WO2017106941A1 - Method for treating waste water using a culture of polysaccharide-excreting micro-algae, and use of micro-algae - Google Patents

Method for treating waste water using a culture of polysaccharide-excreting micro-algae, and use of micro-algae Download PDF

Info

Publication number
WO2017106941A1
WO2017106941A1 PCT/BR2015/050269 BR2015050269W WO2017106941A1 WO 2017106941 A1 WO2017106941 A1 WO 2017106941A1 BR 2015050269 W BR2015050269 W BR 2015050269W WO 2017106941 A1 WO2017106941 A1 WO 2017106941A1
Authority
WO
WIPO (PCT)
Prior art keywords
microalgae
wastewater
polysaccharide
algae
black water
Prior art date
Application number
PCT/BR2015/050269
Other languages
French (fr)
Portuguese (pt)
Inventor
Ana Teresa LOMBARDI
Seiiti SUZUKI
Letícia De Freitas ANDRADE
Mariana Figueira Lacerda De MENEZES
Taynara Ribas PEREIRA
Ligia Silvestre ZOTTIN
Original Assignee
Intercement Brasil S.A.
Universidade Federal De São Carlos
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Intercement Brasil S.A., Universidade Federal De São Carlos filed Critical Intercement Brasil S.A.
Priority to PCT/BR2015/050269 priority Critical patent/WO2017106941A1/en
Priority to BR112018012862A priority patent/BR112018012862A2/en
Publication of WO2017106941A1 publication Critical patent/WO2017106941A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/52Treatment of water, waste water, or sewage by flocculation or precipitation of suspended impurities
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F3/32Biological treatment of water, waste water, or sewage characterised by the animals or plants used, e.g. algae

Definitions

  • the present invention relates to the wastewater treatment method comprising fine particles of suspended solid fuels by cultivating extracellular polysaccharide producing microalgae.
  • Petrocoque is a solid fuel widely used in the cement industry because it has a high fixed carbon content, low ash content, high calorific value and high chemical stability. It is neither reactive nor explosive (PETROBRAS, 2014). This product reaches the industries by road, in trailers, which will be reused for the transportation of other products, and therefore its interiors must be washed with water, which together with the rainwater forms the residue called black water, where the Petroleum coke remains insoluble in fine grains. Fine fractions of other solid fuels such as coal, charcoal and bituminous coal (anthracite) can also generate petrocoque-like wastewater.
  • Petroleum coke also called petrocoque
  • PTROENERGIA is a solid material resulting from the distillation of petroleum obtained from the cracking of heavy residual fractions (PETROENERGIA, 2014).
  • Literature data show that the presence of petroleum coke in the environment can lead to increased concentration of trace elements in soil and water.
  • the presence of higher concentrations of vanadium and nickel are indicators of the presence of petroleum coke in the medium (ZHAO et al., 2002);
  • These and other trace metals normally exist in aqueous media in the form of dissolved ions and have great potential to cause adverse effects on microorganisms if present in amounts above those usually found and in free form, not complex to organic materials (MORGAN, 1987; PEIJNENBURG et al., 1997; LOMBARDI et al., 2002; TONIETTO et al., 2014).
  • Bioremediation a technology used for the recovery of degraded environments, is based on the natural capacity of microorganisms to degrade waste (MILIC et al. 2009), and offers great potential for decontamination of natural environments and industrial effluents.
  • MILIC et al. 2009 the natural capacity of microorganisms to degrade waste
  • Several studies have confirmed the ability of microalgae to produce polysaccharide excretes capable of binding to metals by remediating effluent (TONIETTO et al., 2014; LOMBARDI and VIEIRA, 1999; LOMBARDI and VIEIRA, 2000).
  • bacteria and fungi acting as hydrocarbon degraders CHANDRA et al.
  • microalgae are co-cultivated with other microorganisms such as bacteria. These bacteria are mostly heterotrophic and aerobic, which generates a synergistic mechanism where algae produce 0 2 that is used by bacteria to mineralize organic matter (MO), which in turn release the end degradation product C0 2 , used by microalgae. This process releases the mineral nutrients associated with OM that will also be used by microalgae.
  • a microbial consortium is created that acts synergistically involving the algal and bacterial community. This strategy can reduce the high cost of mechanical aeration in algal crops.
  • microalgae have the power to mitigate the C0 2 reducing problems related to the Greenhouse Effect, which is responsible for the increase in the earth's temperature, with disastrous consequences for society. It is known that the greenhouse effect can lead to problems such as melting polar ice caps, rising ocean levels, and extreme climate change (ESSAM et al, 2006; ESSAM et al, 2013; MUNOZ & GUIEYSSE, 2006; SOON et al., 1999).
  • microalgae can generate value and save money based on this, as their cultivation results in biomass rich in biomolecules of interest, such as lipids, proteins and carbohydrates.
  • biomolecules of interest such as lipids, proteins and carbohydrates.
  • algal biomass its use is cited in the food, feed, dye, pharmaceutical and cosmetic industries, as well as in the biochemical industry, for the production of bioplastics and biofilms, as well as chemicals such as biofertilizers and antioxidants (SAFI et al, 2014).
  • microalgae like Chlorella sp. They are robust and capable of adapting to a variety of freshwater and saltwater environments, from frozen to desert, pristine or contaminated, such as municipal, industrial and agricultural sewage and industrial co-products such as vinasse and soybean whey. (MARCHELLO et al, 2015; MITRA et al, 2012). Algae cultivation in sewage treatment plants and industries can offer several benefits such as the removal of nutrients from the wastewater, the biomass energy production and generated fixing C0 2 (Akerstrom et al., 2014).
  • document CN 1031 12993 In addition to proposing the treatment of effluents containing petroleum residues, document CN 1031 12993 also mentions the fixation of CO 2 by microalgae, and the algae are later used as oil source in biodiesel production. This document also reports that microalgae has high stress resistance, high oil content and high degradation function of petroleum hydrocarbons.
  • US 3763039 and US 4966713 involve wastewater treatment employing microalgae that act as flocculating agents of waste present in water.
  • the document CN 103881923 refers to the cultivation of microalgae using the effluent generated in the coking of coal, together with seawater.
  • US 2013174734 has as its primary objective the reduction of particulate matter present in water or air or other means, such particulate material being obtained from mining activities.
  • An important feature in US 2013174734 is that the agglomeration of particulate material is due to negatively charged exopolysaccharides (EPS) which are obtained from isolated, purified and used bacterial or algal cultures.
  • EPS exopolysaccharides
  • US 2013174734 differs from the present invention in obtaining, origin and characteristics of the excreted polysaccharide.
  • obtaining it is proposed to cultivate microalgal directly in the wastewater (black water), which will be the receptor body of the polysaccharide excreted by the algae that grow there, and the suspended solid particles have very different characteristics of the particulate from the algae. mining activity.
  • the origin in this, it is proposed the use of polysaccharides excreted exclusively from microalgal origin, microalgae capable of performing oxygen photosynthesis.
  • exopolysaccharide In this, it is proposed the use of microalgal excreted polysaccharide whose composition is complex containing about 70% of neutral monosaccharides and only about 12 - 15% of acid monosaccharides, thus conferring neutrality in general.
  • the excreted polysaccharide acts as a binder of particles, which stick together and with the polysaccharide, settle to the bottom, being removed from the liquid phase, where the growing microalgae remain.
  • the present invention has the advantage of dispensing with any processing or purification step of the excreted polysaccharide as it is directly excreted by microalgae in the culture medium. eg wastewater, where it will exert its action.
  • wastewater treated by microalgae or used as a culture medium for its growth is domestic or industrial effluents or water from the petroleum or coke production process.
  • effluents contain residues of mineral elements and organic matter, the former being absorbed by cells, while the latter may (or may not) be degraded by microalgae, causing water treatment and algal biomass production.
  • effluents treated or used as a microalgae culture medium have dissolved material in water and no suspended solids as described in the present invention.
  • US 2013174734 deals with airborne or waterborne particles, these particles are derived from mining activity and do not consist of solid fuel residues such as petroleum coke, mineral and vegetable coal and anthracite.
  • None of the prior art documents describe the treatment of wastewater containing fine particulates of suspended solid fuels by cultivating microalgae responsible for the excretion of polysaccharide carbohydrates in the culture medium, which will agglutinate said particulates.
  • the agglutination of the particulate material allows its exclusion (sedimentation) from black water, resulting in clean water and algal biomass. Since the residues remain agglutinated by the excreted algal polysaccharides and are not absorbed by the microalgae, the obtained biomass can still be used in various applications, such as oven burning, biofuel, animal feed, among others already mentioned.
  • the present invention aims to:
  • the present invention is a method of treating wastewater by cultivating polysaccharide excretory microalgae comprising the following steps:
  • step (c) inclusion of the polysaccharide excretory microalgae inoculum in the wastewater obtained in step (b);
  • the invention further relates to the use of polysaccharide excretory microalgae in wastewater treatment comprising, in suspension, fine particulates of organic and inorganic material from solid fuels.
  • Figure 1 Samples of black water with nutrient addition and inoculated with Chlorella vulgaris. A: without particulates of agglutinated solid fuels; B: with particulates of agglutinated solid fuels.
  • Figure 2 Black water viewed under an optical microscope. Different species of microalgae present in BG-1 nutrient-enriched black water 1.
  • A circular green algae in diameter about 2,5 ⁇ ;
  • B cluster of green algae and
  • C shows a species of microalgae of larger diameter, approximately 20 ⁇ .
  • Figure 3 Black water viewed under an optical microscope. Note the presence of
  • FIG. 6 Growth rates obtained for all treatments performed. Light: A, B, C, D; Dark: E, F, G, H. With nutrients (CN): A, D, F, H; Nutrient-Free (SN): B, C, E, G. Inoculated Chlorella vulgaris: C, D, G, H.
  • Figure 7 Concentration of intracellular carbohydrates in exponential growth phase and at the end of the experiment in inoculated cultures.
  • A Light SN exponential phase;
  • B SN light final phase;
  • C Light CN exponential phase;
  • D Light CN final phase. Inoculated experiments.
  • Figure 8 Protein concentration at exponential growth phase and at the end of the experiment in inoculated cultures.
  • A Light SN exponential phase
  • B SN light final phase
  • C Light CN exponential phase
  • D Light CN final phase.
  • the present invention is a method of treating wastewater by cultivating polysaccharide excretory microalgae comprising the following steps:
  • step (c) inclusion of the polysaccharide excretory microalgae inoculum in the wastewater obtained in step (b);
  • Waste water of the present invention refers to water with the presence, in suspension, of fine particulates of organic and inorganic material from solid fuels that will be burned in industrial kilns, especially those used in the cement, thermoelectric, steel, etc.
  • suspended materials include petroleum coke, charcoal and charcoal. mineral, coal or coke grade steel, anthracite and / or mixtures thereof in any proportion.
  • This water may originate from rainwater, which sweeps away deposits of material and / or flush water from places that served as deposits for such fuels. It is called black water because of its dark color due to the fine particles of fuels mentioned above.
  • Such fine particles of solid suspended fuels are those particles that remain suspended in water even though it has gone through the settling process, which separates the larger particles from solid fuels. In this way, smaller and lighter particles that do not go to the bottom of the settling tank remain and are removed according to the method described herein by agglutination with algal polysaccharides and settling at the bottom of the tank.
  • the fine particulates of organic and inorganic material originating from solid fuels suspended in wastewater according to this invention may be coal, charcoal, petroleum coke, coal or steel grade coke, anthracite or mixtures thereof.
  • Other rain-borne materials such as grains of clay and / or sand may be present in the wastewater to be treated.
  • Chlorophyta division includes robust microalgae for a wide range of environmental conditions and chemical agents such as the genera Chlorella, Scenedesmus, Desmodesmus, Monoraphidium (VIEIRA et al, 2008).
  • polysaccharide excreta microalgae are chosen from the groups of Bacillariophyta, Chlorophyta and Cyanophyta or any other polysaccharide excretory microalgae, depending on the purpose of the biomass.
  • microalgae are chosen from those of the genera Chlorella, Scenedesmus, Desmodesmus and Monoraphidium; preferably Chlorella vulgaris.
  • the microalgae Chlorella vulgaris is used because it is robust and withstands variations of environmental conditions, which allowed its growth in wastewater. Its later use as animal feed is possible as the microalgae will be separated from the fine particulate material.
  • wastewater used as culture medium is enriched with major and minority inorganic nutrients necessary for the development of polysaccharide excretory microalgae.
  • Major compounds which may be used in accordance with the present invention are: nitrates, phosphates, magnesium, calcium.
  • Minority nutrients can be chosen from iron, manganese, copper, molybdenum, cobalt and zinc.
  • step (b) and (c) of the process described herein respectively algal culture and growth are initiated, resulting in excretion.
  • polysaccharides responsible for the agglutination of the fine particles and consequent decantation of such agglutinated particles which may or may not be adhered to the bottom of the treatment tank.
  • steps (c) and (d) occur under light intensity ranging from 100 to 300 ⁇ m "2 s “1 ; preferably 150 ⁇ m “2 s “ 1 .
  • the light intensity varies according to local climatic conditions, and may reach up to 1,500 ⁇ m "2 s " 1 of incident sunlight, without affecting algal growth.
  • steps (c) and (d) occur in a photoperiod similar to the natural one, 12 hours light and 12 hours dark.
  • the wastewater treatment method according to the invention comprises agglutination of the fine particulate of organic and inorganic material from solid fuels that are suspended in the wastewater and their decantation at the bottom of the treatment tank.
  • the fine particulate agglutination of organic and inorganic material from solid fuels suspended in wastewater is due to the excretion of polysaccharides by microalgae, which act as cementing material. These fine particulate agglutinates, together with the material excreted by the microalgae, naturally decant at the bottom of the treatment tank, leaving above the water treated with the microalgae.
  • Polysaccharide excretion is a normal process during algal growth, but may be increased or decreased depending on the nutritional status of the microalgae (VIEIRA et al, 2008).
  • the materials excreted by microalgae may vary in composition and, for them, have several functions. According to the literature, excreted polysaccharides may be involved in cell mobility, stabilization, formation of cell clusters and adhesion of cells to surfaces, depending on the algal species. Overall, the investment by microalgae in the excretion of polymeric substances is justified by the protection that these substances offer to cells (MYKLESTAD, 1995; LOMBARDI et al, 2005). For example, they protect the cell against desiccation, attraction of nutrients close to the cell surface, against excess solar radiation, among other functions.
  • composition of microalgae excreted polysaccharides may vary among the algal groups, however their carbohydrate base is common to all. Chlorophyta algae are less protein and more polysaccharide compared to cyanobacteria (TONIETTO et al., 2014; LOMBARDI and VIEIRA, 1999). On the other hand, the Bacillariophyceae group may have a certain hydrophobic character (VIEIRA et al., 2008).
  • Microalgal polysaccharide is usually made up of neutral carbohydrate monomers such as fucose, arabinose, galactose, glucose, mannose, rhamnose and xylose and / or acids such as galacturonic and glucuronic acids (LOMBARDI and VIEIRA, 1999).
  • Carbohydrates make up about 70 - 80% of the excreted polysaccharide (LOMBARDI and VIEIRA, 1999; VIEIRA et al, 2008); proteins can reach 15-20% (LOMBARDI and VIEIRA, 1999), while lipids can reach 1 - 2% (PARRISH and WANGERSKY, 1987; LOMBARDI and WANGERSKY, 1991).
  • Treated water free of fine particulate solid fuels and microalgae can be used in a variety of applications, such as reusing it to wash solid waste haulers, cleaning the surrounding area, washing the solid waste stock yard, irrigation gardens, feeding photobioreactors, among others.
  • the present invention also enables the use of cultivated and collected microalgae according to the method of the invention.
  • This algal biomass can be used in various applications, such as biofuel production, burning in factory furnaces, use as animal feed, among others.
  • Chlorella vulgaris has high protein content (CHIA et al., 2013a; 2013b; 2015) and is therefore indicated for such application.
  • Scenedesmus sp produces aliphatic hydrocarbons (ROCHA et al., 2014) and may be an interesting species for biofuel production.
  • the microalgae collection step (e) may comprise a prior flocculation step followed by the microalgae decantation.
  • the fine particulate agglutinated with the polysaccharides excreted by microalgae together with the algal biomass thus obtaining the treated water in the supernatant.
  • Microalgae flocculation can be achieved by adjusting the residual water pH to an ideal algal flocculation pH; or by the use of flocculating agents such as aluminum sulfate and aluminum chlorohydroxide; or by any other known method of the art for microalgae flocculation.
  • the pH adjustment of the wastewater to the range between pH 10 and pH 11 is used, and after flocculation and decantation of the microalgae, the treated wastewater is adjusted to its pH again according to the standards established by the control bodies. control and supervision of the emission of liquid effluents into the environment.
  • the treated water obtained from the method comprising the prior stage of microalgae flocculation can also be used in various applications, such as those previously reported. Decanted material, including fine agglutinated particulate matter and microalgae, can be reused as fuel.
  • the present invention deals with the use of polysaccharide microalgae excreta as effective agents in wastewater treatment comprising, in suspension, fine particulates of organic and inorganic material from solid fuels, which treatment is achieved, since wastewater is used as culture medium for polysaccharide producing microalgae.
  • This polymer acts as a fine particle binder that, with larger size, decant at the bottom of the treatment tank. Due to the type of polysaccharide excreted, such fine agglutinated and decanted particles may or may not remain adhered to the bottom of the treatment tank.
  • microalgae community including inoculated Chlorella vulgaris, under various experimental conditions, all in black water; - Quantification of algal growth in black water plus nutrients;
  • the black water used was analyzed for the determination of organic compounds (benzene, toluene, ethylbenzene and xylene), commonly known as BTEX.
  • the determinations were performed by the company Global Análises e Consultoria, located in S ⁇ o Carlos (SP, Brazil) shortly after the wastewater arrived at the laboratory.
  • BTEX analyzes were performed by solid phase microextraction followed by gas chromatography coupled to mass spectrometry (SPME-GC / MS).
  • SPME-GC / MS gas chromatography coupled to mass spectrometry
  • the wastewater (black water) was transported from the cement industry to the laboratory in polypropylene gallons. In the laboratory, black water was packed in smaller bottles, some of these bottles were frozen, others were refrigerated for immediate use, ensuring the maintenance of the microorganisms present.
  • the experimental replicates were kept under light intensity of 130 ⁇ ⁇ 1 , with natural photoperiod (approximately 12: 12h light: dark) at 23 and C, and the temperature may vary between 23 - 29 and C.
  • In vivo fluorescence (Turner - Trilogy, USA Model 7200-043 Fluorimeter) was used as a measure of chlorophyll a concentration, a parameter that relates to photosynthetic microalgae biomass. This methodology was used to verify the population density of the samples, because in the case of black water as a culture medium, it was not possible to count cells under an optical microscope to quantify living biomass, due to the intense presence of sediment in the medium.
  • the pH is an important parameter because the cultivation of microalgae modifies the pH of the medium. Normally by cultivating photosynthetic microalgae the pH of the medium increases and may reach pH 11 if the medium is not buffered.
  • Total carbohydrate quantification was performed based on the technique described by ALBALASMEH et al. (2013) through spectrophotometry. This technique is based on the reaction of sulfuric acid with algal biomass. For calibration curves glucose was used as standard and intracellular carbohydrates were quantified as glucose equivalent ⁇ g mL "1 ). Details of the method can be found in CHIA (2012).
  • Algal growth rates were obtained from population density values through graphical analysis by plotting the natural logarithm of fluorescence values as a function of experimental time in days. During growth Exponentially, this graph results in a line that can be adjusted by linear regression. The angular coefficient of the adjustment represents the specific growth rate, whose unit is day "1 .
  • Table 1 shows the results obtained from the BTEX analysis at the concentrations present in the black water used as the basis for the microalgae culture medium.
  • nitrobenzene was toxic at concentrations of 28 mg L “1 and 2-nitrotoluene at 22 mg L “ 1 (RAMOS et al., 1999). In the results of this study, the compounds showed no toxicity to the inoculated microalgae Chlorella vulgaris.
  • Black water assays confirmed the viability of photosynthetic microalgae growth in this residue by increasing chlorophyll a fluorescence and observations under a microscope. It is concluded that the increase of nutrients is essential to ensure higher biomass and higher population growth compared to non-nutrient black water.
  • Figure 4 shows the highest growth for the nutrient black water test inoculated with C. vulgaris and kept in the light.
  • FIG. 5 shows the pH variation according to the experimental time. Algal growth was marked by pH 9-10 of the cultures kept under light.
  • Black water when kept in light, allowed the growth of native or inoculated microalgae, in the case of Chlorella vulgaris. Growth was higher when black water was enriched with nutrients from culture medium BG-1 1 compared to non nutrient enriched black water.
  • BRADFORD M.M. Rapid and sensitive method for the quantitation of microgram quantities of protein using the principle of protein-dye binding. Anal. Biochem. 72: 248-254, 1976.
  • CHIA M.A Physiological response of chiorella vulgaris to cadmium, phosphorus and nitrogen. PhD Thesis, Postgraduate Program in Ecology and Natural Resources, Federal University of S ⁇ o Carlos, S ⁇ o Carlos - SP, Brazil, 101 p, 2012.
  • CHIA M.A. et al. Effects of cadmium and nitrogen on lipid composition of Chlorela vulgaris (Trilouxiophyceae). European J Phycol 48: 11-1, 2013a.
  • CHIA MA, LOMBARDI AT, MELON MGG, PARRISH CC Combined nitrogen limitation and cadmium stress stimulate total carbohydrates, lipids, protein and amino acid accumulation in Chiorella vulgaris (Trebouxiophyceae). Aquatic Toxicology 160: 87-95, 2015
  • LOMBARDI A.T.
  • VIEIRA A.A.H. Copper complexation by Cyanophyceaee and Chlorophyceae exudates. Phycologia 39, 11 18-125, 2000.
  • MILIC J.S. et al. Bioremediation of soil heavily contaminated with crude oil and its products: composition of the microbial consortium. J Serb Chem Soc. 74: 455-460, 2009.
  • MITRA D. et al. Heterotrophic / mixotrophic cultivation of oleaginous Chlorella vulgaris on industrial co-produets. Algal Reseach-Biomass Biofuels and Bioproducts, 1: 40-48, 2012.
  • MORGAN J.J. General affinity concepts, equilibrium, and kinetics in aqueous metals chemistry. In: Patterson J.W., Passino R., editors. Metals speciation, separation, and recovery. Chelsea, Michigan: Lewis Publishers Inc., P. 27-61, 1987.
  • PETROENERGY Information on green petroleum coke. Available at: http://www.petrocampus.com.br/coque.html. Accessed September 10, 2014.
  • RAMOS U.S. et al. Algal growth inhibition of Chlorella pyrenoidosa by polar narcotic pollutants: toxic cell concentrations and QSAR modeling. Aquatic Toxicology, v 46: 1-10, 1999.
  • VIEIRA A.A.H.
  • ORTOLANO P.I.C.
  • GIROLDO D.
  • OLIVEIRA MJ. D.
  • BITTAR T.B.
  • LOMBARDI A.T.
  • SARTORI S.L. Limnol Oceanogr., 53 (5), 2008, 1887-1899, 2008.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Organic Chemistry (AREA)
  • Botany (AREA)
  • Biodiversity & Conservation Biology (AREA)
  • Microbiology (AREA)
  • Biotechnology (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)

