WO2017104848A1 - Composition including hydrophobic cluster and clay mineral - Google Patents
Composition including hydrophobic cluster and clay mineral Download PDFInfo
- Publication number
- WO2017104848A1 WO2017104848A1 PCT/JP2016/087690 JP2016087690W WO2017104848A1 WO 2017104848 A1 WO2017104848 A1 WO 2017104848A1 JP 2016087690 W JP2016087690 W JP 2016087690W WO 2017104848 A1 WO2017104848 A1 WO 2017104848A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- powder composition
- fullerene
- water
- composition according
- hydrophobic
- Prior art date
Links
Images
Definitions
- the present invention relates to a composition for water-solubilizing or water-dispersing a hydrophobic cluster, particularly fullerene, and a method for producing the composition.
- the hydrophobic cluster described here is a hydrophobic organic substance or inorganic substance that cannot generally be dispersed / dissolved in water, and atoms or molecules aggregate through van der Waals force, hydrogen bond, covalent bond, etc. Refers to an aggregate of fine particles of several nanometers to several hundred nanometers.
- hydrophobic organic substances such as ⁇ -conjugated compounds such as conductive polymers, conjugated cyclic compounds, carotenoids, carbon materials such as carbon nanotubes, fullerenes, graphene, graphite, carbon black, carbon atoms and heteroatoms
- carbon clusters such as boron atoms and carbolines such as carbolines, metal oxides, and inorganic inorganic particles such as hydrophobic inorganic substances are applied to basic research and practical application in the fields of electronic materials, pharmaceuticals, foods, cosmetics and daily necessities. Have been widely studied.
- fullerene which is a kind of carbon allotrope along with diamond, graphene, graphite and carbon nanotube, has attracted attention in the fields of electronic materials, pharmaceuticals, foods, cosmetics and daily necessities due to its unique chemical structure and electronic properties.
- Fullerene is a hydrophobic carbon cluster having a hollow structure in which many carbon atoms are bonded in a cage shape.
- fullerene (Cn, n: number of carbon atoms) is a molecular chemical species having a molecular weight.
- C 70 , C 74 , C C Higher order fullerenes such as 76 and C 78 have been reported so far.
- solubility medium fullerenes is very low, good its solubility with respect to a limited organic solvents are solvents high and difficult to say (for example, the solubility of C 60 fullerene, toluene; 2.9 mg / mL, benzene; 1.5 mg / mL, carbon tetrachloride; 0.32 mg / mL, N-methyl-2-pyrrolidone; 0.89 mg / mL, polyethylene glycol; 0.004 mg / mL, dimethyl sulfoxide; 0.001 mg / ML, ethanol; 0.001 mg / mL), solubility in water is extremely low ( ⁇ 0.00001 mg / mL) (for example, see Patent Document 1). At present, the solubility of fullerenes in a medium and low storage stability are major issues in application development.
- a method for producing a fullerene aqueous dispersion in which fullerene is saturated and dissolved in a relatively good polar organic solvent (for example, dimethyl sulfoxide or tetrahydrofuran), water is added, and then the solvent is removed if necessary.
- a relatively good polar organic solvent for example, dimethyl sulfoxide or tetrahydrofuran
- water is added, and then the solvent is removed if necessary.
- JP 2005-60380 A Special table 2013-528582 JP 2001-348214 A JP 2007-70147 A International Publication No. 2011/066541 JP 2006-69812 A
- the present invention has been made in view of the above problems, and provides a composition comprising a hydrophobic cluster (particularly fullerene) having practically sufficient water-solubility or water-dispersibility, and a method for producing the composition.
- the present invention is as follows: (1) A water-soluble or water-dispersible powder composition comprising a powder obtained by dry-grinding a mixture of hydrophobic clusters and clay minerals. (2) The powder composition according to the above (1), wherein the ratio (by weight) of the hydrophobic cluster to the clay mineral is in the range of 1: 100 to 1: 1. (3) The powder composition according to any one of (1) and (2) above, wherein the clay mineral is a clay mineral mainly composed of layered silicate. (4) The powder composition according to any one of (1) to (3) above, wherein the clay mineral is a layered silicate that swells in water and is ion-exchangeable.
- the powder composition according to (7), wherein the conjugated cyclic compound is selected from pentacene, anthracene, naphthalene, or porphyrin.
- fullerene, C 60 fullerene is selected from the group consisting of C 70 fullerenes and their mixtures, powder composition according to the above (11).
- a method for producing a water-soluble or water-dispersible powder composition comprising dry pulverizing a mixture comprising a hydrophobic cluster and a clay mineral to obtain a powder.
- the production method according to (13) or (14), wherein the dry pulverization is performed using a ball mill or a grinder.
- the powder composition according to any one of (1) to (12) above or the powder composition obtained by the production method according to any one of (13) to (15) above is dissolved in an aqueous medium Or a dispersed fullerene-containing aqueous composition.
- the powder composition of the present invention can be uniformly dispersed in an aqueous medium without requiring selection by the particle size and specific gravity of fullerene in the preparation process. Furthermore, a solid gel can be formed by increasing the concentration of the powder composition in the aqueous medium.
- the aqueous dispersion of fullerene obtained from the powder composition of the present invention can have a high concentration that cannot be compared with those obtained by conventional techniques, and is excellent in long-term stability. Furthermore, when the manufacturing method of the composition of this invention was used, in addition to fullerene, it discovered that the water dispersibility of another hydrophobic cluster was improved.
- the powder composition of the present invention includes a powder obtained by dry-grinding a mixture of hydrophobic clusters, preferably fullerene and clay mineral, and is characterized by being water-soluble or water-dispersible.
- hydrophobic cluster in the present invention is an organic or inorganic substance that is usually insoluble or low in dispersibility in water, and is formed by aggregation of atoms or molecules through van der Waals force, hydrogen bond, covalent bond, or the like. Means an aggregate of nanometer to hundreds of nanometer particles.
- hydrophobic organic materials include ⁇ -conjugated compounds and the like
- hydrophobic inorganic materials include carbon clusters, metal oxides, inorganic fine particles, and the like.
- ⁇ -conjugated compound is a general term for compounds having delocalized electrons by alternately locating single bonds and multiple bonds in the compound.
- ⁇ -conjugated compounds are known to reduce the energy of the whole molecule and increase the stability. Unshared electron pairs, radicals, carbenium ions, etc. are also considered as part of the conjugated system.
- ⁇ -conjugated compounds include conductive polymers such as polyphenylene, polyphenylene vinylene, polythiophene, polyethynylene, polydiacetylene, polyacetylene, polypyrrole, polyfuran, polyaniline; porphyrin, pentacene, naphthacene, pyrene, anthracene, naphthalene, benzene, Conjugated cyclic compounds such as annulene, azulene, cyclopentadiene; cinnam alcohol, cinnamaldehyde, orthophenylphenol, butylhydroxyanisole, butylhydroxytoluene, flavonoids (eg, catechin), nicotinic acid, nicotinamide, ⁇ -tocopherol, Aromatic compounds which may contain heteroatoms such as nitrogen, oxygen and sulfur atoms such as coumarin and salicylic acid; and ⁇ -carotene, retino
- carbon clusters include carbon nanotubes such as single-walled carbon nanotubes or multi-walled carbon nanotubes, carbon materials such as fullerene, graphene, graphite (graphite), activated carbon, carbon black, furnace black, acetylene black, and ketjen black. It is done. These may contain hetero atoms such as nitrogen atom, oxygen atom, sulfur atom and boron atom, and specific examples thereof include boron clusters such as carborane and carboline composed of carbon atom and boron atom. Among these, carbon nanotubes such as single-walled carbon nanotubes and multi-walled carbon nanotubes, fullerene, graphene, graphite, and carbon black are preferable, and fullerene is particularly preferable.
- the fullerene used in the present invention is a fullerene having 60 to 120 carbon atoms, preferably 60, 70, 76, 78, 80, 82, 84, 86, 88, 90, 92, 94, 96 fullerenes.
- the carbon atom in the fullerene hollow structure is modified with another functional group, the hollow structure includes an ionic species, and the hollow structure is partially ring-opened.
- the fullerene is not particularly limited, but fullerene having 60 and 70 carbon atoms or a mixture thereof is more preferable, and fullerene having 60 carbon atoms is most preferable.
- the fullerene used in the present invention may include carbon materials other than fullerene such as graphite and other powder materials as impurities.
- a fullerene containing 20% by mass or more, preferably 70% by mass or more, more preferably 90% by mass or more can be used.
- the clay mineral used in the present invention means a natural or synthetic layered silicate mineral, and is not particularly limited as long as it swells in water and can exchange ions. Examples include zeolite, talc, chlorite, kaolinite, illite, glowconite, sericite, smectite and the like. Of these, kaolinite and smectite are preferred because of their high hydrophilicity.
- the smectite is appropriately selected from montmorillonite, beidellite, nontronite, stevensite, soconite, hectorite, saponite, and bentonite, and montmorillonite, hectorite, saponite, and bentonite are more preferable.
- Smectite is a commercial product mainly composed of synthetic sodium silicate / magnesium (for example, Laponite (manufactured by Rockwood Co., Ltd.), Kunipia (manufactured by Kunimine Kogyo Co., Ltd.), Smecton (manufactured by Kunimine Kogyo Co., Ltd.), Bengel (Hojun Co., Ltd.) )))))
- Laponite manufactured by Rockwood Co., Ltd.
- Kunipia manufactured by Kunimine Kogyo Co., Ltd.
- Smecton manufactured by Kunimine Kogyo Co., Ltd.
- Bengel Hojun Co., Ltd.
- laponite and smecton are preferred, and laponite is most preferred.
- the layered silicate mineral is contained as a main component of the clay mineral, and the content thereof is usually 60% or more, preferably 75% or more, and most preferably 90% or more.
- the ratio (weight basis) of fullerene to clay mineral is in the range of 1: 100 to 1: 1, preferably 1:50 to 1. : 2 range, more preferably 1:25 to 1: 3.
- a pulverizer such as a homogenizer, a multi-bead shocker, a pin mill, or a jet mill.
- the pulverization time, the treatment pressure, and the like are appropriately adjusted according to the hardness of the hydrophobic cluster and clay mineral to be pulverized. It is preferable to perform dry pulverization using a ball mill, a pot mill, a grinder, or a multi-bead shocker in that the dispersibility of fullerene in the resulting composition is improved.
- the average particle size of the dry pulverized powder can be determined, for example, by the scattering intensity average particle size by a dynamic light scattering device (DLS) in an aqueous medium.
- the average particle diameter is 1 ⁇ m or less, preferably 500 nm or less, more preferably 300 nm or less.
- the lower limit value of the average particle diameter is, for example, 10 nm.
- a hydrophobic cluster (in particular, fullerene) -containing aqueous composition can be obtained by dissolving or dispersing the powder composition of the present invention in an aqueous medium.
- the aqueous composition containing hydrophobic clusters (particularly fullerene) of the present invention can uniformly disperse a high concentration of hydrophobic clusters in an aqueous medium and has excellent long-term stability. It can be used in the cosmetics and daily necessities fields.
- the aqueous medium is water, a water-miscible organic solvent or a mixture thereof, preferably water or a mixture of water and a water-miscible organic solvent.
- water miscible organic solvents include alcohols having 1 to 4 carbon atoms such as methanol, ethanol, isopropyl alcohol and butanol, ketones such as acetone, nitriles such as acetonitrile, N-methylpyrrolidone, N-cyclohexylpyrrolidone Amides such as N, N-dimethylacetamide and N, N-dimethylformamide, lactones such as ⁇ -butyrolactone, and ethers such as tetrahydrofuran. These are appropriately selected according to the purpose of the hydrophobic cluster-containing aqueous composition of the present invention, and can be contained within a range that does not adversely affect the dissolution or dispersion of the hydrophobic clusters.
- the hydrophobic cluster-containing aqueous composition of the present invention may contain other components depending on the purpose.
- any other component can be added as long as it does not adversely affect the dissolution or dispersion of fullerene.
- examples of such other components include alcohols, polyhydric alcohols, sugars, emollients, nonionic surfactants, plant extracts, water-soluble polymers, fragrances, colorants, UV protection agents, pH adjusters. , Antiseptics, bactericides, antioxidants, sequestering agents and bioactive ingredients.
- Examples 1 to 3 Comparative Examples 1 to 9
- (1) Preparation of powder composition Weigh C 60 fullerene (manufactured by Sigma-Aldrich) and a dispersant (see Table 1) according to Table 1, and dry pulverize and mix them together with a ball mill (manufactured by Retsch, MM200). (25 Hz, 90 minutes), and C 60 fullerene powder compositions of Examples 1 to 3 were obtained. Further, various dispersants other than clay minerals and C 60 fullerene not using a dispersant were subjected to the same dry pulverization / mixing treatment to obtain compositions of Comparative Examples 1 to 9.
