WO2017107915A1 - 传感器装置 - Google Patents

传感器装置 Download PDF

Info

Publication number
WO2017107915A1
WO2017107915A1 PCT/CN2016/111267 CN2016111267W WO2017107915A1 WO 2017107915 A1 WO2017107915 A1 WO 2017107915A1 CN 2016111267 W CN2016111267 W CN 2016111267W WO 2017107915 A1 WO2017107915 A1 WO 2017107915A1
Authority
WO
WIPO (PCT)
Prior art keywords
lead
support frame
bracket
contact portion
plate
Prior art date
Application number
PCT/CN2016/111267
Other languages
English (en)
French (fr)
Inventor
曲林
龙浩晖
杨雄
刘泰响
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to JP2018532549A priority Critical patent/JP6544879B2/ja
Priority to EP16877725.8A priority patent/EP3382359B1/en
Priority to US16/065,380 priority patent/US10996118B2/en
Publication of WO2017107915A1 publication Critical patent/WO2017107915A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L1/00Measuring force or stress, in general
    • G01L1/14Measuring force or stress, in general by measuring variations in capacitance or inductance of electrical elements, e.g. by measuring variations of frequency of electrical oscillators
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L1/00Measuring force or stress, in general
    • G01L1/14Measuring force or stress, in general by measuring variations in capacitance or inductance of electrical elements, e.g. by measuring variations of frequency of electrical oscillators
    • G01L1/142Measuring force or stress, in general by measuring variations in capacitance or inductance of electrical elements, e.g. by measuring variations of frequency of electrical oscillators using capacitors

