WO2017104653A1 - Transparent electroconductive sensor film manufacturing method and transparent electroconductive sensor film - Google Patents

Transparent electroconductive sensor film manufacturing method and transparent electroconductive sensor film Download PDF

Info

Publication number
WO2017104653A1
WO2017104653A1 PCT/JP2016/087033 JP2016087033W WO2017104653A1 WO 2017104653 A1 WO2017104653 A1 WO 2017104653A1 JP 2016087033 W JP2016087033 W JP 2016087033W WO 2017104653 A1 WO2017104653 A1 WO 2017104653A1
Authority
WO
WIPO (PCT)
Prior art keywords
protective layer
mesh
wiring
ink
sensor film
Prior art date
Application number
PCT/JP2016/087033
Other languages
French (fr)
Japanese (ja)
Inventor
小俣 猛憲
大屋 秀信
圭一郎 鈴木
正好 山内
直人 新妻
Original Assignee
コニカミノルタ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by コニカミノルタ株式会社 filed Critical コニカミノルタ株式会社
Publication of WO2017104653A1 publication Critical patent/WO2017104653A1/en

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/0416Control or interface arrangements specially adapted for digitisers
    • G06F3/04164Connections between sensors and controllers, e.g. routing lines between electrodes and connection pads
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D1/00Processes for applying liquids or other fluent materials
    • B05D1/26Processes for applying liquids or other fluent materials performed by applying the liquid or other fluent material from an outlet device in contact with, or almost in contact with, the surface
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D3/00Pretreatment of surfaces to which liquids or other fluent materials are to be applied; After-treatment of applied coatings, e.g. intermediate treating of an applied coating preparatory to subsequent applications of liquids or other fluent materials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D7/00Processes, other than flocking, specially adapted for applying liquids or other fluent materials to particular surfaces or for applying particular liquids or other fluent materials
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/044Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/044Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means
    • G06F3/0446Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means using a grid-like structure of electrodes in at least two directions, e.g. using row and column electrodes
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/10Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/22Secondary treatment of printed circuits
    • H05K3/24Reinforcing the conductive pattern
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2203/00Indexing scheme relating to G06F3/00 - G06F3/048
    • G06F2203/041Indexing scheme relating to G06F3/041 - G06F3/045
    • G06F2203/04103Manufacturing, i.e. details related to manufacturing processes specially suited for touch sensitive devices
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2203/00Indexing scheme relating to G06F3/00 - G06F3/048
    • G06F2203/041Indexing scheme relating to G06F3/041 - G06F3/045
    • G06F2203/04112Electrode mesh in capacitive digitiser: electrode for touch sensing is formed of a mesh of very fine, normally metallic, interconnected lines that are almost invisible to see. This provides a quite large but transparent electrode surface, without need for ITO or similar transparent conductive material