- Example 2 From Table 3, in the C 60 fullerene conversion concentration is 50 ppm, Example 2, Example 3, and any of C 60 fullerene-containing aqueous composition obtained from the powder composition of Comparative Example 2 also by forming fine particles in water It was shown that C 60 fullerene-containing aqueous composition among them obtained from the powder composition of Example 2, and 65 nm, to be very small particles was found ( Figure 2). On the other hand, when the C 60 fullerene equivalent concentration is 200 ppm, the C 60 fullerene-containing aqueous composition obtained from the powder composition of Example 3 has an increased particle size compared to the compositions of Example 2 and Comparative Example 2. And the spread of the particle size distribution was confirmed. From the result of the dispersion test example (Table 2), it is considered that the particle size increased because the aqueous composition of Example 3 tends to gel.
- each hydrophobic cluster (25 mg) and Laponite XLG (475 mg) were weighed together and subjected to dry grinding / mixing treatment (25 Hz, 90 minutes) with a ball mill (Retsch, MM200).
- a powder composition of each hydrophobic cluster of ⁇ 12 was obtained.
- the powder composition of each hydrophobic cluster was added to water so as to have a predetermined concentration shown in Table 4, and the dispersibility in water was confirmed in the same manner as in Example 2. Further, the same water dispersion test was performed on the hydrophobic cluster to which 19 times the amount of Laponite XLG was added without performing dry pulverization / mixing treatment. The results are shown in Table 4.
- any of the compositions was well dispersed in water. Above all, it can be well dispersed in carbon clusters such as graphene, carbon nanotubes, and carbon black, conductive polymers such as polythiophene, conjugated cyclic compounds such as pentacene and porphyrin, and carotenoids such as retinoic acid. Indicated.
- the hydrophobic clusters not subjected to the dry pulverization / mixing treatment with the clay mineral did not show good dispersibility when simply added to water (Table 4, unground). From these results, it was revealed that the composition obtained by subjecting hydrophobic clusters and clay minerals to dry pulverization / mixing showed good dispersibility in water.
- Example 13 C 60 fullerene (Aldrich, 0.1 g) and Laponite XLG (1.9 g) were added to the sample holder with a multi-sample specimen precision crusher (Yasui Kikai Co., Ltd., PV1001C), and pulverization treatment (3000 rpm, 1 Minutes). After pulverization, the obtained powder composition was recovered. A water dispersion test was carried out in the same manner as in Example 2, and it was confirmed that the water was well dispersed.
- Example 14 A pot mill (manufactured by ASONE, HD-B-105) was charged with C 60 fullerene (manufactured by Aldrich, 2 g), Laponite XLG (38 g), zirconia balls ( ⁇ 10 mm, 4 kg), and a pot mill (manufactured by ASONE, PTA-01). ) For 20 hours (measured value: 76 rpm). After pulverization, the zirconia balls were removed, and the obtained powder composition was collected, and a dispersion test for water was conducted in the same manner as in Example 2 to confirm that it was well dispersed in water.
- Example 15 C 60 fullerene (manufactured by Aldrich, 0.5 g) and Laponite XLG (9.5 g) were added and pulverized for 3 hours (setting value: 20 rpm) with a grinder (Ishikawa Factory, No. 18D). The obtained powder composition was collected and subjected to a water dispersion test in the same manner as in Example 2 to confirm that it was well dispersed in water.
- Example 16 C 60 fullerene (Aldrich, 0.5 g) and Laponite XLG (9.5 g) were added and pulverized for 2.5 hours (setting value: 20 rpm) with a grinder (Ishikawa Factory, No. 18D). . Then, water (5.0 g) was added, and further mixed for 0.5 hours (set value: 20 rpm). The obtained powder composition was collected and subjected to a water dispersion test in the same manner as in Example 2 to confirm that it was well dispersed in water. It became clear that even if water was added, a good pulverized product was obtained.
- Example 14 to 16 a scale-up study was conducted (the total solid content was 40 g for Example 14 and 10 g for Examples 15 and 16). It was found that it was well dispersed in water at any scale. It was also found that the composition can be produced even in a pulverization apparatus (pot mill measurement value: 76 rpm, crusher setting value: 20 rpm) having a relatively low processing speed as described above.
- the method for producing the water-soluble or water-dispersible powder composition of the present invention is very simple, and there is no need to perform complicated processes such as filtration, centrifugation, sediment removal, and distillation operation, and the hydrophobic composition is efficiently hydrophobic.
- a cluster (particularly fullerene) -containing aqueous composition can be obtained, which is characterized by being dispersible in water.
- dispersible hydrophobic clusters (especially fullerenes) can be applied to a wide range of concentrations, so that they can be used in various industrial fields such as electronic materials, pharmaceuticals, and daily necessities.
Landscapes
- Carbon And Carbon Compounds (AREA)
- Cosmetics (AREA)
Abstract
The present invention provides: a water-soluble or water-dispersible powdery composition which includes a powder obtained through dry pulverization of a mixture formed of a hydrophobic cluster (particularly, fullerene) and a clay mineral; and a method for producing the powdery composition.
Description
本発明は、疎水性クラスター、特にはフラーレンを水溶化もしくは水分散化させるための組成物、及び該組成物の製造方法に関する。
The present invention relates to a composition for water-solubilizing or water-dispersing a hydrophobic cluster, particularly fullerene, and a method for producing the composition.
近年、疎水性クラスターを水中に均一かつ安定的に調製する技術が注目されている。ここで述べる疎水性クラスターとは、一般的に水に分散・溶解することができない疎水性有機物もしくは無機物であって、ファンデルワールス力、水素結合又は共有結合等を介して原子又は分子が凝集して形成される、数ナノメートルから数百ナノメートルの微粒子の集合体を指す。中でも、導電性高分子、共役環式化合物、カロテノイド等のπ-共役系化合物等の疎水性有機物や、カーボンナノチューブ、フラーレン、グラフェン、黒鉛、カーボンブラック等の炭素材料や、炭素原子とヘテロ原子(例えば、ホウ素原子)からなるカルボランやカルボリン等の炭素クラスター、金属酸化物、無機微粒子等の疎水性無機物は、電子材料、医薬品、食品、化粧品及び日用品分野において基礎から応用研究、さらには実用化にまで幅広く研究対象となっている。
中でもダイヤモンド、グラフェン、黒鉛、カーボンナノチューブと並ぶ炭素の同素体の一種であるフラーレンは、そのユニークな化学的構造及び電子的物性により電子材料、医薬品、食品、化粧品及び日用品分野において注目を集めている。 In recent years, a technique for uniformly and stably preparing hydrophobic clusters in water has attracted attention. The hydrophobic cluster described here is a hydrophobic organic substance or inorganic substance that cannot generally be dispersed / dissolved in water, and atoms or molecules aggregate through van der Waals force, hydrogen bond, covalent bond, etc. Refers to an aggregate of fine particles of several nanometers to several hundred nanometers. Among them, hydrophobic organic substances such as π-conjugated compounds such as conductive polymers, conjugated cyclic compounds, carotenoids, carbon materials such as carbon nanotubes, fullerenes, graphene, graphite, carbon black, carbon atoms and heteroatoms ( For example, carbon clusters such as boron atoms and carbolines such as carbolines, metal oxides, and inorganic inorganic particles such as hydrophobic inorganic substances are applied to basic research and practical application in the fields of electronic materials, pharmaceuticals, foods, cosmetics and daily necessities. Have been widely studied.
Above all, fullerene, which is a kind of carbon allotrope along with diamond, graphene, graphite and carbon nanotube, has attracted attention in the fields of electronic materials, pharmaceuticals, foods, cosmetics and daily necessities due to its unique chemical structure and electronic properties.
中でもダイヤモンド、グラフェン、黒鉛、カーボンナノチューブと並ぶ炭素の同素体の一種であるフラーレンは、そのユニークな化学的構造及び電子的物性により電子材料、医薬品、食品、化粧品及び日用品分野において注目を集めている。 In recent years, a technique for uniformly and stably preparing hydrophobic clusters in water has attracted attention. The hydrophobic cluster described here is a hydrophobic organic substance or inorganic substance that cannot generally be dispersed / dissolved in water, and atoms or molecules aggregate through van der Waals force, hydrogen bond, covalent bond, etc. Refers to an aggregate of fine particles of several nanometers to several hundred nanometers. Among them, hydrophobic organic substances such as π-conjugated compounds such as conductive polymers, conjugated cyclic compounds, carotenoids, carbon materials such as carbon nanotubes, fullerenes, graphene, graphite, carbon black, carbon atoms and heteroatoms ( For example, carbon clusters such as boron atoms and carbolines such as carbolines, metal oxides, and inorganic inorganic particles such as hydrophobic inorganic substances are applied to basic research and practical application in the fields of electronic materials, pharmaceuticals, foods, cosmetics and daily necessities. Have been widely studied.
Above all, fullerene, which is a kind of carbon allotrope along with diamond, graphene, graphite and carbon nanotube, has attracted attention in the fields of electronic materials, pharmaceuticals, foods, cosmetics and daily necessities due to its unique chemical structure and electronic properties.
フラーレンは多数の炭素原子がカゴ状に結合した中空構造を有する疎水性炭素クラスターである。また、フラーレン(Cn、n;炭素原子数)は、分子量を持つ分子性の化学種であり、代表とされるC60の他にも、炭素原子の数の違いからC70、C74、C76、C78等の高次フラーレンがこれまでに報告されている。
Fullerene is a hydrophobic carbon cluster having a hollow structure in which many carbon atoms are bonded in a cage shape. In addition, fullerene (Cn, n: number of carbon atoms) is a molecular chemical species having a molecular weight. In addition to C 60 as a representative, C 70 , C 74 , C C Higher order fullerenes such as 76 and C 78 have been reported so far.
しかしながら、フラーレンの媒体に対する溶解度は非常に低く、良溶媒とされる限られた有機溶媒に対してもその溶解度は高いとは言い難く(例えば、C60フラーレンの溶解度は、トルエン;2.9mg/mL、ベンゼン;1.5mg/mL、四塩化炭素;0.32mg/mL、N-メチル-2-ピロリドン;0.89mg/mL、ポリエチレングリコール;0.004mg/mL、ジメチルスルホオキシド;0.001mg/mL、エタノール;0.001mg/mL)、水に対する溶解度は極めて低い(<0.00001mg/mL)(例えば、特許文献1参照)。このフラーレンの媒体に対する溶解度や保存安定性の低さは用途開発において大きな課題となっているのが現状である。
However, the solubility medium fullerenes is very low, good its solubility with respect to a limited organic solvents are solvents high and difficult to say (for example, the solubility of C 60 fullerene, toluene; 2.9 mg / mL, benzene; 1.5 mg / mL, carbon tetrachloride; 0.32 mg / mL, N-methyl-2-pyrrolidone; 0.89 mg / mL, polyethylene glycol; 0.004 mg / mL, dimethyl sulfoxide; 0.001 mg / ML, ethanol; 0.001 mg / mL), solubility in water is extremely low (<0.00001 mg / mL) (for example, see Patent Document 1). At present, the solubility of fullerenes in a medium and low storage stability are major issues in application development.
そのような中、非極性の有機溶剤ではなく水や水系媒体中に上記のフラーレンを分散する技術がいくつか報告されている。そのようなフラーレンの分散技術として、例えば、水に対する溶解性を付与する官能基を導入し、フラーレンを化学的に修飾させる手法が数多く報告されている(例えば、非特許文献1、特許文献2参照)。しかしながら、これらの報告例はフラーレン特有のπ-共役に由来する電子的物性を下げるため、好ましい手法とは言い難い。他に、比較的良溶媒の極性有機溶媒(例えば、ジメチルスルホオキシドやテトラヒドロフラン)にフラーレンを飽和溶解させた後、水を加え、必要により次いで溶媒を除去する、フラーレン水分散液の製造方法が開示されている(例えば、特許文献3参照)。しかしながら、水分散液が有機溶媒を含有する点や、その有機溶媒を除去するためには、水よりも沸点の低い有機溶媒を用いなければならない点で、合理的な手法であるとは言い難い。
Under such circumstances, several techniques for dispersing the above fullerene in water or an aqueous medium rather than a non-polar organic solvent have been reported. As such a fullerene dispersion technique, for example, a number of methods for chemically modifying fullerene by introducing a functional group imparting solubility in water have been reported (for example, see Non-Patent Document 1 and Patent Document 2). ). However, these reported examples lower the electronic physical properties derived from the fullerene-specific π-conjugation, and thus are not preferred methods. In addition, a method for producing a fullerene aqueous dispersion is disclosed, in which fullerene is saturated and dissolved in a relatively good polar organic solvent (for example, dimethyl sulfoxide or tetrahydrofuran), water is added, and then the solvent is removed if necessary. (For example, see Patent Document 3). However, it is difficult to say that this is a reasonable method in that the aqueous dispersion contains an organic solvent and that an organic solvent having a boiling point lower than that of water must be used to remove the organic solvent. .
