process since the material is easily spread into the surroundings when the reaction flask/tank is opened after isolation and drying.
  • the present invention therefore discloses a crystalline form, which is safer to work with, and in addition is a very stable form of the compound.
  • the polymorphic form (hereinafter known as form "F”) has characteristics which allows the crystalline structure to pack more tightly, and therefore it volume is about half of the corresponding Form B.
  • form F contains less heptane, which is also an advantage since heptane is not desirable to have in a pharmaceutical product. And additionally, form F is more stable than form B.
  • Step 1 was performed using a Flowreactor.
  • Compound A (lOg) was dissolved in acetone (600 ml_) and protected under the presence of methanesulfonic acid (MSA)(2.11g dissolved in THF 113ml_) at about 45 °C.
  • MSA methanesulfonic acid
  • Reaction mixture was quenched with triethylamine when the conversion is preferably above 95%, to afford the crude reaction mixture which was further processed in a reactor.
  • the mixture was concentrated under reduced pressure at temperatures of below 55 °C, and ethyl acetate (EtOAc) 200ml_ was added.
  • the organic phase was washed two times with water (25ml_), concentrated under reduced pressure at temperature below 50°C, and EtOAc 100 ml_ was added.
  • Step la-4a preparation of compound E
  • Step 2 Synthesis of Compound 3 :
  • Step 3 Synthesis of compound 4
  • Compound 3 (lOg) was dissolved in THF(100 mL) and cooled to -5 °C.
  • a solution of MSA (14.2g), THF (67mL) and purified water (18.5mL) was added, and the reaction was heated to 50 °C.
  • the reaction was cooled to 15 °C and NaHCOs (aq. Sat.) ( 106mL) and MTBE (175-225mL) was added and the phases separated.
  • Organic phase was washed with water (75mL) two times, added EtOAc (150- 200 mL) and concentrated under vacuum with a temperature below 50°C.
  • Form A was a solvate with ethylacetate and in one embodiment of the invention it was not isolated as such but converted to form F by boiling form A in heptane. In an embodiment where A was isolated, the compound has a melting point of 112°C ( ⁇ 2 °C).
  • polymorph B 200 mg were suspended in 5 ml_ of Heptane in a round bottom flask equipped with a condenser and a magnetic stirring unit. The suspension was seed with 2% of polymorph F and refluxed until all of polymorph B was transformed to polymorph F. This happens usual within one hour.
  • Form B offers excellent stability of the crystalline form. However, the crystal does not pack its crystals tight and therefore the volume of a crystalline form B was large.
  • Form F solved the problem completely.
  • the polymorphic form provides excellent stability while still dissolved easily in the formulation, but importantly, the crystals pack to a very small size, and they are not fluffy after isolation and drying.
  • form F also allows for heptane to be removed much more readily from the final product. Since heptane is not a part of the final formulation, it is preferred to be able to remove the solvent from the final compound. This is much easier done with form F than with the corresponding form B.
  • Polymorph B and polymorph F have both passed the 4 week stress stability test at 60 C, 60°C/75% RH and 80°C/75% RH without any solid state transformation.
