WO2017104612A1 - Clouding- and stain-proof laminate, product, and method for manufacturing same - Google Patents

Clouding- and stain-proof laminate, product, and method for manufacturing same Download PDF

Info

Publication number
WO2017104612A1
WO2017104612A1 PCT/JP2016/086913 JP2016086913W WO2017104612A1 WO 2017104612 A1 WO2017104612 A1 WO 2017104612A1 JP 2016086913 W JP2016086913 W JP 2016086913W WO 2017104612 A1 WO2017104612 A1 WO 2017104612A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
fogging
antifogging
antifouling laminate
antifouling
Prior art date
Application number
PCT/JP2016/086913
Other languages
French (fr)
Japanese (ja)
Inventor
水野 幹久
祥吾 坂本
忍 原
Original Assignee
デクセリアルズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2016089429A external-priority patent/JP7161836B2/en
Application filed by デクセリアルズ株式会社 filed Critical デクセリアルズ株式会社
Publication of WO2017104612A1 publication Critical patent/WO2017104612A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • B29C45/14Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor incorporating preformed parts or layers, e.g. injection moulding around inserts or for coating articles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/06Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/18Layered products comprising a layer of synthetic resin characterised by the use of special additives
    • B32B27/20Layered products comprising a layer of synthetic resin characterised by the use of special additives using fillers, pigments, thixotroping agents