近年、フラーレン粉末を直接水に分散可能にする技術がいくつか報告されている。例えば、摩擦を伴う機械的な粉砕処理を施したフラーレンの粉末を用いることで、フラーレンに化学的な修飾処理を施すことなくフラーレンのナノ粒子の水分散液を製造する方法が開示されている(例えば、特許文献4参照)。しかし、その粉砕したフラーレンの水への分散工程において、数時間の超音波処理や撹拌工程、さらにはサイズや比重の大きな粒子をフィルター処理や遠心分離を用いて除去するという煩雑な精製工程が含まれている。
In recent years, several techniques for making fullerene powder dispersible directly in water have been reported. For example, a method of producing an aqueous dispersion of fullerene nanoparticles without using chemical modification treatment of fullerene by using fullerene powder subjected to mechanical pulverization with friction is disclosed ( For example, see Patent Document 4). However, the dispersion process of the pulverized fullerene in water includes ultrasonic treatment and stirring for several hours, and complicated purification steps of removing particles with large size and specific gravity using filtering or centrifugation. It is.
また、β-1,3-1,6-D-グルカンとの複合体にすることにより、フラーレンの水溶性又は水分散性が著しく向上したことが報告されている(例えば、特許文献5参照)。さらに、シクロデキストリンとフラーレンを用いて、フラーレンの分散水性溶液を調製し、次いでカリックスアレーンを混合処理してカリックスアレーンとフラーレンとの錯体を調製することにより、フラーレンを水性化する方法が開示されている(例えば、特許文献6参照)。しかしながら、これらの手法もまた、上記のフィルターや遠心分離による煩雑な精製工程が含まれている。
In addition, it has been reported that the use of a complex with β-1,3-1,6-D-glucan has significantly improved the water solubility or water dispersibility of fullerene (see, for example, Patent Document 5). . Furthermore, a method for hydrophilizing fullerene by preparing a dispersion aqueous solution of fullerene using cyclodextrin and fullerene, and then preparing a complex of calixarene and fullerene by mixing treatment of calixarene is disclosed. (See, for example, Patent Document 6). However, these methods also include a complicated purification step using the above-described filter or centrifugation.
上記のように、疎水性クラスター(特に、フラーレン)を水に分散・溶解させる技術はいずれも煩雑な処理を必要とする等の欠点があり、実用に耐えるものとは言い難い。そのため、フラーレンを代表とする疎水性クラスターを水溶化もしくは水分散化させるための新たな技術が依然として求められていた。
As described above, all the techniques for dispersing and dissolving hydrophobic clusters (especially fullerenes) in water have drawbacks such as requiring complicated treatments, and it is difficult to say that they are practically usable. Therefore, a new technique for water-solubilizing or water-dispersing a hydrophobic cluster typified by fullerene has still been demanded.
本発明は、上記課題を鑑みなされたものであり、実用上十分な水溶性もしくは水分散性を有する疎水性クラスター(特に、フラーレン)からなる組成物、及び該組成物の製造方法を提供する。
The present invention has been made in view of the above problems, and provides a composition comprising a hydrophobic cluster (particularly fullerene) having practically sufficient water-solubility or water-dispersibility, and a method for producing the composition.
すなわち、本発明は、以下のとおりである:
(1)疎水性クラスター及び粘土鉱物からなる混合物を乾式粉砕した粉末を含む、水溶性又は水分散性の粉末組成物。
(2)疎水性クラスターの粘土鉱物に対する比(重量基準)が1:100~1:1の範囲である、上記(1)に記載の粉末組成物。
(3)粘土鉱物が、層状ケイ酸塩を主成分とする粘土鉱物である、上記(1)又は(2)のいずれかに記載の粉末組成物。
(4)粘土鉱物が、水に膨潤し、かつイオン交換可能な層状ケイ酸塩である、上記(1)~(3)のいずれかに記載の粉末組成物。
(5)層状ケイ酸塩が、カオリナイト及びスメクタイトから選ばれる、上記(4)に記載の粉末組成物。
(6)疎水性クラスターが、π-共役系化合物又は炭素クラスターである、上記(1)~(5)のいずれかに記載の粉末組成物。
(7)π-共役系化合物が、導電性高分子、共役環式化合物又はカロテノイドである、上記(6)に記載の粉末組成物。
(8)導電性高分子が、ポリチオフェン、ポリアセチレン、ポリフェニレンビニレン又はポリアニリンから選ばれる、上記(7)に記載の粉末組成物。
(9)共役環式化合物が、ペンタセン、アントラセン、ナフタレン又はポルフィリンから選ばれる、上記(7)に記載の粉末組成物。
(10)カロテノイドが、β-カロテン、レチノール、レチナール又はレチノイン酸から選ばれる、上記(7)に記載の粉末組成物。
(11)炭素クラスターが、カーボンナノチューブ、フラーレン、グラフェン、黒鉛又はカーボンブラックから選ばれる、上記(6)に記載の粉末組成物。
(12)フラーレンが、C60フラーレン、C70フラーレン及びその混合物からなる群より選択される、上記(11)に記載の粉末組成物。
(13)疎水性クラスター及び粘土鉱物からなる混合物を乾式粉砕し、粉末を得る工程を含む、水溶性又は水分散性の粉末組成物の製造方法。
(14)疎水性クラスターの粘土鉱物に対する仕込み比(重量基準)が1:100~1:1の範囲である、上記(13)に記載の製造方法。
(15)乾式粉砕が、ボールミル又は擂潰機を用いて実施される、上記(13)又は(14)に記載の製造方法。
(16)上記(1)~(12)のいずれかに記載の粉末組成物、又は上記(13)~(15)のいずれかに記載の製造方法により得られる粉末組成物を、水性媒体に溶解又は分散させた、フラーレン含有水性組成物。
(17)粉末組成物を、水性媒体中の平均粒径が1μm以下にて分散させた、上記(16)に記載の水性組成物。 That is, the present invention is as follows:
(1) A water-soluble or water-dispersible powder composition comprising a powder obtained by dry-grinding a mixture of hydrophobic clusters and clay minerals.
(2) The powder composition according to the above (1), wherein the ratio (by weight) of the hydrophobic cluster to the clay mineral is in the range of 1: 100 to 1: 1.
(3) The powder composition according to any one of (1) and (2) above, wherein the clay mineral is a clay mineral mainly composed of layered silicate.
(4) The powder composition according to any one of (1) to (3) above, wherein the clay mineral is a layered silicate that swells in water and is ion-exchangeable.
(5) The powder composition according to (4) above, wherein the layered silicate is selected from kaolinite and smectite.
(6) The powder composition according to any one of (1) to (5) above, wherein the hydrophobic cluster is a π-conjugated compound or a carbon cluster.
(7) The powder composition according to (6), wherein the π-conjugated compound is a conductive polymer, a conjugated cyclic compound, or a carotenoid.
(8) The powder composition according to (7), wherein the conductive polymer is selected from polythiophene, polyacetylene, polyphenylene vinylene, or polyaniline.
(9) The powder composition according to (7), wherein the conjugated cyclic compound is selected from pentacene, anthracene, naphthalene, or porphyrin.
(10) The powder composition according to (7), wherein the carotenoid is selected from β-carotene, retinol, retinal, or retinoic acid.
(11) The powder composition according to (6), wherein the carbon cluster is selected from carbon nanotubes, fullerenes, graphene, graphite, or carbon black.
(12) fullerene, C 60 fullerene, is selected from the group consisting of C 70 fullerenes and their mixtures, powder composition according to the above (11).
(13) A method for producing a water-soluble or water-dispersible powder composition, comprising dry pulverizing a mixture comprising a hydrophobic cluster and a clay mineral to obtain a powder.
(14) The production method according to the above (13), wherein the charging ratio (by weight) of the hydrophobic cluster to the clay mineral is in the range of 1: 100 to 1: 1.
(15) The production method according to (13) or (14), wherein the dry pulverization is performed using a ball mill or a grinder.
(16) The powder composition according to any one of (1) to (12) above or the powder composition obtained by the production method according to any one of (13) to (15) above is dissolved in an aqueous medium Or a dispersed fullerene-containing aqueous composition.
(17) The aqueous composition according to (16) above, wherein the powder composition is dispersed so that the average particle size in the aqueous medium is 1 μm or less.
(1)疎水性クラスター及び粘土鉱物からなる混合物を乾式粉砕した粉末を含む、水溶性又は水分散性の粉末組成物。
(2)疎水性クラスターの粘土鉱物に対する比(重量基準)が1:100~1:1の範囲である、上記(1)に記載の粉末組成物。
(3)粘土鉱物が、層状ケイ酸塩を主成分とする粘土鉱物である、上記(1)又は(2)のいずれかに記載の粉末組成物。
(4)粘土鉱物が、水に膨潤し、かつイオン交換可能な層状ケイ酸塩である、上記(1)~(3)のいずれかに記載の粉末組成物。
(5)層状ケイ酸塩が、カオリナイト及びスメクタイトから選ばれる、上記(4)に記載の粉末組成物。
(6)疎水性クラスターが、π-共役系化合物又は炭素クラスターである、上記(1)~(5)のいずれかに記載の粉末組成物。
(7)π-共役系化合物が、導電性高分子、共役環式化合物又はカロテノイドである、上記(6)に記載の粉末組成物。
(8)導電性高分子が、ポリチオフェン、ポリアセチレン、ポリフェニレンビニレン又はポリアニリンから選ばれる、上記(7)に記載の粉末組成物。
(9)共役環式化合物が、ペンタセン、アントラセン、ナフタレン又はポルフィリンから選ばれる、上記(7)に記載の粉末組成物。
(10)カロテノイドが、β-カロテン、レチノール、レチナール又はレチノイン酸から選ばれる、上記(7)に記載の粉末組成物。
(11)炭素クラスターが、カーボンナノチューブ、フラーレン、グラフェン、黒鉛又はカーボンブラックから選ばれる、上記(6)に記載の粉末組成物。
(12)フラーレンが、C60フラーレン、C70フラーレン及びその混合物からなる群より選択される、上記(11)に記載の粉末組成物。
(13)疎水性クラスター及び粘土鉱物からなる混合物を乾式粉砕し、粉末を得る工程を含む、水溶性又は水分散性の粉末組成物の製造方法。
(14)疎水性クラスターの粘土鉱物に対する仕込み比(重量基準)が1:100~1:1の範囲である、上記(13)に記載の製造方法。
(15)乾式粉砕が、ボールミル又は擂潰機を用いて実施される、上記(13)又は(14)に記載の製造方法。
(16)上記(1)~(12)のいずれかに記載の粉末組成物、又は上記(13)~(15)のいずれかに記載の製造方法により得られる粉末組成物を、水性媒体に溶解又は分散させた、フラーレン含有水性組成物。
(17)粉末組成物を、水性媒体中の平均粒径が1μm以下にて分散させた、上記(16)に記載の水性組成物。 That is, the present invention is as follows:
(1) A water-soluble or water-dispersible powder composition comprising a powder obtained by dry-grinding a mixture of hydrophobic clusters and clay minerals.
(2) The powder composition according to the above (1), wherein the ratio (by weight) of the hydrophobic cluster to the clay mineral is in the range of 1: 100 to 1: 1.
(3) The powder composition according to any one of (1) and (2) above, wherein the clay mineral is a clay mineral mainly composed of layered silicate.
(4) The powder composition according to any one of (1) to (3) above, wherein the clay mineral is a layered silicate that swells in water and is ion-exchangeable.
(5) The powder composition according to (4) above, wherein the layered silicate is selected from kaolinite and smectite.
(6) The powder composition according to any one of (1) to (5) above, wherein the hydrophobic cluster is a π-conjugated compound or a carbon cluster.
(7) The powder composition according to (6), wherein the π-conjugated compound is a conductive polymer, a conjugated cyclic compound, or a carotenoid.
(8) The powder composition according to (7), wherein the conductive polymer is selected from polythiophene, polyacetylene, polyphenylene vinylene, or polyaniline.
(9) The powder composition according to (7), wherein the conjugated cyclic compound is selected from pentacene, anthracene, naphthalene, or porphyrin.
(10) The powder composition according to (7), wherein the carotenoid is selected from β-carotene, retinol, retinal, or retinoic acid.
(11) The powder composition according to (6), wherein the carbon cluster is selected from carbon nanotubes, fullerenes, graphene, graphite, or carbon black.
(12) fullerene, C 60 fullerene, is selected from the group consisting of C 70 fullerenes and their mixtures, powder composition according to the above (11).
(13) A method for producing a water-soluble or water-dispersible powder composition, comprising dry pulverizing a mixture comprising a hydrophobic cluster and a clay mineral to obtain a powder.
(14) The production method according to the above (13), wherein the charging ratio (by weight) of the hydrophobic cluster to the clay mineral is in the range of 1: 100 to 1: 1.
(15) The production method according to (13) or (14), wherein the dry pulverization is performed using a ball mill or a grinder.
(16) The powder composition according to any one of (1) to (12) above or the powder composition obtained by the production method according to any one of (13) to (15) above is dissolved in an aqueous medium Or a dispersed fullerene-containing aqueous composition.
