WO2017104747A1 - Column - Google Patents

Column Download PDF

Info

Publication number
WO2017104747A1
WO2017104747A1 PCT/JP2016/087375 JP2016087375W WO2017104747A1 WO 2017104747 A1 WO2017104747 A1 WO 2017104747A1 JP 2016087375 W JP2016087375 W JP 2016087375W WO 2017104747 A1 WO2017104747 A1 WO 2017104747A1
Authority
WO
WIPO (PCT)
Prior art keywords
column
tube
outer tube
less
inner tube
Prior art date
Application number
PCT/JP2016/087375
Other languages
French (fr)
Japanese (ja)
Inventor
雅道 高橋
黒田 充
Original Assignee
株式会社 潤工社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2016111569A external-priority patent/JP2017215304A/en
Application filed by 株式会社 潤工社 filed Critical 株式会社 潤工社
Publication of WO2017104747A1 publication Critical patent/WO2017104747A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • G01N30/50Conditioning of the sorbent material or stationary liquid
    • G01N30/56Packing methods or coating methods
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • G01N30/60Construction of the column

Definitions

  • the present invention relates to a column used for high-efficiency liquid chromatography (hereinafter referred to as HPLC).
  • HPLC high-efficiency liquid chromatography
  • This conventional column includes a metal only (for example, SUS), a resin only (for example, polyetheretherketone, hereinafter referred to as PEEK), a metal outer tube, and a resin inner.
  • a metal only for example, SUS
  • a resin only for example, polyetheretherketone, hereinafter referred to as PEEK
  • PEEK polyetheretherketone
  • What consists of tubes is known.
  • a column composed of only metal when analyzing a substance having a high metal coordination property, adsorption occurs on the inner surface of the column, and the analysis accuracy may deteriorate.
  • a column composed only of a resin has a problem that pressure resistance is poor, and there is a possibility that quality stability is impaired.
  • a column composed of a metal outer tube and a resin inner tube cannot be reduced in diameter.
  • the filler is finely and uniformly filled, and as shown in FIG. 5 (b), the filler is non-uniformly filled. This is because the gaps between the particles vary and affect the passage speed of the sample passing through the column, and the analysis accuracy is lowered. In this way, when the packing material is packed in the column, the packing material is not sufficiently packed in the column because the flow rate of the packing material is different between the inside and the outside of the column. There is a possibility that a tailing phenomenon that pulls the tail occurs and the accuracy of the analysis result is significantly lowered.
  • the abrasion resistance test is performed by polishing a column inner tube with a grinder (air grinder) with a predetermined roughness (# 1000) under a predetermined pressure (at least 0.25 N). Refers to a test. Even in the column after this test, the number of theoretical plates per unit length is about 400.
  • the filler is not affected by the unevenness of the inner surface and can be filled smoothly, and the filler can be packed more finely and uniformly, Analysis accuracy can be further improved.
  • the column inner tube is composed of polyetheretherketone.
  • FIG. 1 It is a figure which shows the structure of the column of this invention. It is sectional drawing of a column main body.
  • A is a figure which shows typically the relationship between the filler in a comparative example, and a column inner tube
  • (b) is a figure which shows typically the relationship between the filler in an embodiment, and a column inner tube. It is a figure which shows the difference in the analysis result of HPLC
  • (a) is a figure which shows the result of a comparative example
  • (b) is a figure which shows the result of embodiment.
  • FIG. It is a figure which shows typically the passage speed of the sample by the number of theoretical plates of a filler, (a) is a figure with which the filler is packed finely and uniformly, and (b) is filled with the filler non-uniformly.
  • FIG. It is a figure which shows the packing state of the filler by the surface roughness of the pipe
  • a column 1 according to this embodiment includes a column main body 2, nuts 3 and 3 provided at both ends of the column main body 2, and a packing material (silica gel with a particle diameter of 2 ⁇ m) ( (Not shown).
  • a packing material silicon gel with a particle diameter of 2 ⁇ m
  • the column outer tube 4 and the nuts 3 and 3 manufactured by cutting are prepared.
  • the column outer tube 4 has a through hole having an inner diameter of 1 to 5 mm (2 mm in this embodiment).
  • a PEEK tube constituting the column inner tube 5 is manufactured by extrusion molding.
  • the tube manufactured here has an outer diameter of 1.9 mm and a wall thickness of 0.45 mm.
  • the tube is inserted into the through hole of the column outer tube 4, and after sealing one end of the column outer tube 4, nitrogen gas is injected into the tube from the other end side at a temperature of 155 ° C.
  • Comparative Example 1 is different from the above embodiment in that the column inner tube is formed by cutting, and the other configurations are the same.
  • the column manufacturing method according to Comparative Example 1 prepares the column outer tube 4 and the nuts 3 and 3 as in the column according to the embodiment.
  • a cylindrical resin rod (made by PEEK) having an outer diameter of 2 mm is prepared.
  • the resin rod is inserted into the through hole of the column outer tube 4.
  • a through hole having an inner diameter of 1 mm is formed by cutting along the central axis in the longitudinal direction of the inserted resin rod.
  • Comparative Example 2 will be described.
  • a tube to be the column inner tube 5 is prepared with a predetermined sample length (50 mm), and a core material (manufactured by SUS) 10 is inserted into the tube.
  • a digital force gauge AD-4932A, manufactured by A & D.
  • a grindstone with a predetermined roughness # 1000 (outside diameter 4 mm) is attached to an air grinder (TRUSCO, TMAG10SN) which becomes a polishing machine (only the following grindstone with a shaft is shown) 12, and the rotational speed Rotate at 60000 rpm.
  • the value of 4 times is only in one axial direction, and the “step” is a plane, so 4 in each of the two axial directions (the horizontal axis in the previous figure and the longitudinal axis with respect to the page).
  • a difference of 16 times that of the present invention occurs.
  • the depth of the recess is not 4 times in all the pipes in the column, and there are some offsets, it is 4 minutes rather than simply reducing the theoretical plate number to 1/16. It was settled in about 1 of.
  • the number of theoretical plates is generally expressed by the following equation. N: number of theoretical plates tr : holding time W: peak width
  • the packing material can be packed finely and uniformly, and the analysis accuracy is improved.

Abstract

[Problem] The present invention addresses the problem of providing a column for high performance liquid chromatography (HPLC) in which both the analysis precision and the quality stability of an analysis device are improved. [Solution] The column according to the present invention is characterized in being provided with a cylindrical column outer tube formed of metal and a column inner tube positioned on the inner surface of the column outer tube tightly affixed to the form of the inner surface, the volume of the column inner tube being 9-4200 mm3, and the column inner tube being such that, after a load of at least 0.25 N is applied in a friction resistance test, the arithmetic average roughness (Ra) of the inner surface is 0.1 μm or less and the maximum height (Ry) is 1.5 μm or less.