Definitions

  • the present invention relates to a method for producing a transparent conductive sensor film and a transparent conductive sensor film, and more specifically, a protective layer for protecting a mesh portion and a wiring portion can be formed by coating using an inkjet method, and a base derived from the mesh portion and the wiring portion.
  • the present invention relates to a transparent conductive sensor film manufacturing method and a transparent conductive sensor film capable of reducing a step on a material and smoothing a surface of a protective layer.
  • a film having a position detection electrode such as an X electrode or a Y electrode on a base material and further covering the position detection electrode with a protective film is known.
  • glass has been used as a protective film for such a transparent conductive sensor film.
  • a level difference is unlikely to occur on the surface of the protective layer, so that the surface of the protective film can have sufficient smoothness, and a sense of incongruity does not easily occur as a touch of the surface.
  • the glass substrate has a problem that it is difficult to exhibit flexibility and the versatility is low. In particular, when a large panel is formed, it is difficult to bond the glass, and the manufacturing process tends to be complicated.
  • the resin film is being considered as a protective film, but in addition to increasing the thickness of the transparent conductive sensor film as a whole, it is also difficult to bond, as with glass, especially when configuring large panels. Yes, the manufacturing process tends to be complicated.
  • Patent Document 1 a photosensitive layer comprising a photosensitive resin composition is provided on a base material having a touch panel electrode by application using an ink jet or the like, and then the photosensitive layer is irradiated with actinic rays.
  • a technique for forming a protective film made of a cured product of a photosensitive resin composition by curing is disclosed.
  • the inventor forms a mesh portion made of a conductive thin wire, a wiring portion, and an ACF connection portion at the tip of the wiring portion on a base material, and then excludes the mesh portion and the ACF connection portion.
  • a protective layer so as to cover the wiring part, the inventors studied diligently to reduce the step on the base material derived from the mesh part and the wiring part. This eliminates the need for bonding when glass or a resin film is used as the protective layer, and simplifies the manufacturing process.
  • the transparent conductive sensor film is required to have sufficient smoothness by reducing steps on the base material derived from the mesh portion and the wiring portion.
  • a technique capable of smoothing the surface of the protective layer preferably with a surface roughness Ra of 10 nm or more and 1 ⁇ m or less is required.
  • Patent Document 1 it is desirable to make the protective film as thin as possible so that a step between the portion with and without the protective film does not stand out.
  • the transparent conductive sensor film is required not only to reduce the level difference between the portion with and without the protective film, but also to reduce the level difference generated on the surface of the protective film itself.
  • an object of the present invention is to form a protective layer for protecting the mesh part and the wiring part by an ink jet method, and to reduce a step on the base material derived from the mesh part and the wiring part, and to smooth the surface of the protective layer.
  • a transparent conductive sensor film manufacturing method and a transparent conductive sensor film are provided.
  • a method for producing a transparent conductive sensor film wherein a protective layer is formed so as to cover the mesh portion and the wiring portion excluding the ACF connection portion by an inkjet method, In forming the protective layer, a transparent conductive sensor film that applies ink so that the surface roughness Ra is in the range of 10 nm to 1 ⁇ m by changing the ink discharge amount according to the line pattern of the mesh part and the wiring part Manufacturing method. 2.
  • a conductive material is applied on the base material by an ink jet method, and then the mesh portion and the wiring portion are formed by plating the conductive material. 5.
  • a method for producing a sensor film 10.
  • the wiring part excluding the mesh part and the ACF connection part is covered with a protective layer
  • the protective layer has a thickness of 2 ⁇ m or more and 15 ⁇ m or less from the surface of the substrate, the thickness of the protective layer itself varies depending on the line pattern of the mesh part and the wiring part, and the surface roughness Ra is A transparent conductive sensor film having a range of 10 nm to 1 ⁇ m. 12 12.
  • a protective layer for protecting the mesh part and the wiring part can be applied and formed by an ink jet method, a step on the base material derived from the mesh part and the wiring part can be reduced, and the surface of the protective layer can be smoothed.
  • a method for producing a transparent conductive sensor film and a transparent conductive sensor film can be provided.
  • the top view which shows notionally an example of the base material in which the protective layer was formed in one surface of the base material 2A and 2B are diagrams for explaining an example of forming a protective layer, in which FIG. 1A is a cross-sectional view taken along the line aa in FIG. 1 and FIG. 2B is a cross-sectional view taken along the line bb in FIG. 4A and 4B are diagrams for explaining another example of forming a protective layer, in which FIG. 2A is a cross-sectional view taken along the line aa in FIG. 1, and FIG. 2B is a cross-sectional view taken along the line bb in FIG.
  • the transparent conductive sensor film is produced by first forming a mesh portion made of a conductive thin wire, a wiring portion, and an ACF connection portion at the tip of the wiring portion on a substrate, and then forming the mesh by an inkjet method.
  • a protective layer is formed so as to cover the wiring part excluding the part and the ACF connection part.
  • the method for producing a transparent conductive sensor film of the present invention is characterized in that when forming the protective layer, ink is applied by changing an ink discharge amount in accordance with a line pattern of the mesh portion and the wiring portion. .
  • a protective layer for protecting the mesh part and the wiring part can be applied and formed by an ink jet method, and the step on the base material derived from the mesh part and the wiring part can be reduced, and the surface of the protective layer can be smoothed. It is done.
  • a mesh portion 2 made of a conductive thin wire, a wiring portion 3, and an ACF connection portion 4 at the tip of the wiring portion 3 are formed on a base material 1.
  • the substrate 1 a material having transparency is preferably used, and specific materials include, for example, glass, plastic, etc. Among them, plastic is preferable.
  • the plastic is not particularly limited, and examples thereof include polyethylene terephthalate, polybutylene terephthalate, polyethylene, polypropylene, acrylic, polyester, polyamide, and polycarbonate.
  • the substrate 1 may have a single layer structure or a laminated structure.
  • a case is shown in which a plurality of sets including the mesh portion 2, the wiring portion 3, and the ACF connecting portion 4 are formed on a long base 1 fed out from a roll-like body (not shown). Each set may eventually be cut individually and independently constitute a transparent conductive sensor film.
  • the formation method of the mesh part 2, the wiring part 3, and the ACF connection part 4 is not particularly limited, it is preferably formed by applying an ink containing a conductive material by an inkjet method.
  • the inkjet method is used for forming the protective film in the subsequent stage
  • the roll-to-roll method is used by using the inkjet method for forming the mesh portion 2, the wiring portion 3, and the ACF connection portion 4.
  • the transparent conductive sensor film can be mass-produced efficiently.
  • the mesh part 2, the wiring part 3, and the ACF connection part 4 are formed by copper-plating a conductive material such as silver applied by an inkjet method and then nickel-plating. can do.
  • the mesh part 2 is composed of a plurality of mesh-like conductive films 21.
  • Each mesh conductive film 21 is configured by arranging conductive thin wires 22 in a mesh shape, and is formed in a strip shape as a whole.
  • a plurality of mesh-like conductive films 21 are juxtaposed in the width direction (direction perpendicular to the longitudinal direction of the mesh-like conductive film 21) at a predetermined interval to constitute the mesh portion 2.
  • the transparent conductive sensor film is “transparent” because the mesh portion 2 is mesh-like and light can be transmitted through the openings 23 between the conductive thin wires 22. It means that sex is given. Therefore, the conductive thin wire 22 itself does not need to have transparency, and even a conductive material having no transparency can be suitably used.
  • Preferred examples of the conductive material include conductive fine particles and conductive polymers.
  • the conductive fine particles are not particularly limited, but Au, Pt, Ag, Cu, Ni, Cr, Rh, Pd, Zn, Co, Mo, Ru, W, Os, Ir, Fe, Mn, Ge, Sn, Ga, Fine particles such as In can be preferably exemplified, and among them, it is preferable to use fine metal particles such as Au, Ag, and Cu because they can form thin wires having low electric resistance and strong against corrosion. From the viewpoint of cost and stability, metal fine particles containing Ag are most preferable.
  • the average particle diameter of these metal fine particles is preferably in the range of 1 to 100 nm, more preferably in the range of 3 to 50 nm.
  • the average particle diameter is a volume average particle diameter, and can be measured with a Zetasizer 1000HS manufactured by Malvern.
  • carbon fine particles are used as the conductive fine particles.
  • the carbon fine particles include graphite fine particles, carbon nanotubes, fullerenes and the like.
  • the conductive polymer is not particularly limited, but a ⁇ -conjugated conductive polymer can be preferably exemplified.
  • ⁇ -conjugated conductive polymer examples include polythiophenes, polypyrroles, polyindoles, polycarbazoles, polyanilines, polyacetylenes, polyfurans, polyparaphenylenes, polyparaphenylene vinylenes, polyparaphenylene sulfide.
  • Chain conductive polymers such as polyazenes, polyazulenes, polyisothianaphthenes, and polythiazyl compounds can be used.
  • the conductive polymer comprises the above-described ⁇ -conjugated conductive polymer and a polyanion.
  • a conductive polymer can be easily produced by chemical oxidative polymerization of a precursor monomer that forms a ⁇ -conjugated conductive polymer in the presence of an appropriate oxidizing agent, an oxidation catalyst, and a polyanion.
  • a commercially available material can also be preferably used for the conductive polymer.
  • conductive polymers composed of poly (3,4-ethylenedioxythiophene) and polystyrene sulfonic acid are commercially available from HCStarck as CLEVIOS series, from Aldrich as PEDOT-PASS483095 and 560598, from Nagase Chemtex as Denatron series Has been.
  • Polyaniline is commercially available from Nissan Chemical as the ORMECON series.
  • an ink in which a conductive material is dissolved or dispersed in a solvent can be used.
  • the solvent for example, water or an organic solvent can be used alone or in combination of two or more.
  • the organic solvent is not particularly limited.
  • alcohols such as 1,2-hexanediol, 2-methyl-2,4-pentanediol, 1,3-butanediol, 1,4-butanediol, propylene glycol
  • ethers such as diethylene glycol monomethyl ether, diethylene glycol monoethyl ether, diethylene glycol monobutyl ether, triethylene glycol monomethyl ether, dipropylene glycol monomethyl ether, and dipropylene glycol monoethyl ether.
  • a surfactant can be contained.
  • the ink jet method When the ink jet method is used to form the conductive thin wires 22 of the mesh portion 2, the ink (also referred to as line ink or line liquid) applied linearly on the substrate 1 is dried as it is, and the lines of the line ink are dried.
  • the conductive thin wire 22 having a line width equal to the width may be formed, a coffee stain phenomenon occurs when drying, and a conductive material is selectively deposited on both edges along the length direction of the line ink.
  • the thickness of the conductive thin wire 22 (that is, the formation height from the surface of the substrate 1) is in the range of 0.5 ⁇ m to 1.5 ⁇ m.
  • the line width (that is, the thickness in plan view) of the conductive thin wires 22 is preferably in the range of 2 ⁇ m to 10 ⁇ m, and the arrangement interval (also referred to as pitch) of the conductive thin wires 22 is 100 ⁇ m to The range of 2500 ⁇ m is preferable.
  • the mesh-like conductive film 21 can constitute a sensor electrode in a transparent conductive sensor film.
  • the mesh-like conductive film 21 can be suitably used as, for example, a position detection electrode in a touch panel sensor, that is, an X electrode or a Y electrode.
  • the wiring unit 3 includes a plurality of wirings 31.
  • the wiring 31 is connected to the mesh-like conductive film 21.
  • a gap 32 where no wiring 31 is provided is formed between the wirings 31 so that each wiring 31 is electrically independent.
  • the film thickness of the wiring 31 (that is, the formation height from the surface of the substrate 1) is preferably in the range of 1 ⁇ m to 5 ⁇ m.
  • the line width (that is, the thickness when viewed in plan) is preferably in the range of 10 ⁇ m to 100 ⁇ m.
  • the wiring 31 can be used as a lead-out wiring for connecting the mesh-like conductive film 21 to a control circuit (not shown).
  • the ACF connection part 4 provided at the tip of the wiring part 3 is a part for connecting the wiring 31 constituting the wiring part 3 to an ACF (Anisotropic Conductive Film) (not shown).
  • the ACF connection unit 4 can be used for connecting to an external wiring such as an FPC (Flexible Printed Circuit) via the ACF.
  • FPC Flexible Printed Circuit
  • the protective layer 5 is formed so as to cover the mesh part 2 and the wiring part 3.
  • An inkjet method is used for forming the protective layer 5. That is, ink containing a material for forming the protective layer 5 is ejected as droplets from a nozzle of an inkjet head (not shown) and applied to the mesh portion 2 and the wiring portion 3 on the substrate 1, and the protective layer 5 is applied. Form.
  • the inkjet head used in the inkjet method may be either an on-demand method or a continuous method.
  • an electro-mechanical conversion method for example, a single cavity type, a double cavity type, a bender type, a piston type, a shear mode type, a shared wall type, etc.
  • an electro-thermal conversion method for example, any system such as a thermal ink jet type or a bubble jet (registered trademark) type may be used.
  • an ink jet head also referred to as a piezo ink jet head
  • using a piezoelectric element as the electro-mechanical conversion element used in the electro-mechanical conversion system is suitable.
  • the protective layer 5 is formed on the mesh portion 2 and the wiring portion 3 so as not to cover the ACF connection portion 4.
  • the protective layer 5 can constitute the surface of the transparent conductive sensor film, and can be used, for example, to constitute a touch surface in a touch panel sensor. Therefore, the protective layer 5 is required to have surface smoothness.
  • the surface of the protective layer 5 can be smoothed by applying ink by changing the ink discharge amount according to the line pattern of the mesh portion 2 and the wiring portion 3. . This will be described in detail with reference to FIG.
  • FIG. 3A schematically shows a cross-section taken along the line aa of the base material 1 shown in FIG. 1 before the protective layer 5 is formed, and further shows each part of the mesh portion 2 and the wiring portion 3.
  • the magnitude relationship between the ink ejection amounts is schematically represented by the number of ink 6 droplets.
  • FIG. 3B schematically shows a cross section taken along line bb of the substrate 1 shown in FIG. 2 after the protective layer 5 is formed.
  • ink is applied by changing the ink discharge amount according to the line pattern of the mesh portion 2 and the wiring portion 3.
  • the “ink discharge amount” is the total volume of ink droplets applied per unit area.
  • the step difference on the base material 1 derived from the mesh part 2 and the wiring part 3 is reduced.
  • the surface of the protective layer 5 can be smoothed.
  • a step due to the presence or absence of the mesh part 2 and the wiring part 3 and (2) the mesh part 2 and the wiring part 3 (3) a step between the conductive thin wire 22 and the opening 23 in the mesh-like conductive film 21 constituting the mesh portion 2, and (4) a gap portion 32 between the wiring 31 constituting the wiring portion 3 and the wiring 31.
  • the level difference due to the presence or absence of the mesh portion 2 and the wiring portion 3 is, for example, the amount of ink discharged to the mesh portion 2 and the wiring portion 3 and the ink discharge to the surface of the base material 1 on which the mesh portion 2 and the wiring portion 3 are not provided. It can be reduced by making it less than the amount.
  • the level difference between the mesh part 2 and the wiring part 3 is, for example, when the film thickness of the conductive thin wire 22 constituting the mesh part 2 is smaller than the film thickness of the wiring 31 constituting the wiring part 3, for example, mesh
  • the ink discharge amount for the portion 2 can be reduced by making it larger than the ink discharge amount for the wiring portion 3, and the film thickness of the conductive thin wire 22 constituting the mesh portion 2 is the wiring 31 constituting the wiring portion 3.
  • the ink discharge amount for the mesh portion 2 can be reduced by making the ink discharge amount for the wiring portion 3 smaller than the ink discharge amount.
  • the level difference between the conductive thin wire 22 and the opening 23 in the mesh-like conductive film 21 constituting the mesh portion 2 is, for example, that the ink discharge amount with respect to the conductive thin wire 22 is larger than the ink discharge amount with respect to the opening 23. It can be reduced by reducing it.
  • the level difference between the wiring 31 constituting the wiring part 3 and the gap part 32 between the wirings 31 is reduced, for example, by making the ink ejection amount for the wiring 31 smaller than the ink ejection quantity for the gap part 32. Can do.
  • the surface of the protective layer 5 obtained can be smoothed by reducing at least one of the steps (1) to (4), preferably all steps.
  • the surface roughness Ra of the protective layer 5 can be smoothed to a range of 10 nm to 1 ⁇ m.
  • the surface roughness can be measured by a method based on JIS R1683, for example, using “Probe Station AFM5000” manufactured by Hitachi High-Technologies Corporation.
  • the mesh portion and the wiring portion can be protected by the protective layer applied and formed by the ink jet method, the step on the base material derived from the mesh portion and the wiring portion can be reduced, and the surface of the protective layer can be smoothed. can get.
  • the ink discharge amount for each part of the mesh part 2 and the wiring part 3 can be set as appropriate according to the size of each step.
  • the size of each step is reproducible if the formation conditions of the mesh part 2 and the wiring part 3 are the same. Therefore, for example, by preparing a base material on which the mesh part 2 and the wiring part 3 are formed in advance for testing, and observing this with a microscope or the like, the size of each step can be measured.
  • the ink discharge amount can be appropriately adjusted by adjusting the capacity per droplet of ink discharged from the nozzles of the inkjet head and the number of droplets (also referred to as the number of gradations) applied per pixel.
  • the method for aligning the ink landing position with respect to each part of the mesh part 2 and the wiring part 3 is not particularly limited.
  • the position of the marker formed in advance on the base material 1 is detected.
  • a method of aligning, a method of aligning based on image data obtained by imaging the mesh part 2 and the wiring part 3, a method of aligning based on the transport distance of the base material 1 in the roll-to-roll method, etc. Can be mentioned.
  • the case where all the steps (1) to (4) are reduced has been described. However, as described above, at least one step among the steps (1) to (4) is present. If reduced, the level
  • the discharge amount of the ink 6 to the mesh portion 2 and the wiring portion 3 is set to be larger than the discharge amount of the ink 6 to the base material 1 on which the mesh portion 2 and the wiring portion 3 are not provided. Set a small number. Thereby, (1) the level
  • the discharge amount of the ink 6 to the wiring portion 3 having a relatively large film thickness is set to be smaller than the discharge amount of the ink 6 to the mesh portion 2. Thereby, (2) the level
  • the surface of the protective layer 5 can be smoothed as shown in FIG.
  • the thickness of the protective layer 5 has two viewpoints of “the thickness of the protective layer 5 itself” and “the thickness of the protective layer 5 from the surface of the substrate 1”, which will be described below.
  • the “thickness of the protective layer 5 itself” is the thickness of the protective layer 5 obtained by subtracting the thickness of the mesh portion 2 and the wiring portion 3, and the mesh portion 2 and the wiring portion 3 are caused by the setting of the ink discharge amount described above. Each site is different. That is, the thickness of the protective layer 5 itself is formed thicker at a relatively low part in the above-described step, and thin at a relatively high part in the step. In this way, the step on the substrate 1 is absorbed by the protective layer 5 and a smooth surface is obtained.
  • the “thickness of the protective layer 5 from the surface of the base material 1” is the thickness of the protective layer 5 including the thickness of the mesh part 2 and the wiring part 3, and is preferably in the range of 2 ⁇ m or more and 15 ⁇ m or less.
  • the thickness of the protective layer 5 from the surface of the base material 1 is 2 ⁇ m or more, a step on the base material 1 can be suitably absorbed, and smoothing of the surface of the protective layer 5 can be suitably realized.
  • the thickness of the protective layer 5 from the surface of the base material 1 is 15 ⁇ m or less, the occurrence of curling due to the formation of the protective layer 5 can be suitably prevented, and the flexibility of the base material 1 is preferably maintained. Is done.
  • the “thickness of the protective layer 5 from the surface of the substrate 1” is preferably set larger than any of the film thickness of the conductive thin wire 22 and the film thickness of the wiring 31.
  • the ink for forming the protective layer 5 is not particularly limited as long as it contains a material for forming the protective layer 5, but an ink containing a thermoplastic resin or an ultraviolet curable ink (also referred to as a UV ink) is used. It is preferable to use an ultraviolet curable ink, in particular.
  • the ultraviolet curable ink is composed of a polymerizable reaction component and can contain a solvent, but an ink substantially free of a solvent can be preferably used.
  • the polymerizable reactive component in the ink is polymerized and cured, and the protective layer 5 made of the ultraviolet curable resin is formed.
  • the curing mechanism of the ultraviolet curable ink include a radical polymerization type and a cation polymerization type.
  • UV curable inks do not accompany the movement of the ink when fixing the ink, or the movement of the solvent is small, so the fixing speed is excellent, and ink ejection to each part of the mesh part 2 and the wiring part 3
  • the protective layer 5 can be formed while suitably maintaining the film thickness difference due to the difference in amount. Therefore, the level difference on the substrate can be suitably reduced.
  • the temperature of the ink when using an ultraviolet curable ink, it is preferable to raise the temperature of the ink by raising the temperature of the inkjet head in order to maintain an appropriate viscosity at which ejection stability is easily obtained. At this time, the viscosity of the applied ink can be increased because the temperature of the substrate 1 is lower than that of the inkjet head. Thereby, the protective layer 5 can be formed while keeping the difference in film thickness due to the difference in the ink discharge amount for each part of the mesh part 2 and the wiring part 3 more suitably.
  • the entire protective layer 5 may be applied and then irradiated with ultraviolet rays to cure the entire protective layer 5 together. It is also preferable to perform irradiation and partially harden the protective layer 5.
  • the ink for forming the protective layer 5 two or more kinds of inks can be used in combination. If the ink jet method is used, two or more kinds of inks can be ejected by combining two or more ink jet heads filled with different inks.
  • the ink for forming the protective layer 5 is different between a portion covering the mesh portion and a portion covering the wiring portion.
  • the refractive index of the protective layer 5 can be changed by using ink containing materials having different refractive indexes in the portion covering the mesh portion 2 and the portion covering the wiring portion 3. It is preferable to change between a portion covering the wiring portion and a portion covering the wiring portion 3.
  • the line width of the wiring 31 of the wiring part 3 has a sufficient thickness for realizing reliable wiring, and is preferably larger than the line width of the conductive thin wire 22 of the mesh part 2.
  • the refractive index of the protective layer 5 is the same in the portion covering the mesh portion 2 and the portion covering the wiring portion 3, the relatively thick wiring 31 is easily visible.
  • the refractive index of the part covering the mesh part 2 is set to the refractive index of the part covering the wiring part 3.
  • the concealment effect due to the size of the refractive index can be exhibited at an appropriate place. it can.
  • the ink for forming the protective layer 5 that covers the mesh part 2 is preferably an ink containing 30 wt% or more of a monomer having a substituent having an alicyclic structure as a polymerizable reaction component. Since the fine conductive wires 22 are finely distributed in the mesh portion 2, the adhesion of the protective layer 5 as a whole can be achieved by including a monomer having a substituent having an alicyclic structure that is easily adhered to the fine conductive wires 22. Also improves. Such an ink can be used not only for forming the protective layer 5 that covers the mesh portion 2 but also for forming the protective layer 5 that covers the wiring portion 3.
  • the monomer which has a substituent of an alicyclic structure is not specifically limited,
  • an alicyclic methacrylate ester etc. can be mentioned.
  • the alicyclic methacrylates include those having a cycloalkyl ring having 3 to 7 carbon atoms, specifically, cyclopropyl methacrylate, cyclobutyl methacrylate, cyclopentyl methacrylate, cyclohexyl methacrylate, cyclohexane methacrylate. Heptyl etc. can be mentioned.
  • the protective layer is formed as a single layer, but the present invention is not limited to this. It is also preferable to form the protective layer as a laminate of two or more layers.
  • the protective layer is formed as a laminate of two or more layers
  • the layers adjacent to each other in the laminate can be formed with different inks.
  • the ink discharge amount is set according to the line pattern of the mesh portion 2 and the wiring portion 3 when forming any one or more layers constituting the laminate.
  • the ink can be applied by changing.
  • the lowermost layer (that is, the layer provided directly on the mesh part 2 and the wiring part 3) in the laminate is a layer for ensuring the adhesion of the protective layer
  • the upper layer is a layer for ensuring the smoothness. It is also preferable to do.
  • an ink containing 30 wt% or more of a monomer having an alicyclic structure substituent is preferably used for forming the lowermost layer.
  • a set including a mesh portion 2, a wiring portion 3, and an ACF connection portion (not shown) is formed on one surface of the substrate 1, and then protective layers 5 are formed on both surfaces of the substrate 1. .
  • the protective layer 5 on the one surface side of the substrate 1 is formed so as to cover the mesh portion 2 and the wiring portion 3 and not the ACF connection portion 4.
  • ink is applied by changing the ink discharge amount according to the line pattern of the mesh portion 2 and the wiring portion 3. Yes.
  • step difference on the base material 1 originating in the mesh part 2 and the wiring part 3 can be reduced, and the surface of the protective layer 5 can be smoothed.
  • the protective layer 5 on the other surface side of the substrate 1 does not directly cover the mesh portion 2 and the wiring portion 3 on the one surface side, but protects the mesh portion 2 and the wiring portion 3 via the substrate 1. Demonstrate the function.
  • the protective layer 5 on the other surface side can be formed using the ink jet method in the same manner as the protective layer 5 on the one surface side.
  • the mesh portion 2 and the wiring portion 3 are not provided on the other surface side, it is not always necessary It is not necessary to change the discharge amount.
  • the curling of the base material 1 can be suitably prevented by providing the protective layer 5 on the other surface side of the base material 1.
  • the protective layers 5 on both sides are formed of a curable resin such as an ultraviolet curable ink, even if shrinkage due to curing occurs, curling of the base material 1 can be suitably prevented, and thus the effect becomes remarkable.
  • a normal resin for example, a thermoplastic resin
  • an effect of reducing the difference in moisture permeability between the one surface side and the other surface side of the substrate 1 is obtained.
  • a set including a mesh portion 2, a wiring portion 3 and an ACF connection portion (not shown) is formed on both surfaces of the base material 1, and then protective layers 5 are formed on both surfaces of the base material 1. .
  • the protective layers 5 on both surfaces of the substrate 1 are formed so as to cover the mesh portion 2 and the wiring portion 3 on each surface and not the ACF connection portion 4.
  • ink is applied by changing the ink discharge amount according to the line pattern of the mesh portion 2 and the wiring portion 3. Yes.
  • step difference on the base material 1 originating in the mesh part 2 and the wiring part 3 can be reduced, and the surface of the protective layer 5 of both surfaces can be smoothed.
  • the effect which prevents the base material 1 from curling suitably and the effect which reduces the difference in moisture permeability are exhibited similarly to the aspect demonstrated with reference to FIG.
  • FIG. 6 a case has been described in which a set including a mesh portion, a wiring portion, and an ACF connection portion is formed on both surfaces of a base material, and then a protective layer is formed on both surfaces of the base material.
  • a curable resin such as an ultraviolet curable ink for the formation of the film
  • the formation order is not limited to this.
  • a set including a mesh portion, a wiring portion, and an ACF connection portion is formed on one surface of the base material, then a protective layer is formed on one surface of the base material, and then the mesh portion on the other surface of the base material, A set including a wiring portion and an ACF connection portion may be formed, and then a protective layer may be formed on the other surface of the substrate.
  • the transparent conductive sensor film of the present invention can be preferably manufactured by the method for manufacturing the transparent conductive sensor film of the present invention described above.
  • the transparent conductive sensor film of the present invention comprises, on a base material, a mesh portion made of a conductive thin wire, a wiring portion, and an ACF connection portion at the tip of the wiring portion, and excludes the mesh portion and the ACF connection portion.
  • the wiring part is covered with a protective layer.
  • the protective layer has a thickness of 2 ⁇ m or more and 15 ⁇ m or less from the substrate surface, and the thickness of the protective layer itself depends on the line pattern of the mesh portion and the wiring portion.
  • the surface roughness Ra is in the range of 10 nm to 1 ⁇ m.
  • the mesh portion and the wiring portion can be protected by the protective layer applied and formed by the ink jet method, the step on the base material derived from the mesh portion and the wiring portion can be reduced, and the surface of the protective layer can be smoothed. can get.
  • the transparent conductive sensor film may be provided with a protective layer on one surface of the substrate as described with reference to FIGS. 1 to 4, or as described with reference to FIGS. 5 and 6.
  • Protective layers may be provided on both sides.
  • the set including the mesh portion, the wiring portion, and the ACF connection portion may be provided on one surface of the base material as described with reference to FIG. As described with reference to FIG. 6, it may be provided on both surfaces of the substrate.
  • the use of the transparent conductive sensor film is not particularly limited, for example, it can be suitably used as a touch panel sensor or the like.
  • the mesh-like conductive film constituting the mesh part can be used as a position detection electrode, that is, an X electrode or a Y electrode, and the wiring constituting the wiring part is detected by the position detection. It can be used as a lead wiring for connecting the electrode to the control circuit. Further, the connection between the wiring and the control circuit can be performed through an external wiring such as an FPC attached to the ACF connection portion via the ACF.
  • a mesh-like conductive film constituting the mesh part on one side is used as an X electrode, and a mesh constituting the other mesh part
  • the conductive film can be a Y electrode.
  • the mesh-like conductive film constituting the mesh portion can be used as the X electrode, and the mesh-like conductive film constituting the mesh portion of the other substrate can be used as the Y electrode.
  • the transparent conductive sensor film of the present invention comprises, on a base material, a mesh portion made of a conductive fine wire, a wiring portion, and an ACF connection portion at the tip of the wiring portion, and the mesh portion and the ACF connection portion are provided.
  • the wiring part except for the above is covered with a protective layer.
  • the protective layer has a thickness of 2 ⁇ m or more and 15 ⁇ m or less from the surface of the substrate, and the thickness of the protective layer itself varies depending on the line pattern of the mesh portion and the wiring portion, and the surface roughness
  • the thickness Ra is in the range of 10 nm to 1 ⁇ m.
  • the level difference on the base material derived from the mesh part and the wiring part can be reduced, and the surface of the protective layer can be smoothed. Thereby, the effect which is hard to produce discomfort as the touch which touched the surface of the protective layer is acquired.
  • the protective layer is preferably made of an ultraviolet curable resin. Thereby, the effect which the touch which touched the surface of the protective layer becomes further favorable is acquired.
  • the transparent conductive sensor film of the present invention can be suitably manufactured by the above-described method for manufacturing a transparent conductive sensor film of the present invention, but is not limited thereto.
  • Example 1 Formation of mesh part ⁇ Preparation of ink> As the mesh part forming ink (liquid containing a conductive material), one having the following composition was prepared. Silver nanoparticles (average particle size: 20 nm): 0.054 wt% Surfactant (manufactured by Big Chemie “BYK348”): 0.05 wt% Diethylene glycol monobutyl ether (abbreviation: DEGBE) (dispersion medium): 20 wt% ⁇ Water (dispersion medium): remaining amount
  • DEGBE Diethylene glycol monobutyl ether
  • a PET (polyethylene terephthalate) substrate with a clear hard coat layer is maintained at 50 ° C., and the surface of the clear hard coat layer is scanned with an inkjet head (“KM512L” manufactured by Konica Minolta; standard droplet amount 42 pl).
  • the mesh portion forming ink was discharged to form a plurality of line liquids on the clear hard coat layer.
  • a coffee stain phenomenon occurs during the drying of the line liquid, and a conductive material is selectively deposited on both edges along the length direction of the line liquid, so that the line liquid is removed from each line liquid.
  • a set of conductive thin wires parallel to each other having a line width thinner than the line width of was formed.
  • the mesh part 2 as shown in FIG. 1 was formed.
  • the line width of the conductive thin wires 22 constituting the mesh portion 2 was 5 ⁇ m, and the pitch (distance) between the conductive thin wires 22 was 170 ⁇ m.
  • the base material on which the mesh part, the wiring part and the ACF connection part were formed was put in an oven at 130 ° C. and baked for 10 minutes. After firing, copper plating was performed to obtain a sensor film (intermediate) having a fine wire thickness of 2 ⁇ m in the mesh portion and a wiring thickness of 3 ⁇ m in the wiring portion.
  • An ink jet head (Konica Minolta head; standard droplet volume 6 pl) is scanned over the mesh portion and the wiring portion excluding the ACF connection portion of the sensor film (intermediate body) created above, and the line non-formed surface is
  • the protective layer forming ink is used so that the amount of droplets is 5 droplets, 3 droplets are ejected on the surface of the fine mesh line (thickness 2 ⁇ m), and 2 droplets are ejected on the surface of the fine wiring line (thickness 3 ⁇ m).
  • the film was discharged onto a solid, and then UV-exposed with a Foseon UV exposure apparatus under the conditions of an illuminance of 100 mW and an irradiation amount of 100 mJ to form a protective layer made of an ultraviolet curable resin.
  • the back surface of the base material (the surface on which the mesh portion, the wiring portion, and the ACF connection portion are not provided) is scanned with an ink jet head and discharged in a solid form under the condition of a droplet amount of 5 droplets.
  • UV exposure was performed to form a protective layer.
  • the sensor film was manufactured as described above.
  • the surface was Ra 100 nm and the back surface was Ra 98 nm, and the touch feeling when the sensor film of this example was applied to the touch panel was good.
  • Example 1 a sensor film was produced in the same manner as in Example 1 except that the protective layer was formed by the following method. Formation of protective layer Ink jet head (Konica Minolta head; standard droplet volume 6 pl) on the mesh portion and wiring portion excluding the ACF portion of the sensor film (intermediate body) formed in the same manner as in Example 1. ) To form a protective layer by discharging the above-mentioned ink for forming the protective layer onto the solid with a droplet amount of 5 droplets, and then UV-exposing with a UV exposure device manufactured by Foseon under the conditions of an illuminance of 100 mW and an irradiation amount of 100 mJ. .
  • protective layer was formed by the following method. Formation of protective layer Ink jet head (Konica Minolta head; standard droplet volume 6 pl) on the mesh portion and wiring portion excluding the ACF portion of the sensor film (intermediate body) formed in the same manner as in Example 1. )
  • To form a protective layer by dischar
  • the back surface of the base material (the surface on which the mesh portion, the wiring portion, and the ACF connection portion are not provided) is scanned with an ink jet head and discharged in a solid form under the condition of a droplet amount of 5 droplets.
  • UV exposure was performed to form a protective layer.
  • a sensor film (comparison) was manufactured.
  • the surface was Ra 1.2 ⁇ m
  • the back surface was Ra 98 nm
  • the touch feeling when the sensor film of this comparative example was applied to the touch panel was uncomfortable. It was.
  • Base material 2 Mesh portion 21: Mesh-like conductive film 22: Conductive thin wire 23: Opening portion 3: Wiring portion 31: Wiring 32: Gap portion 4: ACF connecting portion 5: Protective layer