(17) The aqueous composition according to (16) above, wherein the powder composition is dispersed so that the average particle size in the aqueous medium is 1 μm or less.
本発明の粉末組成物は、その調製プロセスにおいて、フラーレンの粒子サイズや比重による選別を必要とせず、均一に水媒体に分散させることが可能である。さらには、水媒体における粉末組成物の濃度を高めることにより、固形状のゲルを形成することもできる。本発明の粉末組成物より得られるフラーレンの水性分散液は、従来の技術により得られるものとは比較にならない高濃度とすることが可能であり、また長期安定性に優れる。さらには、本発明の組成物の製造方法を用いれば、フラーレンに加え、他の疎水性クラスターの水分散性を向上させることを見出した。
The powder composition of the present invention can be uniformly dispersed in an aqueous medium without requiring selection by the particle size and specific gravity of fullerene in the preparation process. Furthermore, a solid gel can be formed by increasing the concentration of the powder composition in the aqueous medium. The aqueous dispersion of fullerene obtained from the powder composition of the present invention can have a high concentration that cannot be compared with those obtained by conventional techniques, and is excellent in long-term stability. Furthermore, when the manufacturing method of the composition of this invention was used, in addition to fullerene, it discovered that the water dispersibility of another hydrophobic cluster was improved.
[粉末組成物]
本発明の粉末組成物は、疎水性クラスター、好ましくはフラーレン及び粘土鉱物からなる混合物を乾式粉砕した粉末を含み、水溶性又は水分散性であることを特徴とする。 [Powder composition]
The powder composition of the present invention includes a powder obtained by dry-grinding a mixture of hydrophobic clusters, preferably fullerene and clay mineral, and is characterized by being water-soluble or water-dispersible.
本発明の粉末組成物は、疎水性クラスター、好ましくはフラーレン及び粘土鉱物からなる混合物を乾式粉砕した粉末を含み、水溶性又は水分散性であることを特徴とする。 [Powder composition]
The powder composition of the present invention includes a powder obtained by dry-grinding a mixture of hydrophobic clusters, preferably fullerene and clay mineral, and is characterized by being water-soluble or water-dispersible.
(疎水性クラスター)
本発明における疎水性クラスターとは、通常水に不溶又は分散性が低い有機物又は無機物であり、ファンデルワールス力、水素結合又は共有結合等を介して原子又は分子が凝集して形成される、数ナノメートルから数百ナノメートルの微粒子の集合体を意味する。疎水性有機物の例としては、π-共役系化合物等が挙げられ、疎水性無機物の例としては、炭素クラスター、金属酸化物、無機微粒子等挙げられる。 (Hydrophobic cluster)
The hydrophobic cluster in the present invention is an organic or inorganic substance that is usually insoluble or low in dispersibility in water, and is formed by aggregation of atoms or molecules through van der Waals force, hydrogen bond, covalent bond, or the like. Means an aggregate of nanometer to hundreds of nanometer particles. Examples of hydrophobic organic materials include π-conjugated compounds and the like, and examples of hydrophobic inorganic materials include carbon clusters, metal oxides, inorganic fine particles, and the like.
本発明における疎水性クラスターとは、通常水に不溶又は分散性が低い有機物又は無機物であり、ファンデルワールス力、水素結合又は共有結合等を介して原子又は分子が凝集して形成される、数ナノメートルから数百ナノメートルの微粒子の集合体を意味する。疎水性有機物の例としては、π-共役系化合物等が挙げられ、疎水性無機物の例としては、炭素クラスター、金属酸化物、無機微粒子等挙げられる。 (Hydrophobic cluster)
The hydrophobic cluster in the present invention is an organic or inorganic substance that is usually insoluble or low in dispersibility in water, and is formed by aggregation of atoms or molecules through van der Waals force, hydrogen bond, covalent bond, or the like. Means an aggregate of nanometer to hundreds of nanometer particles. Examples of hydrophobic organic materials include π-conjugated compounds and the like, and examples of hydrophobic inorganic materials include carbon clusters, metal oxides, inorganic fine particles, and the like.
π-共役系化合物は、化合物中に単結合及び多重結合が交互に位置することで、非局在化した電子を持つ化合物の総称である。一般的にπ-共役化合物は、分子全体のエネルギーを低下させ、安定性を高めることが知られている。非共有電子対やラジカル、カルベニウムイオンなども共役系の一部とみなされる。
Π-conjugated compound is a general term for compounds having delocalized electrons by alternately locating single bonds and multiple bonds in the compound. In general, π-conjugated compounds are known to reduce the energy of the whole molecule and increase the stability. Unshared electron pairs, radicals, carbenium ions, etc. are also considered as part of the conjugated system.
π-共役化合物の具体例としては、ポリフェニレン、ポリフェニレンビニレン、ポリチオフェン、ポリエチニレン、ポリジアセチレン、ポリアセチレン、ポリピロール、ポリフラン、ポリアニリン等の導電性高分子;ポルフィリン、ペンタセン、ナフタセン、ピレン、アントラセン、ナフタレン、ベンゼン、アヌレン、アズレン、シクロペンタジエン等の共役環式化合物;シンナムアルコール、シンナムアルデヒド、オルトフェニルフェノール、ブチルヒドロキシアニソール、ブチルヒドロキシトルエン、フラボノイド(例えば、カテキン)、ニコチン酸、ニコチン酸アミド、α―トコフェロール、クマリン、サリチル酸等の窒素原子、酸素原子、硫黄原子等のヘテロ原子を含んでもよい芳香族性化合物;及びβ-カロテン、レチノール、レチナール、レチノイン酸、ルチン、アスタキサンチン等のカロテノイドが挙げられる。これらの中でもポルフィリン、ポリチオフェン、ペンタセン、レチノイン酸が好ましい。
Specific examples of π-conjugated compounds include conductive polymers such as polyphenylene, polyphenylene vinylene, polythiophene, polyethynylene, polydiacetylene, polyacetylene, polypyrrole, polyfuran, polyaniline; porphyrin, pentacene, naphthacene, pyrene, anthracene, naphthalene, benzene, Conjugated cyclic compounds such as annulene, azulene, cyclopentadiene; cinnam alcohol, cinnamaldehyde, orthophenylphenol, butylhydroxyanisole, butylhydroxytoluene, flavonoids (eg, catechin), nicotinic acid, nicotinamide, α-tocopherol, Aromatic compounds which may contain heteroatoms such as nitrogen, oxygen and sulfur atoms such as coumarin and salicylic acid; and β-carotene, retinol, Nar, retinoic acid, rutin, and carotenoids such as astaxanthin. Among these, porphyrin, polythiophene, pentacene, and retinoic acid are preferable.
炭素クラスターの具体例としては、単層カーボンナノチューブもしくは多層カーボンナノチューブ等のカーボンナノチューブ、フラーレン、グラフェン、グラファイト(黒鉛)、活性炭、カーボンブラック、ファーネスブラック、アセチレンブラック、ケッチェンブラック等の炭素材料が挙げられる。これらは、窒素原子、酸素原子、硫黄原子、ホウ素原子等のヘテロ原子を含んでもよく、そのような具体例としては、炭素原子とホウ素原子からなるカルボランやカルボリン等のホウ素クラスター等が挙げられる。これらの中でも単層カーボンナノチューブもしくは多層カーボンナノチューブ等のカーボンナノチューブ、フラーレン、グラフェン、グラファイト、カーボンブラックが好ましく、フラーレンが特に好ましい。
Specific examples of carbon clusters include carbon nanotubes such as single-walled carbon nanotubes or multi-walled carbon nanotubes, carbon materials such as fullerene, graphene, graphite (graphite), activated carbon, carbon black, furnace black, acetylene black, and ketjen black. It is done. These may contain hetero atoms such as nitrogen atom, oxygen atom, sulfur atom and boron atom, and specific examples thereof include boron clusters such as carborane and carboline composed of carbon atom and boron atom. Among these, carbon nanotubes such as single-walled carbon nanotubes and multi-walled carbon nanotubes, fullerene, graphene, graphite, and carbon black are preferable, and fullerene is particularly preferable.
本発明で使用するフラーレンは、炭素原子数が60~120のフラーレンであり、好ましくは炭素原子数が60、70、76、78、80、82、84、86、88、90、92、94、96のフラーレンである。また、フラーレンの中空構造中の炭素原子に別の官能基を修飾したもの、中空構造中にイオン種を内包したもの、また、中空構造の一部が開環したものも含まれる。上記フラーレンは、特に限定されないが、炭素数60及び70のフラーレン又はそれら混合物がより好ましく、炭素数60のフラーレンが最も好ましい。
The fullerene used in the present invention is a fullerene having 60 to 120 carbon atoms, preferably 60, 70, 76, 78, 80, 82, 84, 86, 88, 90, 92, 94, 96 fullerenes. In addition, the carbon atom in the fullerene hollow structure is modified with another functional group, the hollow structure includes an ionic species, and the hollow structure is partially ring-opened. The fullerene is not particularly limited, but fullerene having 60 and 70 carbon atoms or a mixture thereof is more preferable, and fullerene having 60 carbon atoms is most preferable.
本発明で使用するフラーレンは、不純物として、グラファイト等のフラーレン以外の炭素材料やその他の粉体材料を含むものであってもよい。フラーレンを20質量%以上、好ましくは70質量%以上、より好ましくは90質量%以上含むものを使用することができる。
The fullerene used in the present invention may include carbon materials other than fullerene such as graphite and other powder materials as impurities. A fullerene containing 20% by mass or more, preferably 70% by mass or more, more preferably 90% by mass or more can be used.
(粘土鉱物)
本発明で使用する粘土鉱物とは、天然又は合成の層状ケイ酸塩鉱物を意味し、水に膨潤し、かつイオン交換可能なものであれば特に限定されるものではない。例としては、ゼオライト、タルク、クロライト、カオリナイト、イライト、グローコナイト、セリサイト、スメクタイト等が挙げられる。中でも親水性の高さからカオリナイト及びスメクタイトが好ましい。スメクタイトは、モンモリロナイト、バイデライト、ノントロナイト、スチーブンサイト、ソーコナイト、ヘクトライト、サポナイト、ベントナイトから適宜選択されるが、モンモリロナイト、ヘクトライト、サポナイト及びベントナイトがより好ましい。スメクタイトは、合成ケイ酸ナトリウム・マグネシウムを主成分とする市販品(例えばラポナイト(Rockwood(株)製)、クニピア(クニミネ工業社製)、スメクトン(クニミネ工業(株)製)、ベンゲル(ホージュン(株)製))であってもよく、また市販品を適宜イオン交換させたものであってもよいが、これらの中でもラポナイト及びスメクトンが好ましく、ラポナイトが最も好ましい。 (Clay mineral)
The clay mineral used in the present invention means a natural or synthetic layered silicate mineral, and is not particularly limited as long as it swells in water and can exchange ions. Examples include zeolite, talc, chlorite, kaolinite, illite, glowconite, sericite, smectite and the like. Of these, kaolinite and smectite are preferred because of their high hydrophilicity. The smectite is appropriately selected from montmorillonite, beidellite, nontronite, stevensite, soconite, hectorite, saponite, and bentonite, and montmorillonite, hectorite, saponite, and bentonite are more preferable. Smectite is a commercial product mainly composed of synthetic sodium silicate / magnesium (for example, Laponite (manufactured by Rockwood Co., Ltd.), Kunipia (manufactured by Kunimine Kogyo Co., Ltd.), Smecton (manufactured by Kunimine Kogyo Co., Ltd.), Bengel (Hojun Co., Ltd.) )))) Or a product obtained by ion-exchange of a commercially available product as appropriate. Among these, laponite and smecton are preferred, and laponite is most preferred.
本発明で使用する粘土鉱物とは、天然又は合成の層状ケイ酸塩鉱物を意味し、水に膨潤し、かつイオン交換可能なものであれば特に限定されるものではない。例としては、ゼオライト、タルク、クロライト、カオリナイト、イライト、グローコナイト、セリサイト、スメクタイト等が挙げられる。中でも親水性の高さからカオリナイト及びスメクタイトが好ましい。スメクタイトは、モンモリロナイト、バイデライト、ノントロナイト、スチーブンサイト、ソーコナイト、ヘクトライト、サポナイト、ベントナイトから適宜選択されるが、モンモリロナイト、ヘクトライト、サポナイト及びベントナイトがより好ましい。スメクタイトは、合成ケイ酸ナトリウム・マグネシウムを主成分とする市販品(例えばラポナイト(Rockwood(株)製)、クニピア(クニミネ工業社製)、スメクトン(クニミネ工業(株)製)、ベンゲル(ホージュン(株)製))であってもよく、また市販品を適宜イオン交換させたものであってもよいが、これらの中でもラポナイト及びスメクトンが好ましく、ラポナイトが最も好ましい。 (Clay mineral)
The clay mineral used in the present invention means a natural or synthetic layered silicate mineral, and is not particularly limited as long as it swells in water and can exchange ions. Examples include zeolite, talc, chlorite, kaolinite, illite, glowconite, sericite, smectite and the like. Of these, kaolinite and smectite are preferred because of their high hydrophilicity. The smectite is appropriately selected from montmorillonite, beidellite, nontronite, stevensite, soconite, hectorite, saponite, and bentonite, and montmorillonite, hectorite, saponite, and bentonite are more preferable. Smectite is a commercial product mainly composed of synthetic sodium silicate / magnesium (for example, Laponite (manufactured by Rockwood Co., Ltd.), Kunipia (manufactured by Kunimine Kogyo Co., Ltd.), Smecton (manufactured by Kunimine Kogyo Co., Ltd.), Bengel (Hojun Co., Ltd.) )))) Or a product obtained by ion-exchange of a commercially available product as appropriate. Among these, laponite and smecton are preferred, and laponite is most preferred.
