WO2017104960A1 - Glass sealing material for solid oxide fuel cell and sealing method using same - Google Patents

Glass sealing material for solid oxide fuel cell and sealing method using same Download PDF

Info

Publication number
WO2017104960A1
WO2017104960A1 PCT/KR2016/011838 KR2016011838W WO2017104960A1 WO 2017104960 A1 WO2017104960 A1 WO 2017104960A1 KR 2016011838 W KR2016011838 W KR 2016011838W WO 2017104960 A1 WO2017104960 A1 WO 2017104960A1
Authority
WO
WIPO (PCT)
Prior art keywords
fuel cell
solid oxide
oxide fuel
weight
glass
Prior art date
Application number
PCT/KR2016/011838
Other languages
French (fr)
Korean (ko)
Inventor
문지웅
이성연
윤종훈
Original Assignee
재단법인 포항산업과학연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 재단법인 포항산업과학연구원 filed Critical 재단법인 포항산업과학연구원
Publication of WO2017104960A1 publication Critical patent/WO2017104960A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/062Glass compositions containing silica with less than 40% silica by weight
    • C03C3/064Glass compositions containing silica with less than 40% silica by weight containing boron
    • C03C3/066Glass compositions containing silica with less than 40% silica by weight containing boron containing zinc
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K3/00Materials not provided for elsewhere
    • C09K3/10Materials in mouldable or extrudable form for sealing or packing joints or covers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0271Sealing or supporting means around electrodes, matrices or membranes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0271Sealing or supporting means around electrodes, matrices or membranes
    • H01M8/028Sealing means characterised by their material
    • H01M8/0282Inorganic material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0271Sealing or supporting means around electrodes, matrices or membranes
    • H01M8/0286Processes for forming seals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/12Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte
    • H01M8/124Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte characterised by the process of manufacturing or by the material of the electrolyte
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • a glass sealing material for a solid oxide fuel cell and a method for sealing a solid oxide fuel cell using the same are provided.
  • a solid oxide fuel cell is an electrochemical energy converter, and is composed of an oxygen ion conducting solid electrolyte made of an oxide material and an air electrode (anode) and a fuel electrode (cathode) located on both sides thereof.
  • the oxygen ions generated by the reduction reaction of oxygen move to the anode through the electrolyte and react with hydrogen supplied to the anode again to generate water.
  • a flat solid oxide fuel cell (SOFC) consists of a unit cell in which both the negative electrolyte and the positive electrode are in the form of a flat plate.
  • SOFC solid oxide fuel cell
  • Several flat unit cells are stacked to form a stack.
  • the cathode of one unit cell and the anode of another unit cell must be electrically connected in series.
  • each unit cell needs a structure capable of supplying and separating fuel and air, and a metal separator is used.
  • the fuel cell stack seals between the metal separator and the unit cell components to prevent the mixing of hydrogen, which is fuel gas, and air, which is combustion gas, to prevent gas leakage to the outside of the stack, and to insulate the unit cells. It is important. If the sealing material and sealing part of the fuel cell stack are broken, air and fuel meet directly, causing combustion reactions . Can cause the temperature of the stack to rise Rapid performance deterioration occurs, and in serious cases can lead to safety accidents, it is urgent to improve the reliable sealing technology and the sealing material to support it.
  • a glass sealing material for a solid oxide fuel cell and a method for sealing a solid oxide fuel cell stack using the same are provided.
  • One embodiment of the present invention includes a reinforcing filler on a glass substrate, wherein the reinforcing layered material provides a sealing material for a solid oxide fuel cell, wherein the reinforcing layered material is spherical oxide particles having an average particle diameter of more than 5 / zm and less than 21 GPa. .
  • the content of the reinforcing layer dusting, relative to the total amount of the glass matrix and the reinforcing filler 100% by weight, may be 25% by weight or more and 35% by weight or less.
  • the reinforcing filler may be one or more of alumina (A1 2 0 3 ), or Y 2 0 3 — doped stabilized Zr3 ⁇ 4.
  • the average particle diameter of the reinforcing filler may be 10 or more and 21 / rni or less.
  • the reinforcing layer dusting material may be alumina (A1 2 0 3 ).
  • the glass matrix phase may include a Ba0-Al 2 O 3 -B 2 O 3 Si02-M 2 O 3 (M-Zr0 2 , ZnO, or a combination thereof) -based glass.
  • the solid oxide fuel cell sealing material has a maximum thickness strain
  • the step of mixing the glass powder and the reinforced layered material Preparing a paste by adding a binder and a solvent to the mixed glass powder and the reinforced layered material; Applying the paste to a seal of the solid oxide fuel cell stack; And the applied paste And a heat treatment step; wherein the reinforcing layer dusting material may be spherical oxide particles having an average particle diameter of more than 5 // ⁇ and 21 m or less.
  • the content of the reinforcing filler may be 25 to 35% by weight based on 100% by weight of the total amount of the glass powder and the reinforced layered filler.
  • Applying the paste to a seal of the solid oxide fuel cell stack may be performed by a robot dispensing process.
  • Heat-treating the applied paste may be performed at 800 ° C. or more and 900 ° C. or less.
  • the reinforcing layer dusting material may be alumina (A1 2 0 3 ).
  • the average particle diameter of the alumina may be 10 / mm or more and 21 or less.
  • One embodiment of the present invention provides a glass sealing material for a solid oxide fuel cell and a method for sealing a stack of a solid oxide fuel cell using the same. Through this, it is possible to manufacture a sealing material having improved durability while maintaining the tolerance absorbing capacity of the sealing material. In addition, durability of the thermal cycle of the solid oxide fuel cell stack may be improved.
  • 2 is a SEM photograph of spherical alumina particles having an average particle diameter of 10.
  • 3 is a SEM photograph of spherical alumina particles having an average particle diameter.
  • 4 is a graph comparing the maximum thickness strain according to the content of the reinforcing layered material.
  • Figure 5 is a photograph of the sealing material made in the form of a strip (str ip) for the maximum thickness strain measurement.
  • FIG. 6 is a schematic diagram of the maximum thickness strain measurement experimental configuration.
  • FIG. 7 is a photograph of a sealant and a stopper formed on an STS444 plate for gas leak rate measurement experiments.
  • FIG. 8 is a schematic diagram of the experimental configuration for measuring gas leakage.
  • 9 is a graph comparing the results of durability according to the heat cycle.
  • FIG. 10 is a schematic diagram of a temperature raising and lowering schedule of the heating furnace during the heat cycle.
  • particle diameter means the diameter of a spherical material unless otherwise defined. If the material is non-spherical, it means the diameter of the sphere calculated by approximating the non-spherical material to the sphere.
  • average particle diameter means the average diameter of spherical materials present in a unit of measurement unless otherwise defined. If the material is non-spherical, it means the diameter of the sphere calculated by approximating the non-spherical material to the sphere.
  • the glass-based sealing material is used to prevent gas leakage due to its excellent interfacial adhesion, as well as long-term durability in a high temperature oxidation and reducing atmosphere.
  • the sealing process has a large strain in the thickness direction, thickness variations and warpage occurring during the manufacturing of components such as separators, current collectors and sals, misalignment between components during stack lamination, surface pressure and temperature Tolerances caused by deviations can be absorbed.
  • glass-based sealing material has a disadvantage of low strength and fracture toughness due to the material properties. Therefore, if the thermal and mechanical forces generated during the manufacture and operation of the stack accumulate, brittle fracture of the seal may occur during SOFC operation.
  • the disadvantage of the glass sealant is that the temperature of the stack due to an external factor such as a thermal cycle such as a load cycle (Load ' Tr ip) during the operation at 700 to 800 ° C. Can occur when
  • the oxide layering material f i ller having high modulus, hardness, and fire resistance prevents densification of glass particles by viscous flow. Accordingly, gas leakage may occur due to an increase in residual pores or a decrease in bonding strength of the seal.
  • the maximum thickness strain of the sealing material can be reduced because the deformation on the glass matrix is suppressed.
  • the contact area of the glass phase at the interface between the metal separator and the sealing material is relatively reduced, and thus the contact area of the oxide particles is relatively increased, thereby causing gas leakage.
  • the tolerance absorbency of the seal can be expressed as the maximum thickness strain of the seal. Therefore, if the maximum thickness strain of the sealant is greatly reduced in the process of improving the durability of the sealant, it is difficult to apply to the high-laminate large area stack.
  • the present invention provides a glass sealing material for a solid oxide fuel cell that can obtain a strengthening effect by increasing the content of the reinforcing layered material without causing the above problems.
  • the reinforcing filler provides a sealing material for a solid oxide fuel cell that is a spherical oxide particles having an average particle diameter of more than 5 21mm or less.
  • the content of the reinforced layer can be increased compared to the conventional sealant mentioned above Because of this, the durability of the sealing material can be improved. In addition, despite the increased content of the reinforced layered material, it maintains a high maximum thickness deformation and is applicable to a large area stack.
  • the reinforced layered material may be spherical.
  • the shape of the spherical particles the shape of the real sphere with the longest diameter ratio (short-to-short ratio) to the shortest diameter, is most ideal.
  • the reinforcing filler is spherical, the area where the components of the solid oxide fuel cell SOFC, for example, the metal separator and the reinforcing layered material contact at the interface can be minimized.
  • the fraction of reinforcing fillers that do not contribute to securing the gas tightness of the interface of the joint increases, and if a network between the reinforcing layer is formed, gas leakage may occur along the interface.
  • the contact area of the filler at the interface can be minimized by forming point contact at the interface of the joint, thereby preventing gas leakage at the interface. can do.
  • the average-particle diameter of the spherical reinforcing filler may be more than 5 and less than 21. have. More specifically greater than 5 ⁇ s and less than 21; 8 or more and 21 or less; 10 or more and 20 or less; Or 10 or more and 21 or less.
  • the average particle diameter of the reinforcing layered material is too large, it is difficult to uniformly disperse the particles in the glass matrix, so the durability of the sealing material may be lowered due to the nonuniformity of the structure. If the particle diameter of the layered material is too small, the contact between the reinforced layered material and the glass powder particles increases. However, when the contact area of the reinforcing layer material and the glass powder particles and the number of contact points increase, the effect of suppressing the viscous flow of the glass powder increases, which causes the densification of the glass-based sealing material due to the viscous flow. As a result, residual pores may be generated around the reinforcement layer. In addition, the maximum thickness strain of the seal can also be reduced.
  • the spherical reinforcing filler content may be 25% by weight or more and 35% by weight or less with respect to 100% by weight of the total sealant. More specifically 25% by weight or more 33 weight% or less, 27 weight% or more, 33 weight% or less, 29 weight% or more, 31 weight% or less, or 30 weight%.