Abstract

The present invention relates to a method for treating waste water comprising a suspension of fine particles of solid fuels, using a culture of micro-algae which produce extracellular polysaccharides. The invention further relates to the use of polysaccharide-excreting micro-algae for treating waste water comprising a suspension of fine particles of organic and inorganic materials from solid fuels.

Description

MÉTODO DE TRATAMENTO DE ÁGUA RESIDUAL ATRAVÉS DO CULTIVO DE MICROALGAS EXCRETORAS DE POLISSACARÍDEOS E USO DE MICROALGAS RESIDUAL WATER TREATMENT METHOD THROUGH CROP OF MICROALGAE EXCRETING MICROALGAS AND MICROALGAL USE
CAMPO DA INVENÇÃO FIELD OF INVENTION
A presente invenção refere-se ao método de tratamento de água residual compreendendo partículas finas de combustíveis sólidos em suspensão através do cultivo de microalgas produtoras de polissacarídeos extracelulares.  The present invention relates to the wastewater treatment method comprising fine particles of suspended solid fuels by cultivating extracellular polysaccharide producing microalgae.
ESTADO DA TÉCNICA TECHNICAL STATE
A necessidade de cimento pela sociedade atual é elevada devido ao aumento de áreas urbanas, infraestruturas e consequente crescimento da construção civil. Infelizmente, sua produção ocasiona risco de contaminação ambiental. Isso se deve à elevada quantidade de gases como o C02 e N02 que a indústria de cimento libera no ambiente. Esses gases são oriundos da queima de constituintes de combustíveis sólidos, líquidos ou gasosos nos fornos para a produção do cimento. Assim, a indústria de cimento demanda por grandes quantidades de combustível, dentre os quais destaca-se o coque de petróleo por seu baixo custo. The need for cement by today's society is high due to the increase of urban areas, infrastructures and the consequent growth of civil construction. Unfortunately, its production causes a risk of environmental contamination. This is due to the high amount of gases such as C0 2 and N0 2 that the cement industry releases into the environment. These gases come from the burning of solid, liquid or gaseous fuel constituents in the kilns for cement production. Thus, the cement industry demands large quantities of fuel, among which oil coke stands out for its low cost.
O petrocoque é um combustível sólido muito utilizado nas indústrias de cimento por possuir elevado teor de carbono fixo, baixo teor de cinzas, elevado poder calorífico e alta estabilidade química. Não é reativo e nem explosivo (PETROBRAS, 2014). Esse produto chega às indústrias por meios rodoviários, em carretas, que serão reutilizadas para o transporte de outros produtos, e por isso seus interiores devem ser lavados com água, que juntamente com a água da chuva forma o resíduo chamado de água preta, onde o coque de petróleo permanece insolúvel em grãos finos. Frações finas de outros combustíveis sólidos, tais como carvão mineral, carvão vegetal e carvão betuminoso (antracito) também podem gerar águas residuais similares aos do petrocoque.  Petrocoque is a solid fuel widely used in the cement industry because it has a high fixed carbon content, low ash content, high calorific value and high chemical stability. It is neither reactive nor explosive (PETROBRAS, 2014). This product reaches the industries by road, in trailers, which will be reused for the transportation of other products, and therefore its interiors must be washed with water, which together with the rainwater forms the residue called black water, where the Petroleum coke remains insoluble in fine grains. Fine fractions of other solid fuels such as coal, charcoal and bituminous coal (anthracite) can also generate petrocoque-like wastewater.
Esse resíduo não pode ser descartado em corpo receptor pelas indústrias, devido ao fato de conter traços de petróleo e outros contaminantes, podendo ser nocivo ao meio ambiente. O coque de petróleo, também chamado de petrocoque é um material sólido, resultante da destilação do petróleo, obtido a partir do craqueamento das frações residuais pesadas do mesmo (PETROENERGIA, 2014).  This waste cannot be disposed of in the recipient body by industries, as it contains traces of oil and other contaminants, and may be harmful to the environment. Petroleum coke, also called petrocoque, is a solid material resulting from the distillation of petroleum obtained from the cracking of heavy residual fractions (PETROENERGIA, 2014).
Em relação à toxicidade do petrocoque para o ambiente, pensava-se que este fosse inerte, e achava-se até que poderia ser considerado como agente de remediação de solos contaminados com petróleo (FEDORAK et al; 2006; NARAYANAN et al; 1997). Entretanto, estudos recentes mostraram que o petrocoque não é inerte e provoca efeitos em plantas terrestres, animais aquáticos e micro-organismos (MCKEE et al., 2014).  Regarding the toxicity of petrococcus to the environment, it was thought to be inert, and was even thought to be considered as a remediation agent for petroleum contaminated soils (FEDORAK et al; 2006; NARAYANAN et al; 1997). However, recent studies have shown that petrocoque is not inert and causes effects on terrestrial plants, aquatic animals and microorganisms (MCKEE et al., 2014).
Dados da literatura mostram que a presença do coque de petróleo no ambiente pode levar ao aumento da concentração de elementos traço no solo e na água (CHEN et al., 2010). A presença de concentrações mais altas de vanádio e níquel são indicadores da presença de coque de petróleo no meio (ZHAO et al., 2002); estes e outros metais traço existem normalmente em meios aquosos, na forma de íons dissolvidos e possuem grande potencial de causar efeitos adversos em micro-organismos se estiverem presentes em quantidades acima das usualmente encontradas e na forma livre, não complexada aos materiais orgânicos (MORGAN, 1987; PEIJNENBURG et al., 1997; LOMBARDI et al., 2002; TONIETTO et al., 2014). Literature data show that the presence of petroleum coke in the environment can lead to increased concentration of trace elements in soil and water. (Chen et al., 2010). The presence of higher concentrations of vanadium and nickel are indicators of the presence of petroleum coke in the medium (ZHAO et al., 2002); These and other trace metals normally exist in aqueous media in the form of dissolved ions and have great potential to cause adverse effects on microorganisms if present in amounts above those usually found and in free form, not complex to organic materials (MORGAN, 1987; PEIJNENBURG et al., 1997; LOMBARDI et al., 2002; TONIETTO et al., 2014).
A literatura mostra diversas metodologias para o tratamento de resíduos industriais e efluentes. LOPES et al, (2014) utilizaram análogos sintéticos de minerais para a remoção de metais, compostos orgânicos e resíduos de petróleo de solos e meios aquáticos. Porém, esta e outras tecnologias convencionais, com tratamentos físico- químicos, possuem alto custo e podem gerar resíduos tóxicos ao meio ambiente (CHANDRA et al, 2013).  The literature shows several methodologies for the treatment of industrial waste and effluents. LOPES et al, (2014) used synthetic mineral analogs for the removal of metals, organic compounds and petroleum residues from soils and aquatic media. However, this and other conventional technologies, with physicochemical treatments, have high cost and can generate toxic waste to the environment (CHANDRA et al, 2013).
A biorremediação, tecnologia usada para a recuperação de ambientes degradados possui como fundamento a capacidade natural dos micro-organismos para degradar resíduos (MILIC et al. 2009), e oferece grande potencial para descontaminações de ambientes naturais e efluentes industriais. Vários estudos comprovam a capacidade de microalgas em produzir excretados de natureza polissacarídica capazes de ligarem-se a metais, remediando o efluente (TONIETTO et al., 2014; LOMBARDI e VIEIRA, 1999; LOMBARDI e VIEIRA, 2000). Há ainda a possibilidade de bactérias e fungos atuarem como degradadores de hidrocarbonetos (CHANDRA et al., Bioremediation, a technology used for the recovery of degraded environments, is based on the natural capacity of microorganisms to degrade waste (MILIC et al. 2009), and offers great potential for decontamination of natural environments and industrial effluents. Several studies have confirmed the ability of microalgae to produce polysaccharide excretes capable of binding to metals by remediating effluent (TONIETTO et al., 2014; LOMBARDI and VIEIRA, 1999; LOMBARDI and VIEIRA, 2000). There is also the possibility of bacteria and fungi acting as hydrocarbon degraders (CHANDRA et al.,
2013) . 2013).
Estudos na área de biotecnologia de microalgas já provaram a capacidade destes micro-organismos fotossintetizantes em remediar águas contaminadas por arsénico, chumbo, cromo, cádmio, urânio e corantes (KHANI et al, 2008; JASROTIA et al, 2014; PARAMESWARI et al, 2010), tratar outros resíduos industriais (HENDE et al, Studies in the area of microalgae biotechnology have already proven the ability of these photosynthetic microorganisms to remediate arsenic, lead, chromium, cadmium, uranium and dyes contaminated waters (KHANI et al, 2008; JASROTIA et al, 2014; PARAMESWARI et al, 2010 ), treat other industrial waste (HENDE et al,
2014) , além de sua atuação na remediação de efluentes de estações de tratamento de esgoto (MARCHELLO et al., 2015). Na recuperação de efluentes, as microalgas estão em co-cultivo com outros micro-organismos tais como as bactérias. Essas bactérias são heterotróficas e aeróbias em sua maioria, o que gera um mecanismo sinérgico onde as algas produzem 02 que é utilizado pelas bactérias para mineralizar a matéria orgânica (MO), que por sua vez liberam o C02, produto final da degradação, usado pelas microalgas. Esse processo libera os nutrientes minerais associados à MO que serão também usados pelas microalgas. Assim, é criado um consórcio microbiano que atua sinergicamente envolvendo a comunidade algal e bacteriana. Essa estratégia pode reduzir o alto custo da aeração mecânica em cultivos algais. Como seres tipicamente fotossintetizantes (fotossíntese oxigênica), as microalgas têm o poder de mitigar o C02 atmosférico reduzindo problemas relacionados ao Efeito Estufa, que é responsável pelo aumento da temperatura terrestre, com consequências desastrosas para a sociedade. Sabe-se que o efeito estufa pode levar a problemas como o derretimento das calotas polares, aumento dos níveis dos oceanos, além de alterações climáticas extremas (ESSAM et al, 2006; ESSAM et al, 2013; MUNOZ & GUIEYSSE, 2006; SOON et al., 1999). 2014), in addition to its role in wastewater remediation of sewage treatment plants (MARCHELLO et al., 2015). In wastewater recovery, microalgae are co-cultivated with other microorganisms such as bacteria. These bacteria are mostly heterotrophic and aerobic, which generates a synergistic mechanism where algae produce 0 2 that is used by bacteria to mineralize organic matter (MO), which in turn release the end degradation product C0 2 , used by microalgae. This process releases the mineral nutrients associated with OM that will also be used by microalgae. Thus, a microbial consortium is created that acts synergistically involving the algal and bacterial community. This strategy can reduce the high cost of mechanical aeration in algal crops. As typically photosynthetic beings (oxygenic photosynthesis), microalgae have the power to mitigate the C0 2 reducing problems related to the Greenhouse Effect, which is responsible for the increase in the earth's temperature, with disastrous consequences for society. It is known that the greenhouse effect can lead to problems such as melting polar ice caps, rising ocean levels, and extreme climate change (ESSAM et al, 2006; ESSAM et al, 2013; MUNOZ & GUIEYSSE, 2006; SOON et al., 1999).
As maiores emissões de C02 antropogênicas resultam da queima de combustíveis fósseis e produção de cimento (EPA, 2010). A produção de cimento é responsável por 5% das emissões não-naturais mundiais de C02 (BORKENSTEIN et al., 201 1 ; HASANBEIGI et al., 2012; WBCSD 2009). A Agência Internacional de Energia prevê que as emissões de C02, derivadas da produção de energia, atingirão 38 bilhões de toneladas por ano em 2030, um índice 70% maior que os níveis de 2002 (IEA, 2002). Devido a esse índice alarmante, em 1997, mais de 170 países assinaram o Protocolo de Kyoto, que obrigava os países signatários a diminuírem as emissões de gases nocivos à atmosfera, conhecidos como os gases do efeito estufa (GEEs) (UNFCC, 2012). The largest anthropogenic C0 2 emissions result from the burning of fossil fuels and cement production (EPA, 2010). The production of cement accounts for 5% of the global emissions unnatural C0 2 (Borkenstein et al, 201 1,. HASANBEIGI et al, 2012;. WBCSD 2009). The International Energy Agency predicts that emissions of C0 2, from energy production will reach 38 billion tons per year in 2030, a rate 70% higher than 2002 levels (IEA, 2002). Due to this alarming rate, in 1997, more than 170 countries signed the Kyoto Protocol, which required signatory countries to reduce emissions of harmful gases into the atmosphere, known as greenhouse gases (GHGs) (UNFCC, 2012).
Além da capacidade de biorremediação, microalgas podem gerar valor e uma economia com base nesta, pois seu cultivo resulta em biomassa rica em biomoléculas de interesse, tais como os lipídios, proteínas e carboidratos. Dentre as diversas aplicações da biomassa algal, cita-se seu uso na indústria alimentícia, de ração, nas indústrias de corantes, farmacêutica e de cosméticos, e ainda na indústria bioquímica, para a produção de bioplásticos e biofilmes, além de produtos químicos como os biofertilizantes e antioxidantes (SAFI et al, 2014).  In addition to bioremediation capacity, microalgae can generate value and save money based on this, as their cultivation results in biomass rich in biomolecules of interest, such as lipids, proteins and carbohydrates. Among the various applications of algal biomass, its use is cited in the food, feed, dye, pharmaceutical and cosmetic industries, as well as in the biochemical industry, for the production of bioplastics and biofilms, as well as chemicals such as biofertilizers and antioxidants (SAFI et al, 2014).
Devido ao esgotamento das reservas de combustíveis fósseis, o aumento do preço de seus derivados e a preocupação com o aquecimento global, têm-se dado atenção à capacidade bioenergética das microalgas. A produção de biocombustíveis através dos lipídeos acumulados pelas algas na forma de triglicerídeos (CHISTI, 2007) e de hidrocarbonetos alifáticos (ROCHA et al, 2014). De acordo com CLARENS et al. (2010) a energia produzida a partir de microalgas tem o potencial de gerar menor impacto para o meio ambiente em comparação com a produção de energia provinda de plantas (CLARENS et al, 2010).  Due to the depletion of fossil fuel reserves, the rising price of its derivatives and concern about global warming, attention has been paid to the bioenergetic capacity of microalgae. The production of biofuels through lipid accumulated by algae in the form of triglycerides (CHISTI, 2007) and aliphatic hydrocarbons (ROCHA et al, 2014). According to CLARENS et al. (2010) Energy produced from microalgae has the potential to have a lower impact on the environment compared to energy from plants (CLARENS et al, 2010).
Algumas microalgas como a Chlorella sp. são robustas e possuem grande capacidade de adequarem-se a diversos ambientes, de água doce ou salgada, desde congelados a desérticos, pristinos ou contaminados, tais como esgotos municipais, industriais e agrícolas e co-produtos industriais como vinhaça e soro de leite de soja (MARCHELLO et al, 2015; MITRA et al, 2012). O cultivo de algas em indústrias e estações de tratamento de esgoto pode oferecer diversos benefícios como a remoção de nutrientes dos efluentes, produção de energia pela biomassa gerada e fixação de C02 (AKERSTROM et al., 2014). Some microalgae like Chlorella sp. They are robust and capable of adapting to a variety of freshwater and saltwater environments, from frozen to desert, pristine or contaminated, such as municipal, industrial and agricultural sewage and industrial co-products such as vinasse and soybean whey. (MARCHELLO et al, 2015; MITRA et al, 2012). Algae cultivation in sewage treatment plants and industries can offer several benefits such as the removal of nutrients from the wastewater, the biomass energy production and generated fixing C0 2 (Akerstrom et al., 2014).
Algumas formas de tratamento de águas residuais utilizando microalgas são descritas em documentos de patentes, tais como US 2015175457, US 2009294354, US 2003213745, US 5476787, EP 2093197 e US 2013061517. Adicionalmente, os documentos US 2009294354, US 2003213745, US 5476787, EP 2093197 e US 2013061517 tratam da utilização da água residual para produção de biomassa.  Some forms of wastewater treatment using microalgae are described in patent documents such as US 2015175457, US 2009294354, US 2003213745, US 5476787, EP 2093197 and US 2013061517. Additionally, US 2009294354, US 2003213745, US 5476787, EP 2093197 and US 2013061517 deal with the use of wastewater for biomass production.