Definitions

  • the present invention relates to the field of integrated circuit manufacturing, packaging, and measurement technologies, and more particularly to a sensor device.
  • the sensor is the main component in the electronic device, which can sense the measured information, and can transform the measured information it feels into an electrical signal or other required form of information output to meet the information. Requirements for transmission, processing, storage, display, recording, and control. Among them, the stress sensor is mainly used to measure the stress by transforming the stress deformation of the object to be measured into a change in resistance or a change in capacitance.
  • the strain sensor when measuring the stress on an object, the strain sensor is usually used.
  • the strain sensor is glued to the surface of the object to be measured, and the strain sensor can measure whether the surface of the object is affected by the glue.
  • the stress is deformed, and the signal measured by the strain gauge sensor is transmitted to the stress tester through the wire connected thereto, and the stress tester converts the measured signal into an electrical signal and sends it to the computer for analysis, thereby finally obtaining the stress on the object to be tested.
  • the stress deformation of the measured object is transmitted to the strain gauge sensor through the glue, and the rigidity variation of the glue may affect the accuracy of the strain sensor receiving the stress on the measured object. This reduces the accuracy of the strain gauge sensor measurement.
  • the embodiment of the invention provides a sensor device for solving the problem that the measurement accuracy of the strain gauge sensor in the prior art is not high.
  • an embodiment of the present invention provides a sensor device including: a bracket, a first plate, a first contact portion, a first lead, a rotating shaft, a support frame, a second plate, a second contact portion, and a second lead ;
  • the bracket is a cylindrical structure with open ends
  • the first plate is disposed at a first end of the bracket
  • the first contact portion is configured to be in rigid contact with the object to be tested, and is disposed at the second end of the bracket;
  • the first lead is disposed outside the first plate and the bracket, and one end of the first lead is connected to the first contact portion, and the other end of the first lead is connected to the First plate;
  • the first end of the support frame is provided with a second contact portion, and the second end of the support frame is provided with a second electrode plate, and the first end of the support frame is disposed between the first end of the support frame and the second end of the support frame a shaft, the support frame being hinged to the bracket through the rotating shaft;
  • the second contact portion is configured to be in rigid contact with the object to be tested
  • the second lead is disposed on the support frame and the second plate, and one end of the second lead is connected to the second contact portion, and the other end of the second lead is connected to the inner side of the bracket And the position of the other end of the second lead and the position of the first lead are on the same side of the bracket.
  • the method further includes: a spring balance component, respectively coupled to the rotating shaft and one end of the support frame.
  • the method further includes: an outer package;
  • bracket is placed in the inner cavity of the outer package
  • the first contact portion and the second contact portion are placed on a bottom of the outer package.
  • the method further includes: a sensing portion embedded in a top portion of the outer package;
  • the sensing portion is in contact with the first plate.
  • the sensing portion includes a sensing column, a first elastic component for limiting movement of the sensing column, and a second elasticity component;
  • sensing column is in contact with the first plate.
  • the sensing portion is an elastic film.
  • the elastic balance component includes a third elastic component that is respectively coupled to the rotating shaft and one end of the support frame, and The fourth elastic member.
  • the bracket is a cylinder
  • the cylinder is a hollow structure
  • a protrusion is disposed on an inner side of the bracket, and the other end of the second lead is coupled to the protrusion.
  • the sensor device comprises: a bracket, a first plate, a first contact portion, a first lead, a rotating shaft, a support frame, a second plate, a second contact portion and a second lead; the bracket is open at both ends a cylindrical structure; a first plate disposed at the first end of the bracket; a first contact portion for rigid contact with the object to be tested, disposed at the second end of the bracket; the first lead disposed on the first plate and An outer side of the bracket, and one end of the first lead is connected to the first contact portion, and the other end of the first lead is connected to the first pole plate; the first end of the support frame is provided with a second contact portion, and the second end of the support frame a second plate is disposed, a rotating shaft is disposed between the first end of the support frame and the second end of the support frame, the support frame is hinged to the bracket through the rotating shaft; the second contact portion is for rigid contact with the object to be tested; a lead wire disposed on the support frame and the second electrode plate
  • FIG. 1 is a schematic structural view of a first embodiment of a sensor device according to the present invention.
  • FIG. 2 is a schematic structural view of a third embodiment of a sensor device according to the present invention.
  • Embodiment 5 of a sensor device according to the present invention is a schematic structural diagram of Embodiment 5 of a sensor device according to the present invention.
  • FIG. 4 is a schematic structural diagram of Embodiment 6 of a sensor device according to the present invention.
  • the sensor device of the present embodiment includes a bracket 1, a first plate (not shown), and a first contact portion 3. a first lead 2, a rotating shaft 4, a support frame 5, a second plate (not shown), a second contact portion 6, and a second lead 7.
  • the bracket 1 is a tubular structure with open ends.
  • the first plate is disposed at the first end 30 of the bracket.
  • the first plate is attached or pressed to the first end 30 of the bracket.
  • first lead 2 may be a single wire or a rectangular wire formed of a plurality of wires.
  • the first contact portion 3 is for rigid contact with the object to be tested and is disposed at the second end 31 of the bracket.
  • the first lead 2 is disposed outside the first plate and the bracket 1, and one end of the first lead 2 is connected to the first contact portion 3, and the other end of the first lead 2 is connected to the first plate.
  • the first end 40 of the support frame is provided with a second contact portion 6
  • the second end 41 of the support frame is provided with a second plate
  • the rotating shaft 4 is disposed between the first end 40 of the support frame and the second end 41 of the support frame
  • the support frame 5 is hinged to the bracket 1 via the rotating shaft 4.
  • the second plate is attached or pressed onto the support frame 5.
  • both the bracket 1 and the support frame 5 are made of a non-metal insulating material, and the inside of the first plate and the second plate are stored with electric charges, and the electric charge can be drawn through the wires, for example, the first plate
  • the second plate may be a metal film or a metal plate, but is not limited thereto.
  • the second contact portion 6 is for rigid contact with the object to be tested.
  • the second lead 7 is disposed on the support frame 5 and the second plate, and one end of the second lead 7 is connected to the second contact portion 6.