Definitions

  • the present invention has an antifogging and antifouling property, and further has an antireflection function, can be used in a wide range of applications such as automobiles and optical applications, and is easy to form and process.
  • the present invention relates to an article using an anti-fogging laminate and a method for producing the same.
  • a resin film, glass, or the like is attached to the surface.
  • the visibility and aesthetics of the article may deteriorate due to fogging and soiling of resin films, glass, etc. that decorate and protect the surface of the article. Therefore, in order to prevent the visibility and aesthetics of such articles from deteriorating, the resin film and glass are subjected to antifogging treatment and antifouling treatment.
  • Patent Document 1 a resin molded product provided with an antifogging organic hard coat layer has been proposed (see, for example, Patent Document 1). Further, for example, an antifogging coating film composed of an antifogging coating composition containing a random copolymer formed from a plurality of monomers and a polyfunctional blocked isocyanate compound has been proposed (for example, Patent Documents). 2). Further, for example, a molding hard coat film having antifouling properties has been proposed (see, for example, Patent Document 3). Moreover, for example, an optical article having antifogging properties and antifouling properties has been proposed (see, for example, Patent Document 4). For example, a hard coat sheet in which a coating layer having antifogging properties, antifouling properties, and hard coat properties is formed has been proposed (see, for example, Patent Document 5).
  • an antireflection function as an optical function may be required for a film attached to the surface of an article.
  • an antireflection film including a specific cured film as a low refractive index layer has been proposed (see, for example, Patent Document 6).
  • the present invention provides an antifogging and antifouling laminate having excellent antifogging and antifouling properties and excellent antireflection function, an article using the antifogging and antifouling laminate, and a method for producing the same.
  • the purpose is to provide.
  • Means for solving the problems are as follows. That is, ⁇ 1> A first layer and a second layer on at least one surface of the base material and the base material, The first layer contains a hydrophilic molecular structure; The second layer contains a low refractive index filler; The antifogging and antifouling laminate is characterized in that the contact angle of pure water on the surface of the second layer is 90 ° or more. ⁇ 2> The antifogging and antifouling laminate according to ⁇ 1>, wherein the first layer and the second layer have a third layer different from the first layer and the second layer. Is the body.
  • ⁇ 3> The anti-fogging and antifouling laminate according to any one of ⁇ 1> to ⁇ 2>, wherein the dynamic friction coefficient of the second layer is 0.4 or less.
  • ⁇ 4> The antifogging and antifouling laminate according to any one of ⁇ 1> to ⁇ 3>, wherein the luminous reflectance is 3.0% or less.
  • ⁇ 5> The antifogging and antifouling laminate according to any one of ⁇ 1> to ⁇ 4>, wherein the second layer contains a water repellent molecular structure.
  • ⁇ 6> The antifogging and antifouling laminate according to any one of ⁇ 1> to ⁇ 5>, wherein the second layer contains a hydrophilic molecular structure.
  • ⁇ 7> The antifogging and antifouling laminate according to any one of ⁇ 1> to ⁇ 6>, wherein the hydrophilic molecular structure contained in the first layer is a polyoxyalkylene chain.
  • ⁇ 8> An article having the antifogging and antifouling laminate according to any one of ⁇ 1> to ⁇ 7> on a surface thereof.
  • ⁇ 9> The method for producing an article according to ⁇ 8>, A heating step of heating the antifogging and antifouling laminate, An anti-fogging and antifouling laminate forming step for forming the heated antifogging and antifouling laminate into a desired shape; and And an injection molding step of molding the molding material by injecting a molding material onto the base material side of the anti-fogging and antifouling laminate molded into a desired shape.
  • the heating in the heating step is performed by infrared heating.
  • the conventional problems can be solved, the object can be achieved, the antifogging and antifouling laminate has excellent antifogging and antifouling properties, and is excellent in antireflection function.
  • An article using the anti-fogging and antifouling laminate and a method for producing the same can be provided.
  • FIG. 1 is a schematic sectional view of an example of the anti-fogging and antifouling laminate of the present invention.
  • FIG. 2 is a schematic cross-sectional view of another example of the anti-fogging and antifouling laminate of the present invention.
  • FIG. 3 is a schematic cross-sectional view of another example of the anti-fogging and antifouling laminate of the present invention.
  • FIG. 4A is a process diagram for explaining an example of producing the article of the present invention by in-mold molding.
  • FIG. 4B is a process diagram for explaining an example of manufacturing the article of the present invention by in-mold molding.
  • FIG. 4C is a process diagram for explaining an example of producing the article of the present invention by in-mold molding.
  • FIG. 4A is a process diagram for explaining an example of producing the article of the present invention by in-mold molding.
  • FIG. 4B is a process diagram for explaining an example of manufacturing the article of the present invention by in-mold molding.
  • FIG. 4D is a process diagram for explaining an example of manufacturing the article of the present invention by in-mold molding.
  • FIG. 4E is a process diagram for explaining an example of manufacturing the article of the present invention by in-mold molding.
  • FIG. 4F is a process diagram for explaining an example of manufacturing the article of the present invention by in-mold molding.
  • FIG. 5 is a schematic sectional drawing of an example of the articles
  • FIG. 6 is a schematic sectional drawing of an example of the articles
  • FIG. 7: is a schematic sectional drawing of an example of the articles
  • FIG. 8 is a schematic sectional drawing of an example of the articles
  • the anti-fogging and antifouling laminate of the present invention has at least a substrate, a first layer, and a second layer, and further includes other members as necessary.
  • the first layer of the first layer and the second layer is arranged at a position close to the base material.
  • Base material> There is no restriction
  • a triacetyl cellulose TAC
  • polyester TPE
  • PET polyethylene terephthalate
  • PEN polyethylene naphthalate
  • PA polyamide
  • PA polyamide
  • PA polyamide
  • PA polyamide
  • PE polyacrylate
  • PMMA acrylic resin
  • PC Polycarbonate
  • epoxy resin epoxy resin, urea resin, urethane resin, melamine resin, phenol resin, acrylonitrile-butadiene-styrene copolymer, cycloolefin polymer (COP), cycloolefin copolymer (CO ), PC / PMMA laminate, such as rubber additives PMMA and the like.
  • the resin substrate may be a triacetyl cellulose (TAC), polyester (TPEE), a polyethylene terephthalate (PET), a polyethylene naphthalate ( PEN), polyimide (PI), polyamide (PA), aramid, polyethylene (PE), polyacrylate, polyether sulfone, polysul
  • Examples of the material for the inorganic base material include metal oxides (eg, quartz, sapphire, glass, etc.), metals (eg, iron, chromium, nickel, molybdenum, niobium, copper, titanium, aluminum, zinc, silicon, magnesium). , Manganese, etc.), alloys (for example, combinations of the above metals), and the like.
  • the substrate has transparency.
  • the average thickness of the resin substrate is not particularly limited and may be appropriately selected depending on the intended purpose, but is preferably 5 ⁇ m to 1,000 ⁇ m, and preferably 50 ⁇ m to 500 ⁇ m. Is more preferable.
  • the average thickness of the inorganic substrate is not particularly limited and may be appropriately selected depending on the intended purpose, but is preferably 0.1 mm to 100 mm.
  • the numerical range defined using “to” in this specification is a range including a lower limit value and an upper limit value. That is, “5 ⁇ m to 1,000 ⁇ m” is synonymous with “5 ⁇ m to 1,000 ⁇ m”.
  • a character, pattern, image or the like may be printed on the surface of the substrate.
  • a binder layer may be provided.
  • various adhesives can be used in addition to various binders such as acrylic, urethane, polyester, polyamide, ethylene butyl alcohol, and ethylene vinyl acetate copolymer systems.
  • Two or more binder layers may be provided.
  • the binder to be used one having heat sensitivity and pressure sensitivity suitable for the molding material can be selected.
  • the surface of the resin base material on the side opposite to the first layer and the second layer side May have a wrinkle pattern.
  • the wrinkle pattern can be formed by wrinkle processing, for example.
  • blocking means that it is difficult to separate each sheet when a plurality of sheets are stacked.
  • the first layer contains a hydrophilic molecular structure.
  • the first layer is preferably a resin layer in terms of easy production. There is no restriction
  • the hydrophilic molecular structure is not particularly limited as long as it is a hydrophilic molecular structure, and can be appropriately selected according to the purpose. Examples thereof include a hydrophilic organic molecular structure. Specifically, , Polyoxyalkyl chain, polyoxyalkylene chain and the like.
  • the hydrophilic molecular structure can be introduced into the first layer, for example, by using a hydrophilic monomer described later when the first layer is produced.
  • the active energy ray-curable resin composition contains at least a hydrophilic monomer having a radical polymerizable unsaturated group (hereinafter sometimes referred to as “hydrophilic monomer”) and a photopolymerization initiator, and is further necessary. Depending on the content, other components are contained.
  • hydrophilic monomer-- examples include (meth) acrylate having a polyoxyalkylene chain, quaternary ammonium salt-containing (meth) acrylate, tertiary amino group-containing (meth) acrylate, and sulfonic acid. Examples thereof include a group-containing monomer, a carboxylic acid group-containing monomer, a phosphoric acid group-containing monomer, and a phosphonic acid group-containing monomer. These may be monofunctional monomers or polyfunctional monomers. Examples of the polyoxyalkylene chain include a polyoxyethylene chain and a polyoxypropylene chain.
  • (meth) acrylate means acrylate or methacrylate. The same applies to (meth) acryloyl and (meth) acryl.
  • hydrophilic monomer examples include mono- or polyacrylates obtained by a reaction between a polyhydric alcohol (polyol or polyhydroxy-containing compound) and a compound selected from the group consisting of acrylic acid, methacrylic acid, and derivatives thereof, Alternatively, mono or polymethacrylate can be used.
  • polyhydric alcohol examples include divalent alcohol, trivalent alcohol, and tetravalent or higher alcohol.
  • divalent alcohol examples include ethylene glycol, diethylene glycol, triethylene glycol, tetraethylene glycol, polyethylene glycol having a number average molecular weight of 300 to 1,000, propylene glycol, dipropylene glycol, 1,3-propanediol, 1,4-butanediol, 1,5-pentanediol, 1,6-hexanediol, neopentyl glycol, 2-ethyl-1,3-hexanediol, 2,2′-thiodiethanol, 1,4-cyclohexanedi For example, methanol.
  • trivalent alcohol examples include trimethylolethane, trimethylolpropane, pentaglycerol, glycerol, 1,2,4-butanetriol, 1,2,6-hexanetriol, and the like.
  • tetravalent or higher alcohol examples include pentaerythritol, diglycerol, and dipentaerythritol.
  • Examples of the (meth) acrylate having a polyoxyalkylene chain include polyethylene glycol (meth) acrylate, polypropylene glycol (meth) acrylate, ethoxylated glycerin (meth) acrylate, and ethoxylated pentaerythritol tetra (meth) acrylate. It is done.
  • Examples of the polyethylene glycol (meth) acrylate include methoxypolyethylene glycol (meth) acrylate.
  • a commercial item can be used as said methoxypolyethyleneglycol (meth) acrylate.
  • the commercially available product include MEPM-1000 (manufactured by Daiichi Kogyo Seiyaku Co., Ltd.).
  • MEPM-1000 manufactured by Daiichi Kogyo Seiyaku Co., Ltd.
  • ethoxylated glycerin (meth) acrylate and ethoxylated pentaerythritol tetra (meth) acrylate are preferable from the viewpoint that both the appropriate hardness and hydrophilicity of the first layer can be achieved.
  • Examples of the quaternary ammonium salt-containing (meth) acrylate include (meth) acryloyloxyethyltrimethylammonium chloride, (meth) acryloyloxyethyldimethylbenzylammonium chloride, (meth) acryloyloxyethyldimethylglycidylammonium chloride, (meth) Acryloyloxyethyltrimethylammonium methyl sulfate, (meth) acryloyloxydimethylethylammonium ethyl sulfate, (meth) acryloyloxyethyltrimethylammonium-p-toluenesulfonate, (meth) acrylamidopropyltrimethylammonium chloride, (meth) acrylamidopropyldimethyl Benzyl ammonium chloride, (meth) acrylamide Pills dimethyl glycidyl chloride, (
  • Examples of the tertiary amino group-containing (meth) acrylate include N, N-dimethylaminoethyl (meth) acrylate, N, N-dimethylaminopropyl (meth) acrylamide, diethylaminopropyl (meth) acrylamide, 1,2, Examples include 2,6,6-pentamethylpiperidyl (meth) acrylate and 2,2,6,6-tetramethylpiperidyl (meth) acrylate.
  • Examples of the sulfonic acid group-containing monomer include vinyl sulfonic acid, allyl sulfonic acid, vinyl toluene sulfonic acid, styrene sulfonic acid, and sulfonic acid group-containing (meth) acrylate.
  • Examples of the sulfonic acid group-containing (meth) acrylate include, for example, sulfoethyl (meth) acrylate, sulfopropyl (meth) acrylate, 2-acrylamido-2-methylpropanesulfonic acid, and terminal sulfonic acid-modified polyethylene glycol mono (meth) Examples include chlorate. These may form a salt. Examples of the salt include sodium salt, potassium salt, ammonium salt and the like.
  • Examples of the carboxylic acid group-containing monomer include acrylic acid and methacrylic acid.
  • Examples of the phosphate group-containing monomer include (meth) acrylate having a phosphate ester.
  • the hydrophilic monomer is preferably a polyfunctional hydrophilic monomer.
  • the molecular weight of the hydrophilic monomer is not particularly limited and may be appropriately selected depending on the intended purpose, but is preferably 200 or more.
  • the hydrophilic monomer may be a commercially available product.
  • examples of the commercially available product include SR9035 (manufactured by Sartomer, ethoxylated trimethylolpropane trimethacrylate).
  • photopolymerization initiator examples include a photoradical polymerization initiator, a photoacid generator, a bisazide compound, hexamethoxymethylmelamine, and tetramethoxyglycolyl.
  • the radical photopolymerization initiator is not particularly limited and may be appropriately selected depending on the intended purpose. Examples thereof include ethoxyphenyl (2,4,6-trimethylbenzoyl) phosphine oxide, bis (2,6-dimethylbenzoyl).
  • the content of the photopolymerization initiator in the active energy ray-curable resin composition is not particularly limited and may be appropriately selected depending on the intended purpose, but is preferably 0.1% by mass to 10% by mass, 0.5% by mass to 8% by mass is more preferable, and 1% by mass to 5% by mass is particularly preferable.
  • the said active energy ray curable resin composition contains a volatile matter (for example, organic solvent)
  • the said content is content with respect to the non volatile matter of the said active energy ray curable resin composition.
  • urethane (meth) acrylate isocyanuric acid group containing (meth) acrylate, a filler, etc. are mentioned. These may be used to adjust the elongation rate, hardness, etc. of the first layer.
  • the urethane (meth) acrylate is not particularly limited and may be appropriately selected depending on the intended purpose. Examples thereof include aliphatic urethane (meth) acrylate and aromatic urethane (meth) acrylate. Among these, aliphatic urethane (meth) acrylate is preferable.
  • the content of the urethane (meth) acrylate in the active energy ray-curable resin composition is not particularly limited and may be appropriately selected depending on the intended purpose, but is preferably 10% by mass to 45% by mass, More preferred is 40% by weight, and especially preferred is 20% to 35% by weight.
  • the said active energy ray curable resin composition contains a volatile matter (for example, organic solvent)
  • the said content is content with respect to the non volatile matter of the said active energy ray curable resin composition.
  • the active energy ray-curable resin composition may further contain a leveling agent for improving smoothness.
  • the content of the leveling agent in the active energy ray-curable resin composition is not particularly limited and may be appropriately selected depending on the intended purpose, but is preferably 0.0001% by mass to 5% by mass.
  • the said active energy ray curable resin composition contains a volatile matter (for example, organic solvent)
  • the said content is content with respect to the non volatile matter of the said active energy ray curable resin composition.
  • the active energy ray-curable resin composition can be diluted with an organic solvent when used.
  • organic solvent include aromatic solvents, alcohol solvents, ester solvents, ketone solvents, glycol ether solvents, glycol ether ester solvents, chlorine solvents, ether solvents, N-methylpyrrolidone, dimethyl
  • organic solvent include aromatic solvents, alcohol solvents, ester solvents, ketone solvents, glycol ether solvents, glycol ether ester solvents, chlorine solvents, ether solvents, N-methylpyrrolidone, dimethyl
  • formamide dimethyl sulfoxide, dimethylacetamide, and the like.
  • the active energy ray-curable resin composition is cured when irradiated with active energy rays.
  • active energy ray There is no restriction
  • the average thickness of the first layer is not particularly limited and may be appropriately selected depending on the intended purpose, but is preferably 2 ⁇ m to 100 ⁇ m, more preferably 4 ⁇ m to 50 ⁇ m, and particularly preferably 10 ⁇ m to 30 ⁇ m.
  • the average thickness is within a preferable range, it is advantageous in that the antifogging property is excellent, the interference unevenness is reduced, and the productivity is excellent.
  • interference unevenness can be further reduced.
  • the pure water contact angle on the surface of the second layer is 90 ° or more.
  • the second layer contains at least a low refractive index filler, and further contains other components as necessary.
  • the second layer is, for example, a cured product of an active energy ray curable resin composition.
  • the second layer preferably contains a water repellent molecular structure.
  • the water-repellent molecular structure contributes to increasing the pure water contact angle and also contributes to improving the antireflection function.
  • the second layer preferably contains a hydrophilic molecular structure. When the second layer has the hydrophilic molecular structure, the antifogging property is improved.
  • the water-repellent molecular structure is not particularly limited as long as it is a water-repellent molecular structure, and can be appropriately selected according to the purpose. Examples thereof include a water-repellent organic molecular structure. , Fluoroalkyl group, fluoroalkyl ether group, dimethylsiloxane group and the like.
  • the water-repellent molecular structure uses, for example, a water-repellent monomer having a radical polymerizable unsaturated group described later (hereinafter sometimes referred to as “water-repellent monomer”) when the second layer is formed. Can be introduced into the second layer.
  • the hydrophilic molecular structure is not particularly limited as long as it is a hydrophilic molecular structure, and can be appropriately selected according to the purpose. Examples thereof include a hydrophilic organic molecular structure. Specifically, , Polyoxyalkyl chain, polyoxyalkylene chain and the like.
  • the hydrophilic molecular structure can be introduced into the second layer by using the hydrophilic monomer when the second layer is produced, for example.
  • the surface of the second layer is preferably smooth.
  • that the surface is smooth means that there are no intentionally formed convex portions or concave portions on the surface.
  • fine convex portions or concave portions by physical processing are not formed on the surface. It is preferable. Since the second layer does not have fine convex portions or concave portions on the surface, aqueous stains and / or oily stains such as magic ink, fingerprints, sweat, cosmetics (foundation, UV protector, etc.) are difficult to adhere. Moreover, even if those stains are adhered, it can be easily removed with a tissue or the like, and an article having excellent anti-fogging properties can be obtained.
  • the pure water contact angle on the surface of the second layer is 90 ° or more, preferably 100 ° or more, more preferably 110 ° or more, and particularly preferably 115 ° or more.
  • the pure water contact angle can be measured, for example, using a contact angle meter PCA-1 (manufactured by Kyowa Interface Chemical Co., Ltd.) under the following conditions.
  • -Put distilled water in a plastic syringe attach a stainless steel needle to the tip, and drop it onto the evaluation surface.
  • ⁇ Drip amount of water 2 ⁇ L
  • Measurement temperature 25 °C
  • the contact angle after 5 seconds from dropping water is measured at any 10 locations on the surface of the second layer, and the average value is defined as the pure water contact angle.
  • the hexadecane contact angle on the surface of the second layer is preferably 30 ° or more, more preferably 60 ° or more, still more preferably 70 ° or more, and particularly preferably 80 ° or more.
  • the hexadecane contact angle is within the preferred range, even when fingerprints, sebum, sweat, tears, cosmetics, etc. adhere to the surface, it can be easily wiped away, and excellent antifogging properties can be maintained. It is advantageous.
  • the hexadecane contact angle can be measured, for example, using a contact angle meter PCA-1 (manufactured by Kyowa Interface Chemical Co., Ltd.) under the following conditions.
  • -Put hexadecane in a plastic syringe attach a Teflon-coated stainless steel needle to the tip, and drop it onto the evaluation surface.
  • ⁇ Drop amount of hexadecane 1 ⁇ L
  • Measurement temperature 25 °C
  • the contact angle after 20 seconds from the dropping of hexadecane is measured at any 10 locations on the surface of the second layer, and the average value is defined as the hexadecane contact angle.
  • the pure water contact angle is within the above range and the hexadecane contact angle is within the above range, water-based stains such as magic ink, fingerprints, sweat, cosmetics (foundation, UV protector, etc.) and / or oily stains are adhered. Even in those cases, the dirt is prevented from penetrating the first layer. Therefore, the dirt can be easily wiped off by wiping with a tissue or the like, and the antifogging property returns to the state before the dirt is adhered.
  • water-based stains such as magic ink, fingerprints, sweat, cosmetics (foundation, UV protector, etc.) and / or oily stains are adhered. Even in those cases, the dirt is prevented from penetrating the first layer. Therefore, the dirt can be easily wiped off by wiping with a tissue or the like, and the antifogging property returns to the state before the dirt is adhered.
  • the dynamic friction coefficient of the second layer is preferably 0.4 or less. By doing so, the physical pressure by wiping can be kept low, and scratch resistance is improved. In addition, the ability to wipe off dirt with a tissue or the like is improved.
  • the dynamic friction coefficient can be measured, for example, by the following method. Measurement is performed using Triboster TS501 (trade name; manufactured by Kyowa Interface Science Co., Ltd.). BEMCOT (registered trademark) M-3II (trade name, manufactured by Asahi Kasei Co., Ltd.) is attached to the surface contactor with a double-sided tape, measuring load 50 g / cm 2 , measuring speed 1.7 mm / s, measuring distance 20 mm, 12 times. Measure and obtain the average value. This is repeated at five arbitrary locations, and the average value of the five values obtained is taken as the dynamic friction coefficient.
  • the low refractive index filler is not particularly limited as long as it is a low refractive index filler, and can be appropriately selected according to the purpose.
  • “low refractive index” means a refractive index lower than the refractive index of 1.50 to 1.70 of a general plastic.
  • Examples of the refractive index of the low refractive index filler include 1.10 to 1.40.
  • Examples of the material for the low refractive index filler include magnesium fluoride, lithium fluoride, calcium fluoride, aluminum fluoride, and silica.
  • Examples of the structure of the low refractive index filler include solid particles, hollow particles, and porous particles. Among these, as the low refractive index filler, hollow silica and porous silica are preferable.
  • the average particle size of the low refractive index filler is not particularly limited and may be appropriately selected depending on the intended purpose, but is preferably 10 nm to 200 nm, and more preferably 10 nm to 100 nm.
  • the surface of the low refractive index filler is preferably surface-treated with an organic dispersant having a (meth) acryl group, a vinyl group, or an epoxy group at the terminal.
  • the organic dispersant is copolymerized with surrounding monomers in the curing step of the active energy ray-curable resin composition containing the low refractive index filler, and the resulting cured product contains the low refractive index filler and is entirely contained. Since they are integrated, the coating strength and flexibility are improved.
  • the content of the low refractive index filler in the second layer is not particularly limited and may be appropriately selected depending on the intended purpose, but is preferably 5% by mass to 80% by mass. When the content is less than 5% by mass, a sufficient antireflection function may not be obtained, and when it exceeds 80% by mass, scratch resistance and workability may be deteriorated.
  • the active energy ray curable resin composition comprises the low refractive index filler, a water repellent monomer, and a polymerization initiator. Containing, preferably containing a hydrophilic monomer, and further containing other components as required.
  • hydrophilic monomer examples include the hydrophilic monomer in the description of the first layer.
  • the preferred embodiment is also the same.
  • polymerization initiator the said polymerization initiator in description of the said 1st layer is mentioned, for example.
  • the preferred embodiment is also the same.
  • the other components include the other components in the description of the first layer. The preferred embodiment is also the same.
  • Water repellent monomer- Examples of the water repellent monomer having a radical polymerizable unsaturated group include a monomer having a radical polymerizable unsaturated group and at least one of fluorine and silicon.
  • Examples of such water-repellent monomers include (meth) acrylates having at least one of fluorine and silicon, and further examples include fluorinated (meth) acrylates, silicone (meth) acrylates, and the like. More specifically, (meth) acrylate having a fluoroalkyl group, (meth) acrylate having a fluoroalkyl ether group, (meth) acrylate having a dimethylsiloxane group, and the like can be given.
  • Examples of the water repellent monomer further include water repellent monomers classified into the following (1) to (5).
  • Fluoroolefins such as tetrafluoroethylene, hexafluoropropylene, 3,3,3-trifluoropropylene, chlorotrifluoroethylene;
  • alkyl perfluoro vinyl ethers or alkoxyalkyl perfluoro vinyl ethers such as perfluoro (methyl vinyl ether), perfluoro (ethyl vinyl ether), perfluoro (propyl vinyl ether), perfluoro (butyl vinyl ether), perfluoro (isobutyl vinyl ether);
  • Perfluoro (alkoxyalkyl vinyl ether) such as perfluoro (propoxypropyl vinyl ether);
  • Fluorine-containing (meth) acrylates such as trifluoroethyl (meth) acrylate, tetrafluoropropyl (
  • the water repellent monomer may be a commercially available product.
  • commercially available products of the fluorinated (meth) acrylate include KY-1200 series manufactured by Shin-Etsu Chemical Co., Ltd., MegaFac RS series manufactured by DIC Corporation, and OPTOOL DAC manufactured by Daikin Industries, Ltd.
  • Examples of commercially available silicone (meth) acrylates include X-22-164 series manufactured by Shin-Etsu Chemical Co., Ltd., and TEGO Rad series manufactured by Evonik.
  • 0.018 mass% is preferable, 0.018 mass % To less than 5.0% by mass, more preferably 0.075% by mass to 3.0% by mass, and particularly preferably 0.18% by mass to 1.5% by mass.
  • the content is 5.0% by mass or more, although the water repellency of the cured product is excellent, the glass transition temperature becomes low, so that it becomes too soft and wear resistance may be lowered.
  • the breath antifogging property may be lowered.
  • the said active energy ray curable resin composition contains a volatile matter (for example, organic solvent)
  • the said content is content with respect to the non volatile matter of the said active energy ray curable resin composition.
  • the average thickness of the second layer is not particularly limited and may be appropriately selected depending on the intended purpose. However, it is 10 nm to 200 nm from the viewpoint that the luminous reflectance can be reduced and the antireflection function can be enhanced. 10 nm to 100 nm is more preferable.
  • the third layer is not particularly limited as long as it is disposed between the first layer and the second layer and is different from the first layer and the second layer. It can be selected as appropriate according to the conditions. By providing the third layer, scratch resistance is improved.
  • examples of the layer different from the first layer and the second layer include a layer thinner than the first layer and thicker than the second layer.
  • the pure water contact angle on the surface of the third layer is preferably 65 ° or less.
  • the third layer is preferably a resin layer in terms of easy manufacture.
  • the third layer preferably contains a hydrophilic molecular structure.
  • the hydrophilic molecular structure in the third layer preferably has a molecular weight of 1000 or less.
  • the adhesion between the first layer and the third layer is improved.
  • limiting in particular as said 3rd layer Although it can select suitably according to the objective, It is preferable to contain the hardened
  • the active energy ray-curable resin composition contains, for example, at least a hydrophilic monomer having a radical polymerizable unsaturated group (hereinafter sometimes referred to as “hydrophilic monomer”) and a photopolymerization initiator, Furthermore, other components are contained as necessary.
  • hydrophilic monomer examples include the hydrophilic monomer in the description of the first layer.
  • the preferred embodiment is also the same.
  • polymerization initiator the said polymerization initiator in description of the said 1st layer is mentioned, for example.
  • the preferred embodiment is also the same.
  • the other components include the other components in the description of the first layer. The preferred embodiment is also the same.
  • the average thickness of the third layer is not particularly limited and may be appropriately selected depending on the intended purpose, but is preferably 0.5 ⁇ m to 5 ⁇ m, more preferably 0.5 ⁇ m to 3 ⁇ m, and more preferably 0.5 ⁇ m to 2 ⁇ m. Is particularly preferred.
  • the fourth layer is not particularly limited as long as it is a layer that is disposed between the first layer and the second layer and contains a high refractive index filler, and is appropriately selected according to the purpose. be able to. It is preferable that the anti-fogging and antifouling laminate has the fourth layer in that the luminous reflectance can be reduced and the antireflection function can be enhanced.
  • the high refractive index filler is not particularly limited as long as it is a filler having a higher refractive index than the low refractive index filler, and can be appropriately selected according to the purpose.
  • the refractive index of the high refractive index filler is preferably 1.60 or more, and preferably 1.70 to 2.50.
  • the material of the high refractive index filler is not particularly limited and may be appropriately selected depending on the intended purpose. However, titania, zirconia, tin oxide, indium tin oxide, antimony-doped tin oxide, antimony pentoxide, alumina, oxide Examples include zinc.
  • the high refractive index filler is preferably solid particles.
  • the average particle size of the high refractive index filler is not particularly limited and may be appropriately selected depending on the intended purpose, but is preferably 10 nm to 200 nm, and more preferably 10 nm to 100 nm.
  • the surface of the high refractive index filler is preferably surface-treated with an organic dispersant having a (meth) acryl group, a vinyl group, or an epoxy group at the terminal.
  • the organic dispersant is copolymerized with surrounding monomers in the curing step of the active energy ray-curable resin composition containing the high refractive index filler, and the resulting cured product contains the high refractive index filler and the whole Since they are integrated, the coating strength and flexibility are improved.
  • the content of the high refractive index filler in the fourth layer is not particularly limited and may be appropriately selected depending on the intended purpose, but is preferably 5% by mass to 80% by mass. When the content is less than 5% by mass, a sufficient antireflection function may not be obtained, and when it exceeds 80% by mass, scratch resistance and workability may be deteriorated.
  • the fourth layer preferably contains a hydrophilic molecular structure in terms of improving antifogging properties.
  • the hydrophilic molecular structure is not particularly limited as long as it is a hydrophilic molecular structure, and can be appropriately selected according to the purpose. Examples thereof include a hydrophilic organic molecular structure. Specifically, , Polyoxyalkyl chain, polyoxyalkylene chain and the like.
  • the hydrophilic molecular structure can be introduced into the fourth layer, for example, by using the hydrophilic monomer described above when the fourth layer is produced.
  • the said 4th layer contains the said high refractive index filler and a polymerization initiator at least, Preferably, it is hydrophilic Formed by applying an active energy ray-curable resin composition containing a monomer and further containing other components as necessary onto the first layer, and then irradiating and curing the active energy ray. The method of doing is mentioned.
  • hydrophilic monomer examples include the hydrophilic monomer in the description of the first layer.
  • the preferred embodiment is also the same.
  • polymerization initiator the said polymerization initiator in description of the said 1st layer is mentioned, for example.
  • the preferred embodiment is also the same.
  • the other components include the other components in the description of the first layer. The preferred embodiment is also the same.
  • the average thickness of the fourth layer is not particularly limited and may be appropriately selected depending on the intended purpose, but is 10 nm to 200 nm from the viewpoint that the luminous reflectance can be reduced and the antireflection function can be enhanced. 10 nm to 100 nm is more preferable.
  • the anchor layer is a layer disposed between the base material and the first layer. By disposing the anchor layer, the adhesion between the base material and the first layer can be improved.
  • the anchor layer preferably has a refractive index close to that of the first layer. Therefore, the refractive index of the anchor layer is preferably within ⁇ 0.10 of the refractive index of the first layer, and more preferably within ⁇ 0.05. Alternatively, the refractive index of the anchor layer is preferably between the refractive index of the first layer and the refractive index of the substrate.
  • the anchor layer can be formed, for example, by applying an active energy ray-curable resin composition. That is, the anchor layer is, for example, a cured product obtained by curing an active energy ray-curable resin composition with active energy rays.
  • the active energy ray-curable resin composition for example, an active energy ray-curable resin composition containing at least urethane (meth) acrylate and a photopolymerization initiator, and further containing other components as necessary.
  • the urethane (meth) acrylate and the photopolymerization initiator include the urethane (meth) acrylate and the photopolymerization initiator exemplified in the description of the first layer.
  • coating method there is no restriction
  • coating method For example, wire bar coating, blade coating, spin coating, reverse roll coating, die coating, spray coating, roll coating, gravure coating , Micro gravure coating, lip coating, air knife coating, curtain coating, comma coating method, dipping method and the like.
  • examples of the material of the anchor layer include a silane coupling agent, a titanate coupling agent, and an aluminate coupling agent. These preferably have a radically polymerizable unsaturated group.
  • a method for forming the anchor layer when the substrate is an inorganic substrate for example, a solution in which the material is dissolved is applied onto the inorganic substrate, the solvent is dried, and then heat treatment is performed for a predetermined time. The method etc. are mentioned.
  • a solvent used for the solution a solvent that dissolves the material is selected.
  • water for example, water, alcohol (eg, methanol, ethanol, n-propanol, i-propanol, n-butanol, i-butanol, sec-butanol, tert-butanol, etc.), anone (eg, cyclohexanone, cyclopentanone), amide
  • At least one selected from for example, N, N-dimethylformamide: DMF), sulfide (for example, dimethylsulfoxide: DMSO) and the like is used.
  • the coating method is not particularly limited, and a known coating method can be used.
  • Known coating methods include, for example, micro gravure coating method, wire bar coating method, direct gravure coating method, die coating method, dip method, spray coating method, reverse roll coating method, curtain coating method, comma coating method, knife coating method. , Spin coating, letterpress printing, offset printing, gravure printing, intaglio printing, rubber printing, screen printing, ink jet printing, and the like.
  • heating temperature it is 80 to 200 degreeC, for example.
  • the heating time is, for example, from 1 minute to 12 hours.
  • the average thickness of the anchor layer is not particularly limited and may be appropriately selected depending on the intended purpose, but is preferably 0.01 ⁇ m to 10 ⁇ m, more preferably 0.1 ⁇ m to 5 ⁇ m, and particularly preferably 0.3 ⁇ m to 3 ⁇ m. preferable.
  • the anchor layer may be provided with a function of reducing reflectivity or preventing charging.
  • the protective layer is a layer that protects the surface of the second layer (the surface having a pure water contact angle of 90 ° or more).
  • the said protective layer protects the said surface, when manufacturing the article
  • the protective layer is disposed on the surface of the second layer.
  • Examples of the material of the protective layer include the same material as that of the anchor layer.
  • the elongation percentage of the antifogging and antifouling laminate is not particularly limited and may be appropriately selected depending on the intended purpose, but is preferably 10% or more, more preferably 10% to 200%, and more preferably 40% to 150%. Is particularly preferred. If the elongation is less than 10%, molding may be difficult. When the elongation percentage is within the particularly preferable range, it is advantageous in that the moldability is excellent.
  • the said elongation rate can be calculated
  • the anti-fogging and antifouling laminate is formed into a strip having a length of 10.5 cm and a width of 2.5 cm to be used as a measurement sample.
  • the measurement temperature varies depending on the type of the resin base material, and the elongation percentage is measured at a temperature near or above the softening point of the resin base material. Specifically, it is between 10 ° C and 250 ° C.
  • the resin substrate is a polycarbonate or PC / PMMA laminate, it is preferable to measure at 150 ° C.
  • the antifogging and antifouling laminate preferably has a smaller difference in heat shrinkage between the X direction and the Y direction in the plane of the antifogging and antifouling laminate.
  • the X direction and the Y direction of the anti-fogging and antifouling laminate correspond to, for example, the longitudinal direction and the width direction of the roll when the antifogging and antifouling laminate is a roll.
  • the difference between the heat shrinkage rate in the X direction and the heat shrinkage rate in the Y direction in the anti-fogging and antifouling laminate is preferably within 5% at the heating temperature used in the heating step during molding. Outside this range, during the molding process, the first layer and the second layer may be peeled or cracked, or the characters, patterns, images, etc. printed on the surface of the resin substrate May be deformed or misaligned, making molding difficult.
  • the luminous reflectance of the antifogging and antifouling laminate is preferably 3.0% or less. If the luminous reflectance exceeds 3.0%, a sufficient antireflection function may not be obtained.
  • the luminous reflectance can be measured by the following method, for example. Black vinyl tape (VT-50 manufactured by Nichiban Co., Ltd.) is pasted on the opposite side of the second layer of the anti-fogging and antifouling laminate, and a 5 ° specular reflectance spectrum is measured from the second layer side. Measured using an absolute reflectance measurement unit with a company-made V-560 to calculate luminous reflectance. This is performed at three arbitrary locations, and the average value is obtained.
  • the anti-fogging and antifouling laminate is particularly suitable for a thermal bending film, an in-mold molding film, an insert molding film, and an overlay molding film.
  • the method for producing the anti-fogging and antifouling laminate is not particularly limited and may be appropriately selected depending on the intended purpose, but the method for producing the antifogging and antifouling laminate described below is preferred.
  • FIG. 1 is a schematic sectional view of an example of the anti-fogging and antifouling laminate of the present invention.
  • the anti-fogging and antifouling laminate of FIG. 1 has a resin substrate 11, a first layer 1 and a second layer 2 that are sequentially laminated on the resin substrate 11.
  • the second layer 2 contains a low refractive index filler 2A. Further, in the second layer 2, low surface energy components are localized on the surface.
  • FIG. 2 is a schematic cross-sectional view of another example of the anti-fogging and antifouling laminate of the present invention.
  • the anti-fogging and antifouling laminate of FIG. 2 includes a resin base material 11, a first layer 1, a third layer 3, and a second layer 2 sequentially laminated on the resin base material 11. Have.
  • the second layer 2 contains a low refractive index filler 2A. Further, in the second layer 2, low surface energy components are localized on the surface.
  • the third layer 3 improves the scratch resistance of the antifogging and antifouling laminate of the present invention.
  • FIG. 3 is a schematic cross-sectional view of another example of the anti-fogging and antifouling laminate of the present invention.
  • the anti-fogging and antifouling laminate of FIG. 3 includes a resin base 11, a first layer 1, a fourth layer 4, and a second layer 2 that are sequentially laminated on the resin base 11. Have.
  • the second layer 2 contains a low refractive index filler 2A. Further, in the second layer 2, low surface energy components are localized on the surface.
  • the fourth layer 4 contains a high refractive index filler 4A.
  • the method for producing the anti-fogging and antifouling laminate includes at least a first uncured layer forming step, a first layer forming step, a second uncured layer forming step, and a second layer forming step. In addition, other steps are included as necessary.
  • the method for producing the anti-fogging and antifouling laminate is a method for producing the antifogging and antifouling laminate of the present invention.
  • the first uncured layer forming step is not particularly limited as long as it is a step of forming the first uncured layer by applying the first active energy ray-curable resin composition on the substrate. It can be appropriately selected according to the purpose.
  • the first uncured layer is formed by applying the first active energy ray-curable resin composition on the substrate and drying it as necessary.
  • the first uncured layer may be a solid film, or a film having fluidity due to a low molecular weight curable component contained in the first active energy ray-curable resin composition. May be.
  • coating method there is no restriction
  • coating method For example, wire bar coating, blade coating, spin coating, reverse roll coating, die coating, spray coating, roll coating, gravure coating , Micro gravure coating, lip coating, air knife coating, curtain coating, comma coating method, dipping method and the like.
  • the first uncured layer is not cured because it is not irradiated with active energy rays.
  • the first active energy ray-curable resin composition is applied onto the anchor layer of the base material on which the anchor layer is formed, and the first uncured layer is formed. May be formed.
  • the anchor layer There is no restriction
  • the first layer forming step is not particularly limited as long as it is a step of forming the first layer by irradiating the first uncured layer with active energy rays to cure the first uncured layer. And can be appropriately selected according to the purpose.
  • the first active energy curable resin composition has the hydrophilic monomer
  • a hydrophilic component water-absorbing component
  • water vapor is easily trapped in the first layer.
  • better antifogging properties can be obtained.
  • the active energy ray is not particularly limited as long as it is an active energy ray that cures the first uncured layer, and can be appropriately selected according to the purpose.
  • the antifogging and antifouling of the present invention examples thereof include the active energy rays exemplified in the description of the laminate.
  • the second uncured layer forming step is not particularly limited as long as it is a step of forming a second uncured layer by applying the second active energy ray-curable resin composition on the first layer. It can be appropriately selected depending on the purpose.
  • said 2nd active energy ray curable resin composition there is no restriction
  • the said 2nd layer of the said anti-fog antifouling laminated body of this invention examples thereof include the active energy ray-curable resin composition exemplified in the description.
  • the second uncured layer is formed by applying the second active energy ray-curable resin composition on the first layer and drying as necessary.
  • the second uncured layer may be a solid film or a film having fluidity by a low molecular weight curable component contained in the second active energy ray curable resin composition. May be.
  • coating method there is no restriction
  • coating method For example, wire bar coating, blade coating, spin coating, reverse roll coating, die coating, spray coating, roll coating, gravure coating , Micro gravure coating, lip coating, air knife coating, curtain coating, comma coating method, dipping method and the like.
  • the second uncured layer is not cured because it is not irradiated with active energy rays.
  • the second layer forming step is not particularly limited as long as it is a step of forming the second layer by irradiating the second uncured layer with active energy rays to cure the second uncured layer. And can be appropriately selected according to the purpose.
  • physical processing for forming fine convex portions or concave portions on the surface is usually not performed.
  • the second active energy curable resin composition has the water-repellent monomer and the hydrophilic monomer
  • the low surface energy component is localized on the surface in the second layer obtained.
  • a hydrophilic component water-absorbing component
  • water droplets are water repellent on the surface of the second layer, and water vapor is easily trapped in the second layer.
  • an antireflection function derived from the low refractive index filler is obtained. It is done.
  • the article of the present invention has the anti-fogging and antifouling laminate of the present invention on the surface, and further includes other members as necessary.
  • the article is not particularly limited and can be appropriately selected according to the purpose. Examples thereof include glass windows, refrigerated / frozen showcases, window materials such as automobile windows, bathroom mirrors, automobile side mirrors, and the like. Mirrors, bathroom floors and walls, solar panels, security surveillance cameras, etc.
  • the article may be glasses, goggles, a helmet, a lens, a microlens array, an automobile headlight cover, a front panel, a side panel, a rear panel, and the like. These are preferably formed by in-mold molding, insert molding, or overlay molding.
  • the antifogging and antifouling laminate may be formed on a part of the surface of the article, or may be formed on the entire surface.
  • the method for manufacturing the article is not particularly limited and may be appropriately selected depending on the intended purpose. However, the method for manufacturing the article of the present invention described later is preferable.
  • the method for producing an article of the present invention includes at least a heating step and an anti-fogging and antifouling laminate molding step, and further includes other steps such as an injection molding step and a cast molding step as necessary.
  • the manufacturing method of the article is the manufacturing method of the article of the present invention.
  • the heating step is not particularly limited as long as it is a step for heating the anti-fogging and antifouling laminate, and can be appropriately selected according to the purpose.
  • the antifogging and antifouling laminate is the antifogging and antifouling laminate of the present invention.
  • heating there is no restriction
  • the anti-fogging and antifouling laminate forming step is not particularly limited as long as it is a step for forming the heated antifogging and antifouling laminate into a desired shape, and can be appropriately selected according to the purpose.
  • mold into a desired shape with an air pressure etc. are mentioned.
  • an injection molding step may be performed as necessary.
  • the injection molding process is not particularly limited as long as it is a process for injecting a molding material onto the base side of the anti-fogging and antifouling laminate molded into a desired shape and molding the molding material. It can be appropriately selected depending on the case.
  • Examples of the molding material include resin.
  • Examples of the resin include olefin resins, styrene resins, ABS resins (acrylonitrile-butadiene-styrene copolymers), AS resins (acrylonitrile-styrene copolymers), acrylic resins, urethane resins, unsaturated polyesters.
  • Resin epoxy resin, polyphenylene oxide / polystyrene resin, polycarbonate, polycarbonate-modified polyphenylene ether, polyethylene terephthalate, polysulfone, polyphenylene sulfide, polyphenylene oxide, polyetherimide, polyimide, polyamide, liquid crystal polyester, polyallyl heat-resistant resin, various composite resins, Various modified resins are exemplified.
  • the injection method is not particularly limited and can be appropriately selected depending on the purpose.
  • the molten mold is formed on the substrate side of the antifogging and antifouling laminate adhered to a predetermined mold.
  • the method of pouring material is mentioned.
  • a cast forming step may be performed as necessary.
  • the cast molding process is a process in which a resin material dissolved in a solution is poured into the base of the antifogging and antifouling laminate molded into a desired shape, and the resin material is solidified and molded.
  • the manufacturing method of the article is preferably performed using an in-mold molding apparatus, an insert molding apparatus, and an overlay molding apparatus.
  • This manufacturing method is a manufacturing method using an in-mold molding apparatus.
  • the anti-fogging and antifouling laminate 500 is heated.
  • the heating is preferably infrared heating or exposure to a high temperature atmosphere.
  • the heated anti-fogging and antifouling laminate 500 is disposed at a predetermined position between the first mold 501 and the second mold 502.
  • the first mold 501 is a fixed mold
  • the second mold 502 is a movable mold.
  • the first mold 501 and the second mold 502 are clamped. Subsequently, the antifogging / antifouling laminate 500 is sucked into the cavity surface of the second mold 502 by sucking the antifogging / antifouling laminate 500 through the suction hole 504 opened in the cavity surface of the second mold 502. To do. By doing so, the cavity surface is shaped by the anti-fogging and antifouling laminate 500. At this time, the outer periphery of the anti-fogging / anti-stain laminate 500 may be fixed and positioned by a film pressing mechanism (not shown).
  • the molten molding material 506 is injected from the gate 505 of the first mold 501 toward the resin base material of the anti-fogging and antifouling laminate 500, and the first mold 501 and the second mold 502 are molded. Injection into a cavity formed by tightening (FIG. 4C). Thereby, the molten molding material 506 is filled in the cavity (FIG. 4D). Further, after the filling of the molten molding material 506 is completed, the molten molding material 506 is cooled to a predetermined temperature and solidified.
  • the second mold 502 is moved to open the first mold 501 and the second mold 502 (FIG. 4E).
  • an anti-fogging and antifouling laminate 500 is formed on the surface of the molding material 506, and an article 507 in-mold molded into a desired shape is obtained.
  • the protruding pin 508 is pushed out from the first mold 501 and the obtained article 507 is taken out.
  • a manufacturing method in the case of using the overlay molding apparatus is as follows. This is a step of directly decorating the surface of the molding material with the anti-fogging and anti-stain laminate, and an example thereof is a TOM (Threee Dimension Over Method) method.
  • TOM Three Dimension Over Method
  • An example of a method for producing the article of the present invention using the TOM method will be described below.
  • air is sucked by a vacuum pump or the like in both spaces in the apparatus divided by the anti-fogging and antifouling laminate fixed to the fixed frame, and the two spaces are evacuated.
  • a molding material that has been injection molded in advance is placed in a space on one side.
  • the anti-fogging / anti-fouling laminate is firmly attached to the three-dimensional shape of the molding material in a vacuum atmosphere by sending air to the side of the equipment space where there is no molding material. Adhere closely. If necessary, compressed air pressing from the side where the atmosphere is sent may be used in combination. After the anti-fogging and antifouling laminate is in close contact with the molded body, the obtained decorative molded product is removed from the fixed frame. Vacuum forming is usually performed at 80 ° C to 200 ° C, preferably about 110 ° C to 160 ° C.
  • an adhesive layer is provided on the surface opposite to the surface of the second layer of the anti-fogging and antifouling laminate in order to bond the antifogging and antifouling laminate and the molding material.
  • said adhesion layer There is no restriction
  • limiting in particular as a formation method of the said adhesion layer According to the objective, it can select suitably, For example, after forming the said 1st layer and the said 2nd layer on the said base material, the said base material The method of forming the said adhesion layer etc.
  • the coating liquid for adhesion layers on the opposite side to the said 2nd layer side is mentioned.
  • the adhesive layer coating liquid is applied on the release sheet to form the adhesive layer, the substrate and the adhesive layer on the release sheet are laminated, and the adhesive layer is formed on the substrate. Layers may be stacked.
  • FIG. 5 to 8 are schematic cross-sectional views of an example of the article of the present invention.
  • the article in FIG. 5 includes a molding material 506, a resin base material 211, a first layer 212, and a second layer 213, and the resin base material 211 and the first layer 213 are formed on the molding material 506.
  • the layer 212 and the second layer 213 are stacked in this order.
  • This article can be manufactured, for example, by insert molding.
  • the article in FIG. 6 includes a molding material 506, a resin base material 211, a first layer 212, a second layer 213, and a hard coat layer 600, and a resin base material is formed on the molding material 506.
  • the material 211, the first layer 212, and the second layer 213 are stacked in this order.
  • a hard coat layer 600 is formed on the side of the molding material 506 opposite to the resin substrate 211 side.
  • the article is immersed in the hard coat layer 600 on the surface of the molding material 506 and the molding material 506 in the hard coating liquid. Then, it can be formed by drying, curing, etc., and further by peeling off the protective layer.
  • the second layer 213 When the second layer 213 is a smooth surface, the pure water contact angle is in the above range, and the hexadecane contact angle is in the above range, the second layer 213 repels the hard coat liquid. Even if the protective layer is not formed, the hard coat is not formed on the second layer, and the hard coat layer 600 is formed only on the side opposite to the resin base material 211 side of the molding material 506. Excellent.
  • the article in FIG. 7 includes a molding material 506, a resin base material 211, a first layer 212, and a second layer 213. On both sides of the molding material 506, a resin base material 211, The first layer 212 and the second layer 213 are stacked in this order.
  • the article in FIG. 8 includes a molding material 506, a resin base material 211, a first layer 212, a second layer 213, and an optical film 601, and a resin base material on the molding material 506. 211, the first layer 212, and the second layer 213 are stacked in this order.
  • An optical film 601 is formed on the side of the molding material 506 opposite to the resin substrate 211 side. Examples of the optical film 601 include a hard coat film, an antireflection film, an antiglare film, and a polarizing film.
  • the article shown in FIG. 7 or 8 can be manufactured by, for example, double insert molding. Double insert molding is a method of molding a double-sided laminated film integrated product, and can be performed using, for example, the method described in JP-A-03-114718.
  • the antifouling method according to the present invention is a method for preventing soiling of the article by laminating the antifogging and antifouling laminate of the present invention on the surface of the article.
  • the article is not particularly limited and can be appropriately selected according to the purpose. Examples thereof include glass windows, refrigerated / frozen showcases, window materials such as automobile windows, bathroom mirrors, automobile side mirrors, and the like. Mirrors, bathroom floors and walls, solar panels, security surveillance cameras, etc.
  • the article may be glasses, goggles, a helmet, a lens, a microlens array, an automobile headlight cover, a front panel, a side panel, a rear panel, and the like. These are preferably formed by in-mold molding or insert molding.
  • the method for laminating the anti-fogging and antifouling laminate on the surface of the article is not particularly limited and may be appropriately selected depending on the purpose.
  • the antifogging and antifouling laminate is provided on the surface of the article. Examples include a method of pasting. Further, the antifogging and antifouling laminate can be laminated on the surface of the article also by the article manufacturing method of the present invention.
  • the layer thickness was measured by observing the cross section of the anti-fogging and antifouling laminate with a field emission scanning electron microscope S-4700 (trade name; manufactured by Hitachi High-Technologies Corporation). Measurements were made at five arbitrary locations, and the average value was taken as the layer thickness.
  • ⁇ Pure water contact angle> The pure water contact angle was measured under the following conditions using a contact angle meter PCA-1 (manufactured by Kyowa Interface Chemical Co., Ltd.). -Distilled water was put into a plastic syringe, and a stainless steel needle was attached to the tip thereof and dropped onto the evaluation surface. ⁇ Drip amount of water: 2 ⁇ L ⁇ Measurement temperature: 25 °C The contact angle after 5 seconds from dropping of water was measured at any 10 locations on the surface of the second layer, and the average value was defined as the pure water contact angle.
  • ⁇ Hexadecane contact angle> The hexadecane contact angle was measured under the following conditions using a contact angle meter PCA-1 (manufactured by Kyowa Interface Chemical Co., Ltd.). -Hexadecane was put in a plastic syringe, and a Teflon-coated stainless steel needle was attached to the tip thereof and dropped onto the evaluation surface. ⁇ Drop amount of hexadecane: 1 ⁇ L ⁇ Measurement temperature: 25 °C Hexadecane was dropped and the contact angle after 20 seconds was measured at any 10 locations on the surface of the second layer, and the average value was taken as the hexadecane contact angle.
  • Black vinyl tape (VT-50 manufactured by Nichiban Co., Ltd.) is pasted on the opposite side of the second layer of the anti-fogging and antifouling laminate, and a 5 ° specular reflectance spectrum is measured from the second layer side. Measurement was made with a company-made V-560 using an absolute reflectance measurement unit, and luminous reflectance was calculated. This was performed at three arbitrary locations, and the average value was obtained.
  • ⁇ Molding process> The produced anti-fogging and antifouling laminate was heated at 130 ° C. for 60 seconds by infrared irradiation, and then molded into a 6-curve lens with a diameter of 80 mm by vacuum / pressure forming so that the concave surface became the second layer. Thereafter, a 6-curve lens-shaped antifogging and antifouling laminate having a diameter of 80 mm was punched with a Thomson blade. This was set in an insert mold, filled with molten polycarbonate, and then cooled until the polycarbonate solidified. Thereafter, the mold was opened to obtain a 6-curve lens whose concave surface was the second layer.
  • Expiration antifogging after molding process >> In an environment of 25 ° C. and 37% RH, the surface of the second layer of the 6-curve lens was visually inspected immediately after exhaling once from a distance of 5 cm in the normal direction from the center of the lens. Were observed and evaluated according to the following evaluation criteria. ⁇ Evaluation criteria ⁇ A: No change in appearance on the surface of the second layer. ⁇ : Appearance changes such as white cloudiness and water film formation were confirmed on part of the surface of the second layer. X: On the entire surface of the second layer, changes in appearance such as white cloudiness and water film formation were confirmed.
  • Example 1 Preparation of anti-fogging and antifouling laminate>
  • FE-2000 PC base material, average thickness 180 ⁇ m
  • Mitsubishi Gas Chemical Co., Ltd. was used as a resin base material.
  • the active energy ray-curable resin composition having the following composition was applied onto the resin substrate so that the thickness after drying and curing was 10 ⁇ m. After coating, it was dried in an oven at 60 ° C. for 2 minutes. A metal halide lamp was used to cure by irradiating with ultraviolet rays at a dose of 600 mJ / cm 2 in a nitrogen atmosphere to obtain a first layer.
  • first layer- SR9035 (Sartomer) 34.5 parts by mass EBECRYL 40 (Daicel Ornex Co., Ltd.) 14.8 parts by mass Irgacure 184D (BASF) 1.5 parts by mass Isopropyl alcohol (Kanto Chemical Co., Ltd.) 49.2 parts by mass
  • an active energy ray-curable resin composition having the following composition was applied on the first layer so that the thickness after drying and curing was 100 nm. After coating, it was dried in an oven at 60 ° C. for 2 minutes. Using a metal halide lamp, ultraviolet rays were irradiated and cured in a nitrogen atmosphere at an irradiation amount of 600 mJ / cm 2 to obtain an antifogging and antifouling laminate having an antireflection function.
  • Example 1 (Comparative Example 1) In Example 1, a laminate was produced in the same manner as in Example 1 except that the second layer was not formed.
  • Example 1 Evaluation similar to Example 1 was performed about the obtained laminated body. The evaluation results are shown in Table 1. In the evaluation of Comparative Example 1, “second layer” in the evaluation items is read as “first layer”. In addition, “anti-fogging and anti-fouling laminate” is read as “laminate”.
  • Example 2 An antifogging and antifouling laminate was obtained in the same manner as in Example 1 except that the second layer was formed using an active energy ray-curable resin composition having the following composition. About the obtained anti-fogging antifouling laminated body, evaluation similar to Example 1 was performed. The evaluation results are shown in Table 1.
  • Opstar TU2205 MIBK dispersion containing fluoropolymer and low refractive index filler, solid content concentration 10% by mass
  • Example 2 In Example 1, the laminate was used in the same manner as in Example 1 except that the following first layer active energy ray-curable resin composition was used as the first layer active energy ray-curable resin composition. Was made. In the laminate of Comparative Example 2, the first layer does not contain a hydrophilic molecular structure.
  • Example 2 Evaluation similar to Example 1 was performed. The evaluation results are shown in Table 1. In the evaluation of Comparative Example 2, “anti-fogging / anti-fouling laminate” in the above evaluation items is read as “laminate”.
  • A-TMMT Pentaerythritol tetraacrylate
  • the antifogging and antifouling laminates of Example 1 and Example 2 also had an antireflection function. Since the laminate of Comparative Example 1 did not have the second layer, the antifouling property and the antireflection function were insufficient. The laminate of Comparative Example 2 had insufficient antifogging properties because the first layer did not contain a hydrophilic molecular structure.
  • Example 3 ⁇ Preparation of anti-fogging and antifouling laminate>
  • FE-2000 PC base material, average thickness 180 ⁇ m
  • Mitsubishi Gas Chemical Co., Ltd. was used as a resin base material.
  • the active energy ray-curable resin composition having the following composition was applied onto the resin substrate so that the thickness after drying and curing was 10 ⁇ m. After coating, it was dried in an oven at 60 ° C. for 2 minutes. A metal halide lamp was used to cure by irradiating with ultraviolet rays at a dose of 600 mJ / cm 2 in a nitrogen atmosphere to obtain a first layer.
  • an active energy ray-curable resin composition having the following composition was applied on the first layer so that the thickness after drying and curing was 1 ⁇ m. After coating, it was dried in an oven at 60 ° C. for 2 minutes. Using a metal halide lamp, ultraviolet rays were irradiated and cured in a nitrogen atmosphere at an irradiation amount of 600 mJ / cm 2 to obtain a third layer.
  • an active energy ray-curable resin composition having the following composition was applied on the third layer so that the thickness after drying and curing was 100 nm. After coating, it was dried in an oven at 60 ° C. for 2 minutes. Using a metal halide lamp, ultraviolet rays were irradiated and cured in a nitrogen atmosphere at an irradiation amount of 600 mJ / cm 2 to obtain an antifogging and antifouling laminate having an antireflection function.
  • Example 4 An antifogging and antifouling laminate was obtained in the same manner as in Example 3 except that the second layer was formed using an active energy ray-curable resin composition having the following composition. About the obtained anti-fogging antifouling laminated body, evaluation similar to Example 3 was performed. The evaluation results are shown in Table 2.
  • Example 3 (Comparative Example 3) In Example 3, a laminate was produced in the same manner as in Example 3 except that the first layer was not formed.
  • Example 3 Evaluation similar to Example 3 was performed about the obtained laminated body. The evaluation results are shown in Table 2. In the evaluation of Comparative Example 3, “antifogging / antifouling laminate” in the above evaluation items is read as “laminate”.
  • Example 4 (Comparative Example 4) In Example 3, except that the first active energy ray-curable resin composition for the first layer described below was used as the active energy ray-curable resin composition for the first layer, and the first layer of 5 ⁇ m was formed. In the same manner as in Example 3, a laminate was produced. In the laminate of Comparative Example 4, the first layer does not contain a hydrophilic molecular structure.
  • A-DPH Dipentaerythritol hexaacrylate
  • Biscoat # 300 Condensate of pentaerythritol and acrylic acid
  • Example 5 (Comparative Example 5) In Example 3, a laminate was produced in the same manner as Example 3 except that the second layer was not formed.
  • the antifogging and antifouling laminates of Example 3 and Example 4 also had an antireflection function. Further, by providing the third layer between the first layer and the second layer, the scratch resistance was more excellent as compared with Example 1 and Example 2. Since the laminate of Comparative Example 3 did not have the first layer, the antifogging property was insufficient. The laminate of Comparative Example 4 had insufficient antifogging properties because the first layer did not contain a hydrophilic molecular structure. Since the laminate of Comparative Example 5 did not have the second layer, the antifouling property and the antireflection function were insufficient.
  • the anti-fogging and antifouling laminate of the present invention includes glass windows, refrigerated / frozen showcases, window materials such as automobile windows, mirrors in bathrooms, mirrors such as automobile side mirrors, bathroom floors and walls, solar panel surfaces It can be attached to a security surveillance camera.
  • the anti-fogging and antifouling laminate of the present invention is easy to be molded, glasses, goggles, helmets, lenses, microlens arrays, automobile headlight covers are used by using in-mold molding and insert molding. It can be used for front panels, side panels, rear panels and the like.