Além de propor o tratamento de efluentes contendo resíduos de petróleo, o documento CN 1031 12993 também menciona a fixação de C02 pelas microalgas, sendo que as algas são posteriormente usadas como fonte de óleo na produção de biodiesel. Esse documento informa ainda que a microalga apresenta elevada resistência ao estresse, alto conteúdo de óleo e alta função degradadora de hidrocarbonetos de petróleo. In addition to proposing the treatment of effluents containing petroleum residues, document CN 1031 12993 also mentions the fixation of CO 2 by microalgae, and the algae are later used as oil source in biodiesel production. This document also reports that microalgae has high stress resistance, high oil content and high degradation function of petroleum hydrocarbons.
Os documentos US 3763039 e US 4966713 envolvem o tratamento de águas residuais empregando microalgas que agem como agentes floculantes dos resíduos presentes na água.  US 3763039 and US 4966713 involve wastewater treatment employing microalgae that act as flocculating agents of waste present in water.
Já o documento CN 103881923 refere-se ao cultivo de microalgas utilizando o efluente gerado na coqueificação do carvão mineral, juntamente com a água do mar.  The document CN 103881923 refers to the cultivation of microalgae using the effluent generated in the coking of coal, together with seawater.
A invenção descrita no documento US 2013174734 tem como objetivo principal a redução de material particulado presente na água ou no ar, ou outro meio, sendo que tal material particulado foi obtido a partir das atividades de mineração. Uma característica importante no documento US 2013174734 é que a aglomeração do material particulado dá-se graças aos exopolissacarídeos (EPS) carregados negativamente que são obtidos de culturas bacterianas ou algais, isolados, purificados e usados. É ainda especificado que, se o material particulado estiver presente no ar, o EPS em solução será pulverizado, ou alternativamente, o EPS poderá ser imobilizado em filtro e o ar forçado a passar através do filtro. Nessa situação o material particulado sofrerá agregação. Se o material particulado estiver presente na água, esta será misturada a uma outra solução contendo EPS carregado negativamente e o material particulado sofrerá aglomeração. O documento US 2013174734 difere da presente invenção quanto à obtenção, origem e características do polissacarídeo excretado. Quanto à obtenção: nesta, propõe-se o cultivo microalgal diretamente na água residual (água preta), que será o corpo receptor do polissacarídeo excretado pelas algas que ali crescem, sendo que as partículas sólidas em suspensão apresentam características bem diferentes do particulado proveniente da atividade de mineração. Quanto à origem: nesta, propõe-se o uso de polissacarídeos excretados exclusivamente de origem microalgal, de microalga capaz de realizar fotossíntese oxigênica. Quanto às características do exopolissacarídeo: nesta, propõe-se o uso de polissacarídeo microalgal excretado cuja composição é complexa contendo cerca de 70% de monossacarídeos neutros e apenas cerca de 12 - 15% de monossacarídeos ácidos, conferindo assim caráter neutro no geral. Na presente invenção, o polissacarídeo excretado atua como um aglutinador de partículas, que grudadas entre si e com o polissacarídeo, sedimentam no fundo, sendo removidas da fase líquida, onde permanecem as microalgas em crescimento. The invention described in US 2013174734 has as its primary objective the reduction of particulate matter present in water or air or other means, such particulate material being obtained from mining activities. An important feature in US 2013174734 is that the agglomeration of particulate material is due to negatively charged exopolysaccharides (EPS) which are obtained from isolated, purified and used bacterial or algal cultures. It is further specified that if the particulate material is present in the air, the EPS in solution will be sprayed, or alternatively, the EPS may be immobilized on the filter and the air forced through the filter. In this situation the particulate material will be aggregated. If particulate material is present in water, it will be mixed with another negatively charged EPS-containing solution and the particulate material will agglomerate. US 2013174734 differs from the present invention in obtaining, origin and characteristics of the excreted polysaccharide. As for obtaining: it is proposed to cultivate microalgal directly in the wastewater (black water), which will be the receptor body of the polysaccharide excreted by the algae that grow there, and the suspended solid particles have very different characteristics of the particulate from the algae. mining activity. Regarding the origin: in this, it is proposed the use of polysaccharides excreted exclusively from microalgal origin, microalgae capable of performing oxygen photosynthesis. Regarding the characteristics of exopolysaccharide: In this, it is proposed the use of microalgal excreted polysaccharide whose composition is complex containing about 70% of neutral monosaccharides and only about 12 - 15% of acid monosaccharides, thus conferring neutrality in general. In the present invention, the excreted polysaccharide acts as a binder of particles, which stick together and with the polysaccharide, settle to the bottom, being removed from the liquid phase, where the growing microalgae remain.
Em comparação com a invenção US 2013174734, cujo EPS é usado em concentração de 1 %, a presente invenção tem a vantagem de dispensar qualquer etapa de processamento ou purificação do polissacarídeo excretado, uma vez que o mesmo é excretado diretamente pelas microalgas no meio de cultivo, e.g., água residual, onde exercerá sua ação.  Compared to US 2013174734, whose EPS is used at a concentration of 1%, the present invention has the advantage of dispensing with any processing or purification step of the excreted polysaccharide as it is directly excreted by microalgae in the culture medium. eg wastewater, where it will exert its action.
Em todos os documentos aqui apresentados a água residual tratada pelas microalgas ou utilizada como meio de cultura para seu crescimento são efluentes domésticos ou industriais ou ainda água proveniente do processo de produção de petróleo ou coque. Tais efluentes possuem resíduos de elementos minerais e matéria orgânica, sendo os primeiros absorvidos pelas células, enquanto o segundo pode (ou não) ser degradado pelas microalgas, ocasionando o tratamento da água e a produção de biomassa algal. Com exceção do documento US 2013174734, os efluentes tratados ou utilizados como meio de cultura para microalgas apresentam material dissolvido na água e não sólidos em suspensão tal como descrito na presente invenção. Por outro lado, embora o documento US 2013174734 trate de partículas em suspensão no ar ou na água, tais partículas são provenientes da atividade de mineração e não são constituídas de resíduos de combustíveis sólidos, como coque de petróleo, carvão mineral e vegetal e antracito.  In all the documents presented here the wastewater treated by microalgae or used as a culture medium for its growth is domestic or industrial effluents or water from the petroleum or coke production process. Such effluents contain residues of mineral elements and organic matter, the former being absorbed by cells, while the latter may (or may not) be degraded by microalgae, causing water treatment and algal biomass production. With the exception of US 2013174734, effluents treated or used as a microalgae culture medium have dissolved material in water and no suspended solids as described in the present invention. On the other hand, while US 2013174734 deals with airborne or waterborne particles, these particles are derived from mining activity and do not consist of solid fuel residues such as petroleum coke, mineral and vegetable coal and anthracite.
Nenhum dos documentos do estado da técnica descreve o tratamento da água residual contendo particulados finos de combustíveis sólidos em suspensão, através do cultivo de microalgas responsáveis pela excreção de carboidratos de natureza polissacarídica no meio de cultivo, que irão aglutinar ditos particulados. A aglutinação do material particulado permite sua exclusão (sedimentação) da água preta, resultando na obtenção de água limpa e biomassa algal. Uma vez que os resíduos permanecem aglutinados pelos polissacarídeos algais excretados e não são absorvidos pelas microalgas, a biomassa obtida pode ainda ser utilizada em diversas aplicações, tais como queima em forno, biocombustível, ração animal, dentre outros já mencionados.  None of the prior art documents describe the treatment of wastewater containing fine particulates of suspended solid fuels by cultivating microalgae responsible for the excretion of polysaccharide carbohydrates in the culture medium, which will agglutinate said particulates. The agglutination of the particulate material allows its exclusion (sedimentation) from black water, resulting in clean water and algal biomass. Since the residues remain agglutinated by the excreted algal polysaccharides and are not absorbed by the microalgae, the obtained biomass can still be used in various applications, such as oven burning, biofuel, animal feed, among others already mentioned.
Deste modo, a presente invenção tem como objetivo:  Thus, the present invention aims to:
- o tratamento de água residual com presença de material orgânico e inorgânico particulado fino em suspensão com origem em combustíveis sólidos, conhecida por água preta; - o reaproveitamento da água preta tratada após o cultivo microalgal; - the treatment of wastewater with the presence of suspended fine particulate organic and inorganic material from solid fuels, known as black water; - the reuse of treated black water after microalgal cultivation;
- o reaproveitamento da agua preta como meio de cultivo microalgal - the reuse of black water as a microalgal cultivation medium
- reaproveitamento da biomassa algal e resíduos de combustíveis sólidos que, coletados, podem ser reaproveitados em forno da indústria; - reuse of algal biomass and solid fuel residues that, collected, can be reused in an industry furnace;
- reaproveitamento da biomassa algal para aplicações diversas, pois será coletada separadamente às partículas aglutinadas e sedimentadas;  - reuse of algal biomass for various applications, as it will be collected separately from agglutinated and sedimented particles;
- fixação do C02 pelas microalgas usadas para tratamento da água preta; resultando na recuperação e valoração da água residual (água preta) proveniente de indústrias que utilizam combustíveis sólidos, especialmente aquela gerada na indústria de cimento, termoelétricas, siderúrgicas, etc. - fixing of C0 2 by microalgae used for black water treatment; resulting in the recovery and valuation of wastewater (black water) from industries that use solid fuels, especially that generated in the cement industry, thermoelectric plants, steel mills, etc.
DESCRIÇÃO RESUMIDA DA INVENÇÃO  BRIEF DESCRIPTION OF THE INVENTION
A presente invenção trata de um método de tratamento de água residual através do cultivo de microalgas excretoras de polissacarídeos que compreende as seguintes etapas:  The present invention is a method of treating wastewater by cultivating polysaccharide excretory microalgae comprising the following steps:
(a) coleta em um tanque de tratamento de uma água residual compreendendo, em suspensão, particulados finos de material orgânico e inorgânico com origem em combustíveis sólidos;  (a) collecting in a wastewater treatment tank comprising, in suspension, fine particulates of organic and inorganic material from solid fuels;
(b) inclusão de nutrientes na água residual;  (b) inclusion of nutrients in wastewater;
(c) inclusão do inoculo de microalgas excretoras de polissacarídeos na água residual obtida na etapa (b);  (c) inclusion of the polysaccharide excretory microalgae inoculum in the wastewater obtained in step (b);
(d) separação dos particulados finos por aglutinação com os polissacarídeos excretados e posterior decantação dos particulados aglutinados no fundo do tanque;  (d) separation of the fine particulates by agglutination with the excreted polysaccharides and subsequent decantation of the agglutinated particulates at the bottom of the tank;
(e) coleta das microalgas; e  (e) microalgae collection; and
(f) coleta da água tratada.  (f) collection of treated water.
A invenção trata ainda do uso de microalgas excretoras de polissacarídeos no tratamento de água residual compreendendo, em suspensão, particulados finos de material orgânico e inorgânico com origem em combustíveis sólidos.  The invention further relates to the use of polysaccharide excretory microalgae in wastewater treatment comprising, in suspension, fine particulates of organic and inorganic material from solid fuels.
BREVE DESCRIÇÃO DAS FIGURAS BRIEF DESCRIPTION OF THE FIGURES
Figura 1 : Amostras de água preta com acréscimo de nutrientes e inoculadas com Chlorella vulgaris. A: sem particulados de combustíveis sólidos aglutinados; B: com particulados de combustíveis sólidos aglutinados.  Figure 1: Samples of black water with nutrient addition and inoculated with Chlorella vulgaris. A: without particulates of agglutinated solid fuels; B: with particulates of agglutinated solid fuels.
Figura 2: Água preta visualizadas em microscópio óptico. Diferentes espécies de microalgas presentes na água preta enriquecida com nutrientes do meio BG-1 1 . A: algas verdes circulares de diâmetro cerca de 2,5 μηι; B: aglomerado de algas verdes e C: mostra uma espécie de microalga de maior de diâmetro, com aproximadamente 20 μηι. Figura 3: Agua preta visualizada em microscópio óptico. Notar a presença deFigure 2: Black water viewed under an optical microscope. Different species of microalgae present in BG-1 nutrient-enriched black water 1. A: circular green algae in diameter about 2,5 μηι; B: cluster of green algae and C: shows a species of microalgae of larger diameter, approximately 20 μηι. Figure 3: Black water viewed under an optical microscope. Note the presence of
Bacillariophyceae em ambas as amostras, além de C. vulgaris inoculada. Bacillariophyceae in both samples, besides inoculated C. vulgaris.
Figura 4: Crescimento da comunidade microalgal quantificado através da variação da fluorescência em função do tempo de cultivo nos tratamentos inoculados com Chlorella vulgaris (SN = sem acréscimo de nutrientes; CN = com acréscimo de nutrientes).  Figure 4: Microalgal community growth quantified by fluorescence variation as a function of cultivation time in treatments inoculated with Chlorella vulgaris (SN = no nutrient increase; CN = nutrient increase).
Figura 5: Variação do pH em função do tempo de cultivo (SN = sem acréscimo de nutrientes; CN = com acréscimo de nutrientes).  Figure 5: Variation of pH as a function of cultivation time (SN = no nutrient increase; CN = nutrient increase).
Figura 6: Taxas de crescimento obtidas para todos os tratamentos realizados. Luz: A, B, C, D; Escuro: E, F, G, H. Com nutrientes (CN): A, D, F, H; Sem nutrientes (SN): B, C, E, G. Inoculados Chlorella vulgaris: C, D, G, H.  Figure 6: Growth rates obtained for all treatments performed. Light: A, B, C, D; Dark: E, F, G, H. With nutrients (CN): A, D, F, H; Nutrient-Free (SN): B, C, E, G. Inoculated Chlorella vulgaris: C, D, G, H.
Figura 7: Concentração de carboidratos intracelulares em fase exponencial de crescimento e no final do experimento em culturas inoculadas. A = Luz SN fase exponencial; B = Luz SN fase final; C = Luz CN fase exponencial; D = Luz CN fase final. Experimentos inoculados.  Figure 7: Concentration of intracellular carbohydrates in exponential growth phase and at the end of the experiment in inoculated cultures. A = Light SN exponential phase; B = SN light final phase; C = Light CN exponential phase; D = Light CN final phase. Inoculated experiments.
Figura 8: Concentração de proteínas na fase exponencial de crescimento e no final do experimento em culturas inoculadas. A = Luz SN fase exponencial; B = Luz SN fase final; C = Luz CN fase exponencial; D = Luz CN fase final.  Figure 8: Protein concentration at exponential growth phase and at the end of the experiment in inoculated cultures. A = Light SN exponential phase; B = SN light final phase; C = Light CN exponential phase; D = Light CN final phase.
DESCRIÇÃO DETALHADA DA INVENÇÃO DETAILED DESCRIPTION OF THE INVENTION
A presente invenção trata de um método de tratamento de água residual através do cultivo de microalgas excretoras de polissacarídeos que compreende as seguintes etapas:  The present invention is a method of treating wastewater by cultivating polysaccharide excretory microalgae comprising the following steps:
(a) coleta em um tanque de tratamento de uma água residual compreendendo, em suspensão, particulados finos de material orgânico e inorgânico com origem em combustíveis sólidos;  (a) collecting in a wastewater treatment tank comprising, in suspension, fine particulates of organic and inorganic material from solid fuels;
(b) inclusão de nutrientes na água residual;  (b) inclusion of nutrients in wastewater;
(c) inclusão do inoculo de microalgas excretoras de polissacarídeos na água residual obtida na etapa (b);  (c) inclusion of the polysaccharide excretory microalgae inoculum in the wastewater obtained in step (b);
(d) separação dos particulados finos por aglutinação com os polissacarídeos excretados e posterior decantação dos particulados aglutinados no fundo do tanque;  (d) separation of the fine particulates by agglutination with the excreted polysaccharides and subsequent decantation of the agglutinated particulates at the bottom of the tank;
(e) coleta das microalgas; e  (e) microalgae collection; and
(f) coleta da água tratada.  (f) collection of treated water.
A água residual da presente invenção refere-se à água com a presença, em suspensão, de particulados finos de material orgânico e inorgânico, originados de combustíveis sólidos que serão queimados em fornos industriais, especialmente aqueles utilizados na indústria de cimento, termoelétricas, siderúrgicas, etc. Dentre esses materiais em suspensão, destacam-se o coque de petróleo, carvão vegetal e carvão mineral, carvão ou coque grau siderúrgico, antracito e/ou suas misturas em qualquer proporção. Essa água pode ser originada de água pluvial, que varre depósitos dos materiais e/ou água de lavagem de locais que serviram de depósitos para tais combustíveis. Recebe o nome de água preta dada à sua coloração escura que se deve às partículas finas dos combustíveis citados acima. Waste water of the present invention refers to water with the presence, in suspension, of fine particulates of organic and inorganic material from solid fuels that will be burned in industrial kilns, especially those used in the cement, thermoelectric, steel, etc. These suspended materials include petroleum coke, charcoal and charcoal. mineral, coal or coke grade steel, anthracite and / or mixtures thereof in any proportion. This water may originate from rainwater, which sweeps away deposits of material and / or flush water from places that served as deposits for such fuels. It is called black water because of its dark color due to the fine particles of fuels mentioned above.
Tais partículas finas de combustíveis sólidos em suspensão são aquelas partículas que permanecem suspensas na água ainda que esta tenha passado pelo processo de decantação, que separa as partículas maiores de combustíveis sólidos. Deste modo, permanecem na água as partículas menores e mais leves que não vão para o fundo do tanque de decantação e que são removidas de acordo com o método aqui descrito, através de aglutinação com polissacarídeos algais e decantação no fundo do tanque.  Such fine particles of solid suspended fuels are those particles that remain suspended in water even though it has gone through the settling process, which separates the larger particles from solid fuels. In this way, smaller and lighter particles that do not go to the bottom of the settling tank remain and are removed according to the method described herein by agglutination with algal polysaccharides and settling at the bottom of the tank.
Desta forma, os particulados finos de material orgânico e inorgânico com origem em combustíveis sólidos suspensos na água residual, segundo esta invenção, podem ser carvão mineral, carvão vegetal, coque de petróleo, carvão ou coque grau siderúrgico, antracito ou suas misturas. Outros materiais carreados pela chuva, como por exemplo grãos de argila e/ou areia, podem estar presentes na água residual a ser tratada.  Accordingly, the fine particulates of organic and inorganic material originating from solid fuels suspended in wastewater according to this invention may be coal, charcoal, petroleum coke, coal or steel grade coke, anthracite or mixtures thereof. Other rain-borne materials such as grains of clay and / or sand may be present in the wastewater to be treated.
Alguns grupos algais são importantes excretores de polissacarídeos, tais como o grupo das Cyanophyta (algas azuis), Heterokontophyta (Bacillariophyceae, diatomáceas) e Chlorophyta (algas verdes). Na divisão Chlorophyta, dentre outras, incluem-se microalgas robustas para grande diversidade de condições ambientais e agentes químicos, tais como os géneros Chlorella, Scenedesmus, Desmodesmus, Monoraphidium (VIEIRA et ai, 2008).  Some algal groups are important polysaccharide excrectors, such as the group of Cyanophyta (blue algae), Heterokontophyta (Bacillariophyceae, diatoms) and Chlorophyta (green algae). Chlorophyta division, among others, includes robust microalgae for a wide range of environmental conditions and chemical agents such as the genera Chlorella, Scenedesmus, Desmodesmus, Monoraphidium (VIEIRA et al, 2008).
De acordo com a presente invenção, as microalgas excretaras de polissacarídeos são escolhidas entre os grupos de Bacillariophyta, Chlorophyta e Cyanophyta ou qualquer outra microalga excretora de polissacarídeos, dependendo da finalidade que se dará à biomassa. Particularmente, as microalgas são escolhidas entre aquelas dos géneros Chlorella, Scenedesmus, Desmodesmus e Monoraphidium; preferencialmente, Chlorella vulgaris. Na presente invenção utiliza-se a microalga Chlorella vulgaris, por ser robusta e suportar variações das condições ambientais, o que possibilitou seu crescimento na água residual. Seu posterior uso como ração animal é possível, uma vez que a microalga será separada do material particulado fino.  In accordance with the present invention, polysaccharide excreta microalgae are chosen from the groups of Bacillariophyta, Chlorophyta and Cyanophyta or any other polysaccharide excretory microalgae, depending on the purpose of the biomass. Particularly, microalgae are chosen from those of the genera Chlorella, Scenedesmus, Desmodesmus and Monoraphidium; preferably Chlorella vulgaris. In the present invention the microalgae Chlorella vulgaris is used because it is robust and withstands variations of environmental conditions, which allowed its growth in wastewater. Its later use as animal feed is possible as the microalgae will be separated from the fine particulate material.
Para ocorrer o rápido crescimento da microalga, antes da etapa (c) de inclusão do inoculo de microalgas, a água residual usada como meio de cultura é enriquecida com nutrientes inorgânicos majoritários e minoritários necessários ao desenvolvimento das microalgas excretoras de polissacarídeo. Exemplos de nutrientes majoritários que podem ser utilizados de acordo com a presente invenção são: nitratos, fosfatos, magnésio, cálcio. Os nutrientes minoritários podem ser escolhidos entre ferro, manganês, cobre, molibdênio, cobalto e zinco. For rapid growth of microalgae prior to step (c) of inclusion of the microalgae inoculum, wastewater used as culture medium is enriched with major and minority inorganic nutrients necessary for the development of polysaccharide excretory microalgae. Nutrient Examples Major compounds which may be used in accordance with the present invention are: nitrates, phosphates, magnesium, calcium. Minority nutrients can be chosen from iron, manganese, copper, molybdenum, cobalt and zinc.
Deste modo, após a adição de nutrientes e inoculação das microalgas excretoras de polissacarídeos na água residual a ser tratada (respectivamente, etapas (b) e (c) do processo aqui descrito), inicia-se a cultura e crescimento algal, resultando na excreção dos polissacarídeos responsáveis pela aglutinação dos particulados finos e consequente decantação de tais particulados aglutinados, que podem ou não estar aderidos no fundo do tanque de tratamento.  Thus, after the addition of nutrients and inoculation of the polysaccharide excretory microalgae into the wastewater to be treated (steps (b) and (c) of the process described herein respectively), algal culture and growth are initiated, resulting in excretion. polysaccharides responsible for the agglutination of the fine particles and consequent decantation of such agglutinated particles, which may or may not be adhered to the bottom of the treatment tank.
De acordo com o método aqui descrito e de maneira a possibilitar o crescimento das microalgas, as etapas (c) e (d) ocorrem sob intensidade luminosa variando entre 100 e 300 μηιοΙ m"2s"1 ; preferencialmente, 150 μηιοΙ m"2s"1. No entanto, em ambiente natural, a intensidade luminosa varia de acordo condições climáticas locais, podendo chegar a até cerca de 1 .500 μηιοΙ m"2s"1 de luz solar incidente, sem prejuízo ao crescimento algal. Tais etapas (c) e (d) ocorrem em fotoperíodo similar ao natural, com 12 horas claro e 12 horas escuro. In accordance with the method described herein and in order to enable microalgae growth, steps (c) and (d) occur under light intensity ranging from 100 to 300 μηιοΙ m "2 s "1; preferably 150 μηιοΙ m "2 s " 1 . However, in the natural environment, the light intensity varies according to local climatic conditions, and may reach up to 1,500 μηιοΙ m "2 s " 1 of incident sunlight, without affecting algal growth. These steps (c) and (d) occur in a photoperiod similar to the natural one, 12 hours light and 12 hours dark.
O método de tratamento da água residual, segundo a invenção, compreende a aglutinação do particulado fino de material orgânico e inorgânico com origem em combustíveis sólidos que estão em suspensão na água residual e sua decantação no fundo do tanque de tratamento.  The wastewater treatment method according to the invention comprises agglutination of the fine particulate of organic and inorganic material from solid fuels that are suspended in the wastewater and their decantation at the bottom of the treatment tank.
A aglutinação do particulado fino de material orgânico e inorgânico de combustíveis sólidos suspensos na água residual dá-se graças à excreção dos polissacarídeos pelas microalgas, que atuam como material cimentante. Estes aglutinados de particulados finos, juntamente com o material excretado pelas microalgas, decantam naturalmente no fundo do tanque de tratamento, deixando acima deste, a água tratada com as microalgas.  The fine particulate agglutination of organic and inorganic material from solid fuels suspended in wastewater is due to the excretion of polysaccharides by microalgae, which act as cementing material. These fine particulate agglutinates, together with the material excreted by the microalgae, naturally decant at the bottom of the treatment tank, leaving above the water treated with the microalgae.
A excreção dos polissacarídeos decorre de processo normal durante o crescimento algal, mas pode ser aumentada ou reduzida conforme o estado nutricional da microalga (VIEIRA et ai, 2008).  Polysaccharide excretion is a normal process during algal growth, but may be increased or decreased depending on the nutritional status of the microalgae (VIEIRA et al, 2008).
Os materiais excretados pelas microalgas podem variar em composição e, para elas, apresentam diversas funções. De acordo com a literatura os polissacarídeos excretados podem estar envolvidos na mobilidade celular, estabilização, formação de agrupamentos celulares e ainda adesão das células em superfícies, dependendo da espécie algal. No geral, o investimento pela microalga na excreção de substâncias poliméricas justifica-se pela proteção que tais substâncias oferecem às células (MYKLESTAD, 1995; LOMBARDI et ai, 2005). Por exemplo, protegem a célula contra a dessecação, atração de nutrientes para perto da superfície celular, contra o excesso de radiação solar, dentre outras funções. The materials excreted by microalgae may vary in composition and, for them, have several functions. According to the literature, excreted polysaccharides may be involved in cell mobility, stabilization, formation of cell clusters and adhesion of cells to surfaces, depending on the algal species. Overall, the investment by microalgae in the excretion of polymeric substances is justified by the protection that these substances offer to cells (MYKLESTAD, 1995; LOMBARDI et al, 2005). For example, they protect the cell against desiccation, attraction of nutrients close to the cell surface, against excess solar radiation, among other functions.
Sabe-se que a composição dos polissacarídeos excretados de microalgas pode sofrer variações entre os grupos algais, entretanto sua base de carboidratos é comum a todos. Os de origem de algas Chlorophyta são menos proteicos e mais polissacarídicos em comparação com os de cianobactérias (TONIETTO et al., 2014; LOMBARDI e VIEIRA, 1999). Por outro lado, o grupo das Bacillariophyceae pode apresentar certo caráter hidrofóbico (VIEIRA et al., 2008). Polissacarídeo microalgal é usualmente constituído de monômeros de carboidratos neutros, tais como fucose, arabinose, galactose, glucose, manose, ramnose e xilose e/ou ácidos, tais como os ácidos galacturônicos e glucurônicos (LOMBARDI e VIEIRA, 1999). Os carboidratos constituem cerca de 70 - 80% do polissacarídeo excretado (LOMBARDI e VIEIRA, 1999; VIEIRA et ai, 2008); proteínas podem chegar a 15 - 20% (LOMBARDI e VIEIRA, 1999), enquanto que os lipídios podem chegar a 1 - 2% (PARRISH e WANGERSKY, 1987; LOMBARDI e WANGERSKY, 1991 ).  It is known that the composition of microalgae excreted polysaccharides may vary among the algal groups, however their carbohydrate base is common to all. Chlorophyta algae are less protein and more polysaccharide compared to cyanobacteria (TONIETTO et al., 2014; LOMBARDI and VIEIRA, 1999). On the other hand, the Bacillariophyceae group may have a certain hydrophobic character (VIEIRA et al., 2008). Microalgal polysaccharide is usually made up of neutral carbohydrate monomers such as fucose, arabinose, galactose, glucose, mannose, rhamnose and xylose and / or acids such as galacturonic and glucuronic acids (LOMBARDI and VIEIRA, 1999). Carbohydrates make up about 70 - 80% of the excreted polysaccharide (LOMBARDI and VIEIRA, 1999; VIEIRA et al, 2008); proteins can reach 15-20% (LOMBARDI and VIEIRA, 1999), while lipids can reach 1 - 2% (PARRISH and WANGERSKY, 1987; LOMBARDI and WANGERSKY, 1991).
Uma vez que o particulado fino é aglutinado com os polissacarídeos excretados pelas microalgas, tem-se a água tratada com as microalgas.  Since the fine particulate is agglutinated with the polysaccharides excreted by the microalgae, we have the water treated with the microalgae.
Na sequência tem-se a separação e coleta das microalgas, obtendo-se de um lado, a água tratada e livre do particulado fino de material orgânico e inorgânico com origem em combustíveis sólidos, e de outro, a biomassa algal.  Following is the separation and collection of microalgae, obtaining, on one side, the treated water and free of fine particulate organic and inorganic material from solid fuels, and on the other, the algal biomass.
A água tratada e livre do particulado fino de combustíveis sólidos e das microalgas pode ser utilizada em diversas aplicações, tais como seu reuso na lavagem de caminhões transportadores dos resíduos sólidos, higienização do entorno da fábrica, lavagem do pátio de estocagem dos resíduos sólidos, rega de jardins, alimentação de fotobiorreatores, dentre outras.  Treated water free of fine particulate solid fuels and microalgae can be used in a variety of applications, such as reusing it to wash solid waste haulers, cleaning the surrounding area, washing the solid waste stock yard, irrigation gardens, feeding photobioreactors, among others.
Por outro lado, a presente invenção também possibilita a utilização das microalgas cultivadas e coletadas, de acordo com o método da invenção. Esta biomassa algal pode ser empregada em diversas aplicações, tais como produção de biocombustíveis, queima nos fornos da fábrica, uso como ração animal, dentre outros. Entretanto, para a definição do uso da biomassa algal, deve-se escolher a espécies mais adequada para a finalidade. Por exemplo, Chlorella vulgarís apresenta elevado conteúdo de proteínas (CHIA et al., 2013a; 2013b; 2015) e por isso é indicada para tal aplicação. Já Scenedesmus sp produz hidrocarbonetos alifáticos (ROCHA et al., 2014) e pode ser uma espécie interessante para a produção de biocombustíveis.  On the other hand, the present invention also enables the use of cultivated and collected microalgae according to the method of the invention. This algal biomass can be used in various applications, such as biofuel production, burning in factory furnaces, use as animal feed, among others. However, to define the use of algal biomass, one should choose the most suitable species for the purpose. For example, Chlorella vulgaris has high protein content (CHIA et al., 2013a; 2013b; 2015) and is therefore indicated for such application. Scenedesmus sp produces aliphatic hydrocarbons (ROCHA et al., 2014) and may be an interesting species for biofuel production.