Landscapes

  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Human Computer Interaction (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Manufacturing Of Printed Wiring (AREA)
  • Application Of Or Painting With Fluid Materials (AREA)

Abstract

The present invention addresses the problem of providing a transparent electroconductive sensor film manufacturing method and a transparent electroconductive sensor film such that a protective layer for protecting a mesh section and a wiring section can be formed by means of coating using an ink-jet method, and level differences on a base material caused by the mesh section and the wiring section can be reduced, thereby smoothing the surface of the protective layer. This problem can be solved by the transparent electroconductive sensor film manufacturing method, by which a mesh section 2 comprising electroconductive fine wires 22, a wiring section 3, and an anisotropic conductive film (ACF) connection section 4 to be disposed at the tip of the wiring section 3 are formed on a base material 1, and a protective layer 5 is subsequently formed using an ink-jet method so as to cover the mesh section 2 and the wiring section 3 excluding the AFC connection section 4, wherein during the formation of the protective layer 5, an ink is applied while changing the discharge amount of the ink in accordance with wire patterns of the mesh section 2 and the wiring section 3 such that the surface roughness Ra thereof falls within a range of 10nm-1µm.

Description

透明導電センサーフィルムの製造方法及び透明導電センサーフィルムTransparent conductive sensor film manufacturing method and transparent conductive sensor film
 本発明は、透明導電センサーフィルムの製造方法及び透明導電センサーフィルムに関し、より詳しくは、メッシュ部及び配線部を保護する保護層をインクジェット法で塗布形成できると共に、メッシュ部及び配線部に由来する基材上の段差を低減でき、保護層の表面を平滑化できる透明導電センサーフィルムの製造方法及び透明導電センサーフィルムに関する。 The present invention relates to a method for producing a transparent conductive sensor film and a transparent conductive sensor film, and more specifically, a protective layer for protecting a mesh portion and a wiring portion can be formed by coating using an inkjet method, and a base derived from the mesh portion and the wiring portion. The present invention relates to a transparent conductive sensor film manufacturing method and a transparent conductive sensor film capable of reducing a step on a material and smoothing a surface of a protective layer.
 例えばタッチパネルセンサー等を構成する透明導電センサーフィルムとして、基材上にX電極やY電極といった位置検出電極を備え、更に該位置検出電極を保護膜で被覆した形態を有するものが知られている。 For example, as a transparent conductive sensor film constituting a touch panel sensor or the like, a film having a position detection electrode such as an X electrode or a Y electrode on a base material and further covering the position detection electrode with a protective film is known.
 このような透明導電センサーフィルムの保護膜として、従来、ガラスが用いられてきた。ガラスを用いることによって、保護層の表面には段差が生じ難いため、保護膜の表面に十分な平滑性を持たせることができ、表面をタッチした感触として違和感が生じ難い。
 しかし、ガラス基材は可撓性を発揮することが困難であり、汎用性が低いという問題点があった。また、特に大型パネルを構成する場合は、ガラスの張り合わせが困難であり、製造工程が煩雑になり易い。
Conventionally, glass has been used as a protective film for such a transparent conductive sensor film. By using glass, a level difference is unlikely to occur on the surface of the protective layer, so that the surface of the protective film can have sufficient smoothness, and a sense of incongruity does not easily occur as a touch of the surface.
However, the glass substrate has a problem that it is difficult to exhibit flexibility and the versatility is low. In particular, when a large panel is formed, it is difficult to bond the glass, and the manufacturing process tends to be complicated.
 また、保護膜として樹脂フィルムを張り合わせることも検討されているが、透明導電センサーフィルム全体の厚さが厚くなることに加え、やはり、特に大型パネルを構成する場合は、ガラス同様張り合わせが困難であり、製造工程が煩雑になり易い。 In addition, the resin film is being considered as a protective film, but in addition to increasing the thickness of the transparent conductive sensor film as a whole, it is also difficult to bond, as with glass, especially when configuring large panels. Yes, the manufacturing process tends to be complicated.
 これに対して、特許文献1には、タッチパネル用電極を有する基材上に、感光性樹脂組成物をからなる感光層をインクジェット等による塗布にて設けた後、感光層を活性光線の照射により硬化させることによって、感光性樹脂組成物の硬化物からなる保護膜を形成する技術が開示されている。 On the other hand, in Patent Document 1, a photosensitive layer comprising a photosensitive resin composition is provided on a base material having a touch panel electrode by application using an ink jet or the like, and then the photosensitive layer is irradiated with actinic rays. A technique for forming a protective film made of a cured product of a photosensitive resin composition by curing is disclosed.
WO2013/084284WO2013 / 084284
 本発明者は、基材上に、導電性細線からなるメッシュ部と、配線部と、該配線部の先端にACF接続部とを形成し、次いで、前記メッシュ部及び前記ACF接続部を除く前記配線部を被覆するように保護層を塗布形成する際に、メッシュ部及び配線部に由来する基材上の段差を低減することについて鋭意検討した。これにより、保護層としてガラスや樹脂フィルムを用いる場合に必要な張り合わせが不要となり、製造工程を簡略化できる。 The inventor forms a mesh portion made of a conductive thin wire, a wiring portion, and an ACF connection portion at the tip of the wiring portion on a base material, and then excludes the mesh portion and the ACF connection portion. When applying and forming a protective layer so as to cover the wiring part, the inventors studied diligently to reduce the step on the base material derived from the mesh part and the wiring part. This eliminates the need for bonding when glass or a resin film is used as the protective layer, and simplifies the manufacturing process.
 しかるに、前記メッシュ部及び前記配線部を有する基材上に、インクジェット法によって保護膜を形成する際に、全てのインクジェットノズルから同量のインクを吐出したのでは、メッシュ部及び配線部に由来する基材上の段差を低減することが出来ない。透明導電センサーフィルムでは、この段差が、ミクロンオーダーの微細な段差であっても、タッチした感触として違和感を生じさせる。また、該段差によってメッシュ部及び配線部の視認性が悪化する問題もあった。そこで、透明導電センサーフィルムは、メッシュ部及び配線部に由来する基材上の段差が低減され、十分な平滑性を有することが求められる。特に、保護層を塗布形成する際に、保護層の表面を、好ましくは表面粗さRaが10nm以上1μm以下の範囲まで平滑化できる技術が求められる。 However, when the protective film is formed on the base material having the mesh portion and the wiring portion by the ink jet method, the same amount of ink is ejected from all the ink jet nozzles, resulting in the mesh portion and the wiring portion. The level difference on the substrate cannot be reduced. In the transparent conductive sensor film, even if the step is a micron-order fine step, the touch feels uncomfortable. Further, there is a problem that the visibility of the mesh part and the wiring part deteriorates due to the step. Therefore, the transparent conductive sensor film is required to have sufficient smoothness by reducing steps on the base material derived from the mesh portion and the wiring portion. In particular, when the protective layer is applied and formed, a technique capable of smoothing the surface of the protective layer, preferably with a surface roughness Ra of 10 nm or more and 1 μm or less is required.
 特許文献1では、保護膜がある箇所とない箇所との段差が目立つことがないように、保護膜はできるだけ薄くすることが望ましいとしている。
 しかし、上述したように、透明導電センサーフィルムは、保護膜のある箇所とない箇所とでの段差を減じることのみならず、保護膜自体の表面に生じる段差を低減することも求められる。
 特許文献1のように単に保護膜を薄くするだけでは、メッシュ部及び配線部に由来する基材上の段差を低減することができず、保護層の表面を平滑化することが困難であるという問題がある。
In Patent Document 1, it is desirable to make the protective film as thin as possible so that a step between the portion with and without the protective film does not stand out.
However, as described above, the transparent conductive sensor film is required not only to reduce the level difference between the portion with and without the protective film, but also to reduce the level difference generated on the surface of the protective film itself.
Just by thinning the protective film as in Patent Document 1, it is difficult to reduce the step on the base material derived from the mesh part and the wiring part, and it is difficult to smooth the surface of the protective layer. There's a problem.
 そこで本発明の課題は、メッシュ部及び配線部を保護する保護層をインクジェット法で塗布形成できると共に、メッシュ部及び配線部に由来する基材上の段差を低減でき、保護層の表面を平滑化できる透明導電センサーフィルムの製造方法及び透明導電センサーフィルムを提供することにある。 Therefore, an object of the present invention is to form a protective layer for protecting the mesh part and the wiring part by an ink jet method, and to reduce a step on the base material derived from the mesh part and the wiring part, and to smooth the surface of the protective layer. A transparent conductive sensor film manufacturing method and a transparent conductive sensor film are provided.
 また本発明の他の課題は、以下の記載によって明らかとなる。 Further, other problems of the present invention will become apparent from the following description.
 上記課題は、以下の各発明によって解決される。 The above problems are solved by the following inventions.
1.
 基材上に、導電性細線からなるメッシュ部と、配線部と、該配線部の先端にACF接続部とを形成し、
 次いで、インクジェット法によって前記メッシュ部、及び前記ACF接続部を除く前記配線部を被覆するように保護層を形成する透明導電センサーフィルムの製造方法であって、
 前記保護層の形成に際して、前記メッシュ部と前記配線部の線パターンに応じてインク吐出量を変化させて表面粗さRaが10nm以上1μm以下の範囲となるようにインクを塗布する透明導電センサーフィルムの製造方法。
2.
 前記保護層の形成に際して、前記メッシュ部の前記導電性細線に対するインク吐出量を、該導電性細線が設けられていない開口部に対するインク吐出量よりも少なくする前記1記載の透明導電センサーフィルムの製造方法。
3.
 前記基材の両面に前記保護層を形成する前記1又は2記載の透明導電センサーフィルムの製造方法。
4.
 前記基材の両面に、前記メッシュ部と前記配線部と前記ACF接続部とを形成し、
 次いで、前記基材の両面に、各面の前記メッシュ部及び前記ACF接続部を除く前記配線部を被覆するように前記保護層を形成する前記1~3の何れかに記載の透明導電センサーフィルムの製造方法。
5.
 前記メッシュ部及び前記配線部の形成に際して、インクジェット法により前記基材上に導電性材料を付与し、次いで、該導電性材料にメッキを施すことによって、前記メッシュ部及び前記配線部を形成する前記1~4の何れかに記載の透明導電センサーフィルムの製造方法。
6.
 厚みが2μm以上15μm以下の範囲となるように前記保護層を形成する前記1~5の何れかに記載の透明導電センサーフィルムの製造方法。
7.
 前記保護層を2層以上の積層体として形成する前記1~6の何れかに記載の透明導電センサーフィルムの製造方法。
8.
 前記保護層を形成するための前記インクとして紫外線硬化型インクを用い、紫外線照射によって前記保護層を形成する前記1~7の何れかに記載の透明導電センサーフィルムの製造方法。
9.
 前記メッシュ部を被覆する部分の前記保護層を形成するための前記インクとして、脂環構造の置換基を有するモノマーを30wt%以上含有するインクを用いる前記1~8の何れかに記載の透明導電センサーフィルムの製造方法。
10.
 前記保護層の屈折率を、前記メッシュ部を被覆する部分と、前記配線部を被覆する部分とで変化させる前記1~9の何れかに記載の透明導電センサーフィルムの製造方法。
11.
 基材上に、導電性細線からなるメッシュ部と、配線部と、該配線部の先端にACF接続部とを備え、
 前記メッシュ部、及び前記ACF接続部を除く前記配線部は保護層によって被覆されており、
 前記保護層は、基材表面からの厚みが2μm以上15μm以下の範囲であって、該保護層自体の厚みが前記メッシュ部と前記配線部の線パターンに応じて異なり、且つ表面粗さRaが10nm以上1μm以下の範囲である透明導電センサーフィルム。
12.
 前記保護層は、紫外線硬化型樹脂により構成されている前記11記載の透明導電センサーフィルム。
1.
On the base material, a mesh part made of conductive thin wires, a wiring part, and an ACF connection part at the tip of the wiring part,
Next, a method for producing a transparent conductive sensor film, wherein a protective layer is formed so as to cover the mesh portion and the wiring portion excluding the ACF connection portion by an inkjet method,
In forming the protective layer, a transparent conductive sensor film that applies ink so that the surface roughness Ra is in the range of 10 nm to 1 μm by changing the ink discharge amount according to the line pattern of the mesh part and the wiring part Manufacturing method.
2.
2. The production of the transparent conductive sensor film according to 1 above, wherein when forming the protective layer, the ink discharge amount of the mesh portion with respect to the conductive thin wire is less than the ink discharge amount with respect to the opening portion where the conductive thin wire is not provided. Method.
3.
3. The method for producing a transparent conductive sensor film according to 1 or 2, wherein the protective layer is formed on both surfaces of the substrate.
4).
Forming the mesh part, the wiring part, and the ACF connection part on both surfaces of the substrate;
4. The transparent conductive sensor film according to any one of 1 to 3, wherein the protective layer is formed on both surfaces of the base material so as to cover the wiring portion excluding the mesh portion and the ACF connection portion on each surface. Manufacturing method.
5).
In forming the mesh portion and the wiring portion, a conductive material is applied on the base material by an ink jet method, and then the mesh portion and the wiring portion are formed by plating the conductive material. 5. A method for producing a transparent conductive sensor film according to any one of 1 to 4.
6).
6. The method for producing a transparent conductive sensor film according to any one of 1 to 5, wherein the protective layer is formed to have a thickness in the range of 2 μm to 15 μm.
7).
7. The method for producing a transparent conductive sensor film according to any one of 1 to 6, wherein the protective layer is formed as a laminate of two or more layers.
8).
8. The method for producing a transparent conductive sensor film according to any one of 1 to 7, wherein an ultraviolet curable ink is used as the ink for forming the protective layer, and the protective layer is formed by ultraviolet irradiation.
9.
9. The transparent conductive material according to any one of 1 to 8, wherein an ink containing 30 wt% or more of a monomer having a substituent having an alicyclic structure is used as the ink for forming the protective layer covering the mesh portion. A method for producing a sensor film.
10.
10. The method for producing a transparent conductive sensor film according to any one of 1 to 9, wherein a refractive index of the protective layer is changed between a portion covering the mesh portion and a portion covering the wiring portion.
11.
On the base material, a mesh portion made of a conductive thin wire, a wiring portion, and an ACF connection portion at the tip of the wiring portion,
The wiring part excluding the mesh part and the ACF connection part is covered with a protective layer,
The protective layer has a thickness of 2 μm or more and 15 μm or less from the surface of the substrate, the thickness of the protective layer itself varies depending on the line pattern of the mesh part and the wiring part, and the surface roughness Ra is A transparent conductive sensor film having a range of 10 nm to 1 μm.
12
12. The transparent conductive sensor film according to 11, wherein the protective layer is made of an ultraviolet curable resin.
 本発明によれば、メッシュ部及び配線部を保護する保護層をインクジェット法で塗布形成できると共に、メッシュ部及び配線部に由来する基材上の段差を低減でき、保護層の表面を平滑化できる透明導電センサーフィルムの製造方法及び透明導電センサーフィルムを提供することができる。 According to the present invention, a protective layer for protecting the mesh part and the wiring part can be applied and formed by an ink jet method, a step on the base material derived from the mesh part and the wiring part can be reduced, and the surface of the protective layer can be smoothed. A method for producing a transparent conductive sensor film and a transparent conductive sensor film can be provided.
メッシュ部、配線部及びACF接続部が形成された基材を概念的に示す平面図The top view which shows notionally the base material in which the mesh part, the wiring part, and the ACF connection part were formed 基材の一面に保護層が形成された基材の一例を概念的に示す平面図The top view which shows notionally an example of the base material in which the protective layer was formed in one surface of the base material 保護層の形成例を説明するための図であって、(a)は図1におけるa-a線断面図であり、(b)は図2におけるb-b線断面図である2A and 2B are diagrams for explaining an example of forming a protective layer, in which FIG. 1A is a cross-sectional view taken along the line aa in FIG. 1 and FIG. 2B is a cross-sectional view taken along the line bb in FIG. 保護層の他の形成例を説明するための図であって、(a)は図1におけるa-a線断面図であり、(b)は図2におけるb-b線断面図である4A and 4B are diagrams for explaining another example of forming a protective layer, in which FIG. 2A is a cross-sectional view taken along the line aa in FIG. 1, and FIG. 2B is a cross-sectional view taken along the line bb in FIG. 基材の両面に保護層が形成された基材の一例を概念的に示す平面図The top view which shows notionally an example of the base material in which the protective layer was formed on both surfaces of the base material 基材の両面に保護層が形成された基材の他の例を概念的に示す平面図The top view which shows notionally another example of the base material in which the protective layer was formed on both surfaces of the base material
 以下に、本発明を実施するための形態について説明する。 Hereinafter, modes for carrying out the present invention will be described.
 透明導電センサーフィルムの製造方法は、先ず、基材上に、導電性細線からなるメッシュ部と、配線部と、該配線部の先端にACF接続部とを形成し、次いで、インクジェット法によって前記メッシュ部及び前記ACF接続部を除く前記配線部を被覆するように保護層を形成する。 The transparent conductive sensor film is produced by first forming a mesh portion made of a conductive thin wire, a wiring portion, and an ACF connection portion at the tip of the wiring portion on a substrate, and then forming the mesh by an inkjet method. A protective layer is formed so as to cover the wiring part excluding the part and the ACF connection part.
 本発明の透明導電センサーフィルムの製造方法は、前記保護層の形成に際して、前記メッシュ部と前記配線部の線パターンに応じてインク吐出量を変化させてインクを塗布することを一つの特徴とする。 The method for producing a transparent conductive sensor film of the present invention is characterized in that when forming the protective layer, ink is applied by changing an ink discharge amount in accordance with a line pattern of the mesh portion and the wiring portion. .
 これにより、メッシュ部及び配線部を保護する保護層をインクジェット法で塗布形成できると共に、メッシュ部及び配線部に由来する基材上の段差を低減でき、保護層の表面を平滑化できる効果が得られる。 As a result, a protective layer for protecting the mesh part and the wiring part can be applied and formed by an ink jet method, and the step on the base material derived from the mesh part and the wiring part can be reduced, and the surface of the protective layer can be smoothed. It is done.
 以下に、図面を参照して本発明を実施するための形態について更に詳しく説明する。 Hereinafter, embodiments for carrying out the present invention will be described in more detail with reference to the drawings.
 以下の説明では、図1~図3を参照して、基材の片面に保護層を形成する態様について説明し、図5及び図6を参照して、基材の両面に保護層を形成する態様について説明する。 In the following description, an embodiment in which a protective layer is formed on one side of the substrate will be described with reference to FIGS. 1 to 3, and a protective layer will be formed on both sides of the substrate with reference to FIGS. An aspect is demonstrated.
 まず、基材の片面に保護層を形成する態様について説明する。 First, an embodiment in which a protective layer is formed on one side of the substrate will be described.
 図1に示すように、基材1上に、導電性細線からなるメッシュ部2と、配線部3と、該配線部3の先端にACF接続部4とを形成する。 As shown in FIG. 1, a mesh portion 2 made of a conductive thin wire, a wiring portion 3, and an ACF connection portion 4 at the tip of the wiring portion 3 are formed on a base material 1.
 基材1としては、透明性を有するものが好ましく用いられ、具体的な材質としては、例えば、ガラス、プラスチック等を挙げることができ、中でもプラスチックが好ましい。プラスチックは格別限定されず、例えば、ポリエチレンテレフタレート、ポリブチレンテレフタレート、ポリエチレン、ポリプロピレン、アクリル、ポリエステル、ポリアミド、ポリカーボネート等を挙げることができる。基材1は単層構造であっても積層構造であってもよい。 As the substrate 1, a material having transparency is preferably used, and specific materials include, for example, glass, plastic, etc. Among them, plastic is preferable. The plastic is not particularly limited, and examples thereof include polyethylene terephthalate, polybutylene terephthalate, polyethylene, polypropylene, acrylic, polyester, polyamide, and polycarbonate. The substrate 1 may have a single layer structure or a laminated structure.
 図示の例では、図示しないロール状体から繰り出される長尺の基材1上に、メッシュ部2、配線部3及びACF接続部4からなるセットを複数形成する場合について示している。各セットは、最終的には個別に切り出され、独立して透明導電センサーフィルムを構成し得る。 In the illustrated example, a case is shown in which a plurality of sets including the mesh portion 2, the wiring portion 3, and the ACF connecting portion 4 are formed on a long base 1 fed out from a roll-like body (not shown). Each set may eventually be cut individually and independently constitute a transparent conductive sensor film.
 メッシュ部2、配線部3及びACF接続部4の形成方法は格別限定されないが、インクジェット法により導電性材料を含有するインクを塗布して形成することが好ましい。本発明では、後段の保護膜形成にインクジェット法を用いるため、メッシュ部2、配線部3及びACF接続部4の形成にもインクジェット法を用いることによって、ロール・ツー・ロール(Roll to Roll)法を好ましく適用できるようになり、透明導電センサーフィルムを効率良く量産できるようになる。 Although the formation method of the mesh part 2, the wiring part 3, and the ACF connection part 4 is not particularly limited, it is preferably formed by applying an ink containing a conductive material by an inkjet method. In the present invention, since the inkjet method is used for forming the protective film in the subsequent stage, the roll-to-roll method is used by using the inkjet method for forming the mesh portion 2, the wiring portion 3, and the ACF connection portion 4. The transparent conductive sensor film can be mass-produced efficiently.
 また、メッシュ部2、配線部3及びACF接続部4にメッキを施すことは好ましいことである。これにより、導電性を好適に向上することができる。 Also, it is preferable to plate the mesh part 2, the wiring part 3, and the ACF connection part 4. Thereby, electroconductivity can be improved suitably.