Abstract

A clouding- and stain-proof laminate having a base material, and a first layer and a second layer on at least one surface of the base material. The first layer contains a hydrophilic polymer structure, the second layer contains a filler having a low refractive index, and the pure-water contact angle on the surface of the second layer is 90% or greater.

Description

防曇防汚積層体、物品、及びその製造方法Anti-fogging and antifouling laminate, article and method for producing the same
 本発明は、防曇性及び防汚性を有し、更には反射防止機能を有し、自動車用途、光学用途などの広範囲に使用でき、成形加工が容易な防曇防汚積層体、前記防曇防汚積層体を用いた物品、及びその製造方法に関する。 The present invention has an antifogging and antifouling property, and further has an antireflection function, can be used in a wide range of applications such as automobiles and optical applications, and is easy to form and process. The present invention relates to an article using an anti-fogging laminate and a method for producing the same.
 種々の物品には、その表面を装飾及び保護するために、その表面に樹脂フィルム、ガラスなどが貼り付けられている。
 しかし、物品の表面を装飾及び保護する樹脂フィルム、ガラスなどが曇ること及び汚れることにより物品の視認性及び美観が低下することがある。
 そのため、そのような物品の視認性及び美観の低下を防ぐために、前記樹脂フィルム及びガラスには、防曇処理及び防汚処理が施されている。
In order to decorate and protect the surface of various articles, a resin film, glass, or the like is attached to the surface.
However, the visibility and aesthetics of the article may deteriorate due to fogging and soiling of resin films, glass, etc. that decorate and protect the surface of the article.
Therefore, in order to prevent the visibility and aesthetics of such articles from deteriorating, the resin film and glass are subjected to antifogging treatment and antifouling treatment.
 例えば、防曇性有機ハードコート層を設けた樹脂成形品が提案されている(例えば、特許文献1参照)。
 また、例えば、複数の単量体から形成されるランダム共重合体と、多官能ブロックイソシアネート化合物とを含有する防曇塗料組成物からなる防曇性塗膜が提案されている(例えば、特許文献2参照)。
 また、例えば、防汚性を有する成型用ハードコートフィルムが提案されている(例えば、特許文献3参照)。
 また、例えば、防曇性、防汚性を兼ね備えた光学物品が提案されている(例えば、特許文献4参照)。
 また、例えば、防曇性、防汚性、ハードコート性を兼ね備えた塗膜層を形成させたハードコートシートが提案されている(例えば、特許文献5参照)。
For example, a resin molded product provided with an antifogging organic hard coat layer has been proposed (see, for example, Patent Document 1).
Further, for example, an antifogging coating film composed of an antifogging coating composition containing a random copolymer formed from a plurality of monomers and a polyfunctional blocked isocyanate compound has been proposed (for example, Patent Documents). 2).
Further, for example, a molding hard coat film having antifouling properties has been proposed (see, for example, Patent Document 3).
Moreover, for example, an optical article having antifogging properties and antifouling properties has been proposed (see, for example, Patent Document 4).
For example, a hard coat sheet in which a coating layer having antifogging properties, antifouling properties, and hard coat properties is formed has been proposed (see, for example, Patent Document 5).
 一方、物品の表面に付されるフィルムには、光学機能としての反射防止機能が要求されることがある。
 例えば、特定の硬化膜を低屈折率層として含む反射防止膜が提案されている(例えば、特許文献6参照)。
On the other hand, an antireflection function as an optical function may be required for a film attached to the surface of an article.
For example, an antireflection film including a specific cured film as a low refractive index layer has been proposed (see, for example, Patent Document 6).
 しかし、防曇性、防汚性、及び反射防止機能を兼ね備えた積層体は知られておらず、そのような積層体が求められているのが現状である。 However, a laminate having antifogging properties, antifouling properties, and antireflection functions is not known, and such a laminate is currently required.
特許第2897078号公報Japanese Patent No. 2897078 特開2012-7033号公報JP 2012-7033 A 特開2011-131408号公報JP 2011-131408 A 国際公開第2013/005710号パンフレットInternational Publication No. 2013/005710 Pamphlet 特許第3760669号公報Japanese Patent No. 3760669 特許第5061967号公報Japanese Patent No. 5061967
 本発明は、従来における前記諸問題を解決し、以下の目的を達成することを課題とする。即ち、本発明は、優れた防曇性及び防汚性を有し、かつ反射防止機能にも優れる防曇防汚積層体、前記防曇防汚積層体を用いた物品、及びその製造方法を提供することを目的とする。 This invention makes it a subject to solve the said various problems in the past and to achieve the following objectives. That is, the present invention provides an antifogging and antifouling laminate having excellent antifogging and antifouling properties and excellent antireflection function, an article using the antifogging and antifouling laminate, and a method for producing the same. The purpose is to provide.
 前記課題を解決するための手段としては、以下の通りである。即ち、
 <1> 基材と、前記基材の少なくとも一方の面上に、第1の層と、第2の層とを有し、
 前記第1の層が、親水性分子構造を含有し、
 前記第2の層が、低屈折率フィラーを含有し、
 前記第2の層の表面の純水接触角が、90°以上であることを特徴とする防曇防汚積層体である。
 <2> 前記第1の層と前記第2の層との間に、前記第1の層及び前記第2の層と異なる第3の層を有する前記<1>に記載の防曇防汚積層体である。
 <3> 前記第2の層の動摩擦係数が、0.4以下である前記<1>から<2>のいずれかに記載の防曇防汚積層体である。
 <4> 視感反射率が、3.0%以下である前記<1>から<3>のいずれかに記載の防曇防汚積層体である。
 <5> 前記第2の層が、撥水性分子構造を含有する前記<1>から<4>のいずれかに記載の防曇防汚積層体である。
 <6> 前記第2の層が、親水性分子構造を含有する前記<1>から<5>のいずれかに記載の防曇防汚積層体である。
 <7> 前記第1の層が含有する前記親水性分子構造が、ポリオキシアルキレン鎖である前記<1>から<6>のいずれかに記載の防曇防汚積層体である。
 <8> 前記<1>から<7>のいずれかに記載の防曇防汚積層体を表面に有することを特徴とする物品である。
 <9> 前記<8>に記載の物品の製造方法であって、
 前記防曇防汚積層体を加熱する加熱工程と、
 加熱された前記防曇防汚積層体を所望の形状に成形する防曇防汚積層体成形工程と、
 所望の形状に成形された前記防曇防汚積層体の基材側に成形材料を射出し、前記成形材料を成形する射出成形工程とを含むことを特徴とする物品の製造方法である。
 <10> 前記加熱工程における加熱が、赤外線加熱により行われる前記<9>に記載の物品の製造方法である。
Means for solving the problems are as follows. That is,
<1> A first layer and a second layer on at least one surface of the base material and the base material,
The first layer contains a hydrophilic molecular structure;
The second layer contains a low refractive index filler;
The antifogging and antifouling laminate is characterized in that the contact angle of pure water on the surface of the second layer is 90 ° or more.
<2> The antifogging and antifouling laminate according to <1>, wherein the first layer and the second layer have a third layer different from the first layer and the second layer. Is the body.
<3> The anti-fogging and antifouling laminate according to any one of <1> to <2>, wherein the dynamic friction coefficient of the second layer is 0.4 or less.
<4> The antifogging and antifouling laminate according to any one of <1> to <3>, wherein the luminous reflectance is 3.0% or less.
<5> The antifogging and antifouling laminate according to any one of <1> to <4>, wherein the second layer contains a water repellent molecular structure.
<6> The antifogging and antifouling laminate according to any one of <1> to <5>, wherein the second layer contains a hydrophilic molecular structure.
<7> The antifogging and antifouling laminate according to any one of <1> to <6>, wherein the hydrophilic molecular structure contained in the first layer is a polyoxyalkylene chain.
<8> An article having the antifogging and antifouling laminate according to any one of <1> to <7> on a surface thereof.
<9> The method for producing an article according to <8>,
A heating step of heating the antifogging and antifouling laminate,
An anti-fogging and antifouling laminate forming step for forming the heated antifogging and antifouling laminate into a desired shape; and
And an injection molding step of molding the molding material by injecting a molding material onto the base material side of the anti-fogging and antifouling laminate molded into a desired shape.
<10> The method for manufacturing an article according to <9>, wherein the heating in the heating step is performed by infrared heating.
 本発明によれば、従来における前記諸問題を解決し、前記目的を達成することができ、優れた防曇性及び防汚性を有し、かつ反射防止機能にも優れる防曇防汚積層体、前記防曇防汚積層体を用いた物品、及びその製造方法を提供することができる。 According to the present invention, the conventional problems can be solved, the object can be achieved, the antifogging and antifouling laminate has excellent antifogging and antifouling properties, and is excellent in antireflection function. An article using the anti-fogging and antifouling laminate and a method for producing the same can be provided.
図1は、本発明の防曇防汚積層体の一例の概略断面図である。FIG. 1 is a schematic sectional view of an example of the anti-fogging and antifouling laminate of the present invention. 図2は、本発明の防曇防汚積層体の他の一例の概略断面図である。FIG. 2 is a schematic cross-sectional view of another example of the anti-fogging and antifouling laminate of the present invention. 図3は、本発明の防曇防汚積層体の他の一例の概略断面図である。FIG. 3 is a schematic cross-sectional view of another example of the anti-fogging and antifouling laminate of the present invention. 図4Aは、インモールド成形により本発明の物品を製造する一例を説明するための工程図である。FIG. 4A is a process diagram for explaining an example of producing the article of the present invention by in-mold molding. 図4Bは、インモールド成形により本発明の物品を製造する一例を説明するための工程図である。FIG. 4B is a process diagram for explaining an example of manufacturing the article of the present invention by in-mold molding. 図4Cは、インモールド成形により本発明の物品を製造する一例を説明するための工程図である。FIG. 4C is a process diagram for explaining an example of producing the article of the present invention by in-mold molding. 図4Dは、インモールド成形により本発明の物品を製造する一例を説明するための工程図である。FIG. 4D is a process diagram for explaining an example of manufacturing the article of the present invention by in-mold molding. 図4Eは、インモールド成形により本発明の物品を製造する一例を説明するための工程図である。FIG. 4E is a process diagram for explaining an example of manufacturing the article of the present invention by in-mold molding. 図4Fは、インモールド成形により本発明の物品を製造する一例を説明するための工程図である。FIG. 4F is a process diagram for explaining an example of manufacturing the article of the present invention by in-mold molding. 図5は、本発明の物品の一例の概略断面図である(その1)。FIG. 5: is a schematic sectional drawing of an example of the articles | goods of this invention (the 1). 図6は、本発明の物品の一例の概略断面図である(その2)。FIG. 6: is a schematic sectional drawing of an example of the articles | goods of this invention (the 2). 図7は、本発明の物品の一例の概略断面図である(その3)。FIG. 7: is a schematic sectional drawing of an example of the articles | goods of this invention (the 3). 図8は、本発明の物品の一例の概略断面図である(その4)。FIG. 8: is a schematic sectional drawing of an example of the articles | goods of this invention (the 4).
(防曇防汚積層体)
 本発明の防曇防汚積層体は、基材と、第1の層と、第2の層とを少なくとも有し、更に必要に応じて、その他の部材を有する。
 前記防曇防汚積層体においては、前記1の層及び前記第2の層のうちの前記第1の層が、前記基材に近い位置に配されている。
(Anti-fog anti-fouling laminate)
The anti-fogging and antifouling laminate of the present invention has at least a substrate, a first layer, and a second layer, and further includes other members as necessary.
In the anti-fogging and antifouling laminate, the first layer of the first layer and the second layer is arranged at a position close to the base material.
<基材>
 前記基材としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、樹脂製基材、無機基材などが挙げられる。
<Base material>
There is no restriction | limiting in particular as said base material, According to the objective, it can select suitably, For example, resin-made base materials, an inorganic base material, etc. are mentioned.
 前記樹脂製基材の材質としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、トリアセチルセルロース(TAC)、ポリエステル(TPEE)、ポリエチレンテレフタレート(PET)、ポリエチレンナフタレート(PEN)、ポリイミド(PI)、ポリアミド(PA)、アラミド、ポリエチレン(PE)、ポリアクリレート、ポリエーテルスルフォン、ポリスルフォン、ポリプロピレン(PP)、ポリスチレン、ジアセチルセルロース、ポリ塩化ビニル、アクリル樹脂(PMMA)、ポリカーボネート(PC)、エポキシ樹脂、尿素樹脂、ウレタン樹脂、メラミン樹脂、フェノール樹脂、アクリロニトリル・ブタジエン・スチレン共重合体、シクロオレフィンポリマー(COP)、シクロオレフィンコポリマー(COC)、PC/PMMA積層体、ゴム添加PMMAなどが挙げられる。
 前記樹脂製基材は、例えば、トリアセチルセルロース又はポリカーボネートで構成された偏光シートであってもよい。
There is no restriction | limiting in particular as a material of the said resin-made base materials, According to the objective, it can select suitably, For example, a triacetyl cellulose (TAC), polyester (TPEE), a polyethylene terephthalate (PET), a polyethylene naphthalate ( PEN), polyimide (PI), polyamide (PA), aramid, polyethylene (PE), polyacrylate, polyether sulfone, polysulfone, polypropylene (PP), polystyrene, diacetyl cellulose, polyvinyl chloride, acrylic resin (PMMA), Polycarbonate (PC), epoxy resin, urea resin, urethane resin, melamine resin, phenol resin, acrylonitrile-butadiene-styrene copolymer, cycloolefin polymer (COP), cycloolefin copolymer (CO ), PC / PMMA laminate, such as rubber additives PMMA and the like.
The resin substrate may be a polarizing sheet made of, for example, triacetyl cellulose or polycarbonate.
 前記無機基材の材質としては、例えば、金属酸化物(例えば、石英、サファイア、ガラス等)、金属(例えば、鉄、クロム、ニッケル、モリブデン、ニオブ、銅、チタン、アルミニウム、亜鉛、シリコン、マグネシウム、マンガン等)、合金(例えば、前記金属の組合せ等)などが挙げられる。 Examples of the material for the inorganic base material include metal oxides (eg, quartz, sapphire, glass, etc.), metals (eg, iron, chromium, nickel, molybdenum, niobium, copper, titanium, aluminum, zinc, silicon, magnesium). , Manganese, etc.), alloys (for example, combinations of the above metals), and the like.
 前記基材は、透明性を有することが好ましい。 It is preferable that the substrate has transparency.
 前記基材の形状としては、特に制限はなく、目的に応じて適宜選択することができるが、フィルム状であることが好ましい。
 前記樹脂製基材がフィルム状の場合、前記樹脂製基材の平均厚みとしては、特に制限はなく、目的に応じて適宜選択することができるが、5μm~1,000μmが好ましく、50μm~500μmがより好ましい。
 前記無機基材がフィルム状の場合、前記無機基材の平均厚みとしては、特に制限はなく、目的に応じて適宜選択することができるが、0.1mm~100mmが好ましい。
 ここで、本明細書において「~」を用いて規定される数値範囲は、下限値及び上限値を含む範囲である。即ち、「5μm~1,000μm」は「5μm以上1,000μm以下」と同義である。
There is no restriction | limiting in particular as a shape of the said base material, Although it can select suitably according to the objective, It is preferable that it is a film form.
When the resin substrate is in the form of a film, the average thickness of the resin substrate is not particularly limited and may be appropriately selected depending on the intended purpose, but is preferably 5 μm to 1,000 μm, and preferably 50 μm to 500 μm. Is more preferable.
When the inorganic substrate is in the form of a film, the average thickness of the inorganic substrate is not particularly limited and may be appropriately selected depending on the intended purpose, but is preferably 0.1 mm to 100 mm.
Here, the numerical range defined using “to” in this specification is a range including a lower limit value and an upper limit value. That is, “5 μm to 1,000 μm” is synonymous with “5 μm to 1,000 μm”.
 前記基材の表面には、文字、模様、画像などが印刷されていてもよい。 A character, pattern, image or the like may be printed on the surface of the substrate.
 前記基材の表面には、前記防曇防汚積層体を成形加工時、前記基材と成形材料との密着性を高めるため、又は成形加工時の成形材料の流動圧から前記文字、前記模様、及び前記画像を保護するために、バインダー層を設けてもよい。前記バインダー層の材質としては、アクリル系、ウレタン系、ポリエステル系、ポリアミド系、エチレンブチルアルコール系、エチレン酢酸ビニル共重合体系等の各種バインダーの他、各種接着剤を用いることができる。なお、前記バインダー層は2層以上設けてもよい。使用するバインダーは、成形材料に適した感熱性、感圧性を有するものを選択できる。 On the surface of the base material, the character and the pattern are formed in order to increase the adhesion between the base material and the molding material at the time of molding the anti-fogging and antifouling laminate, or from the flow pressure of the molding material at the time of molding processing. In order to protect the image, a binder layer may be provided. As the material of the binder layer, various adhesives can be used in addition to various binders such as acrylic, urethane, polyester, polyamide, ethylene butyl alcohol, and ethylene vinyl acetate copolymer systems. Two or more binder layers may be provided. As the binder to be used, one having heat sensitivity and pressure sensitivity suitable for the molding material can be selected.
 前記第1の層及び前記第2の層が、前記樹脂製基材の片面に積層されている場合、前記第1の層及び前記第2の層側と反対側の前記樹脂製基材の表面は、シワ模様を有していてもよい。そうすることで、複数の前記防曇防汚積層体を重ねたときのブロッキングが防止され、後工程でのハンドリング性が向上し、物品を効率よく製造できる。
 前記シワ模様は、例えば、シボ加工により形成できる。
 ここで、ブロッキングとは、複数のシートを重ねた際に、各シートの引き離しが困難になることをいう。
When the first layer and the second layer are laminated on one side of the resin base material, the surface of the resin base material on the side opposite to the first layer and the second layer side May have a wrinkle pattern. By doing so, blocking when the plurality of anti-fogging and antifouling laminates are stacked is prevented, handling properties in a subsequent process are improved, and an article can be produced efficiently.
The wrinkle pattern can be formed by wrinkle processing, for example.
Here, blocking means that it is difficult to separate each sheet when a plurality of sheets are stacked.
<第1の層>
 前記第1の層は、親水性分子構造を含有する。
 前記第1の層としては、製造が容易な点で、樹脂製の層が好ましい。
 前記第1の層としては、特に制限はなく、目的に応じて適宜選択することができるが、活性エネルギー線硬化性樹脂組成物の硬化物を含有することが好ましい。
<First layer>
The first layer contains a hydrophilic molecular structure.
The first layer is preferably a resin layer in terms of easy production.
There is no restriction | limiting in particular as said 1st layer, Although it can select suitably according to the objective, It is preferable to contain the hardened | cured material of an active energy ray curable resin composition.
 前記親水性分子構造としては、親水性の分子構造であれば、特に制限はなく、目的に応じて適宜選択することができ、例えば、親水性の有機分子構造などが挙げられ、具体的には、ポリオキシアルキル鎖、ポリオキシアルキレン鎖などが挙げられる。前記親水性分子構造は、例えば、前記第1の層を作製する際に、後述する親水性モノマーを用いることにより、前記第1の層中に導入することができる。 The hydrophilic molecular structure is not particularly limited as long as it is a hydrophilic molecular structure, and can be appropriately selected according to the purpose. Examples thereof include a hydrophilic organic molecular structure. Specifically, , Polyoxyalkyl chain, polyoxyalkylene chain and the like. The hydrophilic molecular structure can be introduced into the first layer, for example, by using a hydrophilic monomer described later when the first layer is produced.
-活性エネルギー線硬化性樹脂組成物-
 前記活性エネルギー線硬化性樹脂組成物は、ラジカル重合性不飽和基を有する親水性モノマー(以下、「親水性モノマー」と称することがある)と、光重合開始剤とを少なくとも含有し、更に必要に応じて、その他の成分を含有する。
-Active energy ray-curable resin composition-
The active energy ray-curable resin composition contains at least a hydrophilic monomer having a radical polymerizable unsaturated group (hereinafter sometimes referred to as “hydrophilic monomer”) and a photopolymerization initiator, and is further necessary. Depending on the content, other components are contained.
--親水性モノマー--
 前記ラジカル重合性不飽和基を有する親水性モノマーとしては、例えば、ポリオキシアルキレン鎖を有する(メタ)アクリレート、4級アンモニウム塩含有(メタ)アクリレート、3級アミノ基含有(メタ)アクリレート、スルホン酸基含有モノマー、カルボン酸基含有モノマー、リン酸基含有モノマー、ホスホン酸基含有モノマーなどが挙げられる。これらは、単官能モノマーであってもよいし、多官能モノマーであってもよい。
 前記ポリオキシアルキレン鎖としては、例えば、ポリオキシエチレン鎖、ポリオキシプロピレン鎖などが挙げられる。これらの中でも、ポリオキシエチレン鎖が、親水性に優れる点で好ましい。
 ここで、本発明において、(メタ)アクリレートとは、アクリレート又はメタアクリレートを意味する。(メタ)アクリロイル、(メタ)アクリルについても同様である。
--- Hydrophilic monomer--
Examples of the hydrophilic monomer having a radical polymerizable unsaturated group include (meth) acrylate having a polyoxyalkylene chain, quaternary ammonium salt-containing (meth) acrylate, tertiary amino group-containing (meth) acrylate, and sulfonic acid. Examples thereof include a group-containing monomer, a carboxylic acid group-containing monomer, a phosphoric acid group-containing monomer, and a phosphonic acid group-containing monomer. These may be monofunctional monomers or polyfunctional monomers.
Examples of the polyoxyalkylene chain include a polyoxyethylene chain and a polyoxypropylene chain. Among these, a polyoxyethylene chain is preferable in terms of excellent hydrophilicity.
Here, in the present invention, (meth) acrylate means acrylate or methacrylate. The same applies to (meth) acryloyl and (meth) acryl.
 前記親水性モノマーとしては、例えば、多価アルコール(ポリオール又はポリヒドロキシ含有化合物)と、アクリル酸、メタクリル酸及びそれらの誘導体からなる群から選択される化合物との反応によって得られるモノ若しくはポリアクリレート、又はモノ若しくはポリメタクリレートなどが挙げられる。前記多価アルコールとしては、例えば、2価のアルコール、3価のアルコール、4価以上のアルコールなどが挙げられる。前記2価のアルコールとしては、例えば、エチレングリコール、ジエチレングリコール、トリエチレングリコール、テトラエチレングリコール、数平均分子量が300~1,000のポリエチレングリコール、プロピレングリコール、ジプロピレングリコール、1,3-プロパンジオール、1,4-ブタンジオール、1,5-ペンタンジオール、1,6-ヘキサンジオール、ネオペンチルグリコール、2-エチル-1,3-ヘキサンジオール、2,2’-チオジエタノール、1,4-シクロヘキサンジメタノールなどが挙げられる。前記3価のアルコールとしては、例えば、トリメチロールエタン、トリメチロールプロパン、ペンタグリセロール、グリセロール、1,2,4-ブタントリオール、1,2,6-ヘキサントリオールなどが挙げられる。前記4価以上のアルコールとしては、例えば、ペンタエリスリトール、ジグリセロール、ジペンタエリスリトールなどが挙げられる。 Examples of the hydrophilic monomer include mono- or polyacrylates obtained by a reaction between a polyhydric alcohol (polyol or polyhydroxy-containing compound) and a compound selected from the group consisting of acrylic acid, methacrylic acid, and derivatives thereof, Alternatively, mono or polymethacrylate can be used. Examples of the polyhydric alcohol include divalent alcohol, trivalent alcohol, and tetravalent or higher alcohol. Examples of the divalent alcohol include ethylene glycol, diethylene glycol, triethylene glycol, tetraethylene glycol, polyethylene glycol having a number average molecular weight of 300 to 1,000, propylene glycol, dipropylene glycol, 1,3-propanediol, 1,4-butanediol, 1,5-pentanediol, 1,6-hexanediol, neopentyl glycol, 2-ethyl-1,3-hexanediol, 2,2′-thiodiethanol, 1,4-cyclohexanedi For example, methanol. Examples of the trivalent alcohol include trimethylolethane, trimethylolpropane, pentaglycerol, glycerol, 1,2,4-butanetriol, 1,2,6-hexanetriol, and the like. Examples of the tetravalent or higher alcohol include pentaerythritol, diglycerol, and dipentaerythritol.
 前記ポリオキシアルキレン鎖を有する(メタ)アクリレートとしては、例えば、ポリエチレングリコール(メタ)アクリレート、ポリプロピレングリコール(メタ)アクリレート、エトキシ化グリセリン(メタ)アクリレート、エトキシ化ペンタエリスリトールテトラ(メタ)アクリレートなどが挙げられる。前記ポリエチレングリコール(メタ)アクリレートとしては、例えば、メトキシポリエチレングリコール(メタ)アクリレートなどが挙げられる。前記ポリエチレングリコール(メタ)アクリレートにおけるポリエチレングリコールユニットの分子量としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、300~1,000などが挙げられる。前記メトキシポリエチレングリコール(メタ)アクリレートとしては、市販品を用いることができる。前記市販品としては、例えば、MEPM-1000(第一工業製薬株式会社製)などが挙げられる。
 これらの中でも、エトキシ化グリセリン(メタ)アクリレート、エトキシ化ペンタエリスリトールテトラ(メタ)アクリレートが、前記第1の層の適度な硬度と親水性とを両立できる点から、好ましい。
Examples of the (meth) acrylate having a polyoxyalkylene chain include polyethylene glycol (meth) acrylate, polypropylene glycol (meth) acrylate, ethoxylated glycerin (meth) acrylate, and ethoxylated pentaerythritol tetra (meth) acrylate. It is done. Examples of the polyethylene glycol (meth) acrylate include methoxypolyethylene glycol (meth) acrylate. There is no restriction | limiting in particular as the molecular weight of the polyethyleneglycol unit in the said polyethyleneglycol (meth) acrylate, According to the objective, it can select suitably, For example, 300-1,000 etc. are mentioned. A commercial item can be used as said methoxypolyethyleneglycol (meth) acrylate. Examples of the commercially available product include MEPM-1000 (manufactured by Daiichi Kogyo Seiyaku Co., Ltd.).
Among these, ethoxylated glycerin (meth) acrylate and ethoxylated pentaerythritol tetra (meth) acrylate are preferable from the viewpoint that both the appropriate hardness and hydrophilicity of the first layer can be achieved.
 前記4級アンモニウム塩含有(メタ)アクリレートとしては、例えば、(メタ)アクリロイルオキシエチルトリメチルアンモニウムクロライド、(メタ)アクリロイルオキシエチルジメチルベンジルアンモニウムクロライド、(メタ)アクリロイルオキシエチルジメチルグリシジルアンモニウムクロライド、(メタ)アクリロイルオキシエチルトリメチルアンモニウムメチルサルフェート、(メタ)アクリロイルオキシジメチルエチルアンモニウムエチルサルフェート、(メタ)アクリロイルオキシエチルトリメチルアンモニウム-p-トルエンスルフォネート、(メタ)アクリルアミドプロピルトリメチルアンモニウムクロライド、(メタ)アクリルアミドプロピルジメチルベンジルアンモニウムクロライド、(メタ)アクリルアミドプロピルジメチルグリシジルアンモニウムクロライド、(メタ)アクリルアミドプロピルトリメチルアンモニウムメチルサルフェート、(メタ)アクリルアミドプロピルジメチルエチルアンモニウムエチルサルフェート、(メタ)アクリルアミドプロピルトリメチルアンモニウム-p-トルエンスルフォネートなどが挙げられる。 Examples of the quaternary ammonium salt-containing (meth) acrylate include (meth) acryloyloxyethyltrimethylammonium chloride, (meth) acryloyloxyethyldimethylbenzylammonium chloride, (meth) acryloyloxyethyldimethylglycidylammonium chloride, (meth) Acryloyloxyethyltrimethylammonium methyl sulfate, (meth) acryloyloxydimethylethylammonium ethyl sulfate, (meth) acryloyloxyethyltrimethylammonium-p-toluenesulfonate, (meth) acrylamidopropyltrimethylammonium chloride, (meth) acrylamidopropyldimethyl Benzyl ammonium chloride, (meth) acrylamide Pills dimethyl glycidyl chloride, (meth) acrylamide trimethyl ammonium methyl sulfate, (meth) acrylamide dimethyl ethyl ammonium ethylsulfate, and (meth) acrylamide trimethylammonium -p- toluenesulfonate.
 前記3級アミノ基含有(メタ)アクリレートとしては、例えば、N,N-ジメチルアミノエチル(メタ)アクリレート、N,N-ジメチルアミノプロピル(メタ)アクリルアミド、ジエチルアミノプロピル(メタ)アクリルアミド、1,2,2,6,6-ペンタメチルピペリジル(メタ)アクリレート、2,2,6,6-テトラメチルピペリジル(メタ)アクリレートなどが挙げられる。 Examples of the tertiary amino group-containing (meth) acrylate include N, N-dimethylaminoethyl (meth) acrylate, N, N-dimethylaminopropyl (meth) acrylamide, diethylaminopropyl (meth) acrylamide, 1,2, Examples include 2,6,6-pentamethylpiperidyl (meth) acrylate and 2,2,6,6-tetramethylpiperidyl (meth) acrylate.
 前記スルホン酸基含有モノマーとしては、例えば、ビニルスルホン酸、アリルスルホン酸、ビニルトルエンスルホン酸、スチレンスルホン酸、スルホン酸基含有(メタ)アクリレートなどが挙げられる。前記スルホン酸基含有(メタ)アクリレートとしては、例えば、(メタ)アクリル酸スルホエチル、(メタ)アクリル酸スルホプロピル、2-アクリルアミド-2-メチルプロパンスルホン酸、末端スルホン酸変性ポリエチレングリコールモノ(メタ)クリレートなどが挙げられる。これらは、塩を形成していてもよい。前記塩としては、例えば、ナトリウム塩、カリウム塩、アンモニウム塩などが挙げられる。 Examples of the sulfonic acid group-containing monomer include vinyl sulfonic acid, allyl sulfonic acid, vinyl toluene sulfonic acid, styrene sulfonic acid, and sulfonic acid group-containing (meth) acrylate. Examples of the sulfonic acid group-containing (meth) acrylate include, for example, sulfoethyl (meth) acrylate, sulfopropyl (meth) acrylate, 2-acrylamido-2-methylpropanesulfonic acid, and terminal sulfonic acid-modified polyethylene glycol mono (meth) Examples include chlorate. These may form a salt. Examples of the salt include sodium salt, potassium salt, ammonium salt and the like.
 前記カルボン酸基含有モノマーとしては、例えば、アクリル酸、メタクリル酸などが挙げられる。 Examples of the carboxylic acid group-containing monomer include acrylic acid and methacrylic acid.
 前記リン酸基含有モノマーとしては、例えば、リン酸エステルを有する(メタ)アクリレートなどが挙げられる。 Examples of the phosphate group-containing monomer include (meth) acrylate having a phosphate ester.
 前記親水性モノマーは、多官能の親水性モノマーであることが好ましい。 The hydrophilic monomer is preferably a polyfunctional hydrophilic monomer.
 前記親水性モノマーの分子量としては、特に制限はなく、目的に応じて適宜選択することができるが、200以上が好ましい。 The molecular weight of the hydrophilic monomer is not particularly limited and may be appropriately selected depending on the intended purpose, but is preferably 200 or more.
 前記親水性モノマーは市販品であってもよい。前記市販品としては、例えば、SR9035(サートマー社製、エトキシ化トリメチロールプロパントリメタアクリレート)などが挙げられる。 The hydrophilic monomer may be a commercially available product. Examples of the commercially available product include SR9035 (manufactured by Sartomer, ethoxylated trimethylolpropane trimethacrylate).