  • polymorphic form F is stable at 80°C for 14 days.
  • Form B is slightly less stable than form F, as a minor decrease in assay and organic impurities were observed.
  • all results for form B were well within the specification limits after storage for 14 days at 80°C.
  • X-rav powder diffraction (XRPD) : The diffractogram was obtained on a conventional XRPD
  • X'pert PRO MPD diffracto meter from PANalytical configured with transmission geometry and equipped with a PIXcel detector.
  • a 2 ⁇ step size of 0.0070°/step with a step time of 148.92 s was used. Samples were gently flattened onto a well in a 96-well plate for transmission measurements. The well plate was moved forward and backward in the x direction and all experiments were performed at room temperature.
  • FTIR-ATR spectroscopy attenuated total reflectance fourier transform infrared spectroscopy: The spectrum was recorded on a FTIR instrument, Equinox 55 or Tensor 27 from Bruker equipped with a GoldenGate ATR unit from SPECAC. A spectral resolution of 3 cm 1 was used.
  • DSC Differential scanning calorimetry
  • TGA Thermo gravimetric analysis
  • An error range of ⁇ 5 includes, but is not limited to variations of ⁇ 5, ⁇ 4, ⁇ 3, ⁇ 2, ⁇ 1, ⁇ 0.5, ⁇ 0.4, ⁇ 0.3, ⁇ 0.2, and ⁇ 0.1;
  • an error range of ⁇ 3 includes, but is not limited to variations of ⁇ 3, ⁇ 2, ⁇ 1, ⁇ 0.5, ⁇ 0.4, ⁇ 0.3, ⁇ 0.2, and ⁇ 0.1 ;
  • an error range of ⁇ 1 includes, but is not limited to variations of ⁇ 0.9, ⁇ 0.8, ⁇ 0.7, ⁇ 0.6, ⁇ 0.5, ⁇ 0.4, ⁇ 0.3, ⁇ 0.2, and ⁇ 0.1;
  • an error range of ⁇ 0.2 includes, but is not limited to variations of ⁇ 0.2, ⁇ 0.15, ⁇ 0.1, ⁇ 0.09, ⁇ 0.08, ⁇ 0.07, ⁇ 0.06, ⁇ 0.05, ⁇ 0.04, ⁇ 0.03, ⁇ 0.02, and ⁇ 0.01.
  • Polymorph F has a differential scanning calorimetry (DSC) curve comprising an endo thermo event with an onset at about 166°C ( ⁇ 2 °C) see figure 2.
  • DSC differential scanning calorimetry
  • Polymorph B has a differential scanning calorimetry (DSC) curve comprising an endo thermo event with an onset at about 131°C ( ⁇ 2 °C). No endo thermo event with an onset at about 166°C ( ⁇ 2 °C) is observed, see Figure 3 and Figure 4.
  • DSC differential scanning calorimetry
  • the polymorph F of compound 4 has an attenuated total reflectance fourier transform infrared (FTIR-ATR) spectrum essentially similar as shown in Figure 5.
  • the polymorph F of compound 4 is characterized by an attenuated total reflectance fourier transform infrared (FTIR-ATR) spectrum exhibiting one or more attenuated total reflectance peaks at approximately 1721, 1592, 1097, 1034 and/or 947 ( ⁇ 3 cm "1 ), respectively.
  • the polymorph B of compound 4 has an attenuated total reflectance fourier transform infrared (FTIR-ATR) spectrum essentially similar as shown in Figure 6 .
  • the polymorph B of compound 4 is characterized by an attenuated total reflectance fourier transform infrared (FTIR-ATR) spectrum exhibiting one or more attenuated total reflectance peaks at approximately 1698 and/or 1366 ( ⁇ 3 cm "1 ), respectively.
  • Form A In one embodiment the form A of compound 4 has an XRPD pattern essentially similar as shown in Figure 11. In an embodiment the form A of compound 4 is characterized by an XRPD pattern exhibiting one or more reflection peaks at