 インクジェット法とメッキを組み合わせることは特に好ましいことである。具体的には、インクジェット法により基材1上に導電性材料を付与し、次いで、導電性材料にメッキを施すことによって、メッシュ部2、配線部3及びACF接続部4を形成することが好ましい。メッキとしては、メッキ金属として銅やニッケル等を用いた電解メッキを好ましく例示できる。複数回のメッキを施すことも好ましく、例えば、インクジェット法により付与された銀等の導電性材料を銅メッキし、次いでニッケルメッキする等により、メッシュ部2、配線部3及びACF接続部4を形成することができる。 It is particularly preferable to combine the inkjet method with plating. Specifically, it is preferable to form the mesh part 2, the wiring part 3, and the ACF connection part 4 by applying a conductive material on the base material 1 by an inkjet method and then plating the conductive material. . Preferable examples of the plating include electrolytic plating using copper, nickel, or the like as the plating metal. It is also preferable to apply a plurality of times of plating. For example, the mesh part 2, the wiring part 3 and the ACF connection part 4 are formed by copper-plating a conductive material such as silver applied by an inkjet method and then nickel-plating. can do.
 メッシュ部2は、複数のメッシュ状導電膜21により構成されている。各々のメッシュ状導電膜21は、導電性細線22をメッシュ状に配置して構成され、全体として帯状に形成されている。複数のメッシュ状導電膜21を所定の間隔で幅方向(メッシュ状導電膜21の長手方向と直交する方向)に並設してメッシュ部2が構成されている。 The mesh part 2 is composed of a plurality of mesh-like conductive films 21. Each mesh conductive film 21 is configured by arranging conductive thin wires 22 in a mesh shape, and is formed in a strip shape as a whole. A plurality of mesh-like conductive films 21 are juxtaposed in the width direction (direction perpendicular to the longitudinal direction of the mesh-like conductive film 21) at a predetermined interval to constitute the mesh portion 2.
 なお、透明導電センサーフィルムが「透明」であるというのは、メッシュ部2がメッシュ状であることによって、導電性細線22間の開口部23を光が透過できることによって、メッシュ状導電膜21に透明性が付与されていることを意味する。従って、導電性細線22自体が透明性を有する必要はなく、透明性を有しない導電性材料であっても好適に用いることができる。 The transparent conductive sensor film is “transparent” because the mesh portion 2 is mesh-like and light can be transmitted through the openings 23 between the conductive thin wires 22. It means that sex is given. Therefore, the conductive thin wire 22 itself does not need to have transparency, and even a conductive material having no transparency can be suitably used.
 導電性材料としては、例えば、導電性微粒子、導電性ポリマー等を好ましく例示できる。 Preferred examples of the conductive material include conductive fine particles and conductive polymers.
 導電性微粒子としては格別限定されないが、Au、Pt、Ag、Cu、Ni、Cr、Rh、Pd、Zn、Co、Mo、Ru、W、Os、Ir、Fe、Mn、Ge、Sn、Ga、In等の微粒子を好ましく例示でき、中でも、Au、Ag、Cuのような金属微粒子を用いると、電気抵抗が低く、且つ腐食に強い細線を形成することができるので好ましい。コスト及び安定性の観点から、Agを含む金属微粒子が最も好ましい。これらの金属微粒子の平均粒子径は、好ましくは1~100nmの範囲、より好ましくは3~50nmの範囲である。平均粒子径は、体積平均粒子径であり、マルバーン社製ゼータサイザ1000HSにより測定することができる。 The conductive fine particles are not particularly limited, but Au, Pt, Ag, Cu, Ni, Cr, Rh, Pd, Zn, Co, Mo, Ru, W, Os, Ir, Fe, Mn, Ge, Sn, Ga, Fine particles such as In can be preferably exemplified, and among them, it is preferable to use fine metal particles such as Au, Ag, and Cu because they can form thin wires having low electric resistance and strong against corrosion. From the viewpoint of cost and stability, metal fine particles containing Ag are most preferable. The average particle diameter of these metal fine particles is preferably in the range of 1 to 100 nm, more preferably in the range of 3 to 50 nm. The average particle diameter is a volume average particle diameter, and can be measured with a Zetasizer 1000HS manufactured by Malvern.
 また、導電性微粒子として、カーボン微粒子を用いることも好ましい。カーボン微粒子としては、グラファイト微粒子、カーボンナノチューブ、フラーレン等を好ましく例示できる。 It is also preferable to use carbon fine particles as the conductive fine particles. Preferable examples of the carbon fine particles include graphite fine particles, carbon nanotubes, fullerenes and the like.
 導電性ポリマーとしては格別限定されないが、π共役系導電性高分子を好ましく挙げることができる。π共役系導電性高分子としては、例えば、ポリチオフェン類、ポリピロール類、ポリインドール類、ポリカルバゾール類、ポリアニリン類、ポリアセチレン類、ポリフラン類、ポリパラフェニレン類、ポリパラフェニレンビニレン類、ポリパラフェニレンサルファイド類、ポリアズレン類、ポリイソチアナフテン類、ポリチアジル類等の鎖状導電性ポリマーを利用することができる。中でも、高い導電性が得られる点で、ポリチオフェン類やポリアニリン類が好ましく、ポリエチレンジオキシチオフェンであることが最も好ましい。導電性ポリマーは、より好ましくは、上述したπ共役系導電性高分子とポリアニオンとを含んでなることである。こうした導電性ポリマーは、π共役系導電性高分子を形成する前駆体モノマーを、適切な酸化剤と酸化触媒と、ポリアニオンの存在下で化学酸化重合することによって容易に製造できる。導電性ポリマーは市販の材料も好ましく利用できる。例えば、ポリ(3,4-エチレンジオキシチオフェン)とポリスチレンスルホン酸からなる導電性ポリマーが、H.C.Starck社からCLEVIOSシリーズとして、Aldrich社からPEDOT-PASS483095、560598として、Nagase Chemtex社からDenatronシリーズとして市販されている。また、ポリアニリンが、日産化学社からORMECONシリーズとして市販されている。 The conductive polymer is not particularly limited, but a π-conjugated conductive polymer can be preferably exemplified. Examples of the π-conjugated conductive polymer include polythiophenes, polypyrroles, polyindoles, polycarbazoles, polyanilines, polyacetylenes, polyfurans, polyparaphenylenes, polyparaphenylene vinylenes, polyparaphenylene sulfide. Chain conductive polymers such as polyazenes, polyazulenes, polyisothianaphthenes, and polythiazyl compounds can be used. Among these, polythiophenes and polyanilines are preferable in that high conductivity is obtained, and polyethylenedioxythiophene is most preferable. More preferably, the conductive polymer comprises the above-described π-conjugated conductive polymer and a polyanion. Such a conductive polymer can be easily produced by chemical oxidative polymerization of a precursor monomer that forms a π-conjugated conductive polymer in the presence of an appropriate oxidizing agent, an oxidation catalyst, and a polyanion. A commercially available material can also be preferably used for the conductive polymer. For example, conductive polymers composed of poly (3,4-ethylenedioxythiophene) and polystyrene sulfonic acid are commercially available from HCStarck as CLEVIOS series, from Aldrich as PEDOT-PASS483095 and 560598, from Nagase Chemtex as Denatron series Has been. Polyaniline is commercially available from Nissan Chemical as the ORMECON series.
 メッシュ部2の導電性細線22の形成にインクジェット法を用いる場合は、導電性材料を溶媒に溶解又は分散させたインクを用いることができる。 When the ink jet method is used to form the conductive thin wires 22 of the mesh part 2, an ink in which a conductive material is dissolved or dispersed in a solvent can be used.
 溶媒としては、例えば水や有機溶剤等の1種又は2種以上を組み合わせて用いることができる。有機溶剤は、格別限定されないが、例えば、1,2-ヘキサンジオール、2-メチル-2,4-ペンタンジオール、1,3-ブタンジオール、1,4-ブタンジオール、プロピレングリコールなどのアルコール類、ジエチレングリコールモノメチルエーテル、ジエチレングリコールモノエチルエーテル、ジエチレングリコールモノブチルエーテル、トリエチレングリコールモノメチルエーテル、ジプロピレングリコールモノメチルエーテル、ジプロピレングリコールモノエチルエーテルなどのエーテル類等を例示できる。 As the solvent, for example, water or an organic solvent can be used alone or in combination of two or more. The organic solvent is not particularly limited. For example, alcohols such as 1,2-hexanediol, 2-methyl-2,4-pentanediol, 1,3-butanediol, 1,4-butanediol, propylene glycol, Examples include ethers such as diethylene glycol monomethyl ether, diethylene glycol monoethyl ether, diethylene glycol monobutyl ether, triethylene glycol monomethyl ether, dipropylene glycol monomethyl ether, and dipropylene glycol monoethyl ether.
 また、インクジェット法における吐出安定性を向上させる等の観点で、界面活性剤を含有させることもできる。 Further, from the viewpoint of improving the ejection stability in the ink jet method, a surfactant can be contained.
 メッシュ部2の導電性細線22の形成にインクジェット法を用いる場合は、基材1上に線状に付与したインク(ライン状インクあるいはライン状液体ともいう)をそのまま乾燥させてライン状インクの線幅に等しい線幅の導電性細線22を形成してもよいが、乾燥時にコーヒーステイン現象を生起させて、ライン状インクの長さ方向に沿う両縁部に導電性材料を選択的に堆積させることによって、ライン状インクの線幅よりも細い線幅の導電性細線22を形成することが好ましい。 When the ink jet method is used to form the conductive thin wires 22 of the mesh portion 2, the ink (also referred to as line ink or line liquid) applied linearly on the substrate 1 is dried as it is, and the lines of the line ink are dried. Although the conductive thin wire 22 having a line width equal to the width may be formed, a coffee stain phenomenon occurs when drying, and a conductive material is selectively deposited on both edges along the length direction of the line ink. Thus, it is preferable to form the conductive thin wire 22 having a line width narrower than the line width of the line ink.
 メッシュ状導電膜21の透明性向上あるいは導電性向上等の観点から、導電性細線22の膜厚(即ち基材1表面からの形成高さ)は、0.5μm~1.5μmの範囲であることが好ましく、導電性細線22の線幅(即ち平面視したときの太さ)は、2μm~10μmの範囲であることが好ましく、導電性細線22の配置間隔(ピッチともいう)は、100μm~2500μmの範囲であることが好ましい。 From the viewpoint of improving the transparency or conductivity of the mesh-like conductive film 21, the thickness of the conductive thin wire 22 (that is, the formation height from the surface of the substrate 1) is in the range of 0.5 μm to 1.5 μm. Preferably, the line width (that is, the thickness in plan view) of the conductive thin wires 22 is preferably in the range of 2 μm to 10 μm, and the arrangement interval (also referred to as pitch) of the conductive thin wires 22 is 100 μm to The range of 2500 μm is preferable.
 メッシュ状導電膜21は、透明導電センサーフィルムにおけるセンサー電極を構成し得る。メッシュ状導電膜21は、例えば、タッチパネルセンサーにおける位置検出電極、即ちX電極やY電極として好適に用いることができる。 The mesh-like conductive film 21 can constitute a sensor electrode in a transparent conductive sensor film. The mesh-like conductive film 21 can be suitably used as, for example, a position detection electrode in a touch panel sensor, that is, an X electrode or a Y electrode.
 配線部3は、複数の配線31により構成されている。配線31はメッシュ状導電膜21に接続されている。配線31間には、配線31が設けられない間隙部32が形成されており、各配線31を電気的に独立させている。 The wiring unit 3 includes a plurality of wirings 31. The wiring 31 is connected to the mesh-like conductive film 21. A gap 32 where no wiring 31 is provided is formed between the wirings 31 so that each wiring 31 is electrically independent.
 配線31の導電性向上あるいは配線接続の信頼性向上等の観点から、配線31の膜厚(即ち基材1表面からの形成高さ)は、1μm~5μmの範囲であることが好ましく、配線31の線幅(即ち平面視したときの太さ)は、10μm~100μmの範囲であることが好ましい。 From the viewpoint of improving the conductivity of the wiring 31 or improving the reliability of wiring connection, the film thickness of the wiring 31 (that is, the formation height from the surface of the substrate 1) is preferably in the range of 1 μm to 5 μm. The line width (that is, the thickness when viewed in plan) is preferably in the range of 10 μm to 100 μm.
 配線31は、メッシュ状導電膜21を図示しない制御回路に接続するための引き出し配線として用いることができる。 The wiring 31 can be used as a lead-out wiring for connecting the mesh-like conductive film 21 to a control circuit (not shown).
 配線部3の先端に設けられたACF接続部4は、配線部3を構成する配線31を図示しないACF(異方性導電性フィルム;Anisotropic Conductive Film)に接続するための部位である。 The ACF connection part 4 provided at the tip of the wiring part 3 is a part for connecting the wiring 31 constituting the wiring part 3 to an ACF (Anisotropic Conductive Film) (not shown).
 ACF接続部4は、ACFを介して、例えばFPC(フレキシブルプリント基板;Flexible PrintedCircuits)等の外部配線に接続するために用いることができる。 The ACF connection unit 4 can be used for connecting to an external wiring such as an FPC (Flexible Printed Circuit) via the ACF.
 基材1上に、メッシュ部2、配線部3及びACF接続部4を形成した後、図2に示すように、メッシュ部2及び配線部3を被覆するように保護層5を形成する。 After forming the mesh part 2, the wiring part 3, and the ACF connection part 4 on the base material 1, as shown in FIG. 2, the protective layer 5 is formed so as to cover the mesh part 2 and the wiring part 3.
 保護層5の形成にはインクジェット法が用いられる。即ち、保護層5を形成するための材料を含むインクを、図示しないインクジェットヘッドのノズルから液滴として吐出し、基材1上のメッシュ部2及び配線部3に塗布して、保護層5を形成する。 An inkjet method is used for forming the protective layer 5. That is, ink containing a material for forming the protective layer 5 is ejected as droplets from a nozzle of an inkjet head (not shown) and applied to the mesh portion 2 and the wiring portion 3 on the substrate 1, and the protective layer 5 is applied. Form.
 インクジェット法に用いるインクジェットヘッドは、オンデマンド方式、コンティニュアス方式の何れであってもよい。インクジェットヘッドの液滴吐出方式としては、電気-機械変換方式(例えば、シングルキャビティー型、ダブルキャビティー型、ベンダー型、ピストン型、シェアーモード型、シェアードウォール型等)、電気-熱変換方式(例えば、サーマルインクジェット型、バブルジェット(登録商標)型等)等、何れの方式を用いてもよい。特に、電気-機械変換方式に用いられる電気-機械変換素子として圧電素子を用いたインクジェットヘッド(ピエゾ型インクジェットヘッドともいう)が好適である。 The inkjet head used in the inkjet method may be either an on-demand method or a continuous method. As an inkjet head droplet discharge method, an electro-mechanical conversion method (for example, a single cavity type, a double cavity type, a bender type, a piston type, a shear mode type, a shared wall type, etc.), an electro-thermal conversion method ( For example, any system such as a thermal ink jet type or a bubble jet (registered trademark) type may be used. In particular, an ink jet head (also referred to as a piezo ink jet head) using a piezoelectric element as the electro-mechanical conversion element used in the electro-mechanical conversion system is suitable.
 ACF接続部4をACFと接続可能な状態にするために、保護層5は、ACF接続部4を被覆しないように、メッシュ部2及び配線部3上に形成されている。 In order to make the ACF connection portion 4 connectable to the ACF, the protective layer 5 is formed on the mesh portion 2 and the wiring portion 3 so as not to cover the ACF connection portion 4.
 保護層5は、透明導電センサーフィルムの表面を構成し得るものであり、例えば、タッチパネルセンサーにおけるタッチ面を構成するために用いることができる。そのため、保護層5には、表面平滑性が要求される。本発明では、保護層5の形成に際して、メッシュ部2と配線部3の線パターンに応じてインク吐出量を変化させてインクを塗布することによって、保護層5の表面を平滑化することができる。これについて、図3を参照して詳しく説明する。 The protective layer 5 can constitute the surface of the transparent conductive sensor film, and can be used, for example, to constitute a touch surface in a touch panel sensor. Therefore, the protective layer 5 is required to have surface smoothness. In the present invention, when the protective layer 5 is formed, the surface of the protective layer 5 can be smoothed by applying ink by changing the ink discharge amount according to the line pattern of the mesh portion 2 and the wiring portion 3. . This will be described in detail with reference to FIG.
 図3(a)は、保護層5が形成される前の図1に示した基材1のa-a線断面を模式的に示しており、更にメッシュ部2及び配線部3の各部位に対するインク吐出量の大小関係を、インク6の液滴数によって模式的に表している。図3(b)は、保護層5が形成された後の図2に示した基材1のb-b線断面を模式的に示している。 FIG. 3A schematically shows a cross-section taken along the line aa of the base material 1 shown in FIG. 1 before the protective layer 5 is formed, and further shows each part of the mesh portion 2 and the wiring portion 3. The magnitude relationship between the ink ejection amounts is schematically represented by the number of ink 6 droplets. FIG. 3B schematically shows a cross section taken along line bb of the substrate 1 shown in FIG. 2 after the protective layer 5 is formed.
 図3(a)に示すように、本発明では、保護層5の形成に際して、メッシュ部2及び配線部3の線パターンに応じてインク吐出量を変化させてインクを塗布する。「インク吐出量」というのは、単位面積当たりに付与されるインク液滴の総容量のことである。 As shown in FIG. 3A, in the present invention, when the protective layer 5 is formed, ink is applied by changing the ink discharge amount according to the line pattern of the mesh portion 2 and the wiring portion 3. The “ink discharge amount” is the total volume of ink droplets applied per unit area.
 メッシュ部2及び配線部3の線パターンに応じてインク吐出量を変化させてインクを塗布することによって、メッシュ部2と配線部3に由来する基材1上の段差を低減して、図3(b)に示すように、保護層5の表面を平滑化できる。 By applying the ink by changing the ink discharge amount according to the line pattern of the mesh part 2 and the wiring part 3, the step difference on the base material 1 derived from the mesh part 2 and the wiring part 3 is reduced. As shown in (b), the surface of the protective layer 5 can be smoothed.
 メッシュ部2と配線部3に由来する基材1上の段差としては、具体的には、(1)メッシュ部2及び配線部3の有無による段差、(2)メッシュ部2と配線部3との段差、(3)メッシュ部2を構成するメッシュ状導電膜21内の導電性細線22と開口部23との段差、(4)配線部3を構成する配線31と配線31間の間隙部32との段差を例示できる。 Specifically, as the step on the base material 1 derived from the mesh part 2 and the wiring part 3, (1) a step due to the presence or absence of the mesh part 2 and the wiring part 3, and (2) the mesh part 2 and the wiring part 3 (3) a step between the conductive thin wire 22 and the opening 23 in the mesh-like conductive film 21 constituting the mesh portion 2, and (4) a gap portion 32 between the wiring 31 constituting the wiring portion 3 and the wiring 31. Can be exemplified.
 以下に、上記(1)~(4)の段差を低減するためのインク吐出量の設定例について説明する。 Hereinafter, an example of setting the ink discharge amount for reducing the steps (1) to (4) will be described.
 (1)メッシュ部2及び配線部3の有無による段差は、例えば、メッシュ部2及び配線部3に対するインク吐出量を、メッシュ部2及び配線部3が設けられていない基材1表面に対するインク吐出量よりも少なくすることによって低減することができる。 (1) The level difference due to the presence or absence of the mesh portion 2 and the wiring portion 3 is, for example, the amount of ink discharged to the mesh portion 2 and the wiring portion 3 and the ink discharge to the surface of the base material 1 on which the mesh portion 2 and the wiring portion 3 are not provided. It can be reduced by making it less than the amount.
 (2)メッシュ部2と配線部3との段差は、メッシュ部2を構成する導電性細線22の膜厚が、配線部3を構成する配線31の膜厚よりも小さい場合は、例えば、メッシュ部2に対するインク吐出量を、配線部3に対するインク吐出量よりも多くすることによって低減することができ、メッシュ部2を構成する導電性細線22の膜厚が、配線部3を構成する配線31の膜厚よりも大きい場合は、例えば、メッシュ部2に対するインク吐出量を、配線部3に対するインク吐出量よりも少なくすることによって低減することができる。 (2) The level difference between the mesh part 2 and the wiring part 3 is, for example, when the film thickness of the conductive thin wire 22 constituting the mesh part 2 is smaller than the film thickness of the wiring 31 constituting the wiring part 3, for example, mesh The ink discharge amount for the portion 2 can be reduced by making it larger than the ink discharge amount for the wiring portion 3, and the film thickness of the conductive thin wire 22 constituting the mesh portion 2 is the wiring 31 constituting the wiring portion 3. In the case where the thickness is larger than the thickness, the ink discharge amount for the mesh portion 2 can be reduced by making the ink discharge amount for the wiring portion 3 smaller than the ink discharge amount.
 (3)メッシュ部2を構成するメッシュ状導電膜21内の導電性細線22と開口部23との段差は、例えば、導電性細線22に対するインク吐出量を、開口部23に対するインク吐出量よりも少なくすることによって低減することができる。 (3) The level difference between the conductive thin wire 22 and the opening 23 in the mesh-like conductive film 21 constituting the mesh portion 2 is, for example, that the ink discharge amount with respect to the conductive thin wire 22 is larger than the ink discharge amount with respect to the opening 23. It can be reduced by reducing it.
 (4)配線部3を構成する配線31と配線31間の間隙部32との段差は、例えば、配線31に対するインク吐出量を、間隙部32に対するインク吐出量よりも少なくすることによって低減することができる。 (4) The level difference between the wiring 31 constituting the wiring part 3 and the gap part 32 between the wirings 31 is reduced, for example, by making the ink ejection amount for the wiring 31 smaller than the ink ejection quantity for the gap part 32. Can do.
 以上のように、(1)~(4)の段差のうちの少なくとも1以上の段差、好ましくは全ての段差を低減することによって、得られる保護層5の表面を平滑化できる。具体的には、保護層5の表面粗さRaを10nm以上1μm以下の範囲にまで平滑化できる。表面粗さはJIS R1683に準拠した方法で、例えば日立ハイテクノロジーズ社製「プローブステーションAFM5000」を用いて測定できる。 As described above, the surface of the protective layer 5 obtained can be smoothed by reducing at least one of the steps (1) to (4), preferably all steps. Specifically, the surface roughness Ra of the protective layer 5 can be smoothed to a range of 10 nm to 1 μm. The surface roughness can be measured by a method based on JIS R1683, for example, using “Probe Station AFM5000” manufactured by Hitachi High-Technologies Corporation.
 これにより、インクジェット法で塗布形成された保護層によってメッシュ部及び配線部を保護できると共に、メッシュ部及び配線部に由来する基材上の段差を低減でき、保護層の表面を平滑化できる効果が得られる。 As a result, the mesh portion and the wiring portion can be protected by the protective layer applied and formed by the ink jet method, the step on the base material derived from the mesh portion and the wiring portion can be reduced, and the surface of the protective layer can be smoothed. can get.
 メッシュ部2及び配線部3の各部位に対するインク吐出量の設定は、各段差の大きさに応じて適宜設定することができる。各段差の大きさは、メッシュ部2及び配線部3の形成条件が同じであれば再現性がある。そのため、例えば、予め試験用として、メッシュ部2及び配線部3が形成された基材を用意し、これを顕微鏡等によって観察することで、各段差の大きさを測定することができる。インク吐出量は、インクジェットヘッドのノズルから吐出されるインクの1液滴あたりの容量や、1画素当たりに付与する液滴数(階調数ともいう)の調整によって、適宜調整することができる。 The ink discharge amount for each part of the mesh part 2 and the wiring part 3 can be set as appropriate according to the size of each step. The size of each step is reproducible if the formation conditions of the mesh part 2 and the wiring part 3 are the same. Therefore, for example, by preparing a base material on which the mesh part 2 and the wiring part 3 are formed in advance for testing, and observing this with a microscope or the like, the size of each step can be measured. The ink discharge amount can be appropriately adjusted by adjusting the capacity per droplet of ink discharged from the nozzles of the inkjet head and the number of droplets (also referred to as the number of gradations) applied per pixel.