Description

カラムcolumn
 本発明は、高効率液体クロマトグラフィー(以下、HPLCという)に用いられるカラムに関する。 The present invention relates to a column used for high-efficiency liquid chromatography (hereinafter referred to as HPLC).
 従来、混合物を分離分析する方法として、クロマトグラフィーが知られている。HPLCはカラムクロマトグラフィーと呼ばれる分離法の一種であり、常圧下に比べ高圧にすることで短時間に分離分析できる。このHPLCでは、試料を分離するためのカラムと呼ばれる装置が用いられる。このカラムは筒状の形状を有しており、中に粒状の充填剤(例えばシリカゲル)が充填されている。 Conventionally, chromatography is known as a method for separating and analyzing a mixture. HPLC is a kind of separation method called column chromatography, and can be separated and analyzed in a short time by using a higher pressure than normal pressure. In this HPLC, an apparatus called a column for separating a sample is used. This column has a cylindrical shape and is filled with a granular filler (for example, silica gel).
この従来のカラムには、金属のみ(例えばSUS)で構成されたものと、樹脂のみ(例えばポリエーテルエーテルケトン、以下PEEKという)で構成されたものと、金属製の外管と樹脂製の内管で構成されたものが知られている。しかし、金属のみで構成されたカラムでは、金属配位性の高い物質を分析する際にカラム内面で吸着が発生し、分析精度が悪化する虞がある。また、樹脂のみで構成されたカラムでは、耐圧性が悪いという問題があり、品質安定性を損なう虞がある。さらには、金属製の外管と樹脂製の内管で構成されたカラムでは、細径化できないという問題があった。これは、従来のカラムを製造する際、まず金属製の外管を準備し、この外管内に棒状の樹脂を充填した後、長手方向に孔を切削加工する必要があり、切削加工を行う器具のサイズに限界があるためである。このようなカラムにおいては、カラム内において充填される充填剤がカラム内の内表面の凹凸によって細密化および均一化が阻害され、分析精度が低下する虞がある。
また上記のように、高速液体クロマトク゛ラフィー(HPLC)用のカラムには、金属配位性の高い物質のカラム内面への吸着を防ぐため、不活性度が高い全体がPEEKで構成されたカラムが存在する(非特許文献1)。ここでHPLCの分析精度を向上させるためには、充填剤をより細密かつ均一に充填することが必要である。これは、図5(a)に示すように、充填剤が細密かつ均一に充填されたものと、図5(b)に示すように、充填剤が不均一に充填されたものでは、充填剤の粒子同士の間の隙間にばらつきが生じ、カラム内を通過する試料の通過速度に影響を及ぼし、分析精度が低下するからである。このように、カラム内に充填材を充填する際にも、カラム内の内側と外側で充填材の流速が異なることにより、カラム内に充填材が十分に充填されず、分析結果においてピーク後部が裾を引くテーリング現象が生じ、分析結果の精度を著しく低下させる虞があった。
This conventional column includes a metal only (for example, SUS), a resin only (for example, polyetheretherketone, hereinafter referred to as PEEK), a metal outer tube, and a resin inner. What consists of tubes is known. However, in a column composed of only metal, when analyzing a substance having a high metal coordination property, adsorption occurs on the inner surface of the column, and the analysis accuracy may deteriorate. In addition, a column composed only of a resin has a problem that pressure resistance is poor, and there is a possibility that quality stability is impaired. Furthermore, there is a problem that a column composed of a metal outer tube and a resin inner tube cannot be reduced in diameter. This is because when a conventional column is manufactured, a metal outer tube is first prepared, a rod-shaped resin is filled in the outer tube, and then a hole must be cut in the longitudinal direction. This is because there is a limit to the size of the. In such a column, the packing material packed in the column is prevented from being densified and uniformed by the irregularities on the inner surface of the column, and the analysis accuracy may be reduced.
In addition, as described above, high-performance liquid chromatography (HPLC) columns have a high inertness column made entirely of PEEK to prevent the adsorption of substances with high metal coordination properties on the inner surface of the column. Exists (Non-Patent Document 1). Here, in order to improve the analytical accuracy of HPLC, it is necessary to pack the filler more finely and uniformly. As shown in FIG. 5 (a), the filler is finely and uniformly filled, and as shown in FIG. 5 (b), the filler is non-uniformly filled. This is because the gaps between the particles vary and affect the passage speed of the sample passing through the column, and the analysis accuracy is lowered. In this way, when the packing material is packed in the column, the packing material is not sufficiently packed in the column because the flow rate of the packing material is different between the inside and the outside of the column. There is a possibility that a tailing phenomenon that pulls the tail occurs and the accuracy of the analysis result is significantly lowered.
また、微量の試料を高精度かつ短時間で分析するためには、カラムの理論段数が高いことが必要である。理論段数とは、カラムの性能・効率を判断する指標の一つである。しかし、小型のカラムは内部の体積が小さいため、理論段数を高くするためには充填剤をできるだけ密に充填しなくてはならない。カラムに充填される充填剤は、溶剤に分散させた状態で流し込まれ、溶剤のみカラムから排出され、充填剤はカラム内に留る。図6示すように、充填剤はカラムの長さ方向に対して垂直な面を保ったまま充填されることが望ましいが、実際にはカラム内壁面での摩擦などにより、カラム中心を通る充填剤に比べて壁面に沿う充填剤は遅れて充填される。この差が大きいほどカラムの内壁面付近の充填剤の充填を密にすることは難しくなり、理論段数を高めることができない。理論段数が低下すると、分析精度を維持するためにはカラムの長手方向の長さをより長くし、理論段数増やす必要があるため、カラム内の体積が大きくなり、微量の試料を高精度かつ短時間で分析することができない。 In addition, in order to analyze a small amount of sample with high accuracy and in a short time, the number of theoretical plates of the column is required to be high. The number of theoretical plates is an index for judging the performance and efficiency of the column. However, since a small column has a small internal volume, the packing must be packed as densely as possible in order to increase the number of theoretical plates. The packing material packed in the column is poured in a state dispersed in a solvent, and only the solvent is discharged from the column, and the packing material stays in the column. As shown in FIG. 6, it is desirable that the packing material is packed while maintaining a plane perpendicular to the length direction of the column, but in practice, the packing material passes through the center of the column due to friction on the inner wall surface of the column. Compared to the above, the filler along the wall surface is filled later. The larger this difference is, the more difficult it is to pack the packing near the inner wall surface of the column, and the number of theoretical plates cannot be increased. If the number of theoretical plates decreases, the length in the longitudinal direction of the column must be increased and the number of theoretical plates must be increased in order to maintain analytical accuracy. It cannot be analyzed in time.