  • the other end of the second lead 7 is connected to the inner side of the bracket 1, and the second lead 7 is The position of the other end and the position of the first lead 2 are on the same side of the bracket 1.
  • bracket 1 is integrally formed with the first contact portion 3, and the support frame 5 and the second contact portion 6 are integrally formed, but not limited thereto.
  • the first contact 3 and the second contact 6 of the sensor device are in rigid contact with the object to be tested.
  • a second electrode disposed at the second end 41 of the support frame and a second lead 7 disposed on the second plate and the support frame 5 form a second electrode of the capacitor, such that the sensor device can pass through the first contact portion 3 and
  • the two contact portions 6 are in rigid contact with the object to be tested, and the stress change of the object to be tested drives the movement of the rotating shaft 4, thereby driving the support frame 5 whose one end is connected with the rotating shaft, and at this time, is disposed on the second plate and the supporting frame 5.
  • the second lead 7 also moves with the movement of the support frame 5, thereby causing a change in the pole pitch and the facing area of the first electrode and the second electrode of the capacitor, resulting in a change in the capacitance of the capacitor, so that the capacitance value of the capacitor can be changed according to the capacitance.
  • the change analyzes the stress change of the object to be tested.
  • the sensor device is between the first electrode and the second electrode when the object to be tested is not connected.
  • the facing area is s 1
  • the spacing between the first electrode and the second electrode is d 1 .
  • the first contact portion 3 and the second contact 6 of the sensor device are in rigid contact with the object to be tested. At this time, the stress change of the object to be tested will drive the movement of the rotating shaft 4, thereby driving the support frame 5 connected to the rotating shaft at one end.
  • the facing area between the first electrode and the second electrode is s 2
  • the spacing between the first electrode and the second electrode is d 2 , which causes a change in capacitance of the capacitor, that is, according to formula (1):
  • is the dielectric constant between the first electrode and the second electrode
  • c 1 is the capacitance of the sensor device when the object to be tested is not connected
  • c 2 is when the sensor device detects the stress change of the object to be tested The capacitance of the capacitor.
  • the sensor device includes a bracket, a first plate, a first contact portion, a first lead, a rotating shaft, a support frame, a second plate, a second contact portion, and a second lead;
  • the bracket is open at both ends a cylindrical structure; a first plate disposed at the first end of the bracket; a first contact portion for rigid contact with the object to be tested, disposed at the second end of the bracket; the first lead disposed on the first plate and An outer side of the bracket, and one end of the first lead is connected to the first contact portion, and the other end of the first lead is connected to the first pole plate;
  • the first end of the support frame is provided with a second contact portion, and the second end of the support frame a second plate is disposed, a rotating shaft is disposed between the first end of the support frame and the second end of the support frame, the support frame is hinged to the bracket through the rotating shaft;
  • the second contact portion is for rigid contact with the object to be tested; a lead wire disposed on the support frame and the second
  • the lower portion of the first lead 2 is covered with a conductive film.
  • FIG. 2 is a schematic structural view of a third embodiment of a sensor device according to the present invention.
  • the sensor device of the present embodiment further includes an elastic balance component 8 and a rotating shaft, respectively, based on the embodiment shown in FIG. 4 is connected to one end of the support frame 5.
  • the elastic balance member 8 includes a third elastic member 10 and a fourth elastic member 11 respectively connected to the rotating shaft 4 and one end of the support frame 5, so that when the rotating shaft 4 is rotated away from the starting position, the third elastic portion can be The component 10 and the fourth elastic component 11 are restored to the starting position so as not to affect the next measurement result of the sensor device.
  • the third elastic member 10 and the fourth elastic member 11 are disposed, and the rotation of the shaft 4 can be restored by the cooperation of the third elastic member 10 and the fourth elastic member 11 regardless of the direction in which the rotating shaft 4 rotates. starting point.
  • the bracket 1 is a cylinder, and the cylinder is a hollow structure.
  • bracket 1 may also be a rectangular parallelepiped, and the rectangular parallelepiped is a hollow structure, but is not limited thereto.
  • a protrusion 13 is disposed on the inner side of the bracket 1 , and the other end of the second lead 7 is connected to the protrusion 13 , so that the other end of the second lead 7 is facilitated to be pressed on the inner side of the bracket 1 by the protrusion 13 .
  • FIG. 3 is a schematic structural view of a fifth embodiment of a sensor device according to the present invention. As shown in FIG. 3, the sensor device of the present embodiment further includes an outer package 9 based on the embodiment shown in FIG.
  • the bracket 1 is placed in the inner cavity of the outer package 9, so that dust and other impurities can be effectively prevented from entering the inside of the bracket 1.
  • the first contact portion 3 and the second contact portion 6 are placed on the bottom of the outer package to facilitate contact with the object to be measured.
  • first contact 3 and the second contact portion 6 may be pads or contacts.
  • the sensor device further includes: a sensing portion (not shown) embedded in the top of the outer package.
  • the sensing portion is in contact with the first plate for converting the vertical direction stress received by the object to be measured into a change in the pole pitch of the first electrode and the second electrode of the capacitor in the sensor device, thereby the object to be measured
  • the stress in the vertical direction is converted into a change in the capacitance of the capacitor in the sensor device, and the change in the vertical direction of the object to be tested can be analyzed according to the change in the capacitance of the sensor device.
  • the sensing portion pushes the first lead 2 drawn by the first plate under the action of the stress, so that the first electrode of the capacitor and the second electrode of the capacitor The distance between the poles changes, causing a change in the capacitance of the capacitor.
  • the sensing portion includes a sensing post 12, a first elastic member 20 for restricting movement of the sensing post 12, and a second elastic member 21, such that the sensing post 12 is always in contact with the first lead 2 drawn from the first plate.
  • the sensing pillar 12 may be composed of an insulating material.
  • the sensing column 12 is in contact with the first plate.
  • FIG. 4 is a schematic structural view of a sixth embodiment of a sensor device according to the present invention.
  • the sensing portion is an elastic film 14.
  • the elastic film 14 is in contact with the first plate.
  • the elastic film 14 is deformed, thereby causing a change in the pole pitch of the first electrode and the second electrode of the capacitor, thereby causing a change in the capacitance of the capacitor.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Force Measurement Appropriate To Specific Purposes (AREA)
  • Measurement Of Length, Angles, Or The Like Using Electric Or Magnetic Means (AREA)
  • Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)
  • Pressure Sensors (AREA)