上記層状ケイ酸塩鉱物は、粘土鉱物の主成分として含まれ、通常その含有量は60%以上、好ましくは75%以上、最も好ましくは90%以上である。
The layered silicate mineral is contained as a main component of the clay mineral, and the content thereof is usually 60% or more, preferably 75% or more, and most preferably 90% or more.
(乾式粉砕)
本発明で使用する疎水性クラスター、中でもフラーレンと粘土鉱物との混合物において、フラーレンの粘土鉱物に対する比(重量基準)は、1:100~1:1の範囲であり、好ましくは1:50~1:2の範囲であり、より好ましくは1:25~1:3の範囲である。 (Dry grinding)
In the hydrophobic cluster used in the present invention, particularly the mixture of fullerene and clay mineral, the ratio (weight basis) of fullerene to clay mineral is in the range of 1: 100 to 1: 1, preferably 1:50 to 1. : 2 range, more preferably 1:25 to 1: 3.
本発明で使用する疎水性クラスター、中でもフラーレンと粘土鉱物との混合物において、フラーレンの粘土鉱物に対する比(重量基準)は、1:100~1:1の範囲であり、好ましくは1:50~1:2の範囲であり、より好ましくは1:25~1:3の範囲である。 (Dry grinding)
In the hydrophobic cluster used in the present invention, particularly the mixture of fullerene and clay mineral, the ratio (weight basis) of fullerene to clay mineral is in the range of 1: 100 to 1: 1, preferably 1:50 to 1. : 2 range, more preferably 1:25 to 1: 3.
疎水性クラスター、中でもフラーレンと粘土鉱物との混合物における乾式粉砕の条件において、フラーレン及び粘土鉱物を小片に粉砕できる条件であれば特に制限されないが、乳鉢、ボールミル、ポットミル、擂潰機、カッターミル、ホモジナイザー、マルチビーズショッカー、ピンミル、ジェットミルなどの粉砕機を用いることが望ましい。また、粉砕時間や処理圧などは、粉砕される疎水性クラスター及び粘土鉱物の硬さに応じて、適宜調整される。
得られる組成物中のフラーレンの分散性が良好になる点で、ボールミル、ポットミル、擂潰機、マルチビーズショッカーを用いて、乾式粉砕を行うのが好ましい。 In the condition of dry pulverization in a mixture of a hydrophobic cluster, especially a fullerene and clay mineral, it is not particularly limited as long as it can pulverize fullerene and clay mineral into small pieces, but a mortar, ball mill, pot mill, crusher, cutter mill, It is desirable to use a pulverizer such as a homogenizer, a multi-bead shocker, a pin mill, or a jet mill. Further, the pulverization time, the treatment pressure, and the like are appropriately adjusted according to the hardness of the hydrophobic cluster and clay mineral to be pulverized.
It is preferable to perform dry pulverization using a ball mill, a pot mill, a grinder, or a multi-bead shocker in that the dispersibility of fullerene in the resulting composition is improved.
得られる組成物中のフラーレンの分散性が良好になる点で、ボールミル、ポットミル、擂潰機、マルチビーズショッカーを用いて、乾式粉砕を行うのが好ましい。 In the condition of dry pulverization in a mixture of a hydrophobic cluster, especially a fullerene and clay mineral, it is not particularly limited as long as it can pulverize fullerene and clay mineral into small pieces, but a mortar, ball mill, pot mill, crusher, cutter mill, It is desirable to use a pulverizer such as a homogenizer, a multi-bead shocker, a pin mill, or a jet mill. Further, the pulverization time, the treatment pressure, and the like are appropriately adjusted according to the hardness of the hydrophobic cluster and clay mineral to be pulverized.
It is preferable to perform dry pulverization using a ball mill, a pot mill, a grinder, or a multi-bead shocker in that the dispersibility of fullerene in the resulting composition is improved.
乾式粉砕した粉末の平均粒径は、例えば水性媒体中の動的光散乱装置(DLS)による散乱強度平均粒子径により求められる。その平均粒子径は1μm以下、好ましくは500nm以下、より好ましくは300nm以下である。平均粒子径の下限値は、例えば10nmである。
The average particle size of the dry pulverized powder can be determined, for example, by the scattering intensity average particle size by a dynamic light scattering device (DLS) in an aqueous medium. The average particle diameter is 1 μm or less, preferably 500 nm or less, more preferably 300 nm or less. The lower limit value of the average particle diameter is, for example, 10 nm.
[水性組成物]
本発明の粉末組成物を、水性媒体に溶解又は分散させることにより、疎水性クラスター(特に、フラーレン)含有水性組成物を得ることができる。本発明の疎水性クラスター(特に、フラーレン)含有水性組成物は、高濃度の疎水性クラスターを水媒体に均一に分散させることができ、かつ長期安定性に優れることから、電子材料、医薬品、食品、化粧品及び日用品分野において利用することができる。 [Aqueous composition]
A hydrophobic cluster (in particular, fullerene) -containing aqueous composition can be obtained by dissolving or dispersing the powder composition of the present invention in an aqueous medium. The aqueous composition containing hydrophobic clusters (particularly fullerene) of the present invention can uniformly disperse a high concentration of hydrophobic clusters in an aqueous medium and has excellent long-term stability. It can be used in the cosmetics and daily necessities fields.
本発明の粉末組成物を、水性媒体に溶解又は分散させることにより、疎水性クラスター(特に、フラーレン)含有水性組成物を得ることができる。本発明の疎水性クラスター(特に、フラーレン)含有水性組成物は、高濃度の疎水性クラスターを水媒体に均一に分散させることができ、かつ長期安定性に優れることから、電子材料、医薬品、食品、化粧品及び日用品分野において利用することができる。 [Aqueous composition]
A hydrophobic cluster (in particular, fullerene) -containing aqueous composition can be obtained by dissolving or dispersing the powder composition of the present invention in an aqueous medium. The aqueous composition containing hydrophobic clusters (particularly fullerene) of the present invention can uniformly disperse a high concentration of hydrophobic clusters in an aqueous medium and has excellent long-term stability. It can be used in the cosmetics and daily necessities fields.
(水性媒体)
水性媒体は、水、水混和性有機溶媒又はその混合物であり、好ましくは水、又は水と水混和性有機溶媒の混合物である。水混和性有機溶媒の例としては、メタノール、エタノール、イソプロピルアルコール、ブタノール等の炭素数1~4のアルコール類、アセトン等のケトン類、アセトニトリル等のニトリル類、N-メチルピロリドン、N-シクロヘキシルピロリドン、N,N-ジメチルアセトアミド、N,N-ジメチルホルムアミド等のアミド類、γ-ブチロラクトン等のラクトン、テトラヒドロフラン等のエーテル類が挙げられる。これらは、本発明の疎水性クラスター含有水性組成物の目的に応じて適宜選択され、疎水性クラスターの溶解又は分散に悪影響を及ぼさない範囲内で含むことができる。 (Aqueous medium)
The aqueous medium is water, a water-miscible organic solvent or a mixture thereof, preferably water or a mixture of water and a water-miscible organic solvent. Examples of water miscible organic solvents include alcohols having 1 to 4 carbon atoms such as methanol, ethanol, isopropyl alcohol and butanol, ketones such as acetone, nitriles such as acetonitrile, N-methylpyrrolidone, N-cyclohexylpyrrolidone Amides such as N, N-dimethylacetamide and N, N-dimethylformamide, lactones such as γ-butyrolactone, and ethers such as tetrahydrofuran. These are appropriately selected according to the purpose of the hydrophobic cluster-containing aqueous composition of the present invention, and can be contained within a range that does not adversely affect the dissolution or dispersion of the hydrophobic clusters.
水性媒体は、水、水混和性有機溶媒又はその混合物であり、好ましくは水、又は水と水混和性有機溶媒の混合物である。水混和性有機溶媒の例としては、メタノール、エタノール、イソプロピルアルコール、ブタノール等の炭素数1~4のアルコール類、アセトン等のケトン類、アセトニトリル等のニトリル類、N-メチルピロリドン、N-シクロヘキシルピロリドン、N,N-ジメチルアセトアミド、N,N-ジメチルホルムアミド等のアミド類、γ-ブチロラクトン等のラクトン、テトラヒドロフラン等のエーテル類が挙げられる。これらは、本発明の疎水性クラスター含有水性組成物の目的に応じて適宜選択され、疎水性クラスターの溶解又は分散に悪影響を及ぼさない範囲内で含むことができる。 (Aqueous medium)
The aqueous medium is water, a water-miscible organic solvent or a mixture thereof, preferably water or a mixture of water and a water-miscible organic solvent. Examples of water miscible organic solvents include alcohols having 1 to 4 carbon atoms such as methanol, ethanol, isopropyl alcohol and butanol, ketones such as acetone, nitriles such as acetonitrile, N-methylpyrrolidone, N-cyclohexylpyrrolidone Amides such as N, N-dimethylacetamide and N, N-dimethylformamide, lactones such as γ-butyrolactone, and ethers such as tetrahydrofuran. These are appropriately selected according to the purpose of the hydrophobic cluster-containing aqueous composition of the present invention, and can be contained within a range that does not adversely affect the dissolution or dispersion of the hydrophobic clusters.
本発明の疎水性クラスター含有水性組成物は、目的に応じて他の成分を配合することができる。例えば、本発明の疎水性クラスター、例えばフラーレン含有水性組成物を化粧品分野において利用する場合、フラーレンの溶解又は分散に悪影響を及ぼさない範囲で、任意の他の成分を配合できる。そのような他の成分の例として、アルコール類、多価アルコール類、糖類、エモリエント剤、ノニオン性界面活性剤、植物抽出液、水溶性高分子、香料、着色剤、紫外線防御剤、pH調整剤、防腐剤、殺菌剤、酸化防止剤、金属封鎖剤及び生理活性成分が挙げられる。また他の成分の溶解又は分散のために、適宜分散剤、増粘剤又は界面活性剤を配合しても良い。
The hydrophobic cluster-containing aqueous composition of the present invention may contain other components depending on the purpose. For example, when the hydrophobic cluster of the present invention, for example, the fullerene-containing aqueous composition is used in the cosmetic field, any other component can be added as long as it does not adversely affect the dissolution or dispersion of fullerene. Examples of such other components include alcohols, polyhydric alcohols, sugars, emollients, nonionic surfactants, plant extracts, water-soluble polymers, fragrances, colorants, UV protection agents, pH adjusters. , Antiseptics, bactericides, antioxidants, sequestering agents and bioactive ingredients. Moreover, you may mix | blend a dispersing agent, a thickener, or surfactant suitably for melt | dissolution or dispersion | distribution of another component.
以下、実施例を挙げて、本発明を具体的に説明するが、本発明は下記の実施例に制限されるものではない。なお、実施例に用いた装置は以下の通りである。
Hereinafter, the present invention will be specifically described with reference to examples, but the present invention is not limited to the following examples. In addition, the apparatus used for the Example is as follows.
・ボールミル:Retsch社製、MM200
・ポットミル機:アズワン社製、PTA-01
・擂潰機:石川工場社製、18D号
・多検体試料精密粉砕機(マルチビーズショッカー):安井器械社製、PV1001C
・動的光散乱装置(DLS):Malvern社製、ゼータサイザーナノZS -Ball mill: Retsch, MM200
-Pot mill machine: manufactured by AS ONE, PTA-01
・ Crusher: Ishikawa Factory, 18D ・ Multi-sample precision crusher (multi-bead shocker): Yasui Kikai, PV1001C
Dynamic light scattering device (DLS): Malvern, Zetasizer Nano ZS
・ポットミル機:アズワン社製、PTA-01
・擂潰機:石川工場社製、18D号
・多検体試料精密粉砕機(マルチビーズショッカー):安井器械社製、PV1001C
・動的光散乱装置(DLS):Malvern社製、ゼータサイザーナノZS -Ball mill: Retsch, MM200
-Pot mill machine: manufactured by AS ONE, PTA-01
・ Crusher: Ishikawa Factory, 18D ・ Multi-sample precision crusher (multi-bead shocker): Yasui Kikai, PV1001C
Dynamic light scattering device (DLS): Malvern, Zetasizer Nano ZS
[実施例1~3、比較例1~9]
(1)粉末組成物の調製
表1に従ってC60フラーレン(Sigma-Aldrich社製)及び分散剤(表1参照)を秤量し、一緒にボールミル(Retsch社製、MM200)にて乾式粉砕・混合処理(25Hz,90分間)を行い、実施例1~3のC60フラーレンの粉末組成物を得た。また、粘土鉱物以外の種々の分散剤や分散剤を用いないC60フラーレンについても同様の乾式粉砕・混合処理を行い、比較例1~9の組成物を得た。 [Examples 1 to 3, Comparative Examples 1 to 9]
(1) Preparation of powder composition Weigh C 60 fullerene (manufactured by Sigma-Aldrich) and a dispersant (see Table 1) according to Table 1, and dry pulverize and mix them together with a ball mill (manufactured by Retsch, MM200). (25 Hz, 90 minutes), and C 60 fullerene powder compositions of Examples 1 to 3 were obtained. Further, various dispersants other than clay minerals and C 60 fullerene not using a dispersant were subjected to the same dry pulverization / mixing treatment to obtain compositions of Comparative Examples 1 to 9.