Opcionalmente, a etapa (e) de coleta das microalgas pode compreender uma etapa prévia de floculação seguida da decantação das microalgas. Deste modo, tem-se a decantação do particulado fino aglutinado com os polissacarídeos excretados pelas microalgas juntamente com a biomassa algal, obtendo-se então, a água tratada no sobrenadante. Optionally, the microalgae collection step (e) may comprise a prior flocculation step followed by the microalgae decantation. Thus, the fine particulate agglutinated with the polysaccharides excreted by microalgae together with the algal biomass, thus obtaining the treated water in the supernatant.
A floculação das microalgas poder ser obtida através do ajuste do pH da água residual para um pH ideal de floculação algal; ou através do uso de agentes floculantes, tais como o sulfato de alumínio e o clorohidróxido de alumínio; ou ainda pelo uso de qualquer outro método conhecido do estado da técnica para floculação das microalgas. Preferencialmente, utiliza-se o ajuste de pH da água residual para a faixa entre pH 10 e pH 1 1 , sendo que após a floculação e decantação das microalgas, a água residual tratada tem o seu pH novamente ajustado conforme as normas estabelecidas pelos órgãos de controle e fiscalização da emissão de efluentes líquidos no ambiente.  Microalgae flocculation can be achieved by adjusting the residual water pH to an ideal algal flocculation pH; or by the use of flocculating agents such as aluminum sulfate and aluminum chlorohydroxide; or by any other known method of the art for microalgae flocculation. Preferably, the pH adjustment of the wastewater to the range between pH 10 and pH 11 is used, and after flocculation and decantation of the microalgae, the treated wastewater is adjusted to its pH again according to the standards established by the control bodies. control and supervision of the emission of liquid effluents into the environment.
A água tratada obtida do método que compreende a etapa prévia de floculação das microalgas também pode ser utilizada em diversas aplicações, tais como aquelas anteriormente informadas. Já o material decantado, compreendendo o particulado fino aglutinado e as microalgas, pode ser reutilizado como combustível.  The treated water obtained from the method comprising the prior stage of microalgae flocculation can also be used in various applications, such as those previously reported. Decanted material, including fine agglutinated particulate matter and microalgae, can be reused as fuel.
A presente invenção trata do uso de microalgas excretaras de polissacarídeos como agentes efetivos no tratamento de água residual compreendendo, em suspensão, particulados finos de material orgânico e inorgânico com origem em combustíveis sólidos, tratamento este que é conseguido, pois a água residual é usada como meio de cultura para microalgas produtoras de polissacarídeo. Este polímero exerce função de aglutinador do particulado fino que, com tamanho aumentado, decantam no fundo do tanque de tratamento. Em decorrência do tipo de polissacarídeo excretado, tais particulados finos aglutinados e decantados podem ou não permanecer aderidos no fundo do tanque de tratamento.  The present invention deals with the use of polysaccharide microalgae excreta as effective agents in wastewater treatment comprising, in suspension, fine particulates of organic and inorganic material from solid fuels, which treatment is achieved, since wastewater is used as culture medium for polysaccharide producing microalgae. This polymer acts as a fine particle binder that, with larger size, decant at the bottom of the treatment tank. Due to the type of polysaccharide excreted, such fine agglutinated and decanted particles may or may not remain adhered to the bottom of the treatment tank.
EXEMPLOS EXAMPLES
As análises apresentadas a seguir mostram a utilização de água preta residual da indústria de cimento para o cultivo de microalgas. Para tanto, prosseguiu-se com as seguintes análises:  The analyzes presented below show the use of wastewater from the cement industry for microalgae cultivation. To this end, the following analyzes were continued:
- cultivo de comunidade de microalgas, incluindo Chlorella vulgaris inoculada, em diversas condições experimentais, todas em água preta; - quantificação do crescimento algal na água preta acrescida de nutrientes; - cultivation of microalgae community, including inoculated Chlorella vulgaris, under various experimental conditions, all in black water; - Quantification of algal growth in black water plus nutrients;
- quantificação do crescimento algal na água preta sem o acréscimo de nutrientes; - Quantification of algal growth in black water without the addition of nutrients;
- observação da aglutinação do material particulado.  - observation of agglutination of particulate matter.
- quantificação da composição bioquímica da biomassa gerada na água preta através da determinação da concentração de carboidratos e de proteínas nas células. MATERIAL E MÉTODOS - Quantification of the biochemical composition of biomass generated in black water through the determination of carbohydrate and protein concentration in cells. MATERIAL AND METHODS
Origem da água preta Origin of black water
Os combustíveis coque de petróleo, carvão vegetal, antracito e carvão mineral usados na combustão em indústrias de cimento no Brasil, chegam às indústrias através de meios rodoviários e, para que as carretas que os transportaram sejam reutilizadas, devem ser lavadas. Tal lavagem resulta em um resíduo aquoso que é denominado água preta. Esse resíduo líquido contendo partículas dos combustíveis é armazenado em tanques de decantação, uma vez que não pode ser descartado. As amostras de água preta utilizadas no presente estudo foram coletadas do primeiro nível do tanque de decantação, onde havia maior quantidade de material particulado suspenso.  The petroleum coke, charcoal, anthracite and mineral coal fuels used in combustion in cement industries in Brazil reach the industries by road and for the trucks that transported them to be reused they must be washed. Such washing results in an aqueous residue which is called black water. This liquid residue containing fuel particles is stored in settling tanks as it cannot be disposed of. The black water samples used in this study were collected from the first level of the settling tank, where there was a higher amount of suspended particulate matter.
Análise da água preta - BTEX  Black Water Analysis - BTEX
A água preta usada foi analisada quanto à determinação de compostos orgânicos (benzeno, tolueno, etilbenzeno e xileno), comumente conhecidos como BTEX. As determinações foram realizadas pela empresa Global Análises e Consultoria, localizada em São Carlos (SP, Brasil) logo após a chegada da água residual ao laboratório. As análises de BTEX foram feitas por microextração em fase sólida seguida pela cromatografia gasosa acoplada a espectrometria de massas (SPME-GC/MS). Na fase de preparo da amostra (SPME) seguiu-se metodologia descrita em VALENTE e AUGUSTO (2000) com modificações de QUEIROZ (201 1 ).  The black water used was analyzed for the determination of organic compounds (benzene, toluene, ethylbenzene and xylene), commonly known as BTEX. The determinations were performed by the company Global Análises e Consultoria, located in São Carlos (SP, Brazil) shortly after the wastewater arrived at the laboratory. BTEX analyzes were performed by solid phase microextraction followed by gas chromatography coupled to mass spectrometry (SPME-GC / MS). The sample preparation phase (SPME) was followed by the methodology described in VALENTE and AUGUSTO (2000) with modifications by QUEIROZ (201 1).
Ensaios com água preta como meio de cultura para microalqas  Black water testing as a culture medium for microalqas
Planejamento experimental  Experimental planning
A água residual (água preta) foi transportada da indústria de cimento ao laboratório em galões de polipropileno. No laboratório, a água preta foi acondicionada em frascos menores, alguns destes frascos foram congelados, outros foram colocados em geladeira para uso imediato, garantindo a manutenção dos micro-organismos presentes.  The wastewater (black water) was transported from the cement industry to the laboratory in polypropylene gallons. In the laboratory, black water was packed in smaller bottles, some of these bottles were frozen, others were refrigerated for immediate use, ensuring the maintenance of the microorganisms present.
Objetivando o tratamento da água preta através do cultivo microalgal, foram realizados diversos ensaios:  Aiming the treatment of black water through microalgal cultivation, several tests were performed:
- água preta enriquecida com nutrientes do meio BG-1 1 (ANDERSEN, 2005) inoculada com a microalga Chlorella vulgaris e mantida sob luz (Luz - CN) e no escuro (Escuro - CN);  - nutrient-enriched black water from BG-11 medium (ANDERSEN, 2005) inoculated with Chlorella vulgaris microalgae and kept under light (Light - CN) and in the dark (Dark - CN);
- água preta pura, sem acréscimo de nutrientes, inoculada com microalga Chlorella vulgaris e mantida na luz (Luz - SN) e no escuro (Escuro - CN); - pure black water, without added nutrients, inoculated with Chlorella vulgaris microalgae and kept in light (Luz - SN) and dark (Dark - CN);
- água preta pura, sem acréscimo de nutrientes mantida na luz (Luz - SN) e no escuro (Escuro - SN); - pure black water, without nutrient increase kept in light (Light - SN) and dark (Dark - SN);
Os ensaios foram realizados em frascos de cultura de células de 690 mL, contendo 250 mL de água preta, em triplicatas experimentais. Nos ensaios em que a água preta foi enriquecida com nutrientes do meio de cultura BG-1 1 , foram adicionados, as seguintes quantidades: NaN03 (1 ,5 g L"1); K2HPCy3H20 (40 mg L"1); MgSCy7H20Assays were performed in 690 mL cell culture flasks containing 250 mL of black water in experimental triplicates. In tests where the black water was enriched with nutrients from culture medium BG-1 1, the following amounts were added: NaN0 3 (1.5 g L "1 ); K 2 HPCy3H 2 0 (40 mg L " 1 ); MgSCy7H 2 0
(75 mg L"1); CaCI2-2H20 (36 mg L"1); NaC03 (20 mg L"1) FeCI3-6H20 (3,15 mg L"1); ácido cítrico (6 mg L"1) e 1 mL de solução de micronutrientes composta de H3B03 (2,86 mg L"1), MnCI2-4H20 (1 ,81 mg L_1), ZnS04-7H20 (0,22 mg L"1), Na2Mo04-2H20 (0,39 mg L"1),(75 mg L- 1 ); CaCl 2 -2H 2 0 (36 mg L- 1 ); NaCO 3 (20 mg L "1 ) FeCl 3 -6H 2 0 (3.15 mg L " 1 ); citric acid (6 mg L "1 ) and 1 mL of micronutrient solution composed of H 3 B0 3 (2.86 mg L " 1 ), MnCl 2 -4H 2 0 (1.81 mg L _1 ), ZnS0 4 - 7H 2 0 (0.22 mg L "1 ), Na 2 Mo0 4 -2H 2 0 (0.39 mg L " 1 ),
CuSCy5H20 (0,08 mg L"1), Co(N03)2-6H20 (0,05 mg L~1). CuSCy5H 2 0 (0.08 mg L "1), Co (N0 3) 2 6H 2 0 (0.05 mg L-1).
As tréplicas experimentais foram mantidas sob intensidade luminosa de 130 μηιοΐ ητν1, com fotoperíodo natural (aproximadamente 12:12h claro:escuro) em temperatura de 23eC, sendo que a temperatura pode variar entre 23 - 29eC. The experimental replicates were kept under light intensity of 130 μηιοΐ ητν 1 , with natural photoperiod (approximately 12: 12h light: dark) at 23 and C, and the temperature may vary between 23 - 29 and C.
Fluorescência da clorofila a Chlorophyll Fluorescence
A fluorescência in vivo (Fluorímetro Turner - Trilogy, USA, modelo 7200-043) foi usada como medida da concentração de clorofila a, um parâmetro que se relaciona com a biomassa de microalgas fotossintéticas. Esta metodologia foi utilizada para verificar a densidade populacional das amostras, pois no caso da água preta como meio de cultura, não foi possível a contagem de células em microscópio óptico para a quantificação da biomassa viva, devido à intensa presença de sedimentos no meio.  In vivo fluorescence (Turner - Trilogy, USA Model 7200-043 Fluorimeter) was used as a measure of chlorophyll a concentration, a parameter that relates to photosynthetic microalgae biomass. This methodology was used to verify the population density of the samples, because in the case of black water as a culture medium, it was not possible to count cells under an optical microscope to quantify living biomass, due to the intense presence of sediment in the medium.
Potencial Hidroqeniônico - pH  Hydrogen Potential - pH
Para medir o pH das amostras foi utilizado um pHmetro Logen® Scientific. O pH é um parâmetro importante, pois o cultivo de microalgas modifica o pH do meio. Normalmente cultivando-se microalgas fotossintéticas o pH do meio aumenta, podendo chegar a pH 1 1 , se o meio não for tamponado.  To measure the pH of the samples a Logen® Scientific pH meter was used. The pH is an important parameter because the cultivation of microalgae modifies the pH of the medium. Normally by cultivating photosynthetic microalgae the pH of the medium increases and may reach pH 11 if the medium is not buffered.
Quantificação de proteínas totais  Total protein quantification
A extração e quantificação das proteínas totais foi feita utilizando-se o protocolo descrito por BRADFORD (1976) e RAUSCH (1981 ). A quantificação é feita em espectrofotômetro e as curvas de calibração foram obtidas em comprimento de onda de Total protein extraction and quantification was performed using the protocol described by BRADFORD (1976) and RAUSCH (1981). Quantification is done by spectrophotometer and calibration curves were obtained at wavelengths of
595 nm. Detalhes do procedimento podem ser encontrados em CHIA et al. (2015). 595 nm. Details of the procedure can be found in CHIA et al. (2015).
Quantificação de carboidratos totais  Total Carbohydrate Quantification
A quantificação de carboidratos totais foi realizada baseando-se na técnica descrita por ALBALASMEH et al. (2013) através de espectrofotometria. Esta técnica tem como fundamento a reação do ácido sulfúrico com a biomassa algal. Para as curvas de calibração utilizou-se glicose como padrão e os carboidratos intracelulares foram quantificados como equivalente de glicose ^g mL"1). Detalhes do método podem ser encontrados em CHIA (2012). Total carbohydrate quantification was performed based on the technique described by ALBALASMEH et al. (2013) through spectrophotometry. This technique is based on the reaction of sulfuric acid with algal biomass. For calibration curves glucose was used as standard and intracellular carbohydrates were quantified as glucose equivalent ^ g mL "1 ). Details of the method can be found in CHIA (2012).
Taxa de crescimento  Growth rate
As taxas de crescimento algal foram obtidas a partir dos valores de densidade populacional através de análise gráfica plotando-se o logaritmo natural dos valores de fluorescência em função do tempo experimental em dias. Durante o crescimento exponencial, esse gráfico resulta em uma reta que pode ser ajustada através de regressão linear. O coeficiente angular do ajuste representa a taxa de crescimento específica, cuja unidade é dia"1. Algal growth rates were obtained from population density values through graphical analysis by plotting the natural logarithm of fluorescence values as a function of experimental time in days. During growth Exponentially, this graph results in a line that can be adjusted by linear regression. The angular coefficient of the adjustment represents the specific growth rate, whose unit is day "1 .
Preparo e visualização das amostras Sample preparation and visualization
Amostras de água preta foram preparadas em lâminas para observação ao microscópio óptico (Nikon Digital Sight DS-U3) de modo que se tornasse possível sua visualização e fotografia para verificação do material particulado.  Samples of black water were prepared on slides for observation under the optical microscope (Nikon Digital Sight DS-U3) so that their visualization and photography to verify the particulate material became possible.
RESULTADOS E DISCUSSÃO RESULTS AND DISCUSSION
Compostos orgânicos (BTEX) Organic Compounds (BTEX)
A Tabela 1 mostra os resultados obtidos da análise BTEX nas concentrações presentes na água preta usada como base para o meio de cultura das microalgas.  Table 1 shows the results obtained from the BTEX analysis at the concentrations present in the black water used as the basis for the microalgae culture medium.
Tabela 1 . Concentração de hidrocarbonetos presentes na água preta usada como meio de cultura para microalgas.  Table 1 Concentration of hydrocarbons present in black water used as a culture medium for microalgae.
Hidrocarbonetos Concentração ^g L 1) Hydrocarbons Concentration ^ g L 1 )
Benzeno ND  Benzene ND
Tolueno ND  Toluene ND
m-Xileno 0,49  m-Xylene 0.49
p-Xileno 0,55  p-Xylene 0.55
o-Xileno 0,39  o-Xylene 0.39
Etilbenzeno 3,77  Ethylbenzene 3.77
ND = Não detectado.  ND = Not detected.