 また、メッシュ部2及び配線部3の各部位に対してインク着弾位置を位置合わせする方法は格別限定されず、例えば、基材1上に予め形成しておいたマーカーの位置を検出して位置合わせする方法、メッシュ部2及び配線部3を撮像して得られた画像データに基づいて位置合わせする方法、ロール・ツー・ロール法における基材1の搬送距離に基づいて位置合わせする方法等を挙げることができる。 Further, the method for aligning the ink landing position with respect to each part of the mesh part 2 and the wiring part 3 is not particularly limited. For example, the position of the marker formed in advance on the base material 1 is detected. A method of aligning, a method of aligning based on image data obtained by imaging the mesh part 2 and the wiring part 3, a method of aligning based on the transport distance of the base material 1 in the roll-to-roll method, etc. Can be mentioned.
 図3の例では、上記(1)~(4)の全ての段差を低減する場合について示したが、上述したように、(1)~(4)の段差のうちの少なくとも1以上の段差が低減されれば、基材上の段差を低減でき、保護層5の表面を平滑化できる。他の具体例として、図4の例では、(1)メッシュ部2及び配線部3の有無による段差、及び、(2)メッシュ部2と配線部3との段差を低減するように、保護層5を形成している。 In the example of FIG. 3, the case where all the steps (1) to (4) are reduced has been described. However, as described above, at least one step among the steps (1) to (4) is present. If reduced, the level | step difference on a base material can be reduced and the surface of the protective layer 5 can be smoothed. As another specific example, in the example of FIG. 4, the protective layer is reduced so as to reduce (1) a step due to the presence or absence of the mesh portion 2 and the wiring portion 3 and (2) a step between the mesh portion 2 and the wiring portion 3. 5 is formed.
 即ち、図4(a)に示すように、メッシュ部2及び配線部3に対するインク6の吐出量を、メッシュ部2及び配線部3が設けられていない基材1に対するインク6の吐出量よりも少なく設定している。これにより、(1)メッシュ部2及び配線部3の有無による段差を低減できる。 That is, as shown in FIG. 4A, the discharge amount of the ink 6 to the mesh portion 2 and the wiring portion 3 is set to be larger than the discharge amount of the ink 6 to the base material 1 on which the mesh portion 2 and the wiring portion 3 are not provided. Set a small number. Thereby, (1) the level | step difference by the presence or absence of the mesh part 2 and the wiring part 3 can be reduced.
 また、図4の例では、線の膜厚が比較的大きい配線部3に対するインク6の吐出量を、メッシュ部2に対するインク6の吐出量よりも少なく設定している。これにより、(2)メッシュ部2と配線部3との段差を低減することができる。 In the example of FIG. 4, the discharge amount of the ink 6 to the wiring portion 3 having a relatively large film thickness is set to be smaller than the discharge amount of the ink 6 to the mesh portion 2. Thereby, (2) the level | step difference between the mesh part 2 and the wiring part 3 can be reduced.
 以上のようにして、図4(b)に示すように、保護層5の表面を平滑化できる。 As described above, the surface of the protective layer 5 can be smoothed as shown in FIG.
 次に、保護層5の厚みには、「保護層5自体の厚み」と「保護層5の基材1表面からの厚み」という二通りの観点があり、以下にそれらについて説明する。 Next, the thickness of the protective layer 5 has two viewpoints of “the thickness of the protective layer 5 itself” and “the thickness of the protective layer 5 from the surface of the substrate 1”, which will be described below.
 「保護層5自体の厚み」とは、メッシュ部2及び配線部3の厚みを差し引いた保護層5の厚みであり、上述したインク吐出量の設定に起因してメッシュ部2及び配線部3の各部位ごとに異なっている。即ち、保護層5自体の厚みは、上述した段差における比較的低い部分に対しては厚く形成されており、段差における比較的高い部分に対しては薄く形成されている。このようにして、保護層5によって基材1上の段差が吸収され、平滑な表面が得られる。 The “thickness of the protective layer 5 itself” is the thickness of the protective layer 5 obtained by subtracting the thickness of the mesh portion 2 and the wiring portion 3, and the mesh portion 2 and the wiring portion 3 are caused by the setting of the ink discharge amount described above. Each site is different. That is, the thickness of the protective layer 5 itself is formed thicker at a relatively low part in the above-described step, and thin at a relatively high part in the step. In this way, the step on the substrate 1 is absorbed by the protective layer 5 and a smooth surface is obtained.
 「保護層5の基材1表面からの厚み」とは、メッシュ部2及び配線部3の厚みを含めた保護層5の厚みであり、2μm以上15μm以下の範囲であることが好ましい。保護層5の基材1表面からの厚みが2μm以上であることにより、基材1上の段差を好適に吸収でき、保護層5の表面の平滑化を好適に実現することができる。更に、保護層5の基材1表面からの厚みが15μm以下であることにより、保護層5の形成に起因するカールの発生を好適に防止でき、更に基材1の可撓性が好適に保持される。 The “thickness of the protective layer 5 from the surface of the base material 1” is the thickness of the protective layer 5 including the thickness of the mesh part 2 and the wiring part 3, and is preferably in the range of 2 μm or more and 15 μm or less. When the thickness of the protective layer 5 from the surface of the base material 1 is 2 μm or more, a step on the base material 1 can be suitably absorbed, and smoothing of the surface of the protective layer 5 can be suitably realized. Furthermore, when the thickness of the protective layer 5 from the surface of the base material 1 is 15 μm or less, the occurrence of curling due to the formation of the protective layer 5 can be suitably prevented, and the flexibility of the base material 1 is preferably maintained. Is done.
 「保護層5の基材1表面からの厚み」は、導電性細線22の膜厚及び配線31の膜厚の何れよりも大きく設定することが好ましい。 The “thickness of the protective layer 5 from the surface of the substrate 1” is preferably set larger than any of the film thickness of the conductive thin wire 22 and the film thickness of the wiring 31.
 次に、保護層5を形成するためのインクについて詳しく説明する。 Next, the ink for forming the protective layer 5 will be described in detail.
 保護層5を形成するためのインクは、保護層5を形成するための材料を含むものであれば格別限定さないが、熱可塑性樹脂を含むインクや紫外線硬化型インク(UVインクともいう)を用いることが好ましく、特に紫外線硬化型インクが好ましい。 The ink for forming the protective layer 5 is not particularly limited as long as it contains a material for forming the protective layer 5, but an ink containing a thermoplastic resin or an ultraviolet curable ink (also referred to as a UV ink) is used. It is preferable to use an ultraviolet curable ink, in particular.
 紫外線硬化型インクは、重合性反応成分により構成され、溶剤を含むこともできるが、実質的に溶剤を含まないものを好ましく用いることができる。 The ultraviolet curable ink is composed of a polymerizable reaction component and can contain a solvent, but an ink substantially free of a solvent can be preferably used.
 塗布された紫外線硬化型インクに紫外線を照射することによって、インク中の重合性反応成分が重合して硬化し、紫外線硬化型樹脂により構成された保護層5が形成される。紫外線硬化型インクの硬化機構としては、例えば、ラジカル重合型やカチオン重合型を挙げることができる。 By irradiating the applied ultraviolet curable ink with ultraviolet rays, the polymerizable reactive component in the ink is polymerized and cured, and the protective layer 5 made of the ultraviolet curable resin is formed. Examples of the curing mechanism of the ultraviolet curable ink include a radical polymerization type and a cation polymerization type.
 紫外線硬化型インクは、溶媒系インクと比較すると、インクの定着に際して溶媒の移動を伴わないか、あるいは溶媒の移動が少ないため定着速度に優れ、メッシュ部2と配線部3の各部位に対するインク吐出量の差に起因する膜厚差を好適に保ったまま保護層5を形成することができる。そのため、基材上の段差を好適に低減することができる。 Compared with solvent-based inks, UV curable inks do not accompany the movement of the ink when fixing the ink, or the movement of the solvent is small, so the fixing speed is excellent, and ink ejection to each part of the mesh part 2 and the wiring part 3 The protective layer 5 can be formed while suitably maintaining the film thickness difference due to the difference in amount. Therefore, the level difference on the substrate can be suitably reduced.
 特に紫外線硬化型インクを用いる場合は、吐出安定性が得られ易い適正な粘度に保つために、インクジェットヘッドを昇温して、インクを昇温することが好ましい。このとき、基材1の温度が、インクジェットヘッドよりも低温であることによって、塗布されたインクの粘度を上昇させることができる。これにより、メッシュ部2と配線部3の各部位に対するインク吐出量の差に起因する膜厚差をより好適に保ったまま保護層5を形成することができる。 In particular, when using an ultraviolet curable ink, it is preferable to raise the temperature of the ink by raising the temperature of the inkjet head in order to maintain an appropriate viscosity at which ejection stability is easily obtained. At this time, the viscosity of the applied ink can be increased because the temperature of the substrate 1 is lower than that of the inkjet head. Thereby, the protective layer 5 can be formed while keeping the difference in film thickness due to the difference in the ink discharge amount for each part of the mesh part 2 and the wiring part 3 more suitably.
 また、特に紫外線硬化型インクを用いる場合は、保護層5を形成すべき領域全体に塗布した後に紫外線を照射して、保護層5全体をまとめて硬化させてもよいが、塗布と交互に紫外線照射を行い、保護層5を部分的に硬化させることも好ましいことである。 In particular, when an ultraviolet curable ink is used, the entire protective layer 5 may be applied and then irradiated with ultraviolet rays to cure the entire protective layer 5 together. It is also preferable to perform irradiation and partially harden the protective layer 5.
 保護層5を形成するためのインクとして、2種以上のインクを組み合わせて用いることができる。インクジェット法を用いれば、例えば、互いに異なるインクを充填した2以上のインクジェットヘッドを組み合わせる等によって、2種以上のインクを吐出することができる。 As the ink for forming the protective layer 5, two or more kinds of inks can be used in combination. If the ink jet method is used, two or more kinds of inks can be ejected by combining two or more ink jet heads filled with different inks.
 2種以上のインクを組み合わせて用いる場合は、例えば、メッシュ部を被覆する部分と、配線部を被覆する部分とで、保護層5を形成するためのインクを異ならせることが好ましい。 When two or more types of ink are used in combination, for example, it is preferable that the ink for forming the protective layer 5 is different between a portion covering the mesh portion and a portion covering the wiring portion.
 具体例を挙げれば、メッシュ部2を被覆する部分と、配線部3を被覆する部分とで、互いに屈折率の異なる材料を含むインクを用いることによって、保護層5の屈折率を、メッシュ部2を被覆する部分と、配線部3を被覆する部分とで変化させることが好ましい。 As a specific example, the refractive index of the protective layer 5 can be changed by using ink containing materials having different refractive indexes in the portion covering the mesh portion 2 and the portion covering the wiring portion 3. It is preferable to change between a portion covering the wiring portion and a portion covering the wiring portion 3.
 例えば、配線部3の配線31の線幅は、確実な配線を実現するために十分な太さを有することが好ましく、メッシュ部2の導電性細線22の線幅よりも太いことが好ましい。この場合、保護層5の屈折率が、メッシュ部2を被覆する部分と、配線部3を被覆する部分とで同一であると、比較的太い配線31が視認され易くなるが、配線部3を被覆する部分の屈折率を、メッシュ部2を被覆する部分の屈折率よりも大きくすることで、配線部3の配線を視認され難くすることができる。 For example, it is preferable that the line width of the wiring 31 of the wiring part 3 has a sufficient thickness for realizing reliable wiring, and is preferably larger than the line width of the conductive thin wire 22 of the mesh part 2. In this case, if the refractive index of the protective layer 5 is the same in the portion covering the mesh portion 2 and the portion covering the wiring portion 3, the relatively thick wiring 31 is easily visible. By making the refractive index of the covering portion larger than the refractive index of the portion covering the mesh portion 2, the wiring of the wiring portion 3 can be made difficult to be visually recognized.
 一方、メッシュ部2の導電性細線22の線幅が、配線部3の配線31の線幅よりも太い場合は、メッシュ部2を被覆する部分の屈折率を、配線部3を被覆する部分の屈折率よりも大きくすることで、メッシュ部2の導電性細線22を視認され難くすることができる。 On the other hand, when the line width of the conductive thin wire 22 of the mesh part 2 is larger than the line width of the wiring 31 of the wiring part 3, the refractive index of the part covering the mesh part 2 is set to the refractive index of the part covering the wiring part 3. By making it larger than the refractive index, the conductive fine wires 22 of the mesh part 2 can be made difficult to be visually recognized.
 このように、保護層5の屈折率を、メッシュ部2を被覆する部分と、配線部3を被覆する部分とで変化させることによって、屈折率の大きさによる隠蔽効果を適所で発揮させることができる。 In this way, by changing the refractive index of the protective layer 5 between the portion covering the mesh portion 2 and the portion covering the wiring portion 3, the concealment effect due to the size of the refractive index can be exhibited at an appropriate place. it can.
 以上の説明では、2種以上のインクを組み合わせて用いる場合の例として、互いに屈折率の異なる材料を含むインクを用いる場合を例に挙げて説明したが、これに限定されず、種々の目的で種々のインクを組み合わせて用いることができる。 In the above description, as an example of using two or more types of inks in combination, the case of using inks containing materials having different refractive indexes is described as an example. However, the present invention is not limited to this, and for various purposes. Various inks can be used in combination.
 メッシュ部2を被覆する部分の保護層5を形成するためのインクは、重合性反応成分として、脂環構造の置換基を有するモノマーを30wt%以上含有するインクを用いることが好ましい。メッシュ部2には、導電性細線22が細かく分布しているため、導電性細線22に対して密着し易い脂環構造の置換基を有するモノマーを含有させることによって、保護層5全体としての密着性も向上する。かかるインクは、メッシュ部2を被覆する部分の保護層5の形成に用いられるだけでなく、配線部3を被覆する部分の保護層5の形成に用いも用いることができる。 The ink for forming the protective layer 5 that covers the mesh part 2 is preferably an ink containing 30 wt% or more of a monomer having a substituent having an alicyclic structure as a polymerizable reaction component. Since the fine conductive wires 22 are finely distributed in the mesh portion 2, the adhesion of the protective layer 5 as a whole can be achieved by including a monomer having a substituent having an alicyclic structure that is easily adhered to the fine conductive wires 22. Also improves. Such an ink can be used not only for forming the protective layer 5 that covers the mesh portion 2 but also for forming the protective layer 5 that covers the wiring portion 3.
 脂環構造の置換基を有するモノマーは格別限定されないが、例えば、脂環式メタクリル酸エステル等を挙げることができる。脂環式メタクリル酸エステルとしては、例えば、炭素原子数3~7のシクロアルキル環を有するもの、具体的には、メタクリル酸シクロプロピル、メタクリル酸シクロブチル、メタクリル酸シクロペンチル、メタクリル酸シクロヘキシル、メタクリル酸シクロヘプチル等を挙げることができる。 Although the monomer which has a substituent of an alicyclic structure is not specifically limited, For example, an alicyclic methacrylate ester etc. can be mentioned. Examples of the alicyclic methacrylates include those having a cycloalkyl ring having 3 to 7 carbon atoms, specifically, cyclopropyl methacrylate, cyclobutyl methacrylate, cyclopentyl methacrylate, cyclohexyl methacrylate, cyclohexane methacrylate. Heptyl etc. can be mentioned.
 以上の説明では、保護層を単層体として形成する場合について示したが、これに限定されるものではない。保護層を2層以上の積層体として形成することも好ましいことである。 In the above description, the case where the protective layer is formed as a single layer is shown, but the present invention is not limited to this. It is also preferable to form the protective layer as a laminate of two or more layers.
 保護層を2層以上の積層体として形成する場合は、該積層体において互いに隣接する層を、互いに異なるインクによって形成することができる。 When the protective layer is formed as a laminate of two or more layers, the layers adjacent to each other in the laminate can be formed with different inks.
 保護層を2層以上の積層体として形成する場合は、該積層体を構成する何れか1以上の層を形成する際に、メッシュ部2と配線部3の線パターンに応じてインク吐出量を変化させてインクを塗布することができる。 In the case where the protective layer is formed as a laminate of two or more layers, the ink discharge amount is set according to the line pattern of the mesh portion 2 and the wiring portion 3 when forming any one or more layers constituting the laminate. The ink can be applied by changing.
 例えば、積層体における最下層(即ちメッシュ部2及び配線部3上に直接設けられる層)を、保護層の密着性を担保するための層とし、上層を、平滑性を担保するための層とすることも好ましい。この場合、最下層の形成に、脂環構造の置換基を有するモノマーを30wt%以上含有するインクを用いることが好ましい。更に、少なくとも上層を形成する際に、メッシュ部2と配線部3の線パターンに応じてインク吐出量を変化させてインクを塗布することが好ましい。勿論、上層だけでなく最下層を形成する際にも、メッシュ部2と配線部3の線パターンに応じてインク吐出量を変化させてインクを塗布することができる。 For example, the lowermost layer (that is, the layer provided directly on the mesh part 2 and the wiring part 3) in the laminate is a layer for ensuring the adhesion of the protective layer, and the upper layer is a layer for ensuring the smoothness. It is also preferable to do. In this case, an ink containing 30 wt% or more of a monomer having an alicyclic structure substituent is preferably used for forming the lowermost layer. Furthermore, when forming at least the upper layer, it is preferable to apply ink by changing the ink discharge amount in accordance with the line pattern of the mesh portion 2 and the wiring portion 3. Of course, when forming not only the upper layer but also the lowermost layer, it is possible to apply ink by changing the ink discharge amount according to the line pattern of the mesh portion 2 and the wiring portion 3.
 以上の説明では、1つの基材上に、メッシュ部、配線部及びACF接続部からなるセットを複数形成する場合について示したが、これに限定されるものではなく、1つの基材上に、メッシュ部、配線部及びACF接続部からなるセットを1つ形成するものであってもよい。 In the above description, a case where a plurality of sets including a mesh portion, a wiring portion, and an ACF connection portion are formed on one base material is shown, but the present invention is not limited to this. One set including a mesh portion, a wiring portion, and an ACF connection portion may be formed.
 次に、基材の両面に保護層を形成する態様について説明する。 Next, an embodiment in which protective layers are formed on both surfaces of the substrate will be described.
 先ず、基材の両面に保護層を形成する態様において、メッシュ部、配線部及びACF接続部からなるセットを基材の一面に形成する場合について、図5を参照して説明する。図5において、図1~4と同符号は同構成であり、図1~4についてした説明を援用することができる。 First, in the aspect in which the protective layer is formed on both surfaces of the substrate, a case where a set including a mesh portion, a wiring portion, and an ACF connection portion is formed on one surface of the substrate will be described with reference to FIG. In FIG. 5, the same reference numerals as those in FIGS. 1 to 4 denote the same components, and the description of FIGS. 1 to 4 can be used.
 図5の例では、基材1の一面に、メッシュ部2、配線部3及び図示しないACF接続部からなるセットを形成し、次いで、基材1の両面に、保護層5を形成している。 In the example of FIG. 5, a set including a mesh portion 2, a wiring portion 3, and an ACF connection portion (not shown) is formed on one surface of the substrate 1, and then protective layers 5 are formed on both surfaces of the substrate 1. .
 基材1の一面側の保護層5は、メッシュ部2及び配線部3を被覆し、ACF接続部4を被覆しないように形成される。かかる保護層5の形成に際しては、図1~図4を参照して説明した態様と同様に、メッシュ部2と配線部3の線パターンに応じてインク吐出量を変化させてインクを塗布している。これにより、メッシュ部2と配線部3に由来する基材1上の段差を低減でき、保護層5の表面を平滑化できる。 The protective layer 5 on the one surface side of the substrate 1 is formed so as to cover the mesh portion 2 and the wiring portion 3 and not the ACF connection portion 4. In forming the protective layer 5, as in the embodiment described with reference to FIGS. 1 to 4, ink is applied by changing the ink discharge amount according to the line pattern of the mesh portion 2 and the wiring portion 3. Yes. Thereby, the level | step difference on the base material 1 originating in the mesh part 2 and the wiring part 3 can be reduced, and the surface of the protective layer 5 can be smoothed.
 一方、基材1の他面側の保護層5は、一面側のメッシュ部2及び配線部3を直接被覆するものではないが、基材1を介してメッシュ部2及び配線部3を保護する機能を発揮する。他面側の保護層5は、一面側の保護層5と同様にインクジェット法を用いて形成することができるが、他面側にメッシュ部2及び配線部3が設けられていないため、必ずしもインク吐出量を変化させなくてもよい。基材1の他面側に何らかの段差が存在する場合は、かかる段差を低減するように、インク吐出量を変化させることが好ましく、これにより、他面側の保護層5の表面も平滑化できる。 On the other hand, the protective layer 5 on the other surface side of the substrate 1 does not directly cover the mesh portion 2 and the wiring portion 3 on the one surface side, but protects the mesh portion 2 and the wiring portion 3 via the substrate 1. Demonstrate the function. The protective layer 5 on the other surface side can be formed using the ink jet method in the same manner as the protective layer 5 on the one surface side. However, since the mesh portion 2 and the wiring portion 3 are not provided on the other surface side, it is not always necessary It is not necessary to change the discharge amount. When there is a certain level difference on the other surface side of the base material 1, it is preferable to change the ink discharge amount so as to reduce the level difference, whereby the surface of the protective layer 5 on the other surface side can also be smoothed. .
 基材1の一面側のみに保護層5を設ける場合と比較して、基材1の他面側にも保護層5を設けることによって、基材1のカールを好適に防止できる。特に両面の保護層5を紫外線硬化型インクのような硬化性樹脂によって形成する場合は、硬化に伴う収縮が発生しても基材1のカールを好適に防止できるため、効果が顕著になる。また、両面の保護層5を通常の樹脂(例えば熱可塑性樹脂)によって形成する場合は、基材1の一面側と他面側での透湿性の相違を低減することができる効果が得られる。これらの効果は、基材1の一面側の保護層5と他面側の保護層5を同じ組成のインクを用いて形成することによって、更に顕著に発揮される。 Compared with the case where the protective layer 5 is provided only on the one surface side of the base material 1, the curling of the base material 1 can be suitably prevented by providing the protective layer 5 on the other surface side of the base material 1. In particular, when the protective layers 5 on both sides are formed of a curable resin such as an ultraviolet curable ink, even if shrinkage due to curing occurs, curling of the base material 1 can be suitably prevented, and thus the effect becomes remarkable. Moreover, when forming the protective layers 5 on both sides with a normal resin (for example, a thermoplastic resin), an effect of reducing the difference in moisture permeability between the one surface side and the other surface side of the substrate 1 is obtained. These effects are more remarkably exhibited by forming the protective layer 5 on the one surface side of the substrate 1 and the protective layer 5 on the other surface side using inks having the same composition.