(1)粉末組成物の調製
表1に従ってC60フラーレン(Sigma-Aldrich社製)及び分散剤(表1参照)を秤量し、一緒にボールミル(Retsch社製、MM200)にて乾式粉砕・混合処理(25Hz,90分間)を行い、実施例1~3のC60フラーレンの粉末組成物を得た。また、粘土鉱物以外の種々の分散剤や分散剤を用いないC60フラーレンについても同様の乾式粉砕・混合処理を行い、比較例1~9の組成物を得た。 [Examples 1 to 3, Comparative Examples 1 to 9]
(1) Preparation of powder composition Weigh C 60 fullerene (manufactured by Sigma-Aldrich) and a dispersant (see Table 1) according to Table 1, and dry pulverize and mix them together with a ball mill (manufactured by Retsch, MM200). (25 Hz, 90 minutes), and C 60 fullerene powder compositions of Examples 1 to 3 were obtained. Further, various dispersants other than clay minerals and C 60 fullerene not using a dispersant were subjected to the same dry pulverization / mixing treatment to obtain compositions of Comparative Examples 1 to 9.
(2)分散試験
上記実施例1~3及び比較例1~9で得られたC60フラーレンの粉末組成物の水への分散試験を実施した。その試験方法は、表2に記載の所定の濃度になるように各C60フラーレンの粉末組成物を水に加え、ボルテックスホモミキサーで撹拌し、水分散液を得た。得られた水分散液を一晩静置後、その分散状態を目視で確認した。各水分散液において、C60フラーレンの粉末組成物が目視上、完全に溶解しているものは“◎”、分散して濁っているものは“△”、沈降物があるものは“×”、サンプル管を倒置して液だれしないものは“ゲル化”と定義した。結果を表2に示す。 (2) Dispersion test A dispersion test of C 60 fullerene powder compositions obtained in Examples 1 to 3 and Comparative Examples 1 to 9 in water was performed. The test method, the powder composition of the C 60 fullerene to a predetermined concentration shown in Table 2 was added to water, vortexed homomixer to obtain an aqueous dispersion. The obtained aqueous dispersion was allowed to stand overnight, and the dispersion state was visually confirmed. In each aqueous dispersion, the powder composition of C 60 fullerene is visually “◎” when it is completely dissolved, “△” when it is dispersed and cloudy, and “×” when there is a sediment. In the case where the sample tube is inverted and the liquid does not drip, it is defined as “gelation”. The results are shown in Table 2.
上記実施例1~3及び比較例1~9で得られたC60フラーレンの粉末組成物の水への分散試験を実施した。その試験方法は、表2に記載の所定の濃度になるように各C60フラーレンの粉末組成物を水に加え、ボルテックスホモミキサーで撹拌し、水分散液を得た。得られた水分散液を一晩静置後、その分散状態を目視で確認した。各水分散液において、C60フラーレンの粉末組成物が目視上、完全に溶解しているものは“◎”、分散して濁っているものは“△”、沈降物があるものは“×”、サンプル管を倒置して液だれしないものは“ゲル化”と定義した。結果を表2に示す。 (2) Dispersion test A dispersion test of C 60 fullerene powder compositions obtained in Examples 1 to 3 and Comparative Examples 1 to 9 in water was performed. The test method, the powder composition of the C 60 fullerene to a predetermined concentration shown in Table 2 was added to water, vortexed homomixer to obtain an aqueous dispersion. The obtained aqueous dispersion was allowed to stand overnight, and the dispersion state was visually confirmed. In each aqueous dispersion, the powder composition of C 60 fullerene is visually “◎” when it is completely dissolved, “△” when it is dispersed and cloudy, and “×” when there is a sediment. In the case where the sample tube is inverted and the liquid does not drip, it is defined as “gelation”. The results are shown in Table 2.
表2の結果より、C60フラーレン換算濃度100ppmにおいては、実施例1~3、比較例2の粉末組成物を用いた水分散液において、C60フラーレンの粉末組成物は良好に分散することが明らかになった。また、興味深いことに、実施例3の粉末組成物においては、水分散液中の粉末組成物の濃度が高くなるとスメクタイト由来のゲル化が観測された。さらに、実施例2のC60フラーレンの粉末組成物は、C60フラーレン換算濃度200~3000ppmにおいても、水分散液中で均一に溶解した状態でC60フラーレンを分散することが判明した。このことは、0.45μmのフィルターを通してもC60フラーレンに由来する色味に変化が生じないことから判断できる(図1参照)。これらの結果は、分散剤として種々の粘土鉱物を使用し、C60フラーレンと混合粉砕することにより、水中でC60フラーレンを均一に溶解することが可能であることを示している。
他方、特許文献6で開示されている分散水性溶液に相当する比較例2の粉末組成物を用いた水分散液は、比較例1のC60フラーレン単独で粉砕したものを用いた水分散液と比較して、C60フラーレンの水に対する分散性はある程度向上するものの、目視上、C60フラーレン換算濃度が200ppm以上は完全に溶解することはできなかった。これは、比較例2の粉末組成物を用いた水分散液を0.45μmのフィルターを通し、目視による色味の低下やフィルターの目詰まりから判断することで確認できる(図1)。
また、実施例2及び比較例2の粉末組成物の水分散液を0.45μmのフィルターに通した溶液は、比較例2のものに関しては、いずれの濃度(C60フラーレン換算濃度;1000、2000、3000ppm)においても沈殿物が確認されたが、実施例2のものに関しては、全く沈降物は観測されなかった。比較例2のC60フラーレンの粉末組成物は分散液調製後、徐々に沈降物が生じたことから、保存安定性が低いと考えられる。 From the results of Table 2, it can be seen that the C 60 fullerene powder composition is well dispersed in the aqueous dispersions using the powder compositions of Examples 1 to 3 and Comparative Example 2 at a C 60 fullerene equivalent concentration of 100 ppm. It was revealed. Interestingly, in the powder composition of Example 3, gelation derived from smectite was observed when the concentration of the powder composition in the aqueous dispersion was increased. Furthermore, it was found that the C 60 fullerene powder composition of Example 2 disperses C 60 fullerene in a state of being uniformly dissolved in an aqueous dispersion even at a C 60 fullerene equivalent concentration of 200 to 3000 ppm. This can be judged from the fact that the no change in color derived from the C 60 fullerene even through 0.45μm filter (see FIG. 1). These results using a variety of clay mineral as a dispersing agent, by mixing comminuted C 60 fullerenes, indicating that it is possible to uniformly dissolve the C 60 fullerene in water.
On the other hand, an aqueous dispersion using the powder composition of Comparative Example 2 corresponding to the aqueous dispersion solution disclosed in Patent Document 6 is an aqueous dispersion using a pulverized single C 60 fullerene of Comparative Example 1. In comparison, although the dispersibility of C 60 fullerene in water was improved to some extent, it was not possible to completely dissolve the C 60 fullerene equivalent concentration of 200 ppm or more visually. This can be confirmed by passing an aqueous dispersion using the powder composition of Comparative Example 2 through a 0.45 μm filter and judging from visual color deterioration and filter clogging (FIG. 1).
In addition, the solutions obtained by passing the aqueous dispersions of the powder compositions of Example 2 and Comparative Example 2 through a 0.45 μm filter had any concentration (C 60 fullerene equivalent concentration: 1000, 2000) for Comparative Example 2. 3000 ppm), a precipitate was confirmed, but no precipitate was observed for Example 2. The powder composition of C 60 fullerene of Comparative Example 2 after dispersion preparation, since the gradual precipitation was occurred, the storage stability is considered to be low.
他方、特許文献6で開示されている分散水性溶液に相当する比較例2の粉末組成物を用いた水分散液は、比較例1のC60フラーレン単独で粉砕したものを用いた水分散液と比較して、C60フラーレンの水に対する分散性はある程度向上するものの、目視上、C60フラーレン換算濃度が200ppm以上は完全に溶解することはできなかった。これは、比較例2の粉末組成物を用いた水分散液を0.45μmのフィルターを通し、目視による色味の低下やフィルターの目詰まりから判断することで確認できる(図1)。
また、実施例2及び比較例2の粉末組成物の水分散液を0.45μmのフィルターに通した溶液は、比較例2のものに関しては、いずれの濃度(C60フラーレン換算濃度;1000、2000、3000ppm)においても沈殿物が確認されたが、実施例2のものに関しては、全く沈降物は観測されなかった。比較例2のC60フラーレンの粉末組成物は分散液調製後、徐々に沈降物が生じたことから、保存安定性が低いと考えられる。 From the results of Table 2, it can be seen that the C 60 fullerene powder composition is well dispersed in the aqueous dispersions using the powder compositions of Examples 1 to 3 and Comparative Example 2 at a C 60 fullerene equivalent concentration of 100 ppm. It was revealed. Interestingly, in the powder composition of Example 3, gelation derived from smectite was observed when the concentration of the powder composition in the aqueous dispersion was increased. Furthermore, it was found that the C 60 fullerene powder composition of Example 2 disperses C 60 fullerene in a state of being uniformly dissolved in an aqueous dispersion even at a C 60 fullerene equivalent concentration of 200 to 3000 ppm. This can be judged from the fact that the no change in color derived from the C 60 fullerene even through 0.45μm filter (see FIG. 1). These results using a variety of clay mineral as a dispersing agent, by mixing comminuted C 60 fullerenes, indicating that it is possible to uniformly dissolve the C 60 fullerene in water.
On the other hand, an aqueous dispersion using the powder composition of Comparative Example 2 corresponding to the aqueous dispersion solution disclosed in Patent Document 6 is an aqueous dispersion using a pulverized single C 60 fullerene of Comparative Example 1. In comparison, although the dispersibility of C 60 fullerene in water was improved to some extent, it was not possible to completely dissolve the C 60 fullerene equivalent concentration of 200 ppm or more visually. This can be confirmed by passing an aqueous dispersion using the powder composition of Comparative Example 2 through a 0.45 μm filter and judging from visual color deterioration and filter clogging (FIG. 1).
In addition, the solutions obtained by passing the aqueous dispersions of the powder compositions of Example 2 and Comparative Example 2 through a 0.45 μm filter had any concentration (C 60 fullerene equivalent concentration: 1000, 2000) for Comparative Example 2. 3000 ppm), a precipitate was confirmed, but no precipitate was observed for Example 2. The powder composition of C 60 fullerene of Comparative Example 2 after dispersion preparation, since the gradual precipitation was occurred, the storage stability is considered to be low.
[DLSによる粒子径解析]
実施例2、3及び比較例2で得られたC60フラーレンの粉末組成物を1mg/mL(C60フラーレン換算濃度;50ppm)、4mg/mL(C60フラーレン換算濃度;200ppm)になるように各々水に分散させて、C60フラーレン含有水性組成物を調製した。組成物を1日静置後、DLSにより粒子径を求めた。結果を表3に示す。 [Particle size analysis by DLS]
The powder composition of C 60 fullerene obtained in Examples 2 and 3 and Comparative Example 2 was adjusted to 1 mg / mL (C 60 fullerene equivalent concentration: 50 ppm) and 4 mg / mL (C 60 fullerene equivalent concentration: 200 ppm). each was dispersed in water to prepare a C 60 fullerene-containing aqueous compositions. The composition was allowed to stand for 1 day, and then the particle size was determined by DLS. The results are shown in Table 3.
実施例2、3及び比較例2で得られたC60フラーレンの粉末組成物を1mg/mL(C60フラーレン換算濃度;50ppm)、4mg/mL(C60フラーレン換算濃度;200ppm)になるように各々水に分散させて、C60フラーレン含有水性組成物を調製した。組成物を1日静置後、DLSにより粒子径を求めた。結果を表3に示す。 [Particle size analysis by DLS]
The powder composition of C 60 fullerene obtained in Examples 2 and 3 and Comparative Example 2 was adjusted to 1 mg / mL (C 60 fullerene equivalent concentration: 50 ppm) and 4 mg / mL (C 60 fullerene equivalent concentration: 200 ppm). each was dispersed in water to prepare a C 60 fullerene-containing aqueous compositions. The composition was allowed to stand for 1 day, and then the particle size was determined by DLS. The results are shown in Table 3.