De acordo com PENG et al. (2014), a toxicidade de BTEX para células de microalgas e inibição da síntese de clorofila a segue a ordem xilenos > etilbenzeno > tolueno > benzeno. Na presente análise, os hidrocarbonetos considerados mais tóxicos para as algas foram os detectados em na água preta. Entretanto, um estudo com a microalga de água doce Selenastrum capricornutum mostrou que os xilenos foram tóxicos para esta alga em concentração igual ou superior a 3,9 mg L"1 e para etilbenzeno, 4,7 mg L"1 (HERMAN et al., 1990). Para a alga Chlorella pyrenoidosa, o nitrobenzeno foi tóxico em concentrações de 28 mg L"1 e 2-nitrotolueno em 22 mg L"1 (RAMOS et al., 1999). Nos resultados deste estudo, os compostos não apresentaram toxicidade para a microalga inoculada Chlorella vulgaris. According to PENG et al. (2014), the toxicity of BTEX to microalgae cells and inhibition of chlorophyll synthesis follows the order xylenes>ethylbenzene>toluene> benzene. In the present analysis, the hydrocarbons considered more toxic to algae were those detected in black water. However, a study with the freshwater microalgae Selenastrum capricornutum showed that xylenes were toxic to this algae at a concentration of 3.9 mg L "1 or higher and for ethylbenzene 4.7 mg L " 1 (HERMAN et al. , nineteen ninety). For Chlorella pyrenoidosa algae, nitrobenzene was toxic at concentrations of 28 mg L "1 and 2-nitrotoluene at 22 mg L " 1 (RAMOS et al., 1999). In the results of this study, the compounds showed no toxicity to the inoculated microalgae Chlorella vulgaris.
Bioensaios Bioassays
A água preta, ao ser visualizada no microscópio, possuía apenas sedimentos escuros (Figura 1 A e 1 B), alguns protozoários, rotíferos e microalgas, muitas das quais filamentosas. Nos ensaios mantidos no escuro, a água preta, enriquecida ou não com nutrientes manteve-se sem alterações e os sedimentos continuaram do mesmo tamanho e aspecto (arenoso) após 1 mês de incubação. Entretanto, na água preta acrescida ou não de nutrientes, mas mantida na luz foram observadas alterações nos sedimentos. Os sedimentos aglutinaram-se e, com aspecto viscoso depositaram-se e aderiram no fundo do frasco (Figuras 2A, 2B e 2C). Sabe-se que os polissacarídeos excretados por microalgas têm essa propriedade, de colar ou aglutinar particulados (VIEIRA et al., 2008). Ao microscópio, observou-se que não somente a microalga inoculada cresceu nos cultivos, mas também outras que já estavam na água preta. Microalgas filamentosas e cocóides, além de Chlorella vulgaris foram observadas na água preta. Black water, when viewed under the microscope, had only dark sediments (Figures 1A and 1B), some protozoa, rotifers and microalgae, many of which were filamentous. In the dark trials, nutrient-enriched or black water remained unchanged and the sediments remained the same size and appearance (sandy) after 1 month of incubation. However, in black water with or without nutrients, but kept in light, changes in sediments were observed. The sediments agglutinated and viscously deposited and adhered to the bottom. vial (Figures 2A, 2B and 2C). Microalgae-excreted polysaccharides are known to have this property of sticking or agglutinating particulates (VIEIRA et al., 2008). Under the microscope, it was observed that not only the inoculated microalgae grew in the crops, but also others that were already in black water. Filamentous microalgae, coccoids, and Chlorella vulgaris were observed in black water.
Devido à versatilidade e robustez da microalga Chlorella vulgaris, ela foi escolhida para inoculação na água preta. Ao ser visualizada sob microscópio óptico (Figura 1 ), verificou-se a presença de C. vulgaris livres no meio e também nos particulados após 15 dias de cultivo. Os sedimentos presentes na água preta sofreram processo de aglutinação e aumentaram de tamanho, passando de aspecto arenoso para grânulos viscosos. Também foram visualizadas microalgas diatomáceas (Figura 3), sugerindo a presença de sílica na água preta, já que essas algas necessitam desse composto para seu desenvolvimento.  Due to the versatility and robustness of Chlorella vulgaris microalgae, it was chosen for inoculation in black water. When viewed under an optical microscope (Figure 1), it was found the presence of free C. vulgaris in the medium and also in the particles after 15 days of cultivation. The sediments present in the black water were agglutinated and increased in size from sandy to viscous granules. Diatom microalgae were also visualized (Figure 3), suggesting the presence of silica in black water, as these algae need this compound for their development.
Os ensaios com água preta confirmaram a viabilidade do crescimento de microalgas fotossintéticas neste resíduo, através do aumento da fluorescência da clorofila a e observações sob microscópio. Conclui-se que o acréscimo de nutrientes é essencial para garantir maior biomassa e maior crescimento populacional em comparação com água preta não acrescida de nutrientes. Na Figura 4, destaca-se o maior crescimento para o ensaio em água preta com nutrientes, inoculado com C. vulgaris e mantido na luz.  Black water assays confirmed the viability of photosynthetic microalgae growth in this residue by increasing chlorophyll a fluorescence and observations under a microscope. It is concluded that the increase of nutrients is essential to ensure higher biomass and higher population growth compared to non-nutrient black water. Figure 4 shows the highest growth for the nutrient black water test inoculated with C. vulgaris and kept in the light.
Na Figura 5 mostra-se a variação do pH conforme o tempo experimental. O crescimento algal foi marcado por pH 9 - 10 das culturas mantidas sob luz.  Figure 5 shows the pH variation according to the experimental time. Algal growth was marked by pH 9-10 of the cultures kept under light.
Na presença de luz, mas sem nutrientes, a água preta suportou crescimento limitado de microalgas, fato confirmado pelos valores de fluorescência da clorofila a (menores do que na presença de nutrientes) e pelos valores de pH, que diminuíram com o tempo. Na ausência de luz, não houve o crescimento de microalgas e o pH foi reduzido para 7,5. Sem inoculo de C. vulgaris, mas acrescida de nutrientes e incubada na luz, o crescimento de microalgas na água preta foi lento, sendo necessário 80 dias para aumento da fluorescência, o que confirma a importância da inoculação de C. vulgaris.  In the presence of light, but without nutrients, black water supported limited growth of microalgae, a fact confirmed by chlorophyll a fluorescence values (lower than in the presence of nutrients) and pH values, which decreased over time. In the absence of light, there was no microalgae growth and the pH was reduced to 7.5. Without inoculation of C. vulgaris, but added nutrients and incubated in light, the growth of microalgae in black water was slow, requiring 80 days to increase fluorescence, which confirms the importance of inoculation of C. vulgaris.
Observa-se a grande diferença dos tratamentos na luz e no escuro. Enquanto na luz foram obtidos valores crescentes de fluorescência desde o início do cultivo, como observado na Figura 4, no escuro, valores menores de fluorescência da clorofila a foram obtidos. Os valores de pH das amostras na luz foram maiores que o pH das amostras no escuro durante todo o experimento (Figura 5).  There is a large difference in light and dark treatments. While in the light increasing fluorescence values were obtained since the beginning of cultivation, as observed in Figure 4, in the dark, lower fluorescence values of chlorophyll a were obtained. The pH values of the samples in the light were higher than the pH of the samples in the dark throughout the experiment (Figure 5).
A água preta mantida no escuro, enriquecida ou não com nutrientes, obteve valores baixos de fluorescência, enquanto os tratamentos na luz apresentaram valores de fluorescência característicos do crescimento de micro-organismos fotossintéticos. Analisando-se os valores de pH dos tratamentos observa-se que nos ensaios com água preta enriquecida com nutrientes e mantida na luz o pH manteve-se mais alcalino que os ensaios com água preta não enriquecida, sendo destaque os tratamentos mantidos na luz. Isso demonstra um maior crescimento algal na água preta acrescida de nutrientes e mantida na luz. O pH é um dos fatores de grande importância em cultivos de algas, pois determina a solubilidade do C02 e nutrientes minerais no meio, influenciando o metabolismo das algas (BECKER, 1995). ZANG et al. (201 1 ) mostraram que em uma cultura de microalgas, o pH pode variar significantemente ao longo de um dia; WANG et al. (2012) mostraram que pHs elevados, aproximadamente iguais a 1 1 , são atingidos em cultivos de microalgas sem agente tamponante no meio, sendo que os maiores valores ocorrem na fase exponencial de crescimento. Black water maintained in the dark, enriched or not with nutrients, obtained low fluorescence values, while light treatments showed fluorescence values characteristic of the growth of photosynthetic microorganisms. Analyzing the pH values of the treatments, it can be observed that in the experiments with nutrient-enriched black water and kept in the light, the pH remained more alkaline than the tests with non-enriched black water, especially the treatments kept in the light. This demonstrates increased algal growth in black water plus nutrients and kept in light. The pH is a factor of great importance in algae cultivation, because it determines the solubility of C0 2 and mineral nutrients in the middle, influencing the metabolism of algae (Becker, 1995). ZANG et al. (201 1) showed that in a microalgae culture, the pH can vary significantly over a day; Wang et al. (2012) showed that high pHs, approximately equal to 1 1, are reached in microalgae cultures without buffering agent in the medium, with the highest values occurring in the exponential phase of growth.
A respeito de todos os tratamentos da água preta, inoculados e não inoculados com Chlorella vulgaris, observou-se que o crescimento das algas foi melhor nos ensaios em que houve a adição de sais nutritivos do meio BG-1 1 . Isso mostra que a água preta por si só não suporta uma produção algal, sendo necessária a adição de nutrientes para a otimização do crescimento e produção de biomassa.  Regarding all treatments of black water, inoculated and not inoculated with Chlorella vulgaris, it was observed that algae growth was better in the trials in which there was the addition of nutritive salts of BG-1 medium 1. This shows that black water alone does not support algal production, and nutrient addition is required to optimize growth and biomass production.
Os resultados mostraram que as maiores taxas de crescimento foram obtidas nos ensaios de água preta com nutrientes na luz, sendo estes, valores semelhantes aos de cultivo de microalgas em meios de cultura convencionais. Com nutrientes, a taxa de crescimento da microalga Chlorophyta inoculada foi de 0,97 dia"1 , enquanto que sem nutrientes foi de 0,84 dia"1. Isso é equivalente dizer que a população inoculada efetuou 1 ,4 divisões por dia na presença de nutrientes, enquanto que sem nutrientes, foram necessários 2 dias para a duplicação da população (0,57 divisões por dia). Esses resultados são mostrados na Figura 6. The results showed that the highest growth rates were obtained in the light water nutrient assays, which are similar to those of microalgae cultivation in conventional culture media. With nutrients, the growth rate of inoculated Chlorophyta microalgae was 0.97 day "1 , while without nutrients it was 0.84 day " 1 . This is equivalent to say that the inoculated population made 1, 4 divisions per day in the presence of nutrients, while without nutrients, it took 2 days to double the population (0.57 divisions per day). These results are shown in Figure 6.
Chlorella vulgaris mantida na água preta sem adição de nutrientes apresentou Chlorella vulgaris kept in black water without added nutrients showed
6,23 μg ml_"1 de carboidratos na fase exponencial, mas diminuiu para 4,34 μg ml_"1 ao final dos ensaios. Como esperado, a água preta inoculada com Chlorella vulgaris enriquecida com nutrientes obteve um valor de 9,03 μg ml_"1 na fase exponencial e 8,18 μg ml_"1 no final dos experimentos, portanto maiores do que sem o acréscimo de nutrientes. Esses resultados são mostrados na Figura 7. Os resultados de concentração de proteínas são mostrados na Figura 8. 6.23 μg ml_ "1 of carbohydrates in the exponential phase, but decreased to 4.34 μg ml_ " 1 at the end of the trials. As expected, black water inoculated with nutrient-enriched Chlorella vulgaris obtained a value of 9.03 μg ml_ "1 at the exponential phase and 8.18 μg ml_ " 1 at the end of the experiments, therefore higher than without nutrient addition. These results are shown in Figure 7. Protein concentration results are shown in Figure 8.
A água preta, quando mantida na luz, possibilitou o crescimento de microalgas nativas ou inoculadas, no caso Chlorella vulgaris. O crescimento foi maior quando a água preta foi enriquecida com nutrientes do meio de cultura BG-1 1 em comparação com água preta não enriquecida de nutrientes.  Black water, when kept in light, allowed the growth of native or inoculated microalgae, in the case of Chlorella vulgaris. Growth was higher when black water was enriched with nutrients from culture medium BG-1 1 compared to non nutrient enriched black water.
A descrição que se fez até aqui do método de tratamento de água residual e uso das microalgas excretoras de polissacarídeos, objeto da presente invenção, deve ser considerada apenas como uma possível concretização, e quaisquer características particulares nela introduzida devem ser entendidas apenas como algo que foi descrito para facilitar sua compreensão. Desta forma, não podem de forma alguma ser consideradas como limitantes da invenção, a qual está limitada ao escopo das reivindicações que seguem. The description of the wastewater treatment method and the use of the polysaccharide excretory microalgae, object of the present invention, should be considered merely as a possible embodiment, and any particular features introduced therein should be understood solely as something that has been described for ease of understanding. Accordingly, they may not in any way be construed as limiting the invention, which is limited to the scope of the following claims.
Referências Bibliográficas Bibliographic references
AKERSTROM, A.M. et al. Biomass production and nutrient removal by Chiorella sp. as affected by sludge liquor concentration. Journ Environ Manag. 144:1 18-124, 2014.  AKERSTROM, A.M. et al. Biomass production and nutrient removal by Chiorella sp. as affected by sludge liquor concentration. Journ Environ Manag. 144: 11-184, 2014.
ALBALASMEH, A. et al. A new method for rapid determination of carbohydrate and total carbon concentrations using UV spectrophotometry. Carbohydrate Polymers, 97:253-261 , 2013.  ALBALASMEH, A. et al. A new method for rapid determination of carbohydrate and total carbon concentrations using UV spectrophotometry. Carbohydrate Polymers, 97: 253-261, 2013.
ANDERSEN, R.A. Algal Culturing Techniques. Elsevier Academic Press. USA. 596 p. , 2005.  ANDERSEN, R.A. Algal Culturing Techniques. Elsevier Academic Press. USA 596 p. , 2005.
BECKER, E.W. Microalgae: biotechnology and microbiology. Cambridge University Press, 292p, 1995.  BECKER, E.W. Microalgae: biotechnology and microbiology. Cambridge University Press, 292p, 1995.
BORKENSTEIN, CG. et al. Cultivation of Chiorella emersonii with flue gas derived from a cement plant. J Appl Phycol 23: 131 -135, 201 1.  BORKENSTEIN, CG. et al. Cultivation of Chiorella emersonii with flue gas derived from a cement plant. J Appl Phycol 23: 131-135,201.
BRADFORD, M.M. Rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principie of protein-dye binding. Anal. Biochem. 72: 248- 254, 1976.  BRADFORD, M.M. Rapid and sensitive method for the quantitation of microgram quantities of protein using the principle of protein-dye binding. Anal. Biochem. 72: 248-254, 1976.
CHANDRA, S. et al. Application of bioremediation technology in the environment contaminated with petroleum hydrocarbon. Ann Microbiol, v.63:417-431 , 2013.  CHANDRA, S. et al. Application of bioremediation technology in the environment contaminated with petroleum hydrocarbon. Ann Microbiol, v.63: 417-431, 2013.
CHEN, L. et al. Petroleum coke circulating fluidized bed combustion product effects on soil and water quality. Soil Sei, 175 (6):270-7, 2010.  CHEN, L. et al. Petroleum coke circulating fluidized bed combustion product effects on soil and water quality. Soil Sci, 175 (6): 270-7, 2010.
CHIA M.A. Physiological response of chiorella vulgaris to cadmium, phosphorus and nitrogen. PhD Thesis, Programa de Pós-Graduação em Ecologia e Recursos Naturais, Universidade Federal de São Carlos, São Carlos - SP, Brazil, 101 p, 2012. CHIA M.A. Physiological response of chiorella vulgaris to cadmium, phosphorus and nitrogen. PhD Thesis, Postgraduate Program in Ecology and Natural Resources, Federal University of São Carlos, São Carlos - SP, Brazil, 101 p, 2012.