ここで、カラム内壁面に沿う充填剤の流速が遅い要因の1つに内壁面の表面粗さがある。内壁面が滑らかなほど、カラム内壁面での流速の遅れは緩和できる。切削加工で形成された従来のカラムの内壁面表面粗さは、Ra=0.25 μmである。この表面粗さの値は、内層のPEEKが切削加工によることに起因すると考えられる。
カラム内壁面が平滑であれば、上図のように内壁面付近での流速低下が抑えられ、カラムの底から均一かつ密に充填できるため単位体積当たりの充填剤を多くすることができる。つまり単位体積当たりの理論段数を高くできるため、必要な理論段数を得るためのカラム長は短くて済む。一方で内壁面の表面粗さが大きい場合は、充填剤の充填が均一ではないため密に充填することができない。そのため理論段数を稼ぐにはカラム長を長くする必要がある。また、カラム長が長いと、分析時に試料をカラムに通すために余計な圧力(好ましくは耐圧60~100Mpa)が必要となるため、望ましくはない。
ここで、図7示すように、カラム内壁面粗さがRa=0のとき、カラム内壁面に沿って充填剤が隙間なく並び、カラム底面に充填された1段目の並びがそのまま積み重なり、その段数が理論段数となる。ここで、同図の隙間Aにおけるカラム内壁面と充填剤との隙間に着目する。カラム内壁面は実際にはある程度の粗さがあり、隙間AにR/2を超える高さの凸部が存在すると充填剤の縦方向の並びが崩れることは明らかである。このとき、図8に示すように、1段目と2段目の充填剤の並び方は同じとは言えず、左図においては理論段数2とはならない。一方で右図のように、凸部がカラム内壁面と充填剤の隙間に比べて低ければ充填剤の並び方に影響を与えず、1段目と2段目の並び方は同じと見なせるので、理論段数は2となる。上で述べた凸部の高さの程度は、表面粗さRaの値で表わされる。充填剤の粒径と比較してRaを十分に低くすることができなければ、充填剤の並び方への影響は大きくなり、単位体積当たりの理論段数は小さくなり、分析精度が低下する虞れがある。
Here, the surface roughness of the inner wall surface is one of the factors that cause the slow flow rate of the packing material along the inner wall surface of the column. The smoother the inner wall surface, the less the flow velocity delay on the column inner wall surface. The surface roughness of the inner wall surface of a conventional column formed by cutting is Ra = 0.25 μm. This surface roughness value is considered to be due to the PEEK of the inner layer being cut.
If the inner wall surface of the column is smooth, a decrease in the flow rate near the inner wall surface can be suppressed as shown in the upper figure, and packing can be performed uniformly and densely from the bottom of the column, so that the amount of packing material per unit volume can be increased. That is, since the number of theoretical plates per unit volume can be increased, the column length for obtaining the required number of theoretical plates can be shortened. On the other hand, when the surface roughness of the inner wall surface is large, the filling of the filler is not uniform, so that it cannot be densely filled. Therefore, it is necessary to increase the column length in order to increase the number of theoretical plates. In addition, if the column length is long, an extra pressure (preferably withstand pressure of 60 to 100 MPa) is required to pass the sample through the column during analysis, which is not desirable.
Here, as shown in FIG. 7, when the column inner wall surface roughness is Ra = 0, the packings are arranged without gaps along the column inner wall surface, and the first-stage array packed on the column bottom surface is stacked as it is, The plate number becomes the theoretical plate number. Here, attention is focused on the gap between the column inner wall surface and the packing material in the gap A in FIG. The inner wall surface of the column actually has a certain degree of roughness, and it is clear that the vertical alignment of the packing material collapses when there are convex portions with a height exceeding R / 2 in the gap A. At this time, as shown in FIG. 8, the arrangement of the first and second stage fillers cannot be said to be the same, and the number of theoretical stages is not 2 in the left figure. On the other hand, as shown in the figure on the right, if the convex part is lower than the gap between the column inner wall surface and the packing material, the arrangement of the packing materials will not be affected, and the first and second processing rows can be regarded as the same. The number of steps is 2. The degree of the height of the convex portion described above is represented by the value of the surface roughness Ra. If Ra cannot be made sufficiently low compared to the particle size of the filler, the effect on the arrangement of the filler will be large, the number of theoretical plates per unit volume will be small, and the analysis accuracy may be reduced. is there.
 以上のように、細経化されたカラムにおいて、カラムの内表面と充填材のそれぞれの接触角が大きく異なる場合には、充填剤を細密かつ均一に充填することができず、また分析精度が低下する虞れがある。 As described above, when the contact angle between the inner surface of the column and the packing material is greatly different in a micronized column, the packing material cannot be packed finely and uniformly, and the analysis accuracy is low. There is a risk of lowering.
 そこで、本発明は、分析精度を向上させ、かつ短時間で分析可能な高効率液体クロマトグラフィー(HPLC)のカラムを提供することを目的とする。 Therefore, an object of the present invention is to provide a high-efficiency liquid chromatography (HPLC) column capable of improving analysis accuracy and analyzing in a short time.
本発明に係るカラムは、金属で構成された筒状のカラム外管と、このカラム外管の内表面に、この内表面の形状に沿って密着した状態で配置されたカラム内管と、を備え、このカラム内管内の体積が9以上~4200mm以下であり、カラム内管は、少なくとも0.25Nの荷重が付与された耐摩耗試験後の内表面の算術平均粗さ(Ra)が0.1μm以下であり、かつ最大高さ(Ry)が1.5μm以下であることを特徴とする。 A column according to the present invention comprises a cylindrical column outer tube made of metal, and a column inner tube disposed in close contact with the inner surface of the column outer tube along the shape of the inner surface. provided, and a volume of the column in the tube 9 or more ~ 4200 mm 3 or less, column inner tube has an arithmetic mean roughness of the inner surface after the abrasion test load of at least 0.25N is applied (Ra) is 0.1μm And the maximum height (Ry) is 1.5 μm or less.
 本発明に係るカラムは、カラム内管内の体積が9以上~4200mm以下と従来のカラム内の体積よりも小さく、生体試料に用いられる試料(例えば5000mm)においても、カラム内全体に試料が流入され、精度よく分析することができるだけでなく、分析を要する試料が少量ですむため、短時間で分析を終えることができる。
また、カラム内管は、カラム外管の内表面に、この内表面の形状に沿って密着した状態で配置されている。ここで、カラム外管の内表面に、この内表面の形状に沿って密着した状態とは、図10に示すように、カラム外管40に対し、カラム内管50の表面の凹凸により隙間が形成されたものではなく、カラム外管の形状に沿って隙間なくカラム内管が密着している状態をいう。また、カラム内管の内表面の算術平均粗さ(Ra)は0.1μm以下であり、かつ最大高さ(Rz)は1.5μm以下である。このため、例えば2μmの粒子径を有する充填剤が内表面の凹凸によって充填時の影響を受けず、滑らかに充填できるとともに、充填剤をより細密かつ均一に充填することができるため、分析精度をさらに向上させることができる。具体的には、内壁面粗さがRa=0のカラムが存在するとき、充填剤の粒径を2 μmとするとカラムの長さ方向に充填剤は1 mm当たり500個が積み重なる。この積み重なった充填剤のそれぞれが属するカラムの長手方向の長さに対して垂直な面は全て同じ充填剤の並びをしている。つまり充填剤の並び方が同じ面が500段積み重なっているので、長さ方向1 mm当たり(=単位長さ当たり)の理論段数は500となる。本発明カラムの耐摩耗試験後の内壁面粗さは実測値でRa=0.1μm以下、Ry=1.5μm以下であり、2 μmの充填剤と比較してRyは十分小さい。ここで、耐摩耗試験とは、カラム内管に対し、研磨機(エアーグラインダ)に、所定の粗さ(♯1000)の軸付砥石を用い、所定の圧力下(少なくとも0.25N)で研磨する試験をいう。この試験後のカラムにおいても、単位長さ当たりの理論段数は約400となる。ここでは内壁面粗さの影響を0.8掛けと仮定して、本発明カラムの単位長さ当たりの理論段数は500×0.8=400程度となる。これに対し、上述した従来技術のようにカラム内の内壁面粗さがRa=0.25 μm、Ry=2.0 μmとする。Ry=2.0 μmは充填剤の粒径と同等なので充填剤の並び方や積み重なり方を不均一にし、単位長さ当たりの理論段数は格段に低下する。本発明カラムに比べ約4倍のRaとRyであることから理論段数は本発明カラムの約1/4に相当する100になる。
以上のように本発明にかかるカラムによれば、充填剤が内表面の凹凸によって充填時の影響を受けず、滑らかに充填できるとともに、充填剤をより細密かつ均一に充填することができるため、分析精度をさらに向上させることができる。
The column according to the present invention has a volume in the tube in the column of 9 to 4200 mm 3 which is smaller than the volume in the conventional column, and even in a sample used for a biological sample (for example, 5000 mm 3 ) In addition to being able to analyze with high accuracy, a small amount of sample needs to be analyzed, so that the analysis can be completed in a short time.
The column inner tube is disposed in close contact with the inner surface of the column outer tube along the shape of the inner surface. Here, the state of being in close contact with the inner surface of the column outer tube along the shape of the inner surface means that, as shown in FIG. It is not formed, but refers to the state in which the column inner tube is in close contact with the shape of the column outer tube without a gap. The arithmetic average roughness (Ra) of the inner surface of the column inner tube is 0.1 μm or less, and the maximum height (Rz) is 1.5 μm or less. For this reason, for example, a filler having a particle diameter of 2 μm is not affected by the unevenness of the inner surface and can be filled smoothly, and the filler can be filled more finely and uniformly. Further improvement can be achieved. Specifically, when a column having an inner wall roughness of Ra = 0 exists, if the particle size of the packing material is 2 μm, 500 packing materials per 1 mm are stacked in the length direction of the column. All the surfaces perpendicular to the longitudinal length of the column to which each of the stacked packings belongs are arranged in the same packing. In other words, since 500 layers with the same packing arrangement are stacked, the theoretical plate number per 1 mm in length direction (= per unit length) is 500. The measured inner wall roughness of the column of the present invention after the abrasion resistance test is Ra = 0.1 μm or less and Ry = 1.5 μm or less, and Ry is sufficiently small as compared with the 2 μm filler. Here, the abrasion resistance test is performed by polishing a column inner tube with a grinder (air grinder) with a predetermined roughness (# 1000) under a predetermined pressure (at least 0.25 N). Refers to a test. Even in the column after this test, the number of theoretical plates per unit length is about 400. Here, assuming that the influence of the inner wall roughness is 0.8, the theoretical plate number per unit length of the column of the present invention is about 500 × 0.8 = 400. On the other hand, the inner wall surface roughness in the column is Ra = 0.25 μm and Ry = 2.0 μm as in the prior art described above. Since Ry = 2.0 μm is equivalent to the particle size of the filler, the arrangement and stacking of the fillers are made uneven, and the number of theoretical plates per unit length is dramatically reduced. Since the Ra and Ry are about 4 times that of the column of the present invention, the number of theoretical plates is 100, which corresponds to about 1/4 of the column of the present invention.
As described above, according to the column according to the present invention, the filler is not affected by the unevenness of the inner surface and can be filled smoothly, and the filler can be packed more finely and uniformly, Analysis accuracy can be further improved.
さらに、カラム内管は、熱拡張性を有する樹脂で構成され、加熱処理により前記カラム外管に密着していることを特徴とする。 Furthermore, the column inner tube is made of a resin having heat expandability, and is in close contact with the column outer tube by heat treatment.
またカラム内管は、ポリエーテルエーテルケトンで構成されていることを特徴とする。 The column inner tube is composed of polyetheretherketone.
カラム内管はポリエーテルエーテルケトン(以下、PEEKという)で構成されているため、金属で構成されたものと比較して不活性度が高く、カラム内での試料の吸着が低減され、分析精度を向上させることができる。 Since the column inner tube is made of polyetheretherketone (hereinafter referred to as PEEK), it has a higher degree of inertness compared to that made of metal, reducing the adsorption of the sample in the column, and analyzing accuracy Can be improved.