Abstract

The invention discloses polymorphic forms of Ingenol 3-(3,5-diethylisoxazole-4-carboxylate), and a process for preparation of the polymorphic forms.

Description

Process for preparation of Ingenol 3-(3.5-diethylisoxazole-4-carboxylate)
The invention describes specific polymorphic forms of Ingenol 3-(3,5-diethylisoxazole-4- carboxylate), and a process for preparation of the polymorphic forms.
Background of the invention
Ingenol 3-(3,5-diethylisoxazole-4-carboxylate) is described in PCT/DK2011/000154. Presently, the compound is investigated for its effects in treating actinic keratosis in clinical trials. In the prior disclosure, the compound has not been described in any solid state. The present invention discloses novel crystalline forms with beneficial
characteristics as well as methods for their preparation.
Description of drawings
Figure 1 : the amount of residual heptane in the crystals.
Figure 2:The DSC (solid) and the TGA (dash) curve of polymorph F of compound 4. Figure 3 : The DSC (solid) and the TGA (dash) curve of polymorph B of compound 4. Figure 4: Comparison of the DSC curves for polymorph F (solid) and B (dash).
Figure 5 : The m-ATR FTIR spectrum of polymorph F of compound 4.
Figure 6: The m-ATR FTIR spectrum of polymorph B of compound 4.
Figure 7: Comparison of the m-ATR FTIR spectre of polymorph F (solid) vs B (dash) of compound 4.
Figure 8: The XRPD pattern of polymorph F of compound 4.
Figure 9: The XRPD pattern of the polymorph B of compound 4.
Figure 10 : Comparison of the XRPD pattern of polymorph F (solid) and B (dash) of compound 4.
Figure 11 :XRPD for form A of compound 4
Figure 12 : The DSC (solid) and the TGA (dash) curve of Form A of compound 4. Summary of the invention
The present invention provides novel crystalline forms of Ingenol 3-(3,5- diethylisoxazole-4-carboxylate). The present invention provides methods for their preparation. The characteristics of the crystalline forms are provided by the present invention.
Detailed description of the invention:
In the context of the present invention "the compound" refers to Ingenol 3-(3,5- diethylisoxazole-4-carboxylate). Also in the context of the present disclosure, the compound is named compound 4.
In the context of the present invention "about" in the context of temperature refers to ±20 °C. In embodiments the term refers to ± 10°C. In preferred embodiments the term refers to ±5°C. The term "about" is mentioned in the context of time and has the meaning of up to ±20%.
Prior art discloses Ingenol 3-(3,5-diethylisoxazole-4-carboxylate) being prepared from the starting material, ingenol, by protection using acetonide. From this intermediate, Ingenol-5.20-acetonide-3-(3,5-diethylisoxazole-4-carboxylate) was prepared by using 3,5-Diethylisoxazole-4-carbonyl chloride, which together with the ingenol-5,20- acetonide, were stirred in a microwave oven at 150 °C in acetonitrile for 10-30 min. Deprotection was performed in tetrahydrofuran (0.47 ml_) under argon with HCI, followed by chromatography. This process was not suitable for larger scale production facilities, and therefore improvements of the process was required to achieve a commercial process, which was robust, using acceptable solvents and providing good yields. Also, it is of importance that the compound and its intermediates have handling properties, which makes it possible to handle as well the intermediates, as the highly potent compound end product. Prior art does not mention the physical characteristics of the isolated product.
The present invention provides a number of improvements to the above process. An improvement is in the preparation of the intermediate acid chloride (compound E below). The process disclosed by the present invention provides a product, which leads to a high purity end-product as the intermediate compound, 3, obtained using this acid chloride, is crystalline and with the crystalline properties allows for simple purification. Another improvement in the process eliminates the need for microwave oven in the process as disclosed in the prior art. The present invention also provides crystallization processes for the final compound, which controls the crystalline structure of the compounds and the preferred form of the final product can be obtained.
The intermediate acid chloride was repared by the following reaction scheme:
Figure imgf000004_0001
The starting material was dissolved in an inert organic solvent. In an embodiment the solvent is an ether. In a preferred embodiment the solvent is methyl- tert-butyl-ether (MTBE). A base is added together with propionylchloride. In embodiments of the invention the base is selected from calcium hydroxide, Potassium hydroxide, Sodium hydroxide or similar. In a specific embodiment the base is calcium hydroxide. The reaction was quenched by addition of acid, and worked up to afford B as an oil.
Process description, Step 2a :
Compound B, water and hydroxylamine hydrochloride is added to the reaction flask and the reaction is heated to about 40 °C. Organic solvent was added and the mixture was worked up to afford C as an oil.
Process description, Step 3a :
Compound C, water and base was mixed to hydrolyse the ester. The product, D, is a solid, which can be isolated on a filter after crystallisation in heptane. Process description, Step 4a :