CHIA, M.A. et al. Effects of cadmium and nitrogen on lipid composition of Chlorela vulgaris (Trilouxiophyceae). European J Phycol 48:1 -1 1 , 2013a.  CHIA, M.A. et al. Effects of cadmium and nitrogen on lipid composition of Chlorela vulgaris (Trilouxiophyceae). European J Phycol 48: 11-1, 2013a.
CHIA M.A., LOMBARDI A.T., MELÃO M.G.G., PARRISH C.C. Lipid composition of Chiorella vulgaris (Trebouxiophyceae) as a function of different cadmium and phosphate concentrations. Aquatic Toxicology 128-129: 171-182, 2013b. CHIA M.A., LOMBARDI A.T., MELON M.G.G., PARRISH C.C. Lipid composition of Chiorella vulgaris (Trebouxiophyceae) as a function of different cadmium and phosphate concentrations. Aquatic Toxicology 128-129: 171-182, 2013b.
CHIA M.A., LOMBARDI A.T., MELÃO M.G.G., PARRISH C.C. Combined nitrogen limitation and cadmium stress stimulate total carbohydrates, lipids, protein and amino acid accumulation in Chiorella vulgaris (Trebouxiophyceae). Aquatic Toxicology 160: 87-95, 2015. CHIA MA, LOMBARDI AT, MELON MGG, PARRISH CC Combined nitrogen limitation and cadmium stress stimulate total carbohydrates, lipids, protein and amino acid accumulation in Chiorella vulgaris (Trebouxiophyceae). Aquatic Toxicology 160: 87-95, 2015
CHISTI Y. Biodiesel from microalgae. Biotechnol Adv. 25:294-306, 2007.  CHISTI Y. Biodiesel from microalgae. Biotechnol Adv. 25: 294-306, 2007.
CLARENS, A.F.; RESURRECCION, E.P.; WHITE, M.A.; COLOSI, L.M. Environmental life cycle comparison of algae to other bioenergy feedstocks. Environ Sci Technol., 44:1813- 9, 2010. CLARENS, A.F .; RESURRECCION, E.P .; WHITE, M.A .; COLOSI, L.M. Environmental life cycle comparison of algae to other bioenergy feedstocks. Environ Sci Technol., 44: 1813-9, 2010.
EPA, Climate C ange - Greenhouse Gas Emissions, US Environmental Protection Agency, 2010.  EPA, Climate Climate - Greenhouse Gas Emissions, US Environmental Protection Agency, 2010.
ESSAM T. et al. Biological treatment of industrial wastes in a photobioreactor. Water Sci Technol. 53:1 17-125, 2006.  ESSAM T. et al. Biological treatment of industrial wastes in a photobioreactor. Water Sci Technol. 53: 11-7-125, 2006.
ESSAM, T. et al. Photosynthetic based algal/bacterial combined treatment of mixtures of organic pollutants and C02 mitigation in a continuous photobioreactor. World J Microbiol Biotechnol. 29:969-974, 2013. ESSAM, T. et al. Photosynthetic based algal / bacterial combined treatment of mixtures of organic pollutants and CO2 mitigation in a continuous photobioreactor. World J Microbiol Biotechnol. 29: 969-974, 2013.
FEDORAK P., COY, D. Oil sands cokes affect microbial activities. Fuel, 85 (12-13):1642- 1651 , 2006.  FEDORAK P., COY, D. Oil sands cokes affect microbial activities. Fuel, 85 (12-13): 1642-1651, 2006.
HASANBEIGI, A. et al. Emerging energy-efficiency and C02 emission-reduction technologies for cement and concrete production: A technical review. Renewable and Sustainable Energy Reviews 16:6220-6238, 2012. HASANBEIGI, A. et al. Emerging energy-efficiency and CO2 emission-reduction technologies for cement and concrete production: A technical review. Renewable and Sustainable Energy Reviews 16: 6220-6238, 2012.
HERMAN D.C., INNISS W.E. e MAYFIELD Cl. Impact of volatile aromatic hydrocarbons, alone and in combination, on growth of the freshwater alga Selenastrum capricornutum. Aquatic Toxicology 18: 87 - 100, 1990.  HERMAN D.C., INNISS W.E. and MAYFIELD Cl. Impact of volatile aromatic hydrocarbons, alone and in combination, on growth of freshwater algae Selenastrum capricornutum. Aquatic Toxicology 18: 87-100, 1990.
HENDE, S.V.D. et al. Treatment of Industrial Wastewaters by Microalgal Bacterial Flocs in Sequencing Batch Reactors. Bioresource Technology., 161 :245-254, 2014.  HENDE, S.V.D. et al. Treatment of Industrial Wastewaters by Microalgal Bacterial Flocs in Sequencing Batch Reactors. Bioresource Technology., 161: 245-254, 2014.
IEA. World energy outlook, International Energy Agency; 2002.  IEA. World energy outlook, International Energy Agency; 2002
JASROTIA, S. et al. Arsenic phyco-remediation by Cladophora algae and measurement of arsenic speciation and location of active absorption site using electron microscopy. Microchemical Journal, 1 14:197-202, 2014.  JASROTIA, S. et al. Arsenic phyco-remediation by Cladophora algae and measurement of arsenic speciation and location of active absorption site using electron microscopy. Microchemical Journal, 14: 197-202, 2014.
KHANI, M.H. et al. Equilibrium kinetic and thermodynamic study of the biosorption of uranium onto Cystoseria indica algae. J. Hazard Mater., 150:612-618, 2008.  Khani, M.H. et al. Kinetic equilibrium and thermodynamic study of the biosorption of uranium onto Cystoseria indica algae. J. Hazard Mater., 150: 612-618, 2008.
LOMBARDI, A.T. e WANGERSKY, P.J. Influence of phosphorus and silicon on lipid class production by the marine diatom Chaetoceros gracilis grown in turbidostat cage cultures. Mar Ecol Prog Ser 77: 39 - 47, 1991 .  LOMBARDI, A.T. and WANGERSKY, P.J. Influence of phosphorus and silicon on lipid class production by the marine diatom Chaetoceros gracilis grown in turbidostat cage cultures. Ecol Mar Prog Ser 77: 39-47, 1991.
LOMBARDI, A.T., HIDALGO, T.M.R., VIEIRA, A.A.H. Copper complexing properties of dissolved organic materiais exuded by the freshwater microalgae Scenedesmus acuminatus (Chlorophyceae). Chemosphere 60 (2005) 453-459, 2005. LOMBARDI, A.T., VIEIRA, A.A.H. Lead- and copper complexing extracellular ligands released by Kirchneriella aperta (Chlorococcales, Chlorophyta). Phycologia 38, 283-288, 1999. LOMBARDI, AT, HIDALGO, TMR, VIEIRA, AAH Copper complexing properties of dissolved organic materials exuded by the freshwater microalgae Scenedesmus acuminatus (Chlorophyceae). Chemosphere 60 (2005) 453-459, 2005. LOMBARDI, AT, VIEIRA, AAH Lead- and Copper Complexing Extracellular Ligands released by Kirchneriella aperta (Chlorococcales, Chlorophyta). Phycologia 38, 283-288, 1999.
LOMBARDI, A.T., VIEIRA, A.A.H. Copper complexation by Cyanophyceaee and Chlorophyceae exudates. Phycologia 39, 1 18-125, 2000.  LOMBARDI, A.T., VIEIRA, A.A.H. Copper complexation by Cyanophyceaee and Chlorophyceae exudates. Phycologia 39, 11 18-125, 2000.
LOMBARDI, A.T., VIEIRA, A.A.H., SARTORI, A.L. Mucilaginous capsule adsorption and intracellular uptake of copper by Kirchneriella aperta (Chlorococcales). J. Phycol. 38, 332- 337, 2002.  LOMBARDI, A.T., VIEIRA, A.A.H., SARTORI, A.L. Mucilaginous capsule adsorption and intracellular uptake of copper by Kirchneriella aperta (Chlorococcales). J. Phycol. 38, 332- 337, 2002.
LOPES, C.B. et al. A multidisciplinary Approach to Evaluate the Efficiency of a Clean-Up Technology to Remove Mercury from Water. Buli Environ Contam Toxicol., 93:138-143, 2014.  LOPES, C.B. et al. A multidisciplinary Approach to Evaluate the Efficiency of a Clean-Up Technology to Remove Mercury from Water. Bull Environ Count Toxicol., 93: 138-143, 2014.
MARCHELLO, A.E., LOMBARDI, A.T., DELLAMANO, M.J., SOUZA, C.W.O. Microalgae population dynamics in photobioreactors with secondary sewage effluent as culture médium. Brazilian Journal of Microbiology 46, 1 , 75-84, 2015.  MARCHELLO, A.E., LOMBARDI, A.T., DELLAMANO, M.J., SOUZA, C.W.O. Microalgae population dynamics in photobioreactors with secondary sewage effluent as culture medium. Brazilian Journal of Microbiology 46, 1, 75-84, 2015.
MCKEE, R.H. et al. Toxicological Assessment of Green Petroleum Coke. Int J of Toxicol., 33 (SI) 156S-167S, 2014. MCKEE, R.H. et al. Toxicological Assessment of Green Petroleum Coke. Int J of Toxicol., 33 (SI) 156S-167S, 2014.
MILIC, J.S. et al. Bioremediation of soil heavily contaminated with crude oil and its products: composition of the microbial consortium. J Serb Chem Soe, 74: 455-460, 2009. MILIC, J.S. et al. Bioremediation of soil heavily contaminated with crude oil and its products: composition of the microbial consortium. J Serb Chem Soc. 74: 455-460, 2009.
MITRA, D. et al. Heterotrophic/mixotrophic cultivation of oleaginous Chlorella vulgaris on industrial co-produets. Algal Reseach-Biomass Biofuels and Bioproducts, 1 :40-48, 2012.MITRA, D. et al. Heterotrophic / mixotrophic cultivation of oleaginous Chlorella vulgaris on industrial co-produets. Algal Reseach-Biomass Biofuels and Bioproducts, 1: 40-48, 2012.
MORGAN, J.J. General affinity concepts, equilibria, and kinetics in aqueous metais chemistry. In: Patterson J.W., Passino R., editors. Metals speciation, separation, and recovery. Chelsea, Michigan: Lewis Publishers Inc., P. 27-61 , 1987. MORGAN, J.J. General affinity concepts, equilibrium, and kinetics in aqueous metals chemistry. In: Patterson J.W., Passino R., editors. Metals speciation, separation, and recovery. Chelsea, Michigan: Lewis Publishers Inc., P. 27-61, 1987.
MUNOZ, R.; GUIEYSSE, B. Algal-bacterial processes for the treatment of hazardous contaminants: a review. Water Res., 40:2799-2815, 2006.  MUNOZ, R .; GUIEYSSE, B. Algal-bacterial processes for the treatment of hazardous contaminants: a review. Water Res., 40: 2799-2815, 2006.
MYKLESTAD, S.M. Release of extracellular products by phytoplankton with special emphasis on polysaccharides. Sei. Total Environ 165: 155-164, 1995.  MYKLESTAD, S.M. Release of extracellular products by phytoplankton with special emphasis on polysaccharides. Know. Total Environ 165: 155-164, 1995.
NARAYANAN P., ARNOLD, D. Remediation of Sucarnoochee soil by agglomeration with petroleum coke. Adv Environ Res., 1 (1 ):27-35, 1997.  NARAYANAN P., ARNOLD, D. Remediation of Sucarnoochee soil by agglomeration with petroleum coke. Adv Environ Res., 1 (1): 27-35, 1997.
PARAMESWARI, E. et al. Phyco-remediation of heavy metais in polluted water bodies. Electron. J. Environ. Agric. Food Chem., 9 (4):808-814, 2010. PARAMESWARI, E. et al. Phyco-remediation of heavy metals in polluted water bodies. Electron J. Environ. Agric. Food Chem., 9 (4): 808-814, 2010.
PARRISH, C.C., WANGERSKY, P.J. Particulate and dissolved lipid classes in cultures of Phaeodactylum tricornutum grown in cage culture turbidostats with a range of nitrogen supply rates. Marine Ecology Progress Series 35, 1 19-128, 1987.  PARRISH, C.C., WANGERSKY, P.J. Particulate and dissolved lipid classes in cultures of Phaeodactylum tricornutum grown in cage culture turbidostats with a range of nitrogen supply rates. Marine Ecology Progress Series 35, 11-19-128, 1987.
PEIJNENBURG, W. et al. E. A conceptual framework for implementation of bioavailability of metais for environmental management purposes. Ecotoxicol Environ Saf 37 (2): 163- 72, 1997. PEIJNENBURG, W. et al. E. The conceptual framework for implementation of bioavailability of metals for environmental management purposes. Ecotoxicol Environ Saf 37 (2): 163-72, 1997.
PENG, C. et al. Toxic effects of individual and combined effects of BTEX on Euglena gracilis. Journal of Hazardous Materials 2014; http://dx.doi.Org/10.1016/j.jhazmat.2014.10.024  PENG, C. et al. Toxic effects of individual and combined effects of BTEX on Euglena gracilis. Journal of Hazardous Materials 2014; http://dx.doi.Org/10.1016/j.jhazmat.2014.10.024
PETROBRAS - Coque Verde de Petróleo - Perguntas Frequentes. Disponível em: http://www.br.com.br/wps/portal/portalconteudo/produtos/paraindustriasetermeletricas/coq ueverededepetroleo/!ut/p/c4/04_SB8K8xLLM9MSSzPy8xBz9CP0os3hLf0N_P293QwN3A yM3AyMfNy8LfxdHAwMDc_2CbEdFAN9fqmc!/?PC_7_9O1 ONKG10G02F02LFJ8ODA00 G3000000_WCM_CONTEXT=/wps/wcm/connect/portal+de+conteudo/produtos/para+indu strias+e+termeletricas/coqueverdedepetroleo/coque+verde+de+petroleo-i- +perguntas+frequentes. Acesso em 10 de setembro de 2014.  PETROBRAS - Green Petroleum Coke - Frequently Asked Questions. Available in:!? Http://www.br.com.br/wps/portal/portalconteudo/produtos/paraindustriasetermeletricas/coq ueverededepetroleo / ut / p / c4 / 04_SB8K8xLLM9MSSzPy8xBz9CP0os3hLf0N_P293QwN3A yM3AyMfNy8LfxdHAwMDc_2CbEdFAN9fqmc / PC_7_9O1 ONKG10G02F02LFJ8ODA00 G3000000_WCM_CONTEXT = / wps / wcm / connect / content + portal / products / for + industry + and + thermoelectric / coqueverdedepetole / green + petroleum-i- + frequently asked questions. Accessed September 10, 2014.
PETROENERGIA - informações sobre coque verde de petróleo. Disponível em: http://www.petroenergia.com.br/coque.html. Acesso em 10 de setembro de 2014.  PETROENERGY - Information on green petroleum coke. Available at: http://www.petroenergia.com.br/coque.html. Accessed September 10, 2014.
QUEIROZ, B.C. Desenvolvimento de uma unidade laboratorial para quantificação de BTX como poluentes atmosféricos, usando microextração em fase solida. Dissertação de mestrado, 201 1 , 89p. QUEIROZ, B.C. Development of a laboratory unit to quantify BTX as atmospheric pollutants using solid phase microextraction. Master's thesis, 201 1, 89p.
RAMOS, E.U. et al. Algal growth inhibition of Chlorella pyrenoidosa by polar narcotic pollutants: toxic cell concentrations and QSAR modeling. Aquatic Toxicology, v 46: 1 -10, 1999.  RAMOS, U.S. et al. Algal growth inhibition of Chlorella pyrenoidosa by polar narcotic pollutants: toxic cell concentrations and QSAR modeling. Aquatic Toxicology, v 46: 1-10, 1999.
RAUSCH, T. The estimation of micro-algal protein content and its meaning to the evaluation of algal biomass I. Comparison of methods for extracting protein. Hydrobiologia, 78, 237-251 , 1981 .  RAUSCH, T. The estimation of micro-algal protein content and its meaning to the evaluation of algal biomass I. Comparison of methods for extracting protein. Hydrobiology, 78, 237-251, 1981.
ROCHA, G.S., PINTO, F.H.V., MELÃO, M.G.G. & LOMBARDI, A.T. Growing Scenedesmus quadrícauda in used culture media: is it viable?. Journal of Applied Phycology, 26: 1 -8, 2014.  ROCK, G.S., PINTO, F.H.V., MELON, M.G.G. & LOMBARDI, A.T. Growing Scenedesmus quadruda in used culture media: is it viable ?. Journal of Applied Phycology, 26: 1-8, 2014.
SAFI, C. et al. Morphology, composition, production, processing and applications of Chlorella vulgaris: A review. Renew and Sustain Energy Rev, 35:265-278, 2014.  SAFI, C. et al. Morphology, composition, production, processing and applications of Chlorella vulgaris: A review. Renew and Sustain Energy Rev, 35: 265-278, 2014.
SOON, W. et al. Environmental effects of increased atmospheric carbon dioxide. Climate Research, 13:148-64, 1999.  SOON, W. et al. Environmental effects of increased atmospheric carbon dioxide. Climate Research, 13: 148-64, 1999.
TONIETTO, A.E., LOMBARDI, A.T., VIEIRA, A.A.H., PARRISH, C.C., CHOUERI, R.B. Cylindrospermopsis raciborskii (Cyanobacteria) exudates: chemical characterization and complexation capacity for Cu, Zn, Cd and Pb. Water Res 49:381 -390, 2014.  TONIETTO, A.E., LOMBARDI, A.T., VIEIRA, A.A.H., PARRISH, C.C., CHOUERI, R.B. Cylindrospermopsis raciborskii (Cyanobacteria).
United Nations Framework Convention on Climate Change 2012. Disponível em: <http://unfccc.int/kyoto_protocol/items/2830.php >. Acesso em 25/maio/2013. VALENTE, A.L.P.; AUGUSTO, F. Microextração por fase sólida. Quim. Nova, 23, p.523- 530, 2000. United Nations Framework Convention on Climate Change 2012. Available at: <http://unfccc.int/kyoto_protocol/items/2830.php>. Accessed on May 25, 2013. VALENTE, ALP; AUGUSTO, F. Solid phase microextraction. Quim Nova, 23, p.523-530, 2000.
VIEIRA, A.A.H., ORTOLANO, P.I.C., GIROLDO, D., OLIVEIRA, MJ. D., BITTAR, T.B., LOMBARDI, A.T., SARTORI, A.L. Role of hydrophobic extracellular polysaccharide of Aulacoseira granulata (Bacillariophyceae) on aggregate formation in a turbulent and hypereutrophic reservoir. Limnol. Oceanogr., 53(5), 2008, 1887-1899, 2008.  VIEIRA, A.A.H., ORTOLANO, P.I.C., GIROLDO, D., OLIVEIRA, MJ. D., BITTAR, T.B., LOMBARDI, A.T., SARTORI, A.L. Limnol Oceanogr., 53 (5), 2008, 1887-1899, 2008.
WANG, B. et al. Closed photobioreactors for production of microalgal biomasses. Biotechnol Adv., 30:904-912, 2012.  WANG, B. et al. Closed photobioreactors for production of microalgal biomasses. Biotechnol Adv., 30: 904-912, 2012.
WBCSD - World Business Council for Sustainable Development/lnternational Energy Agency (IEA). Cement Technology Roadmap 2009 - Carbon emissions reductions up to 2050. Disponível em: www.iea.org/papers/2009/Cement_Road.pdf, 2009.  WBCSD - World Business Council for Sustainable Development / International Energy Agency (IEA). Cement Technology Roadmap 2009 - Carbon emissions reductions up to 2050. Available at: www.iea.org/papers/2009/Cement_Road.pdf, 2009.
ZANG, C. et al. Comparison of relationships between pH, dissolved oxygen and chiorophyll a for aquaculture and non-aquaculture waters. Water Air Soil Poli, 219:157- 174, 201 1 .  ZANG, C. et al. Comparison of relationships between pH, dissolved oxygen and chiorophyll to aquaculture and non-aquaculture waters. Water Air Soil Poly, 219: 157-174,201.
ZHAO, S.Q. et al. A benchmark assessment of residues: a comparison of Athabasca bitumen with conventional and heavy crudes. Fuel, 81 (6): 737, 2002. ZHAO, S.Q. et al. A benchmark assessment of residues: a comparison of Athabasca bitumen with conventional and heavy crudes. Fuel, 81 (6): 737, 2002.