 前記活性エネルギー線硬化性樹脂組成物における前記親水性モノマーの含有量としては、特に制限はなく、目的に応じて適宜選択することができるが、60質量%以上が好ましく、60質量%~99.9質量%がより好ましく、63質量%~95質量%が更により好ましく、65質量%~90質量%が特に好ましい。なお、前記活性エネルギー線硬化性樹脂組成物が揮発分(例えば、有機溶剤)を含有する場合、前記含有量は、前記活性エネルギー線硬化性樹脂組成物の不揮発分に対する含有量である。 There is no restriction | limiting in particular as content of the said hydrophilic monomer in the said active energy ray curable resin composition, Although it can select suitably according to the objective, 60 mass% or more is preferable, and 60 mass%-99. 9% by mass is more preferable, 63% by mass to 95% by mass is even more preferable, and 65% by mass to 90% by mass is particularly preferable. In addition, when the said active energy ray curable resin composition contains a volatile matter (for example, organic solvent), the said content is content with respect to the non volatile matter of the said active energy ray curable resin composition.
--光重合開始剤--
 前記光重合開始剤としては、例えば、光ラジカル重合開始剤、光酸発生剤、ビスアジド化合物、ヘキサメトキシメチルメラミン、テトラメトキシグリコユリルなどが挙げられる。
 前記光ラジカル重合開始剤としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、エトキシフェニル(2,4,6-トリメチルベンゾイル)ホスフィンオキシド、ビス(2,6-ジメチルベンゾイル)-2,4,4-トリメチルペンチルフォスフィンオキシド、ビス(2,4,6-トリメチルベンゾイル)-2,4,4-トリメチルペンチルフォスフィンオキシド、ビス(2,6-ジクロルベンゾイル)-2,4,4-トリメチルペンチルフォスフィンオキシド、1-フェニル2-ヒドロキシ-2メチルプロパン-1-オン、1-ヒドロキシシクロヘキシルフェニルケトン、1-(4-イソプロピルフェニル)-2-ヒドロキシ-2-メチルプロパン-1-オン、1,2-ジフェニルエタンジオン、メチルフェニルグリオキシレートなどが挙げられる。
-Photoinitiator-
Examples of the photopolymerization initiator include a photoradical polymerization initiator, a photoacid generator, a bisazide compound, hexamethoxymethylmelamine, and tetramethoxyglycolyl.
The radical photopolymerization initiator is not particularly limited and may be appropriately selected depending on the intended purpose. Examples thereof include ethoxyphenyl (2,4,6-trimethylbenzoyl) phosphine oxide, bis (2,6-dimethylbenzoyl). ) -2,4,4-trimethylpentylphosphine oxide, bis (2,4,6-trimethylbenzoyl) -2,4,4-trimethylpentylphosphine oxide, bis (2,6-dichlorobenzoyl) -2 , 4,4-trimethylpentylphosphine oxide, 1-phenyl-2-hydroxy-2-methylpropan-1-one, 1-hydroxycyclohexyl phenyl ketone, 1- (4-isopropylphenyl) -2-hydroxy-2-methylpropane -1-one, 1,2-diphenylethanedione, methylphenylglycone Kishireto and the like.
 前記活性エネルギー線硬化性樹脂組成物における前記光重合開始剤の含有量としては、特に制限はなく、目的に応じて適宜選択することができるが、0.1質量%~10質量%が好ましく、0.5質量%~8質量%がより好ましく、1質量%~5質量%が特に好ましい。なお、前記活性エネルギー線硬化性樹脂組成物が揮発分(例えば、有機溶剤)を含有する場合、前記含有量は、前記活性エネルギー線硬化性樹脂組成物の不揮発分に対する含有量である。 The content of the photopolymerization initiator in the active energy ray-curable resin composition is not particularly limited and may be appropriately selected depending on the intended purpose, but is preferably 0.1% by mass to 10% by mass, 0.5% by mass to 8% by mass is more preferable, and 1% by mass to 5% by mass is particularly preferable. In addition, when the said active energy ray curable resin composition contains a volatile matter (for example, organic solvent), the said content is content with respect to the non volatile matter of the said active energy ray curable resin composition.
--その他の成分--
 前記その他の成分としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、ウレタン(メタ)アクリレート、イソシアヌル酸基含有(メタ)アクリレート、フィラーなどが挙げられる。
 これらは、前記第1の層の伸び率、硬度などを調整するために用いることがある。
-Other ingredients-
There is no restriction | limiting in particular as said other component, According to the objective, it can select suitably, For example, urethane (meth) acrylate, isocyanuric acid group containing (meth) acrylate, a filler, etc. are mentioned.
These may be used to adjust the elongation rate, hardness, etc. of the first layer.
 前記ウレタン(メタ)アクリレートとしては、特に制限はなく、目的に応じて適宜選択することができ、例えば、脂肪族ウレタン(メタ)アクリレート、芳香族ウレタン(メタ)アクリレートなどが挙げられる。これらの中でも、脂肪族ウレタン(メタ)アクリレートが好ましい。 The urethane (meth) acrylate is not particularly limited and may be appropriately selected depending on the intended purpose. Examples thereof include aliphatic urethane (meth) acrylate and aromatic urethane (meth) acrylate. Among these, aliphatic urethane (meth) acrylate is preferable.
 前記活性エネルギー線硬化性樹脂組成物における前記ウレタン(メタ)アクリレートの含有量としては、特に制限はなく、目的に応じて適宜選択することができるが、10質量%~45質量%が好ましく、15質量%~40質量%がより好ましく、20質量%~35質量%が特に好ましい。なお、前記活性エネルギー線硬化性樹脂組成物が揮発分(例えば、有機溶剤)を含有する場合、前記含有量は、前記活性エネルギー線硬化性樹脂組成物の不揮発分に対する含有量である。 The content of the urethane (meth) acrylate in the active energy ray-curable resin composition is not particularly limited and may be appropriately selected depending on the intended purpose, but is preferably 10% by mass to 45% by mass, More preferred is 40% by weight, and especially preferred is 20% to 35% by weight. In addition, when the said active energy ray curable resin composition contains a volatile matter (for example, organic solvent), the said content is content with respect to the non volatile matter of the said active energy ray curable resin composition.
 前記活性エネルギー線硬化性樹脂組成物は、更に、平滑性を向上させるためのレベリング剤を含有していてもよい。
 前記活性エネルギー線硬化性樹脂組成物における前記レベリング剤の含有量としては、特に制限はなく、目的に応じて適宜選択することができるが、0.0001質量%~5質量%が好ましい。なお、前記活性エネルギー線硬化性樹脂組成物が揮発分(例えば、有機溶剤)を含有する場合、前記含有量は、前記活性エネルギー線硬化性樹脂組成物の不揮発分に対する含有量である。
The active energy ray-curable resin composition may further contain a leveling agent for improving smoothness.
The content of the leveling agent in the active energy ray-curable resin composition is not particularly limited and may be appropriately selected depending on the intended purpose, but is preferably 0.0001% by mass to 5% by mass. In addition, when the said active energy ray curable resin composition contains a volatile matter (for example, organic solvent), the said content is content with respect to the non volatile matter of the said active energy ray curable resin composition.
 前記活性エネルギー線硬化性樹脂組成物は、使用時には、有機溶剤を用いて希釈して用いることができる。前記有機溶剤としては、例えば、芳香族系溶媒、アルコール系溶媒、エステル系溶媒、ケトン系溶媒、グリコールエーテル系溶媒、グリコールエーテルエステル系溶媒、塩素系溶媒、エーテル系溶媒、N-メチルピロリドン、ジメチルホルムアミド、ジメチルスルホキシド、ジメチルアセトアミドなどが挙げられる。 The active energy ray-curable resin composition can be diluted with an organic solvent when used. Examples of the organic solvent include aromatic solvents, alcohol solvents, ester solvents, ketone solvents, glycol ether solvents, glycol ether ester solvents, chlorine solvents, ether solvents, N-methylpyrrolidone, dimethyl Examples include formamide, dimethyl sulfoxide, dimethylacetamide, and the like.
 前記活性エネルギー線硬化性樹脂組成物は、活性エネルギー線が照射されることにより硬化する。前記活性エネルギー線としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、電子線、紫外線、赤外線、レーザー光線、可視光線、電離放射線(X線、α線、β線、γ線等)、マイクロ波、高周波などが挙げられる。 The active energy ray-curable resin composition is cured when irradiated with active energy rays. There is no restriction | limiting in particular as said active energy ray, According to the objective, it can select suitably, For example, an electron beam, an ultraviolet-ray, infrared rays, a laser beam, visible light, ionizing radiation (X ray, alpha ray, beta ray, gamma) Wire, etc.), microwave, high frequency and the like.
 前記第1の層の平均厚みとしては、特に制限はなく、目的に応じて適宜選択することができるが、2μm~100μmが好ましく、4μm~50μmがより好ましく、10μm~30μmが特に好ましい。前記平均厚みが、好ましい範囲内であると、防曇性が優れ、干渉ムラが低減し、また生産性に優れる点で有利である。前記平均厚みが、特に好ましい範囲内であると、干渉ムラをより低減させることができる。 The average thickness of the first layer is not particularly limited and may be appropriately selected depending on the intended purpose, but is preferably 2 μm to 100 μm, more preferably 4 μm to 50 μm, and particularly preferably 10 μm to 30 μm. When the average thickness is within a preferable range, it is advantageous in that the antifogging property is excellent, the interference unevenness is reduced, and the productivity is excellent. When the average thickness is within a particularly preferable range, interference unevenness can be further reduced.
<第2の層>
 前記第2の層の表面の純水接触角は、90°以上である。
 前記第2の層は、低屈折率フィラーを少なくとも含有し、更に必要に応じて、その他の成分を含有する。
 前記第2の層は、例えば、活性エネルギー線硬化性樹脂組成物の硬化物である。
 前記第2の層は、撥水性分子構造を含有することが好ましい。前記撥水性分子構造は、純水接触角を高くすることに寄与するとともに、反射防止機能の向上にも寄与する。
 前記第2の層は、親水性分子構造を含有することが好ましい。前記第2の層が前記親水性分子構造を有することで、防曇性が向上する。
<Second layer>
The pure water contact angle on the surface of the second layer is 90 ° or more.
The second layer contains at least a low refractive index filler, and further contains other components as necessary.
The second layer is, for example, a cured product of an active energy ray curable resin composition.
The second layer preferably contains a water repellent molecular structure. The water-repellent molecular structure contributes to increasing the pure water contact angle and also contributes to improving the antireflection function.
The second layer preferably contains a hydrophilic molecular structure. When the second layer has the hydrophilic molecular structure, the antifogging property is improved.
 前記撥水性分子構造としては、撥水性の分子構造であれば、特に制限はなく、目的に応じて適宜選択することができ、例えば、撥水性の有機分子構造などが挙げられ、具体的には、フルオロアルキル基、フルオロアルキルエーテル基、ジメチルシロキサン基などが挙げられる。前記撥水性分子構造は、例えば、前記第2の層を作製する際に、後述するラジカル重合性不飽和基を有する撥水性モノマー(以下、「撥水性モノマー」と称することがある)を用いることにより、前記第2の層中に導入することができる。 The water-repellent molecular structure is not particularly limited as long as it is a water-repellent molecular structure, and can be appropriately selected according to the purpose. Examples thereof include a water-repellent organic molecular structure. , Fluoroalkyl group, fluoroalkyl ether group, dimethylsiloxane group and the like. The water-repellent molecular structure uses, for example, a water-repellent monomer having a radical polymerizable unsaturated group described later (hereinafter sometimes referred to as “water-repellent monomer”) when the second layer is formed. Can be introduced into the second layer.
 前記親水性分子構造としては、親水性の分子構造であれば、特に制限はなく、目的に応じて適宜選択することができ、例えば、親水性の有機分子構造などが挙げられ、具体的には、ポリオキシアルキル鎖、ポリオキシアルキレン鎖などが挙げられる。前記親水性分子構造は、例えば、前記第2の層を作製する際に、前記親水性モノマーを用いることにより、前記第2の層中に導入することができる。 The hydrophilic molecular structure is not particularly limited as long as it is a hydrophilic molecular structure, and can be appropriately selected according to the purpose. Examples thereof include a hydrophilic organic molecular structure. Specifically, , Polyoxyalkyl chain, polyoxyalkylene chain and the like. The hydrophilic molecular structure can be introduced into the second layer by using the hydrophilic monomer when the second layer is produced, for example.
 前記第2の層の表面は平滑であることが好ましい。ここで、表面が平滑であるとは、意図的に形成された凸部又は凹部を表面に有さないことを意味する。例えば、前記防曇防汚積層体においては、前記第2の層を形成する際(前記硬化物を形成する際)に、物理的な加工による微細な凸部又は凹部が表面に形成されていないことが好ましい。
 前記第2の層が表面に微細な凸部又は凹部を有さないことで、マジックインキ、指紋、汗、化粧品(ファンデーション、UVプロテクターなど)等の水性汚れ及び/又は油性汚れが付着し難い。また、例えそれらの汚れが付着した場合でもティッシュなどで容易に除去でき、防曇特性の持続性に優れた物品を得ることができる。
The surface of the second layer is preferably smooth. Here, that the surface is smooth means that there are no intentionally formed convex portions or concave portions on the surface. For example, in the anti-fogging and antifouling laminate, when the second layer is formed (when the cured product is formed), fine convex portions or concave portions by physical processing are not formed on the surface. It is preferable.
Since the second layer does not have fine convex portions or concave portions on the surface, aqueous stains and / or oily stains such as magic ink, fingerprints, sweat, cosmetics (foundation, UV protector, etc.) are difficult to adhere. Moreover, even if those stains are adhered, it can be easily removed with a tissue or the like, and an article having excellent anti-fogging properties can be obtained.
-純水接触角-
 前記第2の層の表面の純水接触角は、90°以上であり、100°以上が好ましく、110°以上がより好ましく、115°以上が特に好ましい。前記純水接触角の上限値としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、170°などが挙げられる。
 前記純水接触角は、例えば、接触角計であるPCA-1(協和界面化学株式会社製)を用いて、下記条件で測定することができる。
 ・蒸留水をプラスチックシリンジに入れて、その先端にステンレス製の針を取り付けて評価面に滴下する。
 ・水の滴下量:2μL
 ・測定温度:25℃
 水を滴下して5秒経過後の接触角を、前記第2の層表面の任意の10か所で測定し、その平均値を純水接触角とする。
-Pure water contact angle-
The pure water contact angle on the surface of the second layer is 90 ° or more, preferably 100 ° or more, more preferably 110 ° or more, and particularly preferably 115 ° or more. There is no restriction | limiting in particular as an upper limit of the said pure water contact angle, According to the objective, it can select suitably, For example, 170 degrees etc. are mentioned.
The pure water contact angle can be measured, for example, using a contact angle meter PCA-1 (manufactured by Kyowa Interface Chemical Co., Ltd.) under the following conditions.
-Put distilled water in a plastic syringe, attach a stainless steel needle to the tip, and drop it onto the evaluation surface.
・ Drip amount of water: 2μL
・ Measurement temperature: 25 ℃
The contact angle after 5 seconds from dropping water is measured at any 10 locations on the surface of the second layer, and the average value is defined as the pure water contact angle.
-ヘキサデカン接触角-
 前記第2の層の表面のヘキサデカン接触角は、30°以上が好ましく、60°以上がより好ましく、70°以上が更により好ましく、80°以上が特に好ましい。前記ヘキサデカン接触角の上限値としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、150°などが挙げられる。
 前記ヘキサデカン接触角が、前記好ましい範囲内であると、表面に指紋、皮脂、汗、涙、化粧品などが付着した場合でも、簡単に払拭することができ、優れた防曇性が維持できる点で有利である。
 前記ヘキサデカン接触角は、例えば、接触角計であるPCA-1(協和界面化学株式会社製)を用いて、下記条件で測定することができる。
 ・ヘキサデカンをプラスチックシリンジに入れて、その先端にテフロンコートステンレス製の針を取り付けて評価面に滴下する。
 ・ヘキサデカンの滴下量:1μL
 ・測定温度:25℃
 ヘキサデカンを滴下して20秒経過後の接触角を、前記第2の層表面の任意の10か所で測定し、その平均値をヘキサデカン接触角とする。
-Hexadecane contact angle-
The hexadecane contact angle on the surface of the second layer is preferably 30 ° or more, more preferably 60 ° or more, still more preferably 70 ° or more, and particularly preferably 80 ° or more. There is no restriction | limiting in particular as an upper limit of the said hexadecane contact angle, According to the objective, it can select suitably, For example, 150 degrees etc. are mentioned.
When the hexadecane contact angle is within the preferred range, even when fingerprints, sebum, sweat, tears, cosmetics, etc. adhere to the surface, it can be easily wiped away, and excellent antifogging properties can be maintained. It is advantageous.
The hexadecane contact angle can be measured, for example, using a contact angle meter PCA-1 (manufactured by Kyowa Interface Chemical Co., Ltd.) under the following conditions.
-Put hexadecane in a plastic syringe, attach a Teflon-coated stainless steel needle to the tip, and drop it onto the evaluation surface.
・ Drop amount of hexadecane: 1 μL
・ Measurement temperature: 25 ℃
The contact angle after 20 seconds from the dropping of hexadecane is measured at any 10 locations on the surface of the second layer, and the average value is defined as the hexadecane contact angle.
 純水接触角が上記範囲内であり、且つヘキサデカン接触角が上記範囲内であると、マジックインキ、指紋、汗、化粧品(ファンデーション、UVプロテクターなど)等の水性汚れ及び/又は油性汚れが付着した場合でも、それらの汚れが第1の層に浸透することが防止される。そのため、ティッシュなどによる払拭により、汚れは容易に払拭できるとともに、防曇性が汚れ付着前の状態に戻る。 When the pure water contact angle is within the above range and the hexadecane contact angle is within the above range, water-based stains such as magic ink, fingerprints, sweat, cosmetics (foundation, UV protector, etc.) and / or oily stains are adhered. Even in those cases, the dirt is prevented from penetrating the first layer. Therefore, the dirt can be easily wiped off by wiping with a tissue or the like, and the antifogging property returns to the state before the dirt is adhered.
-動摩擦係数-
 前記第2の層の動摩擦係数は、0.4以下であることが好ましい。そうすることにより、払拭による物理的な圧力を低く抑えることができ、耐傷性が向上する。また、ティッシュなどでの汚れの払拭性が向上する。
 前記動摩擦係数は、例えば、以下の方法により測定できる。
 Triboster TS501(商品名;協和界面科学株式会社製)を用いて測定する。面接触子にBEMCOT(登録商標) M-3II(商品名、旭化成株式会社製)を両面テープで貼り付け、測定荷重50g/cm、測定速度1.7mm/s、測定距離20mmとし、12回測定してその平均値を得る。これを任意の5箇所で繰り返し、得られた5つの値の平均値を動摩擦係数とする。
-Dynamic friction coefficient-
The dynamic friction coefficient of the second layer is preferably 0.4 or less. By doing so, the physical pressure by wiping can be kept low, and scratch resistance is improved. In addition, the ability to wipe off dirt with a tissue or the like is improved.
The dynamic friction coefficient can be measured, for example, by the following method.
Measurement is performed using Triboster TS501 (trade name; manufactured by Kyowa Interface Science Co., Ltd.). BEMCOT (registered trademark) M-3II (trade name, manufactured by Asahi Kasei Co., Ltd.) is attached to the surface contactor with a double-sided tape, measuring load 50 g / cm 2 , measuring speed 1.7 mm / s, measuring distance 20 mm, 12 times. Measure and obtain the average value. This is repeated at five arbitrary locations, and the average value of the five values obtained is taken as the dynamic friction coefficient.
-低屈折率フィラー-
 前記低屈折率フィラーとしては、低屈折率のフィラーであれば、特に制限はなく、目的に応じて適宜選択することができる。
 ここで、「低屈折率」とは、一般的なプラスチックの屈折率1.50~1.70よりも低い屈折率を意味する。
 前記低屈折率フィラーの屈折率としては、1.10~1.40などが挙げられる。
-Low refractive index filler-
The low refractive index filler is not particularly limited as long as it is a low refractive index filler, and can be appropriately selected according to the purpose.
Here, “low refractive index” means a refractive index lower than the refractive index of 1.50 to 1.70 of a general plastic.
Examples of the refractive index of the low refractive index filler include 1.10 to 1.40.
 前記低屈折率フィラーの材質としては、例えば、フッ化マグネシム、フッ化リチウム、フッ化カルシウム、フッ化アルミニウム、シリカなどが挙げられる。
 また、前記低屈折率フィラーの構造としては、中実粒子、中空粒子、多孔質粒子などが挙げられる。
 これらの中でも、前記低屈折率フィラーとしては、中空シリカ、多孔質シリカが好ましい。
Examples of the material for the low refractive index filler include magnesium fluoride, lithium fluoride, calcium fluoride, aluminum fluoride, and silica.
Examples of the structure of the low refractive index filler include solid particles, hollow particles, and porous particles.
Among these, as the low refractive index filler, hollow silica and porous silica are preferable.
 前記低屈折率フィラーの平均粒径としては、特に制限はなく、目的に応じて適宜選択することができるが、10nm~200nmが好ましく、10nm~100nmがより好ましい。 The average particle size of the low refractive index filler is not particularly limited and may be appropriately selected depending on the intended purpose, but is preferably 10 nm to 200 nm, and more preferably 10 nm to 100 nm.
 前記低屈折率フィラーの表面は、末端に(メタ)アクリル基、ビニル基、或いはエポキシ基をもつ有機系分散剤で表面処理されていることが好ましい。この場合、前記低屈折率フィラーを含有する活性エネルギー線硬化性樹脂組成物の硬化工程で有機系分散剤が周囲のモノマーと共重合し、得られる硬化物が低屈折率フィラーを含んで全体が一体化するので、塗膜強度や可撓性が向上する。 The surface of the low refractive index filler is preferably surface-treated with an organic dispersant having a (meth) acryl group, a vinyl group, or an epoxy group at the terminal. In this case, the organic dispersant is copolymerized with surrounding monomers in the curing step of the active energy ray-curable resin composition containing the low refractive index filler, and the resulting cured product contains the low refractive index filler and is entirely contained. Since they are integrated, the coating strength and flexibility are improved.
 前記第2の層における前記低屈折率フィラーの含有量としては、特に制限はなく、目的に応じて適宜選択することができるが、5質量%~80質量%が好ましい。前記含有量が、5質量%未満であると、十分な反射防止機能が得られないことがあり、80質量%を超えると、耐傷性や加工性が低下することがある。 The content of the low refractive index filler in the second layer is not particularly limited and may be appropriately selected depending on the intended purpose, but is preferably 5% by mass to 80% by mass. When the content is less than 5% by mass, a sufficient antireflection function may not be obtained, and when it exceeds 80% by mass, scratch resistance and workability may be deteriorated.
-活性エネルギー線硬化性樹脂組成物-
 前記第2の層が前記活性エネルギー線硬化性樹脂組成物の硬化物である場合、前記活性エネルギー線硬化性樹脂組成物は、前記低屈折率フィラーと、撥水性モノマーと、重合開始剤とを含有し、好ましくは親水性モノマーを含有し、更に必要に応じて、その他の成分を含有する。
-Active energy ray-curable resin composition-
When the second layer is a cured product of the active energy ray curable resin composition, the active energy ray curable resin composition comprises the low refractive index filler, a water repellent monomer, and a polymerization initiator. Containing, preferably containing a hydrophilic monomer, and further containing other components as required.
 前記親水性モノマーとしては、例えば、前記第1の層の説明における前記親水性モノマーが挙げられる。好ましい態様も同様である。
 前記重合開始剤としては、例えば、前記第1の層の説明における前記重合開始剤が挙げられる。好ましい態様も同様である。
 前記その他の成分としては、例えば、前記第1の層の説明における前記その他の成分が挙げられる。好ましい態様も同様である。
Examples of the hydrophilic monomer include the hydrophilic monomer in the description of the first layer. The preferred embodiment is also the same.
As said polymerization initiator, the said polymerization initiator in description of the said 1st layer is mentioned, for example. The preferred embodiment is also the same.
Examples of the other components include the other components in the description of the first layer. The preferred embodiment is also the same.
--撥水性モノマー--
 前記ラジカル重合性不飽和基を有する撥水性モノマーとしては、例えば、ラジカル重合性不飽和基とフッ素及びケイ素の少なくともいずれかとを有するモノマーが挙げられる。そのような撥水性モノマーとしては、例えば、フッ素及びケイ素の少なくともいずれかを有する(メタ)アクリレートが挙げられ、更には、例えば、フッ化(メタ)アクリレート、シリコーン(メタ)アクリレートなどが挙げられ、更に具体的には、フルオロアルキル基を有する(メタ)アクリレート、フルオロアルキルエーテル基を有する(メタ)アクリレート、ジメチルシロキサン基を有する(メタ)アクリレートなどが挙げられる。
--- Water repellent monomer-
Examples of the water repellent monomer having a radical polymerizable unsaturated group include a monomer having a radical polymerizable unsaturated group and at least one of fluorine and silicon. Examples of such water-repellent monomers include (meth) acrylates having at least one of fluorine and silicon, and further examples include fluorinated (meth) acrylates, silicone (meth) acrylates, and the like. More specifically, (meth) acrylate having a fluoroalkyl group, (meth) acrylate having a fluoroalkyl ether group, (meth) acrylate having a dimethylsiloxane group, and the like can be given.
 前記撥水性モノマーとしては、更には、以下の(1)~(5)に分類される撥水性モノマーが挙げられる。
(1)テトラフロロエチレン、ヘキサフロロプロピレン、3,3,3-トリフロロプロピレン、クロロトリフロロエチレンなどのフロロオレフィン類;
(2)アルキルパーフロロビニルエーテル類もしくはアルコキシアルキルパーフロロビニルエーテル類;
(3)パーフロロ(メチルビニルエーテル)、パーフロロ(エチルビニルエーテル)、パーフロロ(プロピルビニルエーテル)、パーフロロ(ブチルビニルエーテル)、パーフロロ(イソブチルビニルエーテル)などのパーフロロ(アルキルビニルエーテル)類;
(4)パーフロロ(プロポキシプロピルビニルエーテル)などのパーフロロ(アルコキシアルキルビニルエーテル)類;
(5)トリフロロエチル(メタ)アクリレート、テトラフロロプロピル(メタ)アクリレート、オクタフロロペンチル(メタ)アクリレート、ヘプタデカフロロデシル(メタ)アクリレートなどのフッ素含有(メタ)アクリレート類
 前記撥水性モノマーは、前記親水性モノマーと相溶することが好ましい。
Examples of the water repellent monomer further include water repellent monomers classified into the following (1) to (5).
(1) Fluoroolefins such as tetrafluoroethylene, hexafluoropropylene, 3,3,3-trifluoropropylene, chlorotrifluoroethylene;
(2) alkyl perfluoro vinyl ethers or alkoxyalkyl perfluoro vinyl ethers;
(3) Perfluoro (alkyl vinyl ether) such as perfluoro (methyl vinyl ether), perfluoro (ethyl vinyl ether), perfluoro (propyl vinyl ether), perfluoro (butyl vinyl ether), perfluoro (isobutyl vinyl ether);
(4) Perfluoro (alkoxyalkyl vinyl ether) such as perfluoro (propoxypropyl vinyl ether);
(5) Fluorine-containing (meth) acrylates such as trifluoroethyl (meth) acrylate, tetrafluoropropyl (meth) acrylate, octafluoropentyl (meth) acrylate, heptadecafluorodecyl (meth) acrylate, etc. It is preferable to be compatible with the hydrophilic monomer.
 前記撥水性モノマーは、市販品であってもよい。
 前記フッ化(メタ)アクリレートの市販品としては、例えば、信越化学工業株式会社製KY-1200シリーズ、DIC株式会社製メガファックRSシリーズ、ダイキン工業株式会社製オプツールDACなどが挙げられる。
 前記シリコーン(メタ)アクリレートの市販品としては、例えば、信越化学工業株式会社製X-22-164シリーズ、エボニック社製TEGO Radシリーズなどが挙げられる。
The water repellent monomer may be a commercially available product.
Examples of commercially available products of the fluorinated (meth) acrylate include KY-1200 series manufactured by Shin-Etsu Chemical Co., Ltd., MegaFac RS series manufactured by DIC Corporation, and OPTOOL DAC manufactured by Daikin Industries, Ltd.
Examples of commercially available silicone (meth) acrylates include X-22-164 series manufactured by Shin-Etsu Chemical Co., Ltd., and TEGO Rad series manufactured by Evonik.
 前記活性エネルギー線硬化性樹脂組成物における前記撥水性モノマーの含有量としては、特に制限はなく、目的に応じて適宜選択することができるが、0.018質量%超が好ましく、0.018質量%超5.0質量%未満が好ましく、0.075質量%~3.0質量%がより好ましく、0.18質量%~1.5質量%が特に好ましい。前記含有量が、5.0質量%以上であると、硬化物の撥水性は優れるものの、ガラス転移温度が低くなることで、柔らかくなりすぎ、耐磨耗性が低下することがある。また、前記第2の層中に前記撥水性モノマーの反応物が多く存在する結果、呼気防曇性が低下することがある。なお、前記活性エネルギー線硬化性樹脂組成物が揮発分(例えば、有機溶剤)を含有する場合、前記含有量は、前記活性エネルギー線硬化性樹脂組成物の不揮発分に対する含有量である。 There is no restriction | limiting in particular as content of the said water-repellent monomer in the said active energy ray curable resin composition, Although it can select suitably according to the objective, 0.018 mass% is preferable, 0.018 mass % To less than 5.0% by mass, more preferably 0.075% by mass to 3.0% by mass, and particularly preferably 0.18% by mass to 1.5% by mass. When the content is 5.0% by mass or more, although the water repellency of the cured product is excellent, the glass transition temperature becomes low, so that it becomes too soft and wear resistance may be lowered. In addition, as a result of the presence of a large amount of the reaction product of the water repellent monomer in the second layer, the breath antifogging property may be lowered. In addition, when the said active energy ray curable resin composition contains a volatile matter (for example, organic solvent), the said content is content with respect to the non volatile matter of the said active energy ray curable resin composition.
 前記第2の層の平均厚みとしては、特に制限はなく、目的に応じて適宜選択することができるが、視感反射率を低く抑え反射防止機能を高めることができる点から、10nm~200nmが好ましく、10nm~100nmがより好ましい。 The average thickness of the second layer is not particularly limited and may be appropriately selected depending on the intended purpose. However, it is 10 nm to 200 nm from the viewpoint that the luminous reflectance can be reduced and the antireflection function can be enhanced. 10 nm to 100 nm is more preferable.
<その他の部材>
 前記その他の部材としては、第3の層、第4の層、アンカー層、保護層などが挙げられる。
<Other members>
Examples of the other members include a third layer, a fourth layer, an anchor layer, and a protective layer.
-第3の層-
 前記第3の層としては、前記第1の層と前記第2の層との間に配され、前記第1の層及び前記第2の層と異なる層であれば、特に制限はなく、目的に応じて適宜選択することができる。
 前記第3の層を設けることで、耐傷性が向上する。
 ここで、前記第1の層及び前記第2の層と異なる層としては、例えば、前記第1の層よりも薄く、かつ前記第2の層よりも厚い層などが挙げられる。
-Third layer-