Compound D, organic solvent and thionyl chloride is heated to about 95°C for about 60 minutes. In preferred embodiments the solvents are heptane and toluene. The product is isolated as a crude liquid which can be distilled under vacuum while heating to provide a colourless to pale yellow liquid.
The intermediate, E, is used in step 2 of the process below:
Figure imgf000005_0001
As to the protection of the 5- and 20- positions in ingenol by acetonide in step 1, the following has been performed : Ingenol was dissolved in acidified acetone. In an embodiment of the invention the acid used was MSA (methane sulfonic acid). In another embodiment of the invention the acid was p-toluene sulfonic acid. In an embodiment of the invention the reaction was performed at about 45 °C. Then base was added . In an embodiment the base was triethylamine. The reaction mixture was then worked up and the compound isolated as a white solid from ethylacetate/heptane.
The protected ingenol as prepared above, compound 2, was dissolved in organic solvent, such as THF, and cooled to about -10 °C . Then strong base in the form of LiHMDS (Lithium HexaMethylDiSilazide) in a surplus and compound E was added. After end reaction the mixture was worked up and crystallied in isopropylalcohol/Water. In an embodiment MeOH/water can be used. The product was isolated on a filter as a white solid.
The optimized reaction eliminates the use of the microwave oven of the prior art process. The yield of the present process provides excellent yield of a highly purified product.
Step 3 as outlined below provides the different polymorphs of the present invention. Form A, Form B or Form F
Figure imgf000006_0001
3 Step 3 4
Reaction i :
The deprotection of compound 3 was performed in organic solvent, water and MSA under elevated temperatures. MSA (methanesulfonic acid) is a preferred embodiment, however other acids may be useful such as p-toluenesulfonic acid. In embodiments the organic solvent is THF.
Reaction ii :
From reaction ii, the polymorphic form A can be isolated, which can then be converted into either form B or form F dependent on the conditions. One form (hereinafter called form B) is a fluffy crystalline form containing some heptane. The fluffy character of the polymorphic form presents some safety issues in the production process since the material is easily spread into the surroundings when the reaction flask/tank is opened after isolation and drying. The present invention therefore discloses a crystalline form, which is safer to work with, and in addition is a very stable form of the compound. The polymorphic form (hereinafter known as form "F") has characteristics which allows the crystalline structure to pack more tightly, and therefore it volume is about half of the corresponding Form B. The more tightly packed structure of the material provides a volume of final product which is less fluffy and easier to handle after isolation and drying. This provides easier and safer handling of the product. Further, form F contains less heptane, which is also an advantage since heptane is not desirable to have in a pharmaceutical product. And additionally, form F is more stable than form B.
In very small amounts the following compound was isolated as a by-product:
Figure imgf000006_0002
Examples:
Step 1, Synthesis of compound 2 :
Step 1 was performed using a Flowreactor. Compound A (lOg) was dissolved in acetone (600 ml_) and protected under the presence of methanesulfonic acid (MSA)(2.11g dissolved in THF 113ml_) at about 45 °C. Reaction mixture was quenched with triethylamine when the conversion is preferably above 95%, to afford the crude reaction mixture which was further processed in a reactor. The mixture was concentrated under reduced pressure at temperatures of below 55 °C, and ethyl acetate (EtOAc) 200ml_ was added. The organic phase was washed two times with water (25ml_), concentrated under reduced pressure at temperature below 50°C, and EtOAc 100 ml_ was added. The organic phase was evaporated to a slurry under vacuum (Temperature on reactor jacket < 50°C ) . EtOAc (66 ml_) was added to the slurry and the mixture was heated to reflux. Heptane (132 ml_) was added while maintaining reflux. The reactor jacket was cooled to 60°C and then to -1°C during 2 ± 0,5 hours and age for 12-96 hours. The product was isolated on a filter, and the filter cake was washed with a mixture of EtOAc and Heptane (16 & 32 ml_). The product was dried under vacuum at 60 °C to afford compound 2. The crude product was purified by recrystallisation from EtOAc/Heptane to afford compound 2 as a white solid. Yield : 40-80 %.
Step la-4a : preparation of compound E
Process description, Step la, compound B:
Compound A and MTBE were mixed and calcium hydroxide and propionylchloride was added. The reaction was cooled and aqueous HCI was added. The reaction was worked up using NaHC03. The organic layer was concentrated under vacuum to afford compound B as an oil. Step 2a, compound C:
Compound B, water and hydroxylamine hydrochloride was added to the reaction flask and the reaction was heated to about 40 °C. Add organic solvent and work up the reaction mixture to afford C as an oil. Process description, Step 3a :