Claims

REIVINDICAÇÕES
1 . MÉTODO DE TRATAMENTO DE ÁGUA RESIDUAL ATRAVÉS DO CULTIVO DE MICROALGAS EXCRETORAS DE POLISSACARIDEOS, caracterizado por compreender as seguintes etapas:  1 . RESIDUAL WATER TREATMENT METHOD THROUGH CROP OF POLYESACARIDE EXCRETING MICROALGAS, comprising the following steps:
(a) coleta em um tanque de tratamento de uma água residual compreendendo, em suspensão, particulados finos de material orgânico e inorgânico com origem em combustíveis sólidos;  (a) collecting in a wastewater treatment tank comprising, in suspension, fine particulates of organic and inorganic material from solid fuels;
(b) inclusão de nutrientes na água residual;  (b) inclusion of nutrients in wastewater;
(c) inclusão do inoculo de microalgas excretoras de polissacarídeos na água residual obtida na etapa (b);  (c) inclusion of the polysaccharide excretory microalgae inoculum in the wastewater obtained in step (b);
(d) separação dos particulados finos por aglutinação com os polissacarídeos excretados e posterior decantação dos particulados aglutinados no fundo do tanque;  (d) separation of the fine particulates by agglutination with the excreted polysaccharides and subsequent decantation of the agglutinated particulates at the bottom of the tank;
(e) coleta das microalgas; e  (e) microalgae collection; and
(f) coleta da água tratada.  (f) collection of treated water.
2. MÉTODO de acordo com a reivindicação 1 , caracterizado pelo fato de os particulados finos de material orgânico e inorgânico com origem em combustíveis sólidos suspensos na água residual serem escolhidos entre carvão mineral, carvão vegetal, carvão ou coque grau siderúrgico, antracito, coque de petróleo ou suas misturas.  Method according to claim 1, characterized in that the fine particulates of organic and inorganic material originating from solid fuels suspended in the wastewater are chosen from coal, charcoal, coal or steel grade coke, anthracite, carbon coke. oil or mixtures thereof.
3. MÉTODO de acordo com a reivindicação 1 , caracterizado pelo fato das microalgas excretoras de polissacarídeos serem escolhidas do grupo das Bacillariophyta, Chlorophyta e Cyanophyta.  Method according to Claim 1, characterized in that the polysaccharide excretory microalgae are chosen from the group of Bacillariophyta, Chlorophyta and Cyanophyta.
4. MÉTODO de acordo com a reivindicação 3, caracterizado pelo fato das microalgas excretoras de polissacarídeso serem escolhidas entre as microalgas dos géneros Chlorella, Scenedesmus, Desmodesmus e Monoraphidium; preferencialmente, Chlorella vulgarís.  Method according to Claim 3, characterized in that the polysaccharide excretory microalgae are chosen from the microalgae of the genera Chlorella, Scenedesmus, Desmodesmus and Monoraphidium; preferably Chlorella vulgaris.
5. MÉTODO de acordo com a reinvindicação 1 , caracterizado pelo fato de os nutrientes adicionados na água residual serem escolhidos entre nitratos, fosfatos, magnésio, cálcio, ferro, manganês, cobre, molibdênio, cobalto e zinco.  Method according to Claim 1, characterized in that the nutrients added to the wastewater are chosen from nitrates, phosphates, magnesium, calcium, iron, manganese, copper, molybdenum, cobalt and zinc.
6. MÉTODO de acordo com a reivindicação 1 , caracterizado pelo fato da etapa (e) de coleta das microalgas compreender, opcionalmente, uma etapa prévia de floculação seguida da decantação das microalgas.  Method according to Claim 1, characterized in that the microalgae collection step (e) optionally comprises a prior flocculation step followed by the microalgae decantation.
7. USO DE MICROALGAS EXCRETORAS DE POLISSACARÍDEOS caracterizado por ser para tratar água residual compreendendo, em suspensão, particulados finos de material orgânico e inorgânico com origem em combustíveis sólidos.  7. USE OF POLYSACCARIDE EXCRETING MICROALGAS characterized by being for treating waste water comprising, in suspension, fine particulates of organic and inorganic material originating from solid fuels.
PCT/BR2015/050269 2015-12-22 2015-12-22 Method for treating waste water using a culture of polysaccharide-excreting micro-algae, and use of micro-algae WO2017106941A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/BR2015/050269 WO2017106941A1 (en) 2015-12-22 2015-12-22 Method for treating waste water using a culture of polysaccharide-excreting micro-algae, and use of micro-algae
BR112018012862A BR112018012862A2 (en) 2015-12-22 2015-12-22 Wastewater treatment method through cultivation of polysaccharide excretory microalgae and use of microalgae

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/BR2015/050269 WO2017106941A1 (en) 2015-12-22 2015-12-22 Method for treating waste water using a culture of polysaccharide-excreting micro-algae, and use of micro-algae

Publications (1)

Publication Number Publication Date
WO2017106941A1 true WO2017106941A1 (en) 2017-06-29

Family

ID=59088745

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/BR2015/050269 WO2017106941A1 (en) 2015-12-22 2015-12-22 Method for treating waste water using a culture of polysaccharide-excreting micro-algae, and use of micro-algae

Country Status (2)

Country Link
BR (1) BR112018012862A2 (en)
WO (1) WO2017106941A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20230192519A1 (en) * 2021-10-26 2023-06-22 Novelgen Co., Ltd. Method and system for recovering microplastics from water

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3406114A (en) * 1964-07-20 1968-10-15 Kerr Mc Gee Oil Ind Inc Process for flocculating finely divided solids suspended in an aqueous medium with amicrobial polysaccharide
US4456532A (en) * 1983-05-09 1984-06-26 International Minerals & Chemical Corp. Biological flocculation of mineral slimes
WO2012025806A1 (en) * 2010-08-23 2012-03-01 Nelson Mandela Metropolitan University Carbonaceous fines beneficiation using micro-algae and related processes
US20130174734A1 (en) * 2012-01-06 2013-07-11 Cultivos Hidrobiologicos Y Biotecnologia Aguamarina S.A. Method to decrease the amount of particulate material suspended in air or water, comprising the agglomeration of the suspended particulate material with negatively charged exopolysaccharides
US20130196419A1 (en) * 2012-01-30 2013-08-01 Cultivos Hidrobiologicos Y Biotecnologia Aguamarina S.A. Biocementation of particulate material in suspension
WO2014188299A1 (en) * 2013-05-21 2014-11-27 Nelson Mandela Metropolitan University Upgrading coal fines using microalgae

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3406114A (en) * 1964-07-20 1968-10-15 Kerr Mc Gee Oil Ind Inc Process for flocculating finely divided solids suspended in an aqueous medium with amicrobial polysaccharide
US4456532A (en) * 1983-05-09 1984-06-26 International Minerals & Chemical Corp. Biological flocculation of mineral slimes
WO2012025806A1 (en) * 2010-08-23 2012-03-01 Nelson Mandela Metropolitan University Carbonaceous fines beneficiation using micro-algae and related processes
US20130174734A1 (en) * 2012-01-06 2013-07-11 Cultivos Hidrobiologicos Y Biotecnologia Aguamarina S.A. Method to decrease the amount of particulate material suspended in air or water, comprising the agglomeration of the suspended particulate material with negatively charged exopolysaccharides
US20130196419A1 (en) * 2012-01-30 2013-08-01 Cultivos Hidrobiologicos Y Biotecnologia Aguamarina S.A. Biocementation of particulate material in suspension
WO2014188299A1 (en) * 2013-05-21 2014-11-27 Nelson Mandela Metropolitan University Upgrading coal fines using microalgae

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
ABDEL-RAOUF, N ET AL.: "Microalgae and wastewater treatment.", SAUDI JOURNAL OF BIOLOGICAL SCIENCES, vol. 19, no. 3, 2012, pages 257 - 275, XP028505252 *
ELLISON, M B: "Bioremediation of coal-fired power station waste water using freshwater filamentous algae from the genus Oedogonium.", MPHIL THESIS, December 2013 (2013-12-01), Townsville, Australia, XP055398026 *
PRIYADARSHANI, I ET AL.: "Microalgal bioremediation: Current practices and perspectives.", JOURNAL BIOCHEM TECH, vol. 3, no. 3, 2001, pages 299 - 304, XP055398031 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20230192519A1 (en) * 2021-10-26 2023-06-22 Novelgen Co., Ltd. Method and system for recovering microplastics from water
US11827551B2 (en) * 2021-10-26 2023-11-28 Novelgen Co., Ltd. Method and system for recovering microplastics from water

Also Published As

Publication number Publication date
BR112018012862A2 (en) 2018-12-04

Similar Documents

Publication Publication Date Title
Nagarajan et al. Resource recovery from wastewaters using microalgae-based approaches: A circular bioeconomy perspective
Abinandan et al. Potential of acid-tolerant microalgae, Desmodesmus sp. MAS1 and Heterochlorella sp. MAS3, in heavy metal removal and biodiesel production at acidic pH
Chen et al. Role of extracellular polymeric substances from Chlorella vulgaris in the removal of ammonium and orthophosphate under the stress of cadmium
Liu et al. Nutrient removal from horticultural wastewater by benthic filamentous algae Klebsormidium sp., Stigeoclonium spp. and their communities: From laboratory flask to outdoor Algal Turf Scrubber (ATS)
McGinn et al. Assessment of the bioenergy and bioremediation potentials of the microalga Scenedesmus sp. AMDD cultivated in municipal wastewater effluent in batch and continuous mode
Aslam et al. Heavy metal bioremediation of coal-fired flue gas using microalgae under different CO2 concentrations
Silva et al. Towards sustainable microalgal biomass production by phycoremediation of a synthetic wastewater: A kinetic study
Ajayan et al. Growth and heavy metals accumulation potential of microalgae grown in sewage wastewater and petrochemical effluents
Fernandes et al. Valorising nutrient-rich digestate: Dilution, settlement and membrane filtration processing for optimisation as a waste-based media for microalgal cultivation
Abid et al. Feasibility of carbon dioxide sequestration by Spongiochloris sp microalgae during petroleum wastewater treatment in airlift bioreactor
Blanco-Vieites et al. Removal of heavy metals and hydrocarbons by microalgae from wastewater in the steel industry
Moreno-Garcia et al. Optimization of the proportions of four wastewaters in a blend for the cultivation of microalgae using a mixture design
Anand et al. Algae and bacteria consortia for wastewater decontamination and transformation into biodiesel, bioethanol, biohydrogen, biofertilizers and animal feed: a review
Carneiro et al. Growth and bioactivity of two chlorophyte (Chlorella and Scenedesmus) strains co-cultured outdoors in two different thin-layer units using municipal wastewater as a nutrient source
Arun et al. Cu (II) removal by Nostoc muscorum and its effect on biomass growth and nitrate uptake: a photobioreactor study
Akimbekov et al. Biotechnology of microorganisms from coal environments: from environmental remediation to energy production
Han et al. Cycling of iodine by microalgae: Iodine uptake and release by a microalgae biofilm in a groundwater holding pond
Pessôa et al. A review of microalgae-based biorefineries approach for produced water treatment: Barriers, pretreatments, supplementation, and perspectives
Singh et al. Algal technologies for wastewater treatment and biofuels production: an integrated approach for environmental management
Schaedig et al. Isolation of phosphorus-hyperaccumulating microalgae from revolving algal biofilm (RAB) wastewater treatment systems
Solanki et al. Phycoremediation of industrial effluents contaminated soils
Nivetha et al. Utilization of sugarcane industry effluent for high value biomass and photosynthetic pigments production of Chlorella vulgaris (PSBDU06)
Mao et al. Native microalgae and Bacillus XZM remediate arsenic-contaminated soil by forming biological soil crusts
Dhanker et al. An integrated approach of algae-bacteria mediated treatment of industries generated wastewater: Optimal recycling of water and safe way of resource recovery
GP et al. Botryococcus braunii as a phycoremediation tool for the domestic waste water recycling from Cooum River, Chennai, India

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15910982

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112018012862

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 112018012862

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20180621

122 Ep: pct application non-entry in european phase

Ref document number: 15910982

Country of ref document: EP

Kind code of ref document: A1