Abstract

一种传感器装置,包括,支架(1)、第一极板、第一接触部(3)、第一引线(2)、转轴(4)、支撑架(5)、第二极板、第二接触部(6)和第二引线(7);支架(1)为两端开口的筒状结构;第一极板,设置在支架(1)的第一端(30);第一接触部(3),设置在支架(1)的第二端(31);第一引线(2),设置在第一极板和支架(1)的外侧;支撑架(5)的第一端(40)设置有第二接触部(6),支撑架(5)的第二端(41)设置有第二极板,支撑架(5)的第一端(40)与支撑架(5)的第二端(41)之间设置有转轴(4);第二引线(7),设置在支撑架(5)和第二极板上,且第二引线(7)的一端与第二接触部(6)连接,第二引线(7)的另一端连接在支架(1)内侧。该传感器装置将待测试物体的应力变化转换为电容的容值变化,并根据该电容的容值变化分析出待测试物体的应力变化,提高了传感器装置的测量精度。

Description

传感器装置
本申请要求于2015年12月24日提交中国专利局、申请号为201521098417.2、发明名称为“传感器装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本发明涉及集成电路制造、封装和测量技术领域,尤其涉及一种传感器装置。
背景技术
传感器是电子设备中的主要元器件,其能感受到被测量的信息,并能将其感受到的被测量的信息按一定规律变换成为电信号或其他所需形式的信息输出,以满足信息的传输、处理、存储、显示、记录和控制等要求。其中,应力传感器主要是通过将待测物体的应力变形转变为电阻的变化或者电容的变化,从而实现对应力的测量。
现有技术中,测量物体所受到的应力时,通常采用该应变式传感器,具体使用时,将应变式传感器用胶水粘贴在被测物体表面,应变式传感器可以通过胶水测量被测物体表面是否受到应力变形,并将应变式传感器测量的信号通过与其相连的导线传递给应力测试仪,应力测试仪将测量的信号转换为电信号并发送给计算机进行分析,最终得到待测物体所受到的应力。
但是,采用现有技术时,被测物体的应力变形是通过胶水传递给应变式传感器,由于胶水的刚性变化可能会影响到应变式传感器对被测物体所受到的应力的采集结果的准确性,因此降低了应变式传感器测量的精确性。
发明内容
本发明实施例提供一种传感器装置,用于解决现有技术中应变式传感器的测量精度不高的问题。
第一方面,本发明实施例提供一种传感器装置,包括:支架、第一极板、第一接触部、第一引线、转轴、支撑架、第二极板、第二接触部和第二引线;
所述支架为两端开口的筒状结构;
所述第一极板,设置在所述支架的第一端;
所述第一接触部,用于与待测试物体刚性接触,设置在所述支架的第二端;
所述第一引线,设置在所述第一极板和所述支架的外侧,且所述第一引线的一端与所述第一接触部连接,所述第一引线的另一端连接在所述第一极板上;
所述支撑架的第一端设置有第二接触部,所述支撑架的第二端设置有第二极板,所述支撑架的第一端与所述支撑架的第二端之间设置有转轴,所述支撑架通过所述转轴与所述支架铰接;
所述第二接触部,用于与待测试物体刚性接触;
所述第二引线,设置在所述支撑架和所述第二极板上,且所述第二引线的一端与第二接触部连接,所述第二引线的另一端连接在所述支架内侧,且所述第二引线的另一端的位置和所述第一引线的位置均在所述支架的同一边。
结合第一方面,在第一方面的第一种可能实现方式中,还包括:弹力平衡部件,分别与所述转轴和所述支撑架的一端连接。
结合第一方面或者第一方面的第一种可能实现方式,在第一方面的第二种可能实现方式中,还包括:外封装体;
其中,所述支架放置在所述外封装体的内腔中;
所述第一接触部和第二接触部放置在所述外封装体的底部上。
结合第一方面的第二种可能实现方式,在第一方面的第三种可能实现方式中,还包括:感应部,内嵌在所述外封装体的顶部;
其中,所述感应部与所述第一极板接触。
结合第一方面的第二种可能实现方式,在第一方面的第四种可能实现方式中,所述感应部包括感应柱、用于限制所述感应柱移动的第一弹性部件和第二弹性部件;
其中,所述感应柱与所述第一极板接触。
结合第一方面的第二种可能实现方式,在第一方面的第五种可能实现方式中,所述感应部为弹性膜。
结合第一方面的第一种可能实现方式,在第一方面的第六种可能实现方式中,所述弹力平衡部件包括分别与所述转轴和所述支撑架的一端连接的第三弹性部件和第四弹性部件。
结合第一方面,在第一方面的第七种可能实现方式中,所述支架为圆柱体,所述圆柱体为中空结构。
结合第一方面,在第一方面的第八种可能实现方式中,所述支架内侧上设置有凸起,所述第二引线的另一端与所述凸起连接。