  • single phase glass is a material having a very low fracture toughness compared to a polycrystalline oxide material. Therefore, oxide-based reinforcing fillers having superior strength, hardness, elastic modulus, and fracture toughness as compared to glass have a greater effect of suppressing crack growth of known glass as the added amount increases.
  • the durability of the sealing material can not be significantly improved.
  • the maximum thickness strain may be reduced to 70% or less, so that it may be difficult to secure the maximum thickness deformation.
  • the maximum thickness deformation of the sealant in order to sufficiently absorb the tolerances of stack components such as sal and separator in large area stacks, the maximum thickness deformation of the sealant must be 70% or more to ensure sufficient reliability.
  • the reinforcing filler may be at least one of alumina (A1 2 0 3 ) or Y 2 0 3 -doped Zr0 2 .
  • this kind is only an example and is not limited thereto. More specifically, it may be alumina (A1 2 0 3 ).
  • M ZrO 2 , ZnO, or a combination thereof
  • the content of each component of the group BaO glass for the glass the total amount of 100 parts by weight): 40-60% by weight, A1 2 0 3: 3-6% by weight, 3 ⁇ 40 3: 3-8 wt.% Si0 2: 30- 40 weight%, M 2 0 3 : 3-6 weight 3 ⁇ 4 may be included.
  • the step of mixing the glass powder and the reinforcing filler Preparing a paste by adding a binder and a solvent to the mixed glass powder and the reinforced layered material; Applying the paste to a seal of the solid oxide fuel cell stack; And heat-treating the applied paste.
  • the reinforcing layer dusting material provides a sealing method of a solid oxide fuel cell in which spherical oxide particles having an average particle diameter of more than 5 and 21 or less.
  • the content of the reinforcing filler is based on the total weight of the glass powder and the reinforcing layered material »100
  • 25 weight 3 ⁇ 4 or more may be 35 weight% or less. More specifically, 25% by weight 3 ⁇ 4 »or more, 33% by weight or less, 27% by weight or more, 33% by weight or less, 29% by weight or more and 31% by weight Or less than or equal to 30% by weight.
  • Applying the paste to a seal of the solid oxide fuel cell stack may be performed by a dispensing process.
  • the present invention is not limited thereto, and any method may be used as long as it is possible to prepare a paste or slurry of a sealing material such as tape casting, tape calendering, extrusion, screen printing, and bar coating to a desired thickness and width.
  • the heat treatment temperature may be 800 ° C or more and 90 CTC or less. If the heat treatment temperature is lower than 800 ° C, the sealing material may not be sufficiently densified. If the heat treatment temperature is higher than 900 ° C, oxidation and deformation of the metal material among the stack components may occur severely.
  • a surface pressure is applied to the entire stack to apply a constant compressive force to the sealing portion to secure the adhesion of the sealing interface and to prevent thermomechanical damage.
  • Range of the compressive force is 0.5kgf / cm 2 is at least 4kgf / cm 2 or less.
  • the average particle diameter of the spherical alumina powder used in this example is the D50 reference average particle diameter suggested by the manufacturer, and CB-A10S of Showa Denko is measured by Coullter Counter Methode.
  • Example 1 except that the glass powder was changed to 90g, a spherical alumina powder 10 g. In the same manner as in Example 1, a sealing test sample was prepared.
  • Example 1 a sealing test sample was prepared in the same manner as in Example 1, except that 80 g of glass powder and 20 g of spherical alumina powder were changed.
  • Example 1 except for changing to 60 g of the glass powder and 40 g of the spherical alumina powder, a sealing test sample was prepared in the same manner as in Example 1 . Prepared.
  • Example 1 a sealing test sample was prepared in the same manner as in Example 1, except that 50 g of glass powder and 50 g of spherical alumina powder were changed.
  • Example 1 the spherical alumina powder having an average particle diameter of 21 (Showa
  • Seal test samples were prepared in the same manner as in Example 1, except that Denko CB-A20S) was used.
  • the average particle diameter of the spherical alumina powder used in this example is the D50 reference average particle diameter suggested by the manufacturer, and in the case of CB-A20S of Showa Denko, measured by Coulter Counter Methode.
  • Example 6 a sealing test sample was prepared in the same manner as in Example 1, except that 90 g of glass powder and 10 g of spherical alumina powder were changed.
  • Example 8 In Example 6, a sealing test sample was prepared in the same manner as in Example 1, except that 80 g of glass powder and 20 g of spherical alumina powder were changed.
  • Example 6 a sealing test sample was prepared in the same manner as in Example 1, except that 60 g of glass powder and 40 g of spherical alumina powder were changed.
  • Example 6 a sealing test sample was prepared in the same manner as in Example 1, except that 50 g of glass powder and 50 g of spherical alumina powder were changed.
  • Example 1 except that a spherical alumina powder (Showa Denko, CB-A05S) having an average particle diameter of 5 was used, a sealing test sample was prepared in the same manner as in Example 1.
  • the average particle diameter of the spherical alumina powder used in this comparative example is the D50 reference average particle diameter suggested by the manufacturer, and CB-A05S manufactured by Showa Denko is measured by the Coulter Counter Methode.
  • Comparative Example 1 a sealing test sample was prepared in the same manner as in Comparative Example 1, except that 90 g of glass powder and 10 g of spherical alumina powder were changed.
  • Comparative Example 1 a sealing test sample was prepared in the same manner as in Comparative Example 1, except that 90 g of glass powder and spherical alumina powder ' lOg were changed.
  • Comparative Example 1 80 g of glass powder, 20 g of spherical alumina powder. Except having changed, the sealing test sample was produced by the same method as the comparative example 1. '
  • Comparative Example 5 In Comparative Example 1, except for changing to 60 g of the glass powder and 40 g of the spherical alumina powder, a sealing test sample was prepared in the same manner as in Example 1.
  • Example 1 a sealing test sample was prepared in the same manner as in Example 1, except that a non-spherical alumina powder (AM21, average particle size of 4.8 1, Sumi tomo) that had been used in the past was used.
  • the average particle diameter of the non-spherical alumina powder used in this comparative example is the D50 reference average particle diameter suggested by the manufacturer, and measured by Laser Di fract ion (MT3300) in the case of ⁇ 21 sumi tomo.
  • FIG. 1 is a SEM photograph of the non-spherical alumina. As can be seen in Figure 1, it consists of a conventional plate and polyhedral form.
  • Comparative Example 6 a sealing test sample was prepared in the same manner as in Comparative Example 6, except that 90 g of glass powder and 10 g of non-spherical alumina powder were changed.
  • Comparative Example 6 except that 80 g of glass powder and 20 g of non-spherical alumina powder were changed, a sealing test sample was prepared in the same manner as in Comparative Example 6.
  • Comparative Example 6 a sealing test sample was prepared in the same manner as in Comparative Example 6, except that 75 g of the glass powder and 25 g of the non-spherical alumina powder were changed.
  • Comparative Example 6 50 g of glass powder and 50 g of non-spherical alumina powder were changed. Except for the sealing experiment sample was prepared in the same manner as in Comparative Example 6.
  • the maximum thickness strain is the thickness strain at the sealing temperature and the surface pressure in the absence of a component that acts as a stopper to stop the deformation of the sealing material, such as a cell or a current collector, and when stacking a solid oxide fuel cell stack. Tolerance of each component is an indicator of the ability of the sealant to absorb.
  • the maximum thickness strain test of the sealing material in the stack surface pressure 3kgf / cm 2 stack was carried out.
  • a strip material having a thickness of 1.0 ⁇ and a width of 5.5 str is formed by a robot dispensing process on a metal plate made of Ferr itic Stainless Steel (STS 444) having a thickness of 2 ⁇ and 150 ⁇ X 150 mm. It was.
  • the initial area of the sealing material in the example of the stack contact pressure actual stack of 3kgf / cm 2 250cm 2 of
  • the maximum thickness deformation is increased to 1 0 C per minute up to 850 o C with a surface pressure of the initial area X 12 kgf / cm 2 of the test seal at the same rate for 4 hours.
  • the maximum thickness shrinkage was evaluated by holding it for a while and then cooling to room temperature at 1 0 C per minute.
  • the maximum thickness deformation was calculated as [(initial thickness-later thickness) / initial thickness] X 100 (%) by measuring the later height relative to the initial height of the sealing material.
  • the maximum thickness deformation of the sealing material was measured through the experiments of Examples 1 to 10 and Comparative Examples 1 to 10. The measurement results are shown in FIG. 4. Referring to FIG. 4, as a result of measuring the maximum thickness strain according to the layered ash content, it was confirmed that the addition of spherical alumina particles having an average particle diameter of 10 or 73 maintains a 73% thickness strain even at 30 wt%. In addition, it shows a maximum thickness strain of more than 70% up to a content of about 35 weight 3 ⁇ 4.
  • the effect of increasing the maximum thickness strain tended to saturate at the average particle diameter of 21 of spherical alumina.
  • the size of the layered particles is too large, it is difficult to uniformly disperse the particles, and since the thickness strain enhancing effect reaches a saturation state, it was determined that it is not necessary to add alumina particles having a larger average particle size.
  • the maximum thickness strain is 70 at the point where the filler content is about 25% by weight. Below% The decrease was found to be unsuitable for application to solid oxide fuel cell stacks.
  • Example 1 The gas leak rate and durability of the sealing test samples of Example 1, Example 6 and Comparative Example 1 were evaluated. Specifically, using a stainless steel plate (STS444) metal plate as shown in the left photo of FIG. 7 and a leak rate measurement replica plate (material Crofer 22APU) as shown in the schematic diagram of FIG. Whether the airtightness of the sealing material of 6 was secured and the leakage rate change according to the heat cycle were measured to compare the heat cycle durability of each sealing material.
  • STS444 stainless steel plate
  • material Crofer 22APU material Crofer 22APU
  • 0.5 mm3 alumina substrate was used as a stopper based on a 1 mm thick 5.5 mm thick encapsulant.
  • the temperature of the heating furnace is cooled to 700 ° C, which is the evaluation temperature of operation.
  • N 2 gas is injected into the leak rate evaluation plate, which is blocked from the outside with the sealing material, and when the pressure reaches 1 atm, the gas supply is cut off.
  • the pressure change over time was checked for 10 minutes, and the pressure decrease was recorded over time, and the leakage rate was measured (sccm / cm) as the amount of gas leaked per unit time per unit length of the sealant at 0 ° C.
  • the gas leakage through the sealing material has sufficient airtightness as the back surface solid oxide fuel cell (S0FC) sealing material of 0.01 sccm / cm or less.
  • S0FC back surface solid oxide fuel cell
  • Comparative Example 1 using the conventional non-spherical alumina having an average particle diameter of 4.8 as a layering material, and an example using spherical alumina particles having an average particle diameter of 10 and an average particle diameter of 21 ⁇ as the layering material It was confirmed that no gas leakage occurred in the samples of 1 and 6, either.
  • the leak rate was evaluated by applying a heat cycle of the type shown in FIG. Experimental results are shown in
  • Comparative Example 1 in which a non-spherical alumina powder having an average particle diameter of 4.8, which has been conventionally used, was added to the sealing glass, it was observed that the leakage rate increased with the heat cycle and the leakage reached the limit after 13 times.
  • a non-spherical alumina powder having an average particle diameter of 4.8 which has been conventionally used
  • Example 1 which added 30 weight% of 10 spherical aluminas
  • Example 2 which added 30 weight% of 10 spherical alumina did not generate gas leakage until 13 times.
  • the present invention provides a sealing material having greatly improved durability by using a reinforcing filler having a larger particle size and a spherical shape than the existing glass powder.

Abstract

The present invention relates to a glass sealing material for a solid oxide fuel cell and a sealing method using the same. Provided are a glass sealing material for a solid oxide fuel cell and a solid oxide fuel cell sealing method using the same, the glass sealing material for a solid oxide fuel cell comprising reinforcement filling materials on a glass base, wherein the reinforcement filling materials are spherical oxide particles of which the average particle size is greater than 5μm and is equal to or less than 21μm.

Description

【명세서】  【Specification】
【발명의 명칭】  [Name of invention]
고체 산화물 연료전지용 유리 밀봉재 및 이를 아용한 밀봉 방법 【기술분야】  Glass sealing material for solid oxide fuel cell and sealing method using the same
고체산화물 연료전지용 유리 밀봉재 및 이를 이용한 고체산화물 연료전지의 밀봉 방법에 관한 것이다.  A glass sealing material for a solid oxide fuel cell and a method for sealing a solid oxide fuel cell using the same.
【배경기술】  Background Art
고체산화물 연료전지 (SOFC : Sol id Oxide Fuel Cel l )는 전기화학적 에너지 변환장치로서, 산화물 재질의 산소 이온전도성 고체전해질과 그 양면에 위치한 공기극 (양극) 및 연료극 (음극)으로 이루어진다. 공기극에서는 산소의 환원 반웅에 의해 생성된 산소이온이 전해질을 통해 연료극으로 이동하여 다시 연료극에 공급된 수소와 반웅함으로써 물을 생성하게 된다. 이때, 연료극에서는 전자가 생성되고 공기극에서는 전자가 소모되므로 두 전극을 서로 연결하면 전기가 흐르게 되는 것이다.  A solid oxide fuel cell (SOFC) is an electrochemical energy converter, and is composed of an oxygen ion conducting solid electrolyte made of an oxide material and an air electrode (anode) and a fuel electrode (cathode) located on both sides thereof. In the cathode, the oxygen ions generated by the reduction reaction of oxygen move to the anode through the electrolyte and react with hydrogen supplied to the anode again to generate water. At this time, since electrons are generated at the anode and electrons are consumed at the cathode, electricity flows when the two electrodes are connected to each other.
그러나, 상기 공기극, 전해질 및 연료극을 기본으로 하는 단위전지 하나에서 발생하는 전력은 상당히 작기 때문에, 여러 개의 단위전지를 적층 (스택)하여 연료 전지를 구성함으로써 상당량의 전력을 출력시킬 수 있게 되고, 나아가 다양한 용도의 발전 시스템을 구성할 수 있게 된다.  However, since the power generated from one unit cell based on the cathode, the electrolyte, and the anode is quite small, a large amount of power can be output by stacking (stacking) several unit cells to form a fuel cell. It is possible to construct a power generation system for various purposes.
평판형 고체 산화물 연료.전지 (SOFC ; sol id oxide fuel cel l )는 음극 전해질 및 양극이 모두 평판형태로 이루어진 단위전지로 구성된다. 이러한 평판형의 단위전지 여러 개를 적층하여 스택을 형성하게 되며, 상기 스택의 전압을 높이기 위하여, 한 단위전지의 공기극과 다른 단위전지의 연료극이 전기적으로 직렬 연결되어야 한다. 이를 위해 각 단위전지마다 연료와 공기를 공급하고 분리 할 수 있는 구조물이 필요하며, 금속 재질의 분리판 (seperator )이 사용된다.  A flat solid oxide fuel cell (SOFC) consists of a unit cell in which both the negative electrolyte and the positive electrode are in the form of a flat plate. Several flat unit cells are stacked to form a stack. In order to increase the voltage of the stack, the cathode of one unit cell and the anode of another unit cell must be electrically connected in series. For this, each unit cell needs a structure capable of supplying and separating fuel and air, and a metal separator is used.
이때, 이 연료전지 스택에서 연료 가스인 수소와 연소 가스인 공기의 흔합 방지, 스택 외부로의 가스 누출방지, 및 단위전지간의 절연을 위하여 금속 분리판과 단위전지 구성요소 사이를 밀봉 (seal )하는 것이 중요하다. 연료전지 스택의 밀봉재 및 밀봉부위가 파손되면 공기와 연료가 직접 만나서 연소반웅이 .일어날 수 있으며 , 이로 인하여 스택의 온도가 상승하고 급속한 성능 열화 현상이 발생하며, 심각한 경우 안전사고로 이어질 수 있기 때문에 신뢰성 있는 밀봉 기술과 이를 뒷받침 할 수 있는 밀봉재의 개선이 시급한 실정이다. In this case, the fuel cell stack seals between the metal separator and the unit cell components to prevent the mixing of hydrogen, which is fuel gas, and air, which is combustion gas, to prevent gas leakage to the outside of the stack, and to insulate the unit cells. It is important. If the sealing material and sealing part of the fuel cell stack are broken, air and fuel meet directly, causing combustion reactions . Can cause the temperature of the stack to rise Rapid performance deterioration occurs, and in serious cases can lead to safety accidents, it is urgent to improve the reliable sealing technology and the sealing material to support it.
【발명의 상세한 설명】  [Detailed Description of the Invention]
【기술적 과제]  Technical problem
고체산화물 연료전지용 유리 밀봉재 및 이를 이용한 고체산화물 연료전지 스택의 밀봉 방법을 제공하고자 한다.  A glass sealing material for a solid oxide fuel cell and a method for sealing a solid oxide fuel cell stack using the same are provided.
【기술적 해결방법】  Technical Solution
본 발명의 일 구현예는, 유리 기지상에 강화 충진재를 포함하고 , 상기 강화 층진재는, 평균입경이 5/zm 초과, 및 21卿이하인 구형의 산화물 입자인 것인 고체 산화물 연료전지용 밀봉재를 제공한다.  One embodiment of the present invention includes a reinforcing filler on a glass substrate, wherein the reinforcing layered material provides a sealing material for a solid oxide fuel cell, wherein the reinforcing layered material is spherical oxide particles having an average particle diameter of more than 5 / zm and less than 21 GPa. .
상기 강화 층진재의 함량은, 유리 기지 및 강화 충진재의 총량 100중량%에 대하여, 25중량 % 이상 35중량 ¾ 이하인 것일 수 있다. The content of the reinforcing layer dusting, relative to the total amount of the glass matrix and the reinforcing filler 100% by weight, may be 25% by weight or more and 35% by weight or less.
상기 강화 충진재는, 알루미나 (A1203) , 또는 Y203— doped 안정화 Zr¾ 중 1종 이상인 것일 수 있다. The reinforcing filler may be one or more of alumina (A1 2 0 3 ), or Y 2 0 3 — doped stabilized Zr¾.
상기 강화 충진재의 평균 입경은, 10 이상 21/rni 이하인 것일 수 있다.  The average particle diameter of the reinforcing filler may be 10 or more and 21 / rni or less.
상기 강화 층진재는, 알루미나 (A1203)인 것일 수 있다. The reinforcing layer dusting material may be alumina (A1 2 0 3 ).
상기 유리 기지상은, Ba0-Al203-B203 Si02-M203 (M- Zr02 , ZnO, 또는 이들의 조합)계 유리를 포함하는 것일 수 있다. The glass matrix phase may include a Ba0-Al 2 O 3 -B 2 O 3 Si02-M 2 O 3 (M-Zr0 2 , ZnO, or a combination thereof) -based glass.
상기 Ba0-Al203-B203-Si02-M203 (M= Zr02 ) ZnO , 또는 이들의 조합)계 유리는, 상기 유리 총량 100중량%에 대해, BaO: 40-60중량 %, A1203 : 3- 6중량 ¾>, ¾03: 3-8중량 % Si02 : 30-40중량 %, 및 M203 : 3-6중량 %를 포함하는 것일 수 있다. The Ba 0 -Al 2 0 3 -B 2 0 3 -Si0 2 -M 2 0 3 (M = Zr0 2) ZnO, or a combination thereof) is based on BaO: 40- 60 weight%, A1 2 0 3 : 3-6 weight ¾>, ¾0 3 : 3-8 weight% Si0 2 : 30-40 weight%, and M 2 0 3 : 3-6 weight%. .
상기 고체 산화물 연료전지용 밀봉재는, 최대 두께 변형률이 The solid oxide fuel cell sealing material has a maximum thickness strain
7 이상인 것일 수 있다. It may be 7 or more.
본 발명의 또 다른 일 구현 예는, 유리 분말 및 강화 층진재를 흔합하는 단계; 상기 흔합된 유리 분말 및 강화 층진재에 바인더, 및 용매를 투입하여 페이스트를 제조하는 단계; 상기 페이스트를 고체산화물 연료전지 스택의 밀봉부에 도포하는 단계; 및 상기 도포된 페이스트를 열처리하는 단계;를 포함하고, 상기 강화 층진재는, 평균입경이 5//πι 초과 21 m 이하인 구형의 산화물 입자인 것일 수 있다. Another embodiment of the present invention, the step of mixing the glass powder and the reinforced layered material; Preparing a paste by adding a binder and a solvent to the mixed glass powder and the reinforced layered material; Applying the paste to a seal of the solid oxide fuel cell stack; And the applied paste And a heat treatment step; wherein the reinforcing layer dusting material may be spherical oxide particles having an average particle diameter of more than 5 // πι and 21 m or less.
상기 유리 분말 및 강화 충진재를 흔합하는 단계;에서, 상기 강화 충진재의 함량은, 상기 유리 분말 및 강화 층진재 총량 100중량 %에 대하여, 25중량 이상 35중량 % 이하인 것일 수 있다.  In the step of mixing the glass powder and the reinforcing filler; the content of the reinforcing filler may be 25 to 35% by weight based on 100% by weight of the total amount of the glass powder and the reinforced layered filler.
상기 페이스트를 고체산화물 연료전지 스택의 밀봉부에 도포하는 단계;는 로봇 디스펜싱 공정에 의해 수행되는 것일 수 .있다.  Applying the paste to a seal of the solid oxide fuel cell stack; may be performed by a robot dispensing process.
상기 도포된 페이스트를 열처리하는 단계;는 800 °C 이상 900 °C 이하의 은도에서 수행되는 것일 수 있다. Heat-treating the applied paste; may be performed at 800 ° C. or more and 900 ° C. or less.
상기 강화 층진재는, 알루미나 (A1203)인 것일 수 있다. The reinforcing layer dusting material may be alumina (A1 2 0 3 ).
상기 알루미나의 평균 입경은, 10/皿 이상 21 이하인 것일 수 있다. The average particle diameter of the alumina may be 10 / mm or more and 21 or less.
【발명의 효과]  【Effects of the Invention]
본 발명의 일 구현예는, 고체산화물 연료전지용 유리 밀봉재 및 이를 이용한 고체산화물 연료전지의 스택의 밀봉 방법을 제공한다. 이를 통하여 밀봉재의 공차 흡수능력을 유지하면서 내구성을 개선한 밀봉재를 제조할 수 있다. 또한, 고체산화물 연료전지 스택의 열싸이클에 대한 내구성이 개선될 수 있다.  One embodiment of the present invention provides a glass sealing material for a solid oxide fuel cell and a method for sealing a stack of a solid oxide fuel cell using the same. Through this, it is possible to manufacture a sealing material having improved durability while maintaining the tolerance absorbing capacity of the sealing material. In addition, durability of the thermal cycle of the solid oxide fuel cell stack may be improved.
【도면의 간단한 설명】  [Brief Description of Drawings]
도 1은 평균 입경이 4.8卿인 기존의 비구형 알루미나 층진재의 입자의 SEM사진이다. /  1 is an SEM image of particles of a conventional non-spherical alumina layered material having an average particle diameter of 4.8 mm 3. Of
도 2는 평균 입경이 10 인 구형 알루미나 입자의 SEM사진이다. 도 3은 평균 입경이 인 구형 알루미나 입자의 SEM사진이다. 도 4은 강화 층진재의 함량에 따른 최대 두께 변형률 비교 그래프이다.  2 is a SEM photograph of spherical alumina particles having an average particle diameter of 10. 3 is a SEM photograph of spherical alumina particles having an average particle diameter. 4 is a graph comparing the maximum thickness strain according to the content of the reinforcing layered material.
도 5는 최대 두께 변형률 측정을 위해 스트립 (str ip)형태로 제작한 밀봉재의 사진이다.  Figure 5 is a photograph of the sealing material made in the form of a strip (str ip) for the maximum thickness strain measurement.
도 6은 최대 두께 변형률 측정 실험 구성의 모식도 이다.  6 is a schematic diagram of the maximum thickness strain measurement experimental configuration.
도 7은 기체 누설률 측정 실험을 위하여 STS444 pl ate 상에 형성된 밀봉재 및 스토퍼 (stopper )의 사진이다.  7 is a photograph of a sealant and a stopper formed on an STS444 plate for gas leak rate measurement experiments.
도 8은 기체 누설를 측정 실험 구성의모식도아다. 도 9은 열싸이클에 따른 내구성 비교 결과 그래프이다. 8 is a schematic diagram of the experimental configuration for measuring gas leakage. 9 is a graph comparing the results of durability according to the heat cycle.
도 10은 열 싸이클시 가열로의 승온 및 강온 스케줄에 관한 개략도이다.  10 is a schematic diagram of a temperature raising and lowering schedule of the heating furnace during the heat cycle.
【발명의 실시를 위한 최선의 형태】  [Best form for implementation of the invention]
이하, 본 발명의 구현 예를 상세히 설명하기로 한다. 다만, 이는 예시로서 제시되는 것으로, 이에 의해 본 발명이 제한되지는 않으며 본 발명은 후술할 청구범위의 범주에 의해 정의될 뿐이다.  Hereinafter, embodiments of the present invention will be described in detail. However, this is presented as an example, by which the present invention is not limited and the present invention is defined only by the scope of the claims to be described later.
본 명세서에서 "입경" 은 별도의 정의가 없는 한 구형 물질의 지름을 의미한다. 만약 물질이 비구형일 경우, 상기 비구형 물질을 구형으로 근사하여 계산한 구의 지름을 의미한다 .  As used herein, "particle diameter" means the diameter of a spherical material unless otherwise defined. If the material is non-spherical, it means the diameter of the sphere calculated by approximating the non-spherical material to the sphere.
본 명세서에서 "평균 입경" 은 다른 정의가 없는 한 측정 단위 내 존재하는 구형 물질의 평균 지름을 의미한다. 만약 물질이 비구형일 경우, 상기 비구형 물질을 구형으로 근사하여 계산한 구의 지름을 의미한다.  As used herein, "average particle diameter" means the average diameter of spherical materials present in a unit of measurement unless otherwise defined. If the material is non-spherical, it means the diameter of the sphere calculated by approximating the non-spherical material to the sphere.
고체 산화물 연료 전지의 스택에서, 수소, 천연가스 등의 연료가스와 공기의 흔합 방지, 스택 외부로의 가스 누출방지, 및 단위전지간의 절연을 위해 금속 분리판과 단위전지 구성요소 사이를 밀붕하는 것은 중요하다. 일반적으로 사용되는 유리계 밀봉재는 계면 밀착력이 우수하여 가스 누설을 막는데 효과적일 뿐 아니라, 고온의 산화 및 환원 분위기에서 장기 내구성이 우수하다. 또한 밀봉 과정에서 두께 방향으로 큰 변형률을 갖기 때문에 분리판, 집전체, 샐 등의 구성요소 제작 시에 발생하는 두께 편차 및 휨, 스택 적층 시의 구성요소간 어긋남 (mi sal ignment ) , 면압과 온도의 편차에 의하여 발생하는 공차를 흡수 할 수 있다.  In stacks of solid oxide fuel cells, cracking between metal separators and unit cell components to prevent the mixing of fuel gases and air, such as hydrogen and natural gas, to prevent leakage of gases out of the stack, and to insulate between unit cells It is important. In general, the glass-based sealing material is used to prevent gas leakage due to its excellent interfacial adhesion, as well as long-term durability in a high temperature oxidation and reducing atmosphere. In addition, since the sealing process has a large strain in the thickness direction, thickness variations and warpage occurring during the manufacturing of components such as separators, current collectors and sals, misalignment between components during stack lamination, surface pressure and temperature Tolerances caused by deviations can be absorbed.
그러나 유리계 밀봉재 소재는 물질 특성상 강도와 파괴인성이 낮은 단점이 있다. 그렇기 때문에 스택의 제조 및 운전 중에 발생하는 열적, 기계적 웅력이 누적되면, S0FC 작동 중에 밀봉재의 취성 파괴가 일어날 수 있다. 특히 상기 유리 밀봉재의 단점은 고체 산화물 연료 전지 시스템의 운전온도인 700~800°C 에서 상온부근까지 열싸이클을 하거나, 운전 중에 순간적인 부하중단 (Load ' Tr ip)등 외부 요인에 의하여 스택의 온도가 급변하는 경우에 발생할 수 있다. However, glass-based sealing material has a disadvantage of low strength and fracture toughness due to the material properties. Therefore, if the thermal and mechanical forces generated during the manufacture and operation of the stack accumulate, brittle fracture of the seal may occur during SOFC operation. In particular, the disadvantage of the glass sealant is that the temperature of the stack due to an external factor such as a thermal cycle such as a load cycle (Load ' Tr ip) during the operation at 700 to 800 ° C. Can occur when
일반적으로, 유리계 밀봉재의 강도를 향상 시키기 위하여 유리보다 강도와 탄성계수가 크고, 내화도가 높은 산화물 입자를 충진재 ( f i l ler)로 첨가한다. 층진재 입자에 의하여 유리 기지상의 균열이 방해 받고 균열 방향이 찍일 수 있기 때문에, 균열 전파 경로 증가에 따른 파괴인성 향상을 통하여 유리 밀봉재의 강건성을 개선 할 수 있다. In general, in order to improve the strength of the glass-based sealant than glass Oxide particles with high strength and elastic modulus and high fire resistance are added as a filler. Since the crack on the glass matrix is disturbed by the layered particles and the crack direction can be photographed, the robustness of the glass sealing material can be improved by improving the fracture toughness according to the increase of the crack propagation path.
그러나, 일반적으로 상기 탄성율, .경도, 및 내화도가 높은 산화물 층진재 (f i l ler )는, 점성유동에 의하여 유리 입자가 치밀화되는 것을 방해한다. 이에, 밀봉재 내부에 잔류기공이 증가하거나 밀봉부의 접합강도가 저하되어 가스 누설이 발생 할 수 있다. 또한/ 상기 산화물 층진재의 함량을 높이면, 유리 기지상의 변형을 억제하기 때문에 밀봉재의 최대 두께 변형률이 감소할 수 있다.  In general, however, the oxide layering material f i ller having high modulus, hardness, and fire resistance prevents densification of glass particles by viscous flow. Accordingly, gas leakage may occur due to an increase in residual pores or a decrease in bonding strength of the seal. In addition, by increasing the content of the oxide layered material, the maximum thickness strain of the sealing material can be reduced because the deformation on the glass matrix is suppressed.
게다가, 상기 산화물 충진재의 함량을 높이면, 금속 분리판과 밀봉재의 계면에서 유리상의 접촉 면적이 상대적으로 감소하고, 이에 따라 산화물 입자의 접촉면적이 상대적으로 증가하기 때문에 가스 누설이 발생할 수 있다.  In addition, when the content of the oxide filler is increased, the contact area of the glass phase at the interface between the metal separator and the sealing material is relatively reduced, and thus the contact area of the oxide particles is relatively increased, thereby causing gas leakage.
S0FC의 상용화를 휘해서는 대면적 고적층 스택의 개발이 필요하다. 그러나 S0FC 스택을 고적층화 대면적 화 할수록 각 구성요소의 품질 편차로 적층 작업 공차, 또는 면압 및 은도의 국부적 불균일에 의한 변형 등이의 누적되기 때문에상기 누적 공차를 흡수해줄 수 있는밀봉재가 사용되어야 한다.  The commercialization of S0FC requires the development of large area stacks. However, the higher stacking area of S0FC stack, the more the stacking tolerances or deformation due to local unevenness of surface pressure and silver are accumulated due to the quality deviation of each component. .
밀봉재의 공차 흡수능은 밀봉재의 최대 두께 변형률로 표현 될 수 있다. 그러므로 밀봉재의 내구성 증진을 추구하는 과정에서 밀봉재의 최대 두께변형률이 크게 감소한다면 고적층 대면적 스택에 적용하기 어렵게 된다. 본 발명은 상기 문제점을 일으키기 않으면서, 강화 층진재의 함량을 증가시켜 층분한 강화효과를 얻을 수 있는 고체 산화물 연료전지용 유리 밀봉재를 제공한다.  The tolerance absorbency of the seal can be expressed as the maximum thickness strain of the seal. Therefore, if the maximum thickness strain of the sealant is greatly reduced in the process of improving the durability of the sealant, it is difficult to apply to the high-laminate large area stack. The present invention provides a glass sealing material for a solid oxide fuel cell that can obtain a strengthening effect by increasing the content of the reinforcing layered material without causing the above problems.
본 발명의 일 구현예에서는 유리 기지상에 강화 충진재를 포함하고, 상기 강화 충진재는, 평균입경이 5 초과 21卿 이하인 구형의 산화물 입자인 것인 고체 산화물 연료전지용 밀봉재를 제공한다.  In one embodiment of the present invention includes a reinforcing filler on a glass substrate, the reinforcing filler provides a sealing material for a solid oxide fuel cell that is a spherical oxide particles having an average particle diameter of more than 5 21mm or less.
본 발명의 강화 층진재가 포함된 고체산화물 연료전지용 밀봉재는, 상기 언급한 기존의 밀봉재에 비해 강화 층진재의 함량을 늘릴 수 있기 때문에 밀봉재의 내구성이 향상될 수 있다. 또한, 강화 층진재의 함량 증가에도 불구하고 높은 최대 두께 변형를을 유지하여, 대면적 고적층의 스택에 적용 가능하다. Sealing material for a solid oxide fuel cell containing the reinforced layer of the present invention, the content of the reinforced layer can be increased compared to the conventional sealant mentioned above Because of this, the durability of the sealing material can be improved. In addition, despite the increased content of the reinforced layered material, it maintains a high maximum thickness deformation and is applicable to a large area stack.
상기 강화 층진재는 구형일 수 있다. 여기서 구형입자의 형태, 가장 짧은 지름에 대한 가장 긴 지름의 비율 (장단경비)이 1.0인 진구의 형태가 가장 이상적이다.  The reinforced layered material may be spherical. In this case, the shape of the spherical particles, the shape of the real sphere with the longest diameter ratio (short-to-short ratio) to the shortest diameter, is most ideal.
강화 충진재가 구형인 경우, 고체 산화물 연료 전지 (S0FC)의 구성요소, 예를 들어 금속 분리판과 강화 층진재가 계면에서 접촉하는 면적이 최소화 될 수 있다.  When the reinforcing filler is spherical, the area where the components of the solid oxide fuel cell SOFC, for example, the metal separator and the reinforcing layered material contact at the interface can be minimized.
강화 충진재 함량이 증가할수록, 접합부 계면의 가스 기밀성 확보에 기여하지 못하는 강화 충진재의 분율이 증가하여, 강화층진재 간의 네트워크가 형성되면 계면을 따라 가스 누설이 발생 할 수 있다.  As the reinforcing filler content is increased, the fraction of reinforcing fillers that do not contribute to securing the gas tightness of the interface of the joint increases, and if a network between the reinforcing layer is formed, gas leakage may occur along the interface.
밀봉재 내부의 강화 층진재 함량이 동일한 경우, 상기 강화 층진재의 형상이 구형인 경우에 접합부 계면에서 점접촉을 형성함으로써 계면에서의 충진재 접촉면적이 최소화 될 수 있고, 이에, 계면의 가스 누설을 방지할 수 있다.  When the content of the reinforcing layering material in the sealant is the same, when the shape of the reinforcing layering material is spherical, the contact area of the filler at the interface can be minimized by forming point contact at the interface of the joint, thereby preventing gas leakage at the interface. can do.
상기 구형 강화 충진재의 평균-입경은 5 초과 21 이하인 것일 수. 있다. 보다 구체적으로는 5卿 초과 21 미만; 8 이상 21 이하; 10 이상 20 이하; 또는 10 이상 21 이하 것일 수 있다.  The average-particle diameter of the spherical reinforcing filler may be more than 5 and less than 21. have. More specifically greater than 5 μs and less than 21; 8 or more and 21 or less; 10 or more and 20 or less; Or 10 or more and 21 or less.
강화 층진재의 평균 입경이 너무 큰 경우, 유리 기지내에 입자를 균일하게 분산시키는 것이 어렵기 때문에, 조직의 불균일성에 의하여 밀봉재의 내구성이 저하될 수 있다. 층진재의 입경이 너무 작은 경우, 강화 층진재와 유리 분말 입자의 접촉이 증가한다. 그러나, 강화 층진재와 유리 분말 입자의 접촉면적과 접촉 포인트의 개수가 증가 하면, 유리 분말의 점성유동을 억제하는 효과가 증가하여 점성유동에 의한 유리계 밀봉재의 치밀화를 방해하는 요인이 된다. 이에 따라 강화 층진재 주위를 중심으로 잔류 기공이 발생할 수 있다. 더불어 밀봉재의 최대 두께 변형률 역시 감소할 수 있다.  If the average particle diameter of the reinforcing layered material is too large, it is difficult to uniformly disperse the particles in the glass matrix, so the durability of the sealing material may be lowered due to the nonuniformity of the structure. If the particle diameter of the layered material is too small, the contact between the reinforced layered material and the glass powder particles increases. However, when the contact area of the reinforcing layer material and the glass powder particles and the number of contact points increase, the effect of suppressing the viscous flow of the glass powder increases, which causes the densification of the glass-based sealing material due to the viscous flow. As a result, residual pores may be generated around the reinforcement layer. In addition, the maximum thickness strain of the seal can also be reduced.
상기 구형 강화 충진재는 함량은 전체 밀봉재 100중량 %에 대해 25중량 % 이상 35 중량 % 이하일 수 있다. 보다 구체적으로는 25 중량 % 이상 33 중량 % 이하, 27중량 % 이상 33중량 % 이하, 29중량 % 이상 31중량 % 이하, 또는 30중량 % 일 수 있다. The spherical reinforcing filler content may be 25% by weight or more and 35% by weight or less with respect to 100% by weight of the total sealant. More specifically 25% by weight or more 33 weight% or less, 27 weight% or more, 33 weight% or less, 29 weight% or more, 31 weight% or less, or 30 weight%.
일반적으로 단일상의 유리는 다결정 산화물 소재 대비 파괴인성이 매우 낮은 소재이다. 그러므로 유리에 비하여 강도, 경도, 탄성률, 파괴인성이 모두 우수한 산화물계 강화 충진재는 첨가량이 많을수록 기지상인 유리의 균열 성장을 억제하는 효과가 크다 .  In general, single phase glass is a material having a very low fracture toughness compared to a polycrystalline oxide material. Therefore, oxide-based reinforcing fillers having superior strength, hardness, elastic modulus, and fracture toughness as compared to glass have a greater effect of suppressing crack growth of known glass as the added amount increases.
이에, 강화 층진재의 함량이 너무 적은 경우 밀봉재의 내구성이 층분히 향상 될 수 없다. 한편, 강화 층진재의 함량이 너무 많은 경우 최대 두께 변형률이 70%이하로 감소되어 층분한 최대 두께 변형를을 확보하기 어려울 수 있다. 일반적으로 대면적 고적층 스택에서 샐과 분리판 등 스택 구성요소의 공차를 충분한 흡수하기 위해서는 밀봉재의 최대 두께 변형를이 70%이상 되어야 충분한 신뢰성을 확보할 수 있다.  Thus, when the content of the reinforcing layer is too small, the durability of the sealing material can not be significantly improved. On the other hand, when the content of the reinforced layered material is too much, the maximum thickness strain may be reduced to 70% or less, so that it may be difficult to secure the maximum thickness deformation. In general, in order to sufficiently absorb the tolerances of stack components such as sal and separator in large area stacks, the maximum thickness deformation of the sealant must be 70% or more to ensure sufficient reliability.
상기 강화 충진재는 알루미나 (A1203)또는 Y203-doped Zr02 중 1종 이상일 수 있다. 다만, 이러한 종류는 예시일 뿐 이에 제한되지 않는다. 보다 구체적으로는 알루미나 (A1203)일 수 있다. The reinforcing filler may be at least one of alumina (A1 2 0 3 ) or Y 2 0 3 -doped Zr0 2 . However, this kind is only an example and is not limited thereto. More specifically, it may be alumina (A1 2 0 3 ).
본 발명의 유리 기지상은 BaO-Al203-B203-Si02— M203 (M= Zr02 , ZnO, 또는 이들의 조합) 계 유리를 포함할 수 있다. 성 "기 유리의 각 성분의 함량은 상기 유리 총량 100중량 )에 대해 BaO : 40-60중량 %, A1203 : 3-6중량 %, ¾03: 3-8중량 % Si02 : 30-40중량 %, M203 : 3-6중량 ¾이 포함될 수 있다. The glass matrix of the present invention may comprise BaO—Al 2 O 3 —B 2 O 3 —SiO 2 —M 2 O 3 (M = ZrO 2 , ZnO, or a combination thereof) based glass. Castle "The content of each component of the group BaO glass for the glass the total amount of 100 parts by weight): 40-60% by weight, A1 2 0 3: 3-6% by weight, ¾0 3: 3-8 wt.% Si0 2: 30- 40 weight%, M 2 0 3 : 3-6 weight ¾ may be included.
본 발명의 또 다른 일 구현 예에서는, 유리 분말 및 강화 충진재를 흔합하는 단계; 상기 흔합된 유리 분말 및 강화 층진재에 바인더, 및 용매를 투입하여 페이스트를 제조하는 단계; 상기 페이스트를 고체산화물 연료전지 스택의 밀봉부에 도포하는 단계; 및 상기 도포된 페이스트를 열처리하는 단계;를 포함하고, 상기 강화 층진재는, 평균입경이 5 초과 21 이하인 구형의 산화물 입자인 것인 고체 산화물 연료전지의 밀봉방법을 제공한다.  In another embodiment of the present invention, the step of mixing the glass powder and the reinforcing filler; Preparing a paste by adding a binder and a solvent to the mixed glass powder and the reinforced layered material; Applying the paste to a seal of the solid oxide fuel cell stack; And heat-treating the applied paste. The reinforcing layer dusting material provides a sealing method of a solid oxide fuel cell in which spherical oxide particles having an average particle diameter of more than 5 and 21 or less.
상기 유리 분말 및 강화 층진재를 흔합하는 단계;에서, 상기 강화 충진재의 함량은, 상기 유리 분말 및 강화 층진재 총량 100중량 »에 대하여, Mixing the glass powder and the reinforcing layered material; the content of the reinforcing filler is based on the total weight of the glass powder and the reinforcing layered material »100
25중량 ¾ 이상 35중량 % 이하인 것일 수 있다. 보다 구체적으로는 25 중량 ¾» 이상 33 중량 % 이하, 27중량 % 이상 33중량 % 이하, 29층량 % 이상 31중량 % 이하, 또는 30중량 % 일 수 있다. 25 weight ¾ or more may be 35 weight% or less. More specifically, 25% by weight ¾ »or more, 33% by weight or less, 27% by weight or more, 33% by weight or less, 29% by weight or more and 31% by weight Or less than or equal to 30% by weight.
상기 페이스트를 고체산화물 연료전지 스택의 밀봉부에 도포하는 단계;는 디스펜싱 공정에 의해 수행되는 것일 수 있다. 다만, 이에 제한되는 것은 아니고 테이프 캐스팅, 테이프 캘린더링, 압출, 스크린프린팅, 바 코팅 등 밀봉재 원료의 페이스트 혹은 슬러리를 원하는 두께와 폭으로 제조 가능한 방법이면 모두 가능하다. ᅳ 상기 도입된 페이스트를 열처리하는 단계;의 열처리 온도는 800°C 이상 90CTC 이하일 수 있다. 열처리 온도가 800°C보다 낮은 경우는 밀봉재가 충분히 치밀화 할 수 없으며, 900°C이상인 경우는 스택 구성요소 중 금속소재의 산화 및 변형이 심하게 발생할 수 있다. Applying the paste to a seal of the solid oxide fuel cell stack; may be performed by a dispensing process. However, the present invention is not limited thereto, and any method may be used as long as it is possible to prepare a paste or slurry of a sealing material such as tape casting, tape calendering, extrusion, screen printing, and bar coating to a desired thickness and width. 열처리 heat-treating the introduced paste; the heat treatment temperature may be 800 ° C or more and 90 CTC or less. If the heat treatment temperature is lower than 800 ° C, the sealing material may not be sufficiently densified. If the heat treatment temperature is higher than 900 ° C, oxidation and deformation of the metal material among the stack components may occur severely.
고체산화물 연료전지 스택의 전처리 및 및 운전 중에는 스택전체에 면압을 인가하여 밀봉부에 일정한 압축력을 인가하여 밀봉부 계면의 밀착성을 확보하고 열기계적 파손을 방지한다. 압축력의 범위는 0.5kgf/cm2 이상 4kgf/cm2 이하정도이다. During the pretreatment and operation of the solid oxide fuel cell stack, a surface pressure is applied to the entire stack to apply a constant compressive force to the sealing portion to secure the adhesion of the sealing interface and to prevent thermomechanical damage. Range of the compressive force is 0.5kgf / cm 2 is at least 4kgf / cm 2 or less.
【발명의 실시를 위한 형태】  [Form for implementation of invention]
이하 본 발명의 바람직한 실시예 및 비교예를 기재한다. 그러나 하기 실시예는 본 발명의 바람직한 일 실시예일뿐 본 발명이 하기 실시예에 한정되는 것은 아니다. 실시예 및 비교예  Hereinafter, preferred examples and comparative examples of the present invention are described. However, the following examples are only preferred examples of the present invention and the present invention is not limited to the following examples. Examples and Comparative Examples
실시예 1 Example 1
P5 (BaO— Al203-¾03-Si02ᅳ M203 (M= Zr02, ZnO) 계이며, . 상기 유리분말에 포함된 각 성분의 함량은 BaO: 40~60wt , A1203: 3~6wt%, B203: 3~8wt% Si02: 30~40wt , M203: 3~6 )인 유리, 및 구형 알루미나 분말 (평균입경 10 , Showa Denko, CB-A10S)을.이용하였다. P5 (BaO- Al 2 0 3 -¾0 3 -Si0 2 eu M 2 0 3 (M = Zr0 2, and ZnO) based, content of each component contained in the glass powder is BaO:. 40 ~ 60wt, A1 2 0 3 : 3 ~ 6wt%, B 2 0 3 : 3 ~ 8wt% Si0 2 : 30 ~ 40wt, M 2 0 3 : 3 ~ 6), glass and spherical alumina powder (average particle size 10, Showa Denko, CB- A10S).
본 실시예에서 사용한 구형 알루미나 분말의 평균입경은 제조사에서 제시하는 D50 기준 평균입경이며, Showa Denko 사의 CB-A10S 의 경우는 Coullter Counter Methode 로 측정한 값이다.  The average particle diameter of the spherical alumina powder used in this example is the D50 reference average particle diameter suggested by the manufacturer, and CB-A10S of Showa Denko is measured by Coullter Counter Methode.
도 2는 상기 구형의 알루미나의 SEM사진이다.  2 is a SEM photograph of the spherical alumina.
상기 유리 분말 70g, 및 구형 알루미나 분말 30g을 흔합한 후에 후 바인더로 R910(위너테크)를 진공 컨디셔닝믹서 (Musashi Engineer i ng, A - MV310)로 흔합하여 로봇디스펜싱용 페이스트를 제조하였다. After mixing 70 g of the glass powder, and 30 g of the spherical alumina powder, R910 (Winner Tech) was mixed with a vacuum conditioning mixer (Musashi Engineer Ing, A-MV310) as a binder to prepare a paste for robot dispensing.
실시예 2  Example 2
상기 실시예 1에서, 유리 분말 90g , 구형 알루미나 분말 10g으로 변경한 것을 제외하고., 실시예 1과 동일한 방법으로 밀봉 실험 샘플을 제조하였다. In Example 1, except that the glass powder was changed to 90g, a spherical alumina powder 10 g. In the same manner as in Example 1, a sealing test sample was prepared.
실시예 3  Example 3
상기 실시예 1에서, 유리 분말 80g , 구형 알루미나 분말 20g으로 변경한 것을 제외하고, 실시예 1과 동일한 방법으로 밀봉 실험 샘플을 제조하였다.  In Example 1, a sealing test sample was prepared in the same manner as in Example 1, except that 80 g of glass powder and 20 g of spherical alumina powder were changed.
실시예 4  Example 4
상기 실시예 1에서, 유리 분말 60g , 구형 알루미나 분말 40g으로 변경한 것을 제외하고, 실시예 1과 동일한 방법으로 밀봉 실험 샘플을 .제조하였다. In Example 1, except for changing to 60 g of the glass powder and 40 g of the spherical alumina powder, a sealing test sample was prepared in the same manner as in Example 1 . Prepared.
실시예 5  Example 5
상기 실시예 1에서, 유리 분말 50g , 구형 알루미나 분말 50g으로 변경한 것을 제외하고, 실시예 1과 동일한 방법으로 밀봉 실험 샘플을 제조하였다.  In Example 1, a sealing test sample was prepared in the same manner as in Example 1, except that 50 g of glass powder and 50 g of spherical alumina powder were changed.
실시예 6  Example 6
상기 실시예 1에서, 평균입경인 21 인 구형 알루미나 분말 (Showa In Example 1, the spherical alumina powder having an average particle diameter of 21 (Showa
Denko CB-A20S)을 사용한 것을 제외하고, 실시예 1과 동일한 방법으로 밀봉 실험 샘플을 제조하였다. 본 실시예에서 사용한 구형 알루미나 분말의 평균입경은 제조사에서 제시하는 D50 기준 평균입경이며, Showa Denko 사의 CB-A20S 의 경우는 Coul l t er Count er Methode 로 측정한 값이다. Seal test samples were prepared in the same manner as in Example 1, except that Denko CB-A20S) was used. The average particle diameter of the spherical alumina powder used in this example is the D50 reference average particle diameter suggested by the manufacturer, and in the case of CB-A20S of Showa Denko, measured by Coulter Counter Methode.
도 3는 상기 구형의 알루미나의 SEM사진이다.  3 is a SEM photograph of the spherical alumina.
■실시예 7 Example 7
상기 실시예 6에서, 유리 분말 90g , 구형 알루미나 분말 10g으로 변경한 것을 제외하고, 실시예 1과 동일한 방법으로 밀봉 실험 샘플을 제조하였다.  In Example 6, a sealing test sample was prepared in the same manner as in Example 1, except that 90 g of glass powder and 10 g of spherical alumina powder were changed.
실시예 8 상기 실시예 6에서, 유리 분말 80g , 구형 알루미나 분말 20g으로 변경한 것을 제외하고, 실시예 1과 동일한 방법으로 밀봉 실험 샘플을 제조하였다. Example 8 In Example 6, a sealing test sample was prepared in the same manner as in Example 1, except that 80 g of glass powder and 20 g of spherical alumina powder were changed.
실시예 9 Example 9
상기 실시예 6에서, 유리 분말 60g , 구형 알루미나 분말 40g으로 변경한 것을 제외하고, 실시예 1과 동일한 방법으로 밀봉 실험 샘플을 제조하였다.  In Example 6, a sealing test sample was prepared in the same manner as in Example 1, except that 60 g of glass powder and 40 g of spherical alumina powder were changed.
실시예 10 Example 10
상기 실시예 6에서, 유리 분말 50g, 구형 알루미나 분말 50g으로 변경한 것을 제외하고, 실시예 1과 동일한 방법으로 밀봉 실험 샘플을 제조하였다.  In Example 6, a sealing test sample was prepared in the same manner as in Example 1, except that 50 g of glass powder and 50 g of spherical alumina powder were changed.
비교예 1 Comparative Example 1
상기 실시예 1에서, 평균입경인 5 인 구형 알루미나 분말 (Showa Denko ,CB-A05S)을 사용한 것을 제외하고, 실시예 1과 동일한 방법으로 밀봉 실험 샘플을 제조하였다. 본 비교예에서 사용한 구형 알루미나 분말의 평균입경은 제조사에서 제시하는 D50 기준 평균입경이며, Showa Denko 사의 CB-A05S 의 경우는 Coul l ter Counter Methode 로 측정한 값이다.  In Example 1, except that a spherical alumina powder (Showa Denko, CB-A05S) having an average particle diameter of 5 was used, a sealing test sample was prepared in the same manner as in Example 1. The average particle diameter of the spherical alumina powder used in this comparative example is the D50 reference average particle diameter suggested by the manufacturer, and CB-A05S manufactured by Showa Denko is measured by the Coulter Counter Methode.
비교예 2 Comparative Example 2
상기 비교예 1에서, 유리 분말 90g, 구형 알루미나 분말 10g으로 변경한 것을 제외하고, 비교예 1과 동일한 방법으로 밀봉 실험 샘플을 제조하였다.  In Comparative Example 1, a sealing test sample was prepared in the same manner as in Comparative Example 1, except that 90 g of glass powder and 10 g of spherical alumina powder were changed.
비교예 3 Comparative Example 3
상기 비교예 1에서, 유리 분말 90g, 구형 알루미나 분말 'lOg으로 변경한 것을 제외하고, 비교예 1과 동일한 방법으로 밀봉 실험 샘플을 제조하였다. In Comparative Example 1, a sealing test sample was prepared in the same manner as in Comparative Example 1, except that 90 g of glass powder and spherical alumina powder ' lOg were changed.
비교예 4 Comparative Example 4
상기 비교예 1에서, 유리 분말 80g , 구형 알루미나 분말 20g으로. 변경한 것올 제외하고, 비교예 1과 동일한 방법으로 밀봉 실험 샘플을 제조하였다. ' In Comparative Example 1, 80 g of glass powder, 20 g of spherical alumina powder. Except having changed, the sealing test sample was produced by the same method as the comparative example 1. '
비교예 5 상기 비교예 1에서, 유리 분말 60g, 구형 알루미나 분말 40g으로 변경한 것을 제외하고, 비고예 1과 동일한 방법으로 밀봉 실험 샘플을 제조하였다. Comparative Example 5 In Comparative Example 1, except for changing to 60 g of the glass powder and 40 g of the spherical alumina powder, a sealing test sample was prepared in the same manner as in Example 1.
비교예 6  Comparative Example 6
상기 실시예 1에서, 기존에 사용되어 왔던 비구형의 알루미나 분말 (AM21 , 평균입경 4.8 1, Sumi tomo)을 이용한 점을 제외하고, 실시예 1과 동일한 방법으로 밀봉 실험 샘플을 제조하였다. 본 비교예에서 사용한 비구형의 알루미나 분말의 평균입경은 제조사에서 제시하는 D50 기준 평균입경이며, 崖21 sumi tomo 사의 경우 Laser Di f fract ion (MT3300)으로 측정한 결과이다.  In Example 1, a sealing test sample was prepared in the same manner as in Example 1, except that a non-spherical alumina powder (AM21, average particle size of 4.8 1, Sumi tomo) that had been used in the past was used. The average particle diameter of the non-spherical alumina powder used in this comparative example is the D50 reference average particle diameter suggested by the manufacturer, and measured by Laser Di fract ion (MT3300) in the case of 崖 21 sumi tomo.
도 1는 상기 비구형의 알루미나의 SEM 사진이다. 도 1에서 알 수 있듯이, 기존의 판상 및 다면체 형태로 이루어져 있다.  1 is a SEM photograph of the non-spherical alumina. As can be seen in Figure 1, it consists of a conventional plate and polyhedral form.
비교예 7 Comparative Example 7
상기 비교예 6에서, 유리 분말 90g , 비구형 알루미나 분말 10g으로 변경한 것을 제외하고, 비교예 6과 동일한 방법으로 밀봉 실험 샘플을 제조하였다.  In Comparative Example 6, a sealing test sample was prepared in the same manner as in Comparative Example 6, except that 90 g of glass powder and 10 g of non-spherical alumina powder were changed.
비교예 8 Comparative Example 8
상기 비교예 6에서, 유리 분말 80g, 비구형 알루미나 분말 20g으로 변경한 것을 제외하고, 비교예 6과 동일한 방벋으로 밀봉 실험 샘플을 제조하였다.  In Comparative Example 6, except that 80 g of glass powder and 20 g of non-spherical alumina powder were changed, a sealing test sample was prepared in the same manner as in Comparative Example 6.
비교예 9 Comparative Example 9
상기 비교예 6에서, 유리 분말 75g , 비구형 알루미나 분말 25g으로 변경한 것을 제외하고, 비교예 6과 동일한 방법으로 밀봉 실험 샘플을 제조하였다.  In Comparative Example 6, a sealing test sample was prepared in the same manner as in Comparative Example 6, except that 75 g of the glass powder and 25 g of the non-spherical alumina powder were changed.
비교예 10 Comparative Example 10
상기 비교예 6에서, 유리 분말 50g , 비구형 알루미나 분말 50g으로 변경한 것을. 제외하고, 비교예 6과 동일한 방법으로 밀봉 실험 샘플을 제조하였다.  In Comparative Example 6, 50 g of glass powder and 50 g of non-spherical alumina powder were changed. Except for the sealing experiment sample was prepared in the same manner as in Comparative Example 6.
실험예 Experimental Example
.실험예 1 : 최대 두께 변형률 측정 최대 두께 변형률은 셀이나 집전체와 같이 밀봉재의 변형을 멈추게 하는 스토퍼 (stopper )역할을 하는 구성요소가 없는 상태에서의, 밀봉온도 및 면압에서 두께 변형률이며, 고체산화물 연료전지 (S0FC) 스택 적층시 각 구성요소의 공차를 밀봉재가 흡수 할 수 있는 능력의 지표이다. Experimental Example 1 Measurement of Maximum Thickness Strain The maximum thickness strain is the thickness strain at the sealing temperature and the surface pressure in the absence of a component that acts as a stopper to stop the deformation of the sealing material, such as a cell or a current collector, and when stacking a solid oxide fuel cell stack. Tolerance of each component is an indicator of the ability of the sealant to absorb.
본 실험예 에서는 스택 면압 3kgf/cm2 스택에서의 밀봉재의 최대 두께 변형률 실험을 실시하였다. 도 5와 같이 두께 2醒, 150讓 X 150mm 면적의 Ferr i t i c Stainless Steel (STS 444) 재질의 금속판에 로봇 디스펜싱 공정에 의하여 두께 1.0隱, 폭 5.5麵 의 스트립 (str ip) 형태의 밀봉재를 형성하였다. 일반적으로 스택 면압은 [밀봉재 나중면적(~설계면적) +셀 면적) ]x 3kgf/cm2 이기 때문에, 본 실험에서는 스택 면압 3kgf/cm2의 실제 스택의 일례에서 밀봉재의 초기 면적이 250cm2 인 경우 약 3 , 000kgf의 면압을 인가하는 것을 반영하여, 동일 비율로 최대 두께 변형를 시험용 밀봉재의 초기면적 X 12kgf/cm2의 면압을 인가한 상태에서 850oC 까지 분당 10C로 승은하여 4시간 동안 유지한 후 분당 10C로 상온 까지 냉각하여 최대 두께 수축를을 평가하였다. 이때 최대 두께 변형를은 밀봉재의 초기 높이 대비 나중 높이를 측정하여 [ (초기두께 -나중두께) /초기두께] X 100(%)로 계산하였다. 상기 실시예 1 내지 10과 비교예 1 내지 10의 실험을 통하여 밀봉재의 최대 두께 변형를을 측정하였다. 측정 결과는 도 4에 나타내었다. 도 4를 참고하면, 층진재 함량에 따른 최대 두께변형률을 측정한 결과, 평균입경 10 , 또는 의 구형 알루미나 입자를 첨가하면 30 중량 % 에서도 73% 의 두께 변형률이 유지된다는 것을 확인하였다. 또한, 약 35 중량 ¾의 함량에까지 70% 이상의 최대 두께 변형률을 보이고 있다. In this experimental example, the maximum thickness strain test of the sealing material in the stack surface pressure 3kgf / cm 2 stack was carried out. As shown in FIG. 5, a strip material having a thickness of 1.0 隱 and a width of 5.5 str is formed by a robot dispensing process on a metal plate made of Ferr itic Stainless Steel (STS 444) having a thickness of 2 醒 and 150 讓 X 150 mm. It was. In general, due to the stack surface pressure is [sealant later area (~ design area) + cell area)] x 3kgf / cm 2, the present experiment, the initial area of the sealing material in the example of the stack contact pressure actual stack of 3kgf / cm 2 250cm 2 of In the case of reflecting the application of a surface pressure of about 3, 000 kgf, the maximum thickness deformation is increased to 1 0 C per minute up to 850 o C with a surface pressure of the initial area X 12 kgf / cm 2 of the test seal at the same rate for 4 hours. The maximum thickness shrinkage was evaluated by holding it for a while and then cooling to room temperature at 1 0 C per minute. At this time, the maximum thickness deformation was calculated as [(initial thickness-later thickness) / initial thickness] X 100 (%) by measuring the later height relative to the initial height of the sealing material. The maximum thickness deformation of the sealing material was measured through the experiments of Examples 1 to 10 and Comparative Examples 1 to 10. The measurement results are shown in FIG. 4. Referring to FIG. 4, as a result of measuring the maximum thickness strain according to the layered ash content, it was confirmed that the addition of spherical alumina particles having an average particle diameter of 10 or 73 maintains a 73% thickness strain even at 30 wt%. In addition, it shows a maximum thickness strain of more than 70% up to a content of about 35 weight ¾.
최대 두께 변형를 증가 효과는 구형 알루미나의 평균 입경이 21 에서 그 효과가 포화 되는 경향을 보였다. 층진재 입자의 크기가 너무 커지면 균일한 분산이 어렵고, 상기 두께 변형률 증진 효과가 포화상태에 도달하였기 때문에 평균 입자 크기가 보다 큰 알루미나 입자를 첨가할 필요는 없다고 판단하였다.  The effect of increasing the maximum thickness strain tended to saturate at the average particle diameter of 21 of spherical alumina. When the size of the layered particles is too large, it is difficult to uniformly disperse the particles, and since the thickness strain enhancing effect reaches a saturation state, it was determined that it is not necessary to add alumina particles having a larger average particle size.
반면에, 기존에 사용되어 왔던 평균입경 4.8 zm급 비구형 알루미나 입자를 첨가한 경우와, 평균입경 m급 구형 입자를 첨가한 경우에는, 충진재 함량이 약 25중량 %인 지점에서 최대 두께 변형률이 70% 이하로 감소하여 고체산화물 연료전지 스택에 적용하기 적합하지 않은 것을 확인 할 수 있었다. On the other hand, when the average particle size of 4.8 zm non-spherical alumina particles used and the average particle size m-spherical particles are added, the maximum thickness strain is 70 at the point where the filler content is about 25% by weight. Below% The decrease was found to be unsuitable for application to solid oxide fuel cell stacks.
실험예 2 : 기체 누설률 (기밀도) 및 열사이클 내구성 평가 Experimental Example 2 Evaluation of gas leak rate (density) and heat cycle durability
실시예 1, 실시예 6 및 비교예 1의 밀봉 실험 샘플의 기체 누설률 및 내구성을 평가하였다. 구체적으로 도 7 좌측 사진과 같은 Stainless Steel Pl ate(STS444) 금속판과 도 8의 모식도와 같은 누설률 측정 모사판 (소재 Crofer 22APU)도 7의 우측 사진)를 이용하여, 실시예 1, 및 실시예 6의 밀봉재의 기밀성이 확보되었는지 여부와, 열싸이클에 따른 누설률 변화를 측정하여 각 밀봉재의 열싸이클 내구성을 비교하였다.  The gas leak rate and durability of the sealing test samples of Example 1, Example 6 and Comparative Example 1 were evaluated. Specifically, using a stainless steel plate (STS444) metal plate as shown in the left photo of FIG. 7 and a leak rate measurement replica plate (material Crofer 22APU) as shown in the schematic diagram of FIG. Whether the airtightness of the sealing material of 6 was secured and the leakage rate change according to the heat cycle were measured to compare the heat cycle durability of each sealing material.
누설률 평가 모사판에 밀봉재의 최종면적 (〜설계면적 )과 스토퍼 면적의 합에 대하여 3.0kgf/cm2의 면압을 인가하고, 온도를 850 °C까지 rc /min로 승온하여 4시간 동안 유지하여 말봉을 형성하였다. 밀봉온도까지 승온하는 과정에서 밀봉재는 유리분말의 점성유동에 의하여 치밀화 되면서 두께가 감소하다가 스토퍼의 높이만큼 도달하면 더 이상 높이 변형이 불가능하므로 두께 변화는 정지하게 된다. Apply a surface pressure of 3.0 kgf / cm 2 to the sum of the final area of the sealant (~ design area) and the stopper area on the leak rate evaluation plate, and raise the temperature to 850 ° C at rc / min and hold for 4 hours. Malbong was formed. In the process of heating up to the sealing temperature, the sealing material is densified by the viscous flow of the glass powder and decreases in thickness, and when the height of the stopper reaches the height of the stopper, the change in height is no longer possible, so the thickness change is stopped.
본 실험에서는 두께 1睡 폭 5.5瞧 의 밀봉재를 기준으로 0.5隱의 알루미나 기판을 stopper로 사용하였다. 밀봉 형성 후 가열로의 온도를 운전 평가 온도인 700°C까지 냉각 후 이 때, 밀봉재로 외부와 차단된 누설률 평가 모사판리판 내부에 N2 가스를 주입하여 1 기압에 도달하면 가스 공급을 차단하고 시간에 따른 압력 변화를 10분간 체크하여 압력 감소를 시간에 따라 기록하고 이를 0°C에서 밀봉재 단위 길이당 단위시간당 누설되는 기체의 양으로 누설률을 (sccm/cm) 측정하였다. In this experiment, 0.5 mm3 alumina substrate was used as a stopper based on a 1 mm thick 5.5 mm thick encapsulant. After the sealing is formed, the temperature of the heating furnace is cooled to 700 ° C, which is the evaluation temperature of operation. At this time, N 2 gas is injected into the leak rate evaluation plate, which is blocked from the outside with the sealing material, and when the pressure reaches 1 atm, the gas supply is cut off. Then, the pressure change over time was checked for 10 minutes, and the pressure decrease was recorded over time, and the leakage rate was measured (sccm / cm) as the amount of gas leaked per unit time per unit length of the sealant at 0 ° C.
일반적으로 밀봉재를 통한 가스 누설를이 0.01sccm/cm 이하의 이면 고체산화물 연료 전지 (S0FC) 밀봉재로서 충분한 기밀성을 확보했다고 할 수 있다.  In general, it can be said that the gas leakage through the sealing material has sufficient airtightness as the back surface solid oxide fuel cell (S0FC) sealing material of 0.01 sccm / cm or less.
실험 결과 도 9에 나타난 바와 같이 밀봉 형성 직후에는 기존의 평균입경 4.8 의 비구형 알루미나를 층진재로 사용한 비교예 1, 평균입경 10 급 및 평균입경 21卿의 구형 알루미나 입자를 층진재로 사용한 실시예 1, 및 실시예 6의 샘플에서도 모두 가스 누설이 발생하지 않았음을 확인하였다. 실시예 1과 비교예 1의 샘플의 내구성을 비교하기 위하여 도 10과 같은 형태의 열싸이클 인가에 따른 상기 누설률 평가하였다. 실험결과는 도-As a result of the experiment, as shown in FIG. 9, immediately after the seal formation, Comparative Example 1 using the conventional non-spherical alumina having an average particle diameter of 4.8 as a layering material, and an example using spherical alumina particles having an average particle diameter of 10 and an average particle diameter of 21 卿 as the layering material It was confirmed that no gas leakage occurred in the samples of 1 and 6, either. In order to compare the durability of the samples of Example 1 and Comparative Example 1, the leak rate was evaluated by applying a heat cycle of the type shown in FIG. Experimental results are shown in
9에 나타내었다. 9 is shown.
밀봉유리에 기존에 사용해왔던 평균 입경 4.8 의 비구형 알루미나 분말을 첨가한 비교예 1은 열싸이클에 따라 누설률이 증가하여 13회 이후에 누설를 한계치에 도달하는 것이 관찰되었다. 반면에 본 발명에서 제공하는 In Comparative Example 1, in which a non-spherical alumina powder having an average particle diameter of 4.8, which has been conventionally used, was added to the sealing glass, it was observed that the leakage rate increased with the heat cycle and the leakage reached the limit after 13 times. On the other hand provided by the present invention
10 의 구형 알루미나를 30중량 % 첨가한 실시예 1, 및 10卿 의 구형 알루미나를 30중량 % 첨가한 실시예 2는 13회까지 가스 누설이 발생하지 않았음이 확인되었다. It was confirmed that Example 1 which added 30 weight% of 10 spherical aluminas, and Example 2 which added 30 weight% of 10 spherical alumina did not generate gas leakage until 13 times.
이를 통해, 본 발명이 동일한 유리 분말에 기존 보다 입경이 크고 형상이 구형인 강화 필러를 사용함으로써 내구성이 크게 개선된 밀봉재를 제공하는 것을 확인 할 수 있었다.  Through this, it could be confirmed that the present invention provides a sealing material having greatly improved durability by using a reinforcing filler having a larger particle size and a spherical shape than the existing glass powder.
본 발명은 상기 실시예들에 한정되는 것이 아니라 서로 다른 다양한 형태로 제조될 수 있으며, 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자는 본 발명의 기술적 사상이나 필수적인 특징을 변경하지 않고서 다른 구체적인 형태로 실시될 수 있다는 것을 이해할 수 있을 것이다. 그러므로 이상에서 기술한 실시예들은 모든 면에서 예시적인 것이며 한정적이 아닌 것으로 이해해야만 한다.  The present invention is not limited to the above embodiments, but may be manufactured in various forms, and a person of ordinary skill in the art to which the present invention pertains does not change the technical spirit or essential features of the present invention. It will be appreciated that the present invention may be practiced as. Therefore, it should be understood that the embodiments described above are exemplary in all respects and not restrictive.
[부호의 설명】  [Explanation of code]
21 : 상부 가압판 21 : Upper plate
22 : 밀봉재  22 : Sealant
23 : 누설를 평가 모사판  23 : Leak evaluation simulation board
24 : 스토퍼 (stopper )  24 : Stopper
25 : 하부 가압판  25 : Lower pressure plate

Claims

【청구범위】 [Claim]
【청구항 1】  [Claim 1]
유리 기지상에 강화 층진재를 포함하고, Including reinforcing layered material on the glass base ,
상기 강화 층진재는, 평균입경이 초과 21 m 이하인 구형의 산화물 입자인 것인 고체 산화물 연료전지용 밀봉재. The reinforcing layer isolation material is a solid oxide fuel cell sealing material, which is a spherical oxide particle having an average particle diameter of more than 21 m.
【청구항 2】 [Claim 2]
제 1항에서, ■ 상기 강화 층진재의 함량은, In claim 1, ■ The content of the reinforcing layered material,
유리 기지 및 강화 층진재와총량 100중량 에 대하여, For glass base and tempered layered materials and total weight 100
25중량 % 이상 35중량 % 이하인 것인 고체 산화물 연료전지용 밀봉재. - Sealing material for a solid oxide fuel cell that is 25% by weight or more and 35% by weight or less. -
【청구항 3】 [Claim 3]
제 1항에서, In paragraph 1,
상기 강화 충진재는, The reinforcing filler is,
알루미나 (A1203) 또는 Y203-doped 안정화 Zr 중 1종 이상인 것인 고체 산화물 연료전지용 밀봉재. Sealing material for a solid oxide fuel cell, which is at least one of alumina (A1 2 0 3 ) or Y 2 0 3 -doped stabilized Zr.
【청구항 4】  [Claim 4]
제 3항에서, In claim 3,
상기 강화 충진재의 평균 입경은, The average particle diameter of the reinforcing filler is
lOfm 이상 21 이하인 것인 고체 산화물 연료전지용 밀봉재. A sealing material for a solid oxide fuel cell that is at least lOfm and not more than 21.
【청구항 5】  [Claim 5]
제 4항에서, In paragraph 4,
상기 강화 충진재는, The reinforcing filler is,
알루미나 (A1203 )인 것인 고체 산화물 연료전지용 밀봉재. A sealing material for a solid oxide fuel cell, which is alumina (A1 2 0 3 ).
【청구항 6]  [Claim 6]
제 1항에서, In paragraph 1,
상기 유리 기지상은, Ba()-Al 203-B203-Si02-M203 (M= Zr02 , ZnO , 또는 이들의 조합)계 유리를 포함하는 것인 고체 산화물 연료전지용 밀봉재. The glass matrix phase is Ba () -Al 2 0 3 -B 2 0 3 -Si0 2 -M 2 0 3 (M = Zr0 2 , ZnO, or a combination thereof) based glass for a solid oxide fuel cell Sealant.
【청구항 7】  [Claim 7]
제 6항에서, In claim 6,
상기 Ba0-A l203-B203-Si02-M203 (M= Zr02 ) ZnO , 또는 이들의 조합)계 유리는, 상기 유리 총량 100중량 %에 대해, BaO: 4()-60중량 %, A1203 : 3-6중량 %, 03: 3-8중량 % Si02 : 30-40중량 %, 및 M203 : 3-6중량 %를 포함하는 것인 고체 산화물 연료전지용 밀봉재. The Ba0-A l 2 0 3 -B 2 0 3 -Si0 2 -M 2 0 3 (M = Zr0 2) ZnO, or a combination thereof is based glass, BaO: 4 ()-60% by weight, A1 2 0 3 : 3-6% by weight, 0 3 : 3-8% by weight Si0 2 : 30-40% by weight, and M 2 relative to 100% by weight of the total glass. 0 3 : A sealing material for a solid oxide fuel cell containing 3-6% by weight.
【청구항 8】  [Claim 8]
제 1항에서, In paragraph 1,
상기 고체 산화물 연료전지용 밀봉재는, The solid oxide fuel cell sealing material,
최대 두께 변형를아 70%이상인 것인 고체 산화물 연료전지용 밀봉재 . Sealant for solid oxide fuel cells, with a maximum thickness deformation of more than 70%.
【청구항 9】  [Claim 9]
유리 분말 및 강화 층진재를 흔합하는 단계; Mixing the glass powder and the reinforced layered material;
상기 흔합된 유리 분말 및 강화 층진재에 바인더, 및 용매를 투입하여 페이스트를 제조하는 단계 ; Preparing a paste by adding a binder and a solvent to the mixed glass powder and the reinforced layer dust;
상기 페이스트를 고체산화물 연료전지 스택의 밀봉부에 도포하는 단계; 및 상기 도포된 페이스트를 열처리하는 단계 ;를 포함하고, Applying the paste to a seal of the solid oxide fuel cell stack; And heat treating the applied paste.
상기 강화 충진재는, 평균입경이 5 초과 21 이하인 구형의 산화물 입자인 것인 고체 산화물 연료전지의 밀봉방법. And the reinforcing filler is a spherical oxide particle having an average particle diameter of more than 5 and 21 or less.
【청구항 10】  [Claim 10]
제 9항에서, In claim 9,
상기 유리 분말 및 강화 충진재를 흔합하는 단계;에서 , Mixing the glass powder and reinforcing filler;
상기 강화 충진재의 함량은, 상기 유리 분말 및 강화 층진재 총량 100중량 %에 대하여, 25중량 ¾> 이상 35중량 % 이하인 것인 고체 산화물 연료전지의 밀봉방법 . The content of the reinforcing filler is a solid oxide fuel cell sealing method of 25% by weight ¾> 35% by weight, based on 100% by weight of the total amount of the glass powder and the reinforced layered material.
【청구항 11】  [Claim 11]
제 10항에서, In paragraph 10,
상기 페이스트를 고체산화물 연료전지 스택의 밀봉부에 도포하는 단계;는 로봇 디스펜싱 공정에 의해 수행되는 것인 고체 산화물 연료전지의 밀봉방법. Applying the paste to a sealing portion of a solid oxide fuel cell stack; is performed by a robot dispensing process.
【청구항 12]  [Claim 12]
제 10항에서, In paragraph 10,
상기 도포된 페이스트를 열처리하는 단계 ;는 Heat-treating the applied paste;
800 °C 이상 900°C 이하의 온도에서 수행되는 것인 고체 산화물 연료전지의 밀봉방법 . Of the solid oxide fuel cell that is carried out at a temperature of 800 ° C or more and 900 ° C or less. Sealing method.
【청구항 13]  [Claim 13]
제 10항에서, In paragraph 10,
상기 강화 층진재는, The reinforcement layered material,
알루미나 (A1203)인 것인 고체 산화물 연료전지의 밀봉방법.A method of sealing a solid oxide fuel cell which is alumina (A1 2 0 3 ).
【청구항 14】 [Claim 14]
제 13항에세 Clause 13
상기 알루미나의 평균 입경은, The average particle diameter of the alumina is
lO^m 이상 21 이하인 것인 고체 산화물 연료전지의 밀봉방법. A sealing method for a solid oxide fuel cell that is more than lO ^ m and less than 21.
PCT/KR2016/011838 2015-12-17 2016-10-20 Glass sealing material for solid oxide fuel cell and sealing method using same WO2017104960A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2015-0181061 2015-12-17
KR1020150181061A KR101782609B1 (en) 2015-12-17 2015-12-17 Glass sealant for solid oxide fuel cell and sealing method using the same

Publications (1)

Publication Number Publication Date
WO2017104960A1 true WO2017104960A1 (en) 2017-06-22

Family

ID=59056963

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2016/011838 WO2017104960A1 (en) 2015-12-17 2016-10-20 Glass sealing material for solid oxide fuel cell and sealing method using same

Country Status (2)

Country Link
KR (1) KR101782609B1 (en)
WO (1) WO2017104960A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6541146B1 (en) * 2000-11-07 2003-04-01 Hybrid Power Generation Systems, Llc Composite sealant materials based on reacting fillers for solid oxide fuel cells
KR20090052566A (en) * 2007-11-21 2009-05-26 명지대학교 산학협력단 A sealing materials contained alumina particle for solid oxide fuel cell
KR20100073833A (en) * 2008-12-23 2010-07-01 주식회사 포스코 Method for manufacturing sealant for solid electrolyte fuel cell
JP5105780B2 (en) * 2006-06-27 2012-12-26 一般財団法人ファインセラミックスセンター Seal material and solid oxide fuel cell using the seal material
KR20140083765A (en) * 2012-12-26 2014-07-04 주식회사 포스코 Sealing material for solid oxide fuel cell having sandwich structure and manufacturing method thereof

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6541146B1 (en) * 2000-11-07 2003-04-01 Hybrid Power Generation Systems, Llc Composite sealant materials based on reacting fillers for solid oxide fuel cells
JP5105780B2 (en) * 2006-06-27 2012-12-26 一般財団法人ファインセラミックスセンター Seal material and solid oxide fuel cell using the seal material
KR20090052566A (en) * 2007-11-21 2009-05-26 명지대학교 산학협력단 A sealing materials contained alumina particle for solid oxide fuel cell
KR20100073833A (en) * 2008-12-23 2010-07-01 주식회사 포스코 Method for manufacturing sealant for solid electrolyte fuel cell
KR20140083765A (en) * 2012-12-26 2014-07-04 주식회사 포스코 Sealing material for solid oxide fuel cell having sandwich structure and manufacturing method thereof

Also Published As

Publication number Publication date
KR20170072640A (en) 2017-06-27
KR101782609B1 (en) 2017-09-27

Similar Documents

Publication Publication Date Title
CN105103352B (en) Sanbornite base glass-ceramic seal for high temperature application
EP2258014B1 (en) A composite glass seal for a solid oxide electrolyser cell stack
JP7016028B2 (en) Fuel cell
KR20150065739A (en) Glass composition for the use as a sealant
KR102427387B1 (en) Sealant composition for solid oxide fuel cell, solid oxide fuel cell comprising sealant manufactured by the same and method for sealing thereof
EP3451429B1 (en) Electrolyte for solid oxide fuel cell, solid oxide fuel cell comprising same, composition for said electrolyte, and method for producing said electrolyte
EP2104171A1 (en) Deformable glass based composite seal for high temperature application
US20090142639A1 (en) Seal system for solid oxide fuel cell and method of making
WO2017104960A1 (en) Glass sealing material for solid oxide fuel cell and sealing method using same
KR20120037175A (en) A fuel cell and a manufacturing metheod thereof
KR102427389B1 (en) Sealant composition for solid oxide fuel cell, solid oxide fuel cell comprising sealant manufactured by the same and method for sealing thereof
US9564643B2 (en) Engineered glass seals for solid-oxide fuel cells
KR101013845B1 (en) Manufacturing Method of Sealing Glass for Intermediate Temperature Planar SOFC
KR101570513B1 (en) Sealing composite for flat solid oxide fuel cell stack and fuel cell stack using the same
CN112592197A (en) Ceramic-metal sealing ceramic sheet prepared by tape casting method
KR102365217B1 (en) Sealant composition for solid oxide fuel cell, solid oxide fuel cell comprising sealant manufactured by the same and method for sealing thereof
KR101977856B1 (en) Sealant for solid oxide fuel cell, solid oxide fuel cell comprising the sealant, battery module comprising the solid oxide fuel cell and method of manufacturing the sealant for solid oxide fuel cell
KR101131704B1 (en) Metallic interconnect for fuel cell, and method for coating the same
US20220177359A1 (en) Ceramic materials
KR100779741B1 (en) The reinforced matrix containing sintering aids for molten carbonate fuel cell
KR20220069213A (en) Glass ceramic composite sealant for solid oxide fuel cell with low shrinkage
CN117098737A (en) Glass composition for fuel cell stack sealing
KR101482998B1 (en) Sealing composite for flat solid oxide fuel cell stack
Dal Col Joining of porous alloys by glass ceramics for energy applications
Suda et al. Bonding phase of amorphous silicate gas-tight seals for electrode-supported SOFCs

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16875902

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16875902

Country of ref document: EP

Kind code of ref document: A1