Compound C, water and base was mixed to hydrolyse the ester. The product, D, was a solid, which can be isolated on a filter. Process description, Step 4a :
Compound D, heptane and thionyl chloride was heated to about 95°C for about 60 minutes. The product was isolated as a crude liquid which can be distilled under vacuum while heating to provide a colourless to pale yellow liquid.
Step 2 : Synthesis of Compound 3 :
Compound 2 (lOg) was dissolved in THF (100 mL) and cooled to about -10 °C. Then LiHMDS (29.7 mL) in a small surplus was charged to reactor over 5-50 min. Compound E (0.58g) was dissolved in THF (25 mL) in a suitable container and transferred to the reactor over 10 min. The mixture was stirred for about 15 minutes, and an IPC was taken. If the conversion was 95% complete or beyond that, then NaHC03(aq.sat.) (25mL) and water (75-100mL) was added and the reaction allowed to heat to 20°C. MTBE (200-300mL) was added and phases separated. The organic phase was
evaporated to a slurry under vacuum with a temperature below 30-50°C.
Isopropylalcohol (100 mL) was added and the mixtures heated to reflux. Purified water (150 mL) was added while maintaining reflux. The reaction mixtures was cooled to -1°C during 6 hours and aged for 1-96 hours. The product was isolated on a filter, and washed with a mixture of isopropylalcohol and water (50 and 50 mL) and dried under vacuum at 40-50°C. Compound 3 was isolated as a white solid (80-95 % yield).
Step 3 : Synthesis of compound 4 Compound 3 (lOg) was dissolved in THF(100 mL) and cooled to -5 °C. A solution of MSA (14.2g), THF (67mL) and purified water (18.5mL) was added, and the reaction was heated to 50 °C. When the conversion was above 99%, the reaction was cooled to 15 °C and NaHCOs (aq. Sat.) ( 106mL) and MTBE (175-225mL) was added and the phases separated. Organic phase was washed with water (75mL) two times, added EtOAc (150- 200 mL) and concentrated under vacuum with a temperature below 50°C. EtOAc (30 mL) was added to the slurry and the mixture was heated to reflux. When all material was dissolved, Heptane (175 mL) was added while maintaining reflux. The reactor jacket was cooled to -1°C over 10-12 hours and then cooled to -10°C for minimum 4 hours. The product was isolated on a filter and washed with Heptane (30 mL). The product was transferred from filter to reactor and Heptane (150 mL) and seeding crystals (LEO
43204, form F) was added. The mixture was heated to reflux for 1-2 hours. The reactor jacket was cooled to -1°C over 10-12 hours and aged for 0-96 hours at -1°C. The product was isolated on a filter, washed with Heptane (30 ml_) and dried under vacuum at 60 °C for minimum 16 hours to afford compound 4 as a white solid (80-85 % yield).
The last step of the present reaction offers the options of obtaining different polymeric forms of the final compound. Presently, forms A, B and F has been identified. Form A was a solvate with ethylacetate and in one embodiment of the invention it was not isolated as such but converted to form F by boiling form A in heptane. In an embodiment where A was isolated, the compound has a melting point of 112°C (± 2 °C).
Form F (from form B)
200 mg of polymorph B were suspended in 5 ml_ of Heptane in a round bottom flask equipped with a condenser and a magnetic stirring unit. The suspension was seed with 2% of polymorph F and refluxed until all of polymorph B was transformed to polymorph F. This happens usual within one hour.
Form F (from A) :
200 mg of solid form A were suspended in 5 ml_ of Heptane in a round bottom flask equipped with a condenser and a magnetic stirring unit. The suspension was seed with 2% of polymorph F and refluxed until all of form A was transformed to polymorph F. This happens usual within one hour.
Form B offers excellent stability of the crystalline form. However, the crystal does not pack its crystals tight and therefore the volume of a crystalline form B was large.
Initially, the form was describes as having potential electrostatic properties, which indeed was problematic from a production perspective, since the crystals were unwilling to settle on the bottom of the reactor. With very high potency of the compound this provided a health problem for the employees working with the process.
Form F solved the problem completely. The polymorphic form provides excellent stability while still dissolved easily in the formulation, but importantly, the crystals pack to a very small size, and they are not fluffy after isolation and drying.
In addition, form F also allows for heptane to be removed much more readily from the final product. Since heptane is not a part of the final formulation, it is preferred to be able to remove the solvent from the final compound. This is much easier done with form F than with the corresponding form B.
Examples: Polymorph B and polymorph F have both passed the 4 week stress stability test at 60 C, 60°C/75% RH and 80°C/75% RH without any solid state transformation.
Stability testing:
Approximately 20 mg compound 4 was placed in each of three brown glasses (3 x 20 mg) and closed with a screw cap. One glass (time zero) was placed in a refrigerator at the beginning of the study. Two glasses were placed in an oven at 80°C. One glass was pulled at each time point and stored in a refrigerator protected from light until analysis. The analysis was performed by reversed phase UPLC with UV-detection at 220 nm on HSS C18 column at 40 °C in water-acetonitrile 95 : 5 to acetonitrile.
Result:
Based on these data, it can be concluded that polymorphic form F is stable at 80°C for 14 days. Form B is slightly less stable than form F, as a minor decrease in assay and organic impurities were observed. However, all results for form B were well within the specification limits after storage for 14 days at 80°C.
Instrumentation
X-rav powder diffraction (XRPD) : The diffractogram was obtained on a conventional
X'pert PRO MPD diffracto meter from PANalytical configured with transmission geometry and equipped with a PIXcel detector. A continuous 2Θ scan range of 3-30° was used with a CuKa radiation λ = 1.5418 A source and a generator power of 40KV and 45mA. A 2Θ step size of 0.0070°/step with a step time of 148.92 s was used. Samples were gently flattened onto a well in a 96-well plate for transmission measurements. The well plate was moved forward and backward in the x direction and all experiments were performed at room temperature.
FTIR-ATR spectroscopy (attenuated total reflectance fourier transform infrared spectroscopy) : The spectrum was recorded on a FTIR instrument, Equinox 55 or Tensor 27 from Bruker equipped with a GoldenGate ATR unit from SPECAC. A spectral resolution of 3 cm 1 was used.
Differential scanning calorimetry (DSC) : DSC experiments were carried out using a Perkin Elmer DSC8500 system. About 0.5-3 mg of sample was used for the
measurements. An aluminium pan was used for the analysis and was sealed by applying pressure by hand and pushing each part of the pan together. The temperature was ramped from -60 to 200°C at 20°C/min. Nitrogen was used as the purge gas with a flow rate of 20 mL/min.
Thermo gravimetric analysis (TGA) : TGA experiments were conducted using a Perkin Elmer Pyris 1 TGA instrument. About 10-20 mg of sample was loaded into a ceramic pan for the measurements. The sample temperature was ramped from 25 to 500°C at 20°C/min. Nitrogen was used as the purge gas at a flow rate of 40 mL/min.
The given error ranges in this application for the spectroscopic characteristics, including those in the claims, may be more or less depending of factors well known to a person skilled in the art of spectroscopy and may for example depend on sample preparation, such as particle size distribution, or if the crystal form is part of a formulation, on the composition of the formulation, as well as instrumental fluctuations, and other factors. An error range of ±5 includes, but is not limited to variations of ±5, ±4, ±3, ±2, ± 1, ±0.5, ±0.4, ±0.3, ±0.2, and ±0.1; an error range of ±3 includes, but is not limited to variations of ±3, ±2, ± 1, ±0.5, ±0.4, ±0.3, ±0.2, and ±0.1 ; an error range of ± 1 includes, but is not limited to variations of ±0.9, ±0.8, ±0.7, ±0.6, ±0.5, ±0.4, ±0.3, ±0.2, and ±0.1; and an error range of ±0.2 includes, but is not limited to variations of ±0.2, ±0.15, ±0.1, ±0.09, ±0.08, ±0.07, ±0.06, ±0.05, ±0.04, ±0.03, ±0.02, and ±0.01.
Characterisation
DSC:
Polymorph F has a differential scanning calorimetry (DSC) curve comprising an endo thermo event with an onset at about 166°C (± 2 °C) see figure 2.
Polymorph B has a differential scanning calorimetry (DSC) curve comprising an endo thermo event with an onset at about 131°C (± 2 °C). No endo thermo event with an onset at about 166°C (± 2 °C) is observed, see Figure 3 and Figure 4.
FTIR-ATR:
In one embodiment the polymorph F of compound 4 has an attenuated total reflectance fourier transform infrared (FTIR-ATR) spectrum essentially similar as shown in Figure 5. The polymorph F of compound 4 is characterized by an attenuated total reflectance fourier transform infrared (FTIR-ATR) spectrum exhibiting one or more attenuated total reflectance peaks at approximately 1721, 1592, 1097, 1034 and/or 947 (± 3 cm"1), respectively.
In one embodiment the polymorph B of compound 4 has an attenuated total reflectance fourier transform infrared (FTIR-ATR) spectrum essentially similar as shown in Figure 6 . The polymorph B of compound 4 is characterized by an attenuated total reflectance fourier transform infrared (FTIR-ATR) spectrum exhibiting one or more attenuated total reflectance peaks at approximately 1698 and/or 1366 (± 3 cm"1), respectively.
XRPD :
Polymorph F: In one embodiment the polymorph F of compound 4 has an XRPD pattern essentially similar as shown in Figure 8. The polymorph F of compound 4 is characterized by an XRPD pattern exhibiting one or more reflection peaks at approximately 20= 8.2, 9.4, 16.4, 19.0 and/or 22.3 (±0.1 degrees) respectively . Polymorph B of compound 4 has an XRPD pattern essentially similar as shown in Figure 9. Polymorph B of compound 4 is characterized by an XRPD pattern exhibiting one or more reflection peaks at approximately 20= 6.0, 10.6, 11.4, 12.6, 16.0 and/or 22.5 (±0.1 degrees) respectively. Form A: In one embodiment the form A of compound 4 has an XRPD pattern essentially similar as shown in Figure 11. In an embodiment the form A of compound 4 is characterized by an XRPD pattern exhibiting one or more reflection peaks at
approximately 20= 5.8, 8.7, 13.6, and/ 19.3 (±0.1 degrees) respectively.