表3より、C60フラーレン換算濃度が50ppmにおいて、実施例2、実施例3、及び比較例2の粉末組成物より得られたいずれのC60フラーレン含有水性組成物も水中で微粒子を形成していることが示された。中でも実施例2の粉末組成物より得られたC60フラーレン含有水性組成物は、65nmと、非常に小さな微粒子であることが判明した(図2)。一方、C60フラーレン換算濃度が200ppmにおいて、実施例3の粉末組成物より得られたC60フラーレン含有水性組成物は、実施例2や比較例2の組成物と比較して、粒子径の増加及び粒度分布の広がりが確認された。これは、分散試験例の結果(表2)より、実施例3の水性組成物はゲル化する傾向にあるため、粒子径が増加したものと考えられる。
From Table 3, in the C 60 fullerene conversion concentration is 50 ppm, Example 2, Example 3, and any of C 60 fullerene-containing aqueous composition obtained from the powder composition of Comparative Example 2 also by forming fine particles in water It was shown that C 60 fullerene-containing aqueous composition among them obtained from the powder composition of Example 2, and 65 nm, to be very small particles was found (Figure 2). On the other hand, when the C 60 fullerene equivalent concentration is 200 ppm, the C 60 fullerene-containing aqueous composition obtained from the powder composition of Example 3 has an increased particle size compared to the compositions of Example 2 and Comparative Example 2. And the spread of the particle size distribution was confirmed. From the result of the dispersion test example (Table 2), it is considered that the particle size increased because the aqueous composition of Example 3 tends to gel.
[実施例4~12]
表4に従って、各疎水性クラスター(25mg)及びラポナイトXLG(475mg)を秤量し、一緒にボールミル(Retsch社製、MM200)にて乾式粉砕・混合処理(25Hz,90分間)を行い、実施例4~12の各疎水性クラスターの粉末組成物を得た。
水への分散試験は、表4に記載の所定の濃度になるように各疎水性クラスターの粉末組成物を水に加え、実施例2と同様にして、水への分散性を確認した。また、疎水性クラスターに対して、19倍量のラポナイトXLGを添加したものについて、乾式粉砕・混合処理を行わずに同様の水分散試験を行った。結果を表4に示す。 [Examples 4 to 12]
According to Table 4, each hydrophobic cluster (25 mg) and Laponite XLG (475 mg) were weighed together and subjected to dry grinding / mixing treatment (25 Hz, 90 minutes) with a ball mill (Retsch, MM200). A powder composition of each hydrophobic cluster of ˜12 was obtained.
In the dispersion test in water, the powder composition of each hydrophobic cluster was added to water so as to have a predetermined concentration shown in Table 4, and the dispersibility in water was confirmed in the same manner as in Example 2. Further, the same water dispersion test was performed on the hydrophobic cluster to which 19 times the amount of Laponite XLG was added without performing dry pulverization / mixing treatment. The results are shown in Table 4.
表4に従って、各疎水性クラスター(25mg)及びラポナイトXLG(475mg)を秤量し、一緒にボールミル(Retsch社製、MM200)にて乾式粉砕・混合処理(25Hz,90分間)を行い、実施例4~12の各疎水性クラスターの粉末組成物を得た。
水への分散試験は、表4に記載の所定の濃度になるように各疎水性クラスターの粉末組成物を水に加え、実施例2と同様にして、水への分散性を確認した。また、疎水性クラスターに対して、19倍量のラポナイトXLGを添加したものについて、乾式粉砕・混合処理を行わずに同様の水分散試験を行った。結果を表4に示す。 [Examples 4 to 12]
According to Table 4, each hydrophobic cluster (25 mg) and Laponite XLG (475 mg) were weighed together and subjected to dry grinding / mixing treatment (25 Hz, 90 minutes) with a ball mill (Retsch, MM200). A powder composition of each hydrophobic cluster of ˜12 was obtained.
In the dispersion test in water, the powder composition of each hydrophobic cluster was added to water so as to have a predetermined concentration shown in Table 4, and the dispersibility in water was confirmed in the same manner as in Example 2. Further, the same water dispersion test was performed on the hydrophobic cluster to which 19 times the amount of Laponite XLG was added without performing dry pulverization / mixing treatment. The results are shown in Table 4.
実施例4~12において、いずれの組成物においても良好に水に対して分散することを確認した。中でもグラフェン、カーボンナノチューブ、及びカーボンブラック等の炭素クラスターや、ポリチオフェン等の導電性高分子、ペンタセン、ポルフィリン等の共役環式化合物、並びにレチノイン酸等のカロテノイドに対しても、良好に分散することが示された。一方、粘土鉱物との乾式粉砕・混合処理を行っていない各疎水性クラスターに対しては、単に水に添加しただけでは、良好な分散性を示さなかった(表4、未粉砕)。
これらのことより、疎水性クラスターと粘土鉱物を乾式粉砕・混合処理を施した組成物において、水に対して良好に分散性を示すことが明らかになった。 In Examples 4 to 12, it was confirmed that any of the compositions was well dispersed in water. Above all, it can be well dispersed in carbon clusters such as graphene, carbon nanotubes, and carbon black, conductive polymers such as polythiophene, conjugated cyclic compounds such as pentacene and porphyrin, and carotenoids such as retinoic acid. Indicated. On the other hand, the hydrophobic clusters not subjected to the dry pulverization / mixing treatment with the clay mineral did not show good dispersibility when simply added to water (Table 4, unground).
From these results, it was revealed that the composition obtained by subjecting hydrophobic clusters and clay minerals to dry pulverization / mixing showed good dispersibility in water.
これらのことより、疎水性クラスターと粘土鉱物を乾式粉砕・混合処理を施した組成物において、水に対して良好に分散性を示すことが明らかになった。 In Examples 4 to 12, it was confirmed that any of the compositions was well dispersed in water. Above all, it can be well dispersed in carbon clusters such as graphene, carbon nanotubes, and carbon black, conductive polymers such as polythiophene, conjugated cyclic compounds such as pentacene and porphyrin, and carotenoids such as retinoic acid. Indicated. On the other hand, the hydrophobic clusters not subjected to the dry pulverization / mixing treatment with the clay mineral did not show good dispersibility when simply added to water (Table 4, unground).
From these results, it was revealed that the composition obtained by subjecting hydrophobic clusters and clay minerals to dry pulverization / mixing showed good dispersibility in water.
[実施例13]
多検体試料精密粉砕機(安井器械社製、PV1001C)にて、C60フラーレン(アルドリッチ社製、0.1g)、ラポナイトXLG(1.9g)をサンプルホルダーに添加し、粉砕処理(3000rpm、1分間)を施した。粉砕後、得られた粉末組成物を回収した。実施例2と同様に水に対する分散試験を実施し、良好に水に分散することを確認した。 [Example 13]
C 60 fullerene (Aldrich, 0.1 g) and Laponite XLG (1.9 g) were added to the sample holder with a multi-sample specimen precision crusher (Yasui Kikai Co., Ltd., PV1001C), and pulverization treatment (3000 rpm, 1 Minutes). After pulverization, the obtained powder composition was recovered. A water dispersion test was carried out in the same manner as in Example 2, and it was confirmed that the water was well dispersed.
多検体試料精密粉砕機(安井器械社製、PV1001C)にて、C60フラーレン(アルドリッチ社製、0.1g)、ラポナイトXLG(1.9g)をサンプルホルダーに添加し、粉砕処理(3000rpm、1分間)を施した。粉砕後、得られた粉末組成物を回収した。実施例2と同様に水に対する分散試験を実施し、良好に水に分散することを確認した。 [Example 13]
C 60 fullerene (Aldrich, 0.1 g) and Laponite XLG (1.9 g) were added to the sample holder with a multi-sample specimen precision crusher (Yasui Kikai Co., Ltd., PV1001C), and pulverization treatment (3000 rpm, 1 Minutes). After pulverization, the obtained powder composition was recovered. A water dispersion test was carried out in the same manner as in Example 2, and it was confirmed that the water was well dispersed.
[実施例14]
ポットミル(アズワン社製、HD―B―105)にC60フラーレン(アルドリッチ社製、2g)、ラポナイトXLG(38g)、ジルコニアボール(Φ10mm、4kg)を入れ、ポットミル機(アズワン社製、PTA-01)にて20時間粉砕した(計測値:76rpm)。粉砕後、ジルコニアボールを取り除き、得られた粉末組成物を回収し、実施例2と同様に水に対する分散試験を実施し、良好に水に分散することを確認した。 [Example 14]
A pot mill (manufactured by ASONE, HD-B-105) was charged with C 60 fullerene (manufactured by Aldrich, 2 g), Laponite XLG (38 g), zirconia balls (Φ10 mm, 4 kg), and a pot mill (manufactured by ASONE, PTA-01). ) For 20 hours (measured value: 76 rpm). After pulverization, the zirconia balls were removed, and the obtained powder composition was collected, and a dispersion test for water was conducted in the same manner as in Example 2 to confirm that it was well dispersed in water.
ポットミル(アズワン社製、HD―B―105)にC60フラーレン(アルドリッチ社製、2g)、ラポナイトXLG(38g)、ジルコニアボール(Φ10mm、4kg)を入れ、ポットミル機(アズワン社製、PTA-01)にて20時間粉砕した(計測値:76rpm)。粉砕後、ジルコニアボールを取り除き、得られた粉末組成物を回収し、実施例2と同様に水に対する分散試験を実施し、良好に水に分散することを確認した。 [Example 14]
A pot mill (manufactured by ASONE, HD-B-105) was charged with C 60 fullerene (manufactured by Aldrich, 2 g), Laponite XLG (38 g), zirconia balls (Φ10 mm, 4 kg), and a pot mill (manufactured by ASONE, PTA-01). ) For 20 hours (measured value: 76 rpm). After pulverization, the zirconia balls were removed, and the obtained powder composition was collected, and a dispersion test for water was conducted in the same manner as in Example 2 to confirm that it was well dispersed in water.
[実施例15]
擂潰機(石川工場社製、18D号)にて、C60フラーレン(アルドリッチ社製、0.5g)、ラポナイトXLG(9.5g)を加え、3時間粉砕した(設定値:20rpm)。得られた粉末組成物を回収し、実施例2と同様に水に対する分散試験を実施し、良好に水に分散することを確認した。 [Example 15]
C 60 fullerene (manufactured by Aldrich, 0.5 g) and Laponite XLG (9.5 g) were added and pulverized for 3 hours (setting value: 20 rpm) with a grinder (Ishikawa Factory, No. 18D). The obtained powder composition was collected and subjected to a water dispersion test in the same manner as in Example 2 to confirm that it was well dispersed in water.
擂潰機(石川工場社製、18D号)にて、C60フラーレン(アルドリッチ社製、0.5g)、ラポナイトXLG(9.5g)を加え、3時間粉砕した(設定値:20rpm)。得られた粉末組成物を回収し、実施例2と同様に水に対する分散試験を実施し、良好に水に分散することを確認した。 [Example 15]
C 60 fullerene (manufactured by Aldrich, 0.5 g) and Laponite XLG (9.5 g) were added and pulverized for 3 hours (setting value: 20 rpm) with a grinder (Ishikawa Factory, No. 18D). The obtained powder composition was collected and subjected to a water dispersion test in the same manner as in Example 2 to confirm that it was well dispersed in water.
[実施例16]
擂潰機(石川工場社製、18D号)にて、C60フラーレン(アルドリッチ社製、0.5g)、ラポナイトXLG(9.5g)を加え、2.5時間粉砕した(設定値:20rpm)。その後、水(5.0g)を加え、更に0.5時間混合処理(設定値:20rpm)を行った。得られた粉末組成物を回収し、実施例2と同様に水に対する分散試験を実施し、良好に水に分散することを確認した。水添加しても良好な粉砕物を得ることが明らかになった。 [Example 16]
C 60 fullerene (Aldrich, 0.5 g) and Laponite XLG (9.5 g) were added and pulverized for 2.5 hours (setting value: 20 rpm) with a grinder (Ishikawa Factory, No. 18D). . Then, water (5.0 g) was added, and further mixed for 0.5 hours (set value: 20 rpm). The obtained powder composition was collected and subjected to a water dispersion test in the same manner as in Example 2 to confirm that it was well dispersed in water. It became clear that even if water was added, a good pulverized product was obtained.