本发明提供的传感器装置,包括,支架、第一极板、第一接触部、第一引线、转轴、支撑架、第二极板、第二接触部和第二引线;支架为两端开口的筒状结构;第一极板,设置在支架的第一端;第一接触部,用于与待测试物体刚性接触,设置在支架的第二端;第一引线,设置在第一极板和支架的外侧,且第一引线的一端与第一接触部连接,第一引线的另一端连接在第一极板上;支撑架的第一端设置有第二接触部,支撑架的第二端设置有第二极板,支撑架的第一端与支撑架的第二端之间设置有转轴,支撑架通过转轴与支架铰接;第二接触部,用于与待测试物体刚性接触;第二引线,设置在支撑架和第二极板上,且第二引线的一端与第二接触部连接,第二引线的另一端连接在支架内侧,且第二引线的另一端的位置和第一引线的位置均在支架的同一边,这样,由于第一极板和第一引线形成电容的第一电极,第二极板和第二引线形成电容的第二电极,且通过第一接触部和第二接触部与待测试物体刚性接触,因此实现了将待测试物体的应力变化转换为由第一电极和第二电极组成的电容的容值的变化,从而可以根据该电容的容值的变化能够精确地分析出待测试物体的应力变化,进而避免了现有技术中采用应变式传感器装置需要将应变式传感器装置用胶水粘贴在被测物体表面而造成测量结果不精确的问题。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作一简单地介绍,显而易见地,下面描述中的附图是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。
图1为本发明提供的传感器装置实施例一的结构示意图;
图2为本发明提供的传感器装置实施例三的结构示意图;
图3为本发明提供的传感器装置实施例五的结构示意图;
图4为本发明提供的传感器装置实施例六的结构示意图。
附图标记说明:
1:支架;
2:第一引线;
3:第一接触部;
4:转轴;
5:支撑架;
6:第二接触部;
7:第二引线;
8:弹力平衡部件;
9:外封装体;
10:第三弹簧部件;
11:第四弹簧部件;
12:感应柱;
13:凸起;
14:弹性膜;
20:第一弹性部件;
21:第二弹性部件;
30:支架的第一端;
31:支架的第二端;
40:支撑架的第一端;
41:支撑架的第二端。
具体实施方式
为使本发明实施例的目的、技术方案和优点更加清楚,下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
图1为本发明提供的传感器装置实施例一的结构示意图,如图1所示,本实施例的传感器装置包括:支架1、第一极板(图中未示出)、第一接触部3、第一引线2、转轴4、支撑架5、第二极板(图中未示出)、第二接触部6和第二引线7。
其中,支架1为两端开口的筒状结构。
第一极板,设置在支架的第一端30。
具体地,第一极板贴合或压合在支架的第一端30。
此外,第一引线2可以是单根的导线也可以是多根导线形成的矩形导线。
第一接触部3,用于与待测试物体刚性接触,设置在支架的第二端31。
第一引线2,设置在第一极板和支架1的外侧,且第一引线2的一端与第一接触部3连接,第一引线2的另一端连接在第一极板上。
支撑架的第一端40设置有第二接触部6,支撑架的第二端41设置有第二极板,支撑架的第一端40与支撑架的第二端41之间设置有转轴4,支撑架5通过转轴4与支架1铰接。
具体地,第二极板贴合或者压合在支撑架5上。
需要说明的是,支架1和支撑架5均由非金属绝缘材料构成,且第一极板和第二极板的内部存储有电荷,该电荷可以通过导线引出,举例来说,第一极板和第二极板可以是金属薄膜,也可以是金属板,但并不以此为限。
第二接触部6,用于与待测试物体刚性接触。
第二引线7,设置在支撑架5和第二极板上,且第二引线7的一端与第二接触部6连接,第二引线7的另一端连接在支架1内侧,且第二引线7的另一端的位置和第一引线2的位置均在支架1的同一边。
此外,需要说明的是,支架1与第一接触部3一体成型,支撑架5与第二接触部6一体成型,但并不以此为限。
具体使用时,将传感器装置的第一接触部3和第二接触6与待测试物体刚性接触。同时,设置在支架的第一端30的第一极板和设置在第一极板和支架1的外侧,且用于将第一极板连出的第一引线2形成电容的第一电极,设置在支撑架的第二端41的第二极板和设置在第二极板和支撑架5上的第二引线7形成电容的第二电极,这样传感器装置可以通过第一接触部3和第二接触部6与待测试物体刚性接触,待测试物体的应力变化会带动转轴4运动,进而带动一端与转轴连接的支撑架5运动,此时,设置在第二极板和支撑架5上的第二引线7也随支撑架5的运动而运动,从而引起电容的第一电极和第二电极的极间距和正对面积发生改变,导致电容的容值发生改变,从而可以根据该电容的容值的变化分析出待测试物体的应力变化。
为了详细说明本发明中待测试物体的应力变化和传感器装置中的电容的容值的变化的对应关系,我们假设传感器装置在未接入待测试物体时,第一电极和第二电极之间的正对面积为s1,第一电极和第二电极之间的间距为d1
将传感器装置的第一接触部3和第二接触6与待测试物体刚性接触,此时,待测物 体的应力变化会带动转轴4运动,进而带动一端与转轴连接的支撑架5运动,此时,第一电极和第二电极之间的正对面积为s2,第一电极和第二电极之间的间距为d2,导致电容的容值发生改变,即可以根据公式(1):
Figure PCTCN2016111267-appb-000001
计算获取该电容的容值变化量Δc。
其中,ε是第一电极和第二电极之间的介电常数,c1是传感器装置在未接入待测试物体时电容的容值,c2是传感器装置检测到待测试物体的应力变化时电容的容值。
由此可知,待测物体的应力变化与传感器装置的电容的容值变化之间存在一一对应的关系,将传感器装置的电容的变化量输入与传感器装置相连的计算机中,计算机软件可以根据该电容的容值的变化精确地分析出待测试物体的应力变化。
本实施例中,传感器装置,包括支架、第一极板、第一接触部、第一引线、转轴、支撑架、第二极板、第二接触部和第二引线;支架为两端开口的筒状结构;第一极板,设置在支架的第一端;第一接触部,用于与待测试物体刚性接触,设置在支架的第二端;第一引线,设置在第一极板和支架的外侧,且第一引线的一端与第一接触部连接,第一引线的另一端连接在第一极板上;支撑架的第一端设置有第二接触部,支撑架的第二端设置有第二极板,支撑架的第一端与支撑架的第二端之间设置有转轴,支撑架通过转轴与支架铰接;第二接触部,用于与待测试物体刚性接触;第二引线,设置在支撑架和第二极板上,且第二引线的一端与第二接触部连接,第二引线的另一端连接在支架内侧,且第二引线的另一端的位置和第一引线的位置均在支架的同一边,这样,由于第一极板和第一引线形成电容的第一电极,第二极板和第二引线形成电容的第二电极,且通过第一接触部和第二接触部与待测试物体刚性接触,因此实现了将待测试物体的应力变化转换为由第一电极和第二电极组成的电容的容值的变化,从而可以根据该电容的容值的变化能够精确地分析出待测试物体的应力变化,进而避免了现有技术中采用应变式传感器装置需要将应变式传感器装置用胶水粘贴在被测物体表面而造成测量结果不精确的问题。
进一步地,在上述实施例一的基础上,在本发明提供的传感器装置的实施例二中,为了提高引线的导电能力,第一引线2的下部覆设有导电膜。
图2为本发明提供的传感器装置实施例三的结构示意图,如图2所示,本实施例的传感器装置在图1所示实施例的基础上,还包括,弹力平衡部件8,分别与转轴4和支撑架5的一端连接。
可选地,弹力平衡部件8包括分别与转轴4和支撑架5的一端连接的第三弹性部件10和第四弹性部件11,这样当转轴4发生转动偏离起始位置时,可以在第三弹性部件10和第四弹性部件11的作用下恢复到起始位置,从而不影响传感器装置的下次测量结果。
需要说明的是,设置第三弹性部件10和第四弹性部件11,不管转轴4朝哪个方向进行旋转,在第三弹性部件10和第四弹性部件11的共同作用下,可以使得转轴4恢复到起始位置。
进一步地,在上述任意实施例的基础上,在本发明提供的传感器装置的实施例四中,支架1为圆柱体,圆柱体为中空结构。
需要说明的是,支架1还可以是长方体,且长方体为中空结构,但并不以此为限。
可选地,支架1内侧上设置有凸起13,第二引线7的另一端与凸起13连接,从而便于第二引线7的另一端通过凸起13压合在支架1的内侧。
图3为本发明提供的传感器装置实施例五的结构示意图,如图3所示,本实施例的传感器装置在图2所示实施例的基础上,还包括:外封装体9。
其中,支架1放置在外封装体9的内腔中,从而可以有效地阻挡灰尘等其他杂质进入到支架1内部。
第一接触部3和第二接触部6放置在外封装体的底部上,便于与待测量物体接触。
需要说明的是,第一接触3和第二接触部6可以是焊盘或者触点。
可选地,继续参照图3,传感器装置还包括:感应部(图中未画出),内嵌在外封装体的顶部。
其中,感应部与第一极板接触,用于将待测量物体所受到的竖直方向的应力转化为传感器装置中电容的第一电极和第二电极的极间距的变化,从而将待测量物体所受到的竖直方向的应力转化为传感器装置中电容的容值的变化,可以根据传感器装置电容的容值的变化分析出待测试物体的竖直方向的应力变化。
需要说明的是,当待测量物体受到竖直方向的应力时,感应部在应力的作用下推动第一极板引出的第一引线2,从而使得电容的第一电极和电容的第二电极之间的极间距发生变化,从而引起电容的容值的变化。
可选地,感应部包括感应柱12、用于限制感应柱12移动的第一弹性部件20和第二弹性部件21,这样保证感应柱12始终于第一极板引出的第一引线2接触。
需要说明的是,感应柱12可以由绝缘材料组成。
其中,感应柱12与第一极板接触。
图4为本发明提供的传感器装置实施例六的结构示意图,在上述图3所示实施例的基础上,如图4所示,感应部为弹性膜14。
其中,弹性膜14与第一极板接触。
具体使用时,当待测量物体受到竖直方向的应力时,弹性膜14发生形变,从而使得电容的第一电极和第二电极的极间距的变化,从而引起电容的容值的变化。
最后应说明的是:以上各实施例仅用以说明本发明的技术方案,而非对其限制;尽管参照前述各实施例对本发明进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分或者全部技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本发明各实施例技术方案的范围。