 次に、基材の両面に保護層を形成する態様において、メッシュ部2、配線部3及びACF接続部4からなるセットを基材1の両面に形成する場合について、図6を参照して説明する。図6において、図1~5と同符号は同構成であり、図1~5についてした説明を援用することができる。 Next, in the aspect in which the protective layer is formed on both surfaces of the substrate, a case where a set including the mesh portion 2, the wiring portion 3, and the ACF connection portion 4 is formed on both surfaces of the substrate 1 will be described with reference to FIG. To do. In FIG. 6, the same reference numerals as those in FIGS. 1 to 5 have the same configuration, and the description of FIGS. 1 to 5 can be used.
 図6の例では、基材1の両面に、メッシュ部2、配線部3及び図示しないACF接続部からなるセットを形成し、次いで、基材1の両面に、保護層5を形成している。 In the example of FIG. 6, a set including a mesh portion 2, a wiring portion 3 and an ACF connection portion (not shown) is formed on both surfaces of the base material 1, and then protective layers 5 are formed on both surfaces of the base material 1. .
 基材1の両面の保護層5は、それぞれ、各面のメッシュ部2及び配線部3を被覆し、ACF接続部4を被覆しないように形成される。かかる保護層5の形成に際しては、図1~図4を参照して説明した態様と同様に、メッシュ部2と配線部3の線パターンに応じてインク吐出量を変化させてインクを塗布している。これにより、メッシュ部2と配線部3に由来する基材1上の段差を低減でき、両面の保護層5の表面を平滑化できる。更に、図5を参照して説明した態様と同様に、基材1のカールを好適に防止する効果や、透湿性の相違を低減する効果も発揮される。 The protective layers 5 on both surfaces of the substrate 1 are formed so as to cover the mesh portion 2 and the wiring portion 3 on each surface and not the ACF connection portion 4. In forming the protective layer 5, as in the embodiment described with reference to FIGS. 1 to 4, ink is applied by changing the ink discharge amount according to the line pattern of the mesh portion 2 and the wiring portion 3. Yes. Thereby, the level | step difference on the base material 1 originating in the mesh part 2 and the wiring part 3 can be reduced, and the surface of the protective layer 5 of both surfaces can be smoothed. Furthermore, the effect which prevents the base material 1 from curling suitably and the effect which reduces the difference in moisture permeability are exhibited similarly to the aspect demonstrated with reference to FIG.
 図6の説明では、基材の両面に、メッシュ部、配線部及びACF接続部からなるセットを形成し、次いで、基材の両面に、保護層を形成する場合について説明したが、特に保護層の形成に紫外線硬化型インクのような硬化性樹脂を用いる場合は、カール防止の効果を顕著に奏する観点で、両面の保護層の硬化を同時に行うことが好ましい。しかし、形成順はこれに限定されるものではない。例えば、基材の一面に、メッシュ部、配線部及びACF接続部からなるセットを形成し、次いで、基材の一面に、保護層を形成し、次いで、基材の他面に、メッシュ部、配線部及びACF接続部からなるセットを形成し、次いで、基材の他面に、保護層を形成するようにしてもよい。 In the description of FIG. 6, a case has been described in which a set including a mesh portion, a wiring portion, and an ACF connection portion is formed on both surfaces of a base material, and then a protective layer is formed on both surfaces of the base material. In the case of using a curable resin such as an ultraviolet curable ink for the formation of the film, it is preferable to simultaneously cure the protective layers on both sides from the viewpoint of prominently preventing the curl. However, the formation order is not limited to this. For example, a set including a mesh portion, a wiring portion, and an ACF connection portion is formed on one surface of the base material, then a protective layer is formed on one surface of the base material, and then the mesh portion on the other surface of the base material, A set including a wiring portion and an ACF connection portion may be formed, and then a protective layer may be formed on the other surface of the substrate.
 次に、本発明の透明導電センサーフィルムについて説明する。 Next, the transparent conductive sensor film of the present invention will be described.
 本発明の透明導電センサーフィルムは、以上に説明した本発明の透明導電センサーフィルムの製造方法によって好適に製造することができる。 The transparent conductive sensor film of the present invention can be preferably manufactured by the method for manufacturing the transparent conductive sensor film of the present invention described above.
 本発明の透明導電センサーフィルムは、基材上に、導電性細線からなるメッシュ部と、配線部と、該配線部の先端にACF接続部とを備え、前記メッシュ部及び前記ACF接続部を除く前記配線部は保護層によって被覆されている。 The transparent conductive sensor film of the present invention comprises, on a base material, a mesh portion made of a conductive thin wire, a wiring portion, and an ACF connection portion at the tip of the wiring portion, and excludes the mesh portion and the ACF connection portion. The wiring part is covered with a protective layer.
 本発明の透明導電センサーフィルムは、前記保護層が、基材表面からの厚みが2μm以上15μm以下の範囲であって、該保護層自体の厚みが前記メッシュ部と前記配線部の線パターンに応じて異なり、且つ表面粗さRaが10nm以上1μm以下の範囲であることを一つの特徴とする。 In the transparent conductive sensor film of the present invention, the protective layer has a thickness of 2 μm or more and 15 μm or less from the substrate surface, and the thickness of the protective layer itself depends on the line pattern of the mesh portion and the wiring portion. One feature is that the surface roughness Ra is in the range of 10 nm to 1 μm.
 これにより、インクジェット法で塗布形成された保護層によってメッシュ部及び配線部を保護できると共に、メッシュ部及び配線部に由来する基材上の段差を低減でき、保護層の表面を平滑化できる効果が得られる。 As a result, the mesh portion and the wiring portion can be protected by the protective layer applied and formed by the ink jet method, the step on the base material derived from the mesh portion and the wiring portion can be reduced, and the surface of the protective layer can be smoothed. can get.
 透明導電センサーフィルムは、図1~図4を参照して説明したように、基材の一面に保護層を備えてもよいし、図5及び図6を参照して説明したように、基材の両面に保護層を備えてもよい。 The transparent conductive sensor film may be provided with a protective layer on one surface of the substrate as described with reference to FIGS. 1 to 4, or as described with reference to FIGS. 5 and 6. Protective layers may be provided on both sides.
 基材の両面に保護層を備える態様においては、メッシュ部、配線部及びACF接続部からなるセットは、図5を参照して説明したように、基材の一面に設けられてもよいし、図6を参照して説明したように、基材の両面に設けられてもよい。 In the aspect provided with protective layers on both surfaces of the base material, the set including the mesh portion, the wiring portion, and the ACF connection portion may be provided on one surface of the base material as described with reference to FIG. As described with reference to FIG. 6, it may be provided on both surfaces of the substrate.
 透明導電センサーフィルムの用途は格別限定されないが、例えばタッチパネルセンサー等として好適に用いることができる。透明導電センサーフィルムをタッチパネルセンサーとして用いる場合は、メッシュ部を構成するメッシュ状導電膜を、位置検出電極、即ちX電極やY電極として用いることができ、配線部を構成する配線を、前記位置検出電極を制御回路に接続するための引き出し配線として用いることができる。また、配線と制御回路との接続は、ACF接続部にACFを介して張り合わされたFPC等の外部配線を介して行うことができる。 Although the use of the transparent conductive sensor film is not particularly limited, for example, it can be suitably used as a touch panel sensor or the like. When the transparent conductive sensor film is used as a touch panel sensor, the mesh-like conductive film constituting the mesh part can be used as a position detection electrode, that is, an X electrode or a Y electrode, and the wiring constituting the wiring part is detected by the position detection. It can be used as a lead wiring for connecting the electrode to the control circuit. Further, the connection between the wiring and the control circuit can be performed through an external wiring such as an FPC attached to the ACF connection portion via the ACF.
 基材の両面にメッシュ部、配線部及びACF接続部からなるセットを有する場合は、例えば、一方の面のメッシュ部を構成するメッシュ状導電膜をX電極とし、他方のメッシュ部を構成するメッシュ状導電膜をY電極とすることができる。 When having a set consisting of a mesh part, a wiring part and an ACF connection part on both sides of the base material, for example, a mesh-like conductive film constituting the mesh part on one side is used as an X electrode, and a mesh constituting the other mesh part The conductive film can be a Y electrode.
 また、基材の一面にメッシュ部、配線部及びACF接続部からなるセットを有する場合は、例えば、かかる基材の前記セットを有さない面同士を2枚貼り合わせて、一方の基材のメッシュ部を構成するメッシュ状導電膜をX電極とし、他方の基材のメッシュ部を構成するメッシュ状導電膜をY電極とすることができる。 Moreover, when it has the set which consists of a mesh part, a wiring part, and an ACF connection part on the one surface of a base material, for example, two surfaces which do not have the said set of this base material are bonded together, The mesh-like conductive film constituting the mesh portion can be used as the X electrode, and the mesh-like conductive film constituting the mesh portion of the other substrate can be used as the Y electrode.
 本発明の透明導電センサーフィルムは、基材上に、導電性細線からなるメッシュ部と、配線部と、該配線部の先端にACF接続部とを備え、前記メッシュ部、及び前記ACF接続部を除く前記配線部は保護層によって被覆されている。ここで、前記保護層は、基材表面からの厚みが2μm以上15μm以下の範囲であって、該保護層自体の厚みが前記メッシュ部と前記配線部の線パターンに応じて異なり、且つ表面粗さRaが10nm以上1μm以下の範囲であることを一つの特徴とする。 The transparent conductive sensor film of the present invention comprises, on a base material, a mesh portion made of a conductive fine wire, a wiring portion, and an ACF connection portion at the tip of the wiring portion, and the mesh portion and the ACF connection portion are provided. The wiring part except for the above is covered with a protective layer. Here, the protective layer has a thickness of 2 μm or more and 15 μm or less from the surface of the substrate, and the thickness of the protective layer itself varies depending on the line pattern of the mesh portion and the wiring portion, and the surface roughness One feature is that the thickness Ra is in the range of 10 nm to 1 μm.
 かかる透明導電センサーフィルムによれば、メッシュ部及び配線部に由来する基材上の段差を低減でき、保護層の表面を平滑化できる。これにより、保護層の表面をタッチした感触として違和感を生じ難い効果が得られる。 According to such a transparent conductive sensor film, the level difference on the base material derived from the mesh part and the wiring part can be reduced, and the surface of the protective layer can be smoothed. Thereby, the effect which is hard to produce discomfort as the touch which touched the surface of the protective layer is acquired.
 前記保護層は、紫外線硬化型樹脂により構成されていることが好ましい。これにより、保護層の表面をタッチした感触が更に良好になる効果が得られる。 The protective layer is preferably made of an ultraviolet curable resin. Thereby, the effect which the touch which touched the surface of the protective layer becomes further favorable is acquired.
 本発明の透明導電センサーフィルムは、上述した本発明の透明導電センサーフィルムの製造方法により好適に製造できるが、これに限定されない。 The transparent conductive sensor film of the present invention can be suitably manufactured by the above-described method for manufacturing a transparent conductive sensor film of the present invention, but is not limited thereto.
 以上の説明において、一つの態様について説明された構成は、他の態様に適宜適用することができる。 In the above description, the configuration described for one aspect can be appropriately applied to other aspects.
 以下に、本発明の実施例について説明するが、本発明はかかる実施例により限定されない。 Hereinafter, examples of the present invention will be described, but the present invention is not limited to the examples.
(実施例1)
 1.メッシュ部の形成
<インクの調製>
 メッシュ部形成インク(導電性材料を含む液体)として、以下の組成のものを調製した。
 ・銀ナノ粒子(平均粒子径:20nm):0.054wt%
 ・界面活性剤(ビッグケミー社製「BYK348」):0.05wt%
 ・ジエチレングリコールモノブチルエーテル(略称:DEGBE)(分散媒):20wt%
 ・水(分散媒):残量
Example 1
1. Formation of mesh part <Preparation of ink>
As the mesh part forming ink (liquid containing a conductive material), one having the following composition was prepared.
Silver nanoparticles (average particle size: 20 nm): 0.054 wt%
Surfactant (manufactured by Big Chemie “BYK348”): 0.05 wt%
Diethylene glycol monobutyl ether (abbreviation: DEGBE) (dispersion medium): 20 wt%
・ Water (dispersion medium): remaining amount
<パターン形成>
 クリアハードコート層付きのPET(ポリエチレンテレフタレート)基材を50℃に保持し、クリアハードコート層表面に対してインクジェットヘッド(コニカミノルタ社製「KM512L」;標準液滴量42pl)を走査させて上記メッシュ部形成インクを吐出し、クリアハードコート層上に複数のライン状液体を形成した。次いで、ライン状液体の乾燥時にコーヒーステイン現象を生起させて、ライン状液体の長さ方向に沿う両縁部に導電性材料を選択的に堆積させることによって、各ライン状液体から、ライン状液体の線幅よりも細い線幅の互いに並行な1組の導電性細線を形成した。
 このようにして、図1に示したようなメッシュ部2を形成した。メッシュ部2を構成する導電性細線22の線幅は5μm、導電性細線22間のピッチ(距離)は170μmとした。
<Pattern formation>
A PET (polyethylene terephthalate) substrate with a clear hard coat layer is maintained at 50 ° C., and the surface of the clear hard coat layer is scanned with an inkjet head (“KM512L” manufactured by Konica Minolta; standard droplet amount 42 pl). The mesh portion forming ink was discharged to form a plurality of line liquids on the clear hard coat layer. Next, a coffee stain phenomenon occurs during the drying of the line liquid, and a conductive material is selectively deposited on both edges along the length direction of the line liquid, so that the line liquid is removed from each line liquid. A set of conductive thin wires parallel to each other having a line width thinner than the line width of was formed.
Thus, the mesh part 2 as shown in FIG. 1 was formed. The line width of the conductive thin wires 22 constituting the mesh portion 2 was 5 μm, and the pitch (distance) between the conductive thin wires 22 was 170 μm.
2.配線部及びACF接続部の形成
<インクの調製>
 配線部形成インク(機能性材料を含む液体)として、以下の組成のものを調製した。
 ・銀ナノ粒子(平均粒子径:20nm):0.13wt%
 ・界面活性剤(ビッグケミー社製「BYK348」):0.05wt%
 ・ジエチレングリコールモノブチルエーテル(略称:DEGBE)(分散媒):20wt%
 ・水(分散媒):残量
2. Formation of wiring portion and ACF connection portion <Preparation of ink>
As wiring part formation ink (liquid containing a functional material), the following composition was prepared.
Silver nanoparticles (average particle size: 20 nm): 0.13 wt%
Surfactant (manufactured by Big Chemie “BYK348”): 0.05 wt%
Diethylene glycol monobutyl ether (abbreviation: DEGBE) (dispersion medium): 20 wt%
・ Water (dispersion medium): remaining amount
<パターン形成>
 上記「1.メッシュ部の形成」でメッシュ部を形成したクリアハードコート層付きのPET基材を50℃に保持し、クリアハードコート層表面の配線部を形成する面に対してインクジェットヘッド(コニカミノルタ社製「KM512L」;標準液滴量42pl)を走査させて上記配線部形成インクを吐出し、クリアハードコート層上に複数のライン状液体を形成した。次いで、ライン状液体を乾燥させて、各ライン状液体から配線を形成した。配線形成時のライン状液体の乾燥においては、コーヒーステイン現象を抑制して、ライン状液体と同じ線幅を有する配線を形成した。
 このようにして、図1に示したような配線部3を形成した。配線部3を構成する配線31の先端によってACF接続部4が形成された。配線部3を構成する配線31の線幅は60μm、配線31間のピッチ(距離)は60μmとした。
<Pattern formation>
The PET substrate with the clear hard coat layer on which the mesh portion is formed in “1. Formation of the mesh portion” above is held at 50 ° C., and the inkjet head (Konica “KM512L” manufactured by Minolta Co., Ltd .; standard droplet amount 42 pl) was scanned to discharge the wiring portion forming ink, thereby forming a plurality of line-shaped liquids on the clear hard coat layer. Next, the line liquid was dried to form a wiring from each line liquid. In drying the line-shaped liquid at the time of wiring formation, the coffee stain phenomenon was suppressed and a wiring having the same line width as the line-shaped liquid was formed.
In this way, the wiring part 3 as shown in FIG. 1 was formed. The ACF connection portion 4 was formed by the tip of the wiring 31 constituting the wiring portion 3. The wiring 31 constituting the wiring part 3 has a line width of 60 μm, and a pitch (distance) between the wirings 31 is 60 μm.
 上記メッシュ部、配線部及びACF接続部を形成した基材を、130℃のオーブンに入れて10分間、焼成した。焼成した後、銅めっき処理をし、メッシュ部の細線の厚みが2μm、配線部の配線の厚みが3μのセンサーフィルム(中間体)を得た。 The base material on which the mesh part, the wiring part and the ACF connection part were formed was put in an oven at 130 ° C. and baked for 10 minutes. After firing, copper plating was performed to obtain a sensor film (intermediate) having a fine wire thickness of 2 μm in the mesh portion and a wiring thickness of 3 μm in the wiring portion.
3.保護層の形成
<インクの調製>
 保護層形成インクとして、以下の組成のものを調製した。
 ・フェノキシエチルアクリレート:70wt%
 ・ジシクロペンテニルオキシアクリレート(日立化成社製「ファンクリルFA512AS」):27wt%
 ・光重合開始剤(チバガイギ社製「イルガキュア819」):3wt%
3. Formation of protective layer <Preparation of ink>
As the protective layer forming ink, one having the following composition was prepared.
・ Phenoxyethyl acrylate: 70wt%
・ Dicyclopentenyloxyacrylate (“Funkryl FA512AS” manufactured by Hitachi Chemical Co., Ltd.): 27 wt%
Photopolymerization initiator (“Irgacure 819” manufactured by Ciba-Gaigi): 3 wt%
<パターン形成>
 上記で作成したセンサーフィルム(中間体)のACF接続部を除いたメッシュ部と配線部上に対してインクジェットヘッド(コニカミノルタ社製ヘッド;標準液滴量6pl)を走査させて線未形成面の液滴量を5液滴、メッシュ部細線形成面上(厚み2μm)には3液滴、配線部細線形成面上(厚み3μ)には2液滴吐出されるように上記保護層形成インクをベタに吐出し、その後フォセオン製UV露光装置で照度100mW、照射量100mJの条件でUV露光して紫外線硬化型樹脂からなる保護層を形成した。
<Pattern formation>
An ink jet head (Konica Minolta head; standard droplet volume 6 pl) is scanned over the mesh portion and the wiring portion excluding the ACF connection portion of the sensor film (intermediate body) created above, and the line non-formed surface is The protective layer forming ink is used so that the amount of droplets is 5 droplets, 3 droplets are ejected on the surface of the fine mesh line (thickness 2 μm), and 2 droplets are ejected on the surface of the fine wiring line (thickness 3 μm). The film was discharged onto a solid, and then UV-exposed with a Foseon UV exposure apparatus under the conditions of an illuminance of 100 mW and an irradiation amount of 100 mJ to form a protective layer made of an ultraviolet curable resin.
 また、この基材の裏面側の面(メッシュ部、配線部及びACF接続部が設けられていない面)にはインクジェットヘッドを走査させて液滴量が5液滴の条件でベタ状に吐出し、同様にUV露光して保護層を形成した。 In addition, the back surface of the base material (the surface on which the mesh portion, the wiring portion, and the ACF connection portion are not provided) is scanned with an ink jet head and discharged in a solid form under the condition of a droplet amount of 5 droplets. Similarly, UV exposure was performed to form a protective layer.
 以上のようにして、センサーフィルムを製造した。基材の表面側と裏面側の表面粗さを計測すると表面がRa100nm、裏面がRa98nmであり、本実施例のセンサーフィルムをタッチパネルに適用した際のタッチ感触は良好であった。 The sensor film was manufactured as described above. When the surface roughness of the surface side and the back surface side of the substrate was measured, the surface was Ra 100 nm and the back surface was Ra 98 nm, and the touch feeling when the sensor film of this example was applied to the touch panel was good.
(比較例1)
 実施例1において、保護層の形成を以下の方法により行ったこと以外は、実施例1と同様にしてセンサーフィルムを製造した。
・保護層の形成
 実施例1と同様にして形成されたセンサーフィルム(中間体)のACF部を除いたメッシュ部と配線部上に対してインクジェットヘッド(コニカミノルタ社製ヘッド;標準液滴量6pl)を走査させて液滴量を5液滴で上記保護層形成インクインクをベタに吐出し、その後フォセオン製UV露光装置で照度100mW、照射量100mJの条件でUV露光して保護層を形成した。
(Comparative Example 1)
In Example 1, a sensor film was produced in the same manner as in Example 1 except that the protective layer was formed by the following method.
Formation of protective layer Ink jet head (Konica Minolta head; standard droplet volume 6 pl) on the mesh portion and wiring portion excluding the ACF portion of the sensor film (intermediate body) formed in the same manner as in Example 1. ) To form a protective layer by discharging the above-mentioned ink for forming the protective layer onto the solid with a droplet amount of 5 droplets, and then UV-exposing with a UV exposure device manufactured by Foseon under the conditions of an illuminance of 100 mW and an irradiation amount of 100 mJ. .
 また、この基材の裏面側の面(メッシュ部、配線部及びACF接続部が設けられていない面)にはインクジェットヘッドを走査させて液滴量が5液滴の条件でベタ状に吐出し、同様にUV露光して保護層を形成した。 In addition, the back surface of the base material (the surface on which the mesh portion, the wiring portion, and the ACF connection portion are not provided) is scanned with an ink jet head and discharged in a solid form under the condition of a droplet amount of 5 droplets. Similarly, UV exposure was performed to form a protective layer.
 以上のようにして、センサーフィルム(比較)を製造した。基材の表面側と裏面側の表面粗さを計測すると、表面がRa1.2μm、裏面がRa98nmであり、本比較例のセンサーフィルムをタッチパネルに適用した際のタッチ感触は違和感がある状態であった。 Thus, a sensor film (comparison) was manufactured. When the surface roughness of the front surface side and the back surface side of the substrate was measured, the surface was Ra 1.2 μm, the back surface was Ra 98 nm, and the touch feeling when the sensor film of this comparative example was applied to the touch panel was uncomfortable. It was.
 1:基材
 2:メッシュ部
  21:メッシュ状導電膜
  22:導電性細線
  23:開口部
 3:配線部
  31:配線
  32:間隙部
 4:ACF接続部
 5:保護層
1: Base material 2: Mesh portion 21: Mesh-like conductive film 22: Conductive thin wire 23: Opening portion 3: Wiring portion 31: Wiring 32: Gap portion 4: ACF connecting portion 5: Protective layer