擂潰機(石川工場社製、18D号)にて、C60フラーレン(アルドリッチ社製、0.5g)、ラポナイトXLG(9.5g)を加え、2.5時間粉砕した(設定値:20rpm)。その後、水(5.0g)を加え、更に0.5時間混合処理(設定値:20rpm)を行った。得られた粉末組成物を回収し、実施例2と同様に水に対する分散試験を実施し、良好に水に分散することを確認した。水添加しても良好な粉砕物を得ることが明らかになった。 [Example 16]
C 60 fullerene (Aldrich, 0.5 g) and Laponite XLG (9.5 g) were added and pulverized for 2.5 hours (setting value: 20 rpm) with a grinder (Ishikawa Factory, No. 18D). . Then, water (5.0 g) was added, and further mixed for 0.5 hours (set value: 20 rpm). The obtained powder composition was collected and subjected to a water dispersion test in the same manner as in Example 2 to confirm that it was well dispersed in water. It became clear that even if water was added, a good pulverized product was obtained.
実施例14~16において、スケールアップ検討を実施した(全固形分量として、実施例14は40g、実施例15及び16は10g)。いずれのスケールにおいても良好に水に分散することが判明した。また、上記のような比較的処理速度の低い粉砕装置(ポットミルの計測値;76rpm、擂潰機の設定値;20rpm)においても組成物の製造は可能であることが判明した。
In Examples 14 to 16, a scale-up study was conducted (the total solid content was 40 g for Example 14 and 10 g for Examples 15 and 16). It was found that it was well dispersed in water at any scale. It was also found that the composition can be produced even in a pulverization apparatus (pot mill measurement value: 76 rpm, crusher setting value: 20 rpm) having a relatively low processing speed as described above.
本発明の水溶性又は水分散性粉末組成物の作製方法は至って簡便であり、また、ろ過、遠心分離、沈降物の除去、蒸留操作という煩雑な処理を行う必要がなく、効率的に疎水性クラスター(特に、フラーレン)含有水性組成物を得ることができ、そのものが水に分散可能であることが特徴づけられる。さらには、分散可能な疎水性クラスター(特に、フラーレン)は広範囲の濃度に適応できることから、電子材料、医薬品、日用品の多岐の産業分野への利用が可能である。
The method for producing the water-soluble or water-dispersible powder composition of the present invention is very simple, and there is no need to perform complicated processes such as filtration, centrifugation, sediment removal, and distillation operation, and the hydrophobic composition is efficiently hydrophobic. A cluster (particularly fullerene) -containing aqueous composition can be obtained, which is characterized by being dispersible in water. Furthermore, dispersible hydrophobic clusters (especially fullerenes) can be applied to a wide range of concentrations, so that they can be used in various industrial fields such as electronic materials, pharmaceuticals, and daily necessities.
Claims (17)
- 疎水性クラスター及び粘土鉱物からなる混合物を乾式粉砕した粉末を含む、水溶性又は水分散性の粉末組成物。 A water-soluble or water-dispersible powder composition containing a powder obtained by dry-grinding a mixture of hydrophobic clusters and clay minerals.
- 疎水性クラスターの粘土鉱物に対する比(重量基準)が1:100~1:1の範囲である、請求項1に記載の粉末組成物。 2. The powder composition according to claim 1, wherein the ratio (by weight) of the hydrophobic cluster to the clay mineral is in the range of 1: 100 to 1: 1.
- 粘土鉱物が、層状ケイ酸塩を主成分とする粘土鉱物である、請求項1又は2のいずれかに記載の粉末組成物。 The powder composition according to claim 1 or 2, wherein the clay mineral is a clay mineral mainly composed of layered silicate.
- 粘土鉱物が、水に膨潤し、かつイオン交換可能な層状ケイ酸塩である、請求項1~3のいずれかに記載の粉末組成物。 The powder composition according to any one of claims 1 to 3, wherein the clay mineral is a layered silicate that swells in water and is ion-exchangeable.
- 層状ケイ酸塩が、カオリナイト及びスメクタイトから選ばれる、請求項4に記載の粉末組成物。 The powder composition according to claim 4, wherein the layered silicate is selected from kaolinite and smectite.
- 疎水性クラスターが、π-共役系化合物又は炭素クラスターである、請求項1~5のいずれかに記載の粉末組成物。 The powder composition according to any one of claims 1 to 5, wherein the hydrophobic cluster is a π-conjugated compound or a carbon cluster.
- π-共役系化合物が、導電性高分子、共役環式化合物又はカロテノイドである、請求項6に記載の粉末組成物。 The powder composition according to claim 6, wherein the π-conjugated compound is a conductive polymer, a conjugated cyclic compound, or a carotenoid.
- 導電性高分子が、ポリチオフェン、ポリアセチレン、ポリフェニレンビニレン又はポリアニリンから選ばれる、請求項7に記載の粉末組成物。 The powder composition according to claim 7, wherein the conductive polymer is selected from polythiophene, polyacetylene, polyphenylene vinylene, or polyaniline.
- 共役環式化合物が、ペンタセン、アントラセン、ナフタレン又はポルフィリンから選ばれる、請求項7に記載の粉末組成物。 The powder composition according to claim 7, wherein the conjugated cyclic compound is selected from pentacene, anthracene, naphthalene or porphyrin.
- カロテノイドが、β-カロテン、レチノール、レチナール又はレチノイン酸から選ばれる、請求項7に記載の粉末組成物。 The powder composition according to claim 7, wherein the carotenoid is selected from β-carotene, retinol, retinal or retinoic acid.
- 炭素クラスターが、カーボンナノチューブ、フラーレン、グラフェン、黒鉛又はカーボンブラックから選ばれる、請求項6に記載の粉末組成物。 The powder composition according to claim 6, wherein the carbon cluster is selected from carbon nanotubes, fullerenes, graphene, graphite, or carbon black.
- フラーレンが、C60フラーレン、C70フラーレン及びその混合物からなる群より選択される、請求項11に記載の粉末組成物。 Fullerene, C 60 fullerene, is selected from the group consisting of C 70 fullerenes and their mixtures, powder composition of claim 11.
- 疎水性クラスター及び粘土鉱物からなる混合物を乾式粉砕し、粉末を得る工程を含む、水溶性又は水分散性の粉末組成物の製造方法。 A method for producing a water-soluble or water-dispersible powder composition, comprising a step of dry-grinding a mixture of hydrophobic clusters and clay minerals to obtain a powder.
- 疎水性クラスターの粘土鉱物に対する仕込み比(重量基準)が1:100~1:1の範囲である、請求項13に記載の製造方法。 The production method according to claim 13, wherein the charging ratio (by weight) of the hydrophobic cluster to the clay mineral is in the range of 1: 100 to 1: 1.
- 乾式粉砕が、ボールミル又は擂潰機を用いて実施される、請求項13又は14に記載の製造方法。 The manufacturing method according to claim 13 or 14, wherein the dry pulverization is performed using a ball mill or a grinder.
- 請求項1~12のいずれかに記載の粉末組成物、又は請求項13~15のいずれかに記載の製造方法により得られる粉末組成物を、水性媒体に溶解又は分散させた、疎水性クラスター含有水性組成物。 A hydrophobic cluster containing the powder composition according to any one of claims 1 to 12 or the powder composition obtained by the production method according to any one of claims 13 to 15 dissolved or dispersed in an aqueous medium Aqueous composition.
- 粉末組成物を、水性媒体中の平均粒径が1μm以下にて分散させた、請求項16に記載の水性組成物。 The aqueous composition according to claim 16, wherein the powder composition is dispersed with an average particle size in an aqueous medium of 1 µm or less.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2017556490A JPWO2017104848A1 (en) | 2015-12-18 | 2016-12-16 | Composition comprising hydrophobic cluster and clay mineral |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2015247172 | 2015-12-18 | ||
JP2015-247172 | 2015-12-18 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2017104848A1 true WO2017104848A1 (en) | 2017-06-22 |
Family
ID=59056768
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2016/087690 WO2017104848A1 (en) | 2015-12-18 | 2016-12-16 | Composition including hydrophobic cluster and clay mineral |
Country Status (3)
Country | Link |
---|---|
JP (1) | JPWO2017104848A1 (en) |
TW (1) | TW201736253A (en) |
WO (1) | WO2017104848A1 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110386599A (en) * | 2018-04-20 | 2019-10-29 | 杭州万杵材料科技有限公司 | A kind of graphene composite material and preparation method thereof |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2006028297A1 (en) * | 2004-09-10 | 2006-03-16 | Vitamin C60 Bioresearch Corporation | Water-soluble fullerene, process for producing the same, antioxidant composition and external composition |
JP2009203102A (en) * | 2008-02-27 | 2009-09-10 | Nagoya Institute Of Technology | Method for solidifying ceramic powder, and ceramic solidified body |
WO2015105167A1 (en) * | 2014-01-09 | 2015-07-16 | 昭和電工株式会社 | Negative electrode active material for lithium-ion secondary cell |
JP5777193B1 (en) * | 2014-09-09 | 2015-09-09 | グラフェンプラットフォーム株式会社 | Composite reinforced material and manufacturing method thereof |
JP2015197976A (en) * | 2014-03-31 | 2015-11-09 | 株式会社日本触媒 | Mixture for zinc electrode |
-
2016
- 2016-12-16 JP JP2017556490A patent/JPWO2017104848A1/en active Pending
- 2016-12-16 WO PCT/JP2016/087690 patent/WO2017104848A1/en active Application Filing
- 2016-12-19 TW TW105142072A patent/TW201736253A/en unknown
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2006028297A1 (en) * | 2004-09-10 | 2006-03-16 | Vitamin C60 Bioresearch Corporation | Water-soluble fullerene, process for producing the same, antioxidant composition and external composition |
JP2009203102A (en) * | 2008-02-27 | 2009-09-10 | Nagoya Institute Of Technology | Method for solidifying ceramic powder, and ceramic solidified body |
WO2015105167A1 (en) * | 2014-01-09 | 2015-07-16 | 昭和電工株式会社 | Negative electrode active material for lithium-ion secondary cell |
JP2015197976A (en) * | 2014-03-31 | 2015-11-09 | 株式会社日本触媒 | Mixture for zinc electrode |
JP5777193B1 (en) * | 2014-09-09 | 2015-09-09 | グラフェンプラットフォーム株式会社 | Composite reinforced material and manufacturing method thereof |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110386599A (en) * | 2018-04-20 | 2019-10-29 | 杭州万杵材料科技有限公司 | A kind of graphene composite material and preparation method thereof |
Also Published As
Publication number | Publication date |
---|---|
JPWO2017104848A1 (en) | 2018-10-18 |
TW201736253A (en) | 2017-10-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Munkhbayar et al. | Influence of dry and wet ball milling on dispersion characteristics of the multi-walled carbon nanotubes in aqueous solution with and without surfactant | |
Hyung et al. | Dispersion of C60 in natural water and removal by conventional drinking water treatment processes | |
Mchedlov-Petrossyan | Fullerenes in liquid media: an unsettling intrusion into the solution chemistry | |
WO2018135200A1 (en) | Composition comprising hydrophobic cluster and saccharides | |
Niu et al. | Laser dispersion of detonation nanodiamonds | |
Munkhbayar et al. | Effect of grinding speed changes on dispersibility of the treated multi-walled carbon nanotubes in aqueous solution and its thermal characteristics | |
Liu et al. | Green synthesis of carbon quantum dots from lignite coal and the application in Fe3+ detection | |
Sankar et al. | The pH-sensitive polyampholyte nanogels: Inclusion of carbon nanotubes for improved drug loading | |
Khatoon et al. | Synthesis and characterization of silver nanoparticles by chemical reduction method | |
KR20190081353A (en) | Gold-nanodiamond composite, and cosmetic composition comprising the same | |
CN107074555A (en) | The suspension and Nano diamond units nano dispersion fluid of Nano diamond condensation product | |
Hilburn et al. | Synthesizing aqueous fullerene colloidal suspensions by new solvent-exchange methods | |
Kokubo | Water soluble single-nano carbon particles: fullerenol and its derivatives | |
Hussain et al. | Green synthesis and photocatalytic insights: A review of zinc oxide nanoparticles in wastewater treatment | |
Ansari et al. | Novel green synthesis of graphene layers using zante currants and graphene oxide | |
WO2017104848A1 (en) | Composition including hydrophobic cluster and clay mineral | |
WO2019117224A1 (en) | Antioxidant comprising hydrophobic cluster and saccharides | |
Gigault et al. | Selection of an appropriate aqueous nano-fullerene (nC60) preparation protocol for studying its environmental fate and behavior | |
Marković et al. | Surface chemical modification of fullerene by mechanochemical treatment | |
JP6494919B2 (en) | Nanocarbon dispersant | |
JP5901156B2 (en) | Inorganic organic composite particles and method for producing the same | |
TW200842107A (en) | Carbon nanocapsules-layered silicate hybrid and preparation method thereof | |
Qu et al. | Dispergation and modification of multi-walled carbon nanotubes in aqueous solution | |
Bozari et al. | Copper phthalocyanine/fluorapatite nano composite and its pH-and photo-responsive properties | |
Sarkar et al. | Biopolymer assisted synthesis of silica-carbon composite by spray drying |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 16875822 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2017556490 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 16875822 Country of ref document: EP Kind code of ref document: A1 |