本発明のカラムの構成を示す図である。It is a figure which shows the structure of the column of this invention. カラム本体の断面図である。It is sectional drawing of a column main body. (a)は比較例における充填剤とカラム内管との関係を模式的に示す図であり、(b)は実施形態における充填剤とカラム内管との関係を模式的に示す図である。(A) is a figure which shows typically the relationship between the filler in a comparative example, and a column inner tube, (b) is a figure which shows typically the relationship between the filler in an embodiment, and a column inner tube. HPLCの分析結果の違いを示す図であり、(a)は比較例の結果を示す図であり、(b)は実施形態の結果を示す図である。It is a figure which shows the difference in the analysis result of HPLC, (a) is a figure which shows the result of a comparative example, (b) is a figure which shows the result of embodiment. 充填剤の理論段数による試料の通過速度を模式的に示す図であり、(a)は充填剤が細密かつ均一に充填されている図、(b)は充填剤が不均一に充填されている図である。It is a figure which shows typically the passage speed of the sample by the number of theoretical plates of a filler, (a) is a figure with which the filler is packed finely and uniformly, and (b) is filled with the filler non-uniformly. FIG. カラム内管の表面粗さによる充填剤の充填状態を示す図である。It is a figure which shows the packing state of the filler by the surface roughness of the pipe | tube in a column. 理論段数を説明するための図である。It is a figure for demonstrating the number of theoretical plates. カラム内管の表面粗さによる理論段数の差異を説明するための図である。It is a figure for demonstrating the difference in the theoretical plate number by the surface roughness of the pipe | tube in a column. 耐摩耗試験の構成を模式的に示す概念図である。It is a conceptual diagram which shows the structure of an abrasion resistance test typically. 比較例1のカラム外管とカラム内管の関わり合いを、模式的に示す部分拡大図である。It is the elements on larger scale which show typically the relation of the column outer tube and the column inner tube of comparative example 1.
 以下図面を参照して、本発明に係るカラムについて説明する。但し、本発明の技術的範囲はそれらの実施の形態に限定されず、特許請求の範囲に記載された発明との均等物に及ぶ点に留意されたい。 The column according to the present invention will be described below with reference to the drawings. However, it should be noted that the technical scope of the present invention is not limited to these embodiments, and extends to equivalents to the invention described in the claims.
 (実施形態に係るカラムの構成)
 図1および図2は、実施形態に係るカラム1の構成を模式的に示す図である。図1に示すように、本実施形態に係るカラム1は、カラム本体2と、このカラム本体2の両端にそれぞれ設けられたナット3、3と、粒径2μmのシリカゲルが充填された充填材(図示せず)とを備えている。なお、理解の容易のために、図1ではカラム本体2は全断面図であり、ナット3、3は片側断面図で示している。
(Configuration of the column according to the embodiment)
1 and 2 are diagrams schematically showing the configuration of the column 1 according to the embodiment. As shown in FIG. 1, a column 1 according to this embodiment includes a column main body 2, nuts 3 and 3 provided at both ends of the column main body 2, and a packing material (silica gel with a particle diameter of 2 μm) ( (Not shown). For easy understanding, in FIG. 1, the column body 2 is a full sectional view, and the nuts 3 and 3 are shown in a half sectional view.
 図2は、カラムの径方向の断面図であり、同図に示すように、カラム本体2は、金属製(本実施形態ではSUS)の筒状のカラム外管4と、このカラム外管の内側に配置されたカラム内管5を有している。カラム内管4は、樹脂(本実施形態ではポリ・エーテル・エーテル・ケトン、以下、PEEKという)で構成され、筒状の形状を有し、カラム外管4の内表面に密着している。 FIG. 2 is a cross-sectional view in the radial direction of the column. As shown in FIG. 2, the column main body 2 includes a cylindrical column outer tube 4 made of metal (SUS in the present embodiment) and the column outer tube. It has a column inner tube 5 arranged inside. The column inner tube 4 is made of resin (in this embodiment, poly-ether-ether-ketone, hereinafter referred to as PEEK), has a cylindrical shape, and is in close contact with the inner surface of the column outer tube 4.
 ナット3、3はそれぞれ、カラム外管4の両端部においてそれぞれ螺合している。 The nuts 3 and 3 are respectively screwed at both ends of the column outer tube 4.
 (実施形態に係るカラムの製造方法)
 本実施形態に係るカラムの製造においては、まず切削加工により製造されたカラム外管4およびナット3、3を準備する。このカラム外管4は内径1~5mm(本実施形態では2mm)の貫通孔を有する。次に、押し出し成形によりカラム内管5を構成するPEEK製のチューブを製造する。ここで製造されるチューブは、外径1.9mm、肉厚0.45mmを有している。次に、上記のチューブをカラム外管4の貫通孔に挿通し、カラム外管4の片端を封止した上で、155℃の温度下において他端側からチューブ内に窒素ガスを注入し、所定時間(本実施形態では15秒)経過後に、カラム外管4を浸水させ冷却する。これにより、カラム外管4の貫通穴の内側において、チューブ状のカラム内管5が内圧により拡張し、カラム外管4の内表面においてカラム内管5が密着するとともに、内径が1mmのカラム内管5が形成される。
(Method for producing column according to embodiment)
In the manufacture of the column according to the present embodiment, first, the column outer tube 4 and the nuts 3 and 3 manufactured by cutting are prepared. The column outer tube 4 has a through hole having an inner diameter of 1 to 5 mm (2 mm in this embodiment). Next, a PEEK tube constituting the column inner tube 5 is manufactured by extrusion molding. The tube manufactured here has an outer diameter of 1.9 mm and a wall thickness of 0.45 mm. Next, the tube is inserted into the through hole of the column outer tube 4, and after sealing one end of the column outer tube 4, nitrogen gas is injected into the tube from the other end side at a temperature of 155 ° C. After elapse of a predetermined time (15 seconds in this embodiment), the column outer tube 4 is submerged and cooled. Thereby, inside the through hole of the column outer tube 4, the tubular column inner tube 5 is expanded by the internal pressure, the column inner tube 5 is brought into close contact with the inner surface of the column outer tube 4, and the inner diameter of the column is 1 mm. A tube 5 is formed.
 (比較例に係るカラムの構成)
 次に、比較例1について説明する。比較例1はカラム内管が切削加工によって形成されている点が上記の実施形態と異なっており、その他の構成は同じである。比較例1に係るカラムの製造方法は、実施形態に係るカラム同じく、カラム外管4およびナット3、3を準備する。次に、外径2mmの円柱状の樹脂棒(PEEK製)を作製する。次に、この樹脂棒をカラム外管4の貫通穴に挿通する。次にこの挿通された樹脂棒の長手方向の中心軸に沿って、内径1mmの貫通穴を切削加工により形成することにより製造される。