Claims (9)

  1. 一种传感器装置,其特征在于,包括:支架、第一极板、第一接触部、第一引线、转轴、支撑架、第二极板、第二接触部和第二引线;
    所述支架为两端开口的筒状结构;
    所述第一极板,设置在所述支架的第一端;
    所述第一接触部,用于与待测试物体刚性接触,设置在所述支架的第二端;
    所述第一引线,设置在所述第一极板和所述支架的外侧,且所述第一引线的一端与所述第一接触部连接,所述第一引线的另一端连接在所述第一极板上;
    所述支撑架的第一端设置有第二接触部,所述支撑架的第二端设置有第二极板,所述支撑架的第一端与所述支撑架的第二端之间设置有转轴,所述支撑架通过所述转轴与所述支架铰接;
    所述第二接触部,用于与待测试物体刚性接触;
    所述第二引线,设置在所述支撑架和所述第二极板上,且所述第二引线的一端与第二接触部连接,所述第二引线的另一端连接在所述支架内侧,且所述第二引线的另一端的位置和所述第一引线的位置均在所述支架的同一边。
  2. 根据权利要求1所述的传感器装置,其特征在于,还包括:弹力平衡部件,分别与所述转轴和所述支撑架的一端连接。
  3. 根据权利要求1或2所述的传感器装置,其特征在于,还包括:外封装体;
    其中,所述支架放置在所述外封装体的内腔中;
    所述第一接触部和第二接触部放置在所述外封装体的底部上。
  4. 根据权利要求3所述的传感器装置,其特征在于,还包括:感应部,内嵌在所述外封装体的顶部;
    其中,所述感应部与所述第一极板接触。
  5. 根据权利要求3所述的传感器装置,其特征在于,所述感应部包括感应柱、用于限制所述感应柱移动的第一弹性部件和第二弹性部件;
    其中,所述感应柱与所述第一极板接触。
  6. 根据权利要求3所述的传感器装置,其特征在于,所述感应部为弹性膜。
  7. 根据权利要求2所述的传感器装置,其特征在于,所述弹力平衡部件包括分别与所述转轴和所述支撑架的一端连接的第三弹性部件和第四弹性部件。
  8. 根据权利要求1所述的传感器装置,其特征在于,所述支架为圆柱体,所述圆柱体为中 空结构。
  9. 根据权利要求1所述的传感器装置,其特征在于,所述支架内侧上设置有凸起,所述第二引线的另一端与所述凸起连接。
PCT/CN2016/111267 2015-12-24 2016-12-21 传感器装置 WO2017107915A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2018532549A JP6544879B2 (ja) 2015-12-24 2016-12-21 センサ装置
EP16877725.8A EP3382359B1 (en) 2015-12-24 2016-12-21 Sensor apparatus
US16/065,380 US10996118B2 (en) 2015-12-24 2016-12-21 Sensor apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201521098417.2U CN205449348U (zh) 2015-12-24 2015-12-24 传感器装置
CN201521098417.2 2015-12-24

Publications (1)

Publication Number Publication Date
WO2017107915A1 true WO2017107915A1 (zh) 2017-06-29

Family

ID=56579208

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/111267 WO2017107915A1 (zh) 2015-12-24 2016-12-21 传感器装置

Country Status (5)

Country Link
US (1) US10996118B2 (zh)
EP (1) EP3382359B1 (zh)
JP (1) JP6544879B2 (zh)
CN (1) CN205449348U (zh)
WO (1) WO2017107915A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN205449348U (zh) * 2015-12-24 2016-08-10 华为技术有限公司 传感器装置