Claims

Claims
1. A polymorphic form of Ingenol 3-(3,5-diethylisoxazole-4-carboxylate) characterised by attenuated total reflectance fou rier transform infrared (FTIR-ATR) spectrum exhibiting one or more attenuated total reflectance peaks at approximately 1721, 1592, 1097, 1034 and/or 947 (± 3 cm"1).
2. The polymorphic form of Ingenol 3-(3,5-diethylisoxazole-4-carboxylate) according to claim 1, characterised by a differential scanning calorimetric curve comprising an event with an onset at about 166 ± 2°C.
3. The polymorphic form of Ingenol 3-(3,5-diethylisoxazole-4-carboxylate) according to any of the claims 1-2, characterised by a XRPD pattern as provided in Figure 8. 4. The polymorphic form according to any of the claims 1-3, characterised by an XRPD pattern exhibiting one or more reflection peaks at approximately 20= 8.2, 9.4, 16.
4, 19.0 and/or 22.3 (±0.1 degrees) respectively
5. A polymorphic form of Ingenol 3-(3,5-diethylisoxazole-4-carboxylate) characterised by attenuated total reflectance fourier transform infrared (FTIR-ATR) spectrum of Figure
6, exhibiting one or more attenuated total reflectance peaks at approximately 1698 and/or 1366 (± 3 cm"1).
6. The polymorphic form of Ingenol 3-(3,5-diethylisoxazole-4-carboxylate) according to claim 5, characterised by a differential scanning calorimetric curve comprising an event with an onset at about 130 ± 2°C.
7. The polymorphic form of Ingenol 3-(3,5-diethylisoxazole-4-carboxylate) according to any of the claims 5 or 6, characterised by XRPD pattern as provided in Figure 9.
8. The polymorphic form of Ingenol 3-(3,5-diethylisoxazole-4-carboxylate) according to claim 5, 6 or 7 characterised by an XRPD pattern exhibiting one or more reflection peaks at approximately 20= 6.0, 10.6, 11.4, 12.6, 16.0 and/or 22.5 (±0.1 degrees).
9. A polymorphic form of Ingenol 3-(3,5-diethylisoxazole-4-carboxylate) characterised by a differential scanning calorimetric curve comprising an event with an onset at about 112°C (± 2 °C)
10. The polymorphic form of Ingenol 3-(3,5-diethylisoxazole-4-carboxylate) according to claim 9, characterised by XRPD pattern as provided in Figure 11.
11. The polymorphic form of Ingenol 3-(3,5-diethylisoxazole-4-carboxylate) according to any of the claims 9 or 10, characterised by an XRPD pattern exhibiting one or more reflection peaks at approximately 20= 5.8, 8.7, 13.6, and/ 19.3 (±0.1 degrees) respectively.
12. A process for preparation of the polymorphic forms of claims 1-11 of Ingenol 3-(3,5- diethylisoxazole-4-carboxylate) according to any of the claims above, comprising
1) ingenol is protected to ingenol 5,20 acetonide and
2) ingenol 5,20 acetonide is reacted with 3,5-diethyl-isoxazole carboxylic acid chloride, in the presence of LiHMDS , and
3) removal of 5,20 acetonide group, and
4) crystallisation
13. The process of claim 12, wherein 3,5-diethyl-isoxazole carboxylic acid chloride is prepared by
a) 3-oxo-Pentanoic acid methyl ester is reacted with propionylchloride to afford 3-oxo-4- (l-oxo-propyl)Pentanoic acid methyl ester, and
b) 3-oxo-4-(l-oxo-propyl)Pentanoic acid methyl ester is reacted with hydroxylamine to afford 3,5-diethyl-4-methylacetate-isoxazole, which is converted to the corresponding acid chloride by hydrolysis of the acid ester followed by treatment with thionylchloride.
14. The compound
Figure imgf000014_0001
as a crystalline compound characterised by having a melting point of 201 ± 2°C
15. The compound
Figure imgf000015_0001
3
16. The compound of claim 15 as a crystalline compound characterised by having a melting point of 163±2°C.
17. The use of the compounds according to claims 14, 15 or 16 , as an intermediate in the preparation of Ingenol 3-(3,5-diethylisoxazole-4-carboxylate)
18. The process of any of the claim 12 wherein the crystallisation is performed in ethylacetate.
19. The process of claim 12 wherein the crystallisation is performed in heptane.
20. A method for preparation of a compound of claims 1-8, wherein the compound is prepared by the process according to the claims 12, 13 and 19.
21. A method for preparation of a compound of claims 9-11, wherein the compound is prepared by the process according to the claims 12, 13 and 18.
22. The polymorphic form of Ingenol 3-(3,5-diethylisoxazole-4-carboxylate) according to any one of the claims 1-11, for use in a composition for treatment of actinic keratosis, genital warts or non-melanoma skin cancer.
PCT/EP2016/082140 2015-12-22 2016-12-21 Process for preparation of ingenol 3-(3.5-diethylisoxazole-4-carboxylate) WO2017108927A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
EP15202043 2015-12-22
EP15202041 2015-12-22
EP15202041.8 2015-12-22
EP15202043.4 2015-12-22

Publications (1)

Publication Number Publication Date
WO2017108927A1 true WO2017108927A1 (en) 2017-06-29

Family

ID=57680260

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2016/082140 WO2017108927A1 (en) 2015-12-22 2016-12-21 Process for preparation of ingenol 3-(3.5-diethylisoxazole-4-carboxylate)

Country Status (1)

Country Link
WO (1) WO2017108927A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114716389A (en) * 2021-12-31 2022-07-08 北京岳达生物科技有限公司 Synthetic method of 3, 5-diethylisoxazole-4-carboxylic acid

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012010172A1 (en) * 2010-07-20 2012-01-26 Leo Pharma A/S A method of producing ingenol-3-angelate
WO2012083953A1 (en) * 2010-12-22 2012-06-28 Leo Pharma A/S Ingenol-3-acylates iii and ingenol-3-carbamates
WO2015059572A1 (en) * 2013-10-25 2015-04-30 Leo Laboratories Limited A method for topically treating actinic keratosis with ingenol 3-(3,5-diethylisoxazole-4-carboxylate)

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012010172A1 (en) * 2010-07-20 2012-01-26 Leo Pharma A/S A method of producing ingenol-3-angelate
WO2012083953A1 (en) * 2010-12-22 2012-06-28 Leo Pharma A/S Ingenol-3-acylates iii and ingenol-3-carbamates
WO2015059572A1 (en) * 2013-10-25 2015-04-30 Leo Laboratories Limited A method for topically treating actinic keratosis with ingenol 3-(3,5-diethylisoxazole-4-carboxylate)