Claims (12)

  1.  基材上に、導電性細線からなるメッシュ部と、配線部と、該配線部の先端にACF接続部とを形成し、
     次いで、インクジェット法によって前記メッシュ部、及び前記ACF接続部を除く前記配線部を被覆するように保護層を形成する透明導電センサーフィルムの製造方法であって、
     前記保護層の形成に際して、前記メッシュ部と前記配線部の線パターンに応じてインク吐出量を変化させて表面粗さRaが10nm以上1μm以下の範囲となるようにインクを塗布する透明導電センサーフィルムの製造方法。
    On the base material, a mesh part made of conductive thin wires, a wiring part, and an ACF connection part at the tip of the wiring part,
    Next, a method for producing a transparent conductive sensor film, wherein a protective layer is formed so as to cover the mesh portion and the wiring portion excluding the ACF connection portion by an inkjet method,
    In forming the protective layer, a transparent conductive sensor film that applies ink so that the surface roughness Ra is in the range of 10 nm to 1 μm by changing the ink discharge amount according to the line pattern of the mesh part and the wiring part Manufacturing method.
  2.  前記保護層の形成に際して、前記メッシュ部の前記導電性細線に対するインク吐出量を、該導電性細線が設けられていない開口部に対するインク吐出量よりも少なくする請求項1記載の透明導電センサーフィルムの製造方法。 2. The transparent conductive sensor film according to claim 1, wherein when forming the protective layer, an ink discharge amount of the mesh portion with respect to the conductive thin wire is less than an ink discharge amount with respect to the opening portion where the conductive thin wire is not provided. Production method.
  3.  前記基材の両面に前記保護層を形成する請求項1又は2記載の透明導電センサーフィルムの製造方法。 The manufacturing method of the transparent conductive sensor film of Claim 1 or 2 which forms the said protective layer on both surfaces of the said base material.
  4.  前記基材の両面に、前記メッシュ部と前記配線部と前記ACF接続部とを形成し、
     次いで、前記基材の両面に、各面の前記メッシュ部及び前記ACF接続部を除く前記配線部を被覆するように前記保護層を形成する請求項1~3の何れかに記載の透明導電センサーフィルムの製造方法。
    Forming the mesh part, the wiring part, and the ACF connection part on both surfaces of the substrate;
    4. The transparent conductive sensor according to claim 1, wherein the protective layer is formed on both surfaces of the base material so as to cover the wiring portion excluding the mesh portion and the ACF connection portion on each surface. A method for producing a film.
  5.  前記メッシュ部及び前記配線部の形成に際して、インクジェット法により前記基材上に導電性材料を付与し、次いで、該導電性材料にメッキを施すことによって、前記メッシュ部及び前記配線部を形成する請求項1~4の何れかに記載の透明導電センサーフィルムの製造方法。 In forming the mesh portion and the wiring portion, a conductive material is applied on the base material by an inkjet method, and then the conductive material is plated to form the mesh portion and the wiring portion. Item 5. The method for producing a transparent conductive sensor film according to any one of Items 1 to 4.
  6.  厚みが2μm以上15μm以下の範囲となるように前記保護層を形成する請求項1~5の何れかに記載の透明導電センサーフィルムの製造方法。 The method for producing a transparent conductive sensor film according to any one of claims 1 to 5, wherein the protective layer is formed to have a thickness in a range of 2 µm to 15 µm.
  7.  前記保護層を2層以上の積層体として形成する請求項1~6の何れかに記載の透明導電センサーフィルムの製造方法。 The method for producing a transparent conductive sensor film according to any one of claims 1 to 6, wherein the protective layer is formed as a laminate of two or more layers.
  8.  前記保護層を形成するための前記インクとして紫外線硬化型インクを用い、紫外線照射によって前記保護層を形成する請求項1~7の何れかに記載の透明導電センサーフィルムの製造方法。 The method for producing a transparent conductive sensor film according to any one of claims 1 to 7, wherein an ultraviolet curable ink is used as the ink for forming the protective layer, and the protective layer is formed by ultraviolet irradiation.
  9.  前記メッシュ部を被覆する部分の前記保護層を形成するための前記インクとして、脂環構造の置換基を有するモノマーを30wt%以上含有するインクを用いる請求項1~8の何れかに記載の透明導電センサーフィルムの製造方法。 The transparent ink according to any one of claims 1 to 8, wherein an ink containing 30 wt% or more of a monomer having an alicyclic structure substituent is used as the ink for forming the protective layer in a portion covering the mesh portion. A method for producing a conductive sensor film.
  10.  前記保護層の屈折率を、前記メッシュ部を被覆する部分と、前記配線部を被覆する部分とで変化させる請求項1~9の何れかに記載の透明導電センサーフィルムの製造方法。 10. The method for producing a transparent conductive sensor film according to claim 1, wherein a refractive index of the protective layer is changed between a portion covering the mesh portion and a portion covering the wiring portion.
  11.  基材上に、導電性細線からなるメッシュ部と、配線部と、該配線部の先端にACF接続部とを備え、
     前記メッシュ部、及び前記ACF接続部を除く前記配線部は保護層によって被覆されており、
     前記保護層は、基材表面からの厚みが2μm以上15μm以下の範囲であって、該保護層自体の厚みが前記メッシュ部と前記配線部の線パターンに応じて異なり、且つ表面粗さRaが10nm以上1μm以下の範囲である透明導電センサーフィルム。
    On the base material, a mesh portion made of a conductive thin wire, a wiring portion, and an ACF connection portion at the tip of the wiring portion,
    The wiring part excluding the mesh part and the ACF connection part is covered with a protective layer,
    The protective layer has a thickness of 2 μm or more and 15 μm or less from the surface of the substrate, the thickness of the protective layer itself varies depending on the line pattern of the mesh part and the wiring part, and the surface roughness Ra is A transparent conductive sensor film having a range of 10 nm to 1 μm.
  12.  前記保護層は、紫外線硬化型樹脂により構成されている請求項11記載の透明導電センサーフィルム。 The transparent conductive sensor film according to claim 11, wherein the protective layer is made of an ultraviolet curable resin.
PCT/JP2016/087033 2015-12-18 2016-12-13 Transparent electroconductive sensor film manufacturing method and transparent electroconductive sensor film WO2017104653A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015-247705 2015-12-18
JP2015247705A JP2019022868A (en) 2015-12-18 2015-12-18 Method for manufacturing transparent conductive sensor film and transparent conductive sensor film