 次に、比較例2について説明する。比較例2はカラム内管がPEEK以外の樹脂で構成されている点が上記の実施形態と異なっており、その他の構成は同じである。比較例2に係るカラムの製造方法は、実施形態に係るカラムと同様に、カラム外管4およびナット3、3を準備する。次に、カラム内管として、押し出し成形によりカラム内管5を構成するパーフロロアルコキシアルカンポリマー(以下、「PFA」という)製のチューブを製造する。ここで製造されるチューブは、外径1.9mm、肉厚0.45mmを有している。次に、上記のチューブをカラム外管4の貫通孔に挿通し、カラム外管4の片端を封止した上で、155℃の温度下において他端側からチューブ内に窒素ガスを注入し、所定時間(本実施形態では15秒)経過後に、カラム外管4を浸水させ冷却する。これにより、カラム外管4の貫通穴の内側において、チューブ状のカラム内管5が内圧により拡張し、カラム外管4の内表面においてカラム内管5が密着するとともに、内径が1mmのカラム内管5が形成される。
(Configuration of column according to comparative example)
Next, Comparative Example 1 will be described. Comparative Example 1 is different from the above embodiment in that the column inner tube is formed by cutting, and the other configurations are the same. The column manufacturing method according to Comparative Example 1 prepares the column outer tube 4 and the nuts 3 and 3 as in the column according to the embodiment. Next, a cylindrical resin rod (made by PEEK) having an outer diameter of 2 mm is prepared. Next, the resin rod is inserted into the through hole of the column outer tube 4. Next, a through hole having an inner diameter of 1 mm is formed by cutting along the central axis in the longitudinal direction of the inserted resin rod.
Next, Comparative Example 2 will be described. Comparative Example 2 differs from the above embodiment in that the column inner tube is made of a resin other than PEEK, and the other configurations are the same. In the column manufacturing method according to Comparative Example 2, the column outer tube 4 and the nuts 3 and 3 are prepared in the same manner as the column according to the embodiment. Next, as a column inner tube, a tube made of perfluoroalkoxyalkane polymer (hereinafter referred to as “PFA”) constituting the column inner tube 5 is manufactured by extrusion molding. The tube manufactured here has an outer diameter of 1.9 mm and a wall thickness of 0.45 mm. Next, the tube is inserted into the through hole of the column outer tube 4, and after sealing one end of the column outer tube 4, nitrogen gas is injected into the tube from the other end side at a temperature of 155 ° C. After elapse of a predetermined time (15 seconds in this embodiment), the column outer tube 4 is submerged and cooled. Thereby, inside the through hole of the column outer tube 4, the tubular column inner tube 5 is expanded by the internal pressure, the column inner tube 5 is brought into close contact with the inner surface of the column outer tube 4, and the inner diameter of the column is 1 mm. A tube 5 is formed.
 (表面粗さの測定方法)
 次に、カラム内管の内周面の表面粗さを測定する方法について説明する。測定方法は、表面粗さに関するJIS2001年規格に準拠している。測定装置はサーフテストSJ-402(株式会社ミツトヨ)を用い、測定条件としてカットオフを0.25mm、測定長を5mm、測定速度を0.5mm/sに設定した。測定した表面粗さの種類は、算術平均粗さ(Ra)と最大高さ(Ry)である。
 また、表面粗さの測定を行うにあたり、以下の耐摩耗試験を行った。図9は、耐摩耗試験の試験装置の構成を模式的に示す図である。本試験では、まずカラム内管5となるチューブを所定の試料長(50mm)で準備し、このチューブの中に芯材(SUS製)10を挿通する。次に、この芯材10の両端をデジタルフォースゲージ(エー・アンド・デイ社製、AD-4932A)11に連結する。次に、研磨機(下記の軸付砥石のみ図示)12となるエアーグラインダ(TRUSCO社製、TMAG10SN)に、所定の粗さ(♯1000)の軸付砥石(外径4mm)を取り付け、回転速度60000rpmにて回転させる。次に、芯材10の両端を同図の矢印方向に引っ張り、所望の荷重(0.25N、0.49N、0.98N)が付与された状態で、上記の研磨機12の砥石部分に所望の試験時間(5秒)押し付けた。この耐摩耗試験後の本実施形態、比較例1および比較例2のカラム内管5の表面粗さを以下に示す。
(Measurement method of surface roughness)
Next, a method for measuring the surface roughness of the inner peripheral surface of the column inner tube will be described. The measuring method is based on the JIS 2001 standard regarding surface roughness. Surf test SJ-402 (Mitutoyo Co., Ltd.) was used as the measuring device, and the measurement conditions were set to a cutoff of 0.25 mm, a measurement length of 5 mm, and a measurement speed of 0.5 mm / s. The types of surface roughness measured are arithmetic average roughness (Ra) and maximum height (Ry).
In measuring the surface roughness, the following wear resistance test was conducted. FIG. 9 is a diagram schematically illustrating the configuration of a test apparatus for an abrasion resistance test. In this test, first, a tube to be the column inner tube 5 is prepared with a predetermined sample length (50 mm), and a core material (manufactured by SUS) 10 is inserted into the tube. Next, both ends of the core member 10 are connected to a digital force gauge (AD-4932A, manufactured by A & D). Next, a grindstone with a predetermined roughness (# 1000) (outside diameter 4 mm) is attached to an air grinder (TRUSCO, TMAG10SN) which becomes a polishing machine (only the following grindstone with a shaft is shown) 12, and the rotational speed Rotate at 60000 rpm. Next, the both ends of the core material 10 are pulled in the direction of the arrow in the figure, and a desired test time is applied to the grindstone portion of the polishing machine 12 in a state where a desired load (0.25N, 0.49N, 0.98N) is applied. Pressed (5 seconds). The surface roughness of the column inner tube 5 of this embodiment, Comparative Example 1 and Comparative Example 2 after this abrasion resistance test is shown below.