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
"CRYSTALLINE FORM OF (1AR,2S,5R,5AS,6S,8AS,9R,10AR)-5,5ADIHYDROXY- 4-(HYDROXYMETHYL)-1,1,7,9-TETRAMETHYL-11-OXO- 1A,2,5,5A,6,9,10,10A-OCTAHYDRO-1H-2,8AMETHANOCYCLOPENTA[ A]CYCLPROPA[E][10]ANNULEN-6-YL (2Z)-2- METHYLBUT-2-ENOATE AND INTERMEDIATES THEREOF", IP.COM JOURNAL, IP.COM INC., WEST HENRIETTA, NY, US, 4 December 2013 (2013-12-04), XP013160112, ISSN: 1533-0001 *
H. J. OPFERKUCH ET AL: "Abstract", ZEITSCHRIFT FUR NATURFORSCHUNGN - SECTION B JOURNAL OF CHEMICAL SCIENCES, vol. 36, no. 7, 1 January 1981 (1981-01-01), pages 878 - 887, XP055339370, ISSN: 0932-0776, DOI: 10.1515/znb-1981-0717 *
MALENE BERTELSEN ET AL: "Ingenol Disoxate: A Novel 4-Isoxazolecarboxylate Ester of Ingenol with Improved Properties for Treatment of Actinic Keratosis and Other Non-Melanoma Skin Cancers", DERMATOLOGY AND THERAPY, vol. 6, no. 4, 8 August 2016 (2016-08-08), pages 599 - 626, XP055339098, ISSN: 2193-8210, DOI: 10.1007/s13555-016-0137-2 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114716389A (en) * 2021-12-31 2022-07-08 北京岳达生物科技有限公司 Synthetic method of 3, 5-diethylisoxazole-4-carboxylic acid
CN115894397A (en) * 2021-12-31 2023-04-04 北京岳达生物科技有限公司 Synthesis method of 3-oxo-2-propionyl methyl valerate

Similar Documents

Publication Publication Date Title
US6875867B2 (en) Process for preparing chiral diol sulfones and dihydroxy acid HMG CoA reductase inhibitors
EP2885298B1 (en) Chemical process
EP3707136B1 (en) Modulators of methyl modifying enzymes, compositions and uses thereof
JP6632127B2 (en) Method for producing optically active compound having thrombopoietin receptor agonistic activity and intermediate thereof
CN111183127A (en) Cocrystals of 2- [ (1R,6R) -6-isopropenyl-3-methylcyclohex-2-en-1-yl ] -5-pentylbenzene-1, 3-diol
JP2007519726A (en) Novel crystalline form of an inhibitor of 11-beta-hydroxysteroid dehydrogenase type 1
AU2014287049A1 (en) Pro-drug forming compounds
WO2017108927A1 (en) Process for preparation of ingenol 3-(3.5-diethylisoxazole-4-carboxylate)
EP3700894A1 (en) Process for preparing benzothiophen-2yl boronate
JP6937893B2 (en) Methods for producing bile acids
CN109641934B (en) Cholic acid derivative free base, crystal form, preparation method and application thereof
JP5468553B2 (en) Abacavir crystalline form essentially free of solvent
KR100749222B1 (en) Method for Producing 6-4-Chlorophenyl-2,2-Dimethyl-7-Phenyl-2,3-Dihydro-1H-Pyrrolizine-5-Yl Acetic Acid
ITBO960657A1 (en) CRYSTALLINE FORM OF MESILATE DOXAZOSIN AND PROCESS FOR ITS PRODUCTION
JP2020200300A (en) Novel crystal form of eldecalcitol, and preparation method and use thereof
WO2009158446A2 (en) Crystalline forms of ((((4-((5-(cyclopropylcarbamoyl)-2-methylphenyl)amino)-5-methylpyrrolo[2,1-f][1,2,4]triazin-6-yl)carbonyl)(propyl)carbamoyl)oxy)methyl (4-(phosphonooxy)phenyl)acetate, method of preparation and use thereof
WO2023086498A1 (en) Protein tyrosine phosphatase inhibitors and methods of use thereof
WO2023250107A1 (en) Process for preparing modulators of eukaryotic initiation factor 2b
EP2831058B1 (en) Polymorph of barnidipine hydrochloride and processes for its preparation
WO2013055244A1 (en) Preparation of protoescigenin from escin
EA042468B1 (en) METHODS FOR PRODUCING INTERMEDIATES FOR THE SYNTHESIS OF THE MDM2 INHIBITOR
KR20210052497A (en) Method of making an MDM2 inhibitor
EP0684234A1 (en) Synthesis of benzoquinolinones
JPH0625258A (en) Thiazatetracycloundecadiene derivative
NZ753956A (en) Processes of making and crystalline forms of a mdm2 inhibitor

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16819548

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16819548

Country of ref document: EP

Kind code of ref document: A1