The third layer is not particularly limited as long as it is disposed between the first layer and the second layer and is different from the first layer and the second layer. It can be selected as appropriate according to the conditions.
By providing the third layer, scratch resistance is improved.
Here, examples of the layer different from the first layer and the second layer include a layer thinner than the first layer and thicker than the second layer.
 前記第3の層の表面の純水接触角は、65°以下であることが好ましい。そうすることにより、前記第1の層と前記第3の層との密着性が向上するとともに、得られる防曇防汚積層体の耐傷性がより向上する。 The pure water contact angle on the surface of the third layer is preferably 65 ° or less. By doing so, the adhesion between the first layer and the third layer is improved, and the scratch resistance of the obtained anti-fogging and antifouling laminate is further improved.
 前記第3の層としては、製造が容易な点で、樹脂製の層が好ましい。
 前記第3の層は、親水性分子構造を含有することが好ましい。前記第3の層における前記親水性分子構造は、分子量1000以下であることが好ましい。前記第3の層における前記親水性分子構造が、分子量1000以下の低分子量であることで、前記第1の層と前記第3の層との密着性が向上する。
 前記第3の層としては、特に制限はなく、目的に応じて適宜選択することができるが、活性エネルギー線硬化性樹脂組成物の硬化物を含有することが好ましい。
The third layer is preferably a resin layer in terms of easy manufacture.
The third layer preferably contains a hydrophilic molecular structure. The hydrophilic molecular structure in the third layer preferably has a molecular weight of 1000 or less. When the hydrophilic molecular structure in the third layer has a low molecular weight of 1000 or less, the adhesion between the first layer and the third layer is improved.
There is no restriction | limiting in particular as said 3rd layer, Although it can select suitably according to the objective, It is preferable to contain the hardened | cured material of an active energy ray curable resin composition.
-活性エネルギー線硬化性樹脂組成物-
 前記活性エネルギー線硬化性樹脂組成物は、例えば、ラジカル重合性不飽和基を有する親水性モノマー(以下、「親水性モノマー」と称することがある)と、光重合開始剤とを少なくとも含有し、更に必要に応じて、その他の成分を含有する。
-Active energy ray-curable resin composition-
The active energy ray-curable resin composition contains, for example, at least a hydrophilic monomer having a radical polymerizable unsaturated group (hereinafter sometimes referred to as “hydrophilic monomer”) and a photopolymerization initiator, Furthermore, other components are contained as necessary.
 前記親水性モノマーとしては、例えば、前記第1の層の説明における前記親水性モノマーが挙げられる。好ましい態様も同様である。
 前記重合開始剤としては、例えば、前記第1の層の説明における前記重合開始剤が挙げられる。好ましい態様も同様である。
 前記その他の成分としては、例えば、前記第1の層の説明における前記その他の成分が挙げられる。好ましい態様も同様である。
Examples of the hydrophilic monomer include the hydrophilic monomer in the description of the first layer. The preferred embodiment is also the same.
As said polymerization initiator, the said polymerization initiator in description of the said 1st layer is mentioned, for example. The preferred embodiment is also the same.
Examples of the other components include the other components in the description of the first layer. The preferred embodiment is also the same.
 前記第3の層の平均厚みとしては、特に制限はなく、目的に応じて適宜選択することができるが、0.5μm~5μmが好ましく、0.5μm~3μmがより好ましく、0.5μm~2μmが特に好ましい。 The average thickness of the third layer is not particularly limited and may be appropriately selected depending on the intended purpose, but is preferably 0.5 μm to 5 μm, more preferably 0.5 μm to 3 μm, and more preferably 0.5 μm to 2 μm. Is particularly preferred.
-第4の層-
 前記第4の層としては、前記第1の層と前記第2の層との間に配され、高屈折率フィラーを含有する層であれば、特に制限はなく、目的に応じて適宜選択することができる。
 前記防曇防汚積層体が前記第4の層を有することは、視感反射率を低く抑え反射防止機能を高めることができる点で好ましい。
-Fourth layer-
The fourth layer is not particularly limited as long as it is a layer that is disposed between the first layer and the second layer and contains a high refractive index filler, and is appropriately selected according to the purpose. be able to.
It is preferable that the anti-fogging and antifouling laminate has the fourth layer in that the luminous reflectance can be reduced and the antireflection function can be enhanced.
 前記高屈折率フィラーとしては、前記低屈折率フィラーよりも屈折率が高いフィラーであれば、特に制限はなく、目的に応じて適宜選択することができる。
 前記高屈折率フィラーの屈折率としては、1.60以上が好ましく、1.70~2.50が好ましい。
The high refractive index filler is not particularly limited as long as it is a filler having a higher refractive index than the low refractive index filler, and can be appropriately selected according to the purpose.
The refractive index of the high refractive index filler is preferably 1.60 or more, and preferably 1.70 to 2.50.
 前記高屈折率フィラーの材質としては、特に制限はなく、目的に応じて適宜選択することができるが、チタニア、ジルコニア、酸化錫、酸化インジウム錫、アンチモンドープ酸化錫、五酸化アンチモン、アルミナ、酸化亜鉛などが挙げられる。
 前記高屈折率フィラーは中実粒子であることが好ましい。
The material of the high refractive index filler is not particularly limited and may be appropriately selected depending on the intended purpose. However, titania, zirconia, tin oxide, indium tin oxide, antimony-doped tin oxide, antimony pentoxide, alumina, oxide Examples include zinc.
The high refractive index filler is preferably solid particles.
 前記高屈折率フィラーの平均粒径としては、特に制限はなく、目的に応じて適宜選択することができるが、10nm~200nmが好ましく、10nm~100nmがより好ましい。 The average particle size of the high refractive index filler is not particularly limited and may be appropriately selected depending on the intended purpose, but is preferably 10 nm to 200 nm, and more preferably 10 nm to 100 nm.
 前記高屈折率フィラーの表面は、末端に(メタ)アクリル基、ビニル基、或いはエポキシ基をもつ有機系分散剤で表面処理されていることが好ましい。この場合、前記高屈折率フィラーを含有する活性エネルギー線硬化性樹脂組成物の硬化工程で有機系分散剤が周囲のモノマーと共重合し、得られる硬化物が高屈折率フィラーを含んで全体が一体化するので、塗膜強度や可撓性が向上する。 The surface of the high refractive index filler is preferably surface-treated with an organic dispersant having a (meth) acryl group, a vinyl group, or an epoxy group at the terminal. In this case, the organic dispersant is copolymerized with surrounding monomers in the curing step of the active energy ray-curable resin composition containing the high refractive index filler, and the resulting cured product contains the high refractive index filler and the whole Since they are integrated, the coating strength and flexibility are improved.
 前記第4の層における前記高屈折率フィラーの含有量としては、特に制限はなく、目的に応じて適宜選択することができるが、5質量%~80質量%が好ましい。前記含有量が、5質量%未満であると、十分な反射防止機能が得られないことがあり、80質量%を超えると、耐傷性や加工性が低下することがある。 The content of the high refractive index filler in the fourth layer is not particularly limited and may be appropriately selected depending on the intended purpose, but is preferably 5% by mass to 80% by mass. When the content is less than 5% by mass, a sufficient antireflection function may not be obtained, and when it exceeds 80% by mass, scratch resistance and workability may be deteriorated.
 前記第4の層は、防曇性を向上させる点で、親水性分子構造を含有することが好ましい。
 前記親水性分子構造としては、親水性の分子構造であれば、特に制限はなく、目的に応じて適宜選択することができ、例えば、親水性の有機分子構造などが挙げられ、具体的には、ポリオキシアルキル鎖、ポリオキシアルキレン鎖などが挙げられる。前記親水性分子構造は、例えば、前記第4の層を作製する際に、前述の親水性モノマーを用いることにより、前記第4の層中に導入することができる。
The fourth layer preferably contains a hydrophilic molecular structure in terms of improving antifogging properties.
The hydrophilic molecular structure is not particularly limited as long as it is a hydrophilic molecular structure, and can be appropriately selected according to the purpose. Examples thereof include a hydrophilic organic molecular structure. Specifically, , Polyoxyalkyl chain, polyoxyalkylene chain and the like. The hydrophilic molecular structure can be introduced into the fourth layer, for example, by using the hydrophilic monomer described above when the fourth layer is produced.
 前記第4の層の形成方法としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、前記高屈折率フィラーと、重合開始剤とを少なくとも含有し、好ましくは、親水性モノマーを含有し、更に必要に応じてその他の成分を含有する活性エネルギー線硬化性樹脂組成物を、前記第1の層上に塗布し、次いで、活性エネルギー線を照射して硬化させることにより形成する方法などが挙げられる。 There is no restriction | limiting in particular as a formation method of the said 4th layer, According to the objective, it can select suitably, For example, it contains the said high refractive index filler and a polymerization initiator at least, Preferably, it is hydrophilic Formed by applying an active energy ray-curable resin composition containing a monomer and further containing other components as necessary onto the first layer, and then irradiating and curing the active energy ray. The method of doing is mentioned.
 前記親水性モノマーとしては、例えば、前記第1の層の説明における前記親水性モノマーが挙げられる。好ましい態様も同様である。
 前記重合開始剤としては、例えば、前記第1の層の説明における前記重合開始剤が挙げられる。好ましい態様も同様である。
 前記その他の成分としては、例えば、前記第1の層の説明における前記その他の成分が挙げられる。好ましい態様も同様である。
Examples of the hydrophilic monomer include the hydrophilic monomer in the description of the first layer. The preferred embodiment is also the same.
As said polymerization initiator, the said polymerization initiator in description of the said 1st layer is mentioned, for example. The preferred embodiment is also the same.
Examples of the other components include the other components in the description of the first layer. The preferred embodiment is also the same.
 前記第4の層の平均厚みとしては、特に制限はなく、目的に応じて適宜選択することができるが、視感反射率を低く抑え反射防止機能を高めることができる点から、10nm~200nmが好ましく、10nm~100nmがより好ましい。 The average thickness of the fourth layer is not particularly limited and may be appropriately selected depending on the intended purpose, but is 10 nm to 200 nm from the viewpoint that the luminous reflectance can be reduced and the antireflection function can be enhanced. 10 nm to 100 nm is more preferable.
-アンカー層-
 前記アンカー層は、前記基材と、前記第1の層との間に配される層である。
 前記アンカー層を配することにより、前記基材と前記第1の層との接着性を向上できる。
 前記アンカー層の屈折率は、干渉ムラを防止するために、前記第1の層の屈折率と近いことが好ましい。そのため、前記アンカー層の屈折率は、前記第1の層の屈折率の±0.10以内が好ましく、±0.05以内がより好ましい。または、前記アンカー層の屈折率は、前記第1の層の屈折率と前記基材の屈折率との間であることが好ましい。
-Anchor layer-
The anchor layer is a layer disposed between the base material and the first layer.
By disposing the anchor layer, the adhesion between the base material and the first layer can be improved.
In order to prevent interference unevenness, the anchor layer preferably has a refractive index close to that of the first layer. Therefore, the refractive index of the anchor layer is preferably within ± 0.10 of the refractive index of the first layer, and more preferably within ± 0.05. Alternatively, the refractive index of the anchor layer is preferably between the refractive index of the first layer and the refractive index of the substrate.
 前記アンカー層は、例えば、活性エネルギー線硬化性樹脂組成物を塗布することにより形成できる。即ち、前記アンカー層は、例えば、活性エネルギー線硬化性樹脂組成物が活性エネルギー線により硬化した硬化物である。前記活性エネルギー線硬化性樹脂組成物としては、例えば、ウレタン(メタ)アクリレートと、光重合開始剤とを少なくとも含有し、更に必要に応じて、その他の成分を含有する活性エネルギー線硬化性樹脂組成物などが挙げられる。前記ウレタン(メタ)アクリレート、前記光重合開始剤としては、例えば、前記第1の層の説明において例示した前記ウレタン(メタ)アクリレート、前記光重合開始剤がそれぞれ挙げられる。前記塗布の方法としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、ワイヤーバーコーティング、ブレードコーティング、スピンコーティング、リバースロールコーティング、ダイコーティング、スプレーコーティング、ロールコーティング、グラビアコーティング、マイクログラビアコーティング、リップコーティング、エアーナイフコーティング、カーテンコーティング、コンマコート法、ディッピング法などが挙げられる。 The anchor layer can be formed, for example, by applying an active energy ray-curable resin composition. That is, the anchor layer is, for example, a cured product obtained by curing an active energy ray-curable resin composition with active energy rays. As the active energy ray-curable resin composition, for example, an active energy ray-curable resin composition containing at least urethane (meth) acrylate and a photopolymerization initiator, and further containing other components as necessary. Such as things. Examples of the urethane (meth) acrylate and the photopolymerization initiator include the urethane (meth) acrylate and the photopolymerization initiator exemplified in the description of the first layer. There is no restriction | limiting in particular as said application | coating method, According to the objective, it can select suitably, For example, wire bar coating, blade coating, spin coating, reverse roll coating, die coating, spray coating, roll coating, gravure coating , Micro gravure coating, lip coating, air knife coating, curtain coating, comma coating method, dipping method and the like.
 前記基材が無機基材の場合、前記アンカー層の材料としては、例えば、シランカップリング剤、チタネートカップリング剤、アルミネートカップリング剤などが挙げられる。これらは、ラジカル重合性不飽和基を有することが好ましい。
 前記基材が無機基材の場合の前記アンカー層の形成方法としては、例えば、前記材料を溶かした溶液を前記無機基材上に塗布し、溶媒を乾燥させた後、加熱処理を所定時間行う方法などが挙げられる。
 前記溶液に使用する溶媒としては、前記材料を溶解するものを選択する。例えば、水、アルコール(例えば、メタノール、エタノール、n-プロパノール、i-プロパノール、n-ブタノール、i-ブタノール、sec-ブタノール、tert-ブタノール等)、アノン(例えば、シクロヘキサノン、シクロペンタノン)、アミド(例えば、N,N-ジメチルホルムアミド:DMF)、スルフィド(例えば、ジメチルスルホキシド:DMSO)などから選択される少なくとも1種類以上が使用される。
 塗布の方法としては、特に限定されるものではなく公知の塗布法を用いることができる。公知の塗布法としては、例えば、マイクログラビアコート法、ワイヤーバーコート法、ダイレクトグラビアコート法、ダイコート法、ディップ法、スプレーコート法、リバースロールコート法、カーテンコート法、コンマコート法、ナイフコート法、スピンコート法、凸版印刷、オフセット印刷、グラビア印刷、凹版印刷、ゴム版印刷、スクリーン印刷、インクジェット印刷などが挙げられる。
 加熱温度としては、例えば、80℃以上200℃以下である。加熱時間は、例えば、1分間以上12時間以内である。
When the base material is an inorganic base material, examples of the material of the anchor layer include a silane coupling agent, a titanate coupling agent, and an aluminate coupling agent. These preferably have a radically polymerizable unsaturated group.
As a method for forming the anchor layer when the substrate is an inorganic substrate, for example, a solution in which the material is dissolved is applied onto the inorganic substrate, the solvent is dried, and then heat treatment is performed for a predetermined time. The method etc. are mentioned.
As a solvent used for the solution, a solvent that dissolves the material is selected. For example, water, alcohol (eg, methanol, ethanol, n-propanol, i-propanol, n-butanol, i-butanol, sec-butanol, tert-butanol, etc.), anone (eg, cyclohexanone, cyclopentanone), amide At least one selected from (for example, N, N-dimethylformamide: DMF), sulfide (for example, dimethylsulfoxide: DMSO) and the like is used.
The coating method is not particularly limited, and a known coating method can be used. Known coating methods include, for example, micro gravure coating method, wire bar coating method, direct gravure coating method, die coating method, dip method, spray coating method, reverse roll coating method, curtain coating method, comma coating method, knife coating method. , Spin coating, letterpress printing, offset printing, gravure printing, intaglio printing, rubber printing, screen printing, ink jet printing, and the like.
As heating temperature, it is 80 to 200 degreeC, for example. The heating time is, for example, from 1 minute to 12 hours.
 前記アンカー層の平均厚みとしては、特に制限はなく、目的に応じて適宜選択することができるが、0.01μm~10μmが好ましく、0.1μm~5μmがより好ましく、0.3μm~3μmが特に好ましい。 The average thickness of the anchor layer is not particularly limited and may be appropriately selected depending on the intended purpose, but is preferably 0.01 μm to 10 μm, more preferably 0.1 μm to 5 μm, and particularly preferably 0.3 μm to 3 μm. preferable.
 なお、前記アンカー層には、反射率低減や帯電防止の機能を付与してもよい。 It should be noted that the anchor layer may be provided with a function of reducing reflectivity or preventing charging.
-保護層-
 前記保護層は、前記第2の層の表面(純水接触角が90°以上である表面)を保護する層である。
 前記保護層は、前記防曇防汚積層体を用いて後述する物品を製造する際に、前記表面を保護する。
 前記保護層は、前記第2の層の前記表面上に配される。
-Protective layer-
The protective layer is a layer that protects the surface of the second layer (the surface having a pure water contact angle of 90 ° or more).
The said protective layer protects the said surface, when manufacturing the article | item mentioned later using the said anti-fogging antifouling laminated body.
The protective layer is disposed on the surface of the second layer.
 前記保護層の材質としては、例えば、前記アンカー層と同様の材質が挙げられる。 Examples of the material of the protective layer include the same material as that of the anchor layer.
 前記防曇防汚積層体の伸び率としては、特に制限はなく、目的に応じて適宜選択することができるが、10%以上が好ましく、10%~200%がより好ましく、40%~150%が特に好ましい。前記伸び率が、10%未満であると、成形加工が困難になることがある。前記伸び率が、前記特に好ましい範囲内であると、成形加工性に優れる点で有利である。
 前記伸び率は、例えば、以下の方法により求めることができる。
 前記防曇防汚積層体を、長さ10.5cm×幅2.5cmの短冊状にして測定試料とする。得られた測定試料の引張り伸び率を引張り試験機(オートグラフAG-5kNXplus、株式会社島津製作所製)で測定(測定条件:引張り速度=100mm/min;チャック間距離=8cm)する。前記伸び率の測定においては、前記樹脂製基材の品種によって測定温度が異なり、前記伸び率は、前記樹脂製基材の軟化点近傍又は軟化点以上の温度で測定する。具体的には、10℃~250℃の間である。例えば、前記樹脂製基材が、ポリカーボネートやPC/PMMA積層体の場合は、150℃で測定するのが好ましい。
The elongation percentage of the antifogging and antifouling laminate is not particularly limited and may be appropriately selected depending on the intended purpose, but is preferably 10% or more, more preferably 10% to 200%, and more preferably 40% to 150%. Is particularly preferred. If the elongation is less than 10%, molding may be difficult. When the elongation percentage is within the particularly preferable range, it is advantageous in that the moldability is excellent.
The said elongation rate can be calculated | required with the following method, for example.
The anti-fogging and antifouling laminate is formed into a strip having a length of 10.5 cm and a width of 2.5 cm to be used as a measurement sample. The tensile elongation of the obtained measurement sample is measured with a tensile tester (Autograph AG-5kNXplus, manufactured by Shimadzu Corporation) (measurement conditions: tensile speed = 100 mm / min; distance between chucks = 8 cm). In the measurement of the elongation percentage, the measurement temperature varies depending on the type of the resin base material, and the elongation percentage is measured at a temperature near or above the softening point of the resin base material. Specifically, it is between 10 ° C and 250 ° C. For example, when the resin substrate is a polycarbonate or PC / PMMA laminate, it is preferable to measure at 150 ° C.
 前記防曇防汚積層体は、前記防曇防汚積層体の面内におけるX方向とY方向の加熱収縮率差が小さい方が好ましい。前記防曇防汚積層体の前記X方向と前記Y方向とは、例えば、防曇防汚積層体がロール形状の場合、ロールの長手方向と幅方向とに相当する。成形時の加熱工程に使用する加熱温度にて、防曇防汚積層体におけるX方向の加熱収縮率とY方向の加熱収縮率との差は5%以内であることが好ましい。この範囲外であると、成形加工時に、前記第1の層及び前記第2の層に剥離やクラックが発生したり、樹脂製基材の表面に印刷された前記文字、前記模様、前記画像などが変形や位置ズレを起こしてしまい、成形加工が困難になることがある。 The antifogging and antifouling laminate preferably has a smaller difference in heat shrinkage between the X direction and the Y direction in the plane of the antifogging and antifouling laminate. The X direction and the Y direction of the anti-fogging and antifouling laminate correspond to, for example, the longitudinal direction and the width direction of the roll when the antifogging and antifouling laminate is a roll. The difference between the heat shrinkage rate in the X direction and the heat shrinkage rate in the Y direction in the anti-fogging and antifouling laminate is preferably within 5% at the heating temperature used in the heating step during molding. Outside this range, during the molding process, the first layer and the second layer may be peeled or cracked, or the characters, patterns, images, etc. printed on the surface of the resin substrate May be deformed or misaligned, making molding difficult.
 前記防曇防汚積層体の視感反射率は、3.0%以下であることが好ましい。前記視感反射率が3.0%を超えると、十分な反射防止機能が得られないことがある。
 前記視感反射率は、例えば、以下の方法により測定できる。
 防曇防汚積層体の第2の層とは反対側に黒色のビニールテープ(ニチバン株式会社製VT-50)を貼合し、第2の層側から5°正反射率スペクトルを日本分光株式会社製V-560で絶対反射率測定ユニットを用いて測定し、視感反射率を算出する。これを任意の3箇所で行い、その平均値を得る。
The luminous reflectance of the antifogging and antifouling laminate is preferably 3.0% or less. If the luminous reflectance exceeds 3.0%, a sufficient antireflection function may not be obtained.
The luminous reflectance can be measured by the following method, for example.
Black vinyl tape (VT-50 manufactured by Nichiban Co., Ltd.) is pasted on the opposite side of the second layer of the anti-fogging and antifouling laminate, and a 5 ° specular reflectance spectrum is measured from the second layer side. Measured using an absolute reflectance measurement unit with a company-made V-560 to calculate luminous reflectance. This is performed at three arbitrary locations, and the average value is obtained.
 前記防曇防汚積層体は、熱曲げ用フィルム、インモールド成形用フィルム、インサート成形用フィルム、オーバーレイ成形用フィルムに特に適している。 The anti-fogging and antifouling laminate is particularly suitable for a thermal bending film, an in-mold molding film, an insert molding film, and an overlay molding film.
 前記防曇防汚積層体の製造方法としては、特に制限はなく、目的に応じて適宜選択することができるが、後述する防曇防汚積層体の製造方法が好ましい。 The method for producing the anti-fogging and antifouling laminate is not particularly limited and may be appropriately selected depending on the intended purpose, but the method for producing the antifogging and antifouling laminate described below is preferred.
 ここで、本発明の防曇防汚積層体の一例を図を用いて説明する。
 図1は、本発明の防曇防汚積層体の一例の概略断面図である。
 図1の防曇防汚積層体は、樹脂製基材11と、樹脂製基材11上に順次積層された第1の層1と、第2の層2とを有する。第2の層2は、低屈折率フィラー2Aを含有している。また、第2の層2においては、低表面エネルギー成分が表面に局在化している。
Here, an example of the anti-fogging and antifouling laminate of the present invention will be described with reference to the drawings.
FIG. 1 is a schematic sectional view of an example of the anti-fogging and antifouling laminate of the present invention.
The anti-fogging and antifouling laminate of FIG. 1 has a resin substrate 11, a first layer 1 and a second layer 2 that are sequentially laminated on the resin substrate 11. The second layer 2 contains a low refractive index filler 2A. Further, in the second layer 2, low surface energy components are localized on the surface.
 図2は、本発明の防曇防汚積層体の他の一例の概略断面図である。
 図2の防曇防汚積層体は、樹脂製基材11と、樹脂製基材11上に順次積層された第1の層1と、第3の層3と、第2の層2とを有する。第2の層2は、低屈折率フィラー2Aを含有している。また、第2の層2においては、低表面エネルギー成分が表面に局在化している。第3の層3により、本発明の防曇防汚積層体の耐傷性が向上する。
FIG. 2 is a schematic cross-sectional view of another example of the anti-fogging and antifouling laminate of the present invention.
The anti-fogging and antifouling laminate of FIG. 2 includes a resin base material 11, a first layer 1, a third layer 3, and a second layer 2 sequentially laminated on the resin base material 11. Have. The second layer 2 contains a low refractive index filler 2A. Further, in the second layer 2, low surface energy components are localized on the surface. The third layer 3 improves the scratch resistance of the antifogging and antifouling laminate of the present invention.
 図3は、本発明の防曇防汚積層体の他の一例の概略断面図である。
 図3の防曇防汚積層体は、樹脂製基材11と、樹脂製基材11上に順次積層された第1の層1と、第4の層4と、第2の層2とを有する。第2の層2は、低屈折率フィラー2Aを含有している。また、第2の層2においては、低表面エネルギー成分が表面に局在化している。第4の層4は、高屈折率フィラー4Aを含有している。
FIG. 3 is a schematic cross-sectional view of another example of the anti-fogging and antifouling laminate of the present invention.
The anti-fogging and antifouling laminate of FIG. 3 includes a resin base 11, a first layer 1, a fourth layer 4, and a second layer 2 that are sequentially laminated on the resin base 11. Have. The second layer 2 contains a low refractive index filler 2A. Further, in the second layer 2, low surface energy components are localized on the surface. The fourth layer 4 contains a high refractive index filler 4A.
<防曇防汚積層体の製造方法>
 前記防曇防汚積層体の製造方法は、第1の未硬化層形成工程と、第1の層形成工程と、第2の未硬化層形成工程と、第2の層形成工程とを少なくとも含み、更に必要に応じて、その他の工程を含む。
 前記防曇防汚積層体の製造方法は、本発明の前記防曇防汚積層体を製造する方法である。
<Method for producing anti-fogging and antifouling laminate>
The method for producing the anti-fogging and antifouling laminate includes at least a first uncured layer forming step, a first layer forming step, a second uncured layer forming step, and a second layer forming step. In addition, other steps are included as necessary.
The method for producing the anti-fogging and antifouling laminate is a method for producing the antifogging and antifouling laminate of the present invention.
<<第1の未硬化層形成工程>>
 前記第1の未硬化層形成工程としては、基材上に第1の活性エネルギー線硬化性樹脂組成物を塗布して第1の未硬化層を形成する工程であれば、特に制限はなく、目的に応じて適宜選択することができる。
<< First Uncured Layer Forming Step >>
The first uncured layer forming step is not particularly limited as long as it is a step of forming the first uncured layer by applying the first active energy ray-curable resin composition on the substrate. It can be appropriately selected according to the purpose.
 前記基材としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、本発明の前記防曇防汚積層体の説明において例示した前記基材などが挙げられる。
 前記第1の活性エネルギー線硬化性樹脂組成物としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、本発明の前記防曇防汚積層体の前記第1の層の説明において例示した前記活性エネルギー線硬化性樹脂組成物などが挙げられる。
There is no restriction | limiting in particular as said base material, According to the objective, it can select suitably, For example, the said base material etc. which were illustrated in description of the said anti-fog antifouling laminated body of this invention are mentioned.
There is no restriction | limiting in particular as said 1st active energy ray curable resin composition, According to the objective, it can select suitably, For example, of the said 1st layer of the said anti-fog antifouling laminated body of this invention Examples thereof include the active energy ray-curable resin composition exemplified in the description.
 前記第1の未硬化層は、前記基材上に前記第1の活性エネルギー線硬化性樹脂組成物を塗布して、必要に応じて乾燥を行うことにより形成される。前記第1の未硬化層は、固体の膜であってもよいし、前記第1の活性エネルギー線硬化性樹脂組成物に含有される低分子量の硬化性成分によって流動性を有した膜であってもよい。 The first uncured layer is formed by applying the first active energy ray-curable resin composition on the substrate and drying it as necessary. The first uncured layer may be a solid film, or a film having fluidity due to a low molecular weight curable component contained in the first active energy ray-curable resin composition. May be.
 前記塗布の方法としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、ワイヤーバーコーティング、ブレードコーティング、スピンコーティング、リバースロールコーティング、ダイコーティング、スプレーコーティング、ロールコーティング、グラビアコーティング、マイクログラビアコーティング、リップコーティング、エアーナイフコーティング、カーテンコーティング、コンマコート法、ディッピング法などが挙げられる。 There is no restriction | limiting in particular as said application | coating method, According to the objective, it can select suitably, For example, wire bar coating, blade coating, spin coating, reverse roll coating, die coating, spray coating, roll coating, gravure coating , Micro gravure coating, lip coating, air knife coating, curtain coating, comma coating method, dipping method and the like.
 前記第1の未硬化層は、活性エネルギー線が照射されていないため、硬化していない。 The first uncured layer is not cured because it is not irradiated with active energy rays.
 前記第1の未硬化層形成工程においては、アンカー層が形成された前記基材の前記アンカー層上に前記第1の活性エネルギー線硬化性樹脂組成物を塗布して前記第1の未硬化層を形成してもよい。
 前記アンカー層としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、本発明の前記防曇防汚積層体の説明において例示した前記アンカー層などが挙げられる。
In the first uncured layer forming step, the first active energy ray-curable resin composition is applied onto the anchor layer of the base material on which the anchor layer is formed, and the first uncured layer is formed. May be formed.
There is no restriction | limiting in particular as said anchor layer, According to the objective, it can select suitably, For example, the said anchor layer etc. which were illustrated in description of the said anti-fog antifouling laminated body of this invention are mentioned.
<<第1の層形成工程>>
 前記第1の層形成工程としては、前記第1の未硬化層に活性エネルギー線を照射し前記第1の未硬化層を硬化させて、第1の層を形成する工程あれば、特に制限はなく、目的に応じて適宜選択することができる。
<< First Layer Formation Step >>
The first layer forming step is not particularly limited as long as it is a step of forming the first layer by irradiating the first uncured layer with active energy rays to cure the first uncured layer. And can be appropriately selected according to the purpose.
 前記第1の活性エネルギー硬化性樹脂組成物が、前記親水性モノマーを有することにより、得られる第1の層中には、親水性成分(吸水性成分)が存在する。そうすることにより、水蒸気は第1の層中に捕捉されやすくなる。その結果、より優れた防曇性が得られる。 When the first active energy curable resin composition has the hydrophilic monomer, a hydrophilic component (water-absorbing component) is present in the obtained first layer. By doing so, water vapor is easily trapped in the first layer. As a result, better antifogging properties can be obtained.
-活性エネルギー線-
 前記活性エネルギー線としては、前記第1の未硬化層を硬化させる活性エネルギー線であれば、特に制限はなく、目的に応じて適宜選択することができ、例えば、本発明の前記防曇防汚積層体の説明において例示した前記活性エネルギー線などが挙げられる。
-Active energy rays-
The active energy ray is not particularly limited as long as it is an active energy ray that cures the first uncured layer, and can be appropriately selected according to the purpose. For example, the antifogging and antifouling of the present invention Examples thereof include the active energy rays exemplified in the description of the laminate.
<<第2の未硬化層形成工程>>
 前記第2の未硬化層形成工程としては、前記第1の層上に第2の活性エネルギー線硬化性樹脂組成物を塗布して第2の未硬化層を形成する工程であれば、特に制限はなく、目的に応じて適宜選択することができる。
<< Second Uncured Layer Forming Step >>
The second uncured layer forming step is not particularly limited as long as it is a step of forming a second uncured layer by applying the second active energy ray-curable resin composition on the first layer. It can be appropriately selected depending on the purpose.
 前記第2の活性エネルギー線硬化性樹脂組成物としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、本発明の前記防曇防汚積層体の前記第2の層の説明において例示した前記活性エネルギー線硬化性樹脂組成物などが挙げられる。 There is no restriction | limiting in particular as said 2nd active energy ray curable resin composition, According to the objective, it can select suitably, For example, of the said 2nd layer of the said anti-fog antifouling laminated body of this invention Examples thereof include the active energy ray-curable resin composition exemplified in the description.
 前記第2の未硬化層は、前記第1の層上に前記第2の活性エネルギー線硬化性樹脂組成物を塗布して、必要に応じて乾燥を行うことにより形成される。前記第2の未硬化層は、固体の膜であってもよいし、前記第2の活性エネルギー線硬化性樹脂組成物に含有される低分子量の硬化性成分によって流動性を有した膜であってもよい。 The second uncured layer is formed by applying the second active energy ray-curable resin composition on the first layer and drying as necessary. The second uncured layer may be a solid film or a film having fluidity by a low molecular weight curable component contained in the second active energy ray curable resin composition. May be.
 前記塗布の方法としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、ワイヤーバーコーティング、ブレードコーティング、スピンコーティング、リバースロールコーティング、ダイコーティング、スプレーコーティング、ロールコーティング、グラビアコーティング、マイクログラビアコーティング、リップコーティング、エアーナイフコーティング、カーテンコーティング、コンマコート法、ディッピング法などが挙げられる。 There is no restriction | limiting in particular as said application | coating method, According to the objective, it can select suitably, For example, wire bar coating, blade coating, spin coating, reverse roll coating, die coating, spray coating, roll coating, gravure coating , Micro gravure coating, lip coating, air knife coating, curtain coating, comma coating method, dipping method and the like.
 前記第2の未硬化層は、活性エネルギー線が照射されていないため、硬化していない。 The second uncured layer is not cured because it is not irradiated with active energy rays.
<<第2の層形成工程>>
 前記第2の層形成工程としては、前記第2の未硬化層に活性エネルギー線を照射し前記第2の未硬化層を硬化させて、第2の層を形成する工程あれば、特に制限はなく、目的に応じて適宜選択することができる。
 前記第2の層を形成する際、通常、微細な凸部又は凹部を表面に形成するための物理的な加工は行われない。
<< Second Layer Formation Step >>
The second layer forming step is not particularly limited as long as it is a step of forming the second layer by irradiating the second uncured layer with active energy rays to cure the second uncured layer. And can be appropriately selected according to the purpose.
When forming the second layer, physical processing for forming fine convex portions or concave portions on the surface is usually not performed.
 前記第2の活性エネルギー硬化性樹脂組成物が、前記撥水性モノマーと、前記親水性モノマーとを有することにより、得られる第2の層においては、低表面エネルギー成分が表面に局在化する一方で、前記第2の層中には、親水性成分(吸水性成分)が存在する。そうすることにより、水滴は、前記第2の層の表面において撥水化され、水蒸気は、第2の層中に捕捉されやすくなる。その結果、より優れた防曇性が得られる。
 更に、前記第2の活性エネルギー線硬化性樹脂組成物が低屈折率フィラーを含有することにより、得られる前記防曇防汚積層体においては、前記低屈折率フィラーに由来する反射防止機能が得られる。
While the second active energy curable resin composition has the water-repellent monomer and the hydrophilic monomer, the low surface energy component is localized on the surface in the second layer obtained. In the second layer, a hydrophilic component (water-absorbing component) is present. By doing so, water droplets are water repellent on the surface of the second layer, and water vapor is easily trapped in the second layer. As a result, better antifogging properties can be obtained.
Furthermore, when the second active energy ray-curable resin composition contains a low refractive index filler, in the obtained anti-fogging and antifouling laminate, an antireflection function derived from the low refractive index filler is obtained. It is done.
(物品)
 本発明の物品は、本発明の前記防曇防汚積層体を表面に有し、更に必要に応じて、その他の部材を有する。
 前記物品としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、ガラス窓、冷蔵・冷凍ショーケース、自動車のウインドウ等の窓材、浴室内の鏡、自動車サイドミラー等の鏡、浴室の床及び壁、太陽電池パネル、防犯監視カメラなどが挙げられる。
 また、前記物品は、眼鏡、ゴーグル、ヘルメット、レンズ、マイクロレンズアレイ、自動車のヘッドライトカバー、フロントパネル、サイドパネル、リアパネルなどであってもよい。これらは、インモールド成形、インサート成形、オーバーレイ成形により形成されることが好ましい。
(Goods)
The article of the present invention has the anti-fogging and antifouling laminate of the present invention on the surface, and further includes other members as necessary.
The article is not particularly limited and can be appropriately selected according to the purpose. Examples thereof include glass windows, refrigerated / frozen showcases, window materials such as automobile windows, bathroom mirrors, automobile side mirrors, and the like. Mirrors, bathroom floors and walls, solar panels, security surveillance cameras, etc.
The article may be glasses, goggles, a helmet, a lens, a microlens array, an automobile headlight cover, a front panel, a side panel, a rear panel, and the like. These are preferably formed by in-mold molding, insert molding, or overlay molding.
 前記防曇防汚積層体は、前記物品の表面の一部に形成されていてもよいし、全面に形成されていてもよい。 The antifogging and antifouling laminate may be formed on a part of the surface of the article, or may be formed on the entire surface.
 前記物品の製造方法としては、特に制限はなく、目的に応じて適宜選択することができるが、後述する本発明の物品の製造方法が好ましい。 The method for manufacturing the article is not particularly limited and may be appropriately selected depending on the intended purpose. However, the method for manufacturing the article of the present invention described later is preferable.
(物品の製造方法)
 本発明の物品の製造方法は、加熱工程と、防曇防汚積層体成形工程と、を少なくとも含み、更に必要に応じて、射出成形工程やキャスト成形工程などのその他の工程を含む。
 前記物品の製造方法は、本発明の前記物品の製造方法である。
(Product manufacturing method)
The method for producing an article of the present invention includes at least a heating step and an anti-fogging and antifouling laminate molding step, and further includes other steps such as an injection molding step and a cast molding step as necessary.
The manufacturing method of the article is the manufacturing method of the article of the present invention.
<加熱工程>
 前記加熱工程としては、防曇防汚積層体を加熱する工程であれば、特に制限はなく、目的に応じて適宜選択することができる。
 前記防曇防汚積層体は、本発明の前記防曇防汚積層体である。
<Heating process>
The heating step is not particularly limited as long as it is a step for heating the anti-fogging and antifouling laminate, and can be appropriately selected according to the purpose.
The antifogging and antifouling laminate is the antifogging and antifouling laminate of the present invention.
 前記加熱としては、特に制限はなく、目的に応じて適宜選択することができるが、赤外線加熱或いは高温雰囲気への暴露であることが好ましい。
 前記加熱の温度としては、特に制限はなく、目的に応じて適宜選択することができるが、前記樹脂製基材のガラス転移温度近傍若しくはガラス転移温度以上であることが好ましい。
 前記加熱の時間としては、特に制限はなく、目的に応じて適宜選択することができる。
There is no restriction | limiting in particular as said heating, Although it can select suitably according to the objective, It is preferable that it is an infrared heating or exposure to high temperature atmosphere.
There is no restriction | limiting in particular as the temperature of the said heating, Although it can select suitably according to the objective, It is preferable that it is the glass transition temperature vicinity of the said resin-made base materials, or more than a glass transition temperature.
There is no restriction | limiting in particular as time of the said heating, According to the objective, it can select suitably.
<防曇防汚積層体成形工程>
 前記防曇防汚積層体成形工程としては、加熱された前記防曇防汚積層体を所望の形状に成形する工程であれば、特に制限はなく、目的に応じて適宜選択することができ、例えば、所定の金型に密着させて、空気圧により、所望の形状に成形する工程などが挙げられる。
<Anti-fog antifouling laminate forming process>
The anti-fogging and antifouling laminate forming step is not particularly limited as long as it is a step for forming the heated antifogging and antifouling laminate into a desired shape, and can be appropriately selected according to the purpose. For example, the process etc. which make it closely_contact | adhere to a predetermined metal mold | die and shape | mold into a desired shape with an air pressure etc. are mentioned.
<射出成形工程>
 前記防曇防汚積層体成形工程の後、必要に応じて、射出成形工程を行ってもよい。
 前記射出成形工程としては、所望の形状に成形された前記防曇防汚積層体の基材側に成形材料を射出し、前記成形材料を成形する工程であれば、特に制限はなく、目的に応じて適宜選択することができる。
<Injection molding process>
After the anti-fogging and antifouling laminate forming step, an injection molding step may be performed as necessary.
The injection molding process is not particularly limited as long as it is a process for injecting a molding material onto the base side of the anti-fogging and antifouling laminate molded into a desired shape and molding the molding material. It can be appropriately selected depending on the case.
 前記成形材料としては、例えば、樹脂などが挙げられる。前記樹脂としては、例えば、オレフィン系樹脂、スチレン系樹脂、ABS樹脂(アクリロニトリル-ブタジエン-スチレン共重合体)、AS樹脂(アクリロニトリル-スチレン共重合体)、アクリル系樹脂、ウレタン系樹脂、不飽和ポリエステル樹脂、エポキシ樹脂、ポリフェニレンオキシド・ポリスチレン系樹脂、ポリカーボネート、ポリカーボネート変性ポリフェニレンエーテル、ポリエチレンテレフタレート、ポリスルホン、ポリフェニレンサルファイド、ポリフェニレンオキシド、ポリエーテルイミド、ポリイミド、ポリアミド、液晶ポリエステル、ポリアリル系耐熱樹脂、各種複合樹脂、各種変性樹脂などが挙げられる。 Examples of the molding material include resin. Examples of the resin include olefin resins, styrene resins, ABS resins (acrylonitrile-butadiene-styrene copolymers), AS resins (acrylonitrile-styrene copolymers), acrylic resins, urethane resins, unsaturated polyesters. Resin, epoxy resin, polyphenylene oxide / polystyrene resin, polycarbonate, polycarbonate-modified polyphenylene ether, polyethylene terephthalate, polysulfone, polyphenylene sulfide, polyphenylene oxide, polyetherimide, polyimide, polyamide, liquid crystal polyester, polyallyl heat-resistant resin, various composite resins, Various modified resins are exemplified.
 前記射出の方法としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、所定の金型に密着させた前記防曇防汚積層体の基材側に、溶融した前記成形材料を流し込む方法などが挙げられる。 The injection method is not particularly limited and can be appropriately selected depending on the purpose. For example, the molten mold is formed on the substrate side of the antifogging and antifouling laminate adhered to a predetermined mold. The method of pouring material is mentioned.
<キャスト成形工程>
 前記防曇防汚積層体成形工程の後、必要に応じて、キャスト成形工程を行ってもよい。
 前記キャスト成形工程としては、所望の形状に成形された前記防曇防汚積層体の基材側に、溶液に溶解させた樹脂材料を流し込み、前記樹脂材料を固化させて成形する工程であれば、特に制限はなく、目的に応じて適宜選択することができる。
<Cast molding process>
After the antifogging and antifouling laminate forming step, a cast forming step may be performed as necessary.
The cast molding process is a process in which a resin material dissolved in a solution is poured into the base of the antifogging and antifouling laminate molded into a desired shape, and the resin material is solidified and molded. There is no particular limitation, and it can be appropriately selected according to the purpose.
 前記物品の製造方法は、インモールド成形装置、インサート成形装置、オーバーレイ成形装置を用いて行うことが好ましい。 The manufacturing method of the article is preferably performed using an in-mold molding apparatus, an insert molding apparatus, and an overlay molding apparatus.
 ここで、本発明の物品の製造方法の一例を、図を用いて説明する。この製造方法はインモールド成形装置を用いた製造方法である。
 まず、防曇防汚積層体500を加熱する。加熱は、赤外線加熱、或いは高温雰囲気への暴露が好ましい。
 続いて、図4Aに示すように、加熱した防曇防汚積層体500を、第1金型501と第2金型502との間の所定の位置に配置する。このとき、防曇防汚積層体500の樹脂製基材が第1金型501を向き、第2の層が第2金型502を向くように配置する。図4Aにおいて、第1金型501は、固定型であり、第2金型502は、可動型である。
Here, an example of a method for manufacturing an article of the present invention will be described with reference to the drawings. This manufacturing method is a manufacturing method using an in-mold molding apparatus.
First, the anti-fogging and antifouling laminate 500 is heated. The heating is preferably infrared heating or exposure to a high temperature atmosphere.
Subsequently, as shown in FIG. 4A, the heated anti-fogging and antifouling laminate 500 is disposed at a predetermined position between the first mold 501 and the second mold 502. At this time, it arrange | positions so that the resin-made base materials of the anti-fogging antifouling laminated body 500 may face the 1st metal mold | die 501 and a 2nd layer may face the 2nd metal mold | die 502. FIG. In FIG. 4A, the first mold 501 is a fixed mold, and the second mold 502 is a movable mold.
 第1金型501と第2金型502との間に防曇防汚積層体500を配置した後、第1金型501と第2金型502とを型締めする。続いて、第2金型502のキャビティ面に開口されている吸引穴504で防曇防汚積層体500を吸引して、第2金型502のキャビティ面に防曇防汚積層体500を装着する。そうすることにより、キャビティ面が防曇防汚積層体500で賦形される。また、このとき、図示されていないフィルム押さえ機構で防曇防汚積層体500の外周を固定し位置決めしてもよい。その後、防曇防汚積層体500の不要な部位をトリミングする(図4B)。
 なお、第2金型502が吸引穴504を有さず、第1金型501に圧空孔(図示せず)を有する場合には、第1金型501の圧空孔から防曇防汚積層体500に圧空を送ることにより、第2金型502のキャビティ面に防曇防汚積層体500を装着する。
After disposing the anti-fogging and antifouling laminate 500 between the first mold 501 and the second mold 502, the first mold 501 and the second mold 502 are clamped. Subsequently, the antifogging / antifouling laminate 500 is sucked into the cavity surface of the second mold 502 by sucking the antifogging / antifouling laminate 500 through the suction hole 504 opened in the cavity surface of the second mold 502. To do. By doing so, the cavity surface is shaped by the anti-fogging and antifouling laminate 500. At this time, the outer periphery of the anti-fogging / anti-stain laminate 500 may be fixed and positioned by a film pressing mechanism (not shown). Thereafter, unnecessary portions of the anti-fogging and antifouling laminate 500 are trimmed (FIG. 4B).
When the second mold 502 does not have the suction hole 504 and the first mold 501 has a pressure hole (not shown), the anti-fogging and antifouling laminate is formed from the pressure hole of the first mold 501. By sending compressed air to 500, the anti-fogging and antifouling laminate 500 is mounted on the cavity surface of the second mold 502.
 続いて、防曇防汚積層体500の樹脂製基材に向けて、第1金型501のゲート505から溶融した成形材料506を射出し、第1金型501と第2金型502を型締めして形成したキャビティ内に注入する(図4C)。これにより、溶融した成形材料506がキャビティ内に充填される(図4D)。更に、溶融した成形材料506の充填完了後、溶融した成形材料506を所定の温度まで冷却して固化する。 Subsequently, the molten molding material 506 is injected from the gate 505 of the first mold 501 toward the resin base material of the anti-fogging and antifouling laminate 500, and the first mold 501 and the second mold 502 are molded. Injection into a cavity formed by tightening (FIG. 4C). Thereby, the molten molding material 506 is filled in the cavity (FIG. 4D). Further, after the filling of the molten molding material 506 is completed, the molten molding material 506 is cooled to a predetermined temperature and solidified.
 その後、第2金型502を動かして、第1金型501と第2金型502とを型開きする(図4E)。そうすることにより、成形材料506の表面に防曇防汚積層体500が形成され、かつ所望の形状にインモールド成形された物品507が得られる。
 最後に、第1金型501から突き出しピン508を押し出して、得られた物品507を取り出す。
Thereafter, the second mold 502 is moved to open the first mold 501 and the second mold 502 (FIG. 4E). By doing so, an anti-fogging and antifouling laminate 500 is formed on the surface of the molding material 506, and an article 507 in-mold molded into a desired shape is obtained.
Finally, the protruding pin 508 is pushed out from the first mold 501 and the obtained article 507 is taken out.
 前記オーバーレイ成形装置を用いる場合の製造方法は、下記の通りである。これは、防曇防汚積層体を成形材料の表面に直接加飾する工程であり、その一例としては、TOM(Three dimension Overlay Method)工法が挙げられる。前記TOM工法を用いた本発明の物品の製造方法の一例を下記に説明する。
 まず、固定枠に固定された防曇防汚積層体によって分断された装置内の両空間について、真空ポンプ等で空気を吸引し、前記両空間内を真空引きする。
 この時、片側の空間に事前に射出成形した成形材料を設置しておく。同時に、防曇防汚積層体が軟化する所定の温度になるまで赤外線ヒーターで加熱する。防曇防汚積層体が加熱され軟化したタイミングで、装置内空間の成形材料がない側に大気を送り込むことにより真空雰囲気下で、成形材料の立体形状に、防曇防汚積層体をしっかりと密着させる。必要に応じ、さらに大気を送り込んだ側からの圧空押付けを併用してもよい。防曇防汚積層体が成形体に密着した後、得られた加飾成形品を固定枠から外す。真空成形は、通常80℃~200℃、好ましくは110℃~160℃程度で行われる。
A manufacturing method in the case of using the overlay molding apparatus is as follows. This is a step of directly decorating the surface of the molding material with the anti-fogging and anti-stain laminate, and an example thereof is a TOM (Three Dimension Over Method) method. An example of a method for producing the article of the present invention using the TOM method will be described below.
First, air is sucked by a vacuum pump or the like in both spaces in the apparatus divided by the anti-fogging and antifouling laminate fixed to the fixed frame, and the two spaces are evacuated.
At this time, a molding material that has been injection molded in advance is placed in a space on one side. Simultaneously, it heats with an infrared heater until it reaches the predetermined temperature at which the anti-fogging and anti-stain laminate becomes soft. At the timing when the anti-fogging / anti-fouling laminate is heated and softened, the anti-fogging / anti-fouling laminate is firmly attached to the three-dimensional shape of the molding material in a vacuum atmosphere by sending air to the side of the equipment space where there is no molding material. Adhere closely. If necessary, compressed air pressing from the side where the atmosphere is sent may be used in combination. After the anti-fogging and antifouling laminate is in close contact with the molded body, the obtained decorative molded product is removed from the fixed frame. Vacuum forming is usually performed at 80 ° C to 200 ° C, preferably about 110 ° C to 160 ° C.
 オーバーレイ成形の際には、前記防曇防汚積層体と前記成形材料とを接着するために、前記防曇防汚積層体の第2の層の面とは反対側の面に粘着層を設けてもよい。前記粘着層としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、アクリル系粘着剤、ホットメルト接着剤などが挙げられる。前記粘着層の形成方法としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、前記基材上に前記第1の層及び前記第2の層を形成後に、前記基材の前記第2の層側とは逆側に、粘着層用塗工液を塗工して、前記粘着層を形成する方法などが挙げられる。また、剥離シート上に粘着層用塗工液を塗工して前記粘着層を形成した後に、前記基材と前記剥離シート上の前記粘着層とをラミネートして、前記基材上に前記粘着層を積層してもよい。 In overlay molding, an adhesive layer is provided on the surface opposite to the surface of the second layer of the anti-fogging and antifouling laminate in order to bond the antifogging and antifouling laminate and the molding material. May be. There is no restriction | limiting in particular as said adhesion layer, According to the objective, it can select suitably, For example, an acrylic adhesive, a hot-melt-adhesive etc. are mentioned. There is no restriction | limiting in particular as a formation method of the said adhesion layer, According to the objective, it can select suitably, For example, after forming the said 1st layer and the said 2nd layer on the said base material, the said base material The method of forming the said adhesion layer etc. by coating the coating liquid for adhesion layers on the opposite side to the said 2nd layer side is mentioned. In addition, after the adhesive layer coating liquid is applied on the release sheet to form the adhesive layer, the substrate and the adhesive layer on the release sheet are laminated, and the adhesive layer is formed on the substrate. Layers may be stacked.
 ここで、本発明の物品の一例を図を用いて説明する。
 図5~図8は、本発明の物品の一例の概略断面図である。
Here, an example of the article of the present invention will be described with reference to the drawings.
5 to 8 are schematic cross-sectional views of an example of the article of the present invention.
 図5の物品は、成形材料506と、樹脂製基材211と、第1の層212と、第2の層213とを有し、成形材料506上に、樹脂製基材211と、第1の層212と、第2の層213がこの順で積層されている。
 この物品は、例えば、インサート成形により製造できる。
The article in FIG. 5 includes a molding material 506, a resin base material 211, a first layer 212, and a second layer 213, and the resin base material 211 and the first layer 213 are formed on the molding material 506. The layer 212 and the second layer 213 are stacked in this order.
This article can be manufactured, for example, by insert molding.
 図6の物品は、成形材料506と、樹脂製基材211と、第1の層212と、第2の層213と、ハードコート層600とを有し、成形材料506上に、樹脂製基材211と、第1の層212と、第2の層213とがこの順で積層されている。また、成形材料506の樹脂製基材211側と反対側には、ハードコート層600が形成されている。
 この物品は、例えば、図5の物品を製造後、第2の層213上に保護層を形成した後で、成形材料506の表面にハードコート層600を、成形材料506をハードコート液に浸漬、その後乾燥、硬化させること等により形成し、更に、保護層を剥離することで製造できる。なお、第2の層213が平滑面であり、純水接触角が前述の範囲内であり、且つヘキサデカン接触角が前述の範囲内である場合、第2の層213がハードコート液をはじくため、保護層を形成せずとも、第2の層上にはハードコートが形成されず、成形材料506の樹脂製基材211側と反対側にのみハードコート層600が形成されるため、生産性に優れる。
The article in FIG. 6 includes a molding material 506, a resin base material 211, a first layer 212, a second layer 213, and a hard coat layer 600, and a resin base material is formed on the molding material 506. The material 211, the first layer 212, and the second layer 213 are stacked in this order. A hard coat layer 600 is formed on the side of the molding material 506 opposite to the resin substrate 211 side.
For example, after manufacturing the article of FIG. 5 and forming a protective layer on the second layer 213, the article is immersed in the hard coat layer 600 on the surface of the molding material 506 and the molding material 506 in the hard coating liquid. Then, it can be formed by drying, curing, etc., and further by peeling off the protective layer. When the second layer 213 is a smooth surface, the pure water contact angle is in the above range, and the hexadecane contact angle is in the above range, the second layer 213 repels the hard coat liquid. Even if the protective layer is not formed, the hard coat is not formed on the second layer, and the hard coat layer 600 is formed only on the side opposite to the resin base material 211 side of the molding material 506. Excellent.
 図7の物品は、成形材料506と、樹脂製基材211と、第1の層212と、第2の層213とを有し、成形材料506の両側に、樹脂製基材211と、第1の層212と、第2の層213とがこの順に積層されている。 The article in FIG. 7 includes a molding material 506, a resin base material 211, a first layer 212, and a second layer 213. On both sides of the molding material 506, a resin base material 211, The first layer 212 and the second layer 213 are stacked in this order.
 図8の物品は、成形材料506と、樹脂製基材211と、第1の層212と、第2の層213と、光学フィルム601とを有し、成形材料506上に、樹脂製基材211と、第1の層212と、第2の層213とがこの順で積層されている。成形材料506の樹脂製基材211側と反対側には、光学フィルム601が形成されている。光学フィルム601としては、例えば、ハードコートフィルム、反射防止フィルム、防眩フィルム、偏光フィルムなどが挙げられる。
 図7又は図8に示す物品は、例えば、ダブルインサート成形により製造できる。ダブルインサート成形は、両面積層フィルム一体品を成形する方法であって、例えば、特開平03-114718号公報に記載の方法などを用いて行うことができる。
The article in FIG. 8 includes a molding material 506, a resin base material 211, a first layer 212, a second layer 213, and an optical film 601, and a resin base material on the molding material 506. 211, the first layer 212, and the second layer 213 are stacked in this order. An optical film 601 is formed on the side of the molding material 506 opposite to the resin substrate 211 side. Examples of the optical film 601 include a hard coat film, an antireflection film, an antiglare film, and a polarizing film.
The article shown in FIG. 7 or 8 can be manufactured by, for example, double insert molding. Double insert molding is a method of molding a double-sided laminated film integrated product, and can be performed using, for example, the method described in JP-A-03-114718.
(防汚方法)
 本発明に関する防汚方法は、本発明の前記防曇防汚積層体を物品の表面に積層することにより前記物品の汚れを防ぐ方法である。
(Anti-fouling method)
The antifouling method according to the present invention is a method for preventing soiling of the article by laminating the antifogging and antifouling laminate of the present invention on the surface of the article.
 前記物品としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、ガラス窓、冷蔵・冷凍ショーケース、自動車のウインドウ等の窓材、浴室内の鏡、自動車サイドミラー等の鏡、浴室の床及び壁、太陽電池パネル、防犯監視カメラなどが挙げられる。
 また、前記物品は、眼鏡、ゴーグル、ヘルメット、レンズ、マイクロレンズアレイ、自動車のヘッドライトカバー、フロントパネル、サイドパネル、リアパネルなどであってもよい。これらは、インモールド成形、インサート成形により形成されることが好ましい。
The article is not particularly limited and can be appropriately selected according to the purpose. Examples thereof include glass windows, refrigerated / frozen showcases, window materials such as automobile windows, bathroom mirrors, automobile side mirrors, and the like. Mirrors, bathroom floors and walls, solar panels, security surveillance cameras, etc.
The article may be glasses, goggles, a helmet, a lens, a microlens array, an automobile headlight cover, a front panel, a side panel, a rear panel, and the like. These are preferably formed by in-mold molding or insert molding.
 前記物品の表面に前記防曇防汚積層体を積層する方法としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、前記物品の表面に前記防曇防汚積層体を貼り付ける方法などが挙げられる。また、本発明の前記物品の製造方法によっても、前記物品の表面に前記防曇防汚積層体を積層することができる。 The method for laminating the anti-fogging and antifouling laminate on the surface of the article is not particularly limited and may be appropriately selected depending on the purpose. For example, the antifogging and antifouling laminate is provided on the surface of the article. Examples include a method of pasting. Further, the antifogging and antifouling laminate can be laminated on the surface of the article also by the article manufacturing method of the present invention.
 以下、本発明の実施例を説明するが、本発明は、これらの実施例に何ら限定されるものではない。 Examples of the present invention will be described below, but the present invention is not limited to these examples.
 まず、各種評価方法を以下に示す。 First, various evaluation methods are shown below.
<層厚>
 防曇防汚積層体の断面を、電界放出形走査電子顕微鏡S-4700(商品名;株式会社日立ハイテクノロジーズ製)で観察することで層厚を測定した。任意の5箇所で測定し、その平均値を層厚とした。
<Layer thickness>
The layer thickness was measured by observing the cross section of the anti-fogging and antifouling laminate with a field emission scanning electron microscope S-4700 (trade name; manufactured by Hitachi High-Technologies Corporation). Measurements were made at five arbitrary locations, and the average value was taken as the layer thickness.
<呼気防曇性>
 25℃37%RHの環境で、第2の層の表面に対して、該表面から法線方向に5cm離れた距離から息を大きく1回吐きかけた後直ちに、目視で表面を観察し、下記評価基準で評価した。
〔評価基準〕
 ◎: 第2の層表面に外観変化が全くなかった。
 ○: 第2の層表面の一部において、白い曇り、水膜形成などの、外観変化が確認された。
 ×: 第2の層表面の全面において、白い曇り、水膜形成などの、外観変化が確認された。
<Exhalation anti-fogging property>
In the environment of 25 ° C. and 37% RH, the surface of the second layer was visually inspected immediately after exhaling once from a distance of 5 cm in the normal direction from the surface. Evaluation was based on the evaluation criteria.
〔Evaluation criteria〕
A: No change in appearance on the surface of the second layer.
○: Appearance changes such as white cloudiness and water film formation were confirmed on part of the surface of the second layer.
X: On the entire surface of the second layer, changes in appearance such as white cloudiness and water film formation were confirmed.
<純水接触角>
 純水接触角は、接触角計であるPCA-1(協和界面化学株式会社製)を用いて、下記条件で測定した。
 ・蒸留水をプラスチックシリンジに入れて、その先端にステンレス製の針を取り付けて評価面に滴下した。
 ・水の滴下量:2μL
 ・測定温度:25℃
 水を滴下して5秒経過後の接触角を、第2の層表面の任意の10か所で測定し、その平均値を純水接触角とした。
<Pure water contact angle>
The pure water contact angle was measured under the following conditions using a contact angle meter PCA-1 (manufactured by Kyowa Interface Chemical Co., Ltd.).
-Distilled water was put into a plastic syringe, and a stainless steel needle was attached to the tip thereof and dropped onto the evaluation surface.
・ Drip amount of water: 2μL
・ Measurement temperature: 25 ℃
The contact angle after 5 seconds from dropping of water was measured at any 10 locations on the surface of the second layer, and the average value was defined as the pure water contact angle.
<ヘキサデカン接触角>
 ヘキサデカン接触角は、接触角計であるPCA-1(協和界面化学株式会社製)を用いて、下記条件で測定した。
 ・ヘキサデカンをプラスチックシリンジに入れて、その先端にテフロンコートステンレス製の針を取り付けて評価面に滴下した。
 ・ヘキサデカンの滴下量:1μL
 ・測定温度:25℃
 ヘキサデカンを滴下して20秒経過後の接触角を、第2の層表面の任意の10か所で測定し、その平均値をヘキサデカン接触角とした。
<Hexadecane contact angle>
The hexadecane contact angle was measured under the following conditions using a contact angle meter PCA-1 (manufactured by Kyowa Interface Chemical Co., Ltd.).
-Hexadecane was put in a plastic syringe, and a Teflon-coated stainless steel needle was attached to the tip thereof and dropped onto the evaluation surface.
・ Drop amount of hexadecane: 1 μL
・ Measurement temperature: 25 ℃
Hexadecane was dropped and the contact angle after 20 seconds was measured at any 10 locations on the surface of the second layer, and the average value was taken as the hexadecane contact angle.
<動摩擦係数>
 Triboster TS501(商品名;協和界面科学株式会社製)を用いて測定した。面接触子にBEMCOT(登録商標) M-3II(商品名、旭化成株式会社製)を両面テープで貼り付け、測定荷重50g/cm、測定速度1.7mm/s、測定距離20mmとし、12回測定してその平均値を得た。これを任意の5箇所で繰り返し、得られた5つの値の平均値を動摩擦係数とした。
<Dynamic friction coefficient>
Measurement was performed using Triboster TS501 (trade name; manufactured by Kyowa Interface Science Co., Ltd.). BEMCOT (registered trademark) M-3II (trade name, manufactured by Asahi Kasei Co., Ltd.) is attached to the surface contactor with a double-sided tape, measuring load 50 g / cm 2 , measuring speed 1.7 mm / s, measuring distance 20 mm, 12 times. The average value was obtained by measurement. This was repeated at arbitrary five locations, and the average value of the five values obtained was taken as the dynamic friction coefficient.
<汚れ付着性>
 Sharpie PROFESSIONAL(黒の油性マジック、商品名、Newell Rubbermaid社製)で第2の層の表面を汚し、目視で表面を観察し、下記評価基準で評価した。
〔評価基準〕
 ○:マジックを滴状あるいは線状にはじいた。
 ×:マジックをはじかずべっとり付着した。
<Stain adhesion>
The surface of the second layer was stained with Sharpie PROFESSIONAL (black oily magic, trade name, manufactured by Newell Rubbermaid), the surface was visually observed, and evaluated according to the following evaluation criteria.
〔Evaluation criteria〕
○: Magic was repelled in drops or lines.
X: Sticking without sticking magic.
<汚れ拭き取り性>
 Sharpie PROFESSIONAL(黒の油性マジック、商品名、Newell Rubbermaid社製)で第2の層の表面を汚した後、これをティッシュ(カミ商事株式会社製、エルモア)で10回、円を描くように払拭後に、目視で表面を観察し、下記評価基準で評価した。
〔評価基準〕
 ○:汚れがなくなっていた。
 ×:汚れが残っていた。
<Dirt wiping off>
After the surface of the second layer was stained with Sharpie PROFESSIONAL (black oily magic, trade name, manufactured by Newell Rubbermaid), this was wiped 10 times with a tissue (Kami Shoji Co., Ltd., Elmore) to draw a circle. Later, the surface was visually observed and evaluated according to the following evaluation criteria.
〔Evaluation criteria〕
○: Dirt was gone.
X: Dirt remained.
<耐傷性>
 スチールウール(商品名:ボンスター、番手:#0000)を第2の層の表面に置き、荷重400gf/13mmφにて10往復摺動(摺動ストローク:3cm、摺動速度:6cm/s)した後、下記評価基準で評価した。
〔評価基準〕
 ○:外観及び呼気防曇性に変化がなかった。
 ×:外観に傷付きや白濁などの変化があり、及び/又は防曇性が劣化した。
 だだし、実施例3、4、比較例3~5においては、荷重500gf/13mmφで試験を行った。
<Scratch resistance>
After placing steel wool (trade name: Bonster, count: # 0000) on the surface of the second layer and sliding 10 times with a load of 400 gf / 13 mmφ (sliding stroke: 3 cm, sliding speed: 6 cm / s) Evaluation was performed according to the following evaluation criteria.
〔Evaluation criteria〕
○: No change in appearance and exhalation antifogging property.
X: There were changes such as scratches and cloudiness in the appearance, and / or antifogging property was deteriorated.
However, in Examples 3 and 4 and Comparative Examples 3 to 5, the test was performed with a load of 500 gf / 13 mmφ.
<視感反射率>
 防曇防汚積層体の第2の層とは反対側に黒色のビニールテープ(ニチバン株式会社製VT-50)を貼合し、第2の層側から5°正反射率スペクトルを日本分光株式会社製V-560で絶対反射率測定ユニットを用いて測定し、視感反射率を算出した。これを任意の3箇所で行い、その平均値を得た。
<Visual reflectance>
Black vinyl tape (VT-50 manufactured by Nichiban Co., Ltd.) is pasted on the opposite side of the second layer of the anti-fogging and antifouling laminate, and a 5 ° specular reflectance spectrum is measured from the second layer side. Measurement was made with a company-made V-560 using an absolute reflectance measurement unit, and luminous reflectance was calculated. This was performed at three arbitrary locations, and the average value was obtained.
<成型加工>
 作製した防曇防汚積層体を赤外線照射により130℃で60秒間加熱後、真空圧空成型により、凹面が第2の層となるように、φ80mmの6カーブレンズ状に成型した。その後、トムソン刃でφ80mmの6カーブレンズ状防曇防汚積層体を打ち抜いた。これをインサート成型用金型にセットし、溶融したポリカーボネートを充填後、ポリカーボネートが固化するまで冷却した。その後、金型を開き、凹面が第2の層の6カーブレンズを得た。
<Molding process>
The produced anti-fogging and antifouling laminate was heated at 130 ° C. for 60 seconds by infrared irradiation, and then molded into a 6-curve lens with a diameter of 80 mm by vacuum / pressure forming so that the concave surface became the second layer. Thereafter, a 6-curve lens-shaped antifogging and antifouling laminate having a diameter of 80 mm was punched with a Thomson blade. This was set in an insert mold, filled with molten polycarbonate, and then cooled until the polycarbonate solidified. Thereafter, the mold was opened to obtain a 6-curve lens whose concave surface was the second layer.
<<成型加工後の呼気防曇性>>
 25℃37%RHの環境で、6カーブレンズの第2の層の表面に対して、レンズ中心部から法線方向に5cm離れた距離から息を大きく1回吐きかけた後直ちに、目視で表面を観察し、下記評価基準で評価した。
〔評価基準〕
 ◎: 第2の層表面に外観変化が全くなかった。
 ○: 第2の層表面の一部において、白い曇り、水膜形成などの、外観変化が確認された。
 ×: 第2の層表面の全面において、白い曇り、水膜形成などの、外観変化が確認された。
<< Expiration antifogging after molding process >>
In an environment of 25 ° C. and 37% RH, the surface of the second layer of the 6-curve lens was visually inspected immediately after exhaling once from a distance of 5 cm in the normal direction from the center of the lens. Were observed and evaluated according to the following evaluation criteria.
〔Evaluation criteria〕
A: No change in appearance on the surface of the second layer.
○: Appearance changes such as white cloudiness and water film formation were confirmed on part of the surface of the second layer.
X: On the entire surface of the second layer, changes in appearance such as white cloudiness and water film formation were confirmed.
(実施例1)
<防曇防汚積層体の作製>
 樹脂製基材として、三菱ガス化学株式会社製のFE-2000(PC基材、平均厚み180μm)を用いた。
Example 1
<Preparation of anti-fogging and antifouling laminate>
As a resin base material, FE-2000 (PC base material, average thickness 180 μm) manufactured by Mitsubishi Gas Chemical Co., Ltd. was used.
 次に、下記組成の活性エネルギー線硬化性樹脂組成物を、乾燥、硬化後の厚みが10μmとなるように、前記樹脂製基材上に塗布した。塗布後、60℃のオーブンで2分間乾燥させた。メタルハライドランプを用いて、窒素雰囲気下、照射量600mJ/cmで紫外線を照射して硬化させ、第1の層を得た。 Next, the active energy ray-curable resin composition having the following composition was applied onto the resin substrate so that the thickness after drying and curing was 10 μm. After coating, it was dried in an oven at 60 ° C. for 2 minutes. A metal halide lamp was used to cure by irradiating with ultraviolet rays at a dose of 600 mJ / cm 2 in a nitrogen atmosphere to obtain a first layer.
-第1の層用活性エネルギー線硬化性樹脂組成物-
 ・SR9035(サートマー社製) 34.5質量部
 ・EBECRYL 40(ダイセルオルネクス株式会社製) 14.8質量部
 ・イルガキュア 184D(BASF社製) 1.5質量部
 ・イソプロピルアルコール(関東化学株式会社製) 49.2質量部
-Active energy ray-curable resin composition for first layer-
SR9035 (Sartomer) 34.5 parts by mass EBECRYL 40 (Daicel Ornex Co., Ltd.) 14.8 parts by mass Irgacure 184D (BASF) 1.5 parts by mass Isopropyl alcohol (Kanto Chemical Co., Ltd.) 49.2 parts by mass
 次に、下記組成の活性エネルギー線硬化性樹脂組成物を、乾燥、硬化後の厚みが100nmとなるように、前記第1の層上に塗布した。塗布後、60℃のオーブンで2分間乾燥させた。メタルハライドランプを用いて、窒素雰囲気下、照射量600mJ/cmで紫外線を照射して硬化させ、反射防止機能を有する防曇防汚積層体を得た。 Next, an active energy ray-curable resin composition having the following composition was applied on the first layer so that the thickness after drying and curing was 100 nm. After coating, it was dried in an oven at 60 ° C. for 2 minutes. Using a metal halide lamp, ultraviolet rays were irradiated and cured in a nitrogen atmosphere at an irradiation amount of 600 mJ / cm 2 to obtain an antifogging and antifouling laminate having an antireflection function.
-第2の層用活性エネルギー線硬化性樹脂組成物(合計100質量%)-
 ・スルーリア1110(日揮触媒化成株式会社製) 2.50質量%
 ・オプツールDAC-HP(ダイキン工業株式会社製) 0.05質量%
 ・SR9035(サートマー社製) 0.34質量%
 ・EBECRYL40(ダイセルオルネクス株式会社製) 0.15質量%
 ・イルガキュア184D(BASF社製) 0.02質量%
 ・IPA(関東化学株式会社製) 96.94質量%
-Active energy ray-curable resin composition for second layer (total 100% by mass)-
-Through rear 1110 (manufactured by JGC Catalysts & Chemicals Co., Ltd.) 2.50 mass%
-OPTOOL DAC-HP (Daikin Industries, Ltd.) 0.05% by mass
・ SR9035 (Sartomer) 0.34% by mass
・ EBECRYL40 (Daicel Ornex Co., Ltd.) 0.15% by mass
・ Irgacure 184D (BASF) 0.02% by mass
・ IPA (manufactured by Kanto Chemical Co., Inc.) 96.94% by mass
 ここで、上記各材料の詳細は以下のとおりである。
 スルーリア1110:中空シリカスラリーIPA分散液、固形分濃度20.5質量%
 SR9035:エトキシ化トリメチロールプロパントリメタアクリレート
 EBECRYL40:ペンタエリスリトールエトキシテトラアクリレート
 オプツールDAC-HP:フッ化(メタ)アクリレート
Here, the details of each of the above materials are as follows.
Through rear 1110: Hollow silica slurry IPA dispersion, solid content concentration 20.5% by mass
SR9035: Ethoxylated trimethylolpropane trimethacrylate EBECRYL40: Pentaerythritol ethoxytetraacrylate Optool DAC-HP: Fluorinated (meth) acrylate
 得られた防曇防汚積層体について、上記の評価を行った。評価結果を表1に示した。 The above evaluation was performed on the obtained antifogging and antifouling laminate. The evaluation results are shown in Table 1.
(比較例1)
 実施例1において、第2の層を形成しなかった以外は、実施例1と同様にして、積層体を作製した。
(Comparative Example 1)
In Example 1, a laminate was produced in the same manner as in Example 1 except that the second layer was not formed.
 得られた積層体について、実施例1と同様の評価を行った。評価結果を表1に示した。なお、比較例1の評価において、上記評価項目中の「第2の層」は、「第1の層」と読み替える。また、「防曇防汚積層体」は、「積層体」と読み替える。 Evaluation similar to Example 1 was performed about the obtained laminated body. The evaluation results are shown in Table 1. In the evaluation of Comparative Example 1, “second layer” in the evaluation items is read as “first layer”. In addition, “anti-fogging and anti-fouling laminate” is read as “laminate”.
(実施例2)
 下記組成の活性エネルギー線硬化性樹脂組成物を用いて第2の層を形成した以外は実施例1と同様にして防曇防汚積層体を得た。
 得られた防曇防汚積層体について、実施例1と同様の評価を行った。評価結果を表1に示した。
(Example 2)
An antifogging and antifouling laminate was obtained in the same manner as in Example 1 except that the second layer was formed using an active energy ray-curable resin composition having the following composition.
About the obtained anti-fogging antifouling laminated body, evaluation similar to Example 1 was performed. The evaluation results are shown in Table 1.
-第2の層用活性エネルギー線硬化性樹脂組成物(合計100質量%)-
 ・オプスターTU2205(JSR株式会社製) 12.45質量%
 ・オプツールDAC-HP(ダイキン工業株式会社製) 0.05質量%
 ・tert-ブタノール(関東化学株式会社製) 85.5質量%
 ・ジアセトンアルコール(関東化学) 2.0質量%
-Active energy ray-curable resin composition for second layer (total 100% by mass)-
-Opstar TU2205 (manufactured by JSR Corporation) 12.45% by mass
-OPTOOL DAC-HP (Daikin Industries, Ltd.) 0.05% by mass
・ Tert-Butanol (manufactured by Kanto Chemical Co., Inc.) 85.5% by mass
・ Diacetone alcohol (Kanto Chemical) 2.0% by mass
 ここで、オプスターTU2205の詳細は以下のとおりである。
 オプスターTU2205:フッ素ポリマー、低屈折率フィラーを含むMIBK分散液、固形分濃度10質量%
Here, details of the OPSTAR TU2205 are as follows.
Opstar TU2205: MIBK dispersion containing fluoropolymer and low refractive index filler, solid content concentration 10% by mass
(比較例2)
 実施例1において、第1の層用活性エネルギー線硬化性樹脂組成物として下記の第1の層用活性エネルギー線硬化性樹脂組成物を使用した以外は、実施例1と同様にして、積層体を作製した。比較例2の積層体は、第1の層が親水性分子構造を含有しない。
(Comparative Example 2)
In Example 1, the laminate was used in the same manner as in Example 1 except that the following first layer active energy ray-curable resin composition was used as the first layer active energy ray-curable resin composition. Was made. In the laminate of Comparative Example 2, the first layer does not contain a hydrophilic molecular structure.
 得られた積層体について、実施例1と同様の評価を行った。評価結果を表1に示した。
 なお、比較例2の評価において、上記評価項目中の「防曇防汚積層体」は、「積層体」と読み替える。
About the obtained laminated body, evaluation similar to Example 1 was performed. The evaluation results are shown in Table 1.
In the evaluation of Comparative Example 2, “anti-fogging / anti-fouling laminate” in the above evaluation items is read as “laminate”.
-第1の層用活性エネルギー線硬化性樹脂組成物-
 ・A-TMMT(新中村化学工業株式会社製) 49.3質量部
 ・イルガキュア 184D(BASF社製) 1.5質量部
 ・イソプロピルアルコール(関東化学株式会社製) 49.2質量部
-Active energy ray-curable resin composition for first layer-
・ A-TMMT (made by Shin-Nakamura Chemical Co., Ltd.) 49.3 parts by mass ・ Irgacure 184D (made by BASF) 1.5 parts by mass ・ Isopropyl alcohol (made by Kanto Chemical Co., Ltd.) 49.2 parts by mass
 A-TMMT:ペンタエリスリトールテトラアクリレート A-TMMT: Pentaerythritol tetraacrylate
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 実施例1及び実施例2の防曇防汚積層体は、防曇性及び防汚性を有することに加え、反射防止機能も備えていた。
 比較例1の積層体は、第2の層を有しないために、防汚性と反射防止機能とが不十分であった。
 比較例2の積層体は、第1の層が親水性分子構造を含有しないため、防曇性が不十分であった。
In addition to having antifogging properties and antifouling properties, the antifogging and antifouling laminates of Example 1 and Example 2 also had an antireflection function.
Since the laminate of Comparative Example 1 did not have the second layer, the antifouling property and the antireflection function were insufficient.
The laminate of Comparative Example 2 had insufficient antifogging properties because the first layer did not contain a hydrophilic molecular structure.
(実施例3)
<防曇防汚積層体の作製>
 樹脂製基材として、三菱ガス化学株式会社製のFE-2000(PC基材、平均厚み180μm)を用いた。
(Example 3)
<Preparation of anti-fogging and antifouling laminate>
As a resin base material, FE-2000 (PC base material, average thickness 180 μm) manufactured by Mitsubishi Gas Chemical Co., Ltd. was used.
 次に、下記組成の活性エネルギー線硬化性樹脂組成物を、乾燥、硬化後の厚みが10μmとなるように、前記樹脂製基材上に塗布した。塗布後、60℃のオーブンで2分間乾燥させた。メタルハライドランプを用いて、窒素雰囲気下、照射量600mJ/cmで紫外線を照射して硬化させ、第1の層を得た。 Next, the active energy ray-curable resin composition having the following composition was applied onto the resin substrate so that the thickness after drying and curing was 10 μm. After coating, it was dried in an oven at 60 ° C. for 2 minutes. A metal halide lamp was used to cure by irradiating with ultraviolet rays at a dose of 600 mJ / cm 2 in a nitrogen atmosphere to obtain a first layer.
-第1の層用活性エネルギー線硬化性樹脂組成物(合計100質量%)-
 ・SR9035(サートマー社製) 34.5質量%
 ・EBECRYL 40(ダイセルオルネクス株式会社製) 14.8質量%
 ・イルガキュア 184D(BASF社製) 1.5質量%
 ・イソプロピルアルコール(関東化学株式会社製) 49.2質量%
-Active energy ray-curable resin composition for first layer (100% by mass in total)-
SR9035 (Sartomer) 34.5% by mass
・ EBECRYL 40 (manufactured by Daicel Ornex Co., Ltd.) 14.8% by mass
・ Irgacure 184D (manufactured by BASF) 1.5% by mass
・ Isopropyl alcohol (Kanto Chemical Co., Ltd.) 49.2% by mass
 次に、下記組成の活性エネルギー線硬化性樹脂組成物を、乾燥、硬化後厚みが1μmとなるように、前記第1の層上に塗布した。塗布後、60℃のオーブンで2分間乾燥させた。メタルハライドランプを用いて、窒素雰囲気下、照射量600mJ/cmで紫外線を照射して硬化させ、第3の層を得た。 Next, an active energy ray-curable resin composition having the following composition was applied on the first layer so that the thickness after drying and curing was 1 μm. After coating, it was dried in an oven at 60 ° C. for 2 minutes. Using a metal halide lamp, ultraviolet rays were irradiated and cured in a nitrogen atmosphere at an irradiation amount of 600 mJ / cm 2 to obtain a third layer.
-第3の層用活性エネルギー線硬化性樹脂組成物-
 ・A600(新中村化学工業製) 24.9質量%
 ・M-313(東亞合成株式会社製) 24.9質量%
 ・Lucirin TPO(BASF社製) 0.5質量%
 ・イソプロピルアルコール(関東化学株式会社製) 49.7質量%
-Active energy ray-curable resin composition for the third layer-
・ A600 (made by Shin-Nakamura Chemical Co., Ltd.) 24.9% by mass
・ M-313 (manufactured by Toagosei Co., Ltd.) 24.9% by mass
・ Lucirin TPO (manufactured by BASF) 0.5% by mass
・ Isopropyl alcohol (Kanto Chemical Co., Ltd.) 49.7% by mass
 A600:ポリエチレングリコール#600ジアクリレート
 M-313:イソシアヌル酸EO変性ジ及びトリアクリレート
A600: Polyethylene glycol # 600 diacrylate M-313: Isocyanuric acid EO-modified di- and triacrylate
 次に、下記組成の活性エネルギー線硬化性樹脂組成物を、乾燥、硬化後の厚みが100nmとなるように、前記第3の層上に塗布した。塗布後、60℃のオーブンで2分間乾燥させた。メタルハライドランプを用いて、窒素雰囲気下、照射量600mJ/cmで紫外線を照射して硬化させ、反射防止機能を有する防曇防汚積層体を得た。 Next, an active energy ray-curable resin composition having the following composition was applied on the third layer so that the thickness after drying and curing was 100 nm. After coating, it was dried in an oven at 60 ° C. for 2 minutes. Using a metal halide lamp, ultraviolet rays were irradiated and cured in a nitrogen atmosphere at an irradiation amount of 600 mJ / cm 2 to obtain an antifogging and antifouling laminate having an antireflection function.
-第2の層用活性エネルギー線硬化性樹脂組成物(合計100質量%)-
 ・スルーリア1110(日揮触媒化成株式会社製) 2.50質量%
 ・オプツールDAC-HP(ダイキン工業株式会社製) 0.05質量%
 ・SR9035(サートマー社製) 0.34質量%
 ・EBECRYL40(ダイセルオルネクス株式会社製) 0.15質量%
 ・イルガキュア184D(BASF社製) 0.02質量%
 ・IPA(関東化学株式会社製) 96.94質量%
-Active energy ray-curable resin composition for second layer (total 100% by mass)-
・ Thru rear 1110 (manufactured by JGC Catalysts & Chemicals) 2.50% by mass
-OPTOOL DAC-HP (Daikin Industries, Ltd.) 0.05% by mass
・ SR9035 (Sartomer) 0.34% by mass
・ EBECRYL40 (Daicel Ornex Co., Ltd.) 0.15% by mass
・ Irgacure 184D (BASF) 0.02% by mass
・ IPA (manufactured by Kanto Chemical Co., Inc.) 96.94% by mass
 得られた防曇防汚積層体について、上記の評価を行った。評価結果を表2に示した。
 ただし、耐傷性試験においては、荷重を500gf/13mmφにして試験を行った。
Said evaluation was performed about the obtained anti-fogging antifouling laminated body. The evaluation results are shown in Table 2.
However, in the scratch resistance test, the load was set to 500 gf / 13 mmφ.
(実施例4)
 下記組成の活性エネルギー線硬化性樹脂組成物を用いて第2の層を形成した以外は実施例3と同様にして防曇防汚積層体を得た。
 得られた防曇防汚積層体について、実施例3と同様の評価を行った。評価結果を表2に示した。
Example 4
An antifogging and antifouling laminate was obtained in the same manner as in Example 3 except that the second layer was formed using an active energy ray-curable resin composition having the following composition.
About the obtained anti-fogging antifouling laminated body, evaluation similar to Example 3 was performed. The evaluation results are shown in Table 2.
-第2の層用活性エネルギー線硬化性樹脂組成物(合計100質量%)-
 ・オプスターTU2205(JSR株式会社製) 12.3質量%
 ・tert-ブタノール(関東化学株式会社製) 85.7質量%
 ・ジアセトンアルコール(関東化学) 2.0質量%
-Active energy ray-curable resin composition for second layer (total 100% by mass)-
-Opstar TU2205 (manufactured by JSR Corporation) 12.3% by mass
・ Tert-Butanol (manufactured by Kanto Chemical Co., Inc.) 85.7% by mass
・ Diacetone alcohol (Kanto Chemical) 2.0% by mass
(比較例3)
 実施例3において、第1の層を形成しなかった以外は、実施例3と同様にして、積層体を作製した。
(Comparative Example 3)
In Example 3, a laminate was produced in the same manner as in Example 3 except that the first layer was not formed.
 得られた積層体について、実施例3と同様の評価を行った。評価結果を表2に示した。なお、比較例3の評価において、上記評価項目中の「防曇防汚積層体」は、「積層体」と読み替える。 Evaluation similar to Example 3 was performed about the obtained laminated body. The evaluation results are shown in Table 2. In the evaluation of Comparative Example 3, “antifogging / antifouling laminate” in the above evaluation items is read as “laminate”.
(比較例4)
 実施例3において、第1の層用活性エネルギー線硬化性樹脂組成物として下記の第1の層用活性エネルギー線硬化性樹脂組成物を使用して、5μmの第1の層を形成した以外は、実施例3と同様にして、積層体を作製した。比較例4の積層体は、第1の層が親水性分子構造を含有しない。
(Comparative Example 4)
In Example 3, except that the first active energy ray-curable resin composition for the first layer described below was used as the active energy ray-curable resin composition for the first layer, and the first layer of 5 μm was formed. In the same manner as in Example 3, a laminate was produced. In the laminate of Comparative Example 4, the first layer does not contain a hydrophilic molecular structure.
 得られた積層体について、実施例3と同様の評価を行った。評価結果を表2に示した。
 なお、比較例4の評価において、上記評価項目中の「防曇防汚積層体」は、「積層体」と読み替える。
About the obtained laminated body, evaluation similar to Example 3 was performed. The evaluation results are shown in Table 2.
In the evaluation of Comparative Example 4, “anti-fogging and anti-stain laminate” in the above evaluation items is read as “laminate”.
-第1の層用活性エネルギー線硬化性樹脂組成物(合計100質量%)-
 ・A-DPH(新中村化学工業株式会社製) 39.4質量%
 ・ビスコート#300(大阪有機化学工業株式会社製) 9.8質量%
 ・イルガキュア 184D(BASF社製) 1.5質量%
 ・2-ブタノン(関東化学株式会社製) 49.3質量%
-Active energy ray-curable resin composition for first layer (100% by mass in total)-
・ A-DPH (made by Shin-Nakamura Chemical Co., Ltd.) 39.4% by mass
・ Viscoat # 300 (Osaka Organic Chemical Co., Ltd.) 9.8% by mass
・ Irgacure 184D (manufactured by BASF) 1.5% by mass
・ 2-butanone (manufactured by Kanto Chemical Co., Ltd.) 49.3 mass%
 A-DPH:ジペンタエリスリトールヘキサアクリレート
 ビスコート#300:ペンタエリスリトールとアクリル酸との縮合物
A-DPH: Dipentaerythritol hexaacrylate Biscoat # 300: Condensate of pentaerythritol and acrylic acid
(比較例5)
 実施例3において、第2の層を形成しなかった以外は、実施例3と同様にして、積層体を作製した。
(Comparative Example 5)
In Example 3, a laminate was produced in the same manner as Example 3 except that the second layer was not formed.
 得られた積層体について、実施例3と同様の評価を行った。評価結果を表2に示した。なお、比較例5の評価において、上記評価項目中の「防曇防汚積層体」は、「積層体」と読み替える。 Evaluation similar to Example 3 was performed about the obtained laminated body. The evaluation results are shown in Table 2. In the evaluation of Comparative Example 5, “anti-fogging / anti-fouling laminate” in the above evaluation items is read as “laminate”.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 実施例3及び実施例4の防曇防汚積層体は、防曇性及び防汚性を有することに加え、反射防止機能も備えていた。更に、第1の層と第2の層との間に、第3の層を設けることで、実施例1及び実施例2と比べ、耐傷性がより優れていた。
 比較例3の積層体は、第1の層を有しないために、防曇性が不十分であった。
 比較例4の積層体は、第1の層が親水性分子構造を含有しないため、防曇性が不十分であった。
 比較例5の積層体は、第2の層を有しないために、防汚性と反射防止機能とが不十分であった。
In addition to having antifogging properties and antifouling properties, the antifogging and antifouling laminates of Example 3 and Example 4 also had an antireflection function. Further, by providing the third layer between the first layer and the second layer, the scratch resistance was more excellent as compared with Example 1 and Example 2.
Since the laminate of Comparative Example 3 did not have the first layer, the antifogging property was insufficient.
The laminate of Comparative Example 4 had insufficient antifogging properties because the first layer did not contain a hydrophilic molecular structure.
Since the laminate of Comparative Example 5 did not have the second layer, the antifouling property and the antireflection function were insufficient.
 本発明の防曇防汚積層体は、ガラス窓、冷蔵・冷凍ショーケース、自動車のウインドウ等の窓材、浴室内の鏡、自動車サイドミラー等の鏡、浴室の床及び壁、太陽電池パネル表面、防犯監視カメラなどへ貼り合わせて用いることができる。また、本発明の防曇防汚積層体は、成形加工が容易であることから、インモールド成形、インサート成形を利用して、眼鏡、ゴーグル、ヘルメット、レンズ、マイクロレンズアレイ、自動車のヘッドライトカバー、フロントパネル、サイドパネル、リアパネルなどに用いることができる。 The anti-fogging and antifouling laminate of the present invention includes glass windows, refrigerated / frozen showcases, window materials such as automobile windows, mirrors in bathrooms, mirrors such as automobile side mirrors, bathroom floors and walls, solar panel surfaces It can be attached to a security surveillance camera. In addition, since the anti-fogging and antifouling laminate of the present invention is easy to be molded, glasses, goggles, helmets, lenses, microlens arrays, automobile headlight covers are used by using in-mold molding and insert molding. It can be used for front panels, side panels, rear panels and the like.
 11   樹脂製基材
 1    第1の層
 2    第2の層
 2A   低屈折率フィラー
 3    第3の層
 4    第4の層
 4A   高屈折率フィラー
 211  樹脂製基材
 212  第1の層
 213  第2の層

 
DESCRIPTION OF SYMBOLS 11 Resin base material 1 1st layer 2 2nd layer 2A Low refractive index filler 3 3rd layer 4 4th layer 4A High refractive index filler 211 Resin base material 212 1st layer 213 2nd layer

Claims (10)

  1.  基材と、前記基材の少なくとも一方の面上に、第1の層と、第2の層とを有し、
     前記第1の層が、親水性分子構造を含有し、
     前記第2の層が、低屈折率フィラーを含有し、
     前記第2の層の表面の純水接触角が、90°以上であることを特徴とする防曇防汚積層体。
    A first layer and a second layer on at least one surface of the substrate and the substrate;
    The first layer contains a hydrophilic molecular structure;
    The second layer contains a low refractive index filler;
    An anti-fogging and antifouling laminate having a pure water contact angle on the surface of the second layer of 90 ° or more.
  2.  前記第1の層と前記第2の層との間に、前記第1の層及び前記第2の層と異なる第3の層を有する請求項1に記載の防曇防汚積層体。 The anti-fogging and antifouling laminate according to claim 1, further comprising a third layer different from the first layer and the second layer between the first layer and the second layer.
  3.  前記第2の層の動摩擦係数が、0.4以下である請求項1から2のいずれかに記載の防曇防汚積層体。 The anti-fogging and antifouling laminate according to any one of claims 1 to 2, wherein the dynamic friction coefficient of the second layer is 0.4 or less.
  4.  視感反射率が、3.0%以下である請求項1から3のいずれかに記載の防曇防汚積層体。 The anti-fogging and antifouling laminate according to any one of claims 1 to 3, wherein the luminous reflectance is 3.0% or less.
  5.  前記第2の層が、撥水性分子構造を含有する請求項1から4のいずれかに記載の防曇防汚積層体。 The antifogging and antifouling laminate according to any one of claims 1 to 4, wherein the second layer contains a water-repellent molecular structure.
  6.  前記第2の層が、親水性分子構造を含有する請求項1から5のいずれかに記載の防曇防汚積層体。 The antifogging and antifouling laminate according to any one of claims 1 to 5, wherein the second layer contains a hydrophilic molecular structure.
  7.  前記第1の層が含有する前記親水性分子構造が、ポリオキシアルキレン鎖である請求項1から6のいずれかに記載の防曇防汚積層体。 The antifogging and antifouling laminate according to any one of claims 1 to 6, wherein the hydrophilic molecular structure contained in the first layer is a polyoxyalkylene chain.
  8.  請求項1から7のいずれかに記載の防曇防汚積層体を表面に有することを特徴とする物品。 An article having the antifogging and antifouling laminate according to any one of claims 1 to 7 on the surface.
  9.  請求項8に記載の物品の製造方法であって、
     前記防曇防汚積層体を加熱する加熱工程と、
     加熱された前記防曇防汚積層体を所望の形状に成形する防曇防汚積層体成形工程と、
     所望の形状に成形された前記防曇防汚積層体の基材側に成形材料を射出し、前記成形材料を成形する射出成形工程とを含むことを特徴とする物品の製造方法。
    A method for manufacturing an article according to claim 8,
    A heating step of heating the antifogging and antifouling laminate,
    An anti-fogging and antifouling laminate forming step for forming the heated antifogging and antifouling laminate into a desired shape; and
    A method for producing an article, comprising: an injection molding step of injecting a molding material onto a substrate side of the anti-fogging and antifouling laminate molded into a desired shape, and molding the molding material.
  10.  前記加熱工程における加熱が、赤外線加熱により行われる請求項9に記載の物品の製造方法。 The method for manufacturing an article according to claim 9, wherein the heating in the heating step is performed by infrared heating.
PCT/JP2016/086913 2015-12-18 2016-12-12 Clouding- and stain-proof laminate, product, and method for manufacturing same WO2017104612A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2015246864 2015-12-18
JP2015-246864 2015-12-18
JP2016-089429 2016-04-27
JP2016089429A JP7161836B2 (en) 2015-12-18 2016-04-27 Antifogging antifouling laminate, article, and method for producing the same

Publications (1)

Publication Number Publication Date
WO2017104612A1 true WO2017104612A1 (en) 2017-06-22

Family

ID=59056621

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/086913 WO2017104612A1 (en) 2015-12-18 2016-12-12 Clouding- and stain-proof laminate, product, and method for manufacturing same

Country Status (1)

Country Link
WO (1) WO2017104612A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3858610A4 (en) * 2018-09-27 2022-07-20 Daiwa Can Company Liquid repellent film or sheet, and packaging material using same

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02175784A (en) * 1988-12-28 1990-07-09 Toray Ind Inc Anti-fogging article
WO2004070436A1 (en) * 2003-02-06 2004-08-19 Sdc Technologies-Asia Ltd. Method for producing article having been subjected to low reflection treatment, solution for forming low reflection layer and article having been subjected to low reflection treatment
JP2006044195A (en) * 2004-08-09 2006-02-16 Mitsubishi Rayon Co Ltd Photosetting sheet and molded product using the same
JP2011213002A (en) * 2010-03-31 2011-10-27 Dainippon Printing Co Ltd Decorative sheet
WO2013005710A1 (en) * 2011-07-06 2013-01-10 東海光学株式会社 Haze-proof optical article and method for producing same
JP2014159154A (en) * 2013-01-23 2014-09-04 Dexerials Corp Hydrophilic laminated body, method for manufacturing the same, antifouling laminated body, article, method for manufacturing the same and antifouling method

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02175784A (en) * 1988-12-28 1990-07-09 Toray Ind Inc Anti-fogging article
WO2004070436A1 (en) * 2003-02-06 2004-08-19 Sdc Technologies-Asia Ltd. Method for producing article having been subjected to low reflection treatment, solution for forming low reflection layer and article having been subjected to low reflection treatment
JP2006044195A (en) * 2004-08-09 2006-02-16 Mitsubishi Rayon Co Ltd Photosetting sheet and molded product using the same
JP2011213002A (en) * 2010-03-31 2011-10-27 Dainippon Printing Co Ltd Decorative sheet
WO2013005710A1 (en) * 2011-07-06 2013-01-10 東海光学株式会社 Haze-proof optical article and method for producing same
JP2014159154A (en) * 2013-01-23 2014-09-04 Dexerials Corp Hydrophilic laminated body, method for manufacturing the same, antifouling laminated body, article, method for manufacturing the same and antifouling method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3858610A4 (en) * 2018-09-27 2022-07-20 Daiwa Can Company Liquid repellent film or sheet, and packaging material using same
US11591148B2 (en) 2018-09-27 2023-02-28 Daiwa Can Company Liquid repellent film or sheet, and packaging matertal, using same

Similar Documents

Publication Publication Date Title
JP6231237B2 (en) Anti-fogging laminate, article, method for producing the same, and anti-fogging method
JP6375360B2 (en) Active energy ray-curable resin composition, antifogging and antifouling laminate, article, method for producing the same, and antifouling method
JP7161836B2 (en) Antifogging antifouling laminate, article, and method for producing the same
JP6160186B2 (en) Fine concavo-convex structure, decorative sheet, decorative resin molded body, fine concavo-convex structure, and method for producing decorative resin molded body
JP6637243B2 (en) Anti-fogging anti-fouling laminate, its manufacturing method, article, its manufacturing method, and anti-fouling method
JP6298191B1 (en) Active energy ray-curable resin composition, antifogging and antifouling laminate, method for producing the same, article, and antifogging method
WO2016175054A1 (en) Active energy ray-curable resin composition, antifogging antifouling laminate, article, method for producing same, and antifouling method
US10987899B2 (en) Active energy ray curable resin composition, laminate, manufacturing method thereof, and product
JP6432134B2 (en) Curable composition, fine concavo-convex structure, decorative sheet, decorative resin molded body, and method for producing decorative resin molded body
WO2017073262A1 (en) Antifog laminate, article, manufacturing method thereof, and anti-fog method
WO2017104612A1 (en) Clouding- and stain-proof laminate, product, and method for manufacturing same
JP6518374B2 (en) Active energy ray curable resin composition, laminate, method for producing the same, and article
JP6568294B2 (en) Active energy ray-curable resin composition, antifogging and antifouling laminate, method for producing the same, article, and antifogging method
WO2019163638A1 (en) Active energy ray curable resin composition, antifogging antifouling laminate, and manufacturing method, article, and antifogging method thereof
KR20230038142A (en) Manufacturing method of hard coat film for insert molding and insert molded product

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16875589

Country of ref document: EP

Kind code of ref document: A1

DPE2 Request for preliminary examination filed before expiration of 19th month from priority date (pct application filed from 20040101)
NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16875589

Country of ref document: EP

Kind code of ref document: A1