 上記の表面粗さによって測定された実施形態および比較例に係るカラムの内周面の算術平均粗さ(Ra)と最大高さ(Ry)を次の表1に示す。以下の測定結果は、一定のサンプル(n数は3)から得られた結果の平均値を示す。本実施形態のカラムのように、カラム内管の内表面の算術平均粗さ(Ra)が0.1μm以下であり、かつ最大高さ(Ry)が1.5μm以下となるためには、少なくとも0.25N以下の荷重が必要である。好ましくは、カラム内管の内表面の算術平均粗さ(Ra)が0.1μm以下であり、かつ最大高さ(Ry)が1.5μm以下となるためには、0.49N以下の荷重が必要である。さらに好ましくは、カラム内管の内表面の算術平均粗さ(Ra)が0.1μm以下であり、かつ最大高さ(Ry)が1.5μm以下となるためには、0.98N以下の荷重が必要である。 Table 1 below shows the arithmetic average roughness (Ra) and the maximum height (Ry) of the inner peripheral surface of the column according to the embodiment and the comparative example measured by the above surface roughness. The following measurement results show the average value of the results obtained from a certain sample (n number is 3). In order for the arithmetic average roughness (Ra) of the inner surface of the column inner tube to be 0.1 μm or less and the maximum height (Ry) to be 1.5 μm or less as in the column of this embodiment, at least 0.25 N The following loads are required. Preferably, in order for the arithmetic average roughness (Ra) of the inner surface of the column inner tube to be 0.1 μm or less and the maximum height (Ry) to be 1.5 μm or less, a load of 0.49 N or less is required. . More preferably, a load of 0.98 N or less is required so that the arithmetic average roughness (Ra) of the inner surface of the column inner tube is 0.1 μm or less and the maximum height (Ry) is 1.5 μm or less. is there.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
図3(a)に示すように、充填剤の粒子が、カラム内管5の内表面の凹凸に入り込み、詰まってしまう虞があるのに対し、図3(b)に示すように、実施形態に係るカラムはカラム内管5の内表面が滑らかであり、カラム内管の内表面の凹凸に充填剤の粒子が入り込み、詰まってしまうことない。このように、カラム内管5の内周面の凹凸により、充填剤の配置が乱れ、理論段数に変化が生じることは図3からも明らかである。 As shown in FIG. 3 (a), the particles of the filler may enter the irregularities on the inner surface of the column inner tube 5 and become clogged. In the column, the inner surface of the column inner tube 5 is smooth, and the particles of the filler do not enter the irregularities on the inner surface of the column inner tube and become clogged. Thus, it is clear from FIG. 3 that the arrangement of the packing material is disturbed due to the unevenness of the inner peripheral surface of the column inner tube 5 and the number of theoretical plates changes.
次に、実施形態および比較例に係るカラムの充填剤の理論段数の違いについて述べる。カラム内管5の内径を1 mmにし、長さ100 mmとした場合、カラム内管5の内周面が完全に平滑であれば粒径2 μmの充填剤は図5(a)のように配置される。このとき、充填剤はカラムに対し長手方向に50,000段重なる。このように理想的に充填剤が5万段重なった状態を「理論段数:50,000」と定義する。実施形態に係るカラムにおいては、最大高さ(Ry)=0.5 μmであることや、そもそも充填剤の粒径にもばらつきがあることを考えれば理想状態に比べて充填剤の配置にス゛レが生じるのは必至であり、理論段数は10000程度となった。これに対し、比較例のカラムでは理論段数が2500程度であった。これは、比較例のカラムでは、最大高さ(Ry)=2.0 μmであり、これに相当する凹部が存在する段では、充填剤にス゛レが生じる余地が本発明と比べて4倍となる。しかも4倍という値は1軸方向に関してだけであり、「段」とは平面であるから2つの軸方向(前項の図における左右方向の軸と、紙面に対して前後方向の軸)にそれぞれ4倍ずつ、つまり本発明の16倍のス゛レが生じる。ただし、カラム内管の全てで凹部の深さが4倍という訳ではないこと、相殺されるス゛レもあることなどを考慮すると、単純に理論段数が16分の1になるというよりは、4分の1程度で収まったものである。
ここで、理論段数は一般に次式で表わされる。
Figure JPOXMLDOC01-appb-I000002
    N:理論段数 tr:保持時間 W:ヒ゜ーク幅
Next, the difference in the number of theoretical plates of the column packing materials according to the embodiment and the comparative example will be described. When the inner diameter of the column inner tube 5 is 1 mm and the length is 100 mm, if the inner peripheral surface of the column inner tube 5 is completely smooth, the packing material with a particle diameter of 2 μm is as shown in FIG. Be placed. At this time, the packing material is stacked 50,000 times in the longitudinal direction on the column. In this way, the state where 50,000 stages of fillers are ideally stacked is defined as “theoretical plate number: 50,000”. In the column according to the embodiment, considering the fact that the maximum height (Ry) = 0.5 μm and the particle size of the packing material also vary in the first place, the arrangement of the packing material is shifted compared to the ideal state. Is inevitable and the number of theoretical plates is about 10,000. On the other hand, in the column of the comparative example, the number of theoretical plates was about 2500. This is because the maximum height (Ry) = 2.0 μm in the column of the comparative example, and in the stage where there is a concave portion corresponding to this, the room for slippage in the filler is four times that in the present invention. Moreover, the value of 4 times is only in one axial direction, and the “step” is a plane, so 4 in each of the two axial directions (the horizontal axis in the previous figure and the longitudinal axis with respect to the page). A difference of 16 times that of the present invention occurs. However, considering that the depth of the recess is not 4 times in all the pipes in the column, and there are some offsets, it is 4 minutes rather than simply reducing the theoretical plate number to 1/16. It was settled in about 1 of.
Here, the number of theoretical plates is generally expressed by the following equation.
Figure JPOXMLDOC01-appb-I000002
N: number of theoretical plates tr : holding time W: peak width
したがって、保持時間trが同じであれば、ヒ゜ーク幅Wは理論段数Nの平方根に反比例する。つまり、HPLCで同一の物質を分析すると、実施形態に係るカラムは、比較例に係るカラムよりも半分のピーク幅を有する分析結果を得ることができる。図4は、HPLCの分析結果を模式的に示すものであり、上記のように、ピーク幅を半減することができることにより、図4(a)に示すように、2つのピークが重なり合うような分析結果に対し、図4(b)に示すようにピークの重なりが解消されるとともに、図4(a)では分析できなかったピークcを分析でき、分析精度を向上させることができる。 Therefore, if the holding time tr is the same, the peak width W is inversely proportional to the square root of the theoretical plate number N. That is, when the same substance is analyzed by HPLC, the column according to the embodiment can obtain an analysis result having a peak width half that of the column according to the comparative example. FIG. 4 schematically shows the analysis result of HPLC. As described above, the peak width can be halved, so that the analysis is such that two peaks overlap as shown in FIG. 4 (a). In contrast to the result, as shown in FIG. 4B, peak overlap is eliminated, and the peak c that cannot be analyzed in FIG. 4A can be analyzed, and the analysis accuracy can be improved.
以上のように、本発明に係るカラムによれば、充填剤を細密かつ均一に充填することができ、分析精度が向上する。

 
As described above, according to the column of the present invention, the packing material can be packed finely and uniformly, and the analysis accuracy is improved.

Claims (4)

  1.  金属で構成された筒状のカラム外管と、
     当該カラム外管の内表面に、当該内表面の形状に沿って密着した状態で配置されたカラム内管と、を備え、
     当該カラム内管内の体積が9以上~4200mm以下であり、当該カラム内管は、少なくとも0.25Nの荷重が付与された耐摩耗試験後の内表面の算術平均粗さ(Ra)が0.1μm以下であり、かつ最大高さ(Ry)が1.5μm以下であることを特徴とする、カラム。
    A cylindrical column outer tube made of metal;
    An inner tube of the column arranged in close contact with the inner surface of the outer tube of the column along the shape of the inner surface; and
    The inner volume of the column inner tube is 9 to 4200 mm 3 or less, and the inner tube column has an arithmetic average roughness (Ra) of 0.1 μm or less after the abrasion resistance test with a load of at least 0.25 N applied. And a maximum height (Ry) of 1.5 μm or less.
  2. 2mm未満の内径を有する筒状のカラム外管と、
    ポリエーテルエーテルケトンで構成され、筒状の形状を有し、前記カラム管の内側に配置されるとともに、カラム外管の内表面に、当該内表面の形状に沿って密着し、少なくとも0.25Nの荷重が付与された耐摩耗試験後の内表面の算術平均粗さ(Ra)が0.1μm以下であり、かつ最大高さ(Ry)が1.5μm以下であるカラム内管と、
    を備えることを特徴とする、カラム。
    A cylindrical column outer tube having an inner diameter of less than 2 mm;
    Consists of polyetheretherketone, has a cylindrical shape, is arranged inside the column tube, and is in close contact with the inner surface of the column outer tube along the shape of the inner surface, at least 0.25 N A column inner tube having an arithmetic average roughness (Ra) of an inner surface after a wear resistance test to which a load is applied is 0.1 μm or less and a maximum height (Ry) of 1.5 μm or less;
    A column, comprising:
  3. 前記カラム内管は、熱拡張性を有する樹脂で構成され、加熱処理により前記カラム外管の内表面に密着していることを特徴とする、請求項1または2に記載のカラム。 The column according to claim 1 or 2, wherein the column inner tube is made of a resin having heat expandability, and is in close contact with the inner surface of the column outer tube by heat treatment.
  4. 前記カラム内管は、ポリエーテルエーテルケトンで構成されていることを特徴とする、請求項1ないし3のいずれかに記載のカラム。
     
    The column according to any one of claims 1 to 3, wherein the column inner tube is made of polyetheretherketone.
PCT/JP2016/087375 2015-12-16 2016-12-15 Column WO2017104747A1 (en)

Applications Claiming Priority (8)

Application Number Priority Date Filing Date Title
JP2015245726 2015-12-16
JP2015-245726 2015-12-16
JP2016084785 2016-04-20
JP2016-084785 2016-04-20
JP2016107997 2016-05-31
JP2016-107997 2016-05-31
JP2016111569A JP2017215304A (en) 2015-12-16 2016-06-03 column
JP2016-111569 2016-06-03

Publications (1)

Publication Number Publication Date
WO2017104747A1 true WO2017104747A1 (en) 2017-06-22

Family

ID=59056591

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/087375 WO2017104747A1 (en) 2015-12-16 2016-12-15 Column

Country Status (1)

Country Link
WO (1) WO2017104747A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018212165A1 (en) * 2017-05-16 2018-11-22 株式会社ダイセル Column tube for chromatography, and column for chromatography employing same

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04503408A (en) * 1989-02-21 1992-06-18 イーストマン コダック カンパニー High-speed affinity chromatography columns containing non-porous monodisperse polymer packing materials
JPH07209250A (en) * 1983-10-19 1995-08-11 Hewlett Packard Co <Hp> Electrochemical detector
JPH09119924A (en) * 1995-08-01 1997-05-06 Hewlett Packard Co <Hp> Separating column for chromatography

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07209250A (en) * 1983-10-19 1995-08-11 Hewlett Packard Co <Hp> Electrochemical detector
JPH04503408A (en) * 1989-02-21 1992-06-18 イーストマン コダック カンパニー High-speed affinity chromatography columns containing non-porous monodisperse polymer packing materials
JPH09119924A (en) * 1995-08-01 1997-05-06 Hewlett Packard Co <Hp> Separating column for chromatography

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018212165A1 (en) * 2017-05-16 2018-11-22 株式会社ダイセル Column tube for chromatography, and column for chromatography employing same
JPWO2018212165A1 (en) * 2017-05-16 2020-03-26 株式会社ダイセル Chromatography column tube and chromatography column using the same
JP7041132B2 (en) 2017-05-16 2022-03-23 株式会社ダイセル Chromatographic column tube and chromatographic column using it

Similar Documents

Publication Publication Date Title
US6395183B1 (en) Method for packing capillary columns with particulate materials
US7588683B2 (en) Column for liquid chromatography with adjustable compression
JP5073476B2 (en) Frit for high pressure liquid chromatography
JP5868417B2 (en) Method and arrangement for fixing the distributor plate to the backing plate of the chromatography column
WO2017104747A1 (en) Column
JP2013524240A (en) Packing in a chromatographic column
CN106670948A (en) Round pipe polishing device
JP4972329B2 (en) High performance liquid chromatograph column and high performance liquid chromatograph
US8496819B2 (en) Separation column for liquid chromatograph apparatus and liquid chromatograph apparatus using thereof
US20080313888A1 (en) Tool for bearings
US20100281700A1 (en) Thread Ring Gauge
US8936723B2 (en) Chromatography column with large diameter end fitting openings
JP2017215304A (en) column
JP2014032134A (en) Separation column for liquid chromatography apparatus and filter
JP4651505B2 (en) High performance liquid chromatograph column
CN108195896B (en) Staggered electrode type capacitance tomography device applied to low-temperature fluid
US10386344B2 (en) Strain induced face seal
WO2017033914A1 (en) Liquid chromatography column and liquid chromatography device equipped with same
US8387960B2 (en) Clamping sleeve
CN202275798U (en) Gas phase mass spectrometer
JP5038200B2 (en) Separation column and liquid chromatograph apparatus using the same
CN208252595U (en) Angular contact bearing adjustment ring height determining device is used in electric aluminum foil production equipment
CN111855391B (en) High-temperature stretching clamp for thermal simulation testing machine and design and use method thereof
US20190309852A1 (en) Annular seals
CN106826475A (en) Process the taper sleeve type grinding attachment of inverted cone surface sealing ring

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16875724

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16875724

Country of ref document: EP

Kind code of ref document: A1