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5959212A (en) * 1998-04-27 1999-09-28 Texas Instruments Incorporated Capacitive pressure transducer having reduced output error
JP2000004027A (ja) * 1998-06-12 2000-01-07 Tokin Corp 静電容量型圧力センサ
CN201754116U (zh) * 2010-06-19 2011-03-02 比亚迪股份有限公司 一种压力传感器
CN102105852A (zh) * 2008-07-29 2011-06-22 摩托罗拉移动公司 用于电子装置的单侧电容式力传感器
US20110278078A1 (en) * 2010-05-11 2011-11-17 Synaptics Incorporated Input device with force sensing
CN102589792A (zh) * 2011-01-13 2012-07-18 发那科株式会社 静电电容式力传感器
CN103674412A (zh) * 2012-08-30 2014-03-26 飞思卡尔半导体公司 具有差分电容输出的压力传感器
CN205449348U (zh) * 2015-12-24 2016-08-10 华为技术有限公司 传感器装置

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3463327A (en) * 1967-09-25 1969-08-26 John C Lester Pendant control for overhead cranes
US4719538A (en) 1986-12-02 1988-01-12 Cox John D Force responsive capacitive transducer
JP2004294254A (ja) * 2003-03-27 2004-10-21 Gumma Prefecture 静電容量型荷重センサ
JP2008267923A (ja) * 2007-04-18 2008-11-06 Nitta Ind Corp 張力測定装置
WO2010051264A1 (en) * 2008-10-28 2010-05-06 Pile Dynamics, Inc. Strain and displacement sensor and system and method for using the same
CN102980691B (zh) 2012-11-29 2014-09-17 西安电子科技大学 三维界面应力传感器
CN103411712B (zh) 2013-07-18 2015-12-16 电子科技大学 接触应力传感器

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5959212A (en) * 1998-04-27 1999-09-28 Texas Instruments Incorporated Capacitive pressure transducer having reduced output error
JP2000004027A (ja) * 1998-06-12 2000-01-07 Tokin Corp 静電容量型圧力センサ
CN102105852A (zh) * 2008-07-29 2011-06-22 摩托罗拉移动公司 用于电子装置的单侧电容式力传感器
US20110278078A1 (en) * 2010-05-11 2011-11-17 Synaptics Incorporated Input device with force sensing
CN201754116U (zh) * 2010-06-19 2011-03-02 比亚迪股份有限公司 一种压力传感器
CN102589792A (zh) * 2011-01-13 2012-07-18 发那科株式会社 静电电容式力传感器
CN103674412A (zh) * 2012-08-30 2014-03-26 飞思卡尔半导体公司 具有差分电容输出的压力传感器
CN205449348U (zh) * 2015-12-24 2016-08-10 华为技术有限公司 传感器装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3382359A4 *

Also Published As

Publication number Publication date
EP3382359A4 (en) 2018-12-26
EP3382359B1 (en) 2020-09-02
EP3382359A1 (en) 2018-10-03
CN205449348U (zh) 2016-08-10
JP6544879B2 (ja) 2019-07-17
JP2018538543A (ja) 2018-12-27
US20200348190A1 (en) 2020-11-05
US10996118B2 (en) 2021-05-04

Similar Documents

Publication Publication Date Title
TWI531793B (zh) 測定一感測器靈敏度的方法以及感測器,特別是磁場感測器
CN204495495U (zh) 一种三维力电容式触觉传感器单元
CN103616098B (zh) 一种高精度基于金属弹性元件的挠曲电式压力传感器
CN110459579B (zh) 一种柔性显示面板及其弯折检测方法
US9442032B2 (en) Microelectromechanical pressure sensor with robust diaphragm
CN108151930B (zh) 压力检测装置和压力检测触控装置
CN103630274A (zh) 一种基于微机电系统的挠曲电式微压力传感器
CN104483054B (zh) 挠曲电型无源扭矩传感器
CN1144030C (zh) 应变片及其应用
CN109212264B (zh) 环形剪切式挠曲电加速度传感器及层叠结构加速度传感器
CN107219026A (zh) 一种多方向微纳力测量装置及测量方法
WO2017107915A1 (zh) 传感器装置
CN106247920B (zh) 一种基于弹性基底夹心叉指电容的表面应变检测器件
CN108604138B (zh) 压力传感装置及具有该压力传感装置的电子设备
CN105759130A (zh) 纳米线压电系数d33的测量装置及测量方法
KR101964879B1 (ko) 인장력과 압축력의 측정이 가능한 탄소 복합체 센서 및 이의 제조 방법
JP3815771B2 (ja) 静電容量式ギャップセンサ、及びその信号検出方法
Wang et al. Novel full range vacuum pressure sensing technique using free decay of trapezoid micro-cantilever beam deflected by electrostatic force
KR102060254B1 (ko) 로드셀 및 멀티 로드셀
CN101957168A (zh) 电容检测物体形变量的方法
CN105182002A (zh) 微机械加速度传感器
CN108267118A (zh) 一种应变式智能测斜仪
CN205333737U (zh) 一种抗静电涂料的表面电阻测量装置
KR102260386B1 (ko) 감지장치
CN209783781U (zh) 一种柔性传感器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16877725

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2018532549

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2016877725

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2016877725

Country of ref document: EP

Effective date: 20180627