Publications (1)

Publication Number Publication Date
WO2017104653A1 true WO2017104653A1 (en) 2017-06-22

Family

ID=59056700

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/087033 WO2017104653A1 (en) 2015-12-18 2016-12-13 Transparent electroconductive sensor film manufacturing method and transparent electroconductive sensor film

Country Status (2)

Country Link
JP (1) JP2019022868A (en)
WO (1) WO2017104653A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110750171A (en) * 2019-09-27 2020-02-04 盈天实业(深圳)有限公司 Touch sensor, preparation method thereof and touch display screen

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102656671B1 (en) * 2021-12-31 2024-04-12 해성디에스 주식회사 Apparatus for manufacturing of multilayer circuit board and method for manufacturing of multilayer circuit board

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010231287A (en) * 2009-03-26 2010-10-14 Seiko Epson Corp Touch panel, method for manufacturing the same, method for manufacturing display device, and method for manufacturing electronic equipment
WO2013089049A1 (en) * 2011-12-14 2013-06-20 住友重機械工業株式会社 Method for manufacturing touch panel and device for manufacturing substrate
JP2015182072A (en) * 2014-03-26 2015-10-22 コニカミノルタ株式会社 Patterning method of functional film and functional film

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010231287A (en) * 2009-03-26 2010-10-14 Seiko Epson Corp Touch panel, method for manufacturing the same, method for manufacturing display device, and method for manufacturing electronic equipment
WO2013089049A1 (en) * 2011-12-14 2013-06-20 住友重機械工業株式会社 Method for manufacturing touch panel and device for manufacturing substrate
JP2015182072A (en) * 2014-03-26 2015-10-22 コニカミノルタ株式会社 Patterning method of functional film and functional film

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110750171A (en) * 2019-09-27 2020-02-04 盈天实业(深圳)有限公司 Touch sensor, preparation method thereof and touch display screen

Also Published As

Publication number Publication date
JP2019022868A (en) 2019-02-14

Similar Documents

Publication Publication Date Title
JP5093301B2 (en) Electromagnetic wave shielding material and manufacturing method thereof
JP5428498B2 (en) Electrode film for touch panel and touch panel
KR102122749B1 (en) Substrate film and sintering method
JP5516077B2 (en) Electrode film for touch panel and touch panel
EP2772836A1 (en) Touchscreen and method for manufacturing same
US9603257B2 (en) Pattern substrate, method of producing the same, information input apparatus, and display apparatus
CN104583814A (en) Antifouling body, display device, input device, and electronic device
US20150103269A1 (en) Transparent conductive substrate production method, transparent conductive substrate, and electrostatic capacitance touch panel
JP5974147B1 (en) Wiring assembly, structure with conductor layer, and touch sensor
KR20150003232A (en) Electrical contacts in layered structures
TW201447717A (en) Sheet for production of sensor-sheet and the production method thereof, and sensor-sheet for touch pad and the production method thereof
KR20160036571A (en) Bonding electronic components to patterned nanowire transparent conductors
US20170024040A1 (en) Touch panel and method for manufacturing the same
WO2017104653A1 (en) Transparent electroconductive sensor film manufacturing method and transparent electroconductive sensor film
JP5969089B1 (en) Manufacturing method of structure with conductor layer, wiring body with substrate, and structure with substrate
JP6146569B2 (en) Decorative film and molded product using the same
KR20140117408A (en) Transparent conductive element, manufacturing method therefor, input apparatus, electronic device, and thin-film patterning method
JP5646795B1 (en) Touch panel manufacturing method, touch panel, molded product manufacturing method, molded product, and laminated film
KR20160113216A (en) Electroconductive pattern, substrate with electroconductive pattern, method for manufacturing substrate with electroconductive pattern, structure having on-surface electroconductive pattern, and method for manufacturing said structure
JP5845765B2 (en) Transparent conductive laminate and method for producing the same
JP6587376B2 (en) Wiring substrate manufacturing method and inkjet coating apparatus used therefor
KR20140051312A (en) Conductive pattern, method for forming the same, printed wiring board, and manufacturing method of the same
JP5704200B2 (en) Electrode film for touch panel and touch panel
JP2018106395A (en) Transparent conductive laminate, touch panel, and display
JP2013042090A (en) Conductive pattern, method for forming the same, printed board and method for manufacturing the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16875630

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16875630

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP