WO2017104161A1 - Power management device - Google Patents

Power management device Download PDF

Info

Publication number
WO2017104161A1
WO2017104161A1 PCT/JP2016/072351 JP2016072351W WO2017104161A1 WO 2017104161 A1 WO2017104161 A1 WO 2017104161A1 JP 2016072351 W JP2016072351 W JP 2016072351W WO 2017104161 A1 WO2017104161 A1 WO 2017104161A1
Authority
WO
WIPO (PCT)
Prior art keywords
power
storage battery
charge
charging
discharge
Prior art date
Application number
PCT/JP2016/072351
Other languages
French (fr)
Japanese (ja)
Inventor
禎之 井上
隆司 新井
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to JP2016571368A priority Critical patent/JP6143979B1/en
Publication of WO2017104161A1 publication Critical patent/WO2017104161A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/38Arrangements for parallely feeding a single network by two or more generators, converters or transformers
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/02Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries for charging batteries from ac mains by converters
    • H02J7/04Regulation of charging current or voltage
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/34Parallel operation in networks using both storage and other dc sources, e.g. providing buffering
    • H02J7/35Parallel operation in networks using both storage and other dc sources, e.g. providing buffering with light sensitive cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/56Power conversion systems, e.g. maximum power point trackers

Definitions

  • the present invention relates to a power management apparatus that manages power supply and demand of a system having an energy generating device, a power storage device, and an electrical load, and particularly relates to power management of the power storage device.
  • the power management device efficiently operates the energy creation device, the power storage device, and the electrical load to reduce the power charge, an operation plan for charging and discharging the power storage device throughout the day is created.
  • the storage batteries that make up power storage devices are very expensive and have the minimum capacity required, and charge the power at low power during the midnight power hours, or the surplus power from the power generation devices. Discharges outside high-cost late-night power hours.
  • the progress of deterioration of storage batteries varies greatly depending on the usage method and temperature.
  • the following methods are disclosed for conventional storage battery control.
  • a storage battery When charging a storage battery, it has the 1st charge mode which charges a storage battery with a constant current, and the 2nd charge mode which charges a storage battery with a constant voltage.
  • the 1st charge mode which charges a storage battery with a constant current
  • the 2nd charge mode which charges a storage battery with a constant voltage.
  • the charging current value is also determined by the storage battery temperature (for example, Patent Document 1).
  • the maximum allowable power Pmax at the time of charging the storage battery is determined according to the temperature prediction result and the reliability standard held inside the device. In determining Pmax, it is determined based on data representing reliability with respect to power and temperature. Further, the maximum energy Emax that can be charged in the storage battery is calculated from the power generation amount prediction result of the generator. On the other hand, the amount of electric power E necessary to fully charge the storage battery is determined, and the electric power PL charged to the storage battery is determined from the above calculated Emax, E, and Pmax. When PL is determined, charging power is distributed over a power generation possible period of the generator to avoid a power peak (for example, Patent Document 2).
  • Deterioration of storage batteries progresses even when charging / discharging is not carried out.
  • the deterioration progresses as compared with the case where the stored electric energy is 80% or less. Is big.
  • the storage battery temperature is high, the progress of deterioration further increases.
  • the battery can often not be charged / discharged during the daytime when the outside air temperature is high in summer, and charging / discharging is possible even when the temperature drops from evening to night. The current is limited.
  • the storage battery is charged by switching the mode. However, regarding the completion of charging, the storage battery is charged up to full charge.
  • the storage battery is held at full charge in the daytime period when the outside air temperature is high in summer, and the deterioration of the storage battery is promoted.
  • the charged energy amount is not used up and the day ends and recharging is performed, and there is a problem in that the battery is charged more than the necessary power amount to promote deterioration of the storage battery.
  • charging power PL is determined and charged from the above-described maximum allowable power Pmax, maximum energy Emax that can be charged in the storage battery, and power amount E required for full charging.
  • Pmax maximum allowable power
  • Emax maximum energy that can be charged in the storage battery
  • E required for full charging the battery is deteriorated by charging more than the required power amount.
  • the storage battery is unnecessarily high during the daytime when the outside air temperature is high, and the storage battery is deteriorated.
  • the present invention was made to solve the above-described problems, and by appropriately creating an operation plan for a power storage device, it is possible to prevent charging and holding an unnecessarily high amount of power. It is an object of the present invention to provide a power management apparatus that can suppress deterioration of the power storage device.
  • the power management apparatus includes a power storage device information acquisition unit that manages power supply and demand of a system including a power storage device, an energy generation device, and an electric load, and acquires information on the power storage device, and the energy generation device Generated power prediction unit that predicts the power to be generated, load power prediction unit that predicts the power consumption of the electric load, storage device information acquired by the storage device information acquisition unit, prediction by the generation power prediction unit And an operation plan creation unit that creates an operation plan for the power storage device based on the generated power prediction information, the load power prediction information predicted by the load power prediction unit, and the temperature prediction information.
  • the said operation plan preparation part determines the charge termination point which is the maximum charge electric energy or the charge termination voltage of the said electrical storage apparatus based on the said temperature prediction information at least, and the said electrical storage apparatus is charged below the said charge termination point.
  • the operation plan is created so that charging / discharging of the power storage device is stopped in a time zone in which the temperature prediction information exceeds a set upper limit value.
  • the operation plan creation unit charges the power storage device in a time zone in which the power storage device is charged below the charging end point and the temperature prediction information exceeds a set upper limit value. Since the said operation plan is created so that discharge may be stopped, charging and holding
  • FIG. 16 is a partial detailed flowchart of FIG. 15. It is a figure which shows the electric power charge system in Embodiment 1 of this invention.
  • FIG. 16 It is a figure which shows the example of the forecast data of the solar radiation amount of each weather and time stored in the database in the PV generation power learning management part by Embodiment 1 of this invention. It is a figure explaining the solar radiation amount correction
  • FIG. 22 It is a partial detailed flowchart of FIG. 22, and is a figure which shows the production
  • FIG. 35 shows schematically the structure of the power management apparatus by Embodiment 3 of this invention. It is a block diagram which shows roughly the structure of the driving
  • FIG. 1 is a diagram schematically showing an overall configuration of a power management system including a power management apparatus 100 according to Embodiment 1 of the present invention.
  • a power management system (hereinafter referred to as a system) includes an energy creation device A, a power storage device B, a heat storage device C, a load device 20 that is an electrical load in a house, a commercial system 11 connected to the system power supply 10, and a power management device 100.
  • a system HEMS in the home in which power supply and demand is managed by the power management apparatus 100.
  • the energy creation device A includes a solar panel 1 (PV) and a solar power converter 2 that converts DC power output from the solar panel 1 into AC power.
  • PV solar panel 1
  • the solar power generation device comprised by the solar panel 1 and the solar power conditioner 2 is used as an example of the energy creation apparatus A is demonstrated.
  • the energy generating device A is not limited to a solar power generation device, and may be, for example, a wind power generation device.
  • the power storage device B includes a storage battery 3 and a storage battery power conditioner 4 that manages charging and discharging of the storage battery 3.
  • the electrical storage apparatus comprised by the storage battery 3 and the storage battery power conditioner 4 which use a lithium ion battery as an example of the electrical storage apparatus B is demonstrated.
  • the power storage device B is not limited to the storage battery 3 using a lithium ion battery, and it goes without saying that, for example, a battery of an electric vehicle may be used as a storage battery, or a lead storage battery may be used.
  • the heat storage device C is a heat pump water heater 5 (hereinafter referred to as a water heater) such as Ecocute (registered trademark). Needless to say, the heat storage device C is not limited to the water heater 5 and may be, for example, a fuel cell that boils hot water using heat generated when the power generation device A generates power. Further, the fuel cell may be used as the energy generating device A.
  • the system power supply 10 supplies 200V AC power to the commercial system 11, and the energy creation device A, the power storage device B, the heat storage device C, and the load device 20 are connected to the commercial system 11.
  • a distribution board 14 and a smart meter 15 are provided closer to the system power supply 10 than the energy generating device A, the power storage device B, the heat storage device C, and the load device 20.
  • the distribution board 14 incorporates a power measurement circuit 14 a that measures the generated power of the energy creation device A, the charge / discharge power of the power storage device B, the power storage device C, and the power consumption of the load device 20.
  • the home load device 20 is not limited to this, and may be a device such as a TV, a personal computer, a vacuum cleaner, a dishwasher, a ventilation fan, or a heater.
  • the various load devices 20 are not limited to one, and may include a plurality of units (for example, three air conditioners 21).
  • the energy creation device A, the power storage device B, and the heat storage device C are not limited to one unit.
  • the power storage device B is a storage battery 3 and two batteries of an electric vehicle, or the energy generation device A is solar power.
  • the panel 1, wind power, fuel cell combination, or heat storage device C may be a system that uses the remaining heat of the water heater 5 and the fuel cell.
  • the power management apparatus 100 is connected to each device that is an energy creation device A, a power storage device B, a heat storage device C, a load device 20, a distribution board 14, and a smart meter 15 via a communication network 12.
  • a communication network 12 for connecting each device.
  • Ethernet registered trademark
  • the present invention is not limited to this.
  • it is determined in the physical layer of the Echonet Lite standard. It goes without saying that the connection may be made by using wireless or PLC (power line carrier communication).
  • each power measurement result of the generated power of the energy creation device A, the charge / discharge power of the storage device B, the power consumption of the heat storage device C and the load device 20 measured by the power measurement circuit 14a in the distribution board 14 is a signal.
  • the power management apparatus 100 is notified via the line 13.
  • the distribution board 14 may be configured without the built-in power measurement circuit 14a. In that case, it is needless to say that power measurement results of various devices are measured in each device, and the measurement results are notified to the power management apparatus 100 via the communication network 12.
  • the power management apparatus 100 is connected to the public line network 30 and is connected to the cloud server 31 via the public line network 30.
  • FIG. 2 shows a system configuration diagram of the power management apparatus 100.
  • the power management device 100 includes a CPU 110, a ROM 111, a RAM 112, an Echonet Lite communication I / F (interface) unit 113, an Ethernet communication I / F unit 114, a display unit 115, a power measurement unit 116, and a time management unit.
  • the ROM 111 stores a program.
  • the RAM 112 temporarily stores data when executing a program, and is used as a work area when executing the program.
  • Echonet Lite communication I / F 113 includes solar power conditioner 2, storage battery power conditioner 4, hot water heater 5, distribution board 14, smart meter 15, air conditioner 21, refrigerator 22, lighting 23, IH cooking heater 24 and power management apparatus 100.
  • Is an I / F of Echonet Lite communication (the physical layer is Ethernet (registered trademark)).
  • Ethernet registered trademark
  • the Ethernet (registered trademark) communication I / F 114 is an Ethernet (registered trademark) communication I / F that connects the power management apparatus 100 to the public line network 30.
  • Ethernet registered trademark
  • a wireless LAN or an optical communication I / F may be used.
  • the power management apparatus 100 may be connected to the public line network 30 via a home gateway or the like and has the same effect.
  • the power measurement unit 116 stores the power measurement result output from the power measurement circuit 14a in the distribution board 14, and the time management unit 117 manages time (including date).
  • the operation planning unit 118 creates an operation plan for the power storage device B and the heat storage device C.
  • the device management unit 119 is a device management unit that manages the operation status of the energy creation device A, the power storage device B, the heat storage device C, and each load device 20. Note that the device management unit 119 also performs device authentication when a new device is introduced.
  • the load device control unit 120 controls the operation of the load device 20, and the family schedule management unit 121 manages the family schedule.
  • the DR response unit 122 determines the power consumption reduction amount, the priority order of devices that reduce the power usage amount, and the like. Further, the Echonet Lite communication I / F 113 exchanges information between the power storage device B and the power management apparatus 100, and notifies the power storage device B of the operation mode when the storage battery 3 is acquired and charging / discharging of the storage battery 3 is stopped. It is also used when
  • the CPU 110 instructs the device management unit 119 to perform authentication of the connected device.
  • the Echonet Lite standard is used, and detailed description such as connection authentication with each device is omitted.
  • the CPU 110 instructs the device management unit 119 to check the operation status of each connected device.
  • the device management unit 119 instructs the Echonet Lite communication I / F unit 113 to notify the operation status to each device for which connection authentication has been completed.
  • the Echonet Lite communication I / F unit 113 Upon receiving the instruction, the Echonet Lite communication I / F unit 113 transmits a command defined in the Echonet Lite standard to the communication network 12 so as to notify the device instructed by the device management unit 119 of the operation status.
  • each device uses the Echonet Lite communication I / F unit 113 based on the command defined in the Echonet Lite standard. Via the communication network 12.
  • the echolite communication I / F unit 113 notifies the device management unit 119 of the contents.
  • the device management unit 119 notifies the CPU 110 to that effect.
  • the CPU 110 grasps the operating state of each device, the CPU 110 instructs the Ethernet (registered trademark) communication I / F unit 114 to obtain weather forecast information including temperature forecast information from the cloud server 31.
  • the Ethernet (registered trademark) communication I / F unit 114 sends a weather forecast information transmission request to the cloud server 31.
  • the cloud server 31 transmits weather forecast information including temperature prediction information to the Ethernet (registered trademark) communication I / F unit 114.
  • the Ethernet (registered trademark) communication I / F unit 114 that has received the weather forecast information notifies the CPU 110 of the fact.
  • “sunny”, “cloudy”, “rain” or “snow” is used as the weather forecast information, and the weather forecast information and the temperature forecast information are forecasted every hour. It is assumed that the cloud server 31 notifies for 24 hours.
  • the weather forecast information is not limited to the above four types, and it goes without saying that the weather forecast information may be classified into more detailed categories such as “cloudy when sunny”, “cloudy after cloudy”, “sunny and rainy”. Yes. Moreover, although the case where the temperature prediction information for every hour is acquired as temperature prediction information is demonstrated, the temperature prediction information for every 3 hours may be sufficient, for example, the maximum temperature and the minimum temperature information may be acquired, and 1 It suffices if day temperature prediction information is notified. When the maximum temperature and the minimum temperature information are used, the temperature for 24 hours is predicted from the maximum temperature and the minimum temperature information in the power management apparatus 100.
  • the temperature prediction information is obtained by predicting the temperature of the day in the power management apparatus 100 from the weather forecast information and the date information.
  • the CPU 110 instructs the operation planning unit 118 to create an operation plan.
  • FIG. 3 is a block diagram illustrating a configuration of the operation planning unit 118 in the power management apparatus 100.
  • the operation planning unit 118 becomes a load power consumption learning management unit 200, a PV power generation power learning management unit 201, a load power consumption prediction unit 202 serving as a load power prediction unit, and a generated power prediction unit.
  • a PV generated power prediction unit 203, a storage battery model 204, a water heater model 205, and an operation plan creation unit 206 that creates an operation plan for the storage battery 3 and the water heater 5 are provided.
  • the load power consumption learning management unit 200 displays the date, day of the week, and time data output from the time management unit 117, the current weather obtained via the Ethernet communication I / F 114, and the current actual measurement measured by a thermometer (not shown). Based on the temperature information (outside temperature), the power consumption of the water heater 5 and the load device 20 output from the power measuring unit 116 is learned. Note that the load power consumption learning management unit 200 corrects the temperature prediction information using the actually measured temperature information, and notifies the load power consumption prediction unit 202, the storage battery model 204, the water heater model 205, and the operation plan creation unit 206. To do.
  • the PV generated power learning management unit 201 is output from the power measurement unit 116 based on the date and time data output from the time management unit 117 and the current weather record obtained via the Ethernet communication I / F 114.
  • the amount of PV power generated by the solar panel 1 is learned based on each weather record.
  • the load power consumption prediction unit 202 includes the weather forecast information obtained through the Ethernet communication I / F unit 114, the temperature information, the family schedule output from the family schedule management unit 121, and the database in the load power consumption learning management unit 200. Based on the above, the power consumption of the load device 20 is predicted. This load power consumption prediction unit 202 predicts the total power consumption of the load device 20 excluding the power consumption of the water heater 5.
  • the load power consumption prediction unit 202 may be configured to predict the power consumption of each load device 20 individually.
  • the PV generated power prediction unit 203 predicts the subsequent PV generated power amount based on the weather forecast result, the database in the PV generated power learning management unit 201, and the PV generated power amount of the solar panel 1.
  • the storage battery model 204 is configured to serve as both a storage battery characteristic learning unit and a storage battery temperature prediction unit, and is output from the input characteristic information of the storage battery 3, the temperature prediction information, and the operation plan creation unit 206.
  • a predicted temperature of the storage battery cell temperature (surface temperature of each cell inside the storage battery 3) that is temperature information of the storage battery 3 is calculated.
  • various restriction information such as charge / discharge current, charge end voltage, discharge end voltage and the like, which are largely caused by storage battery deterioration, are calculated from the characteristic information of the storage battery 3, and the charge / discharge current or charge / discharge power is calculated based on the calculation result.
  • the operation of the storage battery 3 based on the operation plan is simulated.
  • the water heater model 205 simulates the operation of the water heater 5 based on the input characteristic information of the water heater 5, the temperature prediction information, and the amount of hot water used output from the operation plan creation unit 206 and the operation plan of the water heater 5.
  • the power consumption and the heat storage amount at each time are calculated.
  • the calculation of the power consumption is performed using a database in the load power consumption learning management unit 200.
  • the hot water heater 5 has a short device life when it is repeatedly operated and stopped. Therefore, the start / stop is limited to about 2 to 3 times a day. Therefore, in the first embodiment, the number of times of starting and stopping the water heater 5 from the power management apparatus 100 is set to twice a day.
  • the operation plan of the water heater 5 is prepared by preparing two operation patterns of hot water supply in the late-night power hours and hot water supply in the daytime hours.
  • the water heater model 205 manages an operation plan based on a plurality of operation patterns of the water heater 5. Since the hot water heater 5 is limited to a maximum of twice a day for starting and stopping, the number of operation patterns can be reduced and the amount of calculation can be reduced.
  • the operation plan creation unit 206 controls the load power consumption learning management unit 200, the PV power generation power learning management unit 201, the load power consumption prediction unit 202, the PV power generation power prediction unit 203, the storage battery model 204, and the water heater model 205, The operation plan of the storage battery 3 and the operation pattern of the water heater 5 are determined. Further, the operation plan creation unit 206 acquires and manages the power charge system via the Ethernet communication I / F 114, and the operation plan and hot water supply of the storage battery 3 so that the power charge is lowered based on the acquired power charge system. The operation pattern of the machine 5 is determined. Details of the operation of the operation plan creation unit 206 will be described later. In FIG. 3, in order to simplify the description, the information that is originally supplied from the operation plan creation unit 206 to each unit, such as the prediction result of the temperature, is supplied from the outside so that the connection destination can be clearly understood. As illustrated.
  • FIG. 4 is a diagram for explaining operation plan creation by the operation plan unit 118.
  • the storage battery 3 and the water heater 5 that are energy storage devices are added to the storage battery. 3 and the operation plan of the water heater 5 are created.
  • the operation plan creation unit 206 serving as the engine unit for creating the operation plan includes, for example, a 30-minute average PV generated power prediction result (see FIG. 4A), and The average power consumption prediction result (see FIG. 4B) of the load device 20 excluding the power consumption of the water heater 5 is notified for 24 hours.
  • the storage battery 3 and the water heater 5 have characteristics such as temperature characteristics, and the details will be described later.
  • modeling is performed using the characteristics as an evaluation function. Then, using the evaluation function modeling the characteristics of the storage battery 3 and the characteristics of the hot water heater 5 with the PV generation power prediction result, the load power consumption prediction result, and the power charge system as inputs, an operation plan is created by optimization. To do. At that time, since the water heater 5 basically determines the COP (energy conversion efficiency) and the power consumption at the optimum operating point depending on the temperature, the operation plan creating unit 206 stores the hot water supply start time and end time (or storage at the end time). It is only necessary to determine the amount of energy (see FIG. 4D).
  • the storage battery 3 also needs to determine charge / discharge power for optimal operation.
  • the optimum operation of the storage battery 3 is determined using the evaluation function described above, the average charge / discharge power every 30 minutes after the current time is output as an operation plan (see FIG. 4C).
  • FIG. 5 is a diagram illustrating the configuration of the power storage device B including the internal configuration of the storage battery 3.
  • the power storage device B includes a storage battery 3 and a storage battery power conditioner 4 that manages charge / discharge of the storage battery 3.
  • the storage battery 3 includes a plurality of storage battery cells 301 connected in series, and further includes a BMU (battery management unit) 305 that monitors the state of each storage battery cell 301.
  • the BMU 305 includes a CMU (cell management unit) 302 that manages storage battery cell temperature and storage battery cell voltage for each storage battery cell 301, a storage battery control circuit 303, and a relay switch 304.
  • the CMU 302 is connected to each storage battery cell 301 and has a voltage adjustment function at the time of full charge.
  • the storage battery control circuit 303 outputs the management information of the storage battery cell 301 output from the CMU 302 to the storage battery power conditioner 4, and is charged / discharged at a high temperature at which the deterioration of the storage battery 3 proceeds, or the storage battery cell 301 is overdischarged or overcharged.
  • the relay switch 304 is turned off, and the storage battery cell 301 is forcibly disconnected from the storage battery power conditioner 4.
  • the power storage device B is composed of one housing.
  • the temperature rises due to the electric power consumed by each storage battery cell 301 and each electronic component in the BMU 305, and the temperature rises at a high position (upper side).
  • the plurality of storage battery cells 301 have different storage battery cell temperatures depending on the height of the storage battery cells 301 disposed in the housing, and the storage battery cell temperatures are higher as they are disposed on the upper side.
  • FIG. 6 to 8 are diagrams showing the characteristics of the storage battery 3, in this case, the storage battery 3 using a lithium ion battery.
  • the horizontal axis represents the ratio of the charging power amount (hereinafter referred to as SoC), and the vertical axis represents the charging current.
  • FIG. 6B shows a change in SoC when charging from a fully discharged state to a fully charged state.
  • the horizontal axis indicates the charging time
  • the vertical axis indicates SoC.
  • FIG. 6C shows the voltage output from the storage battery 3 on the horizontal axis and the SoC on the horizontal axis.
  • the storage battery 3 when the storage battery 3 is overcharged (charged when the storage battery voltage exceeds a predetermined value) or overdischarged (discharged until the storage battery voltage falls below a predetermined value), the deterioration of the storage battery 3 proceeds more than necessary, and the battery 3 may be damaged at worst. is there.
  • FIG. 6C when the lithium ion battery is near full charge (SoC is around 1.0), the storage battery voltage rapidly increases. Further, when the current ripple of the charging current is large near the full charge, the storage battery 3 may deteriorate more than necessary. Therefore, when charging the storage battery 3, in order to prevent the overcharge and reduce the amount of charge current ripple, the storage battery 3 is charged with a constant current until the storage battery voltage reaches a predetermined voltage. The storage battery 3 is charged at a constant voltage.
  • FIG. 6B shows an example in which the amount of current during the period of charging by constant current control is 0.8C.
  • the time for charging with constant current control and the time for charging with constant voltage control are substantially equal.
  • the control is not switched until the storage battery voltage reaches the discharge end voltage unlike the charge.
  • FIG. 7 shows an example of the relationship between the number of charge / discharge operations and the storage battery capacity when the storage battery 3 is fully charged and fully discharged.
  • the storage battery 3 using a lithium ion battery usually deteriorates as it is used.
  • the capacity of the storage battery 3 has deteriorated to about half after about 4000 charge / discharge cycles.
  • the explanation is continued as the expiration date when the storage battery capacity falls below 50%. It should be noted that the expiration date is not limited to the time when the storage battery capacity falls below 50%, but it is needless to say that the expiration date may be determined by, for example, the remaining battery capacity that allows the storage battery 3 to be used safely. .
  • typical factors that promote storage battery deterioration include the storage battery cell temperature, the charge / discharge current, the charge end voltage, the discharge end voltage, and the holding time of the storage battery 3. For example, with respect to the holding time, when the battery is held near full charge, the deterioration proceeds more than when the battery is held near empty. In addition, the higher the temperature, the higher the storage cell temperature and the faster the deterioration. In addition, the charge / discharge current also deteriorates as the amount of current increases, and the rate at which the deterioration proceeds depends on the storage battery cell temperature. Further, the same applies to the end-of-charge voltage and the end-of-discharge voltage.
  • the deterioration of the storage battery 3 is smaller than when charging to 100%. .
  • the remaining stored power amount of the storage battery 3 at the completion of discharge is increased, the deterioration of the storage battery 3 is reduced as compared with the case of full discharge. Further, the progress of deterioration during full charge or full discharge also greatly depends on the storage battery cell temperature.
  • the progress of storage battery deterioration varies among the above representative factors.
  • the charge / discharge current is generally about 0.5 to 1.0 C, and the influence is small as a factor for promoting the deterioration of the storage battery. Therefore, the progress of storage battery deterioration greatly depends on the storage battery cell temperature and the end-of-charge voltage.
  • the power loss (power consumption) in the storage battery 3 increases and the temperature in the storage battery casing rises. This is a factor that accelerates the progress of deterioration of the storage battery, particularly when the temperature is high. .
  • the holding time and the discharge end voltage are less affected by the progress of the deterioration than the storage battery cell temperature and the charge end voltage, but holding in a state close to full charge cannot be ignored because the battery deterioration proceeds.
  • the end-of-discharge voltage cannot be ignored because over-discharge may damage the storage battery 3.
  • the storage battery 3 which consists of a lithium ion battery charges or discharges electric power by a chemical reaction.
  • a chemical reaction cannot follow the charging current, so that metal lithium is deposited and the lithium ion battery deteriorates. If the storage battery 3 is repeatedly charged and discharged without considering the storage battery cell temperature, for example, the storage battery deteriorates more than necessary, and the storage battery 3 deteriorates and cannot be used without waiting for a desired period of use (for example, 10 years).
  • the relay switch 304 is set as described above when charging / discharging is performed at a high temperature or low temperature.
  • the storage battery 3 and the storage battery power conditioner 4 can be forcibly disconnected.
  • the maximum value of the charge / discharge current, the charge end voltage, and the discharge end voltage, which are deterioration factors of the storage battery 3, are stored in the storage battery cell temperature so that the storage battery 3 can be used for a desired usage period or longer.
  • FIG. 8 shows the relationship between the maximum charge / discharge current and the SoC with respect to the storage cell temperature. In the first embodiment, this is used as a limit table for limiting the maximum value of the charge / discharge current. 8A shows the change in the maximum charging current, and FIG. 8B shows the change in the maximum discharge current.
  • the storage battery 3 when the storage battery cell temperature is room temperature (for example, 20 ° C. to 25 ° C.), the storage battery 3 can be charged as rated. Note that, as described above, due to the fact that the charging control of the storage battery 3 is switched from the constant current control to the constant voltage control, for example, the maximum charging current is reduced when the SoC becomes 0.8 or more at room temperature. When the storage cell temperature rises from room temperature, the maximum charging current gradually decreases, the end-of-charge voltage decreases, and the SoC at that time also decreases. And in this Embodiment 1, when the storage battery cell temperature exceeds 35 degreeC which is a setting upper limit, for example, charging operation will be prohibited.
  • 35 degreeC which is a setting upper limit
  • the charging operation is prohibited when the storage cell temperature becomes 0 ° C. or lower which is the set lower limit value.
  • the storage battery cell temperature is room temperature (for example, 20 ° C. to 25 ° C.)
  • the storage battery 3 can be discharged as rated.
  • the SoC is close to 0.
  • the maximum discharge current is sharply reduced to 0.
  • the discharge operation is prohibited when the storage cell temperature becomes 0 ° C. or lower.
  • limits the maximum value of charging / discharging electric current with respect to storage battery cell temperature is not restricted to what is shown in FIG. 8, What is necessary is just to use the table according to the characteristic of the storage battery 3 to be used.
  • the battery cell temperature, the maximum charge / discharge current, the charge end voltage, the discharge end voltage, and the holding time have been described as factors that promote the deterioration of the storage battery 3, but the present invention is not limited to this.
  • the above-described limit table at the time of charging / discharging may be switched depending on the degree of deterioration of the storage battery 3 (current storage battery capacity / initial storage battery capacity). Specifically, the storage battery 3 that has deteriorated may use a stricter limit table.
  • FIG. 9 is a diagram for explaining deterioration characteristics related to the temperature of the storage battery 3.
  • FIG. 9A shows the relationship between the storage battery cell temperature (storage battery temperature) and the storage battery deterioration progress. Generally, when the storage battery cell temperature exceeds 30 ° C., the progress of storage battery deterioration increases rapidly.
  • storage battery temperature refers to the representative value of the temperature of the some storage battery cell 301. FIG. As this representative value, for example, a maximum value or a minimum value is used (details will be described later).
  • FIG. 9B shows the relationship between the end-of-charge voltage and the storage battery deterioration progress. In this case, when the storage battery cell 301 is fully charged, the output voltage of the storage battery cell 301 is 4.2V. The degree of deterioration of the storage battery 3 progresses more rapidly when it is near full charge (4.2 V) as compared to around 4.0 V. Moreover, if the storage battery cell temperature is high, the progress of deterioration becomes large.
  • FIG. 10 is a diagram showing the relationship between the charge / discharge power of power storage device B and the lost power.
  • the loss power includes standby power and power depending on the charge / discharge power amount.
  • the power depending on the charge / discharge power amount increases in proportion to the square of the current flowing in the storage battery power conditioner 4.
  • the standby power is a sum of power consumed mainly by a control unit such as a microcomputer in the BMU 305 and the storage battery power conditioner 4 and power necessary for exciting the relay switch 304 and the like. Therefore, even when the storage battery 3 stops charging / discharging, when the power storage device B is in the standby state, that is, in the standby mode where the operation mode is the standby mode, standby power is consumed.
  • FIG. 11 is a diagram for explaining standby power of the power storage device, and shows the relationship between the storage battery cell temperature and time when the power storage device B is switched from the sleep state to the standby state.
  • the sleep state is a sleep mode in which the operation mode is a pause mode, and charging / discharging of the storage battery 3 is started in a state where the storage battery 3 is stopping charging / discharging and power consumption is minimal.
  • the minimum power consumption is, for example, to maintain the control microcomputer (not shown) built in the storage battery control circuit 303 in the BMU 305, the control microcomputer in the storage battery power controller 4, and the Echonet Lite communication I / F unit 113.
  • the required power and the power consumption is about several mW.
  • the storage battery cell temperature gradually increases from room temperature due to power loss due to standby power, and is increased by a temperature increase ⁇ th due to standby power. Converge to.
  • FIG. 12 is a diagram showing COP (energy conversion efficiency) which is a characteristic of the heat pump type water heater 5.
  • FIG. 12A shows the temperature on the horizontal axis and the COP on the vertical axis.
  • the hot water heater 5 that uses the heat pump cycle has different COPs depending on the temperature. For example, when boiling the same amount of water at the same temperature into hot water of a predetermined temperature, the COP is about 2.7 when the temperature is 0 ° C., and the COP is about 6 when the temperature is 30 ° C. When the temperature is 0 ° C., it requires more than twice the power of 30 ° C. Therefore, when boiling hot water, the higher the temperature, the lower the power consumption. Also, as shown in FIG. 12B, the water heater 5 that boils hot water using a heat pump cycle operates so that the COP has the highest efficiency depending on the temperature, load (hot water amount), etc. (power consumption) ) Is also different.
  • prediction values such as power consumption, boiling completion time, and heat storage amount at each time are obtained from the temperature and the characteristics of the water heater 5 shown in FIG. suppress.
  • the power rate is calculated by obtaining the amount of power consumption at each time based on the temperature and the characteristics shown in FIG. 12, so that the prediction error of the power rate can be minimized.
  • the characteristics of the water heater 5 are not limited to those shown in FIG. 12, and needless to say, characteristic table data that matches the characteristics of the water heater to be used may be used.
  • FIG. 13 is a diagram for explaining daily changes in storage battery cell temperature and purchased power in storage battery control according to a comparative example.
  • FIG. 14 is a diagram for explaining daily changes in charge / discharge current and stored power amount in storage battery control according to a comparative example.
  • Fig.13 (a) shows the air temperature in each time, and the temperature (storage battery cell temperature) of the two storage battery cells 301 of a high temperature side and a low temperature side.
  • FIG.13 (b) shows the electric power purchased in each time.
  • FIG. 14A shows the charge / discharge current (discharge is positive) at each time
  • FIG. 14B shows the SoC at each time.
  • This comparative example relates to the charging / discharging operation of the storage battery 3 on a midsummer day when the maximum temperature exceeds 30 ° C.
  • the storage battery is charged in the late-night power hours when the electricity rate is low and discharged from the storage battery after the evening when the temperature decreases. To do.
  • the temperature exceeded 30 ° C. from about 8 o'clock to about 22 o'clock, and the standby power consumption was stopped in the peak temperature zone even though the storage battery stopped charging / discharging.
  • the storage battery cell temperature on the high temperature side has risen to nearly 40 ° C. (see D1). Therefore, the PV power generated in the daytime is larger than the power consumption of the load device, that is, in the time zone when the PV surplus power is generated, the storage battery cell temperature is too high to charge the storage battery. If the storage battery is charged, in addition to the standby power, a loss resulting from the charge / discharge power amount occurs, and the storage battery cell temperature far exceeds 40 ° C.
  • the temperature of the storage battery cell 301 is predicted based on the prediction result of the temperature. And the discharge electric power in each time is estimated using the prediction result, and the electric discharge electric energy to midnight electric power time zone is calculated. Then, the lowest charge power amount that can secure the calculated discharge power amount is obtained, the charge power amount to be charged in the midnight power time zone is calculated, and the charge end voltage is determined.
  • the end-of-charge voltage By determining the end-of-charge voltage in this way, the end-of-charge voltage that advances the deterioration of the storage battery 3 can be kept low without changing the amount of electric power discharged from the storage battery 3, that is, without changing the economic cost.
  • the storage battery 3 is shifted from the standby state to the sleep state in a time zone in which the storage battery 3 is predicted to be hardly charged / discharged. Thereby, consumption of unnecessary standby power can be suppressed, loss can be reduced, and increase in storage battery cell temperature is suppressed.
  • deterioration of the storage battery 3 can be effectively suppressed.
  • the operation plan creation unit 206 in the operation planning unit 118 includes a load power consumption learning management unit 200, a PV power generation power learning management unit 201, a load power consumption prediction unit 202, and a PV power generation power prediction unit 203.
  • the battery model 204 and the water heater model 205 are controlled to operate.
  • FIG. 15 is an overall flowchart of the operation plan creation operation in the power management apparatus 100.
  • FIG. 16 is a partial detailed flowchart of the entire flowchart shown in FIG.
  • the operation plan unit 118 acquires the date, day of the week, and time information from the time management unit 117 (step S ⁇ b> 11).
  • the power measurement unit 116 acquires information (real-time measurement values) such as current power consumption and PV generated power.
  • the temperature is also acquired (step S12).
  • the operation planning unit 118 acquires charge / discharge power information (charge / discharge power amount or charge / discharge current) that is the first storage battery information (step S13).
  • the operation planning unit 118 acquires the power consumption of the water heater 5 which is the first water heater information (step S14).
  • each measurement data from step S11 to step S14 is sampled at a period of 50 ⁇ s (20 KHz). Note that sampling is not limited to 50 ⁇ s.
  • an average value shall be calculated within the operation plan update period mentioned later (in this case, 30 minutes).
  • the operation plan unit 118 confirms whether it is an operation plan creation time (step S15).
  • the power management apparatus 100 periodically communicates with the solar power conditioner 2, the storage battery power conditioner 4, the water heater 5, and the load equipment 20, such as the air conditioner 21, the refrigerator 22, the lighting 23, and the IH cooking heater 24, and Information is acquired via the Echonet Lite communication I / F unit 113.
  • an operation plan is created by acquiring information on each device every 30 minutes.
  • the operation plan creation cycle in the power management apparatus 100 is not limited to 30 minutes, and may be determined based on the processing speed, communication speed, and the like of the CPU 110.
  • the operation plan creation cycle does not need to be constant.
  • the management device 100 may also reduce power consumption.
  • the operation plan may be created or changed irregularly, for example, when the PV generated power deviates from the prediction and the operation plan must be changed.
  • step S15 If No in step S15, the process returns to step S11 to continue acquiring various data.
  • step S15 in order to acquire the power rate table, a request to send the currently charged power rate table information to the cloud server 31 via the Ethernet (registered trademark) communication I / F unit 114 is requested. To do.
  • the cloud server 31 receives the request for the power charge table information, the cloud server 31 operates the power charge table as a power charge system to which the current user who is the consumer contracts via the Ethernet (registered trademark) communication I / F unit 114.
  • the data is transmitted to the operation plan creation unit 206 in the planning unit 118.
  • the operation plan creation unit 206 stores the power rate table in a data storage unit (not shown) (step S16).
  • FIG. 17 shows graphed data with the horizontal axis representing time and the vertical axis representing power charges. In this case, about 1/3 of the daytime power is taken from 23:00 to 7:00 on the next day as a late-night power period. It is assumed that power can be purchased at a reasonable power rate.
  • the power rate system is not limited to that shown in FIG. 17. For example, since the demand for power is tight in summer, the power peak time zone from 12:00 to 16:00 is indicated by a broken line. You may set a high electricity charge. Further, for example, it goes without saying that a variable power charge system or the like in which the charge system changes from moment to moment with the current total demand may be used. In addition, when an incentive based on demand response occurs, it goes without saying that the power rate system may take into account the incentive.
  • the power rate table is downloaded from the cloud server 31 every time an operation plan is created. This is due to the following reason.
  • demand response systems have been demonstrated or verified to reduce peak power.
  • the demand response is often notified on the previous day, but may be notified to the user several hours before implementation.
  • by confirming the power rate at each operation plan creation timing it is possible to cope with a demand response notified immediately before.
  • the operation planning unit 118 acquires the second storage battery information including the amount of charged power (the amount of stored power) and the storage battery cell temperature that is the temperature information of the storage battery 3 via the Echonet Lite communication I / F unit 113 (Ste S17).
  • the operation planning unit 118 acquires the second hot water heater information such as the heat storage amount and the hot water amount of the water heater 5 via the Echonet Lite communication I / F unit 113 (step S18).
  • the operation planning unit 118 creates an operation plan (step S19). Details of step S19 (steps S31 to S40) will be described later.
  • step S20 When the creation of the operation plan in step S19 is completed, the CPU 110 in the power management apparatus 100 checks whether one day has passed (23:00) (step S20). In step S20, when one day has not passed, it returns to step S11 and performs a flow again. In step S20, when one day has passed, the deterioration degree of the storage battery 3 is estimated using the charge / discharge history of one day (step S21), and the process returns to step S11 again to start the flow.
  • This operation plan creation flow shows step S19 shown in FIG. 15 in detail.
  • the operation plan creation unit 206 in the operation plan unit 118 acquires the weather forecast information and the temperature prediction information from the cloud server 31 via the Ethernet (registered trademark) communication I / F unit 114. Then, it is stored in a storage area not shown (step S31).
  • the operation plan creation unit 206 confirms whether or not the acquired weather forecast information has been updated (step S32).
  • step S32 that is, if the weather forecast information has been updated, the operation plan creation unit 206 instructs the PV generated power prediction unit 203 to predict and correct the PV generated power amount.
  • the PV generated power prediction unit 203 acquires the mounting angle, mounting direction, longitude, and latitude information of the solar panel 1. Specifically, as for the mounting angle and mounting orientation information of the solar panel 1, what the user inputs when the solar panel 1 mounting work is completed is stored in the ROM 111, and the data is read out. The longitude and latitude information is obtained from the cloud server 31.
  • the operation plan creation unit 206 performs solar radiation amount estimation based on the weather forecast information.
  • the PV generated power learning management unit 201 creates a database for estimating the amount of solar radiation based on the weather performance, the amount of solar radiation estimated from the amount of PV generated power, and the date / time information.
  • the database for estimating the amount of solar radiation has a database table for each type of weather information for each month.
  • the solar radiation amount estimation database is added or updated by learning, and may be configured to be provided daily, weekly, or seasonally.
  • FIG. 18 shows the forecast data of the amount of solar radiation for each weather and time stored in the database in the PV generated power learning management unit.
  • FIG. 18 shows waveforms.
  • the vertical axis indicates the estimated solar radiation amount value
  • the horizontal axis indicates time.
  • the database is configured in units of 30 minutes.
  • the present invention is not limited to this.
  • the database may be configured in units of 15 minutes or 1 hour with a given memory size. It goes without saying that it is good.
  • a database is created for snowy weather.
  • an average PV generated power amount for 30 minutes is calculated and input to the PV generated power learning management unit 201. This process may be performed in step S12 described above. Then, the altitude of the sun is calculated based on the longitude and latitude information acquired in the manner described above and the date and time information (today's date and time information) acquired in step S11. The solar radiation amount is calculated from the calculation result of the solar altitude, the mounting angle of the solar panel 1, the mounting orientation, and the average PV generated power amount for 30 minutes based on the actually measured PV generated power. When the calculation of the amount of solar radiation is completed, the weather for the past 30 minutes is estimated from the calculated amount of solar radiation.
  • the description will be continued assuming that a database for estimating the weather from the date and time and the calculated amount of solar radiation is prepared.
  • the calculation result of the solar radiation amount is stored as solar radiation amount data in a memory in the PV generated power learning management unit 201 (not shown).
  • the solar radiation amount data will be described on the assumption that data for a time zone during which the solar panel 1 is generating power is accumulated on that day.
  • the PV generated power learning management unit 201 reads the solar radiation amount data corresponding to the time of the learning database (not shown) used when estimating the solar radiation amount from the weather forecast information and the date and time information. Then, based on the average PV generated power amount for 30 minutes based on the measured PV generated power, the solar radiation amount data read from the learning database corresponding to the time is corrected and written back to the learning database again.
  • the PV power generation learning management unit 201 learns the learning table data in the PV power generation power learning management unit 201 from the weather forecast information and date / time information acquired in step S31.
  • the solar radiation amount data is read out for 24 hours, and the solar radiation amount for 24 hours is estimated (step S33).
  • the load power consumption learning management unit 200 predicts the temperature for 24 hours.
  • the temperature prediction information in units of 30 minutes is notified from the cloud server 31, no particular processing is performed, but when the information from the cloud server 31 is the maximum temperature and the minimum temperature information, The temperature prediction for 24 hours is implemented using the information (step S34).
  • the operation plan creation unit 206 instructs the PV generation power learning management unit 201 to correct the PV generation power learning management unit 201 via the PV generation power prediction unit 203. Put out.
  • FIG. 19 is a diagram illustrating step S33 and step S35 described later, and is a diagram illustrating the solar radiation amount correcting operation for correcting the estimated solar radiation amount based on the actual measurement result.
  • FIG. 19A shows the solar radiation amount data for 24 hours read from the learning database in step S33.
  • the vertical axis indicates the estimated amount of solar radiation (the predicted amount of solar radiation), and the horizontal axis indicates the time.
  • the database is configured in units of 30 minutes has been described.
  • the present invention is not limited to this. It goes without saying that it is good.
  • a database is created for snowy weather.
  • the weather type is not limited to sunny, cloudy, and rainy.
  • the PV generated power learning management unit 201 calculates the solar radiation amount from the average PV generated power amount every 30 minutes based on the measured PV generated power, that is, the average PV generated power amount is converted into the solar radiation amount, Using the calculated solar radiation amount up to the time (see FIG. 19B), the estimated solar radiation amount shown in FIG. 19A is corrected. Specifically, the correction coefficient k1 is calculated and corrected by the calculation shown in the following (Equation 1).
  • the PV generated power prediction unit 203 performs the solar radiation amount correction based on the actual measurement result by multiplying the estimated solar radiation amount after the current time by the correction coefficient k1 calculated by the above (Equation 1). Specifically, the estimated amount of solar radiation shown in FIG. 19A read from the learning table is corrected by multiplying the estimated amount of solar radiation every 30 minutes after the current time by the correction coefficient k1. In this case, the correction coefficient k1 is larger than 1 and indicates the amount of solar radiation increased by the correction (see FIG. 19C). In the first embodiment, the solar radiation amount correction based on the actual measurement result is performed for the following reason. As described above, there are four types of weather forecasts: sunny, cloudy, rainy, and snow.
  • the estimation error of the solar radiation amount is minimized by correcting the estimated solar radiation amount based on the actual measurement result (step S35).
  • the PV power generation amount is predicted based on the corrected solar radiation amount information multiplied by the correction coefficient k1.
  • the PV power generation prediction unit 203 prepares a learning table for predicting the PV power generation amount from the amount of solar radiation at each time, and uses the learning table for each prediction time.
  • the amount of PV power generation shall be predicted.
  • the learning table for predicting the PV power generation amount learns data based on the average generated power amount for 30 minutes obtained from the measurement result of the power measurement unit 116 and the solar radiation amount estimated from the information, and the learning table Shall be constructed.
  • the learning table has a learning table for 12 months per time.
  • the learning table is not limited to twelve months, and it goes without saying that, for example, four tables for every 13 months or seasons, a table for each week, or a table for each day may be provided (step S36).
  • FIG. 20 is a diagram for explaining an operation of correcting the temperature information based on the actual measurement result.
  • the temperature prediction information is notified from the cloud server 31 in units of 30 minutes.
  • FIG. 20A shows the temperature prediction information notified from the cloud server 31.
  • the vertical axis indicates the predicted temperature
  • the horizontal axis indicates the time.
  • the temperature prediction information is not limited to a unit of 30 minutes, but may be a unit of one hour, a unit of four hours, or a unit of six hours.
  • the data is interpolated for use.
  • the temperature information for each time unit instead of the temperature information for each time unit, only the highest temperature and the lowest temperature information may be used.
  • a temperature learning data table is prepared, for example, for each month or weather, and the temperature change for 24 hours is determined using the temperature learning data table.
  • the correction may be performed based on the maximum temperature and the minimum temperature information.
  • the load power consumption prediction unit 202 acquires average temperature information for 30 minutes measured by the power measurement unit 116.
  • the air temperature is measured by an electric power measurement unit 116 together with each current measurement result, and an average temperature for 30 minutes is calculated and the load power consumption prediction unit 202 is measured. The description will be continued as output.
  • the average temperature information for 30 minutes based on the actually measured temperature is temporarily stored in a memory (not shown) in the load power consumption prediction unit 202.
  • the memory is an average of 30 minutes from 0:00 on the current day to the current time. Stores temperature information.
  • FIG. 20B shows the average temperature information in 30-minute units based on the actually measured temperature from 0:00 on the current day to the current time.
  • the load power consumption learning management unit 200 corrects the temperature prediction information shown in FIG. 20A using the average temperature information based on the actually measured temperature shown in FIG. Specifically, as shown in (Equation 2) below, a correction value that is an average value of each difference data between the average temperature (measured temperature) in 30 minutes from 0:00 on the current day to the current time and the predicted temperature k2 is calculated.
  • k2 ⁇ (actual temperature-predicted temperature) / number of data (Equation 2)
  • indicates the total from 0:00 to the current time
  • the number of data indicates the number of difference data.
  • the load power consumption learning management unit 200 adds the calculated correction value k2 to the predicted temperature every 30 minutes after the current time in the predicted temperature information shown in FIG. Thus, the temperature correction based on the actual measurement result is performed.
  • the correction value k2 is greater than 0 and indicates an increased temperature due to the correction (see FIG. 20C) (step S37).
  • the operation plan creation unit 206 instructs the load power consumption prediction unit 202 to predict the power consumption of the load device 20.
  • the load power consumption prediction unit 202 instructs the load power consumption learning management unit 200 to learn load power consumption based on the actual measurement result.
  • the load power consumption learning management unit 200 captures the average power consumption for 30 minutes of each load device 20 (air conditioner 21, refrigerator 22, lighting 23, IH cooking heater 24, etc.) measured by the power measurement unit 116. Then, based on the acquired average power consumption for 30 minutes, a learning database for predicting load power consumption (not shown) is updated.
  • stored in a database shall learn and memorize
  • FIG. Needless to say, a database may be provided for each connected load device 20. As for the water heater 5, an individual database is prepared in the load power consumption prediction unit 202, and details thereof will be described later.
  • the average power consumption for 30 minutes of each load device 20 measured by the power measurement unit 116 is added by the load power consumption learning management unit 200. Then, data is read from the learning database for predicting load power consumption based on the date, day of the week, time information acquired in step S11, and weather forecast information acquired in step S31, and the load power consumption is calculated based on the addition result. Learn and write the results back into the learning database.
  • FIG. 21 is a diagram for explaining a load power correction operation for correcting the predicted load power consumption based on the actual measurement result.
  • the load power consumption learning management unit 200 notifies the load power consumption prediction unit 202 to that effect.
  • the load power consumption prediction unit 202 obtains the predicted value (data in the learning table data) of the load power consumption from the weather forecast information acquired in step S31, the date and time acquired in step S11, and the day of the week information. For 24 hours (see FIG. 21A).
  • the vertical axis represents power consumption
  • the horizontal axis represents time.
  • the present invention is not limited to this. It goes without saying that it is good.
  • the predicted value of the load power consumption shown in FIG. 21A is corrected.
  • the family schedule managed by the family schedule management unit 121 is referred to. For example, when the father does not go home on a business trip, the amount of hot water supplied by the water heater 5 is reduced and the power consumption of the air conditioner 21 and the lighting 23 is also reviewed.
  • the power consumption is corrected based on the actual measurement value. Specifically, the subsequent power consumption is predicted on the basis of the power consumption error from the current time to 2 hours before going back (the difference between the average power consumption for 2 hours and the predicted power consumption for 2 hours).
  • the error factor in predicting the power consumption is largely related to the weather (particularly the temperature) in addition to the family schedule.
  • the power consumption of the air conditioning equipment such as the air conditioner 21 changes greatly in summer and winter. For example, when the temperature is high or low, the time for using the air conditioner 21 becomes long, and the power consumption increases because the temperature is high or low.
  • a difference obtained by subtracting the predicted power consumption for 2 hours from the average power consumption for 2 hours, which is an error of the average power consumption for the past 2 hours, is set as the correction value k3.
  • the error is corrected by adding the correction value k3 to the predicted value (predicted power consumption) of the load power consumption after the current time.
  • the error value is directly used as a correction value and added to the predicted value. This is because, as described above, the error in the power consumption is largely due to the operating time of the air conditioner 21 and the lighting 23 and the fluctuations in the power consumption of the individual load devices 20.
  • the load power consumption is caused by an increase in the power consumption of the individual load device 20 such that the air conditioner 21 operates from an unscheduled time or the power consumption of the air conditioner 21 is higher than planned because the temperature is high (or low).
  • the amount increases.
  • the average error with the actual measurement result is added to the predicted value of the load power consumption as the correction value k3.
  • the prediction error of the load power consumption is minimized by adding a correction based on the family schedule (step S38).
  • the load power consumption prediction unit 202 notifies the operation plan creation unit 206 to that effect.
  • the operation plan creation unit 206 calculates the surplus PV every 30 minutes after the current time from the prediction results of today's load power consumption and PV power generation amount obtained from the load power consumption prediction unit 202 and the PV power generation power prediction unit 203. Predict power. Specifically, (PV generation power prediction result ⁇ load power consumption prediction result) is calculated as PV surplus power (step S39).
  • the operation plan creation unit 206 creates an operation plan for the storage battery 3 and the water heater 5 (step S40).
  • step S41 to step S53 shows step S40 shown in FIG. 16 in detail.
  • 23, 24, 25, and 26 are partial detailed flowcharts of the flowchart shown in FIG.
  • an operation plan for 24 hours is created from 23:00 at midnight when the midnight power time period starts.
  • the operation plan creation unit 206 in the operation plan unit 118 collects information on the water heater 5. Specifically, the usage time and the amount of hot water used, which are the usage plans for the water heater 5, are acquired from the family schedule management unit 121. In FIG.
  • the use plan of the water heater 5 is shown. Based on the family schedule, for example, when the father is away on a business trip, the amount of hot water used is corrected to be small. And if the use plan of the water heater 5 is acquired, the operation plan preparation part 206 calculates
  • the operation plan creation unit 206 collects characteristic information of the water heater 5 as shown in FIG.
  • the characteristic information of the water heater 5 is stored in the cloud server 31.
  • the water heater 5 is configured to boil hot water using cheap power in the late-night power hours, and to recapture the amount of heat lost until the start of use before use. In many cases, it is not remembered. Therefore, in the first embodiment, the characteristic information of the water heater 5 is acquired from the cloud server 31.
  • the information (the amount of hot water used, the usage time, and the amount of stored heat) of the water heater 5 acquired in step S41 and the characteristic information of the water heater 5 are input to the water heater model 205 (step S42).
  • the operation plan creation unit 206 completes the acquisition of the characteristic information of the water heater 5, the operation plan creation unit 206 acquires further information of the storage battery 3. Specifically, the storage power amount prediction result at 23:00 today calculated from the operation plan of the storage battery 3 described later, the capacity maintenance rate of the storage battery 3 calculated at the end of yesterday, the storage battery power control efficiency (both the storage battery 3 and the storage battery power control 4 The ratio of the dischargeable electric energy to the charge electric energy) and the capacity information of the storage battery 3 are obtained with the efficiency obtained from the loss.
  • description will be made on the assumption that the capacity maintenance rate is estimated from the operation history and measurement result of the storage battery 3 on the 1st day at 23 o'clock every day.
  • the capacity maintenance rate is calculated by the CPU 110 from the charge / discharge history of the storage battery 3 for 24 hours and the storage battery cell temperature at 23:00, and notifies the operation plan creation unit 206 of the calculated capacity maintenance rate. Note that a description of the method of calculating the capacity maintenance rate is omitted. Further, the storage battery power control efficiency is calculated by the power measuring unit 116 from the charging current, the discharging current, and the SoC information. In addition, the calculation method of storage battery power conditioner is not restricted to this, It cannot be overemphasized that it memorize
  • the operation plan creation unit 206 acquires the characteristic information of the storage battery 3 as shown in FIGS.
  • characteristic information of the storage battery 3 is acquired from the storage battery power conditioner 4 via the Echonet Lite communication I / F unit 113.
  • the power storage device B in order to suppress unnecessary deterioration of the storage battery 3, it is assumed that characteristic information of the storage battery 3 is stored in the storage battery power control 4 or the storage battery control circuit 303 in the BMU 305 in the storage battery 3. Needless to say, the acquired characteristic information of the storage battery 3 may be stored in the cloud server 31 and obtained from the cloud server 31.
  • the information on the storage battery 3 and the characteristic information on the storage battery 3 acquired in step S43 are input to the storage battery model 204 (step S44).
  • the operation plan creation unit 206 generates a model of the storage battery 3 in the storage battery model 204.
  • the degree of deterioration of the storage battery 3 is estimated based on the capacity maintenance rate information of the storage battery 3, and the storage battery characteristic information obtained in step S44 is corrected based on the estimation result.
  • the maximum value of the charge / discharge current of the storage battery 3 varies depending on the storage battery cell temperature and the amount of stored power.
  • the maximum SoC value which can be charged also changes with storage battery cell temperatures.
  • the maximum value of the charge / discharge current value and the maximum SoC value that can be charged also vary depending on the degree of deterioration of the storage battery 3. Therefore, in the first embodiment, the storage battery charge / discharge current limit table shown in FIGS. 8A and 8B is changed according to the deterioration progress.
  • the end-of-charge voltage is set lower for the storage battery 3 that has deteriorated than for a new battery. That is, the storage battery voltage to be switched from the constant current charging to the constant voltage charging shown in FIG. 6 is lowered, and the charging ends before SoC reaches 1.0 (full charge). Further, the storage battery charge / discharge current limit table shown in FIGS. 8A and 8B is changed so as to keep the maximum charge / discharge current low. Then, the storage battery 3 is modeled based on the changed storage battery charge / discharge current limit table. Thereby, in addition to the temperature characteristics and SoC characteristics of the storage battery 3 (for example, the characteristics shown in FIG. 6B), a model that takes into account the deterioration of the storage battery can be obtained. Needless to say, the storage battery model is not updated every time, for example, once every 10 days, once a month, or when the SoC changes by 0.01 (step S45).
  • the operation plan creation unit 206 When the generation of the model of the storage battery 3 by the storage battery model 204 is completed, the operation plan creation unit 206 generates an operation constraint condition of the storage battery 3 based on the temperature using the prediction result of the temperature and the storage battery model 204 (step S46). .
  • This storage battery operation constraint generation flow shows step S46 shown in FIG. 22 in detail.
  • the operation plan creation unit 206 predicts the storage cell temperature at each time from the temperature prediction information (corrected temperature prediction based on the actual measurement result) when the generation of the operation constraint condition of the storage battery 3 is started.
  • the temperature increase with respect to the temperature of the storage battery cell 301 with respect to each charge / discharge current is divided into the storage battery cell 301 on the high temperature side and the storage battery cell 301 on the low temperature side, and is learned in the storage battery model 204. .
  • the temperature rise of the storage battery cell 301 when charging / discharging the storage battery 3 with the rated current (maximum charge / discharge current) is added to the predicted temperature, and the storage battery cell temperature for the high-temperature storage battery cell 301 and the low-temperature storage battery cell 301 That is, the maximum and minimum storage battery cell temperatures are obtained (step S61).
  • the respective maximum charge / discharge currents of the predicted maximum storage battery cell temperature and minimum storage battery cell temperature are obtained from the storage battery charge / discharge current limit tables (see FIGS. 8A and 8B). Then, a more restrictive charge / discharge current value is set as an operation constraint condition. Since the limiting characteristics of the charging / discharging current shown in FIGS. 8A and 8B are substantially constant when SoC is 0.2 to 0.8, in the first embodiment, the charging / discharging current is The limit value is obtained when SoC is 0.5. Needless to say, the limit value of the charge / discharge current may be obtained for each other SoC value or each SoC value.
  • the maximum charge / discharge current under the strictest condition that is, the lowest condition is selected (the smaller one compared with the maximum charge / discharge current on the high temperature side and the low temperature side), and the selection is made.
  • Charging / discharging is performed for the maximum charging / discharging current, and SoC at which the charging / discharging current (charging current, discharging current) finally becomes “0” is obtained.
  • SoC at the time of charging, as shown in FIG. 8A, when the SoC increases, the constant current charging is switched to the constant voltage charging, and the maximum charging current value decreases and finally becomes zero.
  • a charge end voltage (first charge end voltage) and a discharge end voltage corresponding to the SoC are also obtained.
  • the SoC at which the charge / discharge current is “0” is obtained.
  • the present invention is not limited to this, and it is needless to say that the SoC at which the charge / discharge current is less than a predetermined value may be obtained.
  • the maximum charge / discharge current at the time when the predicted maximum storage battery cell temperature reaches the maximum temperature of the day is adopted, and in the winter when the temperature is below room temperature, the predicted minimum storage battery cell temperature is used. The maximum charging / discharging current at the time when becomes the lowest of the day is adopted.
  • the operation constraint conditions of the storage battery 3 (maximum charge / discharge current (maximum charge current and maximum discharge current) at each time and 1 end-of-charge voltage, end-of-discharge voltage).
  • the deterioration of the storage battery 3 is remarkable when the storage battery is used in a high-temperature environment. Therefore, the prediction result of the temperature or maximum storage battery cell temperature is the highest in the day regardless of the season. You may determine from SoC based on the maximum charging current at the time of temperature (step S62).
  • the operation plan preparation part 206 confirms the time slot
  • the operation plan preparation part 206 calculates
  • Discharge power (Prediction result of load power consumption-PV power generation energy prediction result) / (Efficiency of power storage device B during discharge) Then, the discharge current of the storage battery 3 at each time is calculated by dividing the obtained discharge power by the voltage of the storage battery 3. This discharge current is compared with the maximum discharge current determined in step S62. If the calculated discharge current exceeds the maximum discharge current, the maximum discharge current is set to the discharge current from the storage battery 3, and the calculated discharge current is the maximum. In the case of the discharge current or less, the calculated discharge current is set to the discharge current from the storage battery 3. When the discharge current from the storage battery 3 at each time is determined, the amount of discharge power from the storage battery 3 from the end of the PV surplus power generation time period until the midnight power time period is obtained from the discharge current at each time (step S64). ).
  • the SoC is calculated from the charging power amount. Then, a charge end voltage (second charge end voltage) corresponding to the SoC value is calculated. As described above, the maximum charge power amount of the storage battery 3 changes due to deterioration of the storage battery.
  • the storage battery voltage (storage battery cell voltage) is uniquely determined by the SoC.
  • SoC may be calculated
  • the end-of-charge voltage can be reliably calculated regardless of the progress of storage battery deterioration (step S65).
  • step S65 When the charge end voltage (second charge end voltage) calculated in step S65 is equal to or lower than the charge end voltage (first charge end voltage) calculated in step S62, the charge end voltage calculated in step S65 is stored in the storage battery 3. This is used as the end-of-charge voltage in the operation constraint conditions. That is, the lower one of the two charge end voltages is determined as the charge end voltage of the operation restriction condition (step S66).
  • the operation plan creation unit 206 displays the hot water supply amount of the water heater 5 Ask for. Specifically, the required hot water amount and hot water supply amount (heat storage amount) are obtained from the family schedule information collected in step S41, the use plan of the water heater 5 (see FIG. 22), and the current heat storage amount.
  • the load power consumption learning management unit 200 learns and calculates the amount of hot water used for each day of the month for each time of day. In learning, the family schedule output from the family schedule management unit 121 is taken into account (step S47).
  • the operation plan creation unit 206 creates an operation pattern of the water heater 5 (step S48).
  • the hot water heater 5 has a short device life if it is repeatedly operated and stopped on a single day, so that the start and stop are limited to about 2 to 3 times a day.
  • the hot water heater 5 is started and stopped a maximum of two times a day. In this case, in consideration of the case where the user uses the bath for reheating, etc., the operation plan is limited to twice. .
  • a plurality of operation patterns indicating an operation plan are created in advance, and the operation plan is created by selecting the operation pattern.
  • two operation patterns of hot water supply in the late-night power hours and hot water supply in the daytime hours are created.
  • the water heater model 205 manages a plurality of types of operation plans (operation patterns) of the water heater 5.
  • the COP changes depending on the temperature as shown in FIG. For example, the COP may change 1.5 times or more at 3 ° C and 9 ° C. Therefore, in the water heater model 205, the power consumption of the water heater 5 at each time is obtained from the temperature prediction information calculated in step S37. And from the PV surplus electric power prediction information calculated
  • the power rate system will be described as being more economical when hot water is supplied with PV surplus power in consideration of the COP characteristics of the hot water heater 5 than when midnight hot water is used.
  • the operation pattern creation flow (steps S71 to S79) of the water heater 5 shows step S48 shown in FIG. 22 in detail, and creates two operation patterns.
  • the operation plan creation unit 206 confirms whether or not an operation pattern (first operation pattern) based on a hot water supply plan in the late-night power hours has been created (step S71).
  • the operation plan creation unit 206 starts creating an operation pattern (first operation pattern) based on the hot water supply plan in the midnight power time zone, and sets the hot water heater model 205 to
  • an instruction is issued to calculate the power consumption and hot water supply amount (heat storage amount) at each time in the midnight power time zone.
  • the characteristic information of the water heater 5 shown in FIG. Rate) and COP is calculated from the calculated
  • the amount of hot water supply during the period from 6 o'clock to 6:30 is calculated in the same manner. The same operation is repeated sequentially at different times until the hot water supply amount (heat storage amount) obtained in step S47 can be ensured, and the start time for late-night hot water supply is obtained.
  • the end time is 7 o'clock, which is the end time of the midnight power time zone (step S72).
  • step S73 When calculating the start and end times of hot water supply during the midnight power hours, power consumption is also added sequentially to obtain the power consumption required for hot water supply during the midnight power hours. Thereby, the calculation of the hot water supply amount (heat storage amount), the hot water supply start time, the end time, and the power consumption in the midnight power time period is completed (step S73).
  • the hot water supply in the midnight power time zone there is a time of 12 hours or more from the end of the hot water supply until a large amount of hot water such as a bath is used, and it is necessary to recover the heat radiation during that time.
  • a large amount of hot water such as a bath
  • the water may be heated immediately before a large amount of hot water such as a bath is used.
  • the operation plan creation unit 206 obtains the increased power consumption before the night use of the water heater 5. Specifically, the amount of heat radiated from the water heater 5 is calculated during the period from the end of the midnight power time period (7 o'clock) to the night time period when a large amount of hot water is used, and the amount of hot water supply (heat storage amount) And Then, the hot water heater model 205 uses the prediction result of the temperature in the time zone where boiling is performed to calculate the amount of power consumption required for boiling from the calculated amount of hot water to be heated and the start and end times of boiling. Obtained (step S74).
  • the operation plan creation unit 206 creates an operation pattern (first operation pattern) of the water heater 5 in the late-night power time period and the night time period when a large amount of hot water is used based on the calculation results in steps S72 to S74.
  • the start time, stop time, and power consumption for each time during the start time of the water heater 5 are obtained and set as the operation plan (operation pattern) of the water heater 5 (step S75). .
  • step S71 if the creation of the first operation pattern is completed, the operation plan creation unit 206 confirms the generation of PV surplus power.
  • the power consumption of the water heater 5 at each time is obtained from the temperature prediction information, and it is confirmed whether there is a time zone in which the value obtained by subtracting the power consumption of the water heater 5 from the PV surplus power is a predetermined value or more. (Step S76). If there is no such time zone, the second operation pattern is not created on the assumption that there is no hot water supply in the daytime time zone of the water heater 5, and the operation pattern creation flow of the water heater 5 is terminated.
  • step S76 when there is a time zone in which the value obtained by subtracting the power consumption of the water heater 5 from the PV surplus power is a predetermined value or more, the operation plan creation unit 206 starts the hot water supply in the daytime time zone based on the PV surplus power, Determine the end time. Specifically, the power consumption of the water heater 5 at each time is obtained from the temperature prediction information, and the time zone in which the value obtained by subtracting the power consumption of the water heater 5 from the PV surplus power is a predetermined value or more is extracted and extracted. Power consumption and hot water supply amount (heat storage amount) in the time zone are calculated. Furthermore, the purchased power when the power consumption of the hot water heater 5 cannot be covered by the PV surplus power is calculated. And when calculation of the power consumption etc.
  • the hot-water supply amount which can be ensured can be ensured, and the hot-water supply start time and end time when electric power purchase power becomes the minimum are determined. If the amount of hot water required for hot water supply using PV surplus power cannot be ensured, in addition to hot water supply during the daytime hours, it is necessary to perform hot water supply during the midnight power hours. In addition, the hot water supply amount (heat storage amount) in the daytime time zone is also calculated (step S77).
  • the operation plan creation unit 206 compares the hot water supply amount (heat storage amount) obtained in step S47 with the hot water supply amount (heat storage amount) in the daytime period calculated in step S77, and hot water supply in the late-night power hours.
  • the hot water supply amount (heat storage amount) of the machine 5 is calculated (step S78).
  • the operation plan creation unit 206 instructs the water heater model 205 to calculate the hot water supply start and end times in the midnight power time period.
  • the water heater model 205 uses the characteristic information of the water heater 5 shown in FIG.
  • step S78 the amount of hot water supply during the period from 6 o'clock to 6:30 is calculated in the same manner. The same operation is sequentially repeated at different times until the amount of hot water supply (heat storage amount) obtained in step S78 can be secured, and the start time for late-night hot water supply is obtained.
  • the end time is 7 o'clock, which is the end time of the midnight power time zone.
  • step S78 If the amount of hot water supply (heat storage amount) can be secured by boiling in the daytime, the amount of hot water supply (heat storage amount) obtained in step S78 is “0”, and hot water supply is not performed in the midnight power hours. Needless to say, step S79.
  • step S48 the operation plan creation unit 206 creates an operation plan for the storage battery 3 for each of the two created operation patterns.
  • the operation plan creation unit 206 selects one hot water supply operation pattern (step S49).
  • the operation plan creation unit 206 creates an operation plan for the storage battery 3 using the model of the storage battery 3 generated in step S45 (step S50).
  • step S50 the detail about step S50 which shows preparation of the operation plan of the storage battery 3 is mentioned later.
  • the operation plan creation unit 206 calculates a power charge based on the power charge system from the operation pattern of the water heater 5, the operation plan of the storage battery 3, the PV generated power prediction result, and the load power consumption prediction result (step S 51).
  • the power charge it is determined whether or not the power charge has been confirmed by processing all the operation patterns created for the water heater 5. In this Embodiment 1, it is confirmed whether it implemented about two types of driving
  • step S52 If there is an unprocessed operation pattern in step S52, the process returns to step S49, and an unprocessed operation pattern is selected.
  • step S52 when all the operation patterns for the water heater 5 are processed and the confirmation of each power charge is completed, the operation plan creation unit 206 determines an operation pattern with a low power charge. Thereby, the combination of the operation pattern of the hot water heater 5 and the operation plan of the storage battery 3 is determined so that the power rate is minimized (step S53). As a result, the creation of the operation plan for the storage battery 3 and the water heater 5 shown in step S40 (steps S41 to S53, see FIG. 16) is completed, and the operation shown in step S19 (steps S31 to S40, see FIG. 15). The planning is also finished.
  • This operation plan creation flow (steps S91 to S104) of the storage battery 3 shows step S50 shown in FIG. 22 in detail.
  • the operation plan creation unit 206 calculates the PV surplus power at each time. In the calculation, from the PV generation power prediction result calculated in step S36, the load power consumption prediction result calculated in step S38, and the power consumption prediction result of the water heater 5 at each time obtained when the operation pattern of the water heater 5 is created, Is subtracted to calculate the PV surplus power at each time (step S91).
  • the power selling price is less than 14.815 yen, it is more economical to charge the PV surplus power, and if the power selling price is 14.815 yen or more, it is more economical to sell the PV surplus power. Good for.
  • the PV surplus power has a power charge system that is more economical to charge.
  • step S92 when the temperature of the storage battery 3 is further increased by charging / discharging the storage battery 3 when the temperature exceeds 30 ° C., charging / discharging becomes impossible, or the charge / discharge current amount is too small to charge the PV surplus power.
  • the PV surplus power is not charged, for example, when an economic effect can hardly be expected from the consumption of standby power.
  • the PV surplus power even if the PV surplus power is charged, it is determined that the PV surplus power is not charged even when it is determined that all the charge power cannot be discharged by the start of the midnight power time period (step S92).
  • the operation plan creation unit 206 creates a charge plan for the storage battery 3 in the midnight power time zone. Specifically, the stored power amount (SoC) of the storage battery 3 at the start of the midnight power time period is predicted from the current operation plan of the storage battery 3. Then, based on the temperature prediction result created in step S37 and the characteristic information of the storage battery 3 shown in FIGS. 6 to 8, a charging plan is created assuming that charging of the storage battery 3 is started immediately after the start of the midnight power time period.
  • SoC stored power amount
  • the storage battery 3 is fully charged with the storage battery model 204 with the charging power and the amount of charging power at each time when charging is performed immediately after the start of the midnight power period with the maximum charging current.
  • generated by step S46 is not used in the charge plan preparation of the storage battery 3.
  • FIG. 6B This is shown in FIG. 6B because the charging power amount (SoC) is set to a numerical value of 0.5 that is not limited except for the temperature of the storage battery cell 301 in creating the operation constraint condition. This is because the charging plan in the constant voltage mode, which is the operation mode in the region where the SoC is high, cannot be made.
  • the charging plan for the storage battery 3 when the charging plan for the storage battery 3 is created, the amount of charging power in each time zone of the midnight power time zone is obtained using the operation constraint condition based on the temperature of the storage battery 3 generated in step S46, and the predetermined power is stored in the storage battery.
  • An operation plan (charging plan) until charging to 3 may be created (step S93).
  • the operation plan creation unit 206 creates a discharge plan for the storage battery 3.
  • the storage battery 3 is controlled so that the purchased power is minimized during times other than the midnight power time zone.
  • the operation plan creation unit 206 calculates the required amount of discharge power in a time zone other than the midnight power time zone by subtracting the PV power generation prediction result from the power consumption prediction result of the load device 20 including the water heater 5. .
  • the storage battery model 204 acquires the calculated discharge power demand at each time from the operation plan creation unit 206, and based on the charge plan of the storage battery 3 in the late-night power time zone created in step S93, the late-night power time zone The amount of charging electric power stored in the storage battery 3 at the end time (7 o'clock) is calculated.
  • the storage battery model 204 determines the discharge power amount at each time from the charge power amount, the required discharge power amount at each time, the temperature prediction result, and the characteristic information of the storage battery 3 shown in FIGS. Specifically, the SoC of the storage battery 3 is calculated from the amount of charged power at each time, and the maximum discharge current and the storage battery voltage are calculated from the calculated SoC, the temperature prediction result, and the characteristic information of the storage battery 3.
  • the maximum discharge power amount is calculated from the calculated maximum discharge current and storage battery voltage, and compared with the required discharge power amount. As a result of the comparison, if the required discharge power is less than or equal to the maximum discharge power, the required discharge power is determined as the discharge power, and if the required discharge power is greater than the maximum discharge power, the maximum discharge power is determined as the discharge power. Determine as quantity. The above operation is performed until the voltage of the storage battery 3 reaches the end-of-discharge voltage.
  • the operation plan creating unit 206 creates a PV surplus power charging plan.
  • the PV surplus power at each time is calculated by subtracting the power consumption of the water heater 5 at each time according to the operation plan (operation pattern) of the water heater 5 from the PV surplus power prediction result created at step S39.
  • the storage battery model 204 acquires the calculated PV surplus power at each time from the operation plan creation unit 206, and creates a charging plan based on the temperature prediction result and the characteristic information of the storage battery 3 shown in FIGS. In this Embodiment 1, when the amount of electric power required by PV surplus electric power cannot be ensured, the shortage is charged in the midnight electric power time zone.
  • the calculated charging power amount is subtracted from the fully charged power amount to calculate the charging (power storage) power amount of the storage battery 3 at the start of the final time period, and the calculation result, PV surplus power amount, temperature prediction result, and From the characteristic information of the storage battery 3, the amount of charge power for 30 minutes immediately before the last time zone is calculated. This operation is repeated until the time when the charge (storage) power amount of the storage battery 3 becomes zero or the time when the PV surplus power becomes zero. If the amount of charge (storage) power does not become zero before the time when PV surplus power becomes zero, the remaining amount of power is stored for charging in the midnight power time zone. If the charge (storage) power amount is zero first, the remaining power amount is zero. It should be noted that the method for creating the PV surplus power charging plan is not limited to that described above, and it goes without saying that the charging power amount may be determined and planned from the PV surplus power generation start time (step S95).
  • the operation plan creation unit 206 creates a discharge plan for the storage battery 3 during the period from the end of the midnight power time period to the generation of PV surplus power.
  • the required amount of discharge power at each time in the period from the end of the midnight power time period to the generation of PV surplus power is calculated.
  • the discharge power amount at each time is determined using the storage battery model 204 from the charge power amount at each time, the required discharge power amount, the temperature prediction result, and the characteristic information of the storage battery 3 (step S96).
  • the operation plan creation unit 206 adds the discharge power amount calculated in step S96 to the charge power amount (remaining power amount) for charging in the midnight power time period obtained in step S95,
  • the amount of charge power in the midnight power time zone is calculated, and a charge plan for the storage battery 3 in the midnight power time zone is created.
  • the storage power amount of the storage battery 3 at the start of the midnight power time period is predicted, and a charging plan is created using the storage battery model 204 based on the temperature prediction result and the characteristic information of the storage battery 3. That is, when charging the storage battery 3 is started immediately after the start of the midnight power time period at the maximum charging current, the charging power and the charging power amount at each time are obtained until the charging power amount in the midnight power time period is reached (step S97). ).
  • the operation plan creation unit 206 creates a discharge plan for the storage battery 3 in a period from the end of generation of PV surplus power to the start of the midnight power time zone.
  • the required amount of discharge power at each time in the period from the end of the PV surplus power generation to the start of the midnight power time zone is calculated.
  • the charging (storage) power amount of the storage battery 3 at the end of the generation of the PV surplus power is acquired from the PV surplus power charging plan, the charging power amount at each time, the discharge power request amount, the temperature prediction result, and the storage battery. From the characteristic information of 3, the discharge power amount at each time is determined using the storage battery model 204 (step S98).
  • the operation plan creation unit 206 confirms whether the storage battery voltage at the end of charging in the charging plan of the storage battery 3 exceeds the charge end voltage determined as the operation constraint condition of the storage battery 3 (step S99).
  • step S99 when the storage battery voltage at the end of charging of the PV surplus power exceeds the charge end voltage (in the case of Yes), the midnight power time zone created in step S97 is displayed.
  • the charging plan is reviewed to reduce the charging power, and the storage battery voltage at the end of charging the PV surplus power is suppressed to the above-mentioned charging end voltage.
  • step S99 when the storage battery voltage at the end of charging in the midnight power time zone exceeds the charge end voltage (in the case of Yes), the midnight power generated in step S93 is used.
  • the charging plan for the time zone is reviewed to reduce the charging power, and the storage battery voltage at the end of charging is suppressed to the above-mentioned charging end voltage. Thereafter, the process returns to step S99 (step S100).
  • step S99 when the storage battery voltage at the end of charging is equal to or lower than the end-of-charge voltage (in the case of No), the created charge / discharge plan is reviewed to check whether there is a time zone during which the storage battery 3 is not charging / discharging. .
  • a predetermined value for example, less than 50 W
  • step S101 If there is a time zone during which the storage battery 3 is not charging / discharging, an operation plan for the storage battery 3 is created so that the power storage device B is put into the sleep state during that time zone, that is, the operation mode is set to the sleep mode (step) S102).
  • step S102 is completed or when step S101 is No, the operation plan creation unit 206 creates a charge / discharge plan including the standby state of the storage battery 3, that is, the standby mode operation mode (step S103).
  • step S104 when the storage battery operation constraint condition is satisfied (in the case of Yes), the operation plan creation of the storage battery 3 is completed, and in the case where it is not satisfied (in the case of No), the process returns to step S91 and the operation plan of the storage battery 3 is determined. Recreate it.
  • the power management apparatus 100 includes the storage battery 3 and the storage battery power conditioner 4 as the energy storage device B, the solar panel 1 and the solar power conditioner 2 as the energy generation device A, and the electric load.
  • the power supply and demand of a system having a certain load device 20 is managed.
  • the power management apparatus 100 includes a CPU 110, a ROM 111, a RAM 112, an Ephone Lite communication I / F unit 113, an Ethernet communication I / F unit 114, a display unit 115, a power measurement unit 116, a time management unit 117, an operation planning unit 118,
  • the device management unit 119, the load device control unit 120, the family schedule management unit 121, the DR support unit 122, and the CPU bus 130, and the operation plan unit 118 include a load power consumption learning management unit 200, PV power generation Learning management unit 201, load power consumption prediction unit 202, PV generated power prediction unit 203, storage battery model 204, water heater model 205, operation plan creation unit 206 that creates an operation plan for the storage battery 3 and the water heater 5.
  • the power management apparatus 100 includes a unit (power storage device information acquisition unit) in which the operation planning unit 118 acquires information on the power storage device B via the Echonet Lite communication I / F unit 113.
  • a power generation prediction unit (PV generation power prediction unit 203) that predicts power to be generated, a load power prediction unit (load power consumption prediction unit 202) that predicts power consumption of an electrical load (load device 20), and a power storage device Operation of power storage device B based on the power storage device information acquired by the information acquisition unit, the generated power prediction information predicted by the generated power prediction unit, the load power prediction information predicted by the load power prediction unit, and the temperature prediction information
  • an operation plan creation unit 206 for creating a plan.
  • the operation plan creation unit 206 predicts the charging limit value that is the maximum charging current or the maximum charging power of the power storage device B based on at least the temperature prediction information, and stores the power storage device based on at least the temperature prediction information.
  • the charging end point which is the maximum charging electric energy of B or the charging end voltage is determined. Then, the power storage device B is charged below the charge limit value and below the charge end point, and an operation plan is created so that charging / discharging of the power storage device B is stopped in a time zone when the temperature prediction information exceeds the set upper limit value.
  • FIG. 28 is a diagram for explaining daily changes in the storage battery cell temperature and the amount of stored power in the storage battery control according to the first embodiment. Conditions similar to those in the comparative example shown in FIGS. (External conditions such as weather, air temperature, power rate, etc.)) The result of the power management device 100 creating an operation plan as described above is shown. As shown in FIG. 28, after completion of charging in the late-night power time zone, the power storage device B is stopped in charging and discharging in the sleep mode until the evening discharge start time, and standby power can be reduced. Further, since heat generation due to standby power is suppressed, during the sleep state, the storage battery cell temperature on the high temperature side and the storage battery cell temperature on the low temperature side are substantially equal to the air temperature (see D5). In this example, the storage battery on the high temperature side The cell temperature can be lowered by 5 ° C or more. Thereby, the unnecessary deterioration progress of the storage battery 3 can be suppressed.
  • the amount of charging power in the late-night power hours is limited to the amount of power required for evening discharge.
  • the SoC corresponding to the end-of-charge voltage is reduced by 20% compared to the comparative example ( D6), the holding time of the storage battery 3 when fully charged is zero. In this way, it is possible to suppress the charge end voltage that advances the deterioration degree of the storage battery 3 while securing the amount of discharge power, and to shorten the holding time of the storage battery 3 at a high voltage. Thereby, the deterioration progress of the storage battery 3 can be suppressed effectively.
  • the economic effect (recovery of electric power charges) by discharging can be obtained in the same manner. Furthermore, as described above, the standby power can be reduced by using the sleep mode when charging / discharging is stopped, and the economic effect can be improved.
  • the storage battery 3 when discharging from the storage battery 3 in the sleep mode is started, the storage battery 3 is notified to shift to the standby mode via the Echonet Lite communication I / F unit 113. Since it comprises in this way, the transfer to the standby mode from the sleep mode of the electrical storage apparatus B can be implemented reliably. Moreover, since the temperature information of the storage battery cells 301 on the high temperature side and the low temperature side is collected by the storage battery control circuit 303 in the BMU 305, the control of the power management apparatus 100 and the control of the BMU 305 can be performed with the same temperature information. effective.
  • Embodiment 2 a power management apparatus 100 according to Embodiment 2 of the present invention will be described.
  • the operation plan creation of the storage battery 3 that is effective in the summer when the temperature is high has been described.
  • the operation plan that is effective even in the winter when the temperature is low explain. Note that in the power management apparatus 100 according to the second embodiment, the configuration other than the portion related to the operation plan creation flow of the storage battery 3 shown using FIG. 25 is the same as that of the first embodiment, and thus the description thereof is omitted. .
  • the operation plan unit 118 of the power management apparatus 100 creates an operation plan for the storage battery 3 and the hot water heater 5 by the same method shown with reference to FIGS.
  • the details of the operation plan creation flow of the storage battery 3 shown in FIGS. 25 and 26 of the first embodiment are different.
  • the operation plan creation flow of the storage battery 3 according to the second embodiment will be described with reference to FIGS. 29 and 30.
  • This operation plan creation flow of the storage battery 3 shows step S50 shown in FIG. 22 in detail.
  • the operation plan creation unit 206 creates a temporary plan for charging in the midnight power time zone.
  • the temporary charging plan is based on the temperature prediction result created in step S37 and the characteristics information of the storage battery 3 shown in FIGS.
  • the storage battery 3 is fully charged with the storage battery model 204 for the charging power and the amount of charging power at each time when charging is performed immediately after the start of the midnight power period with the maximum charging current. Calculate until.
  • the operation restriction condition based on the temperature of the storage battery 3 generated in step S46 is not used when the charging plan (temporary plan) of the storage battery 3 is created. This is shown in FIG. 6B because the charging power amount (SoC) is set to a numerical value of 0.5 that is not limited except for the temperature of the storage battery cell 301 in creating the operation constraint condition.
  • the charging plan in the constant voltage mode which is the operation mode in the region where the SoC is high, cannot be made.
  • the amount of charging power in each time zone of the midnight power time zone is obtained using the operation constraint condition based on the temperature of the storage battery 3 generated in step S46, and the predetermined power is stored in the storage battery.
  • a plan for charging to 3 may be created (step S110).
  • the operation plan creation unit 206 determines whether charging is not possible up to the end-of-charge voltage, and if charging is not possible, it is caused by a low temperature, that is, a temperature prediction result For example, it is determined whether the set lower limit value is less than 0 ° C. (step S111).
  • the operation plan creation unit 206 As in the first embodiment (similar to step S94), a discharge plan is created for the storage battery 3 (step S112).
  • the operation plan creation unit 206 creates a discharge plan corresponding to low temperature for the storage battery 3. Also in this case, as in the first embodiment, the storage battery 3 is controlled so that the purchased power is minimized during times other than the midnight power time zone. Specifically, a discharge plan is created so that the discharge of the storage battery 3 is completed immediately before the start of the midnight power time period. The operation of determining the discharge power amount at each time by going back from the load power consumption prediction result immediately before the start of the midnight power time is performed until the voltage of the storage battery 3 reaches the discharge end voltage. At that time, the maximum discharge current at each time is calculated from the temperature prediction result, the temperature rise prediction information of the storage battery cell 301, and the characteristic information of the storage battery 3, and the discharge power amount is determined based on the calculation result.
  • the temperature rise prediction information of the storage battery cell 301 used in the second embodiment uses the temperature information of the low-temperature storage battery cell 301. Further, the amount of discharged power at the time of creating the discharge plan is obtained by calculating the stored power amount from the determined end-of-charge voltage and multiplying the stored power amount by the efficiency during discharge. Furthermore, in this Embodiment 2, the temperature rise prediction information of the storage battery cell 301 shall use the temperature rise measurement result when charging / discharging is stopped in the standby mode. Note that the temperature rise prediction information of the storage battery cell 301 is not limited to the above, and it goes without saying that the average power consumption may be predicted from the load power consumption prediction result and calculated from the prediction result (step S113).
  • the operation plan creation unit 206 confirms the temperature prediction result of the discharge start time in the discharge plan. Then, based on the maximum discharge current obtained from the characteristic information of the storage battery 3, it is confirmed whether the discharge power at the start of discharge can be secured. If it cannot be ensured, the discharge plan for a preset period (for example, 1 hour) from the discharge start time is reviewed and corrected again. Specifically, the maximum discharge power is calculated from the characteristic information of the storage battery 3 on the basis of the temperature prediction result at a time one hour before the discharge start time.
  • the discharge plan is set so that the previously set discharge start time is set to one hour before, and the discharge power amount planned for one hour after the start of discharge is discharged in two hours. Recreate it.
  • the standby mode is activated to increase the temperature of the storage battery cell 301 and wait until the temperature reaches a level at which discharge is possible. Then, a discharge plan is recreated from the time when the dischargeable temperature is reached to one hour after the initial discharge start time. In addition, the discharge power in that time zone is made equal to the discharge power amount for one hour from the start of discharge in the initial discharge plan.
  • the temperature characteristic of the power storage device B almost converges in one hour, and the case where the discharge start time is traced back by one hour is described. Needless to say, if it converges in 30 minutes, it may go back 30 minutes. Further, the temperature rise prediction information of the storage battery cell 301 created in the discharge plan is calculated from the power loss in the standby state, and at least the temperature of the storage battery cell 301 in the discharge plan can be secured by continuing the standby state for 1 hour (step) S114).
  • the operation plan creation unit 206 creates a charge plan for the midnight power hours. Specifically, based on the created discharge plan, load power consumption prediction result, temperature prediction result, characteristics information of the storage battery 3, and predicted cell temperature information of the storage battery cell 301 immediately before the start of the midnight power time period, the midnight power time zone Re-create the charging plan.
  • a charging plan for charging at the maximum charging current calculated based on the storage battery cell temperature prediction information is created.
  • a charging plan is created so that charging is performed until the amount of charging power based on the determined end-of-charge voltage is secured (step S115).
  • the operation plan creation unit 206 creates a charge plan for the PV surplus power. Specifically, the generation time zone of the PV surplus power calculated in step S91 is confirmed, and the charging power amount at each time is calculated from the temperature prediction result and the characteristic information of the storage battery 3. At that time, if the storage battery cell temperature is too low to secure a charging current, the standby mode is started and the power storage device B is put on standby one hour before the PV surplus power is generated in order to increase the storage cell temperature. Stand up. On the other hand, when the charging current can be secured and the PV surplus charging is possible, the temperature information of the storage battery cell 301 calculated by the storage battery model 204 is calculated based on the temperature prediction result. Then, based on the calculated temperature information, the maximum charging current at each time is obtained, and a charging plan is created until the voltage of the storage battery 3 reaches the determined charging end voltage (step S116).
  • the operation plan creating unit 206 creates a discharge plan in a time zone in which no PV surplus power is generated, other than the midnight power time zone, from the time zone after the end of the PV surplus power.
  • the operation plan creation unit 206 determines, based on the temperature prediction result, whether the temperature at the start of the midnight power period is less than the set lower limit of 0 ° C. (step S117).
  • step S117 when the temperature at the start of the midnight power time period is not less than the set lower limit value (in the case of No), the operation plan creation unit 206 uses the storage battery model 204 to start the discharge plan from the time period after the PV surplus power ends. Create.
  • the storage battery cell temperature at the start of discharge of the storage battery 3 after the end of PV surplus power is predicted using the storage battery model 204, and the maximum discharge current is obtained based on the prediction result.
  • the discharge current is calculated in consideration of the loss of the storage device B from the voltage of the storage battery 3 calculated based on the load power consumption prediction result and the SoC of the storage battery 3.
  • the calculated discharge current is compared with the maximum discharge current calculated based on the characteristic information of the storage battery 3, the lower current value is adopted, and the stored power amount of the storage battery 3 is the discharge end power amount, for example, zero Alternatively, a discharge plan is created until the determined discharge end voltage is reached (step S118).
  • step S117 when the temperature at the start of the midnight power time zone is less than the set lower limit value (in the case of Yes), the operation plan creation unit 206 uses the storage battery model 204 to start the low temperature from the time zone after the PV surplus power ends. Create a corresponding discharge plan. Specifically, a discharge plan is created so that the discharge of the storage battery 3 is completed immediately before the start of the midnight power time period. That is, the amount of discharge power at each time is determined retroactively from the load power consumption prediction result immediately before the start of midnight power time. At that time, the maximum discharge current at each time is calculated from the temperature prediction result, the temperature rise prediction information of the storage battery cell 301, and the characteristic information of the storage battery 3, and the discharge power amount is determined based on the calculation result.
  • the temperature rise prediction information of the storage battery cell 301 uses the temperature rise measurement result when waiting in the standby mode.
  • the temperature increase prediction information of the storage battery cell 301 uses the temperature information of the storage battery cell 301 on the low temperature side.
  • the amount of discharge power at the time of creating the discharge plan is obtained by calculating the amount of charge power from the determined end-of-charge voltage and multiplying the amount of charge power by the efficiency during discharge (step S119).
  • the operation plan creation unit 206 confirms the temperature prediction result of the discharge start time in the discharge plan. Then, based on the maximum discharge current obtained from the characteristic information of the storage battery 3, it is confirmed whether the discharge power at the start of discharge can be secured. If it cannot be ensured, the discharge plan for a preset period (for example, 1 hour) from the discharge start time is reviewed and corrected again. Specifically, the maximum discharge power is calculated from the characteristic information of the storage battery 3 on the basis of the temperature prediction result at a time one hour before the discharge start time.
  • the discharge plan is set so that the previously set discharge start time is set to one hour before, and the discharge power amount planned for one hour after the start of discharge is discharged in two hours. Recreate it.
  • the standby mode is activated to increase the temperature of the storage battery cell 301 and wait until the temperature reaches a level at which discharge is possible. Then, a discharge plan is recreated from the time when the dischargeable temperature is reached to one hour after the initial discharge start time.
  • the discharge power in that time zone is made equal to the discharge power amount for one hour from the start of discharge in the initial discharge plan (step S120).
  • step S118 or step S120 when the creation or correction of the discharge plan after the end of the PV surplus power is completed, the operation plan creation unit 206 sets the storage battery 3 in the period from the end of the midnight power period to the end of the PV surplus power. Create a discharge plan. Specifically, the required amount of discharge power at each time in the period from the end of the midnight power period to the end of the PV surplus power is calculated from the PV generated power prediction result and the load power consumption prediction result. At the same time, the maximum discharge current is calculated from the temperature prediction information, the temperature rise prediction result of the storage battery cell 301, and the characteristic information of the storage battery 3, and the discharge power amount at each time is obtained.
  • the operation plan creation unit 206 refers to the PV surplus power charging plan created in step S116, and the PV surplus power that can be charged to the storage battery 3 includes power in a time zone that is not charged in the charging plan.
  • the charging power amount by the PV surplus power is calculated on the basis of the maximum charging current calculated from the temperature prediction result, the temperature rise prediction result of the storage battery cell 301 and the characteristic information of the storage battery 3.
  • the charging plan for the time period newly determined to charge the PV surplus power is added to the PV surplus power charging plan created in step S116 (step S122).
  • the operation plan creation unit 206 creates a charge plan for the late-night power hours. Specifically, based on the created PV surplus power charging plan and discharging plan, load power consumption prediction result, temperature prediction result, and storage battery 3 characteristic information, the predicted cell temperature information of the storage battery cell 301 immediately before the start of the midnight power time period is obtained. Based on the charging plan. In the second embodiment, in order to shorten the charging time as much as possible, a charging plan for charging at the maximum charging current calculated based on the storage battery cell temperature prediction information is created. In this charging plan, a shortage of electric energy that cannot be covered by the charging of PV surplus power in the amount of electric power discharged in the discharging plan is charged.
  • the power loss of the storage device B at the time of charging is taken into account from the amount of discharge power in the time zone immediately after the end of the midnight power time zone to the start of the midnight power time zone, and the charge power amount of the PV surplus power.
  • the insufficient power amount is calculated and used as the charging power amount in the late-night power hours.
  • the loss of the electrical storage apparatus B at the time of discharge is not considered. That is, from the power storage device B, the discharge power amount ⁇ the loss power amount of the power storage device B is output (step S123).
  • the operation plan creating unit 206 determines the storage battery voltage at the end of charging in the charging plan of the storage battery 3 as in the first embodiment. Check if the charge end voltage is exceeded (step S99). If the charge end voltage is exceeded, review the charge plan to reduce the storage battery voltage at the end of charge to the charge end voltage and reduce the charge power. (Step S100). Further, similarly to the first embodiment, the processing from step S101 to step S104 is performed, and the operation plan creation of the storage battery 3 is finished.
  • the power management apparatus 100 creates the operation plan of the storage battery 3 and the hot water heater 5 and manages the power of the system, so that the same effect as that of the first embodiment can be obtained. Even in the winter season, the loss can be reduced and the deterioration of the storage battery 3 can be suppressed.
  • typical factors that promote the deterioration of the storage battery include the temperature of the storage battery cell 301 in the storage battery 3 (storage battery cell temperature), the charge / discharge current, the charge end voltage, the discharge end voltage, and the holding time. As shown in FIG. 8, when the storage cell temperature is low, for example, below freezing point, the charge / discharge current is greatly limited. Moreover, since the storage battery 3 which consists of a lithium ion battery charges / discharges by a chemical reaction, a chemical reaction cannot follow in a low temperature environment, and metal lithium deposits and deteriorates.
  • the storage battery 3 is repeatedly charged and discharged without considering the storage battery cell temperature, for example, the storage battery deteriorates more than necessary, and the storage battery 3 deteriorates and cannot be used without waiting for a desired period of use (for example, 10 years).
  • the relay switch is used as described above, for example, when charging / discharging is performed in a high temperature state or a low state.
  • the storage battery 3 and the storage battery power conditioner 4 can be forcibly disconnected by turning off 304.
  • FIG. 31 shows, as a comparative example of the second embodiment, the temperature, the storage battery cell temperature, and the storage battery 3 when the operation plan of the storage battery 3 according to the first embodiment is used, that is, when the low temperature response is not made. It is a figure explaining the change of charging / discharging electric power for one day.
  • FIG. 32 is a diagram for explaining daily changes in the air temperature, the storage battery cell temperature, and the charge / discharge power when the operation plan of the storage battery 3 according to the second embodiment is used. In this case, an example of a day when the lowest temperature (about 5 ° C below freezing) was reached around 6-7pm before dawn, and the highest temperature (about 6 ° C) was reached around 1-2pm, will be shown.
  • the operation plan creation unit 206 in the power management apparatus 100 activates the power storage device B at the start time of the midnight power period, and changes the charge / discharge stop mode from the sleep mode to the standby mode.
  • the temperature at 23:00 is already below freezing point, and the storage battery 3 cannot be charged or discharged. Therefore, the power management apparatus 100 stands by until the storage battery cell temperature exceeds 0 ° C. with standby power in the standby mode (see D7). At that time, the power storage device B consumes standby power in a standby state.
  • the power management apparatus 100 instructs the power storage device B to charge midnight power.
  • the storage battery power conditioner 4 in the power storage device B starts charging.
  • the storage battery cell temperature rises due to the power loss of the storage battery power conditioner 4 etc. for a while after the start of charging, but the temperature further decreases toward dawn, so the storage battery cell temperature gradually decreases and becomes 0 ° C at 6:00. Cannot be performed. For this reason, in the midnight power time zone, the temperature becomes too low to ensure sufficient charging power (see D8).
  • the power management apparatus 100 instructs the power storage device B to shift to the sleep mode and wait in order to reduce power consumption in the standby mode.
  • the power management apparatus 100 instructs the power storage device B to shift from the sleep mode to the standby mode.
  • the storage battery 3 is discharged so that the purchased power is minimized.
  • the discharge from the storage battery 3 is completed immediately. In this way, if the operation plan for low temperature is not made, in the winter when the temperature is below freezing, even if you plan to charge cheap power late at night, it will be Charging cannot be performed because the storage cell temperature is too low.
  • the power storage device B stands by in the standby mode until the storage battery cell temperature rises, and starts charging when the storage battery cell temperature reaches a chargeable temperature, in this case, 0 ° C. Since the power storage device B operates as described above, standby power is unnecessarily consumed to warm up the storage battery cell 301, and charging is immediately performed immediately after the start of the midnight power period when the temperature is generally higher than before dawn. Since it cannot be performed, it is not possible to sufficiently charge the power in the late-night power hours when the electricity rate is low.
  • the discharge plan is configured to end just before the start of the midnight power period. Thereby, at the start of the midnight power time zone when the power rate is low (see D9), the storage battery cell temperature has already increased due to the power loss during the discharge of the power storage device B.
  • the second embodiment it is possible to make maximum use of the power in the late-night power hours when the power charges are cheap, simply by changing the discharge plan of the storage battery 3 in the same power charges time zone. large.
  • the power storage device B can be stopped in charging / discharging in the sleep mode, and there is an effect that unnecessary standby power consumption can be suppressed.
  • the discharge plan should be set to discharge before the temperature falls below freezing. With the configuration to be created, the warm-up control at the start of discharge becomes unnecessary, and there is an effect that consumption of standby power can be suppressed.
  • the storage battery model 204 predicts the maximum discharge current or discharge power to the storage battery 3 at each time based on at least the temperature prediction information, and from the characteristic information and the temperature prediction information of the storage battery 3. Determine the end-of-discharge voltage during discharge. Then, when the operation plan creation unit 206 creates an operation plan at the time of discharging the storage battery 3, it is predicted that the temperature in the late-night power hours when the electricity rate is relatively low at night is lower than the set lower limit value based on the temperature prediction information. In such a case, the operation plan is created so that the discharge of the storage battery 3 is completed immediately before the midnight power time zone is reached, and charging is started immediately after the discharge is completed in the midnight power time zone.
  • the load power consumption learning management unit 200 is configured to learn the temperature characteristics of the storage battery 3 from the temperature measurement result, the temperature information of the low-temperature storage battery cell 301 that acquired the storage battery information, and the charge / discharge current information. Since the temperature of the storage battery cell 301 is predicted from the temperature prediction result, the charge / discharge current information, and the storage battery temperature characteristic learning result, and the operation plan of the storage battery 3 is created using the prediction result, the charge / discharge plan creation Needless to say, the prediction accuracy can be improved.
  • the operation plan of the power storage device B in the second embodiment measures the charge power amount of the storage battery 3, compares the temperature prediction information with the temperature of the set lower limit value at which the storage battery 3 can no longer be charged / discharged, and When it is predicted that the temperature of the belt will be lower than the temperature of the set lower limit value, the operation plan of the storage battery is created so that the discharge of the storage battery 3 can be continued until immediately before the midnight power period based on the amount of charge power of the storage battery 3. For this reason, when charging the power in the late-night power hours, it is not necessary to warm up the battery cell temperature with standby power, and no time to warm up is required, and charging can be performed from a time when the temperature is relatively higher than before dawn. In addition, there is an effect that the amount of charging power can be increased in the late-night power hours when the electricity rate is low.
  • the operation plan of the storage battery 3 and the operation plan of the water heater 5 are not limited to the methods described in the first and second embodiments. Further, the method for determining the operation method of the storage battery 3 is not limited to the method described in the first and second embodiments.
  • the charging / discharging plan is created so that the purchased power is minimized during the daytime period, but is not limited thereto. For example, when the selling price of PV surplus power is high, an operation plan may be made so as to control charging / discharging of the storage battery 3 so that the selling power is maximized.
  • Embodiment 3 a power management apparatus 100 according to Embodiment 3 of the present invention will be described.
  • the storage battery power conditioner 4 and the power management apparatus 100 demonstrated the case where it communicates by the protocol of Echonet Lite specification via the communication network 12.
  • the protocol of the Echonet Lite standard includes an indispensable protocol that is implemented as standard, an optional protocol that each company implements as necessary, and a unique protocol that each company can define independently.
  • the charge / discharge control of the storage battery 3 as described in the first and second embodiments can be realized.
  • the protocols that can be used are limited.
  • the limit table shown in FIG. 8 is built in the storage battery power conditioner 4 in order to suppress the progress of the deterioration of the storage battery 3, and the maximum charge / discharge current value and end of charge are determined according to the storage battery cell temperature. The progress of storage battery deterioration has been suppressed by controlling the voltage and the discharge end voltage.
  • such a restriction table may not be built in the storage battery power conditioner 4.
  • the operation mode of the storage battery power conditioner 4 is also defined only by the unique protocol described above, and the power management apparatus 100 of other companies may use only essential protocols (for example, only charging / discharging start and stop protocols).
  • the current limit at the time of charge / discharge or the stop of charge / discharge is determined and controlled based on the storage battery cell temperature and the storage battery voltage (charge / discharge by the limit table) The maximum current value, or the end-of-charge voltage and the end-of-discharge voltage are managed), so even if the operation plan notification from the power management apparatus 100 is updated every 30 minutes, storage battery deterioration is suppressed. I was able to.
  • the power management apparatus 100 manages the storage battery power conditioner 4 in more detail ( Monitoring) and control.
  • the protocol of the Echonet Lite standard for controlling the operation mode of the storage battery power conditioner 4 from the power management device 100 is a command for starting / stopping charging of the storage battery 3 and starting / stopping discharging from the storage battery 3.
  • a case where only the command is supported that is, the case where only the charge / discharge start / stop command is supported for specifying the operation mode of the storage battery power conditioner 4 will be described. Therefore, when a charging start command is sent from the power management apparatus 100, the storage battery power conditioner 4 continues charging until it receives a charging stop command or the storage battery 3 is fully charged.
  • the storage battery power conditioner 4 continues discharging until it receives a discharge stop command from the power management apparatus 100 or the stored power amount becomes zero.
  • the storage battery power conditioner 4 does not have a function such as a restriction table that suppresses the progress of deterioration of the storage battery in addition to the limitation of the operation control command of the storage battery power conditioner 4 as described above.
  • FIG. 33 shows a system configuration diagram of the power management apparatus 100 according to the third embodiment.
  • the overall configuration of the power management system including the power management apparatus 100 is the same as that shown in FIG. 1 of the first embodiment.
  • the power management apparatus 100 includes a CPU 110, a ROM 111, a RAM 112, an Echonet Lite communication I / F unit 113, an Ethernet communication I / F unit 114, a display unit 115, a power measurement unit 116, a time management unit 117,
  • the operation planning unit 118a, the device management unit 119, the load device control unit 120, the family schedule management unit 121, the DR (demand response) response unit 122, the storage battery operation mode determination unit 123, and the CPU bus 130 are included. Configurations other than the operation plan unit 118a and the storage battery operation mode determination unit 123 are the same as those in the first embodiment.
  • FIG. 34 is a block diagram illustrating a configuration of the operation planning unit 118a in the power management apparatus 100.
  • the operation planning unit 118a includes a load power consumption learning management unit 200, a PV power generation power learning management unit 201, a load power consumption prediction unit 202, a PV power generation power prediction unit 203, and a storage battery model 204.
  • a water heater model 205 an operation plan creation unit 206 a that creates an operation plan for the storage battery 3 and the water heater 5, and a second storage battery model 212.
  • the operation plan creation unit 206a includes a storage battery operation plan correction unit 214, and the second storage battery model 212 includes a charge power amount estimation unit 213.
  • the charge power amount estimation unit 213 estimates the charge power amount of the storage battery 3.
  • the 2nd storage battery model 212 receives the operation plan 210 of the storage battery 3 from the operation plan preparation part 206a, and outputs the charging / discharging stop command 211 based on the estimated charging electric energy and the operation plan 210.
  • the operation plan creation unit 206 a receives the charge / discharge stop instruction 211 and corrects the operation plan of the storage battery 3 by the storage battery operation plan correction unit 214.
  • other configurations are the same as those in the first embodiment.
  • the CPU 110 collects information on the connected devices to the device management unit 119 as in the first embodiment. Specifically, device information such as the model of the connected storage battery power conditioner 4 is collected. If there is no device information such as the model of the connected storage battery power conditioner 4, the user is prompted to register the device information via the display unit 115. When the user registers the device information or the device information has already been registered, the CPU 110 collects various types of information related to the storage battery power conditioner 4 from the cloud server 31 via the Ethernet (registered trademark) communication I / F 114.
  • Ethernet registered trademark
  • CPU110 is the characteristic information of the storage battery 3 connected to the storage battery power conditioner 4 from the cloud server 31, the restriction information at the time of charging / discharging in the storage battery power conditioner 4 (for example, restriction table information shown in FIG. 8) ), Parameter information related to the temperature characteristics of the storage battery power conditioner 4, protocol information related to the Econet Lite mounted on the storage battery power conditioner 4, and the like.
  • the characteristic information of the storage battery 3 includes threshold information of constant current charging and constant voltage charging, and control parameter information for limiting the progress of storage battery deterioration (restriction table). Information).
  • This control parameter information is created based on information obtained from the supplier of the storage battery 3 and the evaluation result of the storage battery 3, and is used in the storage battery model 204 and the second storage battery model 212.
  • the protocol information regarding Econet Lite which the storage battery power conditioner 4 is mounted the information regarding the operation mode supported when controlling the storage battery power conditioner 4 from the power management apparatus 100 and the storage battery 3 that can be collected from the storage battery power conditioner 4 Is obtained from the cloud server 31.
  • the storage battery power conditioner 4 demonstrates the case where only SoC information can be acquired as information regarding the storage battery 3.
  • the operation mode it is only necessary to support charge start, charge stop, discharge start, and discharge stop which are essential protocols, and it goes without saying that other operation modes may not be supported.
  • the maximum power sale mode, the minimum power purchase mode, and the like may be supported.
  • the information on the storage battery 3 is also indispensable for the stored power amount SoC.
  • the information is not limited to this, and the power amount (kWh or Ah) information may be used, and other information (for example, temperature information of the storage battery cell). Needless to say, it may be included.
  • the CPU 110 When the CPU 110 obtains information on the storage battery power conditioner 4 from the cloud server 31, the CPU 110 notifies the storage battery operation mode determination unit 123 of Echonet Lite protocol information.
  • the storage battery operation mode determination unit 123 receives the Echonet Lite protocol information supported by the storage battery power conditioner 4, the storage battery operation mode determination unit 123 notifies the operation planning unit 118 a of the available operation modes via the CPU bus 130.
  • the CPU 110 notifies the operation planning unit 118 a of the characteristic information of the storage battery 3 obtained from the cloud server 31 and the charge / discharge restriction information of the storage battery power conditioner 4.
  • the CPU 110 When the CPU 110 completes the acquisition and notification of the device information of the storage battery power conditioner 4, it instructs the device management unit 119 to perform authentication.
  • the device management unit 119 authenticates each device via the Echonet Lite communication I / F unit 113.
  • the device management unit 119 notifies the CPU 110 that the connection authentication is completed.
  • the CPU 110 instructs the device management unit 119 to check the operation status of each connected device.
  • the device management unit 119 notifies the CPU 110 to that effect.
  • CPU 110 grasps the operating state of each device, CPU 110 obtains weather forecast information including temperature forecast information from cloud server 31 for Ethernet (registered trademark) communication I / F unit 114 as in the first embodiment. Give instructions. Note that the weather forecast information obtained from the cloud server 31 uses “sunny”, “cloudy”, “rain” or “snow” as in the first embodiment, and the weather forecast information and temperature The prediction information is obtained from the cloud server 31 for 24 hours of hourly forecasts. When obtaining weather forecast information including temperature prediction information, the CPU 110 instructs the operation planning unit 118a to create an operation plan.
  • the operation planning unit 118 a obtains the above-described characteristic information of the storage battery 3 from the CPU 110, the operation planning unit 118 a notifies the storage battery model 204 and the second storage battery model 212 of the information.
  • the storage battery model 204 and the storage battery model B 212 receive the characteristic information of the storage battery 3, the data indicating the relationship between the SoC and the storage battery voltage shown in FIG.
  • the restriction table data shown in b) and parameter information (parameter information used when estimating the storage battery cell temperature) regarding the temperature characteristics of the storage battery power conditioner 4 are set.
  • the operation plan creation unit 206a When the operation plan unit 118a receives an operation plan creation instruction from the CPU 110, the operation plan creation unit 206a notifies each unit in the operation plan unit 118a to create an operation plan.
  • the load power consumption learning management unit 200 includes the date, day of the week, and time data output from the time management unit 117, current weather information obtained from the cloud server 31, and a thermometer (not shown). Based on the current measured temperature information (outside temperature) measured by the above, the power consumption of the water heater 5 and the load device 20 output from the power measuring unit 116 is learned and stored in a database (not shown). Note that the load power consumption learning management unit 200 corrects the temperature prediction information using the actually measured temperature information as in the first embodiment (see the first embodiment and FIG. 20), and the load consumption The power prediction unit 202, the storage battery model 204, the water heater model 205, and the operation plan creation unit 206a are notified.
  • the PV generated power learning management unit 201 calculates the PV generated power amount generated by the solar panel 1 output from the power measuring unit 116 based on the date, time data, and the current weather performance for each weather. Learning is performed based on the results and stored in a database (not shown).
  • the load power consumption prediction unit 202 is based on the weather forecast information obtained from the cloud server 31, the temperature information, the family schedule in the family schedule management unit 121, and the database in the load power consumption learning management unit 200. The power consumption of the load device 20 excluding the power consumption is predicted.
  • the PV generated power prediction unit 203 is based on the weather forecast result, the database in the PV generated power learning management unit 201, and the PV generated power amount of the solar panel 1, and the PV generated power amount after the current time. Predict.
  • the storage battery model 204 is configured to serve both as a storage battery characteristic learning unit and a storage battery temperature prediction unit.
  • the storage battery 3 is input from the storage battery 3 characteristic information, temperature prediction information, and the operation plan creation unit 206a. Based on the operation plan, the predicted temperature of the storage battery cell temperature (surface temperature of each cell inside the storage battery 3), which is the temperature information of the storage battery 3, is calculated.
  • a storage battery power conditioner 4 made by another company different from the power management apparatus 100 a case where storage battery cell temperature information is not notified from the BMU 305) will be described. Therefore, when predicting the storage battery cell temperature, the temperature characteristics of the storage battery power conditioner 4 of the corresponding model are measured in advance, and parameter information relating to the temperature characteristics calculated based on the measurement result is used.
  • the storage battery cell temperature is calculated using (Equation 3) shown below.
  • Battery cell temperature air temperature + k4 ( ⁇ + ⁇ ⁇ charge / discharge current ⁇ charge / discharge current) ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ (Formula 3)
  • the cloud server 31 manages the above ⁇ and ⁇ as parameters relating to the temperature characteristics of each model.
  • indicates standby power of the storage battery power conditioner 4, and ⁇ indicates a resistance component of the storage battery power conditioner 4, for example, internal resistance.
  • K4 is a correction coefficient for converting electric power into temperature.
  • the time constant at the time of temperature increase / decrease is not considered when estimating the storage cell temperature. Needless to say, a time constant may be added to the parameter information related to the temperature characteristics to consider the transient response.
  • the storage battery model 204 From the storage battery cell temperature estimated by the above (Equation 3), the storage battery model 204 has various limit values (maximum charging / discharging current and use of the storage battery 3) such as a charge / discharge current, a charge end voltage, and a discharge end voltage that are largely caused by storage battery deterioration. SoC range) is obtained from the restriction table data.
  • the storage battery model 204 simulates the operation of the storage battery 3 based on the operation plan output from the operation plan creation unit 206a. Specifically, the charge / discharge operation is simulated so that the charge / discharge current value is limited to be equal to or less than the maximum charge / discharge current value, and the use range of the storage battery 3 is used within the specified SoC range.
  • the hot water heater model 205 is similar to the first embodiment, the inputted characteristic information of the hot water heater 5, the temperature prediction information, the amount of hot water output from the operation plan creation unit 206a and the operation plan of the water heater 5. Based on the above, the operation of the water heater 5 is simulated, and the power consumption and the heat storage amount at each time are calculated. The calculation of the power consumption amount is performed using the database in the load power consumption learning management unit 200 as in the first embodiment. In addition, the hot water heater 5 from the power management apparatus 100 is started and stopped a maximum of twice per day. Furthermore, when there is a follow-up request from the user, there is no restriction on the activation of the water heater 5.
  • the operation plan of the water heater 5 is to create two operation patterns for hot water supply in the midnight power time zone and hot water supply in the daytime time zone.
  • the hot water heater 5 is limited to the maximum number of start / stop operations twice a day, it goes without saying that the number of operation patterns can be reduced and the amount of calculation can be reduced.
  • the 2nd storage battery model 212 different from the storage battery model 204 mentioned above is provided.
  • the storage battery model 204 simulates the future operation of the storage battery 3 based on each prediction result, whereas the second storage battery model 212 estimates (simulates) the current state of the storage battery 3. Specifically, the storage battery cell temperature and the charged power amount (SoC) of the storage battery 3 are estimated. Then, the operation plan 210 of the storage battery 3 output from the operation plan creation unit 206a is compared with the estimation result of the SoC. If it is discharged (during discharging), a charge / discharge stop command 211 is output to the operation plan creation unit 206a. And the operation plan preparation part 206a will correct
  • FIG. 35 and FIG. 35 and FIG. 36 are overall flowcharts of the operation plan creation operation according to the third embodiment. Note that steps having the same reference numerals as those shown in FIG. 15 in the first embodiment are the same as those in the first embodiment.
  • the operation plan unit 118a receives an operation plan creation instruction from the CPU 110
  • the operation plan unit 118a acquires the date, day of the week, and time information from the time management unit 117 (step S11).
  • the power measurement unit 116 acquires information (real-time measurement values) such as current power consumption and PV generated power. At that time, the temperature is also acquired (step S12).
  • the operation planning unit 118a acquires real-time information (charge / discharge power or charge / discharge current) of charge / discharge power that is charge / discharge power information of the storage battery power conditioner 4 from the power measurement unit 116. (Step S201).
  • the operation planning unit 118a acquires temperature information output from a thermometer (not shown) (step S202).
  • the operation plan creation unit 206a estimates the charge power amount (SoC) of the storage battery 3 with respect to the charge power amount estimation unit 213 in the second storage battery model 212. Give instructions.
  • the charging power amount estimation unit 213 starts estimating the charging power amount shown in step S203.
  • the current charging electric energy (SoC) of the storage battery 3 is estimated, and further, the voltage of the storage battery 3 and the charging electric energy when fully charged are also estimated.
  • This charging power amount estimation flow shows step S203 shown in FIG. 35 in detail.
  • the second storage battery model 212 confirms whether or not the initial value of the charging power amount of the storage battery 3 is set (step S221).
  • the initial value of the stored power amount (SoC) of the storage battery 3 is received from the storage battery power conditioner 4 and used when authentication is performed by the device management unit 119 after the power management apparatus 100 is activated. .
  • SoC stored power amount
  • the communication cycle is not limited to once every 30 minutes, but is regularly updated such as 15 minutes or 60 minutes, or non-periodic communication that is notified only when it is necessary to control each device, or periodic communication and non-periodic Needless to say, a combination of communications may be used.
  • step S221 when the initial value of the charging power amount of the storage battery 3 is not set (in the case of No), the charging power amount estimation unit 213 in the second storage battery model 212 performs the authentication in the device management unit 119. Based on the stored power amount (SoC) acquired from the storage battery power conditioner 4, the charge power amount charged in the storage battery 3 is calculated and set as an initial value of the charge power amount (step S222), and the charge power amount estimation flow Exit. If the second storage battery model 212 determines in step S221 that the setting of the initial value of the charge power amount of the storage battery 3 has been completed (in the case of Yes), the measurement result of the charge / discharge power in the storage battery power conditioner 4 is measured by the power measurement. Obtained from the unit 116 (step S223).
  • the charge power amount (SoC) of the storage battery 3 is calculated based on the acquired measurement result.
  • the power measurement unit 116 estimates the charge power amount in the second storage battery model 212 as the charge / discharge power amount obtained by integrating the charge / discharge power measured by the power measurement circuit 14a for one minute as the accumulated charge / discharge power amount for one minute. Notification to the unit 213. This integration cycle is not limited to 1 minute.
  • the charge power amount estimation unit 213 calculates and estimates the charge power amount (SoC) of the storage battery 3 based on the initial value of the charge power amount and the accumulated charge / discharge power amount for one minute (step S224).
  • step S225 When the estimation based on the calculation of the charging power amount of the storage battery 3 is finished, it is confirmed whether the latest storage power amount is notified from the storage battery power conditioner 4 to the second storage battery model 212 (step S225).
  • the charged electric energy estimating unit 213 corrects the estimation result of the charged electric energy of the storage battery 3 to the notified numerical value.
  • the amount of charging power when the storage battery 3 is fully charged is also estimated (details will be described later) (step S226).
  • the 2nd storage battery model 212 estimates a storage battery voltage from the estimation result of charging electric energy, and the storage battery characteristic shown in FIG.6 (c) acquired from the cloud server 31 (step S227).
  • the latest amount of stored power is not notified in step S225 (in the case of No)
  • the process proceeds to step S227.
  • the charging / discharging current is automatically limited from the storage cell temperature and the amount of charging power by using the limiting table, and the charging end voltage or the discharging end voltage is controlled to a predetermined voltage by the limitation. It was. However, in this Embodiment 3, since the storage battery power conditioner 4 made by other companies is assumed as described above, the storage battery power conditioner 4 does not have a control function for suppressing the deterioration of the storage battery 3. Therefore, the power management apparatus 100 controls the storage battery power conditioner 4 using only the charge / discharge start / stop command (protocol), which is an essential command of the Echonet Lite.
  • the charge / discharge start / stop command protocol
  • the main factors that promote the deterioration of the storage battery 3 are the storage battery cell temperature, the charge / discharge current, the charge end voltage, the discharge end voltage, and the full charge holding time.
  • those that can be controlled from the power management apparatus 100 using the essential protocol of Echonet Lite are the charge end voltage, the discharge end voltage, and the full charge holding time. Therefore, in the third embodiment, the three main factors are controlled by the power management apparatus 100.
  • the communication cycle between the storage battery power conditioner 4 and the power management apparatus 100 is 30 minutes. Therefore, when the storage battery power conditioner 4 is charged at 0.5 C, the SoC increases by 25% after 30 minutes of charging. For example, when controlling the end-of-charge voltage and the end-of-discharge voltage in order to suppress storage battery deterioration, the charging power amount of 30 minutes is updated, and the control period is long. Therefore, the desired effect cannot be obtained. For this reason, the charging electric energy until the newest electric energy storage is notified by the communication protocol of Echonet Lite is estimated.
  • the charge / discharge power of the storage battery 3 needs to be estimated based on the AC power measured by the power measurement circuit 14a in the distribution board 14.
  • the loss of the storage battery power conditioner 4 (including the loss due to the internal resistance of the storage battery 3 and the loss due to the power consumption of the BMU) is added to the standby power as well as the loss proportional to the square of the charge / discharge current as shown in FIG.
  • the charge / discharge power measured by the power measuring circuit 14a does not include a loss during charging during charging, and the power value is small due to the loss during discharging during discharging. Further, an error of a sensor (not shown) that measures current or voltage is also added.
  • the storage battery 3 is deteriorated every time charging and discharging are repeated. Therefore, the SoC cannot be accurately calculated unless the charge power amount at the time of full charge can be grasped, and the accurate storage battery voltage cannot be estimated unless the accurate SoC can be estimated.
  • the storage battery voltage with respect to the SoC of the storage battery 3 has the characteristics shown in FIG. For this reason, in this Embodiment 3, it estimated with the charge electric energy estimation part 213 in the 2nd storage battery model 212 based on the charge (electric storage) electric energy information (SoC) periodically transmitted from the storage battery power conditioner 4 While correcting the amount of stored power (SoC), the amount of charged power at full charge is also estimated.
  • the charging power obtained from the power measuring circuit 14a does not include loss in the storage battery power conditioner 4 or the like or errors of various sensors.
  • the charging power estimation unit 213 in the second storage battery model 212 estimates the charging power, first, the voltage of the storage battery 3 is estimated from the current SoC estimated value using the table data shown in FIG. .
  • the power loss consumed by the storage battery power conditioner 4 is estimated. Specifically, the standby current is subtracted from the charging power measured by the power measurement circuit 14a, and the charging current value is estimated by dividing the subtraction result by the estimated storage battery voltage.
  • the loss electric power at the time of charge is calculated from the estimated charging current value and standby electric power, and the charging electric power to the storage battery 3 is calculated
  • the charge power amount estimation unit 213 adds the numerical value to the current charge power amount and updates the charge power amount.
  • the update of the charging power amount is completed, it is checked whether or not there is a notification of the charging power amount (SoC) from the storage battery power conditioner 4. If there is a notification, the calculated charging power amount is corrected. In that case, the capacity
  • the storage power amount (SoC) notified from the storage battery power conditioner 4 the charge / discharge power amount ( ⁇ Wcharge) that the storage battery 3 charged / discharged between the previous notification and the current notification, and the change amount of the SoC ( From ( ⁇ SoC), the charge power amount at the time of full charge is calculated by the following (Equation 4) and estimated.
  • the charging power amount estimation unit 213 corrects various sensor errors by correcting the charging power amount by notification of the charging power amount (SoC) from the storage battery power conditioner 4. .
  • the deterioration of the storage battery 3 can be estimated to be about 3 to 5% per year on the assumption that the battery is used for 10 years. Therefore, the capacity of the storage battery 3 when fully charged does not change significantly in about one month. Therefore, the estimated value of the charging power amount at the time of full charging obtained in the above (Equation 4) is stored in a database (not shown) in the charging power amount estimation unit 213, and for example, at the time of full charging calculated in the past 50 days.
  • the average value of the estimated value of the amount of charging power it is possible to reduce error factors such as an estimation error of the power loss of the power storage device B. It should be noted that the same effect can be obtained even if the measurement result of the charged electric energy at the time of full charge is estimated by leveling with an IIR (infinite impulse response) filter or the average value is calculated with weighting. Needless to say.
  • the SoC is calculated by dividing the current charging power amount of the storage battery 3 by the charging power amount at the time of full charging, and the calculation result is shown in FIG.
  • the voltage of the storage battery 3 is estimated using a table.
  • the second storage battery model 212 estimates the storage battery cell temperature. Specifically, it is calculated from the standby power and charge / discharge current calculated in step S203 using the above (Equation 3) in the same manner as the storage battery model 204 (step S204).
  • the second storage battery model 212 confirms storage battery restriction information. Specifically, as described above, the charge termination voltage and the discharge termination voltage of the storage battery 3 are confirmed from the restriction table at the time of charging / discharging of the storage battery 3 obtained from the cloud server 31 and the storage battery cell temperature calculated in step S204. (Step S205).
  • the second storage battery model 212 determines whether the storage battery voltage calculated in step S203 is within the limit value range (whether it is greater than or equal to the discharge end voltage and less than or equal to the charge end voltage). ) Confirm (step S206).
  • the second storage battery model 212 In the case of No in step S206, the second storage battery model 212 generates a charge / discharge stop command 211. What can be managed by the power management apparatus 100 as the main cause of the deterioration of the storage battery is the end-of-charge voltage, end-of-discharge voltage and full charge holding time. When the second storage battery model 212 exceeds the charge end voltage or falls below the discharge end voltage, the second storage battery model 212 generates a charge / discharge stop command 211 and notifies the operation plan creation unit 206a (step S207). In the third embodiment, the storage battery power conditioner 4 does not have a restriction table as shown in FIG. 8 and does not suppress the deterioration of the storage battery 3.
  • the maximum charging / discharging current and the end-of-charge voltage that are the main causes of storage battery deterioration are shown.
  • the discharge end voltage and the full charge holding time are not managed by the storage battery power conditioner 4.
  • the electrical storage apparatus B since the electrical storage apparatus B is a product of another company, the storage battery voltage and the amount of charge power shown in FIG. 6C when charging / discharging is performed by evaluating the cell of the storage battery 3 alone. (SOC) relationship, restriction information on charging / discharging (for example, restriction table information shown in FIG. 8) and the like are obtained. The obtained information is stored in the cloud server 31 and notified to the power management apparatus 100 based on a request from the power management apparatus 100.
  • the storage battery operation plan correction unit 214 in the operation plan creation unit 206a changes the storage battery operation plan. Specifically, the operation plan is changed so as to temporarily stop the charging / discharging of the storage battery 3 (step S208).
  • the operation plan creation unit 206a notifies the storage battery operation mode determination unit 123 of the operation plan.
  • the storage battery operation mode determination unit 123 selects a protocol (command) to be notified to the storage battery power conditioner 4 from the protocol of the echo lite notified from the cloud server 31, and selects the selected protocol (command) as the echo lite communication I.
  • the storage battery operation mode determination unit 123 notifies the storage battery power control 4 of the charging / discharging stop protocol (command) (step) S209).
  • step S210 the second storage battery model 212 and the operation plan creation unit 206a confirm the operation status of the storage battery 3 (step S210). Details of the operation status confirmation flow will be described later.
  • step S209 or step S210 is completed, as shown in FIG. 36, the operation planning unit 118a acquires the power consumption of the water heater 5 that is the first water heater information (step S14).
  • the sampling of various measurement data is performed at a cycle of 50 ⁇ s (20 KHz).
  • the measurement result is integrated for one minute in the power measurement circuit 14a, and the integration result is obtained. Is notified to the power management apparatus 100 at a cycle of one minute. Note that sampling is not limited to 50 ⁇ s. Needless to say, the notification cycle of various measurement data is not limited to one minute.
  • the operation plan part 118a confirms whether it is an operation plan creation time similarly to the said Embodiment 1 (step S15).
  • the power management apparatus 100 communicates with the solar power conditioner 2, the storage battery power conditioner 4, the hot water heater 5, and the air conditioner 21, which is the load device 20, the refrigerator 22, the illumination 23, and the IH cooking heater 24 every 30 minutes.
  • the information of each device is acquired via the Echonet Lite communication I / F unit 113.
  • the operation plan creation cycle in the power management apparatus 100 is not limited to 30 minutes, and may be determined based on the processing speed, communication speed, and the like of the CPU 110. In addition, the operation plan creation cycle does not need to be constant.
  • the management device 100 may also reduce power consumption.
  • the operation plan may be created or changed irregularly, for example, when the PV generated power deviates from the prediction and the operation plan must be changed.
  • step S15 the process returns to step S11 to continue acquiring various data.
  • the operation planning unit 118a transmits the power rate table to the cloud server 31 via the Ethernet (registered trademark) communication I / F unit 114. Request to send the current electricity rate table information.
  • the cloud server 31 receives the request for the power charge table information, the cloud server 31 operates the power charge table as a power charge system to which the current user who is the consumer contracts via the Ethernet (registered trademark) communication I / F unit 114. It transmits to the operation plan preparation part 206a in the plan part 118a.
  • the operation plan creation unit 206a stores the power rate table in a data storage unit (not shown). For example, as in the first embodiment, the power rate table shown in FIG. 17 is used (step S16).
  • the operation planning unit 118a acquires the charged power amount (SoC) as the second storage battery information via the Echonet Lite communication I / F unit 113 (step S17).
  • the operation planning unit 118a acquires the second hot water heater information such as the heat storage amount and the hot water amount of the water heater 5 via the Echonet Lite communication I / F unit 113 (step S18).
  • the operation planning unit 118a creates an operation plan (step S211). Details of step S211 (steps S31 to S40) will be described later.
  • step S20 When the creation of the operation plan in step S211 is completed, the CPU 110 in the power management apparatus 100 checks whether one day has passed (23:00) (step S20). In step S20, when one day has not passed, it returns to step S11 and performs a flow again. In step S20, when one day has passed, the deterioration degree of the storage battery 3 is estimated using the charge / discharge history of one day (step S21), and the process returns to step S11 again to start the flow.
  • Step S211 is an operation plan creation step substantially the same as step S19 of the first embodiment, and is shown in the operation plan creation flow (step S31 to step S40) in FIG.
  • Solar radiation amount estimation method see step S33
  • temperature prediction method see step S34
  • solar radiation amount prediction result correction method see step S35
  • PV generated power learning method see step S36
  • temperature prediction correction method step S37
  • the power consumption prediction method the power consumption correction method (see step S38), and the surplus power prediction method (see step S39)
  • step S40 is an operation plan creation step for the storage battery 3 and the hot water heater 5, and is shown by the flow in FIG. 22 (steps S41 to S53).
  • Step S46 step S61 to step S66 in this flow is shown in FIG. 23
  • step S48 step S71 to step S79
  • step S50 step S91 to step S104
  • Steps S31 to S39 in step S211 are the same as those in the first embodiment and will not be described.
  • the flow of creating an operation plan for the storage battery 3 and the water heater 5 in step S40 (steps S41 to S53) will be described with reference to FIG.
  • an operation plan for 24 hours is created from 23:00 at midnight when the midnight power time period starts.
  • the operation plan creation unit 206a in the operation plan unit 118a collects information on the water heater 5.
  • the usage time and the amount of hot water used which is the usage plan of the water heater 5, are acquired from the family schedule management unit 121, and the current heat storage amount is obtained based on the water temperature information (step S41).
  • the operation plan creation unit 206a inputs the information (the amount of hot water used, the usage time, and the amount of heat storage) of the water heater 5 acquired in step S41 and the characteristic information of the water heater 5 shown in FIG. To do.
  • the characteristic information of the water heater 5 is stored in the cloud server 31 (step S42).
  • the operation plan creation unit 206 a completes the acquisition of the characteristic information of the water heater 5, the operation plan creation unit 206 a acquires further information of the storage battery 3. Specifically, the storage power amount prediction result at 23:00 today calculated from the operation plan of the storage battery 3 described later, the capacity maintenance rate estimation result of the storage battery 3, the storage battery power control efficiency, and the initial capacity information of the storage battery 3 are acquired.
  • the capacity maintenance rate is estimated by the CPU 110 at 23:00 from the charge / discharge history of the storage battery 3 and the storage battery cell temperature for 24 hours.
  • the storage battery power control efficiency is the efficiency obtained from the loss of both the storage battery 3 and the storage battery power control 4, and is the ratio of the dischargeable power amount to the charge power amount. This storage battery power conditioner efficiency is obtained from the cloud server 31.
  • the storage battery power conditioner efficiency is calculated based on the parameters ⁇ and ⁇ used in the above-described (Equation 3) and the charge / discharge current.
  • the calculation method of storage battery power conditioner is not restricted to this, It goes without saying that average efficiency may be stored in the cloud server 31 in advance and the numerical value may be used (step S43).
  • the operation plan creation unit 206a acquires the characteristic information of the storage battery 3 shown in FIGS. 6 to 8 from a memory not shown.
  • the characteristic information of the storage battery 3 is acquired from the cloud server 31 and stored in a memory for use.
  • characteristic information of the storage battery 3 corresponding to the progress of storage battery deterioration is prepared in the cloud server 31 and notified based on a request from the power management apparatus 100.
  • the characteristic information of the storage battery 3 is internal resistance information of the storage battery 3 according to the degree of deterioration and can be used for calculating the power loss when the storage battery 3 is charged and discharged.
  • Equation 3 the parameters ⁇ and ⁇ shown in the above (Equation 3) may also be registered in the cloud server 31 as information corresponding to storage battery deterioration.
  • the information on the storage battery 3 and the characteristic information on the storage battery 3 acquired in step S43 are input to the storage battery model 204 (step S44).
  • the operation plan creation unit 206 a generates a model of the storage battery 3 in the storage battery model 204. Specifically, the progress of deterioration of the storage battery 3 is estimated based on the capacity maintenance rate information of the storage battery 3, and the storage battery characteristic information obtained in step S44 is corrected based on the estimation result.
  • the capacity maintenance rate information of the storage battery 3 is a numerical value obtained by dividing the storage battery capacity (charge power amount at full charge) estimated by the charge power amount estimation unit 213 in the second storage battery model 212 by the initial capacity of the storage battery 3. is there. As described in the first embodiment, the maximum value of the charge / discharge current of the storage battery 3 varies depending on the storage cell temperature and the amount of stored power.
  • the maximum SoC value which can be charged also changes with storage battery cell temperatures. Furthermore, the maximum value of the charge / discharge current value and the maximum SoC value that can be charged also vary depending on the degree of deterioration of the storage battery 3. For this reason, also in the third embodiment, the storage battery charge / discharge current limit table shown in FIGS. 8A and 8B is changed according to the deterioration progress of the storage battery 3.
  • the storage battery model 204 models the storage battery 3 based on the changed storage battery charge / discharge current limit table (step S45).
  • the storage battery power conditioner 4 uses a product of another company. Therefore, the charging / discharging current value of the storage battery 3 is not limited.
  • an operation plan is created using the restriction table, and the charge end voltage, the discharge end voltage, and the full charge holding time, which are main factors of storage battery deterioration that can be controlled by the power management apparatus 100, are managed. Use a restriction table for that. Note that the correction method of the restriction table is the same as that of the first embodiment, and thus detailed description thereof is omitted.
  • the operation plan creation unit 206a When the generation of the model of the storage battery 3 by the storage battery model 204 is completed, the operation plan creation unit 206a generates the operation constraint condition of the storage battery 3 based on the temperature using the prediction result of the temperature and the storage battery model 204 (step S46). .
  • step S46 a generation flow of the storage battery operation restriction condition based on the temperature in step S46 (steps S61 to S66) will be described.
  • the operation plan creation unit 206a starts generating the operation constraint condition of the storage battery 3
  • the storage cell temperature at each time is calculated from the temperature prediction information (corrected temperature prediction based on the actual measurement result) using the above (Equation 3). Predict.
  • the maximum charge / discharge current is determined using the temperature and the storage battery charge / discharge current limit table (see FIG. 8).
  • a predetermined value for example, 5 ° C.
  • the storage battery cell temperature is calculated using the determined maximum charge / discharge current value (step S61).
  • the maximum charge / discharge current, the charge end voltage (first charge end voltage), and the discharge end voltage are obtained again from the restriction table in the manner described in the first embodiment.
  • the limit value of the charge / discharge current shown in the limit table is substantially constant between SoC 0.2 and 0.8, as in the first embodiment.
  • the maximum charge / discharge current is obtained for the case where SoC is 0.5, and is used for the operation plan creation.
  • the limit value of the charge / discharge current may be obtained for each other SoC value or for each SoC value (step S62).
  • the operation plan creation unit 206a confirms a time zone in which PV surplus power is generated. Specifically, a time zone in which PV surplus power is generated is obtained by subtracting the prediction result (after correction) of the load power consumption calculated in step S38 from the prediction result of the PV power generation power calculated in step S36. (Step S63).
  • the operation plan creation unit 206a determines the amount of power discharged from the storage battery 3 to the load device 20 including the water heater 5 from the end of the PV surplus power generation time period until the midnight power time period. Obtain in the manner described in 1. Then, the discharge current of the storage battery 3 at each time is calculated by dividing the obtained discharge power by the voltage of the storage battery 3. Note that, as the voltage of the storage battery 3, the result estimated by the charge power amount estimation unit 213 in the second storage battery model 212 in step S227 is used. Then, the discharge current is compared with the maximum discharge current determined in step S62.
  • the maximum discharge current is set as the discharge current from the storage battery 3
  • the calculated discharge current Is less than the maximum discharge current the calculated discharge current is set as the discharge current from the storage battery 3.
  • the operation plan creation unit 206a obtains the charge power amount for the storage battery 3 based on the discharge power amount in the manner described in the first embodiment.
  • the end-of-charge voltage is calculated by obtaining SoC based on the capacity of the storage battery 3 estimated by the charge power amount estimation unit 213 in the second storage battery model 212 (charge power amount at full charge). To do.
  • the charge end voltage considering the storage battery deterioration can be calculated (step S65).
  • the charge end voltage (second charge end voltage) calculated in step S65 is equal to or lower than the charge end voltage (first charge end voltage) calculated in step S62
  • the charge end voltage calculated in step S65 is stored in the storage battery 3. This is used as the end-of-charge voltage in the operation constraint conditions. That is, the lower one of the two charge end voltages is determined as the charge end voltage of the operation restriction condition (step S66).
  • the operation plan creation unit 206a determines the hot water supply amount of the water heater 5 according to the first embodiment. (Step S47). When the hot water supply amount (heat storage amount) of the water heater 5 is calculated, the operation plan creation unit 206a creates an operation pattern of the water heater 5 (step S48). It should be noted that the number of daily start and stop times of the water heater 5 is set to a maximum of twice as in the first embodiment. In addition, two operation patterns of hot water supply in the late-night power hours and hot water supply in the daytime hours are created.
  • the water heater model 205 obtains the power consumption of the water heater 5 at each time from the temperature prediction information calculated in step S37. And from the PV surplus electric power prediction information calculated
  • the operation plan creation unit 206a confirms whether or not an operation pattern (first operation pattern) based on a hot water supply plan in the late-night power hours has been created (step S71). As a result of the confirmation in step S71, if it is not created, the operation plan creation unit 206a creates an operation pattern (first operation pattern) based on the hot water supply plan in the midnight power time zone (start of hot water supply in the midnight power time zone, End time calculation).
  • step S72 since the preparation method of the operation plan of midnight time zone is the same as that of the said Embodiment 1, description is abbreviate
  • the operation plan creation unit 206a When the calculation of the hot water supply amount (heat storage amount), the hot water supply start time, the end time, and the power consumption during the midnight power hours is completed, the operation plan creation unit 206a increases the boiling power consumption before the night use of the water heater 5 and increases the boiling power.
  • the start and end times are obtained (step S74).
  • the operation plan creation unit 206a creates an operation pattern (first operation pattern) of the water heater 5 in the late-night power hours and the night hours when a large amount of hot water is used, based on the calculation results in steps S72 to S74. In this case, the start-up time, stop time, and power consumption for each time during the start-up time of the water heater 5 are obtained and set as an operation plan (operation pattern) of the water heater 5 (step S75).
  • step S71 if the creation of the first operation pattern is completed, the operation plan creation unit 206a confirms the generation of PV surplus power.
  • the operation plan creation unit 206a confirms the generation of PV surplus power.
  • the second operation pattern is not created on the assumption that there is no hot water supply in the daytime time zone of the water heater 5, and the operation pattern creation flow of the water heater 5 is terminated.
  • step S76 when there is a time zone in which the value obtained by subtracting the power consumption of the water heater 5 from the PV surplus power is a predetermined value or more, the operation plan creation unit 206a starts the hot water supply in the daytime time zone based on the PV surplus power, Determine the end time. Specifically, the power consumption of the water heater 5 at each time is obtained from the temperature prediction information, and the time zone in which the value obtained by subtracting the power consumption of the water heater 5 from the PV surplus power is a predetermined value or more is extracted and extracted. Power consumption and hot water supply amount (heat storage amount) in the time zone are calculated.
  • the hot water supply amount (heat storage amount) in the daytime time zone is also calculated (step S77).
  • the operation plan creation unit 206a compares the hot water supply amount (heat storage amount) obtained in step S47 with the hot water supply amount (heat storage amount) in the daytime period calculated in step S77, and hot water supply in the late-night power hours.
  • the hot water supply amount (heat storage amount) of the machine 5 is calculated (step S78).
  • the operation plan creation unit 206a starts and ends hot water supply in the midnight power time period for the water heater model 205 as in the first embodiment.
  • An instruction is given to calculate the time (step S79).
  • step S48 the operation plan creation unit 206a creates an operation plan for the storage battery 3 for each of the two created operation patterns.
  • the operation plan creation unit 206a selects one hot water supply operation pattern (step S49).
  • the operation plan creation unit 206a creates an operation plan for the storage battery 3 using the model of the storage battery 3 generated in step S45 (step S50).
  • step S50 the detail about step S50 which shows preparation of the operation plan of the storage battery 3 is mentioned later.
  • the operation plan creation unit 206a calculates a power charge based on the power charge system from the operation pattern of the water heater 5, the operation plan of the storage battery 3, the PV power generation power prediction result, and the load power consumption prediction result (step S51).
  • the calculation of the power charge it is determined whether or not the power charge has been confirmed by processing all the operation patterns created for the water heater 5. In this case, it is confirmed whether or not two types of operation patterns have been performed. It is assumed that all driving patterns are processed (step S52).
  • step S52 If there is an unprocessed operation pattern in step S52, the process returns to step S49, and an unprocessed operation pattern is selected.
  • step S52 when all the operation patterns for the water heater 5 are processed and the confirmation of each power charge is completed, the operation plan creation unit 206a determines an operation pattern with a low power charge. Thereby, the combination of the operation pattern of the hot water heater 5 and the operation plan of the storage battery 3 is determined so that the power rate is minimized (step S53). Accordingly, the creation of the operation plan for the storage battery 3 and the hot water heater 5 shown in S40 (S41 to S53, see FIG. 16) is completed, and the creation of the operation plan shown in S211 (S31 to S40, see FIG. 36) is also finished. .
  • step S50 steps S91 to S104
  • the operation plan creation unit 206a calculates the PV surplus power at each time. In the calculation, from the PV generation power prediction result calculated in step S36, the load power consumption prediction result calculated in step S38, and the power consumption prediction result of the water heater 5 at each time obtained when the operation pattern of the water heater 5 is created, Is subtracted to calculate the PV surplus power at each time (step S91).
  • the operation plan creation unit 206a determines whether to charge the PV surplus power. Specifically, as in the first embodiment, the surplus power is calculated from the efficiency at the time of charging and discharging of the storage battery 3 acquired in step S43, the power charge in the midnight power hours, and the selling price of surplus power. Determine if it is better to charge the battery. Further, in addition to the above-mentioned power charge system, it is determined whether or not the PV surplus power is charged based on the storage battery operation constraint condition at each time confirmed in step S46. Further, even if the PV surplus power is charged, it is determined that the PV surplus power is not charged even when it is determined that all the charge power cannot be discharged by the start of the midnight power time period (step S92).
  • the operation plan creation unit 206a creates a charge plan for the storage battery 3 in the midnight power time zone. Specifically, as in the first embodiment, the stored electricity amount (SoC) of the storage battery 3 at the start of the midnight power time period is predicted from the current operation plan of the storage battery 3, and then the temperature prediction created in step S37. Based on the result and the limit table of the storage battery 3 shown in FIG. 8, a charging plan is created assuming that charging of the storage battery 3 is started immediately after the start of the midnight power time period. At that time, unlike the first embodiment, the charging power amount (SoC) at each time is also calculated (step S93).
  • SoC stored electricity amount
  • the reason for calculating the charging power amount (SoC) of the storage battery 3 at each time is as follows.
  • a storage battery power conditioner 4 manufactured by another company is used. Therefore, control of the storage battery power conditioner 4 assumed in Embodiment 1 cannot be performed.
  • the outside air temperature is originally high in the midnight hours, and the charging power amount cannot be set even if an operation plan for charging at 0.1 C is made.
  • the case where it charges with the standard charging current (for example, 0.5C) of the storage battery power conditioner 4 is assumed.
  • the charging power amount estimation unit 213 in the second storage battery model 212 estimates the charging power amount (SoC) of the storage battery 3, and the charging power amount at each time described above ( When exceeding (SoC), the storage battery power controller 4 is notified of a charge stop command so as to stop the charging of the storage battery 3.
  • SoC charging power amount
  • the storage battery power controller 4 is notified of a charge stop command so as to stop the charging of the storage battery 3.
  • the operation plan creation unit 206 a creates a discharge plan for the storage battery 3.
  • the storage battery 3 is controlled so that the purchased power is minimized during times other than the midnight power time zone.
  • the operation plan creation unit 206a calculates the required amount of discharge power in a time zone other than the midnight power time zone by subtracting the PV power generation prediction result from the power consumption prediction result of the load device 20 including the water heater 5. .
  • the storage battery model 204 obtains the calculated discharge power demand at each time from the operation plan creation unit 206a, and based on the charge plan for the storage battery 3 in the late-night power time zone created in step S93, the late-night power time zone The amount of charging electric power stored in the storage battery 3 at the end time (7 o'clock) is calculated. Then, the storage battery model 204 determines the discharge power amount at each time from the charge power amount, the required discharge power amount at each time, the temperature prediction result, and the restriction table of the storage battery 3 shown in FIG. Specifically, the SoC of the storage battery 3 is calculated from the amount of charged power at each time, and the maximum discharge current and the storage battery voltage are calculated from the calculated SoC, the temperature prediction result, and the limit table of the storage battery 3.
  • the maximum discharge power amount is calculated from the calculated maximum discharge current and storage battery voltage, and compared with the required discharge power amount. As a result of the comparison, if the required discharge power is less than or equal to the maximum discharge power, the required discharge power is determined as the discharge power, and if the required discharge power is greater than the maximum discharge power, the maximum discharge power is determined as the discharge power. Determine as quantity. The above operation is performed until the voltage of the storage battery 3 calculated in step S62 reaches the discharge end voltage. In addition, when calculating
  • the operation plan creation unit 206a creates a charge plan for the PV surplus power.
  • the PV surplus power at each time is calculated by subtracting the power consumption of the water heater 5 at each time according to the operation plan (operation pattern) of the water heater 5 from the PV surplus power prediction result created at step S39.
  • the storage battery model 204 acquires the calculated PV surplus power at each time from the operation plan creation unit 206a, and creates a charging plan based on the temperature prediction result and the restriction table of the storage battery 3 shown in FIG. In addition, when the amount of electric power required by PV surplus electric power cannot be secured, the shortage is charged in the late-night electric power hours.
  • the amount of power charged in the storage battery 3 in the final time zone when PV surplus power is generated is calculated from the PV surplus power amount, the temperature prediction result, and the characteristic information of the storage battery 3. Then, the calculated charging power amount is subtracted from the fully charged power amount to calculate the charging (power storage) power amount of the storage battery 3 at the start of the last time zone when the PV surplus power is generated, and the calculation result, PV surplus power From the amount, the temperature prediction result, and the characteristic information of the storage battery 3, the charge power amount for 30 minutes immediately before the last time zone is calculated. This operation is repeated until the time when the charge (storage) power amount of the storage battery 3 becomes zero or the time when the PV surplus power becomes zero.
  • the operation plan creation unit 206a creates a discharge plan for the storage battery 3 in a period from the end of the midnight power time period to the generation of PV surplus power.
  • the required amount of discharge power at each time in the period from the end of the midnight power time period to the generation of PV surplus power is calculated.
  • the discharge power amount at each time is determined from the charge power amount at each time, the required discharge power amount, the temperature prediction result, and the limit table of the storage battery 3 using the storage battery model 204 (step S96).
  • the operation plan creation unit 206a charges the discharge power amount calculated in step S96 in step S95 to charge the charge power amount for the midnight power time zone (the remaining power). To calculate the charging power amount in the late-night power time zone, and create a charging plan for the storage battery 3 in the late-night power time zone. Specifically, the storage power amount of the storage battery 3 at the start of the midnight power time period is predicted, and a charging plan is created using the storage battery model 204 based on the temperature prediction result and the characteristic information of the storage battery 3.
  • the charging power and the charging power amount at each time when charging the storage battery 3 is started immediately after the start of the midnight power time zone at the maximum charging current are obtained until the charging power amount in the midnight power time zone is reached.
  • the charging power amount (SoC) of the storage battery 3 at each time is also calculated (step S97).
  • the operation plan creation unit 206a creates a discharge plan for the storage battery 3 during the period from the end of the PV surplus power generation to the start of the midnight power time zone.
  • the charging (storage) power amount of the storage battery 3 at the end of the generation of the PV surplus power is acquired from the PV surplus power charging plan, the charging power amount at each time, the discharge power request amount, the temperature prediction result, and the storage battery.
  • the discharge power amount at each time is determined using the storage battery model 204.
  • the charging power amount (SoC) of the storage battery 3 at each time is also calculated (step S98).
  • the operation plan creation unit 206a checks whether the storage battery voltage at the end of charging in the storage plan of the storage battery 3 exceeds the charge end voltage determined as the operation constraint condition of the storage battery 3 (step S99). In the case of charging the PV surplus power, in step S99, when the storage battery voltage at the end of charging of the PV surplus power exceeds the charge end voltage (in the case of Yes), the midnight power time zone created in step S97 is displayed. The charging plan is reviewed to reduce the charging power, and the storage battery voltage at the end of charging the PV surplus power is suppressed to the above-mentioned charging end voltage.
  • step S99 when the storage battery voltage at the end of charging in the midnight power time zone exceeds the charge end voltage (in the case of Yes), the midnight power generated in step S93 is used.
  • the charging plan for the time zone is reviewed to reduce the charging power, and the storage battery voltage at the end of charging is suppressed to the above-mentioned charging end voltage.
  • the charging power amount (SoC) of the storage battery 3 at each time is also calculated. Thereafter, the process returns to step S99 (step S100).
  • step S99 when the storage battery voltage at the end of charging is equal to or lower than the end-of-charge voltage (in the case of No), the created charge / discharge plan is reviewed to check whether there is a time zone during which the storage battery 3 is not charging / discharging. .
  • a predetermined value for example, less than 50 W
  • step S102 If there is a time zone during which the storage battery 3 is not charging / discharging, an operation plan for the storage battery 3 is created so that the power storage device B is put into the sleep state during that time zone, that is, the operation mode is set to the sleep mode (step) S102).
  • step S102 is completed or when step S101 is No, the operation plan creation unit 206a creates a charge / discharge plan including the standby state of the storage battery 3, that is, the standby mode operation mode (step S103). Even when the storage battery power conditioner 4 does not support the sleep mode, the operation plan including the sleep mode is created in the third embodiment.
  • step S104 when the storage battery operation constraint condition is satisfied (in the case of Yes), the operation plan creation of the storage battery 3 is completed, and in the case where it is not satisfied (in the case of No), the process returns to step S91 and the operation plan of the storage battery 3 is determined. Recreate it.
  • This operation status confirmation flow shows step S210 shown in FIG. 35 in detail, and is a control flow centered on the operation plan creation unit 206a and the second storage battery model 212.
  • the storage battery power conditioner 4 is controlled using only a limited Echonet Lite command.
  • the operation plan creation unit 206a controls the storage battery power conditioner 4 by a charge / discharge stop command based on the charge power amount of the storage battery 3 estimated by the second storage battery model 212, so that the charge termination that is the main cause of storage battery deterioration is stopped. Control voltage, end-of-discharge voltage, and full charge hold time.
  • the operation plan creation unit 206a notifies the operation plan for the storage battery 3 to the storage battery operation mode determination unit 123 and the second storage battery model 212.
  • the operation plan it is assumed that charge / discharge power is defined for one day every 30 minutes as in the first embodiment.
  • the storage battery operation mode determination unit 123 confirms the current operation mode of the storage battery power conditioner 4.
  • the device management unit 119 is inquired. When the operation mode of the storage battery power conditioner 4 is the same as the operation plan, it waits until the next transmission time. On the other hand, if different, the Echonet Lite protocol of the storage battery power conditioner 4 notified from the cloud server 31 is selected.
  • the operation mode of the storage battery power conditioner 4 is also notified to the device management unit 119.
  • the third embodiment only charging / discharging start and stop are supported. For example, if the operation mode at the current time is charging, a charging start command is notified to the storage battery power converter 4 via the Echonet Lite communication I / F 113. .
  • the second storage battery model 212 reads from the operation plan the end-of-charge voltage and the end-of-discharge voltage, as well as the amount of charge (SoC) when the operation plan of the storage battery 3 at the current time is completed (step S231).
  • the second storage battery model 212 receives the operation plan of the storage battery 3, it checks whether the operation plan at the current time is charging (step S232). When charging (in the case of Yes), it is determined whether the estimation result of the current charging power amount of the storage battery 3 estimated in step S203 is larger than the charging power amount in the acquired operation plan (step S233). When the estimation result of the charge power amount is equal to or less than the charge power amount in the operation plan (in the case of No), the operation status confirmation flow is terminated. When the estimation result of the charge power amount is larger (in the case of Yes), a charge / discharge stop command 211, in this case, a charge stop command is generated so as to stop the charge / discharge control for the storage battery 3 (step S234).
  • the second storage battery model 212 When the second storage battery model 212 generates the charge / discharge stop command 211, the second storage battery model 212 notifies the operation plan creation unit 206a to that effect.
  • the storage battery operation plan correction unit 214 in the operation plan creation unit 206a receives the current time and the next time (when the current time is midnight, 2:00 to 2:30 midnight).
  • the operation plan during (b) is changed to a charge / discharge stop operation plan.
  • the operation plan after the next time (after midnight 2:30) is not changed (step S235).
  • the operation plan creation unit 206 a notifies the changed operation plan to the storage battery operation mode determination unit 123.
  • the storage battery operation mode determination unit 123 transmits an operation command (in this case, a charge / discharge stop command) based on the changed operation plan to the storage battery power conditioner 4 (step S236), and the operation status End the confirmation flow.
  • an operation command in this case, a charge / discharge stop command
  • the estimation result of the current charge power amount of the storage battery 3 estimated in step S203 is the charge power amount in the acquired operation plan. It is determined whether it is smaller (step S237).
  • step S234 When the estimation result of the charge power amount is equal to or greater than the charge power amount in the operation plan (in the case of No), the operation status check flow is terminated, and when the estimation result of the charge power amount is smaller (in the case of Yes), The process proceeds to step S234 to generate a charge / discharge stop command 211.
  • FIG. 39 and 40 are diagrams showing a charging current, a charging power amount, and a storage battery cell temperature when charging the storage battery 3.
  • FIG. 39 shows a case according to a comparative example in which the charge / discharge stop command 211 is not used
  • FIG. 40 shows a case according to the third embodiment, that is, a case where the charge / discharge stop command 211 is used.
  • the storage battery power conditioner 4 supports only the charging / discharging start or stop protocol (command). For example, when charging at midnight, when a charge start command is sent, the storage battery power conditioner 4 starts charging at a predetermined charging current (for example, 0.5 C). However, suppose that the temperature is high and the operation plan for the storage battery 3 is 0.1 C, and the operation plan is made to charge over 2 hours.
  • the battery is continuously charged at 0.5C for 24 minutes and stopped.
  • the amount of power to be charged is equivalent to the operation plan, but by charging at 0.5 C, the temperature of the storage battery cell rises due to the heat generated by the power loss of the storage battery power conditioner 4 and the storage battery 3, and the storage battery 3 is more than necessary. May cause damage.
  • the end-of-charge voltage cannot be reliably managed in the operation plan every 30 minutes. Therefore, an unnecessary amount of electric power as described in the first embodiment may be charged to the storage battery 3 beyond the charge end voltage, and the storage battery 3 may be deteriorated more than necessary.
  • the third embodiment as shown in FIG.
  • the battery 40 for example, after charging for 6 minutes with a charging current of 0.5 C, the battery is stopped in a charging stopped state, so that the SoC is set to 0.05 for 30 minutes. Charge the corresponding amount of power and repeat it 4 times. Thereby, an unnecessary rise in the storage battery cell temperature and unnecessary charging to the storage battery 3 are suppressed.
  • FIG. 41 and FIG. 42 are diagrams showing a discharge current, a charge power amount, and a storage battery cell temperature when discharging from the storage battery 3.
  • FIG. 41 shows a case according to a comparative example in which the charge / discharge stop command 211 is not used
  • FIG. 42 shows a case according to the third embodiment, that is, a case where the charge / discharge stop command 211 is used.
  • the storage battery power conditioner 4 supports only the charging / discharging start or stop protocol (command). For example, when a discharge start command is sent when performing nighttime discharge, the storage battery power conditioner 4 starts discharging at a predetermined discharge current (for example, 0.5 C). However, it is assumed that the temperature is high and the operation plan for the storage battery 3 is 0.1 C, and the operation plan is made to discharge over 2 hours.
  • the battery is continuously discharged at 0.5 C for 24 minutes and stopped.
  • the amount of discharge power is equivalent to the operation plan, but by discharging at 0.5 C, the storage battery cell temperature rises due to the heat generated by the power loss of the storage battery power conditioner 4 and the storage battery 3, and the storage battery 3 is more than necessary. May cause damage.
  • the discharge end voltage cannot be reliably managed in the operation plan every 30 minutes. Therefore, an unnecessary amount of electric power as described in the first embodiment may be discharged from the storage battery 3 exceeding the discharge end voltage, and the storage battery 3 may be deteriorated more than necessary.
  • the third embodiment as shown in FIG.
  • the SoC is set to 0.05 for 30 minutes. Discharge the corresponding amount of power and repeat it four times. Thereby, an unnecessary rise in the storage battery cell temperature and an unnecessary discharge from the storage battery 3 are suppressed.
  • the cell temperature of the storage battery 3 is charged at the same power at a time by repeating the heat dissipation operation during the rest period after the temperature rises due to loss during charging. Compared with, the rise in the storage battery cell temperature can be kept low.
  • the electricity charge for ordinary households is an ampere contract rather than peak power, if the amount of charged power is the same, the purchased electricity charge will be the same.
  • the cell temperature of the storage battery 3 is compared with the case where the same power is discharged at once by repeating the heat dissipation operation during the rest period after the temperature rises due to loss during discharge. Thus, the rise in storage battery cell temperature can be kept low.
  • the electricity charges for ordinary households if the amount of discharge power is the same, the amount of reduction in electricity charges is the same.
  • the storage battery power conditioner 4 manufactured by another company does not mount the restriction table shown in FIG. 8 in the storage battery power conditioner 4 and supports only the charging / discharging start and stop protocols of the storage battery 3.
  • the charge / discharge current that is the main cause of deterioration of the storage battery 3 cannot be limited, but the following control is possible. That is, by controlling charging / discharging to the storage battery 3, the cell temperature, the charge end voltage, the discharge end voltage, and the full charge holding time of the storage battery 3 can be controlled. Thereby, storage battery deterioration can be suppressed. With respect to the full charge holding time, since the charge end voltage can be controlled, the same control as in the first embodiment is possible.
  • the power management apparatus 100 estimates the charge / discharge power amount of the storage battery 3 using the power management device 100. Since the storage battery 3 is controlled (control using the charge end voltage and the discharge end voltage), it goes without saying that the same effect can be obtained.
  • the standby mode of the storage battery power conditioner 4 may use the sleep mode.
  • the standby power when forcibly waiting immediately after charging and discharging, the standby power can be reduced and the increase in the cell temperature of the storage battery 3 due to the standby power can be suppressed by waiting in the sleep mode. There is an effect that leads to suppression of deterioration of the storage battery.
  • the storage battery 3 When discharging from the storage battery 3 in the sleep mode is started, the storage battery 3 is notified to shift to the standby mode via the Echonet Lite communication I / F unit 113. Since it comprises in this way, the transfer to the standby mode from the sleep mode of the electrical storage apparatus B can be implemented reliably.
  • the control of the power management apparatus 100 and the control of the BMU 305 can be performed with the same temperature information. effective.
  • the charging end voltage that is the charging end point is determined and used to create the operation plan of the storage battery 3.
  • the charging power amount (maximum charging power amount) that indicates the charging end point of the storage battery 3 is determined. It may be used.
  • the discharge end voltage serving as the discharge end point the discharge end power amount that is the stored power amount serving as the discharge end point may be used.
  • the limit information of the storage battery 3 at each time is generated from the temperature prediction information and required based on the limit information.
  • the configuration is such that the end-of-charge voltage is determined by calculating the amount of discharge power
  • the present invention is not limited to this, and the maximum temperature and the minimum temperature may be calculated and calculated based on the temperature prediction information.
  • the limit information of the storage battery 3 is generated from the calculated maximum temperature and minimum temperature information, and the required amount of discharge power is calculated based on the generated limit information. And it controls to determine a charge end voltage from the calculated discharge electric energy. As a result, it is possible to suppress the problem that the end-of-charge voltage rises due to unnecessary charging of the storage battery 3, or the holding time at full charge becomes longer than necessary and the deterioration of the storage battery 3 proceeds.
  • the load power consumption learning management unit 200 prepares a database for learning temperature information for each weather. The database learns the temperature measured every month, every weather, every time. When the maximum temperature and the minimum temperature information are notified together with the weather forecast information, the load power consumption learning management unit 200 reads the temperature information learned at each time from the weather forecast information, and becomes the information in which the maximum temperature and the minimum temperature are input. Thus, the information read from the database is corrected.
  • the temperature prediction information can be reliably generated from the maximum temperature and the minimum temperature information.
  • running plan of the storage battery 3 which does not advance deterioration of the storage battery 3 unnecessarily can be created by producing
  • the first charge end point is generated from the charge restriction information of the storage battery 3 predicted based on at least the temperature prediction information. Based on the PV generated power prediction information, the load power prediction information, and the temperature prediction information, the discharge power amount of the storage battery 3 from the end of PV surplus power generation to the start of the midnight power time zone is calculated, and the charge power amount is calculated from the discharge power amount The second charging end point of the storage battery 3 is generated, and the lower of the first charging end point and the second charging end point is determined as the charging end point. Thereby, the end-of-charge voltage can be determined with the storage battery deterioration minimized.
  • the temperature measured by a thermometer (not shown) and the temperatures of the storage battery cells 301 on the high temperature side and the low temperature side obtained from the storage battery 3 via the Echonet Lite communication I / F unit 113 are used.
  • the temperature characteristics of the storage battery cell 301 are learned from the information and the charge / discharge current information.
  • the storage battery temperature is predicted from the temperature prediction result, the charge / discharge current information, and the learning result of the temperature characteristics of the storage battery cell 301.
  • the power storage device B has a thermometer for measuring the temperature, and the same effect can be obtained even if the actual temperature measured by the power storage device B is acquired via the Echonet Lite communication I / F unit 113. Needless to say to play.
  • the power management apparatus 100 since the power management apparatus 100 according to the first to third embodiments creates an operation plan in consideration of the characteristics of the water heater 5 and the power charge system when creating the operation plan of the water heater 5, the operation cost is reduced. It is possible to execute an operation plan that minimizes this.
  • the efficiency of the water heater 5 depending on the temperature, the charging / discharging current limitation of the storage battery 3, the limitation of the charging current due to the charging power amount of the storage battery 3, etc. are incorporated in the storage battery model 204 and the water heater model 205 and are considered in advance. Therefore, there are the following effects.
  • the required power storage amount cannot be secured with the power consumption planned to be low in temperature, or the temperature is too high in the time zone in which the storage battery 3 is scheduled to be charged, or charging that has been planned for a large amount of stored power
  • the occurrence of problems such as inability to secure current can be suppressed.
  • the operation plan is created in consideration of the energy conversion efficiency based on the temperature and load characteristics of the water heater 5 using the heat pump, the prediction error of the power consumption and the heat storage amount caused by the characteristics of the water heater 5 in the actual operation. Can be minimized.
  • an operation plan is made in consideration of the above characteristics of the storage battery 3, so the time zone when the air temperature is relatively high is Effective power management can be performed by making a plan for charging the storage battery 3 in the morning when the temperature is relatively low or after 16:00 when the temperature starts to decrease.
  • the standby power can be reduced by changing the storage battery 3 to the sleep mode, and unnecessary storage battery deterioration can be suppressed. There is an effect that can.
  • the operation plan of the storage battery 3 is roughly divided into a PV surplus power time zone and a midnight power time zone, and each charging plan is created, and the one with higher economic merit is selected.
  • the present invention is not limited to this.
  • the storage battery characteristics are approximated to a model of a secondary system that can be used in the quadratic programming method using a multiple regression analysis method.
  • a model of the storage battery 3 approximated to a secondary model may be used to create an operation plan so that an optimal solution is calculated by an arithmetic operation such as a secondary programming method.
  • an optimal operation plan of the storage battery 3 can be created by arithmetic operation only by changing the condition setting.
  • the quadratic programming method has been described above as an optimization method when creating an operation plan, the present invention is not limited to this.
  • an operation plan created by another optimization method by other arithmetic operations such as a machine learning method is prepared.
  • the hot water heater 5 may be approximated to a secondary system model that can be used in the quadratic programming method using the multiple analysis analysis in the same manner as the storage battery 3.
  • the hot water heater 5 was mentioned above, when the lifetime of an apparatus is considered, the starting frequency
  • the charging / discharging characteristics of the storage battery 3 and the characteristics of the water heater 5 are approximated to, for example, a first-order or higher characteristic polynomial, and the operation plan is made so that the power rate is minimized based on the approximated polynomial. Needless to say, you can create.
  • the number of activations of the water heater 5 from the power management apparatus 100 is two, but it goes without saying that the present invention is not limited to this. Further, the number of operation plans (operation patterns) of the water heater 5 is limited in advance. However, the present invention is not limited to this, and the operation plan generators 206 and 206a perform optimization based on all the plans to obtain the operation plan. Needless to say.
  • the water heater 5 is controlled in accordance with the family action schedule, the amount of hot water can be set appropriately, and unnecessary power consumption can be suppressed. Further, when the operation plan for the hot water heater 5 and the storage battery 3 is created, the power consumption is predicted based on the family schedule, so that there is an effect that the accuracy in estimating the load power consumption can be improved.
  • the power rate system has been described with respect to two types of power rate systems (three types including the summer season): a midnight power time zone and a daytime power time zone.
  • the power charge in the peak time zone which is attracting attention, may be set higher than the normal power charge to suppress the power consumption behavior.
  • the operation plan is configured to be updated in real time (in units of 30 minutes), even if, for example, a power charge in a specific time zone increases or a demand suppression request is received on the same day, the stored power amount of the storage battery 3
  • the PV power generation amount prediction result, the load power consumption amount prediction result, etc. (incentives are also used in the case of demand suppression) can make an operation plan that minimizes the power rate. For example, if it is determined that the amount of power stored in the storage battery 3 is small, the storage battery 3 is charged even during the daytime hours, and control is performed so that power is not purchased during the time period when the power rate is high. There is an effect that the charge can be kept as small as possible.
  • an optimal operation plan can be created by arithmetic operations, so an optimal operation plan can be created simply by changing the input power rate system. It goes without saying that it can be done.
  • the latest power charge system is taken in via the cloud server 31, so that even if the power charge system changes in the future, the power charge can be kept as small as possible.
  • the user can enjoy the effect of keeping the power charge as low as possible without being aware of the replacement of the device.
  • the load power consumption changes until learning is completed, so that the prediction error increases.
  • the device management unit 110 it is possible to suppress the generation period of the prediction error of the power consumption amount of the load device 20 by learning that fact. Needless to say.
  • learning is similarly performed for the storage battery 3 and the water heater 5, it is possible to grasp the characteristics based on the actually measured values instead of the specifications described in the catalog and the like, and to further reduce the prediction error. There is an effect that can be planned.
  • the capacity of the storage battery 3 is about 80 to 90% even if it is a new storage battery 3 with respect to the catalog value, and there is a variation in how much it can be used. Therefore, by learning also about the capacity of the storage battery 3, the capacity of the storage battery 3 that can be actually used by the power management apparatus 100 can be grasped, and an operation plan can be established based on the actual machine. Further, the storage battery deterioration greatly depends on the use environment and the use method in addition to the variation of the storage battery 3.
  • the storage battery 3 charge / discharge history charge / discharge current, end-of-charge voltage, end-of-discharge voltage, etc.
  • environmental information temperature, storage battery cell temperature
  • the characteristic table of the storage battery 3 is switched according to the capacity maintenance rate (deterioration degree) of the storage battery 3, control according to the deterioration degree of the storage battery 3 can be performed. it can. Therefore, unnecessary deterioration of the storage battery 3 can be suppressed, and control of the storage battery 3 according to the degree of deterioration, for example, maximum charge / discharge current, end-of-charge voltage, end-of-discharge voltage, constant current control to constant voltage control.
  • a charge / discharge plan can be created in consideration of the transition timing (which can also be realized by limiting the maximum charge / discharge current for SoC). Thereby, the actual operation of the storage battery 3 can be simulated almost accurately, and there is an effect that an error in creating the operation plan can be minimized.
  • the present invention is not limited to this.
  • a lead storage battery or a nickel-metal hydride storage has the same effect.
  • a battery mounted on an electric vehicle such as EV (Electric Vehicle) or PHEV (Plug-in Hybrid Electric Vehicle) may be used instead of the stationary storage battery.
  • EV Electric Vehicle
  • PHEV Plug-in Hybrid Electric Vehicle
  • the present invention is not limited to this, and two or more storage batteries may be used in cooperation. It goes without saying that it is good.
  • the power management apparatus 100 formulates an operation plan for each storage battery based on the characteristics of the individual storage battery so that the electricity charge is minimized, and the operation plan for each storage battery that is planned.
  • each storage battery can be controlled effectively, and there is an effect of suppressing the power charge.
  • one or more of them may be an electric vehicle such as an EV or a PHEV.
  • the temperature of the storage battery cell 301 is estimated by adding the temperature at which the storage battery cell 301 rises due to standby power to the temperature prediction result, but is not limited thereto.
  • the charge / discharge current amount is the main factor of loss rather than standby power
  • the rate of temperature increase with respect to the temperature of the storage battery cell 301 is also learned, and the result is used.
  • the temperature of the storage battery cell 301 may be estimated.
  • a limit table is further set to limit the upper limit value of the maximum charge power amount (end-of-charge voltage) based on the temperature prediction result. Needless to say, it may be provided. Furthermore, regarding the charge / discharge limitation of the storage battery 3, the end-of-charge voltage is set lower for the storage battery 3 that has deteriorated than for a new battery. Specifically, the storage battery voltage for switching from constant current charging to constant voltage charging is lowered, and the SoC is also finished before reaching 1.0 (full charge). Further, the storage battery charge / discharge current limit table is changed so as to keep the maximum charge / discharge current low.
  • the storage battery 3 is modeled using the multiple regression analysis method based on the changed storage battery charge / discharge current limit table, a model that takes into consideration the deterioration of the storage battery in addition to the temperature characteristics and SoC characteristics of the storage battery 3 should be adopted. There is an effect that can. Needless to say, the storage battery model is not updated every time, for example, once every 10 days, once a month, or when the SoC changes by 0.01.
  • the storage battery 3 and the water heater 5 that are energy storage devices are used. This is based on the following reason. Since the storage battery 3 can use the electrical energy as it is, the energy can be stored in a form that is very easy to use, but the cost per kWh is very high. For example, the price of a stationary storage battery equipped with a 5.53 kWh storage battery is an extremely high price of about 2.5 million yen. On the other hand, the actual price of the water heater 5 is around 700,000 yen, and can store heat of about 7.5 kWh. Therefore, the unit price per kWh is very low, about 1/4 to 1/5.
  • the heat storage device hot water heater 5
  • the device cost when storing 1 kWh of energy compared to the power storage device (storage battery 3) can be reduced, and the capacity of the expensive storage battery 3 can be reduced. There is an effect that can be done. As a result, it goes without saying that the cost for introducing the entire system can be reduced.
  • the power measurement unit 116, the time management unit 117, the operation planning unit 118 (118a), the device management unit 119, and the load device control in the power management apparatus 100 are provided for easy understanding.
  • H / W hardware
  • the present invention is not limited to this. It goes without saying that the same effect can be obtained even if all or some of the circuits are realized by S / W (software) operating on the CPU 110. Needless to say, the function of each circuit may be divided into S / W and H / W to realize the same function.
  • functions that require a relatively large database (memory) such as the load power consumption learning management unit 200 and the PV generated power learning management unit 201 are implemented in the power management apparatus 100.
  • the system may be constructed by implementing the same function in the cloud server 31 and dividing the function, and it goes without saying that the same effect can be obtained.
  • the charge / discharge history data and the like necessary for estimating the degree of deterioration of the storage battery 3 are enormous, so that they are managed not in the power management apparatus 100 but in the cloud server 31. It goes without saying that the same effect can be obtained even if configured.
  • the function in the PV generated power prediction unit 203 that estimates the amount of solar radiation from the weather forecast is not necessarily provided in the power management apparatus 100 considering that the weather forecast is issued in units of regions.
  • the solar radiation amount for each region may be estimated based on the weather forecast, and the estimation result may be sent to the power management apparatus 100.
  • the embodiments can be freely combined, or the embodiments can be appropriately modified or omitted.

Abstract

A power management device (100) is provided with an operation plan creation unit (206) that determines the charging/discharging power planned for a storage battery (3), on the basis of power storage apparatus information, PV generated-power prediction information, load consumption power prediction information and temperature prediction information. The operation plan creation unit (206) determines, on the basis of at least the temperature prediction information, the maximum charging power amount of the storage battery (3) or the charging endpoint, which is the charging end voltage, and creates a charging operation plan such that the storage battery (3) will be charged at the charging endpoint or below and charging/discharging of the storage battery (3) will stop during times when the temperature prediction information exceeds a set upper limit.

Description

電力管理装置Power management equipment
 この発明は、創エネ機器、蓄電機器、電気負荷を有するシステムの電力需給を管理する電力管理装置に関し、特に蓄電機器の電力管理に関するものである。 The present invention relates to a power management apparatus that manages power supply and demand of a system having an energy generating device, a power storage device, and an electrical load, and particularly relates to power management of the power storage device.
 近年、環境負荷の低減に向け、二酸化炭素を排出しない太陽光発電などの自然エネルギを利用した発電システムが各家庭に普及しつつある。また電力不足等に対応するため、蓄電池を具備したシステム、電気自動車のバッテリを利用するシステム、太陽光発電と蓄電池を組み合わせたシステムなどの製品化が進められている。一方、このような、創エネ機器、蓄電機器は導入費用が高い。そこで、導入した創エネ機器、蓄電機器と電気負荷を効率よく運用し電力料金をより安くする電力管理装置、およびこれらのシステムであるホームエネルギマネジメントシステム(以下、HEMSと称す)の開発が進められている。
 電力管理装置で創エネ機器、蓄電機器、電気負荷を効率よく運用し電力料金をより安くする場合、蓄電機器は1日を通して充放電を行うための運転計画が作成される。また一般に、蓄電機器を構成する蓄電池は、非常に高価であるため必要となる最小限の容量のものが設置され、深夜電力時間帯の安い電力、あるいは創エネ機器の余剰電力を充電し、電力料金の高い深夜電力時間帯以外で放電を行う。また蓄電池は、その使用方法、さらに温度により劣化進度が大きく異なる。
In recent years, power generation systems using natural energy, such as solar power generation that does not emit carbon dioxide, are becoming popular in households in order to reduce environmental impact. In addition, in order to cope with power shortage, etc., commercialization of a system equipped with a storage battery, a system using a battery of an electric vehicle, a system combining solar power generation and a storage battery, and the like has been promoted. On the other hand, such energy creation devices and power storage devices are expensive to introduce. Therefore, the development of the introduced energy creation device, the power management device that efficiently operates the electrical load and the electrical load, and lowers the electricity bill, and the home energy management system (hereinafter referred to as HEMS), which are these systems, are being developed. ing.
When the power management device efficiently operates the energy creation device, the power storage device, and the electrical load to reduce the power charge, an operation plan for charging and discharging the power storage device throughout the day is created. In general, the storage batteries that make up power storage devices are very expensive and have the minimum capacity required, and charge the power at low power during the midnight power hours, or the surplus power from the power generation devices. Discharges outside high-cost late-night power hours. In addition, the progress of deterioration of storage batteries varies greatly depending on the usage method and temperature.
 従来の蓄電池制御について以下の手法が開示されている。蓄電池を充電する際、定電流で蓄電池の充電を行う第1の充電モードと、定電圧で蓄電池の充電を行う第2の充電モードとを有する。そして、蓄電池に充電を行う場合、第1の充電モードと第2の充電モードとの切り替えを行う際の蓄電池電圧を蓄電池温度の関数にすると共に、第1の充電モードで定電流充電を行う際の充電電電流値についても蓄電池温度により決定する(例えば、特許文献1)。 The following methods are disclosed for conventional storage battery control. When charging a storage battery, it has the 1st charge mode which charges a storage battery with a constant current, and the 2nd charge mode which charges a storage battery with a constant voltage. And when charging a storage battery, while making the storage battery voltage at the time of switching between the 1st charge mode and the 2nd charge mode into a function of storage battery temperature, when performing constant current charge in the 1st charge mode The charging current value is also determined by the storage battery temperature (for example, Patent Document 1).
 また、蓄電池を含む電子部品の長寿命化の為、従来の蓄電池の制御方式には以下に示すものがある。温度予測結果と機器内部に保持する信頼性基準に応じて、蓄電池充電の際の最大許容可能電力Pmaxを決定する。Pmax決定に際しては、電力、および温度に対する信頼性を表すデータに基づき決定する。また、発電機の発電量予測結果から、蓄電池に充電可能な最大エネルギEmaxを算出する。一方、蓄電池をフル充電するのに必要な電力量Eを決定し、上記算出したEmax、E、およびPmaxから蓄電池に充電する電力PLを決定する。PL決定に際しては、発電機の発電可能期間にわたって充電電力を分散させ、電力ピークを回避する(例えば、特許文献2)。 Also, in order to extend the life of electronic parts including storage batteries, there are the following storage battery control methods. The maximum allowable power Pmax at the time of charging the storage battery is determined according to the temperature prediction result and the reliability standard held inside the device. In determining Pmax, it is determined based on data representing reliability with respect to power and temperature. Further, the maximum energy Emax that can be charged in the storage battery is calculated from the power generation amount prediction result of the generator. On the other hand, the amount of electric power E necessary to fully charge the storage battery is determined, and the electric power PL charged to the storage battery is determined from the above calculated Emax, E, and Pmax. When PL is determined, charging power is distributed over a power generation possible period of the generator to avoid a power peak (for example, Patent Document 2).
特開2008-283853号公報JP 2008-283553 A 特許第5184202号Patent No. 5184202
 蓄電池は、充放電を実施していなくても劣化が進行し、特に、満充電を保持している場合は、80%以下の蓄電電力量を保持している場合と比較して劣化の進み方が大きい。更に、蓄電池温度が高い場合はさらに劣化の進み方は大きくなる。また、夏期の外気温が高い昼間時間帯では蓄電池を充放電できないことが多く、夕方から夜間にかけて気温が下がってきた場合も、充放電は可能であるが、蓄電池劣化を抑制するため最大充放電電流に制限がかかる。
 上記特許文献1では、モードを切り替えて蓄電池を充電することを記載しているが、充電の完了については、蓄電池を満充電まで充電することになる。このため、夏期の外気温が高い昼間時間帯において蓄電池を満充電で保持することになり蓄電池の劣化を進めてしまう。さらに、充電された電力量を使い切らずに一日が終了して再充電することになり、必要電力量以上に充電して蓄電池劣化を進めるといった問題点があった。
Deterioration of storage batteries progresses even when charging / discharging is not carried out. In particular, when the battery is fully charged, the deterioration progresses as compared with the case where the stored electric energy is 80% or less. Is big. Furthermore, when the storage battery temperature is high, the progress of deterioration further increases. In addition, the battery can often not be charged / discharged during the daytime when the outside air temperature is high in summer, and charging / discharging is possible even when the temperature drops from evening to night. The current is limited.
In the above-mentioned patent document 1, it is described that the storage battery is charged by switching the mode. However, regarding the completion of charging, the storage battery is charged up to full charge. For this reason, the storage battery is held at full charge in the daytime period when the outside air temperature is high in summer, and the deterioration of the storage battery is promoted. In addition, the charged energy amount is not used up and the day ends and recharging is performed, and there is a problem in that the battery is charged more than the necessary power amount to promote deterioration of the storage battery.
 また、上記特許文献2では、上述した最大許容可能電力Pmax、蓄電池に充電可能な最大エネルギEmax、フル充電に必要な電力量Eから、充電電力PLを決定して充電するものである。しかしながら、夏期の夕方から夜間にかけての放電において、蓄電池劣化を抑制するため最大充放電電流に制限がかかると、充電された電力量を使い切らずに一日が終了して再充電することになる。このため、上記特許文献1と同様に、必要電力量以上に充電して蓄電池劣化を進める。また、外気温が高い昼間時間帯において不要に高い充電電力量を蓄電池に保持することになり蓄電池の劣化を進めるものであった。 Further, in Patent Document 2, charging power PL is determined and charged from the above-described maximum allowable power Pmax, maximum energy Emax that can be charged in the storage battery, and power amount E required for full charging. However, in the discharge from summer evening to night, if the maximum charge / discharge current is limited in order to suppress the deterioration of the storage battery, the day ends without being used up and the battery is recharged. For this reason, similarly to the above-mentioned Patent Document 1, the battery is deteriorated by charging more than the required power amount. In addition, the storage battery is unnecessarily high during the daytime when the outside air temperature is high, and the storage battery is deteriorated.
 この発明は、上記のような問題点を解消するために成されたものであって、蓄電機器の運転計画を適切に作成することにより、不要に高い電力量を充電して保持することを防止して蓄電機器の劣化を抑制できる、電力管理装置を提供することを目的とする。 The present invention was made to solve the above-described problems, and by appropriately creating an operation plan for a power storage device, it is possible to prevent charging and holding an unnecessarily high amount of power. It is an object of the present invention to provide a power management apparatus that can suppress deterioration of the power storage device.
 この発明に係る電力管理装置は、蓄電機器と創エネ機器と電気負荷とを有するシステムの電力需給を管理し、上記蓄電機器の情報を取得する蓄電機器情報取得部と、上記創エネ機器にて発電される電力を予測する発電電力予測部と、上記電気負荷の消費電力を予測する負荷電力予測部と、上記蓄電機器情報取得部にて取得した蓄電機器情報、上記発電電力予測部にて予測した発電電力予測情報、上記負荷電力予測部にて予測した負荷電力予測情報、および気温予測情報に基づいて、上記蓄電機器の運転計画を作成する運転計画作成部とを備える。そして、上記運転計画作成部は、少なくとも上記気温予測情報に基づいて上記蓄電機器の最大充電電力量あるいは充電終止電圧である充電終止点を決定し、上記充電終止点以下で上記蓄電機器が充電されると共に、上記気温予測情報が設定上限値を超える時間帯に上記蓄電機器の充放電を停止するように上記運転計画を作成するものである。 The power management apparatus according to the present invention includes a power storage device information acquisition unit that manages power supply and demand of a system including a power storage device, an energy generation device, and an electric load, and acquires information on the power storage device, and the energy generation device Generated power prediction unit that predicts the power to be generated, load power prediction unit that predicts the power consumption of the electric load, storage device information acquired by the storage device information acquisition unit, prediction by the generation power prediction unit And an operation plan creation unit that creates an operation plan for the power storage device based on the generated power prediction information, the load power prediction information predicted by the load power prediction unit, and the temperature prediction information. And the said operation plan preparation part determines the charge termination point which is the maximum charge electric energy or the charge termination voltage of the said electrical storage apparatus based on the said temperature prediction information at least, and the said electrical storage apparatus is charged below the said charge termination point. In addition, the operation plan is created so that charging / discharging of the power storage device is stopped in a time zone in which the temperature prediction information exceeds a set upper limit value.
 この発明の電力管理装置によれば、上記運転計画作成部は、上記充電終止点以下で上記蓄電機器が充電されると共に、上記気温予測情報が設定上限値を超える時間帯に上記蓄電機器の充放電を停止するように上記運転計画を作成するため、不要に高い電力量を充電して保持することを防止でき、蓄電池の劣化を抑制することができる。 According to the power management apparatus of the present invention, the operation plan creation unit charges the power storage device in a time zone in which the power storage device is charged below the charging end point and the temperature prediction information exceeds a set upper limit value. Since the said operation plan is created so that discharge may be stopped, charging and holding | maintaining an unnecessary high electric energy can be prevented, and deterioration of a storage battery can be suppressed.
この発明の実施の形態1による電力管理装置を含む電力管理システム全体の構成を概略的に示す図である。BRIEF DESCRIPTION OF THE DRAWINGS It is a figure which shows schematically the structure of the whole power management system containing the power management apparatus by Embodiment 1 of this invention. この発明の実施の形態1による電力管理装置の構成を概略的に示す図である。It is a figure which shows schematically the structure of the power management apparatus by Embodiment 1 of this invention. この発明の実施の形態1による電力管理装置の運転計画部の構成を概略的に示すブロック図である。It is a block diagram which shows roughly the structure of the driving | operation plan part of the power management apparatus by Embodiment 1 of this invention. この発明の実施の形態1による運転計画を決定する説明図である。It is explanatory drawing which determines the driving | running plan by Embodiment 1 of this invention. この発明の実施の形態1による蓄電池の内部構成を含む蓄電機器の構成を示す図である。It is a figure which shows the structure of the electrical storage apparatus containing the internal structure of the storage battery by Embodiment 1 of this invention. この発明の実施の形態1による蓄電池の特性を説明する図である。It is a figure explaining the characteristic of the storage battery by Embodiment 1 of this invention. この発明の実施の形態1による蓄電池の充放電回数と蓄電池容量との関係を示す図である。It is a figure which shows the relationship between the frequency | count of charging / discharging of the storage battery by Embodiment 1 of this invention, and storage battery capacity. この発明の実施の形態1による蓄電池の温度に対する最大充放電電流を示す図である。It is a figure which shows the largest charging / discharging electric current with respect to the temperature of the storage battery by Embodiment 1 of this invention. この発明の実施の形態1による蓄電池の温度に係る劣化特性を説明する図である。It is a figure explaining the deterioration characteristic which concerns on the temperature of the storage battery by Embodiment 1 of this invention. この発明の実施の形態1による蓄電機器の充放電電力と損失電力との関係を示す図である。It is a figure which shows the relationship between the charging / discharging electric power and loss electric power of the electrical storage apparatus by Embodiment 1 of this invention. この発明の実施の形態1による蓄電機器の待機電力について説明する図である。It is a figure explaining the standby electric power of the electrical storage apparatus by Embodiment 1 of this invention. この発明の実施の形態1によるヒートポンプ式給湯機の特性を説明する図である。It is a figure explaining the characteristic of the heat pump type water heater by Embodiment 1 of this invention. この発明の比較例による蓄電池制御における蓄電池セル温度および買電電力の一日の変化を説明する図である。It is a figure explaining the change of the storage battery cell temperature in the storage battery control by the comparative example of this invention, and the purchased electric power for one day. この発明の比較例による蓄電池制御における充放電電流および蓄電電力量の一日の変化を説明する図である。It is a figure explaining the daily change of the charging / discharging electric current in the storage battery control by the comparative example of this invention, and electrical storage electric energy. この発明の実施の形態1による電力管理装置における運転計画作成動作の全体フロー図である。It is a whole flowchart of the operation plan preparation operation | movement in the electric power management apparatus by Embodiment 1 of this invention. 図15の部分詳細フロー図である。FIG. 16 is a partial detailed flowchart of FIG. 15. この発明の実施の形態1における電力料金体系を示す図である。It is a figure which shows the electric power charge system in Embodiment 1 of this invention. この発明の実施の形態1によるPV発電電力学習管理部内のデータベースに格納された各天気、時刻の日射量の予測データの例を示す図である。It is a figure which shows the example of the forecast data of the solar radiation amount of each weather and time stored in the database in the PV generation power learning management part by Embodiment 1 of this invention. この発明の実施の形態1による電力管理装置における、実測結果に基づく日射量補正動作を説明する図である。It is a figure explaining the solar radiation amount correction | amendment operation | movement based on the measurement result in the power management apparatus by Embodiment 1 of this invention. この発明の実施の形態1による電力管理装置における、実測結果に基づく気温補正動作を説明する図である。It is a figure explaining the temperature correction operation | movement based on the measurement result in the power management apparatus by Embodiment 1 of this invention. この発明の実施の形態1による電力管理装置における、実測結果に基づく負荷消費電力補正動作を説明する図である。It is a figure explaining the load power consumption correction | amendment operation | movement based on the measurement result in the power management apparatus by Embodiment 1 of this invention. 図16の部分詳細フロー図で、蓄電池および給湯機の運転計画作成フローを示す図である。It is a partial detailed flowchart of FIG. 16, and is a figure which shows the operation plan creation flow of a storage battery and a water heater. 図22の部分詳細フロー図で、気温に基づく蓄電池運転制約条件の生成フローを示す図である。It is a partial detailed flowchart of FIG. 22, and is a figure which shows the production | generation flow of the storage battery driving | running restrictions based on temperature. 図22の部分詳細フロー図で、給湯機の運転パターンの作成フローを示す図である。It is a partial detailed flowchart of FIG. 22, and is a figure which shows the creation flow of the operation pattern of a water heater. 図22の部分詳細フロー図で、蓄電池運転計画の作成フローを示す図である。It is a partial detailed flowchart of FIG. 22, and is a figure which shows the creation flow of a storage battery operation plan. 図22の部分詳細フロー図で、蓄電池運転計画の作成フローを示す図である。It is a partial detailed flowchart of FIG. 22, and is a figure which shows the creation flow of a storage battery operation plan. この発明の実施の形態1における家族スケジュールに基づく給湯機の使用湯量を示す図である。It is a figure which shows the amount of hot water used of the water heater based on the family schedule in Embodiment 1 of this invention. この発明の実施の形態1による蓄電池制御における蓄電池セル温度および蓄電電力量の一日の変化を説明する図である。It is a figure explaining the daily change of the storage battery cell temperature in the storage battery control by Embodiment 1 of this invention, and the amount of stored electric energy. この発明の実施の形態2による電力管理装置における蓄電池運転計画の作成フローを示す図である。It is a figure which shows the creation flow of the storage battery operation plan in the electric power management apparatus by Embodiment 2 of this invention. この発明の実施の形態2による電力管理装置における蓄電池運転計画の作成フローを示す図である。It is a figure which shows the creation flow of the storage battery operation plan in the electric power management apparatus by Embodiment 2 of this invention. この発明の実施の形態2の比較例による蓄電池セル温度および充放電電力の一日の変化を説明する図である。It is a figure explaining the change of the storage battery cell temperature by the comparative example of Embodiment 2 of this invention, and the charging / discharging electric power for one day. この発明の実施の形態2による蓄電池セル温度および充放電電力の一日の変化を説明する図である。It is a figure explaining the change of the storage battery cell temperature and charging / discharging electric power by Embodiment 2 of this invention for one day. この発明の実施の形態3による電力管理装置の構成を概略的に示す図である。It is a figure which shows schematically the structure of the power management apparatus by Embodiment 3 of this invention. この発明の実施の形態3による電力管理装置の運転計画部の構成を概略的に示すブロック図である。It is a block diagram which shows roughly the structure of the driving | operation plan part of the power management apparatus by Embodiment 3 of this invention. この発明の実施の形態3による電力管理装置における運転計画作成動作の全体フロー図である。It is a whole flowchart of the operation plan preparation operation | movement in the power management apparatus by Embodiment 3 of this invention. この発明の実施の形態3による電力管理装置における運転計画作成動作の全体フロー図である。It is a whole flowchart of the operation plan preparation operation | movement in the power management apparatus by Embodiment 3 of this invention. 図35の部分詳細フロー図で、蓄電池充電電力量推定のフローを示す図である。It is a partial detailed flowchart of FIG. 35, and is a figure which shows the flow of storage battery charge electric energy estimation. 図35の部分詳細フロー図で、蓄電池運転状況確認のフローを示す図である。It is a partial detailed flowchart of FIG. 35, and is a figure which shows the flow of a storage battery driving | running state confirmation. この発明の実施の形態3の比較例による蓄電池パワコンの充電動作を説明する図である。It is a figure explaining the charge operation of the storage battery power conditioner by the comparative example of Embodiment 3 of this invention. この発明の実施の形態3による蓄電池パワコンの充電動作を説明する図である。It is a figure explaining the charge operation of the storage battery power conditioner by Embodiment 3 of this invention. この発明の実施の形態3の比較例による蓄電池パワコンの放電動作を説明する図である。It is a figure explaining the discharge operation of the storage battery power conditioner by the comparative example of Embodiment 3 of this invention. この発明の実施の形態3による蓄電池パワコンの放電動作を説明する図である。It is a figure explaining the discharge operation of the storage battery power conditioner by Embodiment 3 of this invention.
実施の形態1.
 以下、この発明の実施の形態1による電力管理装置を図に基づいて説明する。図1は、この発明の実施の形態1による電力管理装置100を含む電力管理システム全体の構成を概略的に示す図である。電力管理システム(以下、システムと称す)は、創エネ機器A、蓄電機器B、蓄熱機器C、宅内の電気負荷である負荷機器20、系統電源10に接続される商用系統11および電力管理装置100を備えて、電力管理装置100により電力需給が管理される家庭内のシステム(HEMS)である。
Embodiment 1 FIG.
A power management apparatus according to Embodiment 1 of the present invention will be described below with reference to the drawings. FIG. 1 is a diagram schematically showing an overall configuration of a power management system including a power management apparatus 100 according to Embodiment 1 of the present invention. A power management system (hereinafter referred to as a system) includes an energy creation device A, a power storage device B, a heat storage device C, a load device 20 that is an electrical load in a house, a commercial system 11 connected to the system power supply 10, and a power management device 100. And a system (HEMS) in the home in which power supply and demand is managed by the power management apparatus 100.
 図に示すように、創エネ機器Aは、太陽光パネル1(PV)と、太陽光パネル1から出力される直流電力を交流電力に変換する太陽光パワコン2とを有する。この実施の形態1では創エネ機器Aの一例として太陽光パネル1および太陽光パワコン2で構成された太陽光発電装置を用いた場合について説明する。なお、創エネ機器Aは太陽光発電装置に限るものではなく、例えば、風力発電装置などでも良いことは言うまでもない。
 蓄電機器Bは、蓄電池3と、蓄電池3の充放電を管理する蓄電池パワコン4とを有する。この実施の形態1では、蓄電機器Bの一例としてリチュウムイオンバッテリを使用した蓄電池3、および蓄電池パワコン4で構成された蓄電装置を用いた場合について説明する。なお、蓄電機器Bは、リチュウムイオンバッテリを使用した蓄電池3に限るものではなく、例えば電気自動車のバッテリを蓄電池として利用する場合、あるいは鉛蓄電池を用いる場合でも良いことは言うまでもない。
As shown in the figure, the energy creation device A includes a solar panel 1 (PV) and a solar power converter 2 that converts DC power output from the solar panel 1 into AC power. In this Embodiment 1, the case where the solar power generation device comprised by the solar panel 1 and the solar power conditioner 2 is used as an example of the energy creation apparatus A is demonstrated. Needless to say, the energy generating device A is not limited to a solar power generation device, and may be, for example, a wind power generation device.
The power storage device B includes a storage battery 3 and a storage battery power conditioner 4 that manages charging and discharging of the storage battery 3. In this Embodiment 1, the case where the electrical storage apparatus comprised by the storage battery 3 and the storage battery power conditioner 4 which use a lithium ion battery as an example of the electrical storage apparatus B is demonstrated. The power storage device B is not limited to the storage battery 3 using a lithium ion battery, and it goes without saying that, for example, a battery of an electric vehicle may be used as a storage battery, or a lead storage battery may be used.
 蓄熱機器Cは、エコキュート(登録商標)等のヒートポンプ式給湯機5(以下、給湯機と称す)である。なお、蓄熱機器Cは給湯機5に限らず、例えば、創エネ機器Aの発電時に発生する熱を利用してお湯を沸かす燃料電池等でも良いことは言うまでもない。また、燃料電池は創エネ機器Aとして利用しても良い。
 系統電源10は200Vの交流電力を商用系統11に供給し、創エネ機器A、蓄電機器B、蓄熱機器Cおよび負荷機器20は商用系統11に接続される。また、創エネ機器A、蓄電機器B、蓄熱機器Cおよび負荷機器20よりも系統電源10側に、分電盤14とスマートメータ15が設けられる。分電盤14は、創エネ機器Aの発電電力、蓄電機器Bの充放電電力、蓄熱機器Cおよび負荷機器20の消費電力を計測する電力計測回路14aを内蔵する。
The heat storage device C is a heat pump water heater 5 (hereinafter referred to as a water heater) such as Ecocute (registered trademark). Needless to say, the heat storage device C is not limited to the water heater 5 and may be, for example, a fuel cell that boils hot water using heat generated when the power generation device A generates power. Further, the fuel cell may be used as the energy generating device A.
The system power supply 10 supplies 200V AC power to the commercial system 11, and the energy creation device A, the power storage device B, the heat storage device C, and the load device 20 are connected to the commercial system 11. Further, a distribution board 14 and a smart meter 15 are provided closer to the system power supply 10 than the energy generating device A, the power storage device B, the heat storage device C, and the load device 20. The distribution board 14 incorporates a power measurement circuit 14 a that measures the generated power of the energy creation device A, the charge / discharge power of the power storage device B, the power storage device C, and the power consumption of the load device 20.
 また、宅内の負荷機器20の代表的な機器の例として、エアコン21、冷蔵庫22、照明23、IHクッキングヒータ24を示す。なお、宅内の負荷機器20は、これに限るものではなく、例えばTVやパソコン、掃除機、食器洗い洗浄機、換気扇、ヒータ等の機器でも良いことは言うまでもない。また、各種の負荷機器20は1台に限るものではなく、複数台(例えばエアコン21が3台等)有しても良いことは言うまでもない。同様に、創エネ機器A、蓄電機器B、蓄熱機器Cも1台に限るものではなく、例えば、蓄電機器Bは蓄電池3と電気自動車のバッテリの2台、あるいは、創エネ機器Aは太陽光パネル1、風力、燃料電池の組み合わせ、あるいは蓄熱機器Cとしては、給湯機5と燃料電池の余熱を利用するシステムでも良いことは言うまでもない。 Moreover, as an example of typical equipment of the load equipment 20 in the house, an air conditioner 21, a refrigerator 22, an illumination 23, and an IH cooking heater 24 are shown. Needless to say, the home load device 20 is not limited to this, and may be a device such as a TV, a personal computer, a vacuum cleaner, a dishwasher, a ventilation fan, or a heater. Moreover, it is needless to say that the various load devices 20 are not limited to one, and may include a plurality of units (for example, three air conditioners 21). Similarly, the energy creation device A, the power storage device B, and the heat storage device C are not limited to one unit. For example, the power storage device B is a storage battery 3 and two batteries of an electric vehicle, or the energy generation device A is solar power. It goes without saying that the panel 1, wind power, fuel cell combination, or heat storage device C may be a system that uses the remaining heat of the water heater 5 and the fuel cell.
 また、図に示すように、電力管理装置100と、創エネ機器A、蓄電機器B、蓄熱機器C、負荷機器20、分電盤14、スマートメータ15である各機器とは通信ネットワーク12で接続される。なお、この実施の形態1では、各機器を接続する通信ネットワーク12としてEthernet(登録商標)(有線)を用いる場合について説明するがこれに限るものではなく、例えば、Echonet Lite規格の物理層で決められている無線やPLC(電力線搬送通信)等を用いて接続しても良いことは言うまでもない。
 また、分電盤14内の電力計測回路14aで計測される創エネ機器Aの発電電力、蓄電機器Bの充放電電力、蓄熱機器Cおよび負荷機器20の消費電力の各電力計測結果は、信号線13を介して電力管理装置100に通知される。なお、分電盤14は、電力計測回路14aを内蔵しない構成でも良いことは言うまでもない。その際は、各種機器の電力計測結果は各機器内で計測し、計測結果は上記通信ネットワーク12を介して電力管理装置100に通知する等の構成をとれば良いことは言うまでもない。
 さらに、電力管理装置100は、公衆回線網30に接続され、公衆回線網30を介してクラウドサーバ31に接続される。
Further, as shown in the figure, the power management apparatus 100 is connected to each device that is an energy creation device A, a power storage device B, a heat storage device C, a load device 20, a distribution board 14, and a smart meter 15 via a communication network 12. Is done. In the first embodiment, the case where Ethernet (registered trademark) (wired) is used as the communication network 12 for connecting each device will be described. However, the present invention is not limited to this. For example, it is determined in the physical layer of the Echonet Lite standard. It goes without saying that the connection may be made by using wireless or PLC (power line carrier communication).
In addition, each power measurement result of the generated power of the energy creation device A, the charge / discharge power of the storage device B, the power consumption of the heat storage device C and the load device 20 measured by the power measurement circuit 14a in the distribution board 14 is a signal. The power management apparatus 100 is notified via the line 13. Needless to say, the distribution board 14 may be configured without the built-in power measurement circuit 14a. In that case, it is needless to say that power measurement results of various devices are measured in each device, and the measurement results are notified to the power management apparatus 100 via the communication network 12.
Further, the power management apparatus 100 is connected to the public line network 30 and is connected to the cloud server 31 via the public line network 30.
 図2に、電力管理装置100のシステム構成図を示す。
 図に示すように、電力管理装置100は、CPU110、ROM111、RAM112、Echonet Lite通信I/F(interface)部113、Ethenet通信I/F部114、表示部115、電力計測部116、時刻管理部117、運転計画部118、機器管理部119、負荷機器制御部120、家族スケジュール管理部121、DR(デマンドレスポンス)対応部122、およびCPUバス130で構成される。
 ROM111はプログラムを記憶する。RAM112は、プログラムを実行する際にデータを一次記憶したり、プログラムを実行する際の作業領域として使用する。
FIG. 2 shows a system configuration diagram of the power management apparatus 100.
As shown in the figure, the power management device 100 includes a CPU 110, a ROM 111, a RAM 112, an Echonet Lite communication I / F (interface) unit 113, an Ethernet communication I / F unit 114, a display unit 115, a power measurement unit 116, and a time management unit. 117, operation planning unit 118, device management unit 119, load device control unit 120, family schedule management unit 121, DR (demand response) response unit 122, and CPU bus 130.
The ROM 111 stores a program. The RAM 112 temporarily stores data when executing a program, and is used as a work area when executing the program.
 Echonet Lite通信I/F113は、太陽光パワコン2、蓄電池パワコン4、給湯機5、分電盤14、スマートメータ15、エアコン21、冷蔵庫22、照明23、IHクッキングヒータ24と電力管理装置100との間を接続するEchonet Lite通信(物理層はEthernet(登録商標))のI/Fである。なお、この実施の形態1では、通信プロトコルの1例としてEchonet Liteを使用する場合について説明するがこれに限るものではなく、例えば、独自に決めた通信プロトコル、あるいは他の規格を使用したプロトコルでも良いことは言うまでもない。
 Ethernet(登録商標)通信I/F114は、電力管理装置100を公衆回線網30に接続するEthernet(登録商標)通信のI/Fである。この実施の形態1では、物理層としてEthernet(登録商標)を使用する場合について説明するが、無線LANや光通信I/Fを用いても良いことは言うまでもない。また、電力管理装置100が公衆回線網30に直接接続する場合について説明するが、ホームゲートウェイなどを介して公衆回線網30に接続しても良く、同様の効果を奏することは言うまでもない。
Echonet Lite communication I / F 113 includes solar power conditioner 2, storage battery power conditioner 4, hot water heater 5, distribution board 14, smart meter 15, air conditioner 21, refrigerator 22, lighting 23, IH cooking heater 24 and power management apparatus 100. Is an I / F of Echonet Lite communication (the physical layer is Ethernet (registered trademark)). In the first embodiment, the case where Echonet Lite is used as an example of a communication protocol is described. However, the present invention is not limited to this. For example, a communication protocol that is uniquely determined or a protocol that uses another standard is also used. It goes without saying that it is good.
The Ethernet (registered trademark) communication I / F 114 is an Ethernet (registered trademark) communication I / F that connects the power management apparatus 100 to the public line network 30. In the first embodiment, a case where Ethernet (registered trademark) is used as a physical layer will be described. Needless to say, a wireless LAN or an optical communication I / F may be used. Although the case where the power management apparatus 100 is directly connected to the public line network 30 will be described, it is needless to say that the power management apparatus 100 may be connected to the public line network 30 via a home gateway or the like and has the same effect.
 また、電力計測部116は、分電盤14内の電力計測回路14aから出力される電力計測結果を記憶し、時刻管理部117は、時刻(年月日を含む)を管理する。運転計画部118は、蓄電機器Bおよび蓄熱機器Cの運転計画を作成する。
 機器管理部119は、創エネ機器A、蓄電機器B、蓄熱機器Cおよび各負荷機器20の動作状況などを管理する機器管理部である。なお、機器管理部119では、新規に機器が投入された際の機器認証も実施するものとする。
 また、負荷機器制御部120は負荷機器20の動作を制御し、家族スケジュール管理部121は家族のスケジュールを管理する。DR対応部122は、デマンドレスポンスを受信した際に、使用電力の削減量や電力使用量を削減する機器の優先順位などを決定する。
 また、Echonet Lite通信I/F113は、蓄電機器Bと電力管理装置100との間で情報授受を行い、蓄電機器情報の取得、および蓄電池3の充放電停止中の運転モードを蓄電機器Bに通知する際にも用いられる。
The power measurement unit 116 stores the power measurement result output from the power measurement circuit 14a in the distribution board 14, and the time management unit 117 manages time (including date). The operation planning unit 118 creates an operation plan for the power storage device B and the heat storage device C.
The device management unit 119 is a device management unit that manages the operation status of the energy creation device A, the power storage device B, the heat storage device C, and each load device 20. Note that the device management unit 119 also performs device authentication when a new device is introduced.
The load device control unit 120 controls the operation of the load device 20, and the family schedule management unit 121 manages the family schedule. When the DR response unit 122 receives a demand response, the DR response unit 122 determines the power consumption reduction amount, the priority order of devices that reduce the power usage amount, and the like.
Further, the Echonet Lite communication I / F 113 exchanges information between the power storage device B and the power management apparatus 100, and notifies the power storage device B of the operation mode when the storage battery 3 is acquired and charging / discharging of the storage battery 3 is stopped. It is also used when
 次に、図2を用いて電力管理装置100の全体の動作を説明する。
 電力管理装置100の起動が完了すると、CPU110は機器管理部119に対して、接続されている機器の認証を実施するよう指示を出す。この実施の形態1では、Echonet Lite規格を使用するものとし、各機器との接続認証などの詳細な説明は省略する。各機器との接続認証が完了すると、CPU110は機器管理部119に対して接続されている各機器の動作状況を確認するよう指示を出す。機器管理部119は、接続認証が完了した各機器に対して動作状況を通知するようEchonet Lite通信I/F部113に対して指示を出す。指示を受けたEchonet Lite通信I/F部113は、機器管理部119により指示された機器に対して動作状況を通知するようEchonet Lite規格で定義されたコマンドを通信ネットワーク12に送信する。Echonet Lite通信I/F部113より各機器に対して送付された上記コマンドを受信すると、各機器は、現在の動作状態をEchonet Lite規格で定義されたコマンドに基づきEchonet Lite通信I/F部113に通信ネットワーク12を介して送信する。各機器の動作状態を受信するとEchonet Lite通信I/F部113は、機器管理部119にその内容を通知する。認証された機器全ての動作状態の取得を終了すると機器管理部119はその旨をCPU110に通知する。
Next, the overall operation of the power management apparatus 100 will be described with reference to FIG.
When the activation of the power management apparatus 100 is completed, the CPU 110 instructs the device management unit 119 to perform authentication of the connected device. In the first embodiment, the Echonet Lite standard is used, and detailed description such as connection authentication with each device is omitted. When the connection authentication with each device is completed, the CPU 110 instructs the device management unit 119 to check the operation status of each connected device. The device management unit 119 instructs the Echonet Lite communication I / F unit 113 to notify the operation status to each device for which connection authentication has been completed. Upon receiving the instruction, the Echonet Lite communication I / F unit 113 transmits a command defined in the Echonet Lite standard to the communication network 12 so as to notify the device instructed by the device management unit 119 of the operation status. When the above command sent to each device from the Echonet Lite communication I / F unit 113 is received, each device uses the Echonet Lite communication I / F unit 113 based on the command defined in the Echonet Lite standard. Via the communication network 12. Upon receiving the operation state of each device, the echolite communication I / F unit 113 notifies the device management unit 119 of the contents. When the acquisition of the operation states of all the authenticated devices is completed, the device management unit 119 notifies the CPU 110 to that effect.
 CPU110は、各機器の動作状態を把握するとEthernet(登録商標)通信I/F部114に対して気温予測情報を含む天気予報情報をクラウドサーバ31から入手するよう指示を出す。CPU110から天気予報情報の取得指示を受けるとEthernet(登録商標)通信I/F部114はクラウドサーバ31に対して天気予報情報送信要求を送付する。該天気予報情報送信要求を受信するとクラウドサーバ31は気温予測情報を含む天気予報情報をEthernet(登録商標)通信I/F部114に送信する。天気予報情報を受信したEthernet(登録商標)通信I/F部114はCPU110に対してその旨を通知する。
 この実施の形態1では、天気予報情報として「晴れ」、「曇り」、「雨」または「雪」を使用するものとし、また、天気予報情報、および気温予測情報は、1時間毎の予報が24時間分、クラウドサーバ31から通知されるものとする。
When the CPU 110 grasps the operating state of each device, the CPU 110 instructs the Ethernet (registered trademark) communication I / F unit 114 to obtain weather forecast information including temperature forecast information from the cloud server 31. When receiving the weather forecast information acquisition instruction from the CPU 110, the Ethernet (registered trademark) communication I / F unit 114 sends a weather forecast information transmission request to the cloud server 31. Upon receiving the weather forecast information transmission request, the cloud server 31 transmits weather forecast information including temperature prediction information to the Ethernet (registered trademark) communication I / F unit 114. The Ethernet (registered trademark) communication I / F unit 114 that has received the weather forecast information notifies the CPU 110 of the fact.
In the first embodiment, “sunny”, “cloudy”, “rain” or “snow” is used as the weather forecast information, and the weather forecast information and the temperature forecast information are forecasted every hour. It is assumed that the cloud server 31 notifies for 24 hours.
 なお、天気予報情報は上記4種類に限るものではなく、上記4種類以外に、「晴れ時々曇り」、「曇りのち晴れ」、「晴れのち雨」など更に細かい分類であっても良いことは言うまでもない。また、気温予測情報として、1時間毎の気温予測情報を入手する場合について説明するが、3時間毎の気温予測情報でも良く、また、例えば最高気温および最低気温情報を入手しても良く、1日の気温予測情報が通知されるのであれば良い。最高気温および最低気温情報を用いる場合は、電力管理装置100内で、24時間分の気温を最高気温、および最低気温情報から予測する。また、天気予報情報、月日情報から電力管理装置100内で1日の気温を予測して気温予測情報を得る等の方式でも良いことは言うまでもない。
 気温予測情報を含む天気予報情報を入手すると、CPU110は運転計画部118に対して運転計画を作成するよう指示を出す。
The weather forecast information is not limited to the above four types, and it goes without saying that the weather forecast information may be classified into more detailed categories such as “cloudy when sunny”, “cloudy after cloudy”, “sunny and rainy”. Yes. Moreover, although the case where the temperature prediction information for every hour is acquired as temperature prediction information is demonstrated, the temperature prediction information for every 3 hours may be sufficient, for example, the maximum temperature and the minimum temperature information may be acquired, and 1 It suffices if day temperature prediction information is notified. When the maximum temperature and the minimum temperature information are used, the temperature for 24 hours is predicted from the maximum temperature and the minimum temperature information in the power management apparatus 100. Needless to say, a method may be used in which the temperature prediction information is obtained by predicting the temperature of the day in the power management apparatus 100 from the weather forecast information and the date information.
When the weather forecast information including the temperature prediction information is obtained, the CPU 110 instructs the operation planning unit 118 to create an operation plan.
 図3は、電力管理装置100内の運転計画部118の構成を示すブロック図である。
 図に示すように、運転計画部118は、負荷消費電力学習管理部200と、PV発電電力学習管理部201と、負荷電力予測部となる負荷消費電力予測部202と、発電電力予測部となるPV発電電力予測部203と、蓄電池モデル204と、給湯機モデル205と、蓄電池3および給湯機5の運転計画を作成する運転計画作成部206とを備える。
 負荷消費電力学習管理部200は、時刻管理部117より出力される日付、曜日、時刻データ、Ethenet通信I/F114を介して入手した現在の天気、図示していない温度計により計測した現在の実測気温情報(外気温)を元に、電力計測部116より出力される、給湯機5および負荷機器20の消費電力を学習する。なお、負荷消費電力学習管理部200では、実測気温情報を用いて気温予測情報に対して補正を加え、負荷消費電力予測部202、蓄電池モデル204、給湯機モデル205および運転計画作成部206に通知する。
FIG. 3 is a block diagram illustrating a configuration of the operation planning unit 118 in the power management apparatus 100.
As shown in the figure, the operation planning unit 118 becomes a load power consumption learning management unit 200, a PV power generation power learning management unit 201, a load power consumption prediction unit 202 serving as a load power prediction unit, and a generated power prediction unit. A PV generated power prediction unit 203, a storage battery model 204, a water heater model 205, and an operation plan creation unit 206 that creates an operation plan for the storage battery 3 and the water heater 5 are provided.
The load power consumption learning management unit 200 displays the date, day of the week, and time data output from the time management unit 117, the current weather obtained via the Ethernet communication I / F 114, and the current actual measurement measured by a thermometer (not shown). Based on the temperature information (outside temperature), the power consumption of the water heater 5 and the load device 20 output from the power measuring unit 116 is learned. Note that the load power consumption learning management unit 200 corrects the temperature prediction information using the actually measured temperature information, and notifies the load power consumption prediction unit 202, the storage battery model 204, the water heater model 205, and the operation plan creation unit 206. To do.
 PV発電電力学習管理部201は、時刻管理部117より出力される日付、時刻データ、およびEthenet通信I/F114を介して入手した現在の天気実績を元に、電力計測部116より出力される、太陽光パネル1にて発電されるPV発電電力量を各天気実績に基づいて学習する。
 負荷消費電力予測部202は、Ethenet通信I/F部114を介して入手した天気予報情報、気温情報、家族スケジュール管理部121より出力される家族スケジュール、および負荷消費電力学習管理部200内のデータベースを元に、負荷機器20の消費電力を予測する。この負荷消費電力予測部202は、給湯機5の消費電力を除く負荷機器20の消費電力の合計について予測するものとする。なお、負荷消費電力予測部202を、各負荷機器20の消費電力を個別に予測するように構成しても良いことは言うまでもない。
 PV発電電力予測部203は、天気予報結果、PV発電電力学習管理部201内のデータベース、および太陽光パネル1のPV発電電力量の実績を元に、以降のPV発電電力量を予測する。
The PV generated power learning management unit 201 is output from the power measurement unit 116 based on the date and time data output from the time management unit 117 and the current weather record obtained via the Ethernet communication I / F 114. The amount of PV power generated by the solar panel 1 is learned based on each weather record.
The load power consumption prediction unit 202 includes the weather forecast information obtained through the Ethernet communication I / F unit 114, the temperature information, the family schedule output from the family schedule management unit 121, and the database in the load power consumption learning management unit 200. Based on the above, the power consumption of the load device 20 is predicted. This load power consumption prediction unit 202 predicts the total power consumption of the load device 20 excluding the power consumption of the water heater 5. Needless to say, the load power consumption prediction unit 202 may be configured to predict the power consumption of each load device 20 individually.
The PV generated power prediction unit 203 predicts the subsequent PV generated power amount based on the weather forecast result, the database in the PV generated power learning management unit 201, and the PV generated power amount of the solar panel 1.
 蓄電池モデル204は、この場合、蓄電池特性学習部と蓄電池温度予測部とを兼ねて構成されるもので、入力される蓄電池3の特性情報、気温予測情報、および運転計画作成部206から出力される蓄電池3の運転計画に基づき、蓄電池3の温度情報である蓄電池セル温度(蓄電池3内部の各セルの表面温度)の予測温度を算出する。そして算出結果から、充放電電流、充電終止電圧、放電終止電圧など蓄電池劣化に大きく起因する各種制限情報を蓄電池3の特性情報から演算し、演算結果を元に、充放電電流、あるいは充放電電力の運転計画に基づく蓄電池3の動作を模擬する。 In this case, the storage battery model 204 is configured to serve as both a storage battery characteristic learning unit and a storage battery temperature prediction unit, and is output from the input characteristic information of the storage battery 3, the temperature prediction information, and the operation plan creation unit 206. Based on the operation plan of the storage battery 3, a predicted temperature of the storage battery cell temperature (surface temperature of each cell inside the storage battery 3) that is temperature information of the storage battery 3 is calculated. Based on the calculation result, various restriction information such as charge / discharge current, charge end voltage, discharge end voltage and the like, which are largely caused by storage battery deterioration, are calculated from the characteristic information of the storage battery 3, and the charge / discharge current or charge / discharge power is calculated based on the calculation result. The operation of the storage battery 3 based on the operation plan is simulated.
 給湯機モデル205は、入力される給湯機5の特性情報、気温予測情報、および運転計画作成部206から出力される使用湯量および給湯機5の運転計画に基づき、給湯機5の動作を模擬し、各時刻における消費電力量と蓄熱量を算出する。なお、この実施の形態1では、消費電力量の算出は、負荷消費電力学習管理部200内のデータベースを用いて行う。
 一般に、給湯機5は運転、停止を繰り返し使用すると機器寿命が短くなるため、起動停止は1日2~3回程度に制限して使用する。従って、この実施の形態1では、電力管理装置100からの給湯機5の起動停止回数を1日に最大2回とする。なお、ユーザからの追いだき要求がある場合は、給湯機5の起動に制限を設けない。この場合、給湯機5の運転計画は、深夜電力時間帯の給湯と昼間時間帯の給湯の2つの運転パターンを用意して作成するものとする。給湯機モデル205は、給湯機5の複数の運転パターンによる運転計画を管理する。給湯機5は、起動停止回数が1日に最大2回に限られているため、運転パターン数を絞ることができ演算量の削減が図れる。
The water heater model 205 simulates the operation of the water heater 5 based on the input characteristic information of the water heater 5, the temperature prediction information, and the amount of hot water used output from the operation plan creation unit 206 and the operation plan of the water heater 5. The power consumption and the heat storage amount at each time are calculated. In the first embodiment, the calculation of the power consumption is performed using a database in the load power consumption learning management unit 200.
In general, the hot water heater 5 has a short device life when it is repeatedly operated and stopped. Therefore, the start / stop is limited to about 2 to 3 times a day. Therefore, in the first embodiment, the number of times of starting and stopping the water heater 5 from the power management apparatus 100 is set to twice a day. When there is a follow-up request from the user, there is no restriction on the activation of the water heater 5. In this case, the operation plan of the water heater 5 is prepared by preparing two operation patterns of hot water supply in the late-night power hours and hot water supply in the daytime hours. The water heater model 205 manages an operation plan based on a plurality of operation patterns of the water heater 5. Since the hot water heater 5 is limited to a maximum of twice a day for starting and stopping, the number of operation patterns can be reduced and the amount of calculation can be reduced.
 運転計画作成部206は、負荷消費電力学習管理部200、PV発電電力学習管理部201、負荷消費電力予測部202、PV発電電力予測部203、蓄電池モデル204、給湯機モデル205を制御して、蓄電池3の運転計画と給湯機5の運転パターンとを決定する。また、運転計画作成部206は、Ethenet通信I/F114を介して電力料金体系を入手して管理し、入手した電力料金体系に基づいて電力料金が低くなるように、蓄電池3の運転計画と給湯機5の運転パターンとを決定する。運転計画作成部206の動作の詳細については後述する。
 なお、図3では、説明を簡単にするために、気温の予測結果等、本来、運転計画作成部206から各部に供給する情報についても、接続先が明瞭に分かるように外部から供給されているように図示した。
The operation plan creation unit 206 controls the load power consumption learning management unit 200, the PV power generation power learning management unit 201, the load power consumption prediction unit 202, the PV power generation power prediction unit 203, the storage battery model 204, and the water heater model 205, The operation plan of the storage battery 3 and the operation pattern of the water heater 5 are determined. Further, the operation plan creation unit 206 acquires and manages the power charge system via the Ethernet communication I / F 114, and the operation plan and hot water supply of the storage battery 3 so that the power charge is lowered based on the acquired power charge system. The operation pattern of the machine 5 is determined. Details of the operation of the operation plan creation unit 206 will be described later.
In FIG. 3, in order to simplify the description, the information that is originally supplied from the operation plan creation unit 206 to each unit, such as the prediction result of the temperature, is supplied from the outside so that the connection destination can be clearly understood. As illustrated.
 図4は、運転計画部118による運転計画作成を説明する図である。
 この実施の形態1では、PV発電電力予測および負荷消費電力予測の結果を元に、蓄エネ機器(蓄電機器B、蓄熱機器C)である蓄電池3および給湯機5の特性を加味して、蓄電池3および給湯機5の運転計画を作成する。運転計画を作成する際、図4に示すように、運転計画作成のエンジン部となる運転計画作成部206には、例えば30分間の平均PV発電電力予測結果(図4(a)参照)、および給湯機5の消費電力を除いた、負荷機器20の平均消費電力予測結果(図4(b)参照)が24時間分通知される。
FIG. 4 is a diagram for explaining operation plan creation by the operation plan unit 118.
In the first embodiment, based on the results of PV power generation prediction and load power consumption prediction, the storage battery 3 and the water heater 5 that are energy storage devices (power storage device B, heat storage device C) are added to the storage battery. 3 and the operation plan of the water heater 5 are created. When creating the operation plan, as shown in FIG. 4, the operation plan creation unit 206 serving as the engine unit for creating the operation plan includes, for example, a 30-minute average PV generated power prediction result (see FIG. 4A), and The average power consumption prediction result (see FIG. 4B) of the load device 20 excluding the power consumption of the water heater 5 is notified for 24 hours.
 一般的に蓄電池3や給湯機5は温度特性等の特性を有し、詳細は後述するが、この実施の形態では、その特性を評価関数としてモデル化を行う。そして、上記PV発電電力予測結果、負荷消費電力予測結果、電力料金体系を入力として蓄電池3の特性や給湯機5の特性をモデル化した該評価関数を用いて、最適化を行い運転計画を作成する。その際、給湯機5は基本的には気温によりCOP(エネルギ変換効率)、および最適動作点の消費電力が決まるため、運転計画作成部206では、給湯開始時刻と終了時刻(あるいは終了時の蓄エネ量)を決定するだけで良い(図4(d)参照)。一方、蓄電池3は、最適に運転するための充放電電力も併せて決定する必要がある。上述した評価関数を使用して蓄電池3の最適な運転を決定する場合、現時刻以降の30分毎の平均充放電電力が運転計画として出力される(図4(c)参照)。 Generally, the storage battery 3 and the water heater 5 have characteristics such as temperature characteristics, and the details will be described later. In this embodiment, modeling is performed using the characteristics as an evaluation function. Then, using the evaluation function modeling the characteristics of the storage battery 3 and the characteristics of the hot water heater 5 with the PV generation power prediction result, the load power consumption prediction result, and the power charge system as inputs, an operation plan is created by optimization. To do. At that time, since the water heater 5 basically determines the COP (energy conversion efficiency) and the power consumption at the optimum operating point depending on the temperature, the operation plan creating unit 206 stores the hot water supply start time and end time (or storage at the end time). It is only necessary to determine the amount of energy (see FIG. 4D). On the other hand, the storage battery 3 also needs to determine charge / discharge power for optimal operation. When the optimum operation of the storage battery 3 is determined using the evaluation function described above, the average charge / discharge power every 30 minutes after the current time is output as an operation plan (see FIG. 4C).
 図5は、蓄電池3の内部構成を含む蓄電機器Bの構成を示す図である。図5に示すように、蓄電機器Bは蓄電池3と蓄電池3の充放電を管理する蓄電池パワコン4とを備える。蓄電池3は、複数の蓄電池セル301を直列接続して有し、さらに各蓄電池セル301の状態を監視するBMU(バッテリマネージメントユニット)305を備える。BMU305は、各蓄電池セル301について蓄電池セル温度、蓄電池セル電圧を管理するCMU(セルマネジメントユニット)302と、蓄電池制御回路303と、リレースイッチ304とで構成される。
 この場合、CMU302は蓄電池セル301毎に接続されており、満充電時の電圧調整機能なども有するものとする。蓄電池制御回路303は、CMU302より出力される蓄電池セル301の管理情報を蓄電池パワコン4に出力すると共に、蓄電池3の劣化が進行する高温での充放電、あるいは蓄電池セル301に対して過放電や過充電が発生しそうな場合、リレースイッチ304を切り、蓄電池セル301を蓄電池パワコン4から強制的に切り離す。
FIG. 5 is a diagram illustrating the configuration of the power storage device B including the internal configuration of the storage battery 3. As shown in FIG. 5, the power storage device B includes a storage battery 3 and a storage battery power conditioner 4 that manages charge / discharge of the storage battery 3. The storage battery 3 includes a plurality of storage battery cells 301 connected in series, and further includes a BMU (battery management unit) 305 that monitors the state of each storage battery cell 301. The BMU 305 includes a CMU (cell management unit) 302 that manages storage battery cell temperature and storage battery cell voltage for each storage battery cell 301, a storage battery control circuit 303, and a relay switch 304.
In this case, the CMU 302 is connected to each storage battery cell 301 and has a voltage adjustment function at the time of full charge. The storage battery control circuit 303 outputs the management information of the storage battery cell 301 output from the CMU 302 to the storage battery power conditioner 4, and is charged / discharged at a high temperature at which the deterioration of the storage battery 3 proceeds, or the storage battery cell 301 is overdischarged or overcharged. When charging is likely to occur, the relay switch 304 is turned off, and the storage battery cell 301 is forcibly disconnected from the storage battery power conditioner 4.
 なお、この実施の形態1では、蓄電機器Bは1つの筐体で構成される。筐体内では、各蓄電池セル301およびBMU305内の各電子部品が消費する電力により温度が上昇し、高い位置(上側)で温度が高くなる。このため、複数の蓄電池セル301は、筐体内で配置される高さにより蓄電池セル温度が異なり、上側に配置されるほど蓄電池セル温度が高い。 In the first embodiment, the power storage device B is composed of one housing. In the housing, the temperature rises due to the electric power consumed by each storage battery cell 301 and each electronic component in the BMU 305, and the temperature rises at a high position (upper side). For this reason, the plurality of storage battery cells 301 have different storage battery cell temperatures depending on the height of the storage battery cells 301 disposed in the housing, and the storage battery cell temperatures are higher as they are disposed on the upper side.
 図6~図8は、蓄電池3、この場合、リチュウムイオンバッテリを使用する蓄電池3の特性を示す図である。
 図6(a)は、横軸に充電電力量の割合(以下、SoCと称す)、縦軸に充電電流を示す。図6(b)は、フル放電状態からフル充電状態まで充電する際のSoCの変化を示した。図6(b)において、横軸に充電時間、縦軸にSoCを示す。図6(c)は、横軸にSoC、縦軸に蓄電池3より出力される電圧を示す。
 一般に、蓄電池3は過充電(蓄電池電圧が所定値を超えて充電)、過放電(蓄電池電圧が所定値以下になるまで放電)を行うと蓄電池3の劣化が必要以上に進み、最悪壊れることがある。リチュウムイオンバッテリは、図6(c)に示すように満充電付近(SoCが1.0付近)になると、急激に蓄電池電圧が上昇する。また、満充電付近で充電電流の電流リップルが大きいと、蓄電池3の劣化が必要以上に進む場合がある。
 従って、蓄電池3に充電する際は、上記過充電の防止、および充電電流リップル量を低減するため、蓄電池電圧が所定の電圧になるまでは定電流で蓄電池3に充電し、所定の電圧になると蓄電池3へは定電圧で充電する方式がとられる。
6 to 8 are diagrams showing the characteristics of the storage battery 3, in this case, the storage battery 3 using a lithium ion battery.
In FIG. 6A, the horizontal axis represents the ratio of the charging power amount (hereinafter referred to as SoC), and the vertical axis represents the charging current. FIG. 6B shows a change in SoC when charging from a fully discharged state to a fully charged state. In FIG. 6B, the horizontal axis indicates the charging time, and the vertical axis indicates SoC. FIG. 6C shows the voltage output from the storage battery 3 on the horizontal axis and the SoC on the horizontal axis.
In general, when the storage battery 3 is overcharged (charged when the storage battery voltage exceeds a predetermined value) or overdischarged (discharged until the storage battery voltage falls below a predetermined value), the deterioration of the storage battery 3 proceeds more than necessary, and the battery 3 may be damaged at worst. is there. As shown in FIG. 6C, when the lithium ion battery is near full charge (SoC is around 1.0), the storage battery voltage rapidly increases. Further, when the current ripple of the charging current is large near the full charge, the storage battery 3 may deteriorate more than necessary.
Therefore, when charging the storage battery 3, in order to prevent the overcharge and reduce the amount of charge current ripple, the storage battery 3 is charged with a constant current until the storage battery voltage reaches a predetermined voltage. The storage battery 3 is charged at a constant voltage.
 図6(a)、図6(b)は、蓄電池3に充電する際、例えばSoCが0.8となる蓄電池電圧までは定電流で充電し、以降を定電圧で満充電になるまで充電した場合を示す。1時間で蓄電池3を満充電できる電流量を1Cと称し、図6(b)は、定電流制御で充電する期間における電流量を0.8Cとした場合の例を示す。図6(b)に示すように、定電流制御で充電する時間と定電圧制御で充電する時間はほぼ等しくなっている。なお、放電については、一般的には蓄電池電圧が放電終止電圧になるまでは、充電時とは異なり制御の切り替えは行わない。 6 (a) and 6 (b), when charging the storage battery 3, for example, charging is performed at a constant current up to a storage battery voltage at which the SoC is 0.8, and the subsequent charging is performed until the battery is fully charged at a constant voltage. Show the case. The amount of current that can fully charge the storage battery 3 in 1 hour is referred to as 1C, and FIG. 6B shows an example in which the amount of current during the period of charging by constant current control is 0.8C. As shown in FIG. 6B, the time for charging with constant current control and the time for charging with constant voltage control are substantially equal. In addition, regarding the discharge, generally, the control is not switched until the storage battery voltage reaches the discharge end voltage unlike the charge.
 図7に、蓄電池3のフル充電、フル放電を実施した際の充放電実施回数と蓄電池容量との関係の例を示す。リチュウムイオンバッテリを用いた蓄電池3は、通常、使用するほど劣化が進む。図7に示すように、約4000回の充放電で、蓄電池3の容量は半分程度まで劣化している。
 この実施の形態1では、蓄電池容量が50%を切った時点が使用期限として説明を続ける。なお、使用期限については上記蓄電池容量が50%を切った時点に限るものではなく、例えば電池メーカが定めた、蓄電池3を安全に使用できる蓄電池残容量等で決定しても良いことは言うまでもない。
FIG. 7 shows an example of the relationship between the number of charge / discharge operations and the storage battery capacity when the storage battery 3 is fully charged and fully discharged. The storage battery 3 using a lithium ion battery usually deteriorates as it is used. As shown in FIG. 7, the capacity of the storage battery 3 has deteriorated to about half after about 4000 charge / discharge cycles.
In the first embodiment, the explanation is continued as the expiration date when the storage battery capacity falls below 50%. It should be noted that the expiration date is not limited to the time when the storage battery capacity falls below 50%, but it is needless to say that the expiration date may be determined by, for example, the remaining battery capacity that allows the storage battery 3 to be used safely. .
 一般に、蓄電池劣化を進める代表的な要因としては、蓄電池3の蓄電池セル温度、充放電電流、充電終止電圧、放電終止電圧、保持時間等がある。例えば、保持時間については、満充電に近い状態で保持する場合は、空に近い状態で保持する場合と比べ劣化が進む。また、気温が高ければ高いほど、蓄電池セル温度も高く劣化の進みが早い。また、充放電電流についても、電流量が大きければ大きいほど劣化が進み、その劣化の進む割合は、蓄電池セル温度に依存する。さらに、充電終止電圧、および放電終止電圧についても同様で、例えば、本来の充電電力の容量の90%程度以下の充電であれば、100%まで充電した場合と比べて蓄電池3の劣化は小さくなる。同様に、放電完了時の蓄電池3の残蓄電電力量を大きくすればフル放電した場合と比較し蓄電池3の劣化は小さくなる。また、フル充電時、あるいはフル放電時の劣化の進み具合も蓄電池セル温度に大きく依存する。 Generally, typical factors that promote storage battery deterioration include the storage battery cell temperature, the charge / discharge current, the charge end voltage, the discharge end voltage, and the holding time of the storage battery 3. For example, with respect to the holding time, when the battery is held near full charge, the deterioration proceeds more than when the battery is held near empty. In addition, the higher the temperature, the higher the storage cell temperature and the faster the deterioration. In addition, the charge / discharge current also deteriorates as the amount of current increases, and the rate at which the deterioration proceeds depends on the storage battery cell temperature. Further, the same applies to the end-of-charge voltage and the end-of-discharge voltage. For example, if the charge is about 90% or less of the capacity of the original charging power, the deterioration of the storage battery 3 is smaller than when charging to 100%. . Similarly, if the remaining stored power amount of the storage battery 3 at the completion of discharge is increased, the deterioration of the storage battery 3 is reduced as compared with the case of full discharge. Further, the progress of deterioration during full charge or full discharge also greatly depends on the storage battery cell temperature.
 なお、蓄電池劣化の進度は上記代表的な要因の中でも差が出てくる。家庭用の蓄電池3では、一般に充放電電流が0.5~1.0C程度であり、蓄電池劣化を進行させる要因としては影響は小さい。従って、蓄電池劣化の進度は、蓄電池セル温度と充電終止電圧に大きく依存する。
 しかしながら、充放電電流が大きくなると、蓄電池3内での損失電力(消費電力)が大きくなって蓄電池筐体内の温度が上昇するため、特に気温が高い場合は蓄電池劣化の進行を加速する要因になる。また、保持時間、放電終止電圧についても、蓄電池セル温度や充電終止電圧に比べると劣化進行に与える影響は小さいが、満充電に近い状態での保持は蓄電池劣化を進行させるため無視できない。また、放電終止電圧についても、過放電を行うと蓄電池3を破壊してしまうことがあるため無視できない。
The progress of storage battery deterioration varies among the above representative factors. In the storage battery 3 for home use, the charge / discharge current is generally about 0.5 to 1.0 C, and the influence is small as a factor for promoting the deterioration of the storage battery. Therefore, the progress of storage battery deterioration greatly depends on the storage battery cell temperature and the end-of-charge voltage.
However, when the charge / discharge current increases, the power loss (power consumption) in the storage battery 3 increases and the temperature in the storage battery casing rises. This is a factor that accelerates the progress of deterioration of the storage battery, particularly when the temperature is high. . Further, the holding time and the discharge end voltage are less affected by the progress of the deterioration than the storage battery cell temperature and the charge end voltage, but holding in a state close to full charge cannot be ignored because the battery deterioration proceeds. In addition, the end-of-discharge voltage cannot be ignored because over-discharge may damage the storage battery 3.
 また、リチュウムイオンバッテリから成る蓄電池3は、化学反応により電力を充電したり放電したりする。例えば、低温で所定の電流(例えば、1C)を充電しようとした場合は、充電電流に対して化学反応が追随できず金属リチュウムが析出し、リチュウムイオンバッテリは劣化する。蓄電池3を、例えば蓄電池セル温度を考慮せず、充放電を繰り返すと、蓄電池劣化が必要以上に進み、所望の使用期間(例えば10年)を待たずに蓄電池3が劣化し使用できなくなる。
 蓄電池劣化を抑制するため、蓄電池3内のBMU305により、過充電、あるいは過放電を検出した場合、温度の高い状態、あるいは低い状態で充放電を行った場合等、上述したようにリレースイッチ304を切り、強制的に蓄電池3と蓄電池パワコン4とを切り離すこともできる。
Moreover, the storage battery 3 which consists of a lithium ion battery charges or discharges electric power by a chemical reaction. For example, when trying to charge a predetermined current (for example, 1C) at a low temperature, a chemical reaction cannot follow the charging current, so that metal lithium is deposited and the lithium ion battery deteriorates. If the storage battery 3 is repeatedly charged and discharged without considering the storage battery cell temperature, for example, the storage battery deteriorates more than necessary, and the storage battery 3 deteriorates and cannot be used without waiting for a desired period of use (for example, 10 years).
In order to suppress the deterioration of the storage battery, when the overcharge or overdischarge is detected by the BMU 305 in the storage battery 3, the relay switch 304 is set as described above when charging / discharging is performed at a high temperature or low temperature. The storage battery 3 and the storage battery power conditioner 4 can be forcibly disconnected.
 従って、この実施の形態1では、蓄電池3が所望の使用期間以上利用ができるように、蓄電池3の劣化要因となる、充放電電流の最大値、充電終止電圧、および放電終止電圧を蓄電池セル温度に基づき制限を加える。
 図8は、蓄電池セル温度に対する最大充放電電流とSoCとの関係を示し、この実施の形態1では、充放電電流の最大値を制限する制限テーブルとして用いる。なお、図8(a)は最大充電電流の変化を示し、図8(b)は最大放電電流の変化を示す。
Therefore, in the first embodiment, the maximum value of the charge / discharge current, the charge end voltage, and the discharge end voltage, which are deterioration factors of the storage battery 3, are stored in the storage battery cell temperature so that the storage battery 3 can be used for a desired usage period or longer. Add restrictions based on
FIG. 8 shows the relationship between the maximum charge / discharge current and the SoC with respect to the storage cell temperature. In the first embodiment, this is used as a limit table for limiting the maximum value of the charge / discharge current. 8A shows the change in the maximum charging current, and FIG. 8B shows the change in the maximum discharge current.
 図8(a)に示すように、蓄電池セル温度が室温(例えば20℃~25℃)の場合は、蓄電池3は定格通りに充電が可能となる。なお、上述したように、蓄電池3の充電制御が定電流制御から定電圧制御に切り替わることに起因して、例えば、室温時にはSoCが0.8以上になると最大充電電流が絞られている。室温から蓄電池セル温度が上昇すると、最大充電電流は徐々に小さくなり、また、充電終止電圧が低くなり、その時のSoCも低くなる。そして、この実施の形態1では、蓄電池セル温度が設定上限値である例えば35℃を超えると充電動作を禁止する。
 また、蓄電池セル温度が室温から低くなるときも、同様に最大充電電流は徐々に小さくなり、また、充電終止電圧が低くなり、その時のSoCも低くなる。そして、この実施の形態1では、蓄電池セル温度が設定下限値である0℃以下になると充電動作を禁止する。
As shown in FIG. 8A, when the storage battery cell temperature is room temperature (for example, 20 ° C. to 25 ° C.), the storage battery 3 can be charged as rated. Note that, as described above, due to the fact that the charging control of the storage battery 3 is switched from the constant current control to the constant voltage control, for example, the maximum charging current is reduced when the SoC becomes 0.8 or more at room temperature. When the storage cell temperature rises from room temperature, the maximum charging current gradually decreases, the end-of-charge voltage decreases, and the SoC at that time also decreases. And in this Embodiment 1, when the storage battery cell temperature exceeds 35 degreeC which is a setting upper limit, for example, charging operation will be prohibited.
Similarly, when the storage battery cell temperature is lowered from room temperature, the maximum charging current is gradually reduced, the end-of-charge voltage is lowered, and the SoC at that time is also lowered. In the first embodiment, the charging operation is prohibited when the storage cell temperature becomes 0 ° C. or lower which is the set lower limit value.
 また図8(b)に示すように、蓄電池セル温度が室温(例えば20℃~25℃)の場合は、蓄電池3は定格通りに放電が可能となる。なお、SoCが0付近になると最大放電電流は急峻に絞られ0になる。室温からセル温度が上昇すると、最大放電電流は徐々に小さくなり、また、放電停止時の放電終止電圧が高くなり、その時のSoCも高くなる。そして、この実施の形態1では、蓄電池セル温度が0℃以下になると放電動作を禁止する。 Further, as shown in FIG. 8B, when the storage battery cell temperature is room temperature (for example, 20 ° C. to 25 ° C.), the storage battery 3 can be discharged as rated. When the SoC is close to 0, the maximum discharge current is sharply reduced to 0. When the cell temperature rises from room temperature, the maximum discharge current gradually decreases, the discharge end voltage when the discharge is stopped increases, and the SoC at that time also increases. In the first embodiment, the discharge operation is prohibited when the storage cell temperature becomes 0 ° C. or lower.
 なお、蓄電池セル温度に対する充放電電流の最大値を制限する制限テーブルは図8に示すものに限らず、使用する蓄電池3の特性にあわせたテーブルを使用すれば良い。
 さらに、この実施の形態1では、蓄電池3の劣化を進める要因として、蓄電池セル温度、最大充放電電流、充電終止電圧、放電終止電圧、および保持時間について説明したがこれに限るものではなく、例えば、蓄電池3の劣化度合い(現在の蓄電池容量/初期の蓄電池容量)に応じて、上述した充放電時の制限テーブルを切り替えて使用しても良いことは言うまでもない。具体的には、劣化の進んだ蓄電池3は、より厳しい制限テーブルを使用しても良い。
In addition, the restriction table which restrict | limits the maximum value of charging / discharging electric current with respect to storage battery cell temperature is not restricted to what is shown in FIG. 8, What is necessary is just to use the table according to the characteristic of the storage battery 3 to be used.
Furthermore, in the first embodiment, the battery cell temperature, the maximum charge / discharge current, the charge end voltage, the discharge end voltage, and the holding time have been described as factors that promote the deterioration of the storage battery 3, but the present invention is not limited to this. Needless to say, the above-described limit table at the time of charging / discharging may be switched depending on the degree of deterioration of the storage battery 3 (current storage battery capacity / initial storage battery capacity). Specifically, the storage battery 3 that has deteriorated may use a stricter limit table.
 図9は、蓄電池3の温度に係る劣化特性を説明する図である。図9(a)に、蓄電池セル温度(蓄電池温度)と蓄電池劣化進度との関係を示した。一般的に蓄電池セル温度が30℃を越えると蓄電池劣化の進行が急速に増大する。なお、蓄電池温度とは、複数の蓄電池セル301の温度の代表値を指す。この代表値は、例えば最大値、あるいは最小値を用いる(詳細は後述する)。
 また、図9(b)に、充電終止電圧と蓄電池劣化進度の関係を示した。この場合、蓄電池セル301が満充電になると蓄電池セル301の出力電圧が4.2Vとなるものとする。蓄電池3の劣化進度は、満充電(4.2V)付近になると4.0V付近と比較して急速に進む。また、蓄電池セル温度が高ければ劣化進度は大きくなる。
FIG. 9 is a diagram for explaining deterioration characteristics related to the temperature of the storage battery 3. FIG. 9A shows the relationship between the storage battery cell temperature (storage battery temperature) and the storage battery deterioration progress. Generally, when the storage battery cell temperature exceeds 30 ° C., the progress of storage battery deterioration increases rapidly. In addition, storage battery temperature refers to the representative value of the temperature of the some storage battery cell 301. FIG. As this representative value, for example, a maximum value or a minimum value is used (details will be described later).
FIG. 9B shows the relationship between the end-of-charge voltage and the storage battery deterioration progress. In this case, when the storage battery cell 301 is fully charged, the output voltage of the storage battery cell 301 is 4.2V. The degree of deterioration of the storage battery 3 progresses more rapidly when it is near full charge (4.2 V) as compared to around 4.0 V. Moreover, if the storage battery cell temperature is high, the progress of deterioration becomes large.
 図10は、蓄電機器Bの充放電電力と損失電力との関係を示す図である。図に示すように、損失電力には、待機電力と充放電電力量に依存する電力とがある。一般に、充放電電力量に依存する電力は蓄電池パワコン4内を流れる電流の2乗に比例して大きくなる。待機電力は、BMU305および蓄電池パワコン4内の主にマイコン等の制御部での消費電力、およびリレースイッチ304などを励磁させておくために必要となる電力の和となる。従って、蓄電池3が充放電を停止中でも、蓄電機器Bがスタンバイ状態である場合、即ち運転モードが待機モードであるスタンバイモードの場合は、待機電力が消費される。 FIG. 10 is a diagram showing the relationship between the charge / discharge power of power storage device B and the lost power. As shown in the figure, the loss power includes standby power and power depending on the charge / discharge power amount. In general, the power depending on the charge / discharge power amount increases in proportion to the square of the current flowing in the storage battery power conditioner 4. The standby power is a sum of power consumed mainly by a control unit such as a microcomputer in the BMU 305 and the storage battery power conditioner 4 and power necessary for exciting the relay switch 304 and the like. Therefore, even when the storage battery 3 stops charging / discharging, when the power storage device B is in the standby state, that is, in the standby mode where the operation mode is the standby mode, standby power is consumed.
 図11は、蓄電機器の待機電力について説明する図で、蓄電機器Bをスリープ状態からスタンバイ状態に切り換えた際の蓄電池セル温度と時間との関係を示す。この場合、スリープ状態とは、運転モードが休止モードであるスリープモードであり、蓄電池3が充放電を停止中であって、かつ消費電力が最小限の状態で、蓄電池3の充放電を開始するためには予め定められた起動シーケンスに基づき蓄電機器Bを外部から起動することが必要である。最小限の消費電力は、例えば、BMU305内の蓄電池制御回路303に内蔵された図示していない制御用マイコン、蓄電池パワコン4内の制御マイコン、およびEchonet Lite通信I/F部113を維持するのに必要な電力で、消費電力としては数mW程度の状態である。
 図に示すように、蓄電機器Bをスリープ状態からスタンバイ状態に切り換えると、待機電力に伴う電力損失により蓄電池セル温度は室温から徐々に増加し、待機電力による温度上昇分Δthだけ高い、一定の温度に収束する。
FIG. 11 is a diagram for explaining standby power of the power storage device, and shows the relationship between the storage battery cell temperature and time when the power storage device B is switched from the sleep state to the standby state. In this case, the sleep state is a sleep mode in which the operation mode is a pause mode, and charging / discharging of the storage battery 3 is started in a state where the storage battery 3 is stopping charging / discharging and power consumption is minimal. For this purpose, it is necessary to start the power storage device B from the outside based on a predetermined startup sequence. The minimum power consumption is, for example, to maintain the control microcomputer (not shown) built in the storage battery control circuit 303 in the BMU 305, the control microcomputer in the storage battery power controller 4, and the Echonet Lite communication I / F unit 113. The required power and the power consumption is about several mW.
As shown in the figure, when the power storage device B is switched from the sleep state to the standby state, the storage battery cell temperature gradually increases from room temperature due to power loss due to standby power, and is increased by a temperature increase Δth due to standby power. Converge to.
 次に、給湯機5の特性について説明する。
 図12は、ヒートポンプ式の給湯機5の特性であるCOP(エネルギ変換効率)について示す図である。図12(a)は、横軸に気温、縦軸にCOPを示す。ヒートポンプサイクルを利用する給湯機5は、気温によってCOPが異なる。例えば、同じ温度の同量の水を所定の温度のお湯に沸き上げる場合、気温が0℃の場合ではCOPは約2.7程度、気温が30℃の場合ではCOPは約6程度であり、気温が0℃の場合は30℃の場合の2倍以上の電力を必要とする。従って、お湯を沸き上げる場合、気温が高いほど消費電力が低くなる。
 また、図12(b)に示すように、ヒートポンプサイクルを利用しお湯を沸き上げる給湯機5は、気温、負荷(湯量)等によって、COPが最高効率となるように動作する負荷率(消費電力)も異なる。
Next, the characteristics of the water heater 5 will be described.
FIG. 12 is a diagram showing COP (energy conversion efficiency) which is a characteristic of the heat pump type water heater 5. FIG. 12A shows the temperature on the horizontal axis and the COP on the vertical axis. The hot water heater 5 that uses the heat pump cycle has different COPs depending on the temperature. For example, when boiling the same amount of water at the same temperature into hot water of a predetermined temperature, the COP is about 2.7 when the temperature is 0 ° C., and the COP is about 6 when the temperature is 30 ° C. When the temperature is 0 ° C., it requires more than twice the power of 30 ° C. Therefore, when boiling hot water, the higher the temperature, the lower the power consumption.
Also, as shown in FIG. 12B, the water heater 5 that boils hot water using a heat pump cycle operates so that the COP has the highest efficiency depending on the temperature, load (hot water amount), etc. (power consumption) ) Is also different.
 従って、この実施の形態1では、各時刻における消費電力、沸き上げ完了時刻、蓄熱量等の予測値は、気温と図12に示す給湯機5の特性により求めることで、予測誤差を最小限に抑える。同様に、電力料金を予測する場合も、気温と図12に示す特性に基づき各時刻の消費電力量を求め電力料金を算出するので、電力料金の予測誤差を最小限に抑えることができる。なお、給湯機5の特性は図12に示すものに限るものではなく、使用する給湯機の持つ特性に合わせた特性テーブルデータを使用すればよいことは言うまでもない。 Therefore, in the first embodiment, prediction values such as power consumption, boiling completion time, and heat storage amount at each time are obtained from the temperature and the characteristics of the water heater 5 shown in FIG. suppress. Similarly, when predicting the power rate, the power rate is calculated by obtaining the amount of power consumption at each time based on the temperature and the characteristics shown in FIG. 12, so that the prediction error of the power rate can be minimized. Note that the characteristics of the water heater 5 are not limited to those shown in FIG. 12, and needless to say, characteristic table data that matches the characteristics of the water heater to be used may be used.
 次に、この発明の比較例による蓄電池制御を説明する。図13は、比較例による蓄電池制御における蓄電池セル温度および買電電力の一日の変化を説明する図である。また図14は、比較例による蓄電池制御における充放電電流および蓄電電力量の一日の変化を説明する図である。
 図13(a)は、各時刻における気温と、高温側および低温側の2つの蓄電池セル301の温度(蓄電池セル温度)とを示す。図13(b)は、各時刻における買電電力を示す。また、図14(a)は、各時刻における充放電電流(放電を正とする)を示し、図14(b)は、各時刻におけるSoCを示す。
 この比較例は、最高気温が30℃を越える真夏日における蓄電池3の充放電動作に関するもので、電気料金の安い深夜電力時間帯に蓄電池を充電し、夕方以降、気温が下がった後に蓄電池から放電する。
Next, storage battery control according to a comparative example of the present invention will be described. FIG. 13 is a diagram for explaining daily changes in storage battery cell temperature and purchased power in storage battery control according to a comparative example. FIG. 14 is a diagram for explaining daily changes in charge / discharge current and stored power amount in storage battery control according to a comparative example.
Fig.13 (a) shows the air temperature in each time, and the temperature (storage battery cell temperature) of the two storage battery cells 301 of a high temperature side and a low temperature side. FIG.13 (b) shows the electric power purchased in each time. FIG. 14A shows the charge / discharge current (discharge is positive) at each time, and FIG. 14B shows the SoC at each time.
This comparative example relates to the charging / discharging operation of the storage battery 3 on a midsummer day when the maximum temperature exceeds 30 ° C. The storage battery is charged in the late-night power hours when the electricity rate is low and discharged from the storage battery after the evening when the temperature decreases. To do.
 この比較例では、図に示すように気温は8時ぐらいから22時ぐらいまで30℃を越えており、気温のピーク時間帯では、蓄電池が充放電を停止しているにも拘わらず、待機電力により高温側の蓄電池セル温度は40℃近くまで上昇している(D1参照)。よって、昼間のPV発電電力が負荷機器の消費電力より大きく、即ちPV余剰電力が発生する時間帯に、蓄電池セル温度が高すぎて蓄電池を充電することができない。仮に、蓄電池に充電した場合は、待機電力に加え、充放電電力量に起因する損失が発生し、蓄電池セル温度は40℃をはるかに超えてしまう。
 気温が高い昼間の時間帯は、蓄電池はSoC=1の満充電であって、スタンバイ状態で待機する(D4参照)。また、夕方以降の放電では、図8(b)に示す放電電流の制限テーブルに基づき放電を行い(D3参照)、放電電流が制限される時間帯で買電電力が発生する(D2参照)。これにより、深夜電力時間帯の開始時刻である23時では約20%の電力量ΔEが蓄電池に充電されている。
In this comparative example, as shown in the figure, the temperature exceeded 30 ° C. from about 8 o'clock to about 22 o'clock, and the standby power consumption was stopped in the peak temperature zone even though the storage battery stopped charging / discharging. As a result, the storage battery cell temperature on the high temperature side has risen to nearly 40 ° C. (see D1). Therefore, the PV power generated in the daytime is larger than the power consumption of the load device, that is, in the time zone when the PV surplus power is generated, the storage battery cell temperature is too high to charge the storage battery. If the storage battery is charged, in addition to the standby power, a loss resulting from the charge / discharge power amount occurs, and the storage battery cell temperature far exceeds 40 ° C.
During daytime when the temperature is high, the storage battery is fully charged with SoC = 1 and waits in a standby state (see D4). In the evening and later discharges, discharge is performed based on the discharge current limit table shown in FIG. 8B (see D3), and purchased power is generated in a time zone in which the discharge current is limited (see D2). Accordingly, at 23:00, which is the start time of the midnight power time zone, the storage battery is charged with about 20% of the electric energy ΔE.
 この実施の形態1では、電力管理装置100にて蓄電池3の運転計画(充放電計画)を作成する際、気温の予測結果をもとに蓄電池セル301の温度を予測する。そして、その予測結果を用いて、各時刻における放電電力を予測し、深夜電力時間帯までの放電電力量を算出する。そして、算出した放電電力量が確保できる最低の充電電力量を求め、深夜電力時間帯に充電する充電電力量を算出して充電終止電圧を決定する。
 このように充電終止電圧を決定することで、蓄電池3からの放電電力量を変化させず、即ち経済コストを変えることなく、蓄電池3の劣化進度を進める充電終止電圧を低く抑えることができる。また、満充電まで蓄電池3を充電することを抑制して高電圧(満充電)での保持時間を短くすることができ、さらに蓄電池劣化の進行を抑えることができる。
In the first embodiment, when the operation plan (charge / discharge plan) of the storage battery 3 is created by the power management apparatus 100, the temperature of the storage battery cell 301 is predicted based on the prediction result of the temperature. And the discharge electric power in each time is estimated using the prediction result, and the electric discharge electric energy to midnight electric power time zone is calculated. Then, the lowest charge power amount that can secure the calculated discharge power amount is obtained, the charge power amount to be charged in the midnight power time zone is calculated, and the charge end voltage is determined.
By determining the end-of-charge voltage in this way, the end-of-charge voltage that advances the deterioration of the storage battery 3 can be kept low without changing the amount of electric power discharged from the storage battery 3, that is, without changing the economic cost. In addition, it is possible to suppress charging of the storage battery 3 until full charge, shorten the holding time at a high voltage (full charge), and further suppress the progress of deterioration of the storage battery.
 また、蓄電池3を殆ど充放電しないと予測される時間帯では、蓄電池3をスタンバイ状態からスリープ状態に移行するよう計画する。これにより、不要な待機電力の消費を抑えることができ損失低減を図ると共に、蓄電池セル温度の上昇を抑制する。
 このように蓄電池3の運転計画を作成してシステムの電力管理を行うことにより、蓄電池3の劣化を効果的に抑制することができる。
Moreover, it is planned that the storage battery 3 is shifted from the standby state to the sleep state in a time zone in which the storage battery 3 is predicted to be hardly charged / discharged. Thereby, consumption of unnecessary standby power can be suppressed, loss can be reduced, and increase in storage battery cell temperature is suppressed.
Thus, by creating an operation plan for the storage battery 3 and performing power management of the system, deterioration of the storage battery 3 can be effectively suppressed.
 以下、運転計画部118の詳細な動作について説明する。なお、運転計画部118では、運転計画部118内の運転計画作成部206が、負荷消費電力学習管理部200、PV発電電力学習管理部201、負荷消費電力予測部202、PV発電電力予測部203、蓄電池モデル204、給湯機モデル205を制御して動作する。
 図15は、電力管理装置100における運転計画作成動作の全体フロー図である。図16は、図15に示す全体フロー図の部分詳細フロー図である。
Hereinafter, the detailed operation of the operation planning unit 118 will be described. In the operation planning unit 118, the operation plan creation unit 206 in the operation planning unit 118 includes a load power consumption learning management unit 200, a PV power generation power learning management unit 201, a load power consumption prediction unit 202, and a PV power generation power prediction unit 203. The battery model 204 and the water heater model 205 are controlled to operate.
FIG. 15 is an overall flowchart of the operation plan creation operation in the power management apparatus 100. FIG. 16 is a partial detailed flowchart of the entire flowchart shown in FIG.
 図15に示すように、まず、運転計画部118は、CPU110から運転計画作成の指示を受け取ると、時刻管理部117から月日、曜日、時刻情報を取得する(ステップS11)。
 時刻等の情報の取得が完了すると、電力計測部116は、現在の消費電力、PV発電電力等の情報(リアルタイム計測値)を取得する。その際、気温についても取得する(ステップS12)。
 現在のPV発電電力等の取得を終了すると、運転計画部118は、第1蓄電池情報である充放電電力情報(充放電電力量あるいは充放電電流)を取得する(ステップS13)。
 蓄電池3の充放電電力情報の取得を完了すると、運転計画部118は、第1給湯機情報である給湯機5の消費電力を取得する(ステップS14)。
 なお、ステップS11からステップS14の各計測データは、50μsの周期(20KHz)でサンプリングするものとする。なお、サンプリングは50μsに限るものではない。また、取得した各計測データを元に、後述する運転計画更新周期内(この場合、30分)で平均値を算出するものとする。
As shown in FIG. 15, first, when the operation plan unit 118 receives an operation plan creation instruction from the CPU 110, the operation plan unit 118 acquires the date, day of the week, and time information from the time management unit 117 (step S <b> 11).
When acquisition of information such as time is completed, the power measurement unit 116 acquires information (real-time measurement values) such as current power consumption and PV generated power. At that time, the temperature is also acquired (step S12).
When the acquisition of the current PV generated power or the like is completed, the operation planning unit 118 acquires charge / discharge power information (charge / discharge power amount or charge / discharge current) that is the first storage battery information (step S13).
When the acquisition of the charge / discharge power information of the storage battery 3 is completed, the operation planning unit 118 acquires the power consumption of the water heater 5 which is the first water heater information (step S14).
Note that each measurement data from step S11 to step S14 is sampled at a period of 50 μs (20 KHz). Note that sampling is not limited to 50 μs. Moreover, based on each acquired measurement data, an average value shall be calculated within the operation plan update period mentioned later (in this case, 30 minutes).
 次に、運転計画部118は、運転計画作成時刻であるか確認する(ステップS15)。
 通常、電力管理装置100は、定期的に太陽光パワコン2、蓄電池パワコン4、給湯機5、および負荷機器20であるエアコン21、冷蔵庫22、照明23、IHクッキングヒータ24と通信を行い、各機器の情報をEchonet Lite通信I/F部113を介して取得する。この実施の形態1では、30分毎に各機器の情報を取得して運転計画を作成するものとする。
 なお、電力管理装置100での運転計画の作成周期は30分に限るものではなく、CPU110の処理速度や通信速度等で決定すれば良い。また、運転計画の作成周期は一定である必要はなく、例えば、深夜などPV発電がなく、また負荷消費電力も予測値とあまり変わらない時間帯は、運転計画の作成周期を長くとることで電力管理装置100でも消費電力の削減を図っても良い。あるいはPV発電電力が予測から外れ、運転計画の変更を余儀なくされた場合等については、不定期に運転計画の作成または変更を行って良いことは言うまでもない。
Next, the operation plan unit 118 confirms whether it is an operation plan creation time (step S15).
Normally, the power management apparatus 100 periodically communicates with the solar power conditioner 2, the storage battery power conditioner 4, the water heater 5, and the load equipment 20, such as the air conditioner 21, the refrigerator 22, the lighting 23, and the IH cooking heater 24, and Information is acquired via the Echonet Lite communication I / F unit 113. In the first embodiment, it is assumed that an operation plan is created by acquiring information on each device every 30 minutes.
Note that the operation plan creation cycle in the power management apparatus 100 is not limited to 30 minutes, and may be determined based on the processing speed, communication speed, and the like of the CPU 110. In addition, the operation plan creation cycle does not need to be constant. For example, in the time period when there is no PV power generation such as midnight and the load power consumption is not much different from the predicted value, The management device 100 may also reduce power consumption. Alternatively, it goes without saying that the operation plan may be created or changed irregularly, for example, when the PV generated power deviates from the prediction and the operation plan must be changed.
 ステップS15でNoの場合は、ステップS11に戻り、各種データの取得を継続する。
 一方、ステップS15でYesの場合は、電力料金テーブルを取得するため、Ethernet(登録商標)通信I/F部114を介してクラウドサーバ31に現在契約している電力料金テーブル情報を送付するよう要求する。クラウドサーバ31は、電力料金テーブル情報の要求を受信すると、需要者である現在ユーザが契約している電力料金体系としての電力料金テーブルをEthernet(登録商標)通信I/F部114を介して運転計画部118内の運転計画作成部206に送信する。なお、電力料金テーブルには太陽光パネル1で発電した電力(PV余剰電力)の売電価格情報についても送付されてくるものとする。クラウドサーバ31から電力料金テーブル情報を受信すると運転計画作成部206は、図示していないデータ記憶部に電力料金テーブルを記憶する(ステップS16)。
If No in step S15, the process returns to step S11 to continue acquiring various data.
On the other hand, in the case of Yes in step S15, in order to acquire the power rate table, a request to send the currently charged power rate table information to the cloud server 31 via the Ethernet (registered trademark) communication I / F unit 114 is requested. To do. When the cloud server 31 receives the request for the power charge table information, the cloud server 31 operates the power charge table as a power charge system to which the current user who is the consumer contracts via the Ethernet (registered trademark) communication I / F unit 114. The data is transmitted to the operation plan creation unit 206 in the planning unit 118. In addition, it is assumed that the selling price information of the power generated by the solar panel 1 (PV surplus power) is also sent to the power rate table. When receiving the power rate table information from the cloud server 31, the operation plan creation unit 206 stores the power rate table in a data storage unit (not shown) (step S16).
 この実施の形態1では、図17に示す電力料金テーブルを使用した場合について説明する。なお、図17は、横軸を時刻、縦軸を電力料金としてグラフ化したデータを示し、この場合、23時から翌日の7時までを深夜電力時間帯として、昼間の電力の約1/3程度の電力料金で買電できるものとする。なお、電力料金体系は図17に示すものに限るものではなく、例えば、夏季は電力需要がひっ迫するため、電力のピーク時間帯となる12時~16時の時間帯は破線で示したように電力料金を高く設定しても良い。また例えば、料金体系が現在の総需要量で時々刻々と変化すような可変電力料金体系等でも良いことは言うまでもない。また、デマンドレスポンスに基づくインセンティブが発生する場合は、そのインセンティブを考慮した電力料金体系であっても良いことは言うまでもない。 In the first embodiment, a case where the power rate table shown in FIG. 17 is used will be described. FIG. 17 shows graphed data with the horizontal axis representing time and the vertical axis representing power charges. In this case, about 1/3 of the daytime power is taken from 23:00 to 7:00 on the next day as a late-night power period. It is assumed that power can be purchased at a reasonable power rate. Note that the power rate system is not limited to that shown in FIG. 17. For example, since the demand for power is tight in summer, the power peak time zone from 12:00 to 16:00 is indicated by a broken line. You may set a high electricity charge. Further, for example, it goes without saying that a variable power charge system or the like in which the charge system changes from moment to moment with the current total demand may be used. In addition, when an incentive based on demand response occurs, it goes without saying that the power rate system may take into account the incentive.
 また、この実施の形態1では、電力料金テーブルを運転計画作成毎にクラウドサーバ31からダウンロードする場合について説明する。これは、以下の理由による。近年、ピーク時の電力を削減するためデマンドレスポンス方式が実証あるいは検証されている。デマンドレスポンスは、前日に通知されるケースもよくあるが、実施する数時間前にユーザに通知される場合もある。この実施の形態1では、運転計画作成タイミング毎に電力料金を確認することで、直前にデマンドレスポンスが通知されても対応を可能としている。 In the first embodiment, a case will be described in which the power rate table is downloaded from the cloud server 31 every time an operation plan is created. This is due to the following reason. In recent years, demand response systems have been demonstrated or verified to reduce peak power. The demand response is often notified on the previous day, but may be notified to the user several hours before implementation. In the first embodiment, by confirming the power rate at each operation plan creation timing, it is possible to cope with a demand response notified immediately before.
 次に、運転計画部118は、充電電力量(蓄電電力量)、および蓄電池3の温度情報である蓄電池セル温度を含む第2蓄電池情報をEchonet Lite通信I/F部113を介して取得する(ステップS17)。
 第2蓄電池情報の取得を完了すると、運転計画部118は、給湯機5の蓄熱量、湯量等の第2給湯機情報をEchonet Lite通信I/F部113を介して取得する(ステップS18)。
 第2給湯機情報の取得が完了すると、運転計画部118は、運転計画を作成する(ステップS19)。このステップS19(ステップS31~ステップS40)についての詳細は後述する。
Next, the operation planning unit 118 acquires the second storage battery information including the amount of charged power (the amount of stored power) and the storage battery cell temperature that is the temperature information of the storage battery 3 via the Echonet Lite communication I / F unit 113 ( Step S17).
When the acquisition of the second storage battery information is completed, the operation planning unit 118 acquires the second hot water heater information such as the heat storage amount and the hot water amount of the water heater 5 via the Echonet Lite communication I / F unit 113 (step S18).
When the acquisition of the second water heater information is completed, the operation planning unit 118 creates an operation plan (step S19). Details of step S19 (steps S31 to S40) will be described later.
 ステップS19による運転計画の作成が完了すると、電力管理装置100内のCPU110は、1日が経過したか(23時か)を確認する(ステップS20)。
 ステップS20において、1日が経過していない場合は、ステップS11に戻り、再度フローを実行する。
 ステップS20において、1日が経過した場合は、1日の充放電履歴を使用して蓄電池3の劣化進度を推定し(ステップS21)、再びステップS11に戻り、フローを開始する。
When the creation of the operation plan in step S19 is completed, the CPU 110 in the power management apparatus 100 checks whether one day has passed (23:00) (step S20).
In step S20, when one day has not passed, it returns to step S11 and performs a flow again.
In step S20, when one day has passed, the deterioration degree of the storage battery 3 is estimated using the charge / discharge history of one day (step S21), and the process returns to step S11 again to start the flow.
 以下、図16を用いて運転計画作成フローを説明する。この運転計画作成フロー(ステップS31~ステップS40)は図15に示すステップS19を詳細に示すものである。
 運転計画作成が開始されると運転計画部118内の運転計画作成部206は、Ethernet(登録商標)通信I/F部114を介してクラウドサーバ31から天気予報情報、および気温予測情報を取得し、図示していない記憶領域に記憶する(ステップS31)。
 気温予測情報を含む天気予報情報の取得および記憶が完了すると、運転計画作成部206は、入手した天気予報情報が更新されているか確認する(ステップS32)。
 ステップS32でYes、即ち天気予報情報が更新されていた場合、運転計画作成部206はPV発電電力予測部203に対してPV発電電力量の予測、および補正を行うよう指示を出す。PV発電電力予測部203は指示を受け取ると、太陽光パネル1の取り付け角、および取り付け方位、経度、緯度情報を取得する。具体的には、太陽光パネル1の取り付け角、および取り付け方位情報については、太陽光パネル1の取り付け工事完了時にユーザが入力したものを、ROM111内に記憶しておき、そのデータを読み出す。経度、緯度情報については、クラウドサーバ31より入手する。
 太陽光パネル1に関する各情報の取得を完了すると、運転計画作成部206は天気予報情報に基づく日射量推定を実施する。
Hereinafter, the operation plan creation flow will be described with reference to FIG. This operation plan creation flow (steps S31 to S40) shows step S19 shown in FIG. 15 in detail.
When the operation plan creation is started, the operation plan creation unit 206 in the operation plan unit 118 acquires the weather forecast information and the temperature prediction information from the cloud server 31 via the Ethernet (registered trademark) communication I / F unit 114. Then, it is stored in a storage area not shown (step S31).
When the acquisition and storage of the weather forecast information including the temperature prediction information is completed, the operation plan creation unit 206 confirms whether or not the acquired weather forecast information has been updated (step S32).
If Yes in step S32, that is, if the weather forecast information has been updated, the operation plan creation unit 206 instructs the PV generated power prediction unit 203 to predict and correct the PV generated power amount. When the PV generated power prediction unit 203 receives the instruction, the PV generated power prediction unit 203 acquires the mounting angle, mounting direction, longitude, and latitude information of the solar panel 1. Specifically, as for the mounting angle and mounting orientation information of the solar panel 1, what the user inputs when the solar panel 1 mounting work is completed is stored in the ROM 111, and the data is read out. The longitude and latitude information is obtained from the cloud server 31.
When the acquisition of each piece of information related to the solar panel 1 is completed, the operation plan creation unit 206 performs solar radiation amount estimation based on the weather forecast information.
 以下、この実施の形態1における日射量推定方法およびPV発電電力学習方法についてPV発電電力予測部203、およびPV発電電力学習管理部201の動作と共に説明する。
 PV発電電力学習管理部201は、天気実績、およびPV発電電力量から推定した日射量情報、および日時情報を元に日射量推定用のデータベースを作成する。この実施の形態1では、日射量推定用のデータベースとして、月毎に天気情報の種類毎にデータベーステーブルを持つものとする。なお、日射量推定用のデータベースは学習により追加、更新されるもので、日毎、あるいは週毎、あるいは季節毎に持たせるように構成しても良いことは言うまでもない。
 図18は、PV発電電力学習管理部内のデータベースに格納された各天気、時刻の日射量の予測データを示すもので、各天気(晴れ、曇り、雨)の学習データを内挿し求めた日射量の学習結果から得られたものである。なお、30分単位の棒グラフでは3種類のデータを表示できないため、図18では波形で示した。図において、縦軸は推定日射量値、横軸は時刻を示す。
 なお、この実施の形態1では、データベースを30分単位で構成する場合について説明するがこれに限るものではなく、与えられたメモリサイズで、例えば15分単位、あるいは1時間単位で構成しても良いことは言うまでもない。また、冬季であれば雪の天気についてもデータベースを作成する。
Hereinafter, the solar radiation amount estimation method and the PV generated power learning method according to Embodiment 1 will be described together with the operations of the PV generated power prediction unit 203 and the PV generated power learning management unit 201.
The PV generated power learning management unit 201 creates a database for estimating the amount of solar radiation based on the weather performance, the amount of solar radiation estimated from the amount of PV generated power, and the date / time information. In the first embodiment, the database for estimating the amount of solar radiation has a database table for each type of weather information for each month. Needless to say, the solar radiation amount estimation database is added or updated by learning, and may be configured to be provided daily, weekly, or seasonally.
FIG. 18 shows the forecast data of the amount of solar radiation for each weather and time stored in the database in the PV generated power learning management unit. The amount of solar radiation obtained by interpolating the learning data for each weather (clear, cloudy, rain) It was obtained from the learning results. In addition, since it is not possible to display three types of data in a 30-minute unit bar graph, FIG. 18 shows waveforms. In the figure, the vertical axis indicates the estimated solar radiation amount value, and the horizontal axis indicates time.
In the first embodiment, the case where the database is configured in units of 30 minutes will be described. However, the present invention is not limited to this. For example, the database may be configured in units of 15 minutes or 1 hour with a given memory size. It goes without saying that it is good. In winter, a database is created for snowy weather.
 分電盤14内の電力計測回路14aで計測したPV発電電力により、30分間の平均PV発電電力量が算出されPV発電電力学習管理部201に入力される。なお、この処理は上述したステップS12にて行っても良い。
 そして、上述の要領で取得した経度、緯度情報、ステップS11で取得した日時情報(本日の月日、時刻情報)を元に、太陽の高度を算出する。太陽の高度の算出結果、太陽光パネル1の取り付け角、取り付け方位、および実測PV発電電力に基づく30分間の平均PV発電電力量から日射量を算出する。
 日射量の算出が完了すると、算出した日射量から過去30分間の天気を推定する。この実施の形態1では、日時、および上記算出した日射量から天気を推定するデータベースを準備しておくものとして説明を続ける。なお、上記日射量の算出結果は、図示していないPV発電電力学習管理部201内のメモリに日射量データとして記憶する。なお、該日射量データは、当日、太陽光パネル1が発電している時間帯分のデータを蓄積するものとして説明を続ける。
Based on the PV generated power measured by the power measuring circuit 14 a in the distribution board 14, an average PV generated power amount for 30 minutes is calculated and input to the PV generated power learning management unit 201. This process may be performed in step S12 described above.
Then, the altitude of the sun is calculated based on the longitude and latitude information acquired in the manner described above and the date and time information (today's date and time information) acquired in step S11. The solar radiation amount is calculated from the calculation result of the solar altitude, the mounting angle of the solar panel 1, the mounting orientation, and the average PV generated power amount for 30 minutes based on the actually measured PV generated power.
When the calculation of the amount of solar radiation is completed, the weather for the past 30 minutes is estimated from the calculated amount of solar radiation. In the first embodiment, the description will be continued assuming that a database for estimating the weather from the date and time and the calculated amount of solar radiation is prepared. The calculation result of the solar radiation amount is stored as solar radiation amount data in a memory in the PV generated power learning management unit 201 (not shown). The solar radiation amount data will be described on the assumption that data for a time zone during which the solar panel 1 is generating power is accumulated on that day.
 PV発電電力学習管理部201は、上記天気予報情報、および日時情報から日射量を推定する際に使用する図示していない学習データベースの当該時刻に相当する日射量データを読み出す。そして、実測PV発電電力に基づく30分間の平均PV発電電力量を元に、当該時刻に相当する学習データベースから読み出した日射量データに補正を加え、再度学習データベースに書き戻す。
 上記要領で実測結果に基づくPV発電電力量の学習が完了すると、PV発電電力学習管理部201は、ステップS31で取得した天気予報情報、日時情報からPV発電電力学習管理部201内の学習テーブルデータ内の日射量データを24時間分読み出して、24時間分の日射量を推定する(ステップS33)。
The PV generated power learning management unit 201 reads the solar radiation amount data corresponding to the time of the learning database (not shown) used when estimating the solar radiation amount from the weather forecast information and the date and time information. Then, based on the average PV generated power amount for 30 minutes based on the measured PV generated power, the solar radiation amount data read from the learning database corresponding to the time is corrected and written back to the learning database again.
When the learning of the PV power generation amount based on the actual measurement result is completed in the above manner, the PV power generation learning management unit 201 learns the learning table data in the PV power generation power learning management unit 201 from the weather forecast information and date / time information acquired in step S31. The solar radiation amount data is read out for 24 hours, and the solar radiation amount for 24 hours is estimated (step S33).
 次いで、負荷消費電力学習管理部200は、24時間分の気温を予測する。この実施の形態1では、30分単位の気温予測情報がクラウドサーバ31より通知されるので、特に処理は行わないが、クラウドサーバ31からの情報が最高気温および最低気温情報であった場合は、その情報を用いて24時間分の気温予測を実施する(ステップS34)。
 ステップS34での気温予測が完了、あるいはステップS32でNoの場合、運転計画作成部206はPV発電電力予測部203を介してPV発電電力学習管理部201に対して実測結果に基づき補正するよう指示を出す。
Next, the load power consumption learning management unit 200 predicts the temperature for 24 hours. In the first embodiment, since the temperature prediction information in units of 30 minutes is notified from the cloud server 31, no particular processing is performed, but when the information from the cloud server 31 is the maximum temperature and the minimum temperature information, The temperature prediction for 24 hours is implemented using the information (step S34).
When the temperature prediction in step S34 is completed or No in step S32, the operation plan creation unit 206 instructs the PV generation power learning management unit 201 to correct the PV generation power learning management unit 201 via the PV generation power prediction unit 203. Put out.
 図19は、ステップS33と後述するステップS35を説明する図で、推定日射量を実測結果に基づいて補正する日射量補正動作を説明する図である。
 図19(a)に、ステップS33において、学習用データベースから読み出した24時間分の日射量データを示す。図において、縦軸は推定日射量(日射量予測値)、横軸は時刻を示す。なお、この実施の形態1では、データベースを30分単位で構成する場合について説明したがこれに限るものではなく、与えられたメモリサイズで、例えば15分単位、あるいは1時間単位で構成しても良いことは言うまでもない。また、冬季であれば雪の天気についてもデータベースを作成する。また、天気種別も晴れ、曇り、雨に限るものではなく、例えば、晴れのち曇り、曇りのち晴れ、晴れ時々曇り等、天気予報で通知される情報を用いてデータベースを構築しても良いことは言うまでもない。
FIG. 19 is a diagram illustrating step S33 and step S35 described later, and is a diagram illustrating the solar radiation amount correcting operation for correcting the estimated solar radiation amount based on the actual measurement result.
FIG. 19A shows the solar radiation amount data for 24 hours read from the learning database in step S33. In the figure, the vertical axis indicates the estimated amount of solar radiation (the predicted amount of solar radiation), and the horizontal axis indicates the time. In the first embodiment, the case where the database is configured in units of 30 minutes has been described. However, the present invention is not limited to this. It goes without saying that it is good. In winter, a database is created for snowy weather. Also, the weather type is not limited to sunny, cloudy, and rainy. For example, it may be possible to construct a database using information notified by the weather forecast such as sunny and cloudy, cloudy and sunny, and sometimes cloudy. Needless to say.
 PV発電電力学習管理部201は、上記指示を受け取ると、実測PV発電電力に基づく30分毎の平均PV発電電力量から日射量を算出、即ち平均PV発電電力量を日射量に換算した、現時刻までの日射量算出値(図19(b)参照)を用いて、図19(a)に示す推定日射量に補正をかける。具体的には、以下の(式1)に示す演算で補正係数k1を算出して補正する。 Upon receiving the above instruction, the PV generated power learning management unit 201 calculates the solar radiation amount from the average PV generated power amount every 30 minutes based on the measured PV generated power, that is, the average PV generated power amount is converted into the solar radiation amount, Using the calculated solar radiation amount up to the time (see FIG. 19B), the estimated solar radiation amount shown in FIG. 19A is corrected. Specifically, the correction coefficient k1 is calculated and corrected by the calculation shown in the following (Equation 1).
PV発電開始後:
 k1=Σ(日射量算出値)/Σ(推定日射量)
PV発電開始前:
 k1=1
 ・・・・・・・・・・(式1)
 但し、Σは、0時(あるいは発電開始)から現時刻までの合計を示す。
After starting PV power generation:
k1 = Σ (calculation value of solar radiation) / Σ (estimated solar radiation)
Before PV power generation:
k1 = 1
... (Formula 1)
However, Σ represents the total from 0:00 (or power generation start) to the current time.
 PV発電電力予測部203は上記(式1)により算出した補正係数k1を、現時刻以降の推定日射量に乗算することで、実測結果に基づく日射量補正を行う。具体的には、上記学習テーブルから読み出した図19(a)に示す推定日射量で、現時刻以降の30分毎の推定日射量に補正係数k1を乗じて、推定日射量の補正を行う。この場合、補正係数k1が1より大きく、補正により増大した日射量を示している(図19(c)参照)。
 この実施の形態1では、以下の理由により実測結果に基づく日射量補正を行っている。上述したように、天気予報は、晴れ、曇り、雨、雪の4種類程度である。従って、天気予報が晴れであっても、雲1つない晴天と、雲の割合が75%程度の晴れでは、PV発電電力は異なる。このため、実測結果に基づき推定日射量に補正を加えることで日射量の予測誤差の最小化を図っている(ステップS35)。
The PV generated power prediction unit 203 performs the solar radiation amount correction based on the actual measurement result by multiplying the estimated solar radiation amount after the current time by the correction coefficient k1 calculated by the above (Equation 1). Specifically, the estimated amount of solar radiation shown in FIG. 19A read from the learning table is corrected by multiplying the estimated amount of solar radiation every 30 minutes after the current time by the correction coefficient k1. In this case, the correction coefficient k1 is larger than 1 and indicates the amount of solar radiation increased by the correction (see FIG. 19C).
In the first embodiment, the solar radiation amount correction based on the actual measurement result is performed for the following reason. As described above, there are four types of weather forecasts: sunny, cloudy, rainy, and snow. Therefore, even if the weather forecast is clear, the PV generated power differs between clear sky with no clouds and clear weather with a cloud ratio of about 75%. For this reason, the estimation error of the solar radiation amount is minimized by correcting the estimated solar radiation amount based on the actual measurement result (step S35).
 次に、補正係数k1が乗算された補正後の日射量情報を元に、PV発電電力量を予測する。なお、PV発電電力量の予測に際しては、PV発電電力予測部203は、各時刻の日射量からPV発電電力量を予測する学習テーブルを準備しておき、該学習テーブルを用いて各予測時刻のPV発電電力量を予測するものとする。また、該PV発電電力量を予測する学習テーブルは、電力計測部116の計測結果から得た30分間の平均発電電力量、およびその情報から推定した日射量を元にデータを学習し、学習テーブルを構築するものとする。なお、当該学習テーブルは、この実施の形態1では時刻毎12ヶ月分の学習テーブルを持つものとする。学習テーブルは12カ月分に限るものではなく、例えば、13カ月や季節毎4つのテーブル、週単位でテーブル、あるいは日単位でテーブルを持たせても良いことは言うまでもない(ステップS36)。 Next, the PV power generation amount is predicted based on the corrected solar radiation amount information multiplied by the correction coefficient k1. When predicting the PV power generation amount, the PV power generation prediction unit 203 prepares a learning table for predicting the PV power generation amount from the amount of solar radiation at each time, and uses the learning table for each prediction time. The amount of PV power generation shall be predicted. The learning table for predicting the PV power generation amount learns data based on the average generated power amount for 30 minutes obtained from the measurement result of the power measurement unit 116 and the solar radiation amount estimated from the information, and the learning table Shall be constructed. In the first embodiment, the learning table has a learning table for 12 months per time. The learning table is not limited to twelve months, and it goes without saying that, for example, four tables for every 13 months or seasons, a table for each week, or a table for each day may be provided (step S36).
 次いで、運転計画作成部206は、負荷消費電力学習管理部200に対して、実測結果に基づく気温の補正を実施するよう指示を出す。以下、気温の実測結果に基づく補正方法について説明する。
 図20は、実測結果に基づいて気温情報を補正する動作を説明する図である。この実施の形態1では、気温予測情報は30分単位でクラウドサーバ31から通知されるものとする。図20(a)に、クラウドサーバ31から通知された気温予測情報を示す。図において、縦軸は予測気温、横軸は時刻を示す。
 なお、気温予測情報は30分単位に限るものではなく、1時間単位、4時間単位、あるいは6時間単位であっても良いことは言うまでもない。また、1時間、4時間、あるいは6時間単位で通知される場合は、データ間は内挿して使用するものとする。また、各時刻単位の気温情報ではなく、最高気温、最低気温情報のみでも良い。ただし、最高気温、最低気温情報の場合は、気温学習用のデータテーブルを、例えば月毎、天気毎で準備し、該気温学習用のデータテーブルを利用して、24時間の気温の変化を決定し、該最高気温、最低気温情報にて補正をかけるように構成しても良い。
Next, the operation plan creation unit 206 instructs the load power consumption learning management unit 200 to correct the temperature based on the actual measurement result. Hereinafter, a correction method based on the actual measurement result of the temperature will be described.
FIG. 20 is a diagram for explaining an operation of correcting the temperature information based on the actual measurement result. In the first embodiment, it is assumed that the temperature prediction information is notified from the cloud server 31 in units of 30 minutes. FIG. 20A shows the temperature prediction information notified from the cloud server 31. In the figure, the vertical axis indicates the predicted temperature, and the horizontal axis indicates the time.
Needless to say, the temperature prediction information is not limited to a unit of 30 minutes, but may be a unit of one hour, a unit of four hours, or a unit of six hours. When notification is made in units of 1 hour, 4 hours, or 6 hours, the data is interpolated for use. Also, instead of the temperature information for each time unit, only the highest temperature and the lowest temperature information may be used. However, in the case of maximum temperature and minimum temperature information, a temperature learning data table is prepared, for example, for each month or weather, and the temperature change for 24 hours is determined using the temperature learning data table. However, the correction may be performed based on the maximum temperature and the minimum temperature information.
 クラウドサーバ31から気温予測情報を受け取ると、負荷消費電力予測部202は、電力計測部116で計測した30分間の平均気温情報を取得する。この実施の形態1では、気温は図示していない温度計で計測した外気温を各電流計測結果とともに電力計測部116で計測し、30分間の平均気温を算出して負荷消費電力予測部202に出力するものとして説明を続ける。なお、実測気温による30分間の平均気温情報は、負荷消費電力予測部202内の図示していないメモリへ一旦記憶される、該メモリは、当日の0時より現時刻までの30分単位の平均気温情報を記憶する。図20(b)に、当日の0時より現時刻までの実測気温による30分単位の平均気温情報を示す。
 負荷消費電力学習管理部200は、図20(b)に示す実測気温による平均気温情報を用いて、図20(a)に示す気温予測情報に対して補正をかける。具体的には、以下の(式2)に示すように、当日の0時より現時刻までの30分単位の平均気温(実測気温)と予測気温との各差分データの平均値である補正値k2を算出する。
When the temperature prediction information is received from the cloud server 31, the load power consumption prediction unit 202 acquires average temperature information for 30 minutes measured by the power measurement unit 116. In the first embodiment, the air temperature is measured by an electric power measurement unit 116 together with each current measurement result, and an average temperature for 30 minutes is calculated and the load power consumption prediction unit 202 is measured. The description will be continued as output. The average temperature information for 30 minutes based on the actually measured temperature is temporarily stored in a memory (not shown) in the load power consumption prediction unit 202. The memory is an average of 30 minutes from 0:00 on the current day to the current time. Stores temperature information. FIG. 20B shows the average temperature information in 30-minute units based on the actually measured temperature from 0:00 on the current day to the current time.
The load power consumption learning management unit 200 corrects the temperature prediction information shown in FIG. 20A using the average temperature information based on the actually measured temperature shown in FIG. Specifically, as shown in (Equation 2) below, a correction value that is an average value of each difference data between the average temperature (measured temperature) in 30 minutes from 0:00 on the current day to the current time and the predicted temperature k2 is calculated.
 k2=Σ(実測気温-予測気温)/データ数
 ・・・・・・・・・・(式2)
 但し、Σは、0時から現時刻までの合計を示し、データ数は差分データの数を示す。
k2 = Σ (actual temperature-predicted temperature) / number of data (Equation 2)
However, Σ indicates the total from 0:00 to the current time, and the number of data indicates the number of difference data.
 そして補正値k2の算出を終了すると、負荷消費電力学習管理部200は、図20(a)に示す予測気温情報で現時刻以降の30分毎の予測気温に、算出した補正値k2を加算することで、実測結果に基づく気温補正を行う。この場合、補正値k2が0より大きく、補正により増大した気温を示している(図20(c)参照)(ステップS37)。 When the calculation of the correction value k2 is completed, the load power consumption learning management unit 200 adds the calculated correction value k2 to the predicted temperature every 30 minutes after the current time in the predicted temperature information shown in FIG. Thus, the temperature correction based on the actual measurement result is performed. In this case, the correction value k2 is greater than 0 and indicates an increased temperature due to the correction (see FIG. 20C) (step S37).
 次いで、運転計画作成部206は、負荷消費電力予測部202に対して負荷機器20の消費電力を予測するよう指示を出す。負荷消費電力予測部202は、負荷消費電力学習管理部200に、実測結果に基づく負荷消費電力の学習を指示する。
 負荷消費電力学習管理部200は、電力計測部116で計測した各負荷機器20(エアコン21、冷蔵庫22、照明23、IHクッキングヒータ24等)の30分間の平均消費電力量を取り込む。そして、取り込んだ30分間の平均消費電力量を元に、図示していない負荷消費電力予測用の学習データベースを更新する。この実施の形態1では、負荷消費電力予測用のデータベースは各月の曜日毎に天気情報の種類ごとに学習テーブルを持つものとする(テーブル数は12カ月×7日×3(天気種類)=252)。また、データベースに記憶するデータは、給湯機5の消費電力を除く負荷機器20の消費電力量の合計を学習し記憶するものとする。なお、データベースは接続されている負荷機器20毎に持たせても良いことは言うまでもない。また、給湯機5については、負荷消費電力予測部202内に個別のデータベースを準備するものとし、その詳細は後述する。
Next, the operation plan creation unit 206 instructs the load power consumption prediction unit 202 to predict the power consumption of the load device 20. The load power consumption prediction unit 202 instructs the load power consumption learning management unit 200 to learn load power consumption based on the actual measurement result.
The load power consumption learning management unit 200 captures the average power consumption for 30 minutes of each load device 20 (air conditioner 21, refrigerator 22, lighting 23, IH cooking heater 24, etc.) measured by the power measurement unit 116. Then, based on the acquired average power consumption for 30 minutes, a learning database for predicting load power consumption (not shown) is updated. In the first embodiment, the load power consumption prediction database has a learning table for each type of weather information for each day of the month (the number of tables is 12 months × 7 days × 3 (weather types) = 252). Moreover, the data memorize | stored in a database shall learn and memorize | store the total of the power consumption of the load apparatus 20 except the power consumption of the water heater 5. FIG. Needless to say, a database may be provided for each connected load device 20. As for the water heater 5, an individual database is prepared in the load power consumption prediction unit 202, and details thereof will be described later.
 電力計測部116で計測した各負荷機器20の30分間の平均消費電力量は、負荷消費電力学習管理部200で加算される。そして、ステップS11で取得した月日、曜日、時刻情報、およびステップS31で取得した天気予報情報に基づき負荷消費電力予測用の学習データベースからデータを読み出し、上記加算結果を元に負荷消費電力量を学習し、その結果を再度学習データベースに書き戻す。 The average power consumption for 30 minutes of each load device 20 measured by the power measurement unit 116 is added by the load power consumption learning management unit 200. Then, data is read from the learning database for predicting load power consumption based on the date, day of the week, time information acquired in step S11, and weather forecast information acquired in step S31, and the load power consumption is calculated based on the addition result. Learn and write the results back into the learning database.
 図21は、予測された負荷消費電力量を実測結果に基づいて補正する負荷消費電力補正動作を説明する図である。
 実測結果に基づく負荷消費電力学習が完了すると、負荷消費電力学習管理部200は負荷消費電力予測部202にその旨を通知する。終了通知を受け取った負荷消費電力予測部202は、ステップS31で取得した天気予報情報、ステップS11で取得した月日、曜日情報から負荷消費電力量の予測値(学習テーブルデータ内のデータ)を当日の24時間分読み出す(図21(a)参照)。
 図21(a)において、縦軸は消費電力量、横軸は時刻を示す。なお、この実施の形態1では、データベースを30分単位で構成する場合について説明したがこれに限るものではなく、与えられたメモリサイズで、例えば15分単位、あるいは1時間単位で構成しても良いことは言うまでもない。
FIG. 21 is a diagram for explaining a load power correction operation for correcting the predicted load power consumption based on the actual measurement result.
When the load power consumption learning based on the actual measurement result is completed, the load power consumption learning management unit 200 notifies the load power consumption prediction unit 202 to that effect. Upon receiving the end notification, the load power consumption prediction unit 202 obtains the predicted value (data in the learning table data) of the load power consumption from the weather forecast information acquired in step S31, the date and time acquired in step S11, and the day of the week information. For 24 hours (see FIG. 21A).
In FIG. 21A, the vertical axis represents power consumption, and the horizontal axis represents time. In the first embodiment, the case where the database is configured in units of 30 minutes has been described. However, the present invention is not limited to this. It goes without saying that it is good.
 そして、午前0時から現時刻までの負荷消費電力量実績(図21(b)参照)を用いて、図21(a)に示す負荷消費電力量の予測値に補正をかける。その際、この実施の形態1では、家族スケジュール管理部121が管理している家族のスケジュールを参照する。例えば、お父さんが出張で帰宅をしない場合は、給湯機5で給湯する湯量を少なくするとともに、エアコン21や照明23等の消費電力についても見直す。
 上記要領で、家族スケジュールに基づく消費電力量の補正が完了すると、実測値に基づく消費電力量の補正を実施する。具体的には、現時刻から遡り2時間前までの消費電力量誤差(2時間の平均消費電力量と2時間の予測消費電力量との差)に基づき、以降の消費電力量を予測する。これは、以下の理由に基づく。消費電力量の予測をする際の誤差要因は、家族スケジュールに加え、天気(特に気温)が大きく係わる。特に、夏季や冬季はエアコン21等の空調設備の消費電力量が大きく変わる。例えば、気温が高い場合、あるいは低い場合は、エアコン21を使用する時間が長くなるとともに、気温が高い、あるいは低いため消費電力も上昇する。
Then, using the actual load power consumption from midnight to the current time (see FIG. 21B), the predicted value of the load power consumption shown in FIG. 21A is corrected. At this time, in the first embodiment, the family schedule managed by the family schedule management unit 121 is referred to. For example, when the father does not go home on a business trip, the amount of hot water supplied by the water heater 5 is reduced and the power consumption of the air conditioner 21 and the lighting 23 is also reviewed.
When the correction of the power consumption based on the family schedule is completed as described above, the power consumption is corrected based on the actual measurement value. Specifically, the subsequent power consumption is predicted on the basis of the power consumption error from the current time to 2 hours before going back (the difference between the average power consumption for 2 hours and the predicted power consumption for 2 hours). This is based on the following reason. The error factor in predicting the power consumption is largely related to the weather (particularly the temperature) in addition to the family schedule. In particular, the power consumption of the air conditioning equipment such as the air conditioner 21 changes greatly in summer and winter. For example, when the temperature is high or low, the time for using the air conditioner 21 becomes long, and the power consumption increases because the temperature is high or low.
 よって、この実施の形態1では、過去2時間の平均消費電力量の誤差である、2時間の平均消費電力量から2時間の予測消費電力量を差し引いた差分を補正値k3とする。そして、図21(c)に示すように、現時刻以降の負荷消費電力量の予測値(予測消費電力)に補正値k3を加えることで誤差の補正を行う。
 なお、負荷消費電力量の予測においては、誤差値をそのまま補正値に用いて予測値に加える。これは、上述したように、消費電力量の誤差は、エアコン21や照明23等の運転時間、および個別の負荷機器20の消費電力の変動に起因するものが大きいためである。例えば、予定外の時間からエアコン21が動作する、あるいは気温が高い(あるいは低い)ためエアコン21の消費電力が予定より多くなるなど個別の負荷機器20の消費電力量増加に起因して負荷消費電力量は増加する。
 この実施の形態1では、実測結果との平均誤差を補正値k3として負荷消費電力量の予測値に加算するよう構成した。また、家族のスケジュールに基づき補正を加えることで負荷消費電力量の予測誤差の最小化を図っている(ステップS38)。
Therefore, in the first embodiment, a difference obtained by subtracting the predicted power consumption for 2 hours from the average power consumption for 2 hours, which is an error of the average power consumption for the past 2 hours, is set as the correction value k3. Then, as shown in FIG. 21C, the error is corrected by adding the correction value k3 to the predicted value (predicted power consumption) of the load power consumption after the current time.
In the prediction of the load power consumption, the error value is directly used as a correction value and added to the predicted value. This is because, as described above, the error in the power consumption is largely due to the operating time of the air conditioner 21 and the lighting 23 and the fluctuations in the power consumption of the individual load devices 20. For example, the load power consumption is caused by an increase in the power consumption of the individual load device 20 such that the air conditioner 21 operates from an unscheduled time or the power consumption of the air conditioner 21 is higher than planned because the temperature is high (or low). The amount increases.
In the first embodiment, the average error with the actual measurement result is added to the predicted value of the load power consumption as the correction value k3. Moreover, the prediction error of the load power consumption is minimized by adding a correction based on the family schedule (step S38).
 負荷消費電力予測部202は、負荷消費電力の予測値の補正が完了するとその旨を運転計画作成部206に通知する。運転計画作成部206は、負荷消費電力予測部202、およびPV発電電力予測部203から取得した本日の負荷消費電力量およびPV発電電力量の予測結果から、現時刻以降の30分毎のPV余剰電力を予測する。具体的には、PV余剰電力として(PV発電電力予測結果-負荷消費電力予測結果)を算出する(ステップS39)。
 PV余剰電力の予測が終了すると、運転計画作成部206は蓄電池3および給湯機5の運転計画の作成を行う(ステップS40)。
When the correction of the predicted value of load power consumption is completed, the load power consumption prediction unit 202 notifies the operation plan creation unit 206 to that effect. The operation plan creation unit 206 calculates the surplus PV every 30 minutes after the current time from the prediction results of today's load power consumption and PV power generation amount obtained from the load power consumption prediction unit 202 and the PV power generation power prediction unit 203. Predict power. Specifically, (PV generation power prediction result−load power consumption prediction result) is calculated as PV surplus power (step S39).
When the prediction of the PV surplus power is completed, the operation plan creation unit 206 creates an operation plan for the storage battery 3 and the water heater 5 (step S40).
 以下、図22を用いて蓄電池3および給湯機5の運転計画作成フローを説明する。この運転計画作成フロー(ステップS41~ステップS53)は図16に示すステップS40を詳細に示すものである。また図23、図24、図25および図26は、図22に示すフロー図の部分詳細フロー図である。
 なお、この実施の形態1では、深夜電力時間帯が始まる深夜23時から24時間分の運転計画を作成する。
 蓄電池3および給湯機5の運転計画作成が開始されると、運転計画部118内の運転計画作成部206は、給湯機5の情報を収集する。具体的には、家族スケジュール管理部121から、給湯機5の使用計画である使用時間および使用湯量を取得する。図27に、給湯機5の使用計画の一例を示す。なお、家族スケジュールに基づき、例えばお父さんが出張で不在等の場合は、使用湯量を少なく修正するものとする。
 そして、給湯機5の使用計画を入手すると、運転計画作成部206は水温情報を元に現在の蓄熱量を求める。なお、翌日の給湯機5の運転計画を立てる際の水温は、給湯機5内の図示していない水温計で予め定められた時間に測定した水温を使用するものとする(ステップS41)。
Hereinafter, the operation plan creation flow of the storage battery 3 and the water heater 5 will be described with reference to FIG. This operation plan creation flow (step S41 to step S53) shows step S40 shown in FIG. 16 in detail. 23, 24, 25, and 26 are partial detailed flowcharts of the flowchart shown in FIG.
In the first embodiment, an operation plan for 24 hours is created from 23:00 at midnight when the midnight power time period starts.
When the operation plan creation of the storage battery 3 and the water heater 5 is started, the operation plan creation unit 206 in the operation plan unit 118 collects information on the water heater 5. Specifically, the usage time and the amount of hot water used, which are the usage plans for the water heater 5, are acquired from the family schedule management unit 121. In FIG. 27, an example of the use plan of the water heater 5 is shown. Based on the family schedule, for example, when the father is away on a business trip, the amount of hot water used is corrected to be small.
And if the use plan of the water heater 5 is acquired, the operation plan preparation part 206 calculates | requires the present amount of heat storage based on water temperature information. In addition, the water temperature at the time of making the operation plan of the water heater 5 on the next day shall use the water temperature measured at the predetermined time with the water thermometer which is not illustrated in the water heater 5 (step S41).
 次に、運転計画作成部206は、図12で示したような給湯機5の特性情報の収集を実施する。この実施の形態1では、給湯機5の特性情報はクラウドサーバ31に記憶されているものとする。通常、給湯機5は深夜電力時間帯の安い電力を使用してお湯を沸かし、使用開始までに損失した損失熱量については使用前に追い焚きするよう構成されているため、自身の特性データを内部に記憶していない場合が多い。よって、この実施の形態1では、給湯機5の特性情報をクラウドサーバ31から取得するものとした。
 なお、ステップS41にて取得した給湯機5の情報(使用湯量、使用時間および蓄熱量)、および給湯機5の特性情報は給湯機モデル205に入力する(ステップS42)。
Next, the operation plan creation unit 206 collects characteristic information of the water heater 5 as shown in FIG. In the first embodiment, it is assumed that the characteristic information of the water heater 5 is stored in the cloud server 31. Normally, the water heater 5 is configured to boil hot water using cheap power in the late-night power hours, and to recapture the amount of heat lost until the start of use before use. In many cases, it is not remembered. Therefore, in the first embodiment, the characteristic information of the water heater 5 is acquired from the cloud server 31.
In addition, the information (the amount of hot water used, the usage time, and the amount of stored heat) of the water heater 5 acquired in step S41 and the characteristic information of the water heater 5 are input to the water heater model 205 (step S42).
 運転計画作成部206は、給湯機5の特性情報の取得を完了すると、蓄電池3のさらなる情報を取得する。具体的には、後述する蓄電池3の運転計画から算出した本日23時の蓄電電力量予測結果、昨日終了時に算出した蓄電池3の容量維持率、蓄電池パワコン効率(蓄電池3および蓄電池パワコン4の両者の損失から求めた効率で、充電電力量に対する放電可能電力量の割合)、および蓄電池3の容量情報を取得する。
 この実施の形態1では、毎日23時に、1日の蓄電池3の動作履歴および計測結果から容量維持率を推定するものとして説明する。容量維持率は、23時の時点で、24時間の蓄電池3の充放電履歴、蓄電池セル温度からCPU110が算出し、運転計画作成部206に通知する。なお、容量維持率の計算方法の説明は省略する。
 また、蓄電池パワコン効率は、電力計測部116にて、充電電流、放電電流、およびSoC情報から算出するものとする。なお、蓄電池パワコン効率の算出方法はこれに限るものではなく、予め蓄電池パワコン4に記憶しておき、Echonet Lite通信I/F部113介して取得しても良いことは言うまでもない(ステップS43)。
When the operation plan creation unit 206 completes the acquisition of the characteristic information of the water heater 5, the operation plan creation unit 206 acquires further information of the storage battery 3. Specifically, the storage power amount prediction result at 23:00 today calculated from the operation plan of the storage battery 3 described later, the capacity maintenance rate of the storage battery 3 calculated at the end of yesterday, the storage battery power control efficiency (both the storage battery 3 and the storage battery power control 4 The ratio of the dischargeable electric energy to the charge electric energy) and the capacity information of the storage battery 3 are obtained with the efficiency obtained from the loss.
In the first embodiment, description will be made on the assumption that the capacity maintenance rate is estimated from the operation history and measurement result of the storage battery 3 on the 1st day at 23 o'clock every day. The capacity maintenance rate is calculated by the CPU 110 from the charge / discharge history of the storage battery 3 for 24 hours and the storage battery cell temperature at 23:00, and notifies the operation plan creation unit 206 of the calculated capacity maintenance rate. Note that a description of the method of calculating the capacity maintenance rate is omitted.
Further, the storage battery power control efficiency is calculated by the power measuring unit 116 from the charging current, the discharging current, and the SoC information. In addition, the calculation method of storage battery power conditioner is not restricted to this, It cannot be overemphasized that it memorize | stores in the storage battery power conditioner 4 beforehand, and you may acquire via the Echonet Lite communication I / F part 113 (step S43).
 次に、運転計画作成部206は、図6~図8で示したような蓄電池3の特性情報を取得する。この実施の形態1では、蓄電池パワコン4からEchonet Lite通信I/F部113を介して蓄電池3の特性情報を取得する。
 蓄電機器Bでは、蓄電池3の不必要な劣化を抑えるため、蓄電池パワコン4内、あるいは蓄電池3内のBMU305内の蓄電池制御回路303に蓄電池3の特性情報を記憶しているものとする。なお、取得した蓄電池3の特性情報をクラウドサーバ31に記憶しておき、クラウドサーバ31から入手するよう構成しても良いことは言うまでもない。
 ステップS43にて取得した蓄電池3の情報、および蓄電池3の特性情報は蓄電池モデル204に入力する(ステップS44)。
Next, the operation plan creation unit 206 acquires the characteristic information of the storage battery 3 as shown in FIGS. In the first embodiment, characteristic information of the storage battery 3 is acquired from the storage battery power conditioner 4 via the Echonet Lite communication I / F unit 113.
In the power storage device B, in order to suppress unnecessary deterioration of the storage battery 3, it is assumed that characteristic information of the storage battery 3 is stored in the storage battery power control 4 or the storage battery control circuit 303 in the BMU 305 in the storage battery 3. Needless to say, the acquired characteristic information of the storage battery 3 may be stored in the cloud server 31 and obtained from the cloud server 31.
The information on the storage battery 3 and the characteristic information on the storage battery 3 acquired in step S43 are input to the storage battery model 204 (step S44).
 次に、運転計画作成部206は、蓄電池モデル204において蓄電池3のモデルを生成する。具体的には、蓄電池モデル204において、蓄電池3の容量維持率情報を元に蓄電池3の劣化の進度を推定し、推定結果に基づきステップS44で入手した蓄電池特性情報に補正を加える。
 蓄電池3は、上述したように蓄電池セル温度、蓄電電力量により充放電電流の最大値が変わる。また、蓄電池セル温度により、充電可能な最大SoC値も変わる。更に、上記充放電電流値の最大値、充電可能な最大SoC値も蓄電池3の劣化進度によって変わる。よって、この実施の形態1では、劣化進度により、図8(a)、図8(b)に示す蓄電池充放電電流の制限テーブルを変更する。
Next, the operation plan creation unit 206 generates a model of the storage battery 3 in the storage battery model 204. Specifically, in the storage battery model 204, the degree of deterioration of the storage battery 3 is estimated based on the capacity maintenance rate information of the storage battery 3, and the storage battery characteristic information obtained in step S44 is corrected based on the estimation result.
As described above, the maximum value of the charge / discharge current of the storage battery 3 varies depending on the storage battery cell temperature and the amount of stored power. Moreover, the maximum SoC value which can be charged also changes with storage battery cell temperatures. Furthermore, the maximum value of the charge / discharge current value and the maximum SoC value that can be charged also vary depending on the degree of deterioration of the storage battery 3. Therefore, in the first embodiment, the storage battery charge / discharge current limit table shown in FIGS. 8A and 8B is changed according to the deterioration progress.
 具体的には、劣化が進んだ蓄電池3に対して、充電終止電圧を新品のものに比べ低くする。即ち、図6に示す定電流充電から定電圧充電に切り換える蓄電池電圧を低くするとともに、SoCについても1.0(満充電)になる前に充電を終了する。また、最大充放電電流も低く抑えるように、図8(a)、図8(b)に示す蓄電池充放電電流の制限テーブルを変更する。そして、該変更した蓄電池充放電電流の制限テーブルを元に蓄電池3をモデル化する。これにより、蓄電池3の温度特性、SoC特性(例えば、図6(b)に示す特性)に加え、蓄電池劣化も考慮したモデルとすることができる。
 なお、蓄電池モデルの更新は、毎回実施するのではなく、例えば10日に1回、あるいは1カ月に1回、あるいはSoCは0.01変化した場合等でも良いことは言うまでもない(ステップS45)。
Specifically, the end-of-charge voltage is set lower for the storage battery 3 that has deteriorated than for a new battery. That is, the storage battery voltage to be switched from the constant current charging to the constant voltage charging shown in FIG. 6 is lowered, and the charging ends before SoC reaches 1.0 (full charge). Further, the storage battery charge / discharge current limit table shown in FIGS. 8A and 8B is changed so as to keep the maximum charge / discharge current low. Then, the storage battery 3 is modeled based on the changed storage battery charge / discharge current limit table. Thereby, in addition to the temperature characteristics and SoC characteristics of the storage battery 3 (for example, the characteristics shown in FIG. 6B), a model that takes into account the deterioration of the storage battery can be obtained.
Needless to say, the storage battery model is not updated every time, for example, once every 10 days, once a month, or when the SoC changes by 0.01 (step S45).
 蓄電池モデル204による蓄電池3のモデルの生成を完了すると、運転計画作成部206は、気温の予測結果および蓄電池モデル204を使用して、気温に基づく蓄電池3の運転制約条件を生成する(ステップS46)。
 以下、図23を用いて、気温に基づく蓄電池運転制約条件の生成フローを説明する。この蓄電池運転制約条件の生成フロー(ステップS61~ステップS66)は図22に示すステップS46を詳細に示すものである。
 運転計画作成部206は、蓄電池3の運転制約条件の生成を開始すると、気温予測情報(実測結果に基づく補正後の気温予測)から、各時刻の蓄電池セル温度を予測する。この実施の形態1では、各充放電電流に対する蓄電池セル301の気温に対する温度上昇分を、高温側の蓄電池セル301と低温側の蓄電池セル301とに分けて、蓄電池モデル204内で学習しておく。そして、定格電流(最大充放電電流)で蓄電池3を充放電した場合の蓄電池セル301の温度上昇分を予測気温に加算し、高温側の蓄電池セル301および低温側の蓄電池セル301について蓄電池セル温度、即ち最大と最小の蓄電池セル温度を求める(ステップS61)。
When the generation of the model of the storage battery 3 by the storage battery model 204 is completed, the operation plan creation unit 206 generates an operation constraint condition of the storage battery 3 based on the temperature using the prediction result of the temperature and the storage battery model 204 (step S46). .
Hereinafter, the generation flow of the storage battery operation restriction condition based on the temperature will be described with reference to FIG. This storage battery operation constraint generation flow (steps S61 to S66) shows step S46 shown in FIG. 22 in detail.
The operation plan creation unit 206 predicts the storage cell temperature at each time from the temperature prediction information (corrected temperature prediction based on the actual measurement result) when the generation of the operation constraint condition of the storage battery 3 is started. In the first embodiment, the temperature increase with respect to the temperature of the storage battery cell 301 with respect to each charge / discharge current is divided into the storage battery cell 301 on the high temperature side and the storage battery cell 301 on the low temperature side, and is learned in the storage battery model 204. . And the temperature rise of the storage battery cell 301 when charging / discharging the storage battery 3 with the rated current (maximum charge / discharge current) is added to the predicted temperature, and the storage battery cell temperature for the high-temperature storage battery cell 301 and the low-temperature storage battery cell 301 That is, the maximum and minimum storage battery cell temperatures are obtained (step S61).
 続いて、予測された最大蓄電池セル温度、最小蓄電池セル温度のそれぞれの最大充放電電流を、蓄電池充放電電流の制限テーブル(図8(a)、図8(b)参照)から求める。そして、より制限の厳しい充放電電流値を運転制約条件とする。
 図8(a)、図8(b)に示す充放電電流の制限特性はSoCが0.2~0.8までの間はほぼ一定であるため、この実施の形態1では、充放電電流の制限値は、SoCが0.5の場合について求める。なお、充放電電流の制限値は他のSoC値、あるいはSoC値毎に求めても良いことは言うまでもない。
 また、この実施の形態1では、運転制約条件を決定する際、最大充放電電流で充放電を行った場合について説明するが、これに限るものではなく、例えばスタンバイ状態の損失電力を元に蓄電池セル301の温度を推定するように構成しても良いことは言うまでもない。なお、最大充放電電流を使用する理由は以下のとおりである。上述したように、蓄電池3の劣化は一般に30℃を越える高温の環境下では10℃温度が上昇すると蓄電池劣化は2倍進むといわれている。従って、蓄電池劣化の進行を抑えるため、蓄電池3の運転計画を作成する場合はより厳しい条件で制約条件を決定する。
Subsequently, the respective maximum charge / discharge currents of the predicted maximum storage battery cell temperature and minimum storage battery cell temperature are obtained from the storage battery charge / discharge current limit tables (see FIGS. 8A and 8B). Then, a more restrictive charge / discharge current value is set as an operation constraint condition.
Since the limiting characteristics of the charging / discharging current shown in FIGS. 8A and 8B are substantially constant when SoC is 0.2 to 0.8, in the first embodiment, the charging / discharging current is The limit value is obtained when SoC is 0.5. Needless to say, the limit value of the charge / discharge current may be obtained for each other SoC value or each SoC value.
Moreover, in this Embodiment 1, when determining a driving | running constraint condition, although the case where charging / discharging is performed by the maximum charging / discharging electric current is demonstrated, it is not restricted to this, For example, a storage battery based on the loss electric power of a standby state Needless to say, the temperature of the cell 301 may be estimated. The reason for using the maximum charge / discharge current is as follows. As described above, it is said that the deterioration of the storage battery 3 is generally doubled when the temperature rises by 10 ° C. in a high temperature environment exceeding 30 ° C. Therefore, in order to suppress the progress of deterioration of the storage battery, when creating an operation plan of the storage battery 3, the constraint conditions are determined under more severe conditions.
 さらに、各時刻の最大充放電電流の中で、最も厳しい、即ち最も低くなる条件の最大充放電電流(高温側と低温側の最大充放電電流を比較して小さい方)を選択し、該選択した最大充放電電流について充放電を行い、最終的に充放電電流(充電電流、放電電流)が「0」となるSoCを求める。例えば、充電時は、図8(a)に示すようにSoCが大きくなると定電流充電から定電圧充電に切り替わり最大充電電流値が小さくなって最終的に0になる。この場合、該SoCに相当する充電終止電圧(第1充電終止電圧)、放電終止電圧についても求める。なお、上述では充放電電流が「0」となるSoCを求めたがこれに限るものではなく、充放電電流が所定値未満になったSoCを求めても良いことは言うまでもない。
 通常、気温が室温以上の夏期では、予測された最大蓄電池セル温度が1日の最高温度となる時刻の最大充放電電流が採用され、気温が室温未満の冬期では、予測された最小蓄電池セル温度が1日の最低となる時刻での最大充放電電流が採用される。
 即ち、ステップS61で予測した各時刻の最大蓄電池セル温度および最小蓄電池セル温度の情報を元に、蓄電池3の運転制約条件(各時刻における最大充放電電流(最大充電電流および最大放電電流)および第1充電終止電圧、放電終止電圧)を決定する。
 なお、蓄電池3の劣化は高温環境下での蓄電池使用が顕著であるため、第1充電終止電圧、放電終止電圧は、季節に拘わらず、気温あるいは最大蓄電池セル温度の予測結果が1日の最高温度である時の最大充電電流に基づくSoCから決定しても良い(ステップS62)。
 次に、運転計画作成部206はPV余剰電力が発生する時間帯を確認する。具体的には、ステップS36で求めたPV発電電力量の予測結果から、ステップS38で算出した負荷消費電力量の予測結果(補正後)を減算することでPV余剰電力が発生する時間帯を求める(ステップS63)。
Further, among the maximum charge / discharge currents at each time, the maximum charge / discharge current under the strictest condition, that is, the lowest condition is selected (the smaller one compared with the maximum charge / discharge current on the high temperature side and the low temperature side), and the selection is made. Charging / discharging is performed for the maximum charging / discharging current, and SoC at which the charging / discharging current (charging current, discharging current) finally becomes “0” is obtained. For example, at the time of charging, as shown in FIG. 8A, when the SoC increases, the constant current charging is switched to the constant voltage charging, and the maximum charging current value decreases and finally becomes zero. In this case, a charge end voltage (first charge end voltage) and a discharge end voltage corresponding to the SoC are also obtained. In the above description, the SoC at which the charge / discharge current is “0” is obtained. However, the present invention is not limited to this, and it is needless to say that the SoC at which the charge / discharge current is less than a predetermined value may be obtained.
Usually, in summer when the temperature is higher than room temperature, the maximum charge / discharge current at the time when the predicted maximum storage battery cell temperature reaches the maximum temperature of the day is adopted, and in the winter when the temperature is below room temperature, the predicted minimum storage battery cell temperature is used. The maximum charging / discharging current at the time when becomes the lowest of the day is adopted.
That is, based on the information on the maximum storage battery cell temperature and the minimum storage battery cell temperature at each time predicted in step S61, the operation constraint conditions of the storage battery 3 (maximum charge / discharge current (maximum charge current and maximum discharge current) at each time and 1 end-of-charge voltage, end-of-discharge voltage).
The deterioration of the storage battery 3 is remarkable when the storage battery is used in a high-temperature environment. Therefore, the prediction result of the temperature or maximum storage battery cell temperature is the highest in the day regardless of the season. You may determine from SoC based on the maximum charging current at the time of temperature (step S62).
Next, the operation plan preparation part 206 confirms the time slot | zone when PV surplus electric power generate | occur | produces. Specifically, a time zone in which PV surplus power is generated is obtained by subtracting the prediction result (after correction) of the load power consumption calculated in step S38 from the prediction result of the PV power generation power calculated in step S36. (Step S63).
 次に、運転計画作成部206は、PV余剰電力の発生時間帯終了から深夜電力時間帯になるまでの、給湯機5を含む負荷機器20へ蓄電池3から放電する電力量を求める。
 具体的には、まず、ステップS38で算出した負荷消費電力量の予測結果から、PV余剰電力の発生時間帯終了から深夜電力時間帯になるまでの期間における各時刻の蓄電池3の放電電力を、放電時の損失電力を考慮して、以下のように求める。
 放電電力=(負荷消費電力量の予測結果-PV発電電力量の予測結果)/(放電時の蓄電機器Bの効率)
 そして、求めた放電電力を蓄電池3の電圧で除算することで各時刻の蓄電池3の放電電流を算出する。この放電電流とステップS62で決定した最大放電電流とを比較し、算出した放電電流が最大放電電流を越える場合は、最大放電電流を蓄電池3からの放電電流に設定し、算出した放電電流が最大放電電流以下の場合は、算出した放電電流を蓄電池3からの放電電流に設定する。各時刻における蓄電池3からの放電電流が決定されると、各時刻の放電電流から、PV余剰電力発生時間帯終了から深夜電力時間帯になるまでの蓄電池3からの放電電力量を求める(ステップS64)。
Next, the operation plan preparation part 206 calculates | requires the electric energy discharged from the storage battery 3 to the load apparatus 20 containing the hot water heater 5 until it becomes the midnight electric power time zone from the generation | occurrence | production time zone of PV surplus electric power.
Specifically, first, from the prediction result of the load power consumption calculated in step S38, the discharge power of the storage battery 3 at each time in the period from the end of the PV surplus power generation time zone to the midnight power time zone, In consideration of the power loss during discharge, it is obtained as follows.
Discharge power = (Prediction result of load power consumption-PV power generation energy prediction result) / (Efficiency of power storage device B during discharge)
Then, the discharge current of the storage battery 3 at each time is calculated by dividing the obtained discharge power by the voltage of the storage battery 3. This discharge current is compared with the maximum discharge current determined in step S62. If the calculated discharge current exceeds the maximum discharge current, the maximum discharge current is set to the discharge current from the storage battery 3, and the calculated discharge current is the maximum. In the case of the discharge current or less, the calculated discharge current is set to the discharge current from the storage battery 3. When the discharge current from the storage battery 3 at each time is determined, the amount of discharge power from the storage battery 3 from the end of the PV surplus power generation time period until the midnight power time period is obtained from the discharge current at each time (step S64). ).
 蓄電池3からの放電電力量の算出が完了すると、運転計画作成部206は、放電電力量に基づき蓄電池3への充電電力量を求める。具体的には、放電時と同様に充電時の損失電力を考慮して、蓄電池3への充電電力量を以下のように求める。
 充電電力量=(放電電力量の算出結果)/(充電時の蓄電機器Bの効率)
 充電電力量の算出が完了すると、充電電力量からSoCを算出する。そして、該SoCの値に相当する充電終止電圧(第2充電終止電圧)を算出する。
 蓄電池3は上述したように蓄電池劣化により最大充電電力量が変わる。また、リチュウムイオンバッテリの場合、蓄電池電圧(蓄電池セル電圧)はSoCによって一義的に決まる。この実施の形態1では、充電電力量と現在の蓄電池3の容量からSoCを求め充電終止電圧を算出するよう構成する。これにより、蓄電池劣化の進度に拘わらず、確実に充電終止電圧を算出できる(ステップS65)。
When the calculation of the discharge power amount from the storage battery 3 is completed, the operation plan creation unit 206 obtains the charge power amount to the storage battery 3 based on the discharge power amount. Specifically, the amount of power to be charged to the storage battery 3 is determined as follows in consideration of the power loss during charging as in the case of discharging.
Charging power amount = (calculation result of discharging power amount) / (efficiency of power storage device B during charging)
When the calculation of the charging power amount is completed, the SoC is calculated from the charging power amount. Then, a charge end voltage (second charge end voltage) corresponding to the SoC value is calculated.
As described above, the maximum charge power amount of the storage battery 3 changes due to deterioration of the storage battery. In the case of a lithium ion battery, the storage battery voltage (storage battery cell voltage) is uniquely determined by the SoC. In this Embodiment 1, it is comprised so that SoC may be calculated | required from the amount of charging electric energy and the capacity | capacitance of the present storage battery 3, and a charge end voltage may be calculated. Thus, the end-of-charge voltage can be reliably calculated regardless of the progress of storage battery deterioration (step S65).
 そして、ステップS65で算出した充電終止電圧(第2充電終止電圧)がステップS62で算出した充電終止電圧(第1充電終止電圧)以下の場合は、ステップS65で算出した充電終止電圧を、蓄電池3の運転制約条件の充電終止電圧に採用する。即ち、2つの充電終止電圧の内、低い方を運転制約条件の充電終止電圧に決定する(ステップS66)。 When the charge end voltage (second charge end voltage) calculated in step S65 is equal to or lower than the charge end voltage (first charge end voltage) calculated in step S62, the charge end voltage calculated in step S65 is stored in the storage battery 3. This is used as the end-of-charge voltage in the operation constraint conditions. That is, the lower one of the two charge end voltages is determined as the charge end voltage of the operation restriction condition (step S66).
 図22に戻り説明を続ける。
 ステップS46(ステップS61~ステップS66)にて蓄電池3の運転制約条件(最大充放電電流、充電終止電圧、放電終止電圧)の生成が完了すると、運転計画作成部206は、給湯機5の給湯量を求める。
 具体的には、ステップS41で収集した家族スケジュール情報と、給湯機5の使用計画(図22参照)および現在の蓄熱量とから、必要となる湯量および給湯量(蓄熱量)を求める。なお、この実施の形態1では、図22に示す給湯機5の使用計画について、負荷消費電力学習管理部200で各月の曜日毎に使用湯量を時刻ごとに学習して求める。学習に際しては、家族スケジュール管理部121より出力される家族スケジュールを加味する(ステップS47)。
Returning to FIG. 22, the description will be continued.
When the generation of the operation constraint conditions (maximum charge / discharge current, charge end voltage, discharge end voltage) of the storage battery 3 is completed in step S46 (steps S61 to S66), the operation plan creation unit 206 displays the hot water supply amount of the water heater 5 Ask for.
Specifically, the required hot water amount and hot water supply amount (heat storage amount) are obtained from the family schedule information collected in step S41, the use plan of the water heater 5 (see FIG. 22), and the current heat storage amount. In the first embodiment, with respect to the usage plan of the water heater 5 shown in FIG. 22, the load power consumption learning management unit 200 learns and calculates the amount of hot water used for each day of the month for each time of day. In learning, the family schedule output from the family schedule management unit 121 is taken into account (step S47).
 給湯機5の給湯量(蓄熱量)を算出すると、運転計画作成部206は、給湯機5の運転パターンを作成する(ステップS48)。
 一般に、給湯機5は1日に運転、停止を繰り返し使用すると機器寿命が短くなるため、起動および停止は1日2~3回程度に制限して使用する。この実施の形態1では、給湯機5の1日の起動停止回数を最大2回とする。この場合、ユーザが風呂の追い焚きで使用する場合等を考慮し運転計画では2回に制限し、ユーザからの追い焚き要求がある場合は、給湯機5の起動に制限を設けないものとする。
 この実施の形態1では、運転計画を示す運転パターンを予め複数作成し、運転パターンを選択することで運転計画を作成するものとする。ここでは、深夜電力時間帯の給湯と昼間時間帯の給湯との2つの運転パターンを作成する。また、給湯機モデル205は給湯機5の複数種類の運転計画(運転パターン)を管理する。
When the hot water supply amount (heat storage amount) of the water heater 5 is calculated, the operation plan creation unit 206 creates an operation pattern of the water heater 5 (step S48).
In general, the hot water heater 5 has a short device life if it is repeatedly operated and stopped on a single day, so that the start and stop are limited to about 2 to 3 times a day. In the first embodiment, the hot water heater 5 is started and stopped a maximum of two times a day. In this case, in consideration of the case where the user uses the bath for reheating, etc., the operation plan is limited to twice. .
In the first embodiment, a plurality of operation patterns indicating an operation plan are created in advance, and the operation plan is created by selecting the operation pattern. Here, two operation patterns of hot water supply in the late-night power hours and hot water supply in the daytime hours are created. The water heater model 205 manages a plurality of types of operation plans (operation patterns) of the water heater 5.
 給湯機モデル205の動作を以下に説明する。
 上述したように、給湯機5はヒートポンプサイクルを利用するため、図12で示したように気温によりCOPが変わる。例えば、3℃と9℃では1.5倍以上COPが変わる場合もある。従って、給湯機モデル205では、ステップS37にて算出した気温予測情報から各時刻の給湯機5の消費電力を求める。そして、ステップS39で求めたPV余剰電力予測情報から、買電電力が設定値以下で給湯機5が沸き上げ可能な時間帯を求める。そして、沸き上げ可能な時間帯における各時刻(この実施の形態1では30分単位)の平均使用電力および蓄熱量を算出する。そして、この算出結果は、各運転パターンについて算出し、その中から電力料金の削減効果の高い運転パターンを選択して決定する。なお、この実施の形態1では、電力料金体系は、深夜給湯を実施するよりも給湯機5のCOP特性を考慮しPV余剰電力で給湯したほうが経済的であるものとして説明する。
The operation of the water heater model 205 will be described below.
As described above, since the water heater 5 uses the heat pump cycle, the COP changes depending on the temperature as shown in FIG. For example, the COP may change 1.5 times or more at 3 ° C and 9 ° C. Therefore, in the water heater model 205, the power consumption of the water heater 5 at each time is obtained from the temperature prediction information calculated in step S37. And from the PV surplus electric power prediction information calculated | required by step S39, the time slot | zone when the electric power purchase power is below a setting value and the water heater 5 can boil is calculated | required. And the average electric power used and the amount of heat storage at each time (in this Embodiment 1 unit of 30 minutes) in the time zone which can be heated are calculated. Then, the calculation result is calculated for each operation pattern, and an operation pattern having a high power charge reduction effect is selected and determined. In the first embodiment, the power rate system will be described as being more economical when hot water is supplied with PV surplus power in consideration of the COP characteristics of the hot water heater 5 than when midnight hot water is used.
 以下、図24を用いて給湯機5の運転パターン作成フローを説明する。この給湯機5の運転パターン作成フロー(ステップS71~ステップS79)は図22に示すステップS48を詳細に示すもので、2つの運転パターンを作成する。
 まず運転計画作成部206は、深夜電力時間帯での給湯計画に基づく運転パターン(第1運転パターン)が作成済みかを確認する(ステップS71)。
Hereinafter, the operation pattern creation flow of the water heater 5 will be described with reference to FIG. The operation pattern creation flow (steps S71 to S79) of the water heater 5 shows step S48 shown in FIG. 22 in detail, and creates two operation patterns.
First, the operation plan creation unit 206 confirms whether or not an operation pattern (first operation pattern) based on a hot water supply plan in the late-night power hours has been created (step S71).
 ステップS71で確認の結果、まだ未作成であれば、運転計画作成部206は、深夜電力時間帯での給湯計画に基づく運転パターン(第1運転パターン)の作成を開始し、給湯機モデル205に対して、ステップS47で算出した給湯機5の給湯量(蓄熱量)を確保するため、深夜電力時間帯の各時刻における消費電力、給湯量(蓄熱量)を算出するよう指示を出す。ステップS37で求めた気温予測結果、および給湯機5の特性情報(図12参照)に基づいて、深夜電力時間帯の各時刻における給湯機5の消費電力、および給湯量の算出が完了すると、深夜電力時間帯の給湯開始、終了時刻の算出を開始する。
 具体的には、深夜電力時間帯が終了する6時30分から7時の期間の気温予測結果から、図12(b)に示す給湯機5の特性情報を用いて、その期間の消費電力(負荷率)およびCOPを求める。そして、求めた消費電力とCOPから給湯量を算出する。次いで、6時から6時30分の期間における給湯量を同様に算出する。同様の動作を順次時間をずらして繰り返し、ステップS47で求めた給湯量(蓄熱量)が確保できるまで行い、深夜給湯の際の開始時刻を求める。この場合、終了時刻は深夜電力時間帯の終了時刻である7時とする(ステップS72)。
 深夜電力時間帯の給湯開始、終了時刻の算出の際、消費電力についても順次加算し、深夜電力時間帯での給湯に必要な消費電力を求める。これにより深夜電力時間帯の給湯量(蓄熱量)、給湯開始、終了時刻、および消費電力の算出が完了する(ステップS73)。
As a result of the confirmation in step S71, if it is not yet created, the operation plan creation unit 206 starts creating an operation pattern (first operation pattern) based on the hot water supply plan in the midnight power time zone, and sets the hot water heater model 205 to On the other hand, in order to secure the hot water supply amount (heat storage amount) of the water heater 5 calculated in step S47, an instruction is issued to calculate the power consumption and hot water supply amount (heat storage amount) at each time in the midnight power time zone. When the calculation of the power consumption and amount of hot water supply at each time in the midnight power time zone is completed based on the temperature prediction result obtained in step S37 and the characteristic information of the water heater 5 (see FIG. 12), midnight Start of hot water supply start and end time calculation in the electric power time zone.
Specifically, from the temperature prediction result in the period from 6:30 to 7:00 when the midnight power time period ends, the characteristic information of the water heater 5 shown in FIG. Rate) and COP. And the amount of hot water supply is calculated from the calculated | required power consumption and COP. Next, the amount of hot water supply during the period from 6 o'clock to 6:30 is calculated in the same manner. The same operation is repeated sequentially at different times until the hot water supply amount (heat storage amount) obtained in step S47 can be ensured, and the start time for late-night hot water supply is obtained. In this case, the end time is 7 o'clock, which is the end time of the midnight power time zone (step S72).
When calculating the start and end times of hot water supply during the midnight power hours, power consumption is also added sequentially to obtain the power consumption required for hot water supply during the midnight power hours. Thereby, the calculation of the hot water supply amount (heat storage amount), the hot water supply start time, the end time, and the power consumption in the midnight power time period is completed (step S73).
 ところで、深夜電力時間帯での給湯では、お風呂など大量にお湯を使用するまで、給湯終了から12時間以上の時間があり、その間の放熱量を回復する必要がある。この実施の形態1では、深夜給湯の場合は、お風呂など大量にお湯を使用する直前に沸き増しを行い、昼間給湯の場合は、COP値が高い昼間の時間帯にその分も含めて沸き上げを行うものとする。なお、昼間給湯の場合もお風呂など大量にお湯を使用する直前に沸き増しを行っても良いことは言うまでもない。
 深夜電力時間帯の給湯量(蓄熱量)、給湯開始、終了時刻、および消費電力の算出が完了すると、運転計画作成部206は、給湯機5の夜間使用前の沸き増し消費電力を求める。具体的には、深夜電力時間帯終了(7時)から大量にお湯を使用する夜間時間帯までの期間に、給湯機5から放熱する熱量を算出し、沸き増し時の給湯量(蓄熱量)とする。そして、給湯機モデル205は、沸き増しを行う時間帯の気温の予測結果を用いて、算出した沸き増し時の給湯量から沸き増しに必要となる消費電力量、および沸き増し開始、終了時刻を求める(ステップS74)。
By the way, in the hot water supply in the midnight power time zone, there is a time of 12 hours or more from the end of the hot water supply until a large amount of hot water such as a bath is used, and it is necessary to recover the heat radiation during that time. In the first embodiment, in the case of late-night hot water supply, boiling is increased immediately before using a large amount of hot water such as a bath. Shall be raised. Needless to say, in the case of hot water supply in the daytime, the water may be heated immediately before a large amount of hot water such as a bath is used.
When the calculation of the hot water supply amount (heat storage amount), the hot water supply start time, the end time, and the power consumption in the midnight power time period is completed, the operation plan creation unit 206 obtains the increased power consumption before the night use of the water heater 5. Specifically, the amount of heat radiated from the water heater 5 is calculated during the period from the end of the midnight power time period (7 o'clock) to the night time period when a large amount of hot water is used, and the amount of hot water supply (heat storage amount) And Then, the hot water heater model 205 uses the prediction result of the temperature in the time zone where boiling is performed to calculate the amount of power consumption required for boiling from the calculated amount of hot water to be heated and the start and end times of boiling. Obtained (step S74).
 運転計画作成部206は、ステップS72~ステップS74での算出結果により、深夜電力時間帯および大量にお湯を使用する夜間時間帯における給湯機5の運転パターン(第1運転パターン)を作成する。
 なお、この実施の形態1では、給湯機5の起動時間、停止時間、および起動時間中の時刻ごとの消費電力を求め、それを給湯機5の運転計画(運転パターン)とする(ステップS75)。
The operation plan creation unit 206 creates an operation pattern (first operation pattern) of the water heater 5 in the late-night power time period and the night time period when a large amount of hot water is used based on the calculation results in steps S72 to S74.
In the first embodiment, the start time, stop time, and power consumption for each time during the start time of the water heater 5 are obtained and set as the operation plan (operation pattern) of the water heater 5 (step S75). .
 第1運転パターンの作成が終了するとステップS71に戻る。
 ステップS71で確認の結果、第1運転パターンの作成が終了していれば、運転計画作成部206は、PV余剰電力の発生について確認する。この実施の形態1では、気温予測情報から各時刻の給湯機5の消費電力を求め、PV余剰電力から給湯機5の消費電力を差し引いた値が所定値以上である時間帯があるかを確認する(ステップS76)。このような時間帯がない場合は、給湯機5の昼間時間帯の給湯は無いものとして第2運転パターンを作成せず、給湯機5の運転パターン作成フローを終了する。
When the creation of the first operation pattern ends, the process returns to step S71.
As a result of the confirmation in step S71, if the creation of the first operation pattern is completed, the operation plan creation unit 206 confirms the generation of PV surplus power. In this Embodiment 1, the power consumption of the water heater 5 at each time is obtained from the temperature prediction information, and it is confirmed whether there is a time zone in which the value obtained by subtracting the power consumption of the water heater 5 from the PV surplus power is a predetermined value or more. (Step S76). If there is no such time zone, the second operation pattern is not created on the assumption that there is no hot water supply in the daytime time zone of the water heater 5, and the operation pattern creation flow of the water heater 5 is terminated.
 ステップS76にて、PV余剰電力から給湯機5の消費電力を差し引いた値が所定値以上である時間帯がある場合、運転計画作成部206は、PV余剰電力に基づく昼間時間帯の給湯開始、終了時刻を決定する。
 具体的には、気温予測情報から各時刻の給湯機5の消費電力を求め、PV余剰電力から給湯機5の消費電力を差し引いた値が所定値以上である時間帯を抽出し、抽出した各時間帯における消費電力および給湯量(蓄熱量)を算出する。さらに、仮にPV余剰電力で給湯機5の消費電力が賄えない場合の買電電力を算出する。そして、各時間帯の消費電力等の算出を終了すると、必要となる給湯量が確保でき、買電電力が最小になる給湯開始時刻、および終了時刻を決定する。なお、PV余剰電力による給湯では必要となる給湯量が確保できない場合は、昼間時間帯の給湯に加え、さらに深夜電力時間帯の給湯を行う必要があるため、昼間時間帯の給湯開始、終了時刻に加え、昼間時間帯の給湯量(蓄熱量)についても算出する(ステップS77)。
In step S76, when there is a time zone in which the value obtained by subtracting the power consumption of the water heater 5 from the PV surplus power is a predetermined value or more, the operation plan creation unit 206 starts the hot water supply in the daytime time zone based on the PV surplus power, Determine the end time.
Specifically, the power consumption of the water heater 5 at each time is obtained from the temperature prediction information, and the time zone in which the value obtained by subtracting the power consumption of the water heater 5 from the PV surplus power is a predetermined value or more is extracted and extracted. Power consumption and hot water supply amount (heat storage amount) in the time zone are calculated. Furthermore, the purchased power when the power consumption of the hot water heater 5 cannot be covered by the PV surplus power is calculated. And when calculation of the power consumption etc. of each time slot | zone is complete | finished, the hot-water supply amount which can be ensured can be ensured, and the hot-water supply start time and end time when electric power purchase power becomes the minimum are determined. If the amount of hot water required for hot water supply using PV surplus power cannot be ensured, in addition to hot water supply during the daytime hours, it is necessary to perform hot water supply during the midnight power hours. In addition, the hot water supply amount (heat storage amount) in the daytime time zone is also calculated (step S77).
 次に、運転計画作成部206は、ステップS47で求めた給湯量(蓄熱量)と、ステップS77で算出した昼間時間帯の給湯量(蓄熱量)とを比較し、深夜電力時間帯での給湯機5の給湯量(蓄熱量)を算出する(ステップS78)。
 深夜電力時間帯での給湯量(蓄熱量)の算出が完了すると、運転計画作成部206は、給湯機モデル205に対して、深夜電力時間帯の給湯開始、終了時刻を算出するよう指示する。給湯機モデル205は、深夜電力時間帯が終了する6時30分から7時の期間の気温予測結果から、図12に示す給湯機5の特性情報を用いて、その期間の消費電力(負荷率)およびCOPを求める。そして、求めた消費電力とCOPから給湯量を算出する。次いで、6時から6時30分の期間における給湯量を同様に算出する。同様の動作を順次時間をずらして繰り返し、ステップS78で求めた給湯量(蓄熱量)が確保できるまで行い、深夜給湯の際の開始時刻を求める。なお、終了時刻は深夜電力時間帯の終了時刻である7時とする。
 これにより、昼間時間帯および深夜電力時間帯における給湯機5の運転パターン(第2運転パターン)を作成する。なお、昼間時間帯の沸き上げで給湯量(蓄熱量)が確保できる場合は、ステップS78で求める給湯量(蓄熱量)は「0」であり、深夜電力時間帯での給湯を行わないことは言うまでもない(ステップS79)。
Next, the operation plan creation unit 206 compares the hot water supply amount (heat storage amount) obtained in step S47 with the hot water supply amount (heat storage amount) in the daytime period calculated in step S77, and hot water supply in the late-night power hours. The hot water supply amount (heat storage amount) of the machine 5 is calculated (step S78).
When the calculation of the hot water supply amount (heat storage amount) in the midnight power time period is completed, the operation plan creation unit 206 instructs the water heater model 205 to calculate the hot water supply start and end times in the midnight power time period. The water heater model 205 uses the characteristic information of the water heater 5 shown in FIG. 12 based on the temperature prediction result during the period from 6:30 to 7:00 when the midnight power period ends, and the power consumption (load factor) during that period. And COP. And the amount of hot water supply is calculated from the calculated | required power consumption and COP. Next, the amount of hot water supply during the period from 6 o'clock to 6:30 is calculated in the same manner. The same operation is sequentially repeated at different times until the amount of hot water supply (heat storage amount) obtained in step S78 can be secured, and the start time for late-night hot water supply is obtained. The end time is 7 o'clock, which is the end time of the midnight power time zone.
Thereby, the operation pattern (2nd operation pattern) of the water heater 5 in a daytime time zone and a midnight power time zone is created. If the amount of hot water supply (heat storage amount) can be secured by boiling in the daytime, the amount of hot water supply (heat storage amount) obtained in step S78 is “0”, and hot water supply is not performed in the midnight power hours. Needless to say, step S79.
 図22に戻り説明を続ける。
 ステップS48(ステップS71~ステップS79)にて給湯機5の運転パターン作成を完了すると、運転計画作成部206は、作成された2つの運転パターンについて、それぞれ蓄電池3の運転計画を作成する。
 まず、運転計画作成部206は、給湯機運転パターンを1つ選択する(ステップS49)。
 選択された運転パターンが給湯機モデル205から入力されると、運転計画作成部206は、ステップS45で生成した蓄電池3のモデルを用いて、蓄電池3の運転計画を作成する(ステップS50)。なお、蓄電池3の運転計画の作成を示すステップS50についての詳細は後述する。
 次に、運転計画作成部206は、給湯機5の運転パターン、蓄電池3の運転計画、PV発電電力予測結果および負荷消費電力予測結果から電力料金体系に基づき電力料金を算出する(ステップS51)。
 そして、電力料金の算出が完了すると、給湯機5に対して作成された全ての運転パターンについて処理して電力料金を確認したかを判定する。この実施の形態1では、2種類の運転パターンについて実施したかを確認する。なお、PVの余剰電力がなく給湯機5の運転パターンが1パターンのみの場合は全て処理したとする(ステップS52)。
Returning to FIG. 22, the description will be continued.
When the operation pattern creation of the water heater 5 is completed in step S48 (step S71 to step S79), the operation plan creation unit 206 creates an operation plan for the storage battery 3 for each of the two created operation patterns.
First, the operation plan creation unit 206 selects one hot water supply operation pattern (step S49).
When the selected operation pattern is input from the water heater model 205, the operation plan creation unit 206 creates an operation plan for the storage battery 3 using the model of the storage battery 3 generated in step S45 (step S50). In addition, the detail about step S50 which shows preparation of the operation plan of the storage battery 3 is mentioned later.
Next, the operation plan creation unit 206 calculates a power charge based on the power charge system from the operation pattern of the water heater 5, the operation plan of the storage battery 3, the PV generated power prediction result, and the load power consumption prediction result (step S 51).
When the calculation of the power charge is completed, it is determined whether or not the power charge has been confirmed by processing all the operation patterns created for the water heater 5. In this Embodiment 1, it is confirmed whether it implemented about two types of driving | running patterns. It is assumed that all processes are performed when there is no surplus power of PV and the operation pattern of the water heater 5 is only one pattern (step S52).
 ステップS52で、未処理の運転パターンがある場合は、ステップS49に戻り、未処理の運転パターンを選択する。
 ステップS52で、給湯機5に対する全ての運転パターンについて処理されて各電力料金の確認が完了すると、運転計画作成部206は、電力料金が安い運転パターンを決定する。これにより、電力料金が最小となるように、給湯機5の運転パターンと蓄電池3の運転計画との組み合わせが決定される(ステップS53)。
 これにより、ステップS40(ステップS41~ステップS53、図16参照)で示す、蓄電池3および給湯機5の運転計画の作成を終了し、ステップS19(ステップS31~ステップS40、図15参照)で示す運転計画の作成も終了する。
If there is an unprocessed operation pattern in step S52, the process returns to step S49, and an unprocessed operation pattern is selected.
In step S52, when all the operation patterns for the water heater 5 are processed and the confirmation of each power charge is completed, the operation plan creation unit 206 determines an operation pattern with a low power charge. Thereby, the combination of the operation pattern of the hot water heater 5 and the operation plan of the storage battery 3 is determined so that the power rate is minimized (step S53).
As a result, the creation of the operation plan for the storage battery 3 and the water heater 5 shown in step S40 (steps S41 to S53, see FIG. 16) is completed, and the operation shown in step S19 (steps S31 to S40, see FIG. 15). The planning is also finished.
 以下、図25および図26を用いて蓄電池3の運転計画作成フローを説明する。この蓄電池3の運転計画作成フロー(ステップS91~ステップS104)は図22に示すステップS50を詳細に示すものである。
 給湯機5の運転パターンが選択されて給湯機モデル205から入力されると、運転計画作成部206は、各時刻におけるPV余剰電力を算出する。算出に際しては、ステップS36で算出したPV発電電力予測結果から、ステップS38で算出した負荷消費電力予測結果と、給湯機5の運転パターン作成時に求めた各時刻における給湯機5の消費電力予測結果とを減算し、各時刻におけるPV余剰電力を算出する(ステップS91)。
Hereinafter, the operation plan creation flow of the storage battery 3 will be described with reference to FIGS. 25 and 26. This operation plan creation flow (steps S91 to S104) of the storage battery 3 shows step S50 shown in FIG. 22 in detail.
When the operation pattern of the water heater 5 is selected and input from the water heater model 205, the operation plan creation unit 206 calculates the PV surplus power at each time. In the calculation, from the PV generation power prediction result calculated in step S36, the load power consumption prediction result calculated in step S38, and the power consumption prediction result of the water heater 5 at each time obtained when the operation pattern of the water heater 5 is created, Is subtracted to calculate the PV surplus power at each time (step S91).
 運転計画作成部206は、各時刻のPV余剰電力の算出を完了すると、そのPV余剰電力を充電するかを判断する。
 具体的には、ステップS43で取得した蓄電池3の充電時および放電時の効率、深夜電力時間帯の電力料金、余剰電力の売電価格から、余剰電力を蓄電池3に充電したほうが良いかを判断する。例えば、充電時および放電時の効率がそれぞれ90%で、深夜電力時間帯の電力料金が1kWhあたり12円とすると、1kWhの電力を蓄電池3から放電させる場合は、1kWh/0.9(充電時の効率)/0.9(放電時の効率)=1.2346kWhの電力を充電する必要がある。従って、売電価格が14.815円未満であればPV余剰電力は充電する方が経済的に良く、売電価格が14.815円以上であればPV余剰電力は売電する方が経済的に良い。なお、この実施の形態1ではPV余剰電力は充電した方が経済的に得である電力料金体系であるものとする。
 また、この実施の形態1では、上記電力料金体系に加え、ステップS46で確認した、気温に基づく蓄電池運転制約条件に基づきPV余剰電力を充電するかを判断する。例えば、気温が30℃を越えて蓄電池3の充放電を行うことで更に蓄電池セル301の温度が上昇して充放電不可となる場合、あるいは充放電電流量が小さすぎてPV余剰電力を充電しても待機電力等の消費で経済的な効果が殆ど見込めない場合等、PV余剰電力を充電しないと判断する。また、PV余剰電力を充電しても、深夜電力時間帯の開始までに全ての充電電力が放電できないと判断した場合もPV余剰電力を充電しないと判断する(ステップS92)。
When the calculation of the PV surplus power at each time is completed, the operation plan creation unit 206 determines whether to charge the PV surplus power.
Specifically, it is determined whether it is better to charge the storage battery 3 from the efficiency at the time of charging and discharging of the storage battery 3 acquired in step S43, the power charge during the midnight power hours, and the selling price of the surplus power. To do. For example, if the efficiency during charging and discharging is 90%, respectively, and the power charge in the midnight power hours is 12 yen per kWh, 1 kWh / 0.9 (when charging) when discharging 1 kWh of power from the storage battery 3 Efficiency) /0.9 (efficiency during discharge) = 1.2346 kWh of electric power needs to be charged. Therefore, if the power selling price is less than 14.815 yen, it is more economical to charge the PV surplus power, and if the power selling price is 14.815 yen or more, it is more economical to sell the PV surplus power. Good for. In the first embodiment, it is assumed that the PV surplus power has a power charge system that is more economical to charge.
Moreover, in this Embodiment 1, in addition to the said electric power charge system, it is judged whether PV surplus electric power is charged based on the storage battery driving | running restrictions conditions based on temperature confirmed in step S46. For example, when the temperature of the storage battery 3 is further increased by charging / discharging the storage battery 3 when the temperature exceeds 30 ° C., charging / discharging becomes impossible, or the charge / discharge current amount is too small to charge the PV surplus power. However, it is determined that the PV surplus power is not charged, for example, when an economic effect can hardly be expected from the consumption of standby power. Further, even if the PV surplus power is charged, it is determined that the PV surplus power is not charged even when it is determined that all the charge power cannot be discharged by the start of the midnight power time period (step S92).
 ステップS92でPV余剰電力を充電しない(Noの場合)と判断すると、運転計画作成部206は、深夜電力時間帯での蓄電池3の充電計画を作成する。
 具体的には、現在の蓄電池3の運転計画から深夜電力時間帯開始時の蓄電池3の蓄電電力量(SoC)を予測する。そして、ステップS37で作成した気温予測結果と図6~図8に示す蓄電池3の特性情報に基づき、深夜電力時間帯開始直後から蓄電池3への充電を開始したとして充電計画を作成する。即ち、蓄電池3の特性情報を元に、最大充電電流で深夜電力時間帯開始直後から充電した場合の、各時刻の充電電力、および充電電力量を蓄電池モデル204で、蓄電池3が満充電になるまで計算する。この実施の形態1では、蓄電池3の充電計画作成の際、ステップS46で生成した蓄電池3の気温に基づく運転制約条件を使用しない。これは、上記運転制約条件を作成するに当たって、充電電力量(SoC)を、特に蓄電池セル301の温度以外に制限がない0.5の数値に設定しているため、図6(b)に示すような、SoCが高い領域での運転モードである定電圧モードでの充電計画が立てられないためである。
 なお、蓄電池3の充電計画作成の際、ステップS46で生成した蓄電池3の気温に基づく運転制約条件を使用して、深夜電力時間帯の各時間帯の充電電力量を求め、所定の電力が蓄電池3に充電されるまでの運転計画(充電計画)を作成しても良い(ステップS93)。
If it is determined in step S92 that the PV surplus power is not charged (in the case of No), the operation plan creation unit 206 creates a charge plan for the storage battery 3 in the midnight power time zone.
Specifically, the stored power amount (SoC) of the storage battery 3 at the start of the midnight power time period is predicted from the current operation plan of the storage battery 3. Then, based on the temperature prediction result created in step S37 and the characteristic information of the storage battery 3 shown in FIGS. 6 to 8, a charging plan is created assuming that charging of the storage battery 3 is started immediately after the start of the midnight power time period. That is, based on the characteristic information of the storage battery 3, the storage battery 3 is fully charged with the storage battery model 204 with the charging power and the amount of charging power at each time when charging is performed immediately after the start of the midnight power period with the maximum charging current. To calculate. In this Embodiment 1, the driving | running | working restrictions condition based on the temperature of the storage battery 3 produced | generated by step S46 is not used in the charge plan preparation of the storage battery 3. FIG. This is shown in FIG. 6B because the charging power amount (SoC) is set to a numerical value of 0.5 that is not limited except for the temperature of the storage battery cell 301 in creating the operation constraint condition. This is because the charging plan in the constant voltage mode, which is the operation mode in the region where the SoC is high, cannot be made.
It should be noted that, when the charging plan for the storage battery 3 is created, the amount of charging power in each time zone of the midnight power time zone is obtained using the operation constraint condition based on the temperature of the storage battery 3 generated in step S46, and the predetermined power is stored in the storage battery. An operation plan (charging plan) until charging to 3 may be created (step S93).
 次に、運転計画作成部206は蓄電池3の放電計画を作成する。この実施の形態1では、深夜電力時間帯以外の時間は買電電力が最小になるように蓄電池3を制御するものとする。具体的には、給湯機5を含む負荷機器20の消費電力からPVの発電電力を減算した値が正の時、買電電力がゼロになるように蓄電池3に蓄えられた電力を放電する。よって、運転計画作成部206は、深夜電力時間帯以外の時間帯の放電電力要求量を、給湯機5を含む負荷機器20の消費電力予測結果からPV発電電力予測結果を減算することで算出する。
 蓄電池モデル204は、算出された各時刻の放電電力要求量を運転計画作成部206から取得し、ステップS93にて作成した深夜電力時間帯での蓄電池3の充電計画を元に、深夜電力時間帯の終了時点(7時)の蓄電池3に蓄えられた充電電力量を算出する。次に、蓄電池モデル204は、この充電電力量、各時刻の放電電力要求量、気温予測結果、および図6~図8に示す蓄電池3の特性情報から各時刻の放電電力量を決定する。具体的には、各時刻の充電電力量から蓄電池3のSoCを算出し、算出したSoC、気温予測結果、蓄電池3の特性情報から最大放電電流と蓄電池電圧を算出する。そして、算出した最大放電電流と蓄電池電圧から最大放電電力量を算出し、放電電力要求量と比較する。比較の結果、放電電力要求量が最大放電電力量以下の場合は、放電電力要求量を放電電力量として決定し、放電電力要求量が最大放電電力量より大きい場合は最大放電電力量を放電電力量として決定する。以上の動作を、蓄電池3の電圧が放電終止電圧になるまで実施する。
Next, the operation plan creation unit 206 creates a discharge plan for the storage battery 3. In the first embodiment, the storage battery 3 is controlled so that the purchased power is minimized during times other than the midnight power time zone. Specifically, when the value obtained by subtracting the generated power of PV from the power consumption of the load device 20 including the water heater 5 is positive, the power stored in the storage battery 3 is discharged so that the purchased power becomes zero. Therefore, the operation plan creation unit 206 calculates the required amount of discharge power in a time zone other than the midnight power time zone by subtracting the PV power generation prediction result from the power consumption prediction result of the load device 20 including the water heater 5. .
The storage battery model 204 acquires the calculated discharge power demand at each time from the operation plan creation unit 206, and based on the charge plan of the storage battery 3 in the late-night power time zone created in step S93, the late-night power time zone The amount of charging electric power stored in the storage battery 3 at the end time (7 o'clock) is calculated. Next, the storage battery model 204 determines the discharge power amount at each time from the charge power amount, the required discharge power amount at each time, the temperature prediction result, and the characteristic information of the storage battery 3 shown in FIGS. Specifically, the SoC of the storage battery 3 is calculated from the amount of charged power at each time, and the maximum discharge current and the storage battery voltage are calculated from the calculated SoC, the temperature prediction result, and the characteristic information of the storage battery 3. Then, the maximum discharge power amount is calculated from the calculated maximum discharge current and storage battery voltage, and compared with the required discharge power amount. As a result of the comparison, if the required discharge power is less than or equal to the maximum discharge power, the required discharge power is determined as the discharge power, and if the required discharge power is greater than the maximum discharge power, the maximum discharge power is determined as the discharge power. Determine as quantity. The above operation is performed until the voltage of the storage battery 3 reaches the end-of-discharge voltage.
 なお、充電電力量および放電電力量を求める際は、充電時および放電時の蓄電機器Bの効率を考慮して求めるものとする。具体的には、蓄電池3の充電時および放電時の効率をともに90%とすると、蓄電機器Bの入力に1kWの電力を加えた場合、実際に蓄電池3に充電される電力は1kW×0.9=0.9kWとなる。同様に、蓄電池3から1kWの電力を放電した場合、蓄電機器Bからは1kW×0.9=0.9kWの電力が出力されることを意味する(ステップS94)。 In addition, when calculating | requiring charge electric energy and discharge electric energy, it shall calculate | require in consideration of the efficiency of the electrical storage apparatus B at the time of charge and discharge. Specifically, assuming that the efficiency during charging and discharging of the storage battery 3 is both 90%, when 1 kW of power is applied to the input of the power storage device B, the power actually charged in the storage battery 3 is 1 kW × 0. 9 = 0.9 kW. Similarly, when 1 kW of power is discharged from the storage battery 3, it means that 1 kW × 0.9 = 0.9 kW of power is output from the power storage device B (step S94).
 ステップS92でPV余剰電力を充電する(Yesの場合)と判断すると、運転計画作成部206は、PV余剰電力の充電計画を作成する。まず、ステップS39で作成したPV余剰電力予測結果から、給湯機5の運転計画(運転パターン)による各時刻の給湯機5の消費電力を減算して各時刻のPV余剰電力を算出する。蓄電池モデル204は、算出された各時刻のPV余剰電力を運転計画作成部206から取得し、気温予測結果および図6~図8に示す蓄電池3の特性情報に基づき充電計画を作成する。この実施の形態1では、PV余剰電力で必要な電力量が確保できない場合は、深夜電力時間帯に不足分を充電する。 If it is determined in step S92 that the PV surplus power is charged (in the case of Yes), the operation plan creating unit 206 creates a PV surplus power charging plan. First, the PV surplus power at each time is calculated by subtracting the power consumption of the water heater 5 at each time according to the operation plan (operation pattern) of the water heater 5 from the PV surplus power prediction result created at step S39. The storage battery model 204 acquires the calculated PV surplus power at each time from the operation plan creation unit 206, and creates a charging plan based on the temperature prediction result and the characteristic information of the storage battery 3 shown in FIGS. In this Embodiment 1, when the amount of electric power required by PV surplus electric power cannot be ensured, the shortage is charged in the midnight electric power time zone.
 ところで、蓄電池3は図6(b)に示すように、充電時にSoCが例えば0.8を超えると定電圧モードに移行し充電電力量が下がる。このため、この実施の形態1では、PV余剰電力の充電計画を作成する際、PV余剰電力が発生する最終時間帯にて満充電になるように計画する。具体的には、PV余剰電力が発生する最終時間帯に蓄電池3に充電される電力量を、PV余剰電力量、気温予測結果および蓄電池3の特性情報から算出する。そして、算出した充電電力量を満充電の電力量から減算し、上記最終時間帯開始時点の蓄電池3の充電(蓄電)電力量を算出し、その算出結果、PV余剰電力量、気温予測結果および蓄電池3の特性情報から、上記最終時間帯の直前30分間の充電電力量を算出する。この動作を、蓄電池3の充電(蓄電)電力量がゼロになる時間帯、あるいはPV余剰電力がゼロになる時間帯まで繰り返す。PV余剰電力がゼロになる時間帯までに充電(蓄電)電力量がゼロにならない場合は、残りの電力量を深夜電力時間帯に充電するため記憶する。充電(蓄電)電力量が先にゼロになる場合は、残りの電力量はゼロである。
 なお、PV余剰電力の充電計画の作成方法は、上述したものに限るものではなく、PV余剰電力の発生開始時刻から充電電力量を求め計画しても良いことは言うまでもない(ステップS95)。
By the way, as shown in FIG.6 (b), when the SoC exceeds 0.8, for example, at the time of charge, the storage battery 3 shifts to a constant voltage mode and the amount of charge electric power decreases. For this reason, in this Embodiment 1, when preparing the charge plan of PV surplus electric power, it plans so that it may be fully charged in the last time slot | zone when PV surplus electric power generate | occur | produces. Specifically, the amount of power charged in the storage battery 3 in the final time zone when PV surplus power is generated is calculated from the PV surplus power amount, the temperature prediction result, and the characteristic information of the storage battery 3. Then, the calculated charging power amount is subtracted from the fully charged power amount to calculate the charging (power storage) power amount of the storage battery 3 at the start of the final time period, and the calculation result, PV surplus power amount, temperature prediction result, and From the characteristic information of the storage battery 3, the amount of charge power for 30 minutes immediately before the last time zone is calculated. This operation is repeated until the time when the charge (storage) power amount of the storage battery 3 becomes zero or the time when the PV surplus power becomes zero. If the amount of charge (storage) power does not become zero before the time when PV surplus power becomes zero, the remaining amount of power is stored for charging in the midnight power time zone. If the charge (storage) power amount is zero first, the remaining power amount is zero.
It should be noted that the method for creating the PV surplus power charging plan is not limited to that described above, and it goes without saying that the charging power amount may be determined and planned from the PV surplus power generation start time (step S95).
 次に、運転計画作成部206は、深夜電力時間帯終了からPV余剰電力が発生するまでの期間における蓄電池3の放電計画を作成する。
 まず、給湯機5を含む負荷機器20の消費電力予測結果から、深夜電力時間帯終了からPV余剰電力が発生するまでの期間の各時刻の放電電力要求量を算出する。そして、各時刻の充電電力量、放電電力要求量、気温予測結果、および蓄電池3の特性情報から、蓄電池モデル204を用いて各時刻の放電電力量を決定する(ステップS96)。
Next, the operation plan creation unit 206 creates a discharge plan for the storage battery 3 during the period from the end of the midnight power time period to the generation of PV surplus power.
First, from the power consumption prediction result of the load device 20 including the water heater 5, the required amount of discharge power at each time in the period from the end of the midnight power time period to the generation of PV surplus power is calculated. Then, the discharge power amount at each time is determined using the storage battery model 204 from the charge power amount at each time, the required discharge power amount, the temperature prediction result, and the characteristic information of the storage battery 3 (step S96).
 次に、運転計画作成部206は、ステップS96で算出した放電電力量を、ステップS95で求めた、深夜電力時間帯に充電するための充電電力量(上記残りの電力量)に加算して、深夜電力時間帯の充電電力量を算出し、深夜電力時間帯の蓄電池3の充電計画を作成する。
 具体的には、深夜電力時間帯開始時の蓄電池3の蓄電電力量を予測し、気温予測結果と蓄電池3の特性情報に基づき、蓄電池モデル204を用いて充電計画を作成する。即ち、最大充電電流で深夜電力時間帯開始直後から蓄電池3への充電を開始した場合の、各時刻の充電電力および充電電力量を、深夜電力時間帯の充電電力量になるまで求める(ステップS97)。
Next, the operation plan creation unit 206 adds the discharge power amount calculated in step S96 to the charge power amount (remaining power amount) for charging in the midnight power time period obtained in step S95, The amount of charge power in the midnight power time zone is calculated, and a charge plan for the storage battery 3 in the midnight power time zone is created.
Specifically, the storage power amount of the storage battery 3 at the start of the midnight power time period is predicted, and a charging plan is created using the storage battery model 204 based on the temperature prediction result and the characteristic information of the storage battery 3. That is, when charging the storage battery 3 is started immediately after the start of the midnight power time period at the maximum charging current, the charging power and the charging power amount at each time are obtained until the charging power amount in the midnight power time period is reached (step S97). ).
 次に、運転計画作成部206は、PV余剰電力の発生終了から深夜電力時間帯開始までの期間における蓄電池3の放電計画を作成する。
 まず、給湯機5を含む負荷機器20の消費電力予測結果から、PV余剰電力の発生終了から深夜電力時間帯開始までの期間の各時刻の放電電力要求量を算出する。次に、PV余剰電力の発生終了時の蓄電池3の充電(蓄電)電力量を、PV余剰電力の充電計画から取得し、各時刻の充電電力量、放電電力要求量、気温予測結果、および蓄電池3の特性情報から、蓄電池モデル204を用いて各時刻の放電電力量を決定する(ステップS98)。
Next, the operation plan creation unit 206 creates a discharge plan for the storage battery 3 in a period from the end of generation of PV surplus power to the start of the midnight power time zone.
First, from the power consumption prediction result of the load device 20 including the water heater 5, the required amount of discharge power at each time in the period from the end of the PV surplus power generation to the start of the midnight power time zone is calculated. Next, the charging (storage) power amount of the storage battery 3 at the end of the generation of the PV surplus power is acquired from the PV surplus power charging plan, the charging power amount at each time, the discharge power request amount, the temperature prediction result, and the storage battery. From the characteristic information of 3, the discharge power amount at each time is determined using the storage battery model 204 (step S98).
 次に、運転計画作成部206は、蓄電池3の充電計画における充電終了時の蓄電池電圧が、蓄電池3の運転制約条件として決定した充電終止電圧を超えているか確認する(ステップS99)。
 PV余剰電力を充電する場合では、ステップS99において、PV余剰電力の充電終了時の蓄電池電圧が上記充電終止電圧を越えている場合(Yesの場合)は、ステップS97で作成した深夜電力時間帯の充電計画を見直して充電電力を削減し、PV余剰電力の充電終了時の蓄電池電圧を上記充電終止電圧に抑える。この場合、深夜電力時間帯の充電計画を見直しても蓄電池電圧を上記充電終止電圧に抑制できない場合は、さらにステップS95で作成したPV余剰電力の充電計画を見直して充電電力を削減する。
 また、PV余剰電力を充電しない場合では、ステップS99において、深夜電力時間帯の充電終了時の蓄電池電圧が上記充電終止電圧を越えている場合(Yesの場合)は、ステップS93で作成した深夜電力時間帯の充電計画を見直して充電電力を削減し、充電終了時の蓄電池電圧を上記充電終止電圧に抑える。
 この後、ステップS99へ戻る(ステップS100)。
Next, the operation plan creation unit 206 confirms whether the storage battery voltage at the end of charging in the charging plan of the storage battery 3 exceeds the charge end voltage determined as the operation constraint condition of the storage battery 3 (step S99).
In the case of charging the PV surplus power, in step S99, when the storage battery voltage at the end of charging of the PV surplus power exceeds the charge end voltage (in the case of Yes), the midnight power time zone created in step S97 is displayed. The charging plan is reviewed to reduce the charging power, and the storage battery voltage at the end of charging the PV surplus power is suppressed to the above-mentioned charging end voltage. In this case, if the storage battery voltage cannot be suppressed to the end-of-charge voltage even after reviewing the charge plan in the late-night power time zone, the charge plan is further reduced by reviewing the charge plan for the PV surplus power created in step S95.
Further, in the case where the PV surplus power is not charged, in step S99, when the storage battery voltage at the end of charging in the midnight power time zone exceeds the charge end voltage (in the case of Yes), the midnight power generated in step S93 is used. The charging plan for the time zone is reviewed to reduce the charging power, and the storage battery voltage at the end of charging is suppressed to the above-mentioned charging end voltage.
Thereafter, the process returns to step S99 (step S100).
 ステップS99において、充電終了時の蓄電池電圧が充電終止電圧以下である場合(Noの場合)は、作成した充放電計画を見直し、蓄電池3が充放電を実施していない時間帯があるか確認する。なお、この実施の形態1では充放電電力が所定値未満(例えば50W未満)の場合も充放電を行っていない時間帯とみなす(ステップS101)。
 蓄電池3が充放電を実施していない時間帯がある場合は、その時間帯は蓄電機器Bをスリープ状態にする、即ち運転モードをスリープモードにするように蓄電池3の運転計画を作成する(ステップS102)。
 ステップS102が終了、あるいはステップS101がNoの場合、運転計画作成部206は蓄電池3のスタンバイ状態、即ちスタンバイモードの運転モードを含む充放電計画を作成する(ステップS103)。
In step S99, when the storage battery voltage at the end of charging is equal to or lower than the end-of-charge voltage (in the case of No), the created charge / discharge plan is reviewed to check whether there is a time zone during which the storage battery 3 is not charging / discharging. . In the first embodiment, even when the charge / discharge power is less than a predetermined value (for example, less than 50 W), it is regarded as a time zone during which charge / discharge is not performed (step S101).
If there is a time zone during which the storage battery 3 is not charging / discharging, an operation plan for the storage battery 3 is created so that the power storage device B is put into the sleep state during that time zone, that is, the operation mode is set to the sleep mode (step) S102).
When step S102 is completed or when step S101 is No, the operation plan creation unit 206 creates a charge / discharge plan including the standby state of the storage battery 3, that is, the standby mode operation mode (step S103).
 そして、運転計画作成部206は、作成された全ての充放電計画が、ステップS46で生成した、気温に基づく蓄電池運転制約条件を満たしているか再度確認する(ステップS104)。
 ステップS104において、蓄電池運転制約条件を満たす場合(Yesの場合)は、蓄電池3の運転計画作成は終了し、満たしていない場合(Noの場合)は、ステップS91に戻り、蓄電池3の運転計画を再作成する。
And the operation plan preparation part 206 confirms again whether all the produced charging / discharging plans satisfy | fill the storage battery driving | running restrictions conditions based on the temperature produced | generated by step S46 (step S104).
In step S104, when the storage battery operation constraint condition is satisfied (in the case of Yes), the operation plan creation of the storage battery 3 is completed, and in the case where it is not satisfied (in the case of No), the process returns to step S91 and the operation plan of the storage battery 3 is determined. Recreate it.
 以上のように、この実施の形態では、電力管理装置100は、蓄電機器Bとしての蓄電池3および蓄電池パワコン4と、創エネ機器Aとしての太陽光パネル1および太陽光パワコン2と、電気負荷である負荷機器20とを有するシステムの電力需給を管理する。そして、電力管理装置100は、CPU110、ROM111、RAM112、Echonet Lite通信I/F部113、Ethenet通信I/F部114、表示部115、電力計測部116、時刻管理部117、運転計画部118、機器管理部119、負荷機器制御部120、家族スケジュール管理部121、DR対応部122、およびCPUバス130で構成されると共に、運転計画部118は、負荷消費電力学習管理部200と、PV発電電力学習管理部201と、負荷消費電力予測部202と、PV発電電力予測部203と、蓄電池モデル204と、給湯機モデル205と、蓄電池3および給湯機5の運転計画を作成する運転計画作成部206とを備える。即ち、電力管理装置100は、運転計画部118がEchonet Lite通信I/F部113を介して蓄電機器Bの情報を取得する手段(蓄電機器情報取得部)を備え、さらに創エネ機器Aにて発電される電力を予測する発電電力予測部(PV発電電力予測部203)と、電気負荷(負荷機器20)の消費電力を予測する負荷電力予測部(負荷消費電力予測部202)と、蓄電機器情報取得部にて取得した蓄電機器情報、発電電力予測部にて予測した発電電力予測情報、負荷電力予測部にて予測した負荷電力予測情報、および気温予測情報に基づいて、蓄電機器Bの運転計画を作成する運転計画作成部206とを備える。そして、上述したように、運転計画作成部206は、少なくとも気温予測情報に基づいて蓄電機器Bの最大充電電流あるいは最大充電電力である充電制限値を予測し、少なくとも気温予測情報に基づいて蓄電機器Bの最大充電電力量あるいは充電終止電圧である充電終止点を決定する。そして、充電制限値以下および充電終止点以下で蓄電機器Bが充電されると共に、気温予測情報が設定上限値を超える時間帯に蓄電機器Bの充放電を停止するように運転計画を作成する。 As described above, in this embodiment, the power management apparatus 100 includes the storage battery 3 and the storage battery power conditioner 4 as the energy storage device B, the solar panel 1 and the solar power conditioner 2 as the energy generation device A, and the electric load. The power supply and demand of a system having a certain load device 20 is managed. The power management apparatus 100 includes a CPU 110, a ROM 111, a RAM 112, an Ephone Lite communication I / F unit 113, an Ethernet communication I / F unit 114, a display unit 115, a power measurement unit 116, a time management unit 117, an operation planning unit 118, The device management unit 119, the load device control unit 120, the family schedule management unit 121, the DR support unit 122, and the CPU bus 130, and the operation plan unit 118 include a load power consumption learning management unit 200, PV power generation Learning management unit 201, load power consumption prediction unit 202, PV generated power prediction unit 203, storage battery model 204, water heater model 205, operation plan creation unit 206 that creates an operation plan for the storage battery 3 and the water heater 5. With. That is, the power management apparatus 100 includes a unit (power storage device information acquisition unit) in which the operation planning unit 118 acquires information on the power storage device B via the Echonet Lite communication I / F unit 113. A power generation prediction unit (PV generation power prediction unit 203) that predicts power to be generated, a load power prediction unit (load power consumption prediction unit 202) that predicts power consumption of an electrical load (load device 20), and a power storage device Operation of power storage device B based on the power storage device information acquired by the information acquisition unit, the generated power prediction information predicted by the generated power prediction unit, the load power prediction information predicted by the load power prediction unit, and the temperature prediction information And an operation plan creation unit 206 for creating a plan. As described above, the operation plan creation unit 206 predicts the charging limit value that is the maximum charging current or the maximum charging power of the power storage device B based on at least the temperature prediction information, and stores the power storage device based on at least the temperature prediction information. The charging end point which is the maximum charging electric energy of B or the charging end voltage is determined. Then, the power storage device B is charged below the charge limit value and below the charge end point, and an operation plan is created so that charging / discharging of the power storage device B is stopped in a time zone when the temperature prediction information exceeds the set upper limit value.
 図28は、この実施の形態1による蓄電池制御における蓄電池セル温度および蓄電電力量の一日の変化を説明する図であり、図13、図14で示した比較例と同様の条件(機器構成および天気、気温、電力料金等の外的条件)で、電力管理装置100が上述したように運転計画を作成した結果を示す。
 図28に示すように、深夜電力時間帯での充電完了後は、夕方の放電開始時刻まで蓄電機器Bはスリープモードで充放電停止しており、待機電力を削減できる。また、待機電力による発熱が抑えられるため、スリープ状態の間は、高温側の蓄電池セル温度および低温側の蓄電池セル温度は、気温とほぼ等しくなり(D5参照)、この例では、高温側の蓄電池セル温度を5℃以上低くできる。これにより、蓄電池3の不要な劣化進行を抑えることができる。
FIG. 28 is a diagram for explaining daily changes in the storage battery cell temperature and the amount of stored power in the storage battery control according to the first embodiment. Conditions similar to those in the comparative example shown in FIGS. (External conditions such as weather, air temperature, power rate, etc.)) The result of the power management device 100 creating an operation plan as described above is shown.
As shown in FIG. 28, after completion of charging in the late-night power time zone, the power storage device B is stopped in charging and discharging in the sleep mode until the evening discharge start time, and standby power can be reduced. Further, since heat generation due to standby power is suppressed, during the sleep state, the storage battery cell temperature on the high temperature side and the storage battery cell temperature on the low temperature side are substantially equal to the air temperature (see D5). In this example, the storage battery on the high temperature side The cell temperature can be lowered by 5 ° C or more. Thereby, the unnecessary deterioration progress of the storage battery 3 can be suppressed.
 また、深夜電力時間帯での充電電力量が、夕方の放電に必要な電力量分のみに抑えられ、この場合、充電終止電圧に相当するSoCが上記比較例と比べて20%低く抑えられ(D6参照)、蓄電池3の満充電での保持時間はゼロになる。このように、放電電力量を確保しつつ、蓄電池3の劣化進度を進める充電終止電圧を低く抑え、高電圧での蓄電池3の保持時間を短くできる。これにより、蓄電池3の劣化進度を効果的に抑制できる。
 また、蓄電池3からの放電電力量は比較例の場合と変わらないので、放電による経済効果(電力料金の回収)を同様に得ることができる。さらに、上述したように充放電停止の際にスリープモードを用いる事で待機電力を削減でき、経済効果を向上させることができる。
In addition, the amount of charging power in the late-night power hours is limited to the amount of power required for evening discharge. In this case, the SoC corresponding to the end-of-charge voltage is reduced by 20% compared to the comparative example ( D6), the holding time of the storage battery 3 when fully charged is zero. In this way, it is possible to suppress the charge end voltage that advances the deterioration degree of the storage battery 3 while securing the amount of discharge power, and to shorten the holding time of the storage battery 3 at a high voltage. Thereby, the deterioration progress of the storage battery 3 can be suppressed effectively.
Moreover, since the amount of electric power discharged from the storage battery 3 is not different from the case of the comparative example, the economic effect (recovery of electric power charges) by discharging can be obtained in the same manner. Furthermore, as described above, the standby power can be reduced by using the sleep mode when charging / discharging is stopped, and the economic effect can be improved.
 また、上記実施の形態1では、スリープモードの蓄電池3からの放電を開始する際は、Echonet Lite通信I/F部113を介して蓄電池3に対してスタンバイモードに移行するよう通知する。このように構成するため、蓄電機器Bのスリープモードからスタンバイモードへの移行を確実に実施することができる。また、高温側および低温側の蓄電池セル301の温度情報を、BMU305内の蓄電池制御回路303で収集するので、電力管理装置100の制御と、BMU305の制御を同一の温度情報で実施することができる効果がある。 In the first embodiment, when discharging from the storage battery 3 in the sleep mode is started, the storage battery 3 is notified to shift to the standby mode via the Echonet Lite communication I / F unit 113. Since it comprises in this way, the transfer to the standby mode from the sleep mode of the electrical storage apparatus B can be implemented reliably. Moreover, since the temperature information of the storage battery cells 301 on the high temperature side and the low temperature side is collected by the storage battery control circuit 303 in the BMU 305, the control of the power management apparatus 100 and the control of the BMU 305 can be performed with the same temperature information. effective.
実施の形態2.
 次に、この発明の実施の形態2による電力管理装置100について説明する。上記実施の形態1では、高気温となる夏期において有効となる蓄電池3の運転計画作成について説明したが、この実施の形態2では、さらに、低気温となる冬期においても有効となる運転計画作成について説明する。なお、実施の形態2による電力管理装置100では、図25を用いて示した蓄電池3の運転計画作成フローに係る部分以外の構成は、上記実施の形態1と同様であるため、説明を省略する。
Embodiment 2. FIG.
Next, a power management apparatus 100 according to Embodiment 2 of the present invention will be described. In the first embodiment, the operation plan creation of the storage battery 3 that is effective in the summer when the temperature is high has been described. In the second embodiment, however, the operation plan that is effective even in the winter when the temperature is low. explain. Note that in the power management apparatus 100 according to the second embodiment, the configuration other than the portion related to the operation plan creation flow of the storage battery 3 shown using FIG. 25 is the same as that of the first embodiment, and thus the description thereof is omitted. .
 この実施の形態2による電力管理装置100の運転計画部118の動作について、以下に説明する。
 運転計画部118は、上記実施の形態1と同様に、図15~図24を用いて示した同様の手法にて蓄電池3および給湯機5の運転計画を作成する。この実施の形態2では、上記実施の形態1の図25、図26に示される蓄電池3の運転計画作成フローの詳細が異なる。
 以下、図29および図30を用いて、この実施の形態2による蓄電池3の運転計画作成フローを説明する。この蓄電池3の運転計画作成フローは図22に示すステップS50を詳細に示すものである。
The operation of the operation planning unit 118 of the power management apparatus 100 according to the second embodiment will be described below.
As in the first embodiment, the operation plan unit 118 creates an operation plan for the storage battery 3 and the hot water heater 5 by the same method shown with reference to FIGS. In the second embodiment, the details of the operation plan creation flow of the storage battery 3 shown in FIGS. 25 and 26 of the first embodiment are different.
Hereinafter, the operation plan creation flow of the storage battery 3 according to the second embodiment will be described with reference to FIGS. 29 and 30. This operation plan creation flow of the storage battery 3 shows step S50 shown in FIG. 22 in detail.
 上記実施の形態1と同様に、運転計画作成部206では、給湯機5の運転パターンが選択されて給湯機モデル205から入力されると、各時刻におけるPV余剰電力を算出し(ステップS91)、そのPV余剰電力を充電するかを判断する(ステップS92)。
 ステップS92でPV余剰電力を充電しない(Noの場合)と判断すると、運転計画作成部206は、深夜電力時間帯での充電の仮計画を作成する。充電の仮計画とは、ステップS37で作成した気温予測結果と図6~図8に示す蓄電池3の特性情報に基づき、深夜電力時間帯開始までスリープモードで充放電停止した状態で、深夜電力時間帯開始直後から蓄電池3への充電を開始した場合、運転制約条件としてステップS66で決定した充電終止電圧まで充電可能かを見極めるために実施する。
As in the first embodiment, when the operation pattern of the water heater 5 is selected and input from the water heater model 205 in the operation plan creation unit 206, the PV surplus power at each time is calculated (step S91). It is determined whether or not the PV surplus power is charged (step S92).
If it is determined in step S92 that the PV surplus power is not charged (in the case of No), the operation plan creation unit 206 creates a temporary plan for charging in the midnight power time zone. The temporary charging plan is based on the temperature prediction result created in step S37 and the characteristics information of the storage battery 3 shown in FIGS. When the charging of the storage battery 3 is started immediately after the start of the band, it is carried out in order to determine whether the battery can be charged up to the end-of-charge voltage determined in step S66 as an operation constraint condition.
 具体的には、蓄電池3の特性情報を元に、最大充電電流で深夜電力時間帯開始直後から充電した場合の、各時刻の充電電力および充電電力量を蓄電池モデル204で、蓄電池3が満充電になるまで計算する。
 この場合、上記実施の形態1と同様に、蓄電池3の充電計画(仮計画)作成の際、ステップS46で生成した蓄電池3の気温に基づく運転制約条件を使用しない。これは、上記運転制約条件を作成するに当たって、充電電力量(SoC)を、特に蓄電池セル301の温度以外に制限がない0.5の数値に設定しているため、図6(b)に示すような、SoCが高い領域での運転モードである定電圧モードでの充電計画が立てられないためである。
 なお、蓄電池3の充電計画作成の際、ステップS46で生成した蓄電池3の気温に基づく運転制約条件を使用して、深夜電力時間帯の各時間帯の充電電力量を求め、所定の電力が蓄電池3に充電されるまでの計画を作成しても良い(ステップS110)。
Specifically, based on the characteristic information of the storage battery 3, the storage battery 3 is fully charged with the storage battery model 204 for the charging power and the amount of charging power at each time when charging is performed immediately after the start of the midnight power period with the maximum charging current. Calculate until.
In this case, as in the first embodiment, the operation restriction condition based on the temperature of the storage battery 3 generated in step S46 is not used when the charging plan (temporary plan) of the storage battery 3 is created. This is shown in FIG. 6B because the charging power amount (SoC) is set to a numerical value of 0.5 that is not limited except for the temperature of the storage battery cell 301 in creating the operation constraint condition. This is because the charging plan in the constant voltage mode, which is the operation mode in the region where the SoC is high, cannot be made.
It should be noted that, when the charging plan for the storage battery 3 is created, the amount of charging power in each time zone of the midnight power time zone is obtained using the operation constraint condition based on the temperature of the storage battery 3 generated in step S46, and the predetermined power is stored in the storage battery. A plan for charging to 3 may be created (step S110).
 深夜電力時間帯での充電の仮計画が作成されると、運転計画作成部206は、充電終止電圧まで充電不可か判断し、さらに充電不可の場合は低気温に起因するか、即ち気温予測結果が、例えば設定下限値の0℃未満であるかを判断する(ステップS111)。
 ステップ111で、深夜電力時間帯での蓄電池3の充電が充電終止電圧まで充電可能、あるいは充電不可であるが低気温に起因しないと判断した場合(Noの場合)、運転計画作成部206は、上記実施の形態1と同様に(ステップS94と同様)に、蓄電池3に対して放電計画を作成する(ステップS112)。
 ステップ111で低気温による充電不可と判断した場合(Yesの場合)、運転計画作成部206は、蓄電池3に対して低気温対応の放電計画を作成する。この場合も、上記実施の形態1同様に、深夜電力時間帯以外の時間は買電電力が最小になるように蓄電池3を制御するものとする。
 具体的には、蓄電池3の放電を深夜電力時間帯開始直前に完了するよう放電計画を作成する。深夜電力時間開始直前の負荷消費電力予測結果から時間を遡って各時刻の放電電力量を決定する動作を、蓄電池3の電圧が放電終止電圧になるまで実施する。その際、該気温予測結果、蓄電池セル301の温度上昇予測情報、および蓄電池3の特性情報から各時刻における最大放電電流を算出し、算出結果に基づき放電電力量を決定する。
When a provisional plan for charging in the late-night power hours is created, the operation plan creation unit 206 determines whether charging is not possible up to the end-of-charge voltage, and if charging is not possible, it is caused by a low temperature, that is, a temperature prediction result For example, it is determined whether the set lower limit value is less than 0 ° C. (step S111).
When it is determined in step 111 that charging of the storage battery 3 in the late-night power time zone can be charged up to the end-of-charge voltage, or cannot be charged but is not caused by low temperature (in the case of No), the operation plan creation unit 206 As in the first embodiment (similar to step S94), a discharge plan is created for the storage battery 3 (step S112).
When it is determined in step 111 that charging is not possible due to low temperature (in the case of Yes), the operation plan creation unit 206 creates a discharge plan corresponding to low temperature for the storage battery 3. Also in this case, as in the first embodiment, the storage battery 3 is controlled so that the purchased power is minimized during times other than the midnight power time zone.
Specifically, a discharge plan is created so that the discharge of the storage battery 3 is completed immediately before the start of the midnight power time period. The operation of determining the discharge power amount at each time by going back from the load power consumption prediction result immediately before the start of the midnight power time is performed until the voltage of the storage battery 3 reaches the discharge end voltage. At that time, the maximum discharge current at each time is calculated from the temperature prediction result, the temperature rise prediction information of the storage battery cell 301, and the characteristic information of the storage battery 3, and the discharge power amount is determined based on the calculation result.
 なお、この実施の形態2で使用する蓄電池セル301の温度上昇予測情報は、低温側の蓄電池セル301の温度情報を使用する。また、放電計画作成の際の放電電力量は、決定された充電終止電圧から蓄電電力量を算出し、その蓄電電力量に放電時の効率を乗算して求めるものとする。
 さらに、この実施の形態2では、蓄電池セル301の温度上昇予測情報は、スタンバイモードで充放電を停止した際の温度上昇測定結果を使用するものとする。なお、蓄電池セル301の温度上昇予測情報は上記に限らず、負荷消費電力予測結果から平均消費電力を予測し、その予測結果から算出しても良いことは言うまでもない(ステップS113)。
Note that the temperature rise prediction information of the storage battery cell 301 used in the second embodiment uses the temperature information of the low-temperature storage battery cell 301. Further, the amount of discharged power at the time of creating the discharge plan is obtained by calculating the stored power amount from the determined end-of-charge voltage and multiplying the stored power amount by the efficiency during discharge.
Furthermore, in this Embodiment 2, the temperature rise prediction information of the storage battery cell 301 shall use the temperature rise measurement result when charging / discharging is stopped in the standby mode. Note that the temperature rise prediction information of the storage battery cell 301 is not limited to the above, and it goes without saying that the average power consumption may be predicted from the load power consumption prediction result and calculated from the prediction result (step S113).
 ステップS113での蓄電池3の低気温対応の放電計画作成が終了すると、運転計画作成部206は、該放電計画における放電開始時刻の気温予測結果を確認する。そして、蓄電池3の特性情報から得られる最大放電電流に基づいて、放電開始時の放電電力が確保できるかを確認する。確保できない場合は、放電開始時刻から予め設定された期間(例えば1時間)の放電計画を改めて見直し、修正する。
 具体的には、放電開始時刻から1時間遡った時刻の気温予測結果を元に、蓄電池3の特性情報から最大放電電力を算出する。算出結果から、放電可能であれば、先に設定された放電開始時刻を1時間前に設定し、放電開始後1時間で計画していた放電電力量を2時間で放電するように放電計画を再作成する。
 一方、放電開始を1時間前倒しても放電電力量を確保できない場合は、スタンバイモードを起動して蓄電池セル301の温度を上昇させ、放電可能な温度になるまで待機する。そして、放電可能な温度に到達する時刻から当初の放電開始時刻の1時間後までの放電計画を再作成する。なお、その時間帯の放電電力は、当初の放電計画での放電開始から1時間の間の放電電力量と等しくする。
 なお、この実施の形態2では、蓄電機器Bの温度特性が、1時間でほぼ収束するものとして、放電開始時刻を1時間遡る場合を説明する。30分で収束する場合は30分遡れば良いことは言うまでもない。また、放電計画作成の蓄電池セル301の温度上昇予測情報はスタンバイ状態の損失電力から算出したもので、スタンバイ状態を1時間継続することで、少なくとも放電計画における蓄電池セル301の温度を確保できる(ステップS114)。
When the discharge plan creation corresponding to the low temperature of the storage battery 3 in step S113 is completed, the operation plan creation unit 206 confirms the temperature prediction result of the discharge start time in the discharge plan. Then, based on the maximum discharge current obtained from the characteristic information of the storage battery 3, it is confirmed whether the discharge power at the start of discharge can be secured. If it cannot be ensured, the discharge plan for a preset period (for example, 1 hour) from the discharge start time is reviewed and corrected again.
Specifically, the maximum discharge power is calculated from the characteristic information of the storage battery 3 on the basis of the temperature prediction result at a time one hour before the discharge start time. From the calculation result, if the discharge is possible, the discharge plan is set so that the previously set discharge start time is set to one hour before, and the discharge power amount planned for one hour after the start of discharge is discharged in two hours. Recreate it.
On the other hand, if the amount of discharge power cannot be secured even if the start of discharge is advanced one hour ahead, the standby mode is activated to increase the temperature of the storage battery cell 301 and wait until the temperature reaches a level at which discharge is possible. Then, a discharge plan is recreated from the time when the dischargeable temperature is reached to one hour after the initial discharge start time. In addition, the discharge power in that time zone is made equal to the discharge power amount for one hour from the start of discharge in the initial discharge plan.
In the second embodiment, it is assumed that the temperature characteristic of the power storage device B almost converges in one hour, and the case where the discharge start time is traced back by one hour is described. Needless to say, if it converges in 30 minutes, it may go back 30 minutes. Further, the temperature rise prediction information of the storage battery cell 301 created in the discharge plan is calculated from the power loss in the standby state, and at least the temperature of the storage battery cell 301 in the discharge plan can be secured by continuing the standby state for 1 hour (step) S114).
 ステップS112あるいはステップS114にて、放電計画の作成あるいは修正を完了すると、運転計画作成部206は、深夜電力時間帯の充電計画を作成する。
 具体的には、作成した放電計画、負荷消費電力予測結果、気温予測結果、蓄電池3の特性情報、さらに深夜電力時間帯開始直前の蓄電池セル301の予測セル温度情報に基づいて、深夜電力時間帯の充電計画を再度作成する。この実施の形態2では、充電時間をなるべく短くするために、蓄電池セル温度予測情報に基づき算出された最大充電電流にて充電した場合の充電計画を作成する。なお、決定された充電終止電圧に基づく充電電力量を確保するまで充電を行うように充電計画を作成する(ステップS115)。
When the creation or correction of the discharge plan is completed in step S112 or step S114, the operation plan creation unit 206 creates a charge plan for the midnight power hours.
Specifically, based on the created discharge plan, load power consumption prediction result, temperature prediction result, characteristics information of the storage battery 3, and predicted cell temperature information of the storage battery cell 301 immediately before the start of the midnight power time period, the midnight power time zone Re-create the charging plan. In the second embodiment, in order to shorten the charging time as much as possible, a charging plan for charging at the maximum charging current calculated based on the storage battery cell temperature prediction information is created. A charging plan is created so that charging is performed until the amount of charging power based on the determined end-of-charge voltage is secured (step S115).
 ステップS92でPV余剰電力を充電する(Yesの場合)と判断すると、運転計画作成部206は、PV余剰電力の充電計画を作成する。
 具体的には、ステップS91にて算出したPV余剰電力の発生時間帯を確認し、気温予測結果および蓄電池3の特性情報から各時刻の充電電力量を算出する。その際、蓄電池セル温度が低すぎて充電電流が確保できない場合は、蓄電池セル温度を上昇させるため、PV余剰電力が発生する1時間前よりスタンバイモードを起動して蓄電機器Bを待機させるよう計画を立てる。
 一方、充電電流が確保できPV余剰充電が可能な場合は、気温予測結果に基づき蓄電池モデル204で算出した蓄電池セル301の温度情報を算出する。そして、算出した温度情報を元に、各時刻の最大充電電流を求め、蓄電池3の電圧が決定された充電終止電圧になるまで充電計画を作成する(ステップS116)。
If it is determined in step S92 that the PV surplus power is charged (in the case of Yes), the operation plan creation unit 206 creates a charge plan for the PV surplus power.
Specifically, the generation time zone of the PV surplus power calculated in step S91 is confirmed, and the charging power amount at each time is calculated from the temperature prediction result and the characteristic information of the storage battery 3. At that time, if the storage battery cell temperature is too low to secure a charging current, the standby mode is started and the power storage device B is put on standby one hour before the PV surplus power is generated in order to increase the storage cell temperature. Stand up.
On the other hand, when the charging current can be secured and the PV surplus charging is possible, the temperature information of the storage battery cell 301 calculated by the storage battery model 204 is calculated based on the temperature prediction result. Then, based on the calculated temperature information, the maximum charging current at each time is obtained, and a charging plan is created until the voltage of the storage battery 3 reaches the determined charging end voltage (step S116).
 PV余剰電力の充電計画の作成を完了すると、運転計画作成部206は、深夜電力時間帯以外で、PV余剰電力が発生しない時間帯の放電計画の作成を、PV余剰電力終了後の時間帯から開始する。
 まず、運転計画作成部206は、気温予測結果に基づいて、深夜電力時間帯開始時の気温が設定下限値の0℃未満であるかを判断する(ステップS117)。
 ステップS117において深夜電力時間帯開始時の気温が設定下限値未満でない場合(Noの場合)、運転計画作成部206は、蓄電池モデル204を用いて、PV余剰電力終了後の時間帯から放電計画の作成を行う。
 まず、蓄電池モデル204を用いて、PV余剰電力終了後における蓄電池3の放電開始時の蓄電池セル温度を予測し、その予測結果を元に最大放電電流を求める。そして、負荷消費電力予測結果と蓄電池3のSoCと基づいて算出される蓄電池3の電圧から、放電電流を、蓄電機器Bの損失を考慮して算出する。算出された放電電流と、蓄電池3の特性情報に基づいて算出した最大放電電流とを比較し、低い方の電流値を採用して、蓄電池3の蓄電電力量が放電終止電力量である例えばゼロ、あるいは決定された放電終止電圧になるまで放電計画を作成する(ステップS118)。
When the creation of the PV surplus power charging plan is completed, the operation plan creating unit 206 creates a discharge plan in a time zone in which no PV surplus power is generated, other than the midnight power time zone, from the time zone after the end of the PV surplus power. Start.
First, the operation plan creation unit 206 determines, based on the temperature prediction result, whether the temperature at the start of the midnight power period is less than the set lower limit of 0 ° C. (step S117).
In step S117, when the temperature at the start of the midnight power time period is not less than the set lower limit value (in the case of No), the operation plan creation unit 206 uses the storage battery model 204 to start the discharge plan from the time period after the PV surplus power ends. Create.
First, the storage battery cell temperature at the start of discharge of the storage battery 3 after the end of PV surplus power is predicted using the storage battery model 204, and the maximum discharge current is obtained based on the prediction result. Then, the discharge current is calculated in consideration of the loss of the storage device B from the voltage of the storage battery 3 calculated based on the load power consumption prediction result and the SoC of the storage battery 3. The calculated discharge current is compared with the maximum discharge current calculated based on the characteristic information of the storage battery 3, the lower current value is adopted, and the stored power amount of the storage battery 3 is the discharge end power amount, for example, zero Alternatively, a discharge plan is created until the determined discharge end voltage is reached (step S118).
 ステップS117において深夜電力時間帯開始時の気温が設定下限値未満である場合(Yesの場合)、運転計画作成部206は、蓄電池モデル204を用いて、PV余剰電力終了後の時間帯から低気温対応の放電計画の作成を行う。
 具体的には、蓄電池3の放電を深夜電力時間帯開始直前に完了するよう放電計画を作成する。即ち、深夜電力時間開始直前の負荷消費電力予測結果から時間を遡って各時刻の放電電力量を決定する。その際、該気温予測結果、蓄電池セル301の温度上昇予測情報、および蓄電池3の特性情報から各時刻における最大放電電流を算出し、算出結果に基づき放電電力量を決定する。
 なお、この実施の形態2では、蓄電池セル301の温度上昇予測情報は、スタンバイモードで待機した際の温度上昇測定結果を使用するものとする。この際の、蓄電池セル301の温度上昇予測情報は、低温側の蓄電池セル301の温度情報を使用する。また、放電計画作成の際の放電電力量は、決定された充電終止電圧から充電電力量を算出し、その充電電力量に放電時の効率を乗算して求める(ステップS119)。
In step S117, when the temperature at the start of the midnight power time zone is less than the set lower limit value (in the case of Yes), the operation plan creation unit 206 uses the storage battery model 204 to start the low temperature from the time zone after the PV surplus power ends. Create a corresponding discharge plan.
Specifically, a discharge plan is created so that the discharge of the storage battery 3 is completed immediately before the start of the midnight power time period. That is, the amount of discharge power at each time is determined retroactively from the load power consumption prediction result immediately before the start of midnight power time. At that time, the maximum discharge current at each time is calculated from the temperature prediction result, the temperature rise prediction information of the storage battery cell 301, and the characteristic information of the storage battery 3, and the discharge power amount is determined based on the calculation result.
In the second embodiment, the temperature rise prediction information of the storage battery cell 301 uses the temperature rise measurement result when waiting in the standby mode. At this time, the temperature increase prediction information of the storage battery cell 301 uses the temperature information of the storage battery cell 301 on the low temperature side. Further, the amount of discharge power at the time of creating the discharge plan is obtained by calculating the amount of charge power from the determined end-of-charge voltage and multiplying the amount of charge power by the efficiency during discharge (step S119).
 ステップS119での蓄電池3の低気温対応の放電計画作成が終了すると、運転計画作成部206は、該放電計画における放電開始時刻の気温予測結果を確認する。そして、蓄電池3の特性情報から得られる最大放電電流に基づいて、放電開始時の放電電力が確保できるかを確認する。確保できない場合は、放電開始時刻から予め設定された期間(例えば1時間)の放電計画を改めて見直し、修正する。
 具体的には、放電開始時刻から1時間遡った時刻の気温予測結果を元に、蓄電池3の特性情報から最大放電電力を算出する。算出結果から、放電可能であれば、先に設定された放電開始時刻を1時間前に設定し、放電開始後1時間で計画していた放電電力量を2時間で放電するように放電計画を再作成する。
 一方、放電開始を1時間前倒しても放電電力量を確保できない場合は、スタンバイモードを起動して蓄電池セル301の温度を上昇させ、放電可能な温度になるまで待機する。そして、放電可能な温度に到達する時刻から当初の放電開始時刻の1時間後までの放電計画を再作成する。なお、その時間帯の放電電力は、当初の放電計画での放電開始から1時間の間の放電電力量と等しくする(ステップS120)。
When the discharge plan creation corresponding to the low temperature of the storage battery 3 in step S119 is completed, the operation plan creation unit 206 confirms the temperature prediction result of the discharge start time in the discharge plan. Then, based on the maximum discharge current obtained from the characteristic information of the storage battery 3, it is confirmed whether the discharge power at the start of discharge can be secured. If it cannot be ensured, the discharge plan for a preset period (for example, 1 hour) from the discharge start time is reviewed and corrected again.
Specifically, the maximum discharge power is calculated from the characteristic information of the storage battery 3 on the basis of the temperature prediction result at a time one hour before the discharge start time. From the calculation result, if the discharge is possible, the discharge plan is set so that the previously set discharge start time is set to one hour before, and the discharge power amount planned for one hour after the start of discharge is discharged in two hours. Recreate it.
On the other hand, if the amount of discharge power cannot be secured even if the start of discharge is advanced one hour ahead, the standby mode is activated to increase the temperature of the storage battery cell 301 and wait until the temperature reaches a level at which discharge is possible. Then, a discharge plan is recreated from the time when the dischargeable temperature is reached to one hour after the initial discharge start time. In addition, the discharge power in that time zone is made equal to the discharge power amount for one hour from the start of discharge in the initial discharge plan (step S120).
 ステップS118あるいはステップS120にて、PV余剰電力終了後の放電計画の作成あるいは修正を完了すると、運転計画作成部206は、深夜電力時間帯終了からPV余剰電力が終了するまでの期間における蓄電池3の放電計画を作成する。
 具体的には、PV発電電力予測結果および負荷消費電力予測結果から、深夜電力時間帯終了からPV余剰電力が終了するまでの期間の各時刻の放電電力要求量を算出する。同時に、気温予測情報、蓄電池セル301の温度上昇量予測結果および蓄電池3の特性情報から最大放電電流を算出し、各時刻の放電電力量を求める。そして、求めた各時刻の放電電力量を合計し、深夜電力時間帯終了からPV余剰電力が終了するまでの期間の放電電力量を算出する(ステップS121)。
 そして、運転計画作成部206は、ステップS116にて作成したPV余剰電力の充電計画を参照し、蓄電池3に充電可能なPV余剰電力で、充電計画内で充電されていない時間帯の電力があれば、気温予測結果、蓄電池セル301の温度上昇量予測結果および蓄電池3の特性情報から算出した最大充電電流を元にPV余剰電力による充電電力量を算出する。新たにPV余剰電力を充電すると決定した時間帯の充電計画は、ステップS116にて作成したPV余剰電力の充電計画に追加する(ステップS122)。
In step S118 or step S120, when the creation or correction of the discharge plan after the end of the PV surplus power is completed, the operation plan creation unit 206 sets the storage battery 3 in the period from the end of the midnight power period to the end of the PV surplus power. Create a discharge plan.
Specifically, the required amount of discharge power at each time in the period from the end of the midnight power period to the end of the PV surplus power is calculated from the PV generated power prediction result and the load power consumption prediction result. At the same time, the maximum discharge current is calculated from the temperature prediction information, the temperature rise prediction result of the storage battery cell 301, and the characteristic information of the storage battery 3, and the discharge power amount at each time is obtained. And the discharge electric energy of each calculated | required time is totaled, and the electric discharge electric energy of the period until the PV surplus electric power is complete | finished after the end of midnight electric power time zone is calculated (step S121).
Then, the operation plan creation unit 206 refers to the PV surplus power charging plan created in step S116, and the PV surplus power that can be charged to the storage battery 3 includes power in a time zone that is not charged in the charging plan. For example, the charging power amount by the PV surplus power is calculated on the basis of the maximum charging current calculated from the temperature prediction result, the temperature rise prediction result of the storage battery cell 301 and the characteristic information of the storage battery 3. The charging plan for the time period newly determined to charge the PV surplus power is added to the PV surplus power charging plan created in step S116 (step S122).
 次に、運転計画作成部206は、深夜電力時間帯の充電計画を作成する。
 具体的には、作成したPV余剰電力の充電計画および放電計画、負荷消費電力予測結果、気温予測結果および蓄電池3の特性情報に基づき深夜電力時間帯開始直前の蓄電池セル301の予測セル温度情報に基づき充電計画を作成する。この実施の形態2では、充電時間をなるべく短くするために、蓄電池セル温度予測情報に基づき算出された最大充電電流にて充電した場合の充電計画を作成する。
 この充電計画では、放電計画での放電電力量において、PV余剰電力の充電で賄い切れない不足分の電力量を充電する。具体的には、深夜電力時間帯終了直後からの深夜電力時間帯開始までの時間帯での放電電力量、およびPV余剰電力の充電電力量から、充電時の蓄電機器Bの損失電力を考慮して、不足電力量を算出して、深夜電力時間帯の充電電力量とする。
 なお、放電電力量は蓄電池3からの放電電力量を想定しているので、放電時の蓄電機器Bの損失は考慮しない。即ち、蓄電機器Bからは、放電電力量-蓄電機器Bの損失電力量が出力される(ステップS123)。
Next, the operation plan creation unit 206 creates a charge plan for the late-night power hours.
Specifically, based on the created PV surplus power charging plan and discharging plan, load power consumption prediction result, temperature prediction result, and storage battery 3 characteristic information, the predicted cell temperature information of the storage battery cell 301 immediately before the start of the midnight power time period is obtained. Based on the charging plan. In the second embodiment, in order to shorten the charging time as much as possible, a charging plan for charging at the maximum charging current calculated based on the storage battery cell temperature prediction information is created.
In this charging plan, a shortage of electric energy that cannot be covered by the charging of PV surplus power in the amount of electric power discharged in the discharging plan is charged. Specifically, the power loss of the storage device B at the time of charging is taken into account from the amount of discharge power in the time zone immediately after the end of the midnight power time zone to the start of the midnight power time zone, and the charge power amount of the PV surplus power. Thus, the insufficient power amount is calculated and used as the charging power amount in the late-night power hours.
In addition, since the discharge electric energy assumes the discharge electric energy from the storage battery 3, the loss of the electrical storage apparatus B at the time of discharge is not considered. That is, from the power storage device B, the discharge power amount−the loss power amount of the power storage device B is output (step S123).
 ステップS115あるいはステップS123にて深夜電力時間帯の充電計画を作成した後、上記実施の形態1と同様に、運転計画作成部206は、蓄電池3の充電計画における充電終了時の蓄電池電圧が、決定された充電終止電圧を超えているか確認し(ステップS99)、充電終止電圧を超えている場合は、充電終了時の蓄電池電圧を上記充電終止電圧に抑えるように充電計画を見直して充電電力を削減する(ステップS100)。
 さらに、上記実施の形態1と同様に、ステップS101からステップS104までの処理を実施し、蓄電池3の運転計画作成を終了する。
After creating the charging plan for the late-night power hours in step S115 or step S123, the operation plan creating unit 206 determines the storage battery voltage at the end of charging in the charging plan of the storage battery 3 as in the first embodiment. Check if the charge end voltage is exceeded (step S99). If the charge end voltage is exceeded, review the charge plan to reduce the storage battery voltage at the end of charge to the charge end voltage and reduce the charge power. (Step S100).
Further, similarly to the first embodiment, the processing from step S101 to step S104 is performed, and the operation plan creation of the storage battery 3 is finished.
 以上のように電力管理装置100が蓄電池3および給湯機5の運転計画を作成してシステムの電力管理を行うことにより、上記実施の形態1と同様の効果を得ることができ、さらに、低気温となる冬期においても、損失が少なく、また蓄電池3の劣化が抑制できる効果を得られる。 As described above, the power management apparatus 100 creates the operation plan of the storage battery 3 and the hot water heater 5 and manages the power of the system, so that the same effect as that of the first embodiment can be obtained. Even in the winter season, the loss can be reduced and the deterioration of the storage battery 3 can be suppressed.
 上述したように、蓄電池劣化を進める代表的な要因としては、蓄電池3内の蓄電池セル301の温度(蓄電池セル温度)、充放電電流、充電終止電圧、放電終止電圧、保持時間等がある。図8で示したように、蓄電池セル温度が、例えば氷点下となる低温時には、充放電電流に大きな制限がかかる。また、リチュウムイオンバッテリから成る蓄電池3は、化学反応により充放電を行うため、低温環境下では、化学反応が追随できず金属リチュウムが析出して劣化する。蓄電池3を、例えば蓄電池セル温度を考慮せず、充放電を繰り返すと、蓄電池劣化が必要以上に進み、所望の使用期間(例えば10年)を待たずに蓄電池3が劣化し使用できなくなる。
 なお、蓄電池劣化を抑制するため、蓄電池3内のBMU305により、過充電、あるいは過放電を検出した場合、温度の高い状態、あるいは低い状態で充放電を行った場合等、上述したようにリレースイッチ304を切り、強制的に蓄電池3と蓄電池パワコン4とを切り離すこともできる。
As described above, typical factors that promote the deterioration of the storage battery include the temperature of the storage battery cell 301 in the storage battery 3 (storage battery cell temperature), the charge / discharge current, the charge end voltage, the discharge end voltage, and the holding time. As shown in FIG. 8, when the storage cell temperature is low, for example, below freezing point, the charge / discharge current is greatly limited. Moreover, since the storage battery 3 which consists of a lithium ion battery charges / discharges by a chemical reaction, a chemical reaction cannot follow in a low temperature environment, and metal lithium deposits and deteriorates. If the storage battery 3 is repeatedly charged and discharged without considering the storage battery cell temperature, for example, the storage battery deteriorates more than necessary, and the storage battery 3 deteriorates and cannot be used without waiting for a desired period of use (for example, 10 years).
In order to suppress the deterioration of the storage battery, when the overcharge or the overdischarge is detected by the BMU 305 in the storage battery 3, the relay switch is used as described above, for example, when charging / discharging is performed in a high temperature state or a low state. The storage battery 3 and the storage battery power conditioner 4 can be forcibly disconnected by turning off 304.
 図31は、この実施の形態2の比較例として、上記実施の形態1による蓄電池3の運転計画を用いた場合の、即ち、低気温対応が為されていない場合の、気温、蓄電池セル温度および充放電電力の一日の変化を説明する図である。また、図32は、この実施の形態2による蓄電池3の運転計画を用いた場合の、気温、蓄電池セル温度および充放電電力の一日の変化を説明する図である。この場合、夜明け前の6~7時ごろに最低気温(約氷点下5℃)となり、午後1~2時ごろに最高気温(約6℃)となった1日の例を示す。 FIG. 31 shows, as a comparative example of the second embodiment, the temperature, the storage battery cell temperature, and the storage battery 3 when the operation plan of the storage battery 3 according to the first embodiment is used, that is, when the low temperature response is not made. It is a figure explaining the change of charging / discharging electric power for one day. FIG. 32 is a diagram for explaining daily changes in the air temperature, the storage battery cell temperature, and the charge / discharge power when the operation plan of the storage battery 3 according to the second embodiment is used. In this case, an example of a day when the lowest temperature (about 5 ° C below freezing) was reached around 6-7pm before dawn, and the highest temperature (about 6 ° C) was reached around 1-2pm, will be shown.
 図31に示す比較例を用いた運転計画の例を以下に説明する。
 電力管理装置100内の運転計画作成部206は、深夜電力時間帯開始時刻に蓄電機器Bを起動し、スリープモードからスタンバイモードに充放電停止のモードを変更する。しかし、図に示すように23時の気温は既に氷点下であり、蓄電池3は充放電を実施できない。そこで、電力管理装置100は、スタンバイモードの待機電力で蓄電池セル温度が0℃を越えるまで待機する(D7参照)。その際、蓄電機器Bはスタンバイ状態の待機電力を消費する。
 24時を越えると蓄電池セル301の低温側のセル温度が0℃を越えて充電が可能となる。そこで、電力管理装置100は蓄電機器Bに対して深夜電力を充電するように指示を出す。指示を受け取ると蓄電機器B内の蓄電池パワコン4は充電を開始する。蓄電池セル温度は、充電開始後しばらくは蓄電池パワコン4等の損失電力で上昇するが、夜明けに向けて気温が更に下がってくるため、蓄電池セル温度は徐々に下がり、6時には0℃となって充電が行えなくなる。このため、深夜電力時間帯では、気温が低くなりすぎ十分な充電電力が確保できない(D8参照)。
An example of an operation plan using the comparative example shown in FIG. 31 will be described below.
The operation plan creation unit 206 in the power management apparatus 100 activates the power storage device B at the start time of the midnight power period, and changes the charge / discharge stop mode from the sleep mode to the standby mode. However, as shown in the figure, the temperature at 23:00 is already below freezing point, and the storage battery 3 cannot be charged or discharged. Therefore, the power management apparatus 100 stands by until the storage battery cell temperature exceeds 0 ° C. with standby power in the standby mode (see D7). At that time, the power storage device B consumes standby power in a standby state.
If it exceeds 24 o'clock, the cell temperature on the low temperature side of the storage battery cell 301 exceeds 0 ° C., and charging becomes possible. Therefore, the power management apparatus 100 instructs the power storage device B to charge midnight power. When the instruction is received, the storage battery power conditioner 4 in the power storage device B starts charging. The storage battery cell temperature rises due to the power loss of the storage battery power conditioner 4 etc. for a while after the start of charging, but the temperature further decreases toward dawn, so the storage battery cell temperature gradually decreases and becomes 0 ° C at 6:00. Cannot be performed. For this reason, in the midnight power time zone, the temperature becomes too low to ensure sufficient charging power (see D8).
 深夜電力時間帯が終了すると電力管理装置100は、スタンバイモードでの消費電力を削減するため、蓄電機器Bにスリープモードへ移行し待機するよう指示を出す。そして夕方になると、電力管理装置100は蓄電機器Bに対してスリープモードからスタンバイモードへ移行するよう指示を出す。その後、買電電力が最小になるように蓄電池3から放電を行う。しかしながら、深夜電力時間帯での充電が十分に行えていないため、蓄電池3からの放電はすぐに完了してしまう。
 このように、低気温対応の運転計画が為されていない場合、気温が氷点下となる冬期では、深夜電力時間帯に深夜の安い電力を充電しようと計画しても、深夜電力時間帯開始時の蓄電池セル温度が低すぎるため充電が行えない。そして、蓄電機器Bはスタンバイモードで蓄電池セル温度が上昇するまで待機し、蓄電池セル温度が充電可能な温度、この場合0℃になると充電を開始する。
 以上のように蓄電機器Bが動作するため、蓄電池セル301を暖気するため不必要に待機電力を消費するとともに、一般に夜明け前に比べ比較的気温が高い深夜電力時間帯開始直後に充電をすぐに行えないため、電力料金の安い深夜電力時間帯の電力を十分に充電できない。
When the midnight power time period ends, the power management apparatus 100 instructs the power storage device B to shift to the sleep mode and wait in order to reduce power consumption in the standby mode. In the evening, the power management apparatus 100 instructs the power storage device B to shift from the sleep mode to the standby mode. Thereafter, the storage battery 3 is discharged so that the purchased power is minimized. However, since charging in the late-night power hours is not sufficiently performed, the discharge from the storage battery 3 is completed immediately.
In this way, if the operation plan for low temperature is not made, in the winter when the temperature is below freezing, even if you plan to charge cheap power late at night, it will be Charging cannot be performed because the storage cell temperature is too low. Then, the power storage device B stands by in the standby mode until the storage battery cell temperature rises, and starts charging when the storage battery cell temperature reaches a chargeable temperature, in this case, 0 ° C.
Since the power storage device B operates as described above, standby power is unnecessarily consumed to warm up the storage battery cell 301, and charging is immediately performed immediately after the start of the midnight power period when the temperature is generally higher than before dawn. Since it cannot be performed, it is not possible to sufficiently charge the power in the late-night power hours when the electricity rate is low.
 図32に示す、この実施の形態2による運転計画の例を以下に説明する。
 この実施の形態2による蓄電池3の運転計画では、気温が氷点下となる冬期において、蓄電池3の充放電が制限されて負荷消費電力予測に基づく必要電力が確保できないと判断した場合は、蓄電池3の放電計画を、深夜電力時間帯開始直前に終了するように構成する。これにより、電力料金が安い深夜電力時間帯の開始時(D9参照)には、蓄電機器Bの放電時の損失電力により蓄電池セル温度が既に上昇している。このため、一般に夜明け前に比べ比較的気温が高い深夜電力時間帯開始直後から充電を開始できるので、深夜電力時間帯での蓄電池3の充電(D10参照)を、蓄電池3の特性情報に基づく充電電流制限を最も軽減して行うことができる効果がある。
 また、図31で示した比較例のように、深夜電力時間帯開始直後にスタンバイモードにして待機電力による損失を発生することはなく、また8時間の深夜時間帯を暖気のために費やす必要がなく、十分に電力料金の安い深夜電力時間帯の電力を充電することができる。
An example of the operation plan according to the second embodiment shown in FIG. 32 will be described below.
In the operation plan of the storage battery 3 according to the second embodiment, when it is determined that charging / discharging of the storage battery 3 is limited and the required power based on the load power consumption prediction cannot be secured in winter when the temperature is below freezing point, The discharge plan is configured to end just before the start of the midnight power period. Thereby, at the start of the midnight power time zone when the power rate is low (see D9), the storage battery cell temperature has already increased due to the power loss during the discharge of the power storage device B. For this reason, since charging can generally be started immediately after the start of the midnight power time period when the temperature is relatively high compared to before dawn, charging of the storage battery 3 in the midnight power time period (see D10) is charged based on the characteristic information of the storage battery 3 There is an effect that the current limit can be reduced most.
Further, unlike the comparative example shown in FIG. 31, the standby mode is not caused immediately after the start of the midnight power period and no loss due to standby power is generated, and it is necessary to spend the midnight period of 8 hours for warm air. In addition, it is possible to charge the power in the late-night power hours with sufficiently low power charges.
 また、上記実施の形態2では、同一の電力料金の時間帯の蓄電池3の放電計画を変更するだけで、電力料金が安い深夜電力時間帯の電力を最大限に利用でき、経済的なメリットが大きい。また、冬期でも充放電を行わない期間は、蓄電機器Bをスリープモードで充放電停止させることができ、不要な待機電力の消費を抑えることができる効果がある。更に、放電計画作成の際に、気温予測結果から、夕方早いうちから気温が氷点下になり、放電開始時に暖気が必要と判断した場合は、気温が氷点下になる以前から放電させるように放電計画を作成する構成にすれば、放電開始時の暖気制御は不要となり、待機電力の消費を抑えることができる効果がある。 Further, in the second embodiment, it is possible to make maximum use of the power in the late-night power hours when the power charges are cheap, simply by changing the discharge plan of the storage battery 3 in the same power charges time zone. large. In addition, during the period when charging / discharging is not performed even in winter, the power storage device B can be stopped in charging / discharging in the sleep mode, and there is an effect that unnecessary standby power consumption can be suppressed. Furthermore, when creating a discharge plan, if it is determined from the temperature prediction results that the temperature will be below freezing early in the evening and warming is required at the start of the discharge, the discharge plan should be set to discharge before the temperature falls below freezing. With the configuration to be created, the warm-up control at the start of discharge becomes unnecessary, and there is an effect that consumption of standby power can be suppressed.
 また、上記実施の形態2では、蓄電池モデル204で、少なくとも気温予測情報を元に、各時刻における蓄電池3への最大放電電流、あるいは放電電力予測するとともに、蓄電池3の特性情報および気温予測情報から放電時の放電終止電圧を決定する。そして、運転計画作成部206で蓄電池3の放電時の運転計画を作成する際、気温予測情報に基づき、深夜の比較的電気料金が安い深夜電力時間帯の気温が設定下限値より低くなると予測された場合は、蓄電池3の放電を深夜電力時間帯になる直前に完了し、該放電完了後、深夜電力時間帯になるとすぐに充電を開始するよう運転計画を作成する。このため、充電開始前の蓄電池セル301の暖気の必要はなく、また、深夜電力時間帯開始直後から充電を行えるため、最低気温を観測する可能性が高い夜明け前と比べ、比較的気温が高い時間帯から充電を行えるので蓄電池3の充電電力量を最大にできる効果がある。 In the second embodiment, the storage battery model 204 predicts the maximum discharge current or discharge power to the storage battery 3 at each time based on at least the temperature prediction information, and from the characteristic information and the temperature prediction information of the storage battery 3. Determine the end-of-discharge voltage during discharge. Then, when the operation plan creation unit 206 creates an operation plan at the time of discharging the storage battery 3, it is predicted that the temperature in the late-night power hours when the electricity rate is relatively low at night is lower than the set lower limit value based on the temperature prediction information. In such a case, the operation plan is created so that the discharge of the storage battery 3 is completed immediately before the midnight power time zone is reached, and charging is started immediately after the discharge is completed in the midnight power time zone. For this reason, it is not necessary to warm up the storage battery cell 301 before the start of charging, and since the charging can be performed immediately after the start of the midnight power time period, the temperature is relatively high compared to before dawn when the lowest temperature is likely to be observed. Since it can charge from a time slot | zone, there exists an effect which can maximize the charge electric energy of the storage battery 3. FIG.
 また、気温計測結果、蓄電池情報を取得した低温側の蓄電池セル301の温度情報、および充放電電流情報から蓄電池3の温度特性を学習するよう負荷消費電力学習管理部200を構成する。そして、気温予測結果、充放電電流情報、および蓄電池温度特性学習結果から蓄電池セル301の温度を予測し、該予測結果を用いて蓄電池3の運転計画を作成するよう構成するので、充放電計画作成の際の予測精度の向上が図れることは言うまでもない。 Also, the load power consumption learning management unit 200 is configured to learn the temperature characteristics of the storage battery 3 from the temperature measurement result, the temperature information of the low-temperature storage battery cell 301 that acquired the storage battery information, and the charge / discharge current information. Since the temperature of the storage battery cell 301 is predicted from the temperature prediction result, the charge / discharge current information, and the storage battery temperature characteristic learning result, and the operation plan of the storage battery 3 is created using the prediction result, the charge / discharge plan creation Needless to say, the prediction accuracy can be improved.
 また、上記実施の形態2における蓄電機器Bの運転計画は、蓄電池3の充電電力量を計測し、気温予測情報と蓄電池3の充放電が行えなくなる設定下限値の温度を比較し、深夜電力時間帯の気温が設定下限値の温度より低くなると予測された場合は、蓄電池3の充電電力量に基づき、深夜電力時間帯直前まで蓄電池3の放電が継続できるように蓄電池の運転計画を作成する。このため、深夜電力時間帯の電力を充電する場合、蓄電池セル温度を待機電力により暖気する必要がなく、また暖気する時間も不要で、夜明け前より比較的気温が高い時刻から充電を行うことができ、電力料金の安い深夜電力時間帯の充電電力量も多くできる効果がある。 In addition, the operation plan of the power storage device B in the second embodiment measures the charge power amount of the storage battery 3, compares the temperature prediction information with the temperature of the set lower limit value at which the storage battery 3 can no longer be charged / discharged, and When it is predicted that the temperature of the belt will be lower than the temperature of the set lower limit value, the operation plan of the storage battery is created so that the discharge of the storage battery 3 can be continued until immediately before the midnight power period based on the amount of charge power of the storage battery 3. For this reason, when charging the power in the late-night power hours, it is not necessary to warm up the battery cell temperature with standby power, and no time to warm up is required, and charging can be performed from a time when the temperature is relatively higher than before dawn. In addition, there is an effect that the amount of charging power can be increased in the late-night power hours when the electricity rate is low.
 なお、蓄電池3の運転計画、および給湯機5の運転計画は、上記実施の形態1、2で述べた方法に限るものではない。また、蓄電池3の運転方法の決定方法も、上記実施の形態1、2で述べた方法に限るものではない。また、蓄電池3の動作についても、昼間時間帯は買電電力が最小なるように充放電計画を作成したがこれに限るものではない。例えば、PV余剰電力の売電価格が高い場合は、売電電力が最大になるよう蓄電池3の充放電を制御するよう運転計画を立てるように構成しても良い。 Note that the operation plan of the storage battery 3 and the operation plan of the water heater 5 are not limited to the methods described in the first and second embodiments. Further, the method for determining the operation method of the storage battery 3 is not limited to the method described in the first and second embodiments. In addition, regarding the operation of the storage battery 3, the charging / discharging plan is created so that the purchased power is minimized during the daytime period, but is not limited thereto. For example, when the selling price of PV surplus power is high, an operation plan may be made so as to control charging / discharging of the storage battery 3 so that the selling power is maximized.
実施の形態3.
 次に、この発明に実施の形態3による電力管理装置100について説明する。上記実施の形態1、2では、蓄電池パワコン4と電力管理装置100は通信ネットワーク12を介して、Echonet Lite規格のプロトコルで通信を行う場合について説明した。Echonet Lite規格のプロトコルは、標準的に実装される必須のプロトコル、各社が必要に応じて実装するオプションのプロトコル、および各社が独自に定義できる独自プロトコルがある。例えば、自社の電力管理装置100と自社の蓄電池パワコン4の間は、図8に示すような制限テーブルの情報のやり取りや、蓄電池パワコン4の運転モードを独自プロトコル等で予め定めておけば、上記実施の形態1、2で説明したような蓄電池3の充放電制御は実現することができる。
 一方、自社の電力管理装置100と他社の蓄電池パワコン4を接続する場合は、使用できるプロトコルが限られる。また、上記実施の形態1、2では、蓄電池3の劣化の進行を抑えるために図8に示す制限テーブルを蓄電池パワコン4内に内蔵し、蓄電池セル温度に応じて最大充放電電流値、充電終止電圧、および放電終止電圧を制御することで蓄電池劣化の進度を抑制してきた。しかし、このような制限テーブルが蓄電池パワコン4に内蔵されていない場合がある。
Embodiment 3 FIG.
Next, a power management apparatus 100 according to Embodiment 3 of the present invention will be described. In the said Embodiment 1, 2, the storage battery power conditioner 4 and the power management apparatus 100 demonstrated the case where it communicates by the protocol of Echonet Lite specification via the communication network 12. FIG. The protocol of the Echonet Lite standard includes an indispensable protocol that is implemented as standard, an optional protocol that each company implements as necessary, and a unique protocol that each company can define independently. For example, between the power management apparatus 100 of the company and the storage battery power conditioner 4 of the company, the exchange of information in the restriction table as shown in FIG. The charge / discharge control of the storage battery 3 as described in the first and second embodiments can be realized.
On the other hand, when the company's power management apparatus 100 and another company's storage battery power conditioner 4 are connected, the protocols that can be used are limited. In the first and second embodiments, the limit table shown in FIG. 8 is built in the storage battery power conditioner 4 in order to suppress the progress of the deterioration of the storage battery 3, and the maximum charge / discharge current value and end of charge are determined according to the storage battery cell temperature. The progress of storage battery deterioration has been suppressed by controlling the voltage and the discharge end voltage. However, such a restriction table may not be built in the storage battery power conditioner 4.
 更に、蓄電池パワコン4の運転モードも上述した独自プロトコルのみで定義されており、他社の電力管理装置100は、必須プロトコル(例えば、充放電開始、および停止のプロトコルのみ)しか使用できないケースもある。
 上記実施の形態1、2の場合は、蓄電池パワコン4内で、蓄電池セル温度、および蓄電池電圧に基づき充放電時の電流制限、あるいは充放電の停止が判断され制御される(制限テーブルにより充放電電流の最大値、あるいは充電終止電圧、放電終止電圧が管理される)ため、電力管理装置100からの運転計画の通知が30分毎に更新される場合であっても、蓄電池劣化を抑制することができた。しかし、蓄電池パワコン4が蓄電池劣化抑制のための制限テーブル等の機能を有さない場合、あるいは使用できるプロトコルが限られている場合は、電力管理装置100は、更に詳細に蓄電池パワコン4を管理(監視)し、制御する必要がある。
Furthermore, the operation mode of the storage battery power conditioner 4 is also defined only by the unique protocol described above, and the power management apparatus 100 of other companies may use only essential protocols (for example, only charging / discharging start and stop protocols).
In the case of the first and second embodiments, in the storage battery power conditioner 4, the current limit at the time of charge / discharge or the stop of charge / discharge is determined and controlled based on the storage battery cell temperature and the storage battery voltage (charge / discharge by the limit table) The maximum current value, or the end-of-charge voltage and the end-of-discharge voltage are managed), so even if the operation plan notification from the power management apparatus 100 is updated every 30 minutes, storage battery deterioration is suppressed. I was able to. However, when the storage battery power conditioner 4 does not have a function such as a restriction table for suppressing deterioration of the storage battery, or when a usable protocol is limited, the power management apparatus 100 manages the storage battery power conditioner 4 in more detail ( Monitoring) and control.
 この実施の形態3では、電力管理装置100から蓄電池パワコン4の運転モードを制御する際のEchonet Lite規格のプロトコルが、蓄電池3への充電開始/停止のコマンド、および蓄電池3からの放電開始/停止のコマンドのみサポートされている場合、即ち、蓄電池パワコン4の運転モードの指定が、充放電開始/停止のコマンドのみサポートされている場合について説明する。よって、電力管理装置100から充電開始コマンドを送付すると蓄電池パワコン4は、充電停止コマンドを受け取るか、蓄電池3が満充電になるまで充電を続ける。同様に、電力管理装置100が蓄電池パワコン4に対して放電開始コマンドを出力すると、蓄電池パワコン4は電力管理装置100から放電停止コマンドを受信するか、蓄電電力量がゼロになるまで放電を続ける。
 この実施の形態3では、上記のような蓄電池パワコン4の運転制御コマンドの制限に加えて、蓄電池パワコン4内に蓄電池劣化の進行を抑制する制限テーブル等の機能を有さない場合について説明する。
In the third embodiment, the protocol of the Echonet Lite standard for controlling the operation mode of the storage battery power conditioner 4 from the power management device 100 is a command for starting / stopping charging of the storage battery 3 and starting / stopping discharging from the storage battery 3. A case where only the command is supported, that is, the case where only the charge / discharge start / stop command is supported for specifying the operation mode of the storage battery power conditioner 4 will be described. Therefore, when a charging start command is sent from the power management apparatus 100, the storage battery power conditioner 4 continues charging until it receives a charging stop command or the storage battery 3 is fully charged. Similarly, when the power management apparatus 100 outputs a discharge start command to the storage battery power conditioner 4, the storage battery power conditioner 4 continues discharging until it receives a discharge stop command from the power management apparatus 100 or the stored power amount becomes zero.
In the third embodiment, a case will be described in which the storage battery power conditioner 4 does not have a function such as a restriction table that suppresses the progress of deterioration of the storage battery in addition to the limitation of the operation control command of the storage battery power conditioner 4 as described above.
 図33に、この実施の形態3における電力管理装置100のシステム構成図を示す。なお、電力管理装置100を含む電力管理システム全体の構成は、上記実施の形態1の図1で示したものと同様である。
 図33に示すように、電力管理装置100は、CPU110、ROM111、RAM112、Echonet Lite通信I/F部113、Ethenet通信I/F部114、表示部115、電力計測部116、時刻管理部117、運転計画部118a、機器管理部119、負荷機器制御部120、家族スケジュール管理部121、DR(デマンドレスポンス)対応部122、蓄電池運転モード決定部123、およびCPUバス130で構成される。運転計画部118a、蓄電池運転モード決定部123以外の構成は、上記実施の形態1と同様である。
FIG. 33 shows a system configuration diagram of the power management apparatus 100 according to the third embodiment. The overall configuration of the power management system including the power management apparatus 100 is the same as that shown in FIG. 1 of the first embodiment.
As illustrated in FIG. 33, the power management apparatus 100 includes a CPU 110, a ROM 111, a RAM 112, an Echonet Lite communication I / F unit 113, an Ethernet communication I / F unit 114, a display unit 115, a power measurement unit 116, a time management unit 117, The operation planning unit 118a, the device management unit 119, the load device control unit 120, the family schedule management unit 121, the DR (demand response) response unit 122, the storage battery operation mode determination unit 123, and the CPU bus 130 are included. Configurations other than the operation plan unit 118a and the storage battery operation mode determination unit 123 are the same as those in the first embodiment.
 図34は、電力管理装置100内の運転計画部118aの構成を示すブロック図である。
 図に示すように、運転計画部118aは、負荷消費電力学習管理部200と、PV発電電力学習管理部201と、負荷消費電力予測部202と、PV発電電力予測部203と、蓄電池モデル204と、給湯機モデル205と、蓄電池3および給湯機5の運転計画を作成する運転計画作成部206aと、第2蓄電池モデル212とを備える。
 運転計画作成部206aは蓄電池運転計画修正部214を備え、第2蓄電池モデル212は充電電力量推定部213を備える。第2蓄電池モデル212では、充電電力量推定部213が蓄電池3の充電電力量を推定する。そして第2蓄電池モデル212は、運転計画作成部206aから蓄電池3の運転計画210を受信し、推定された充電電力量と運転計画210とに基づいて、充放電停止指令211を出力する。運転計画作成部206aは、充放電停止指令211を受信し、蓄電池運転計画修正部214により蓄電池3の運転計画を修正する。運転計画部118aにおいて、その他の構成は上記実施の形態1と同様である。
FIG. 34 is a block diagram illustrating a configuration of the operation planning unit 118a in the power management apparatus 100.
As shown in the figure, the operation planning unit 118a includes a load power consumption learning management unit 200, a PV power generation power learning management unit 201, a load power consumption prediction unit 202, a PV power generation power prediction unit 203, and a storage battery model 204. , A water heater model 205, an operation plan creation unit 206 a that creates an operation plan for the storage battery 3 and the water heater 5, and a second storage battery model 212.
The operation plan creation unit 206a includes a storage battery operation plan correction unit 214, and the second storage battery model 212 includes a charge power amount estimation unit 213. In the second storage battery model 212, the charge power amount estimation unit 213 estimates the charge power amount of the storage battery 3. And the 2nd storage battery model 212 receives the operation plan 210 of the storage battery 3 from the operation plan preparation part 206a, and outputs the charging / discharging stop command 211 based on the estimated charging electric energy and the operation plan 210. The operation plan creation unit 206 a receives the charge / discharge stop instruction 211 and corrects the operation plan of the storage battery 3 by the storage battery operation plan correction unit 214. In the operation planning unit 118a, other configurations are the same as those in the first embodiment.
 以下、この実施の形態3における電力管理装置100の動作について説明する。電力管理装置100の起動が完了すると、CPU110は実施の形態1と同様に、機器管理部119に対して、接続されている機器の情報を収集する。具体的には、接続されている蓄電池パワコン4の機種等の機器情報を収集する。接続されている蓄電池パワコン4の機種等の機器情報がない場合は、表示部115を介してユーザに機器情報を登録するよう促す。ユーザが機器情報を登録する、あるいは既に機器情報が登録されていた場合は、CPU110はEthernet(登録商標)通信I/F114を介してクラウドサーバ31から蓄電池パワコン4に関する各種情報を収集する。この実施の形態3では、CPU110は、クラウドサーバ31から蓄電池パワコン4に接続されている蓄電池3の特性情報、蓄電池パワコン4で充放電を行う際の制限情報(例えば、図8に示す制限テーブル情報)、蓄電池パワコン4の温度特性に関するパラメータ情報、および蓄電池パワコン4が実装しているEconet Liteに関するプロトコル情報等を収集する。 Hereinafter, the operation of the power management apparatus 100 according to the third embodiment will be described. When the activation of the power management apparatus 100 is completed, the CPU 110 collects information on the connected devices to the device management unit 119 as in the first embodiment. Specifically, device information such as the model of the connected storage battery power conditioner 4 is collected. If there is no device information such as the model of the connected storage battery power conditioner 4, the user is prompted to register the device information via the display unit 115. When the user registers the device information or the device information has already been registered, the CPU 110 collects various types of information related to the storage battery power conditioner 4 from the cloud server 31 via the Ethernet (registered trademark) communication I / F 114. In this Embodiment 3, CPU110 is the characteristic information of the storage battery 3 connected to the storage battery power conditioner 4 from the cloud server 31, the restriction information at the time of charging / discharging in the storage battery power conditioner 4 (for example, restriction table information shown in FIG. 8) ), Parameter information related to the temperature characteristics of the storage battery power conditioner 4, protocol information related to the Econet Lite mounted on the storage battery power conditioner 4, and the like.
 なお、蓄電池3の特性情報とは、図6(c)に示すSoCと蓄電池電圧に加え、定電流充電と定電圧充電の閾値情報、蓄電池劣化の進度を抑制するための制御パラメータ情報(制限テーブル情報)を指す。この制御パラメータ情報は、蓄電池3の供給メーカからの入手情報や、蓄電池3の評価結果に基づき作成したもので、蓄電池モデル204、および第2蓄電池モデル212で使用する。
 また、蓄電池パワコン4が実装しているEconet Liteに関するプロトコル情報については、電力管理装置100から蓄電池パワコン4を制御する際にサポートされている運転モード、および蓄電池パワコン4から収集可能な蓄電池3に関する情報をクラウドサーバ31から入手する。この実施の形態3では、蓄電池パワコン4の運転モードとして、スリープモードでの待機、スタンバイモードでの待機、充電開始、充電停止、放電開始、放電停止のみをサポートする。また、蓄電池パワコン4は、蓄電池3に関する情報としてはSoC情報のみ取得できる場合について説明する。
In addition to the SoC and storage battery voltage shown in FIG. 6C, the characteristic information of the storage battery 3 includes threshold information of constant current charging and constant voltage charging, and control parameter information for limiting the progress of storage battery deterioration (restriction table). Information). This control parameter information is created based on information obtained from the supplier of the storage battery 3 and the evaluation result of the storage battery 3, and is used in the storage battery model 204 and the second storage battery model 212.
Moreover, about the protocol information regarding Econet Lite which the storage battery power conditioner 4 is mounted, the information regarding the operation mode supported when controlling the storage battery power conditioner 4 from the power management apparatus 100 and the storage battery 3 that can be collected from the storage battery power conditioner 4 Is obtained from the cloud server 31. In the third embodiment, only the standby in the sleep mode, the standby in the standby mode, the charge start, the charge stop, the discharge start, and the discharge stop are supported as the operation mode of the storage battery power conditioner 4. Moreover, the storage battery power conditioner 4 demonstrates the case where only SoC information can be acquired as information regarding the storage battery 3. FIG.
 さらに運転モードについては、必須のプロトコルである充電開始、充電停止、放電開始、放電停止をサポートしていればよく、他の運転モードがサポートされていなくても良いことは言うまでもない。また、上記運転モード以外に、売電最大モードや買電最小モード等がサポートされていても良いことは言うまでもない。また、蓄電池3に関する情報についても必須である蓄電電力量をSoCとしたがこれに限るものではなく、電力量(kWh、あるいはAh)情報でも良く、また、他の情報(例えば蓄電池セルの温度情報等)が含まれていても良いことは言うまでもない。 Furthermore, as for the operation mode, it is only necessary to support charge start, charge stop, discharge start, and discharge stop which are essential protocols, and it goes without saying that other operation modes may not be supported. Needless to say, in addition to the above operation mode, the maximum power sale mode, the minimum power purchase mode, and the like may be supported. In addition, the information on the storage battery 3 is also indispensable for the stored power amount SoC. However, the information is not limited to this, and the power amount (kWh or Ah) information may be used, and other information (for example, temperature information of the storage battery cell). Needless to say, it may be included.
 CPU110は、クラウドサーバ31から蓄電池パワコン4の情報を入手すると、Echonet Liteプロトコル情報を蓄電池運転モード決定部123に通知する。蓄電池運転モード決定部123は、蓄電池パワコン4がサポートするEchonet Liteプロトコル情報を受け取ると、使用できる運転モードをCPUバス130を介して運転計画部118aに通知する。同様に、CPU110は、クラウドサーバ31から入手した蓄電池3の特性情報、および蓄電池パワコン4の充放電制限情報を運転計画部118aに通知する。 When the CPU 110 obtains information on the storage battery power conditioner 4 from the cloud server 31, the CPU 110 notifies the storage battery operation mode determination unit 123 of Echonet Lite protocol information. When the storage battery operation mode determination unit 123 receives the Echonet Lite protocol information supported by the storage battery power conditioner 4, the storage battery operation mode determination unit 123 notifies the operation planning unit 118 a of the available operation modes via the CPU bus 130. Similarly, the CPU 110 notifies the operation planning unit 118 a of the characteristic information of the storage battery 3 obtained from the cloud server 31 and the charge / discharge restriction information of the storage battery power conditioner 4.
 CPU110は蓄電池パワコン4の機器情報の取得、および通知を完了すると、機器管理部119に対して認証を実施するよう指示を出す。機器管理部119はEchonet Lite通信I/F部113を介して各機器の認証を行う。各機器の認証が完了すると機器管理部119はCPU110に対して接続認証が完了したことを通知する。各機器の認証が完了すると、CPU110は機器管理部119に対して接続されている各機器の動作状況を確認するよう指示を出す。認証された機器全ての動作状態の取得を終了すると機器管理部119はその旨をCPU110に通知する。 When the CPU 110 completes the acquisition and notification of the device information of the storage battery power conditioner 4, it instructs the device management unit 119 to perform authentication. The device management unit 119 authenticates each device via the Echonet Lite communication I / F unit 113. When the authentication of each device is completed, the device management unit 119 notifies the CPU 110 that the connection authentication is completed. When the authentication of each device is completed, the CPU 110 instructs the device management unit 119 to check the operation status of each connected device. When the acquisition of the operation states of all the authenticated devices is completed, the device management unit 119 notifies the CPU 110 to that effect.
 CPU110は、各機器の動作状態を把握すると、上記実施の形態1と同様にEthernet(登録商標)通信I/F部114に対して気温予測情報を含む天気予報情報をクラウドサーバ31から入手するよう指示を出す。なお、クラウドサーバ31から入手する天気予報情報は、上記実施の形態1と同様に「晴れ」、「曇り」、「雨」または「雪」を使用するものとし、また、天気予報情報、および気温予測情報は、1時間毎の予報が24時間分、クラウドサーバ31から入手するものとする。気温予測情報を含む天気予報情報を入手すると、CPU110は運転計画部118aに対して運転計画を作成するよう指示を出す。 When CPU 110 grasps the operating state of each device, CPU 110 obtains weather forecast information including temperature forecast information from cloud server 31 for Ethernet (registered trademark) communication I / F unit 114 as in the first embodiment. Give instructions. Note that the weather forecast information obtained from the cloud server 31 uses “sunny”, “cloudy”, “rain” or “snow” as in the first embodiment, and the weather forecast information and temperature The prediction information is obtained from the cloud server 31 for 24 hours of hourly forecasts. When obtaining weather forecast information including temperature prediction information, the CPU 110 instructs the operation planning unit 118a to create an operation plan.
 次に、電力管理装置100の動作について説明する。
 運転計画部118aは、CPU110から上述した蓄電池3の特性情報を入手すると蓄電池モデル204、および第2蓄電池モデル212にその情報を通知する。蓄電池モデル204および蓄電池モデルB212は、蓄電池3の特性情報を受け取ると、図示していないテーブルに、図6(c)に示すSoCと蓄電池電圧の関係を指し示すデータ、図8(a)、および(b)に示す制限テーブルデータ、および蓄電池パワコン4の温度特性に関するパラメータ情報(蓄電池セル温度を推定する際に使用するパラメータ情報)をセットする。
Next, the operation of the power management apparatus 100 will be described.
When the operation planning unit 118 a obtains the above-described characteristic information of the storage battery 3 from the CPU 110, the operation planning unit 118 a notifies the storage battery model 204 and the second storage battery model 212 of the information. When the storage battery model 204 and the storage battery model B 212 receive the characteristic information of the storage battery 3, the data indicating the relationship between the SoC and the storage battery voltage shown in FIG. The restriction table data shown in b) and parameter information (parameter information used when estimating the storage battery cell temperature) regarding the temperature characteristics of the storage battery power conditioner 4 are set.
 また、運転計画部118aは、CPU110から運転計画作成の指示を受け取ると、運転計画作成部206aは、運転計画部118a内の各部に運転計画作成するよう通知する。
 負荷消費電力学習管理部200は、上記実施の形態1と同様に、時刻管理部117より出力される日付、曜日、時刻データ、クラウドサーバ31から入手した現在の天気情報、図示していない温度計により計測した現在の実測気温情報(外気温)を元に、電力計測部116より出力される、給湯機5および負荷機器20の消費電力を学習し、図示していないデータベースに記憶する。
 なお、負荷消費電力学習管理部200では、上記実施の形態1と同様に、実測気温情報を用いて気温予測情報に対して補正を加え(上記実施の形態1および図20を参照)、負荷消費電力予測部202、蓄電池モデル204、給湯機モデル205および運転計画作成部206aに通知する。
When the operation plan unit 118a receives an operation plan creation instruction from the CPU 110, the operation plan creation unit 206a notifies each unit in the operation plan unit 118a to create an operation plan.
As in the first embodiment, the load power consumption learning management unit 200 includes the date, day of the week, and time data output from the time management unit 117, current weather information obtained from the cloud server 31, and a thermometer (not shown). Based on the current measured temperature information (outside temperature) measured by the above, the power consumption of the water heater 5 and the load device 20 output from the power measuring unit 116 is learned and stored in a database (not shown).
Note that the load power consumption learning management unit 200 corrects the temperature prediction information using the actually measured temperature information as in the first embodiment (see the first embodiment and FIG. 20), and the load consumption The power prediction unit 202, the storage battery model 204, the water heater model 205, and the operation plan creation unit 206a are notified.
 また、PV発電電力学習管理部201は、日付、時刻データ、および現在の天気実績を元に、電力計測部116より出力される、太陽光パネル1にて発電されるPV発電電力量を各天気実績に基づいて学習し、図示していないデータベースに記憶する。負荷消費電力予測部202は、クラウドサーバ31から入手した天気予報情報、気温情報、家族スケジュール管理部121内の家族スケジュール、および負荷消費電力学習管理部200内のデータベースを元に、給湯機5の消費電力を除く負荷機器20の消費電力を予測する。また、PV発電電力予測部203は、天気予報結果、PV発電電力学習管理部201内のデータベース、および太陽光パネル1のPV発電電力量の実績を元に、現在の時刻以降のPV発電電力量を予測する。 Further, the PV generated power learning management unit 201 calculates the PV generated power amount generated by the solar panel 1 output from the power measuring unit 116 based on the date, time data, and the current weather performance for each weather. Learning is performed based on the results and stored in a database (not shown). The load power consumption prediction unit 202 is based on the weather forecast information obtained from the cloud server 31, the temperature information, the family schedule in the family schedule management unit 121, and the database in the load power consumption learning management unit 200. The power consumption of the load device 20 excluding the power consumption is predicted. Further, the PV generated power prediction unit 203 is based on the weather forecast result, the database in the PV generated power learning management unit 201, and the PV generated power amount of the solar panel 1, and the PV generated power amount after the current time. Predict.
 蓄電池モデル204は、蓄電池特性学習部と蓄電池温度予測部とを兼ねて構成されるもので、入力される蓄電池3の特性情報、気温予測情報、および運転計画作成部206aから出力される蓄電池3の運転計画に基づき、蓄電池3の温度情報である蓄電池セル温度(蓄電池3内部の各セルの表面温度)の予測温度を算出する。なお、この実施の形態3では、上述したように、電力管理装置100とは異なる他社製の蓄電池パワコン4を用いた場合(蓄電池セル温度情報がBMU305から通知されない場合)について説明する。従って、蓄電池セル温度を予測する場合は、予め該当機種の蓄電池パワコン4の温度特性を計測しておき、その計測結果を基に算出した温度特性に関するパラメータ情報を使用する。 The storage battery model 204 is configured to serve both as a storage battery characteristic learning unit and a storage battery temperature prediction unit. The storage battery 3 is input from the storage battery 3 characteristic information, temperature prediction information, and the operation plan creation unit 206a. Based on the operation plan, the predicted temperature of the storage battery cell temperature (surface temperature of each cell inside the storage battery 3), which is the temperature information of the storage battery 3, is calculated. In the third embodiment, as described above, a case where a storage battery power conditioner 4 made by another company different from the power management apparatus 100 is used (a case where storage battery cell temperature information is not notified from the BMU 305) will be described. Therefore, when predicting the storage battery cell temperature, the temperature characteristics of the storage battery power conditioner 4 of the corresponding model are measured in advance, and parameter information relating to the temperature characteristics calculated based on the measurement result is used.
 この場合、蓄電池セル温度を以下に示す(式3)を用いて算出するものとする。
 蓄電池セル温度=気温+k4(α+β×充放電電流×充放電電流)
 ・・・・・・・・・・・(式3)
In this case, the storage battery cell temperature is calculated using (Equation 3) shown below.
Battery cell temperature = air temperature + k4 (α + β × charge / discharge current × charge / discharge current)
・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ (Formula 3)
 即ち、クラウドサーバ31は各機種の温度特性に関するパラメータとして上記α、βを管理する。なお、αは蓄電池パワコン4の待機電力、βは蓄電池パワコン4の抵抗成分、例えば内部抵抗を示す。また、k4は、電力を温度に換算する補正係数である。
 この実施の形態3の蓄電池モデル204では、蓄電池セル温度の推定に際して、温度上昇/降下時の時定数は考慮しないものとする。なお、温度特性に関するパラメータ情報に時定数を加え、過渡応答について考慮しても良いことは言うまでもない。
That is, the cloud server 31 manages the above α and β as parameters relating to the temperature characteristics of each model. Α indicates standby power of the storage battery power conditioner 4, and β indicates a resistance component of the storage battery power conditioner 4, for example, internal resistance. K4 is a correction coefficient for converting electric power into temperature.
In the storage battery model 204 of the third embodiment, the time constant at the time of temperature increase / decrease is not considered when estimating the storage cell temperature. Needless to say, a time constant may be added to the parameter information related to the temperature characteristics to consider the transient response.
 上記(式3)により推定した蓄電池セル温度から、蓄電池モデル204は、充放電電流、充電終止電圧、放電終止電圧など蓄電池劣化に大きく起因する各種制限値(最大充放電電流、および蓄電池3の使用SoC範囲)を上記制限テーブルデータから求める。そして蓄電池モデル204は、運転計画作成部206aから出力される運転計画を元に蓄電池3の動作を模擬する。具体的には、充放電電流値は最大充放電電流値以下になるように制限をかけると共に、蓄電池3の使用範囲は指定されたSoCの範囲で使用するように充放電動作を模擬する。 From the storage battery cell temperature estimated by the above (Equation 3), the storage battery model 204 has various limit values (maximum charging / discharging current and use of the storage battery 3) such as a charge / discharge current, a charge end voltage, and a discharge end voltage that are largely caused by storage battery deterioration. SoC range) is obtained from the restriction table data. The storage battery model 204 simulates the operation of the storage battery 3 based on the operation plan output from the operation plan creation unit 206a. Specifically, the charge / discharge operation is simulated so that the charge / discharge current value is limited to be equal to or less than the maximum charge / discharge current value, and the use range of the storage battery 3 is used within the specified SoC range.
 一方、給湯機モデル205は、上記実施の形態1と同様に、入力される給湯機5の特性情報、気温予測情報、および運転計画作成部206aから出力される使用湯量および給湯機5の運転計画に基づき、給湯機5の動作を模擬し、各時刻における消費電力量と蓄熱量を算出する。なお、消費電力量の算出は、上記実施の形態1と同様に負荷消費電力学習管理部200内のデータベースを用いて行う。また、電力管理装置100からの給湯機5の起動停止回数を1日に最大2回とする。さらに、ユーザからの追いだき要求がある場合は、給湯機5の起動に制限を設けない。
 給湯機5の運転計画は、深夜電力時間帯の給湯をメインとして給湯する場合、および昼間時間帯の給湯の2つの運転パターンを作成するものとする。なお、給湯機5は、起動停止回数が1日に最大2回に限られているため、運転パターン数を絞ることができ演算量の削減が図れることは言うまでもない。
On the other hand, the hot water heater model 205 is similar to the first embodiment, the inputted characteristic information of the hot water heater 5, the temperature prediction information, the amount of hot water output from the operation plan creation unit 206a and the operation plan of the water heater 5. Based on the above, the operation of the water heater 5 is simulated, and the power consumption and the heat storage amount at each time are calculated. The calculation of the power consumption amount is performed using the database in the load power consumption learning management unit 200 as in the first embodiment. In addition, the hot water heater 5 from the power management apparatus 100 is started and stopped a maximum of twice per day. Furthermore, when there is a follow-up request from the user, there is no restriction on the activation of the water heater 5.
The operation plan of the water heater 5 is to create two operation patterns for hot water supply in the midnight power time zone and hot water supply in the daytime time zone. In addition, since the hot water heater 5 is limited to the maximum number of start / stop operations twice a day, it goes without saying that the number of operation patterns can be reduced and the amount of calculation can be reduced.
 次に、第2蓄電池モデル212の動作を説明する。
 この実施の形態3では、上述した蓄電池モデル204とは別の第2蓄電池モデル212が設けられる。蓄電池モデル204では各予測結果に基づき、これからの蓄電池3の動作を模擬するのに対して、第2蓄電池モデル212は、現在の蓄電池3の状態を推定(模擬)する。具体的には、蓄電池セル温度、および蓄電池3の充電電力量(SoC)を推定する。そして、運転計画作成部206aから出力される蓄電池3の運転計画210と上記SoCの推定結果を比較し、所定の充電電力量を超えている(充電時)、あるいは所定の充電電力量を下回っている(放電時)場合、運転計画作成部206aに対して充放電停止指令211を出力する。
 そして、運転計画作成部206aは、充放電停止指令211を受け取ると、内部の蓄電池運転計画修正部214にて運転計画の修正を行う(詳細は後述)。
Next, the operation of the second storage battery model 212 will be described.
In this Embodiment 3, the 2nd storage battery model 212 different from the storage battery model 204 mentioned above is provided. The storage battery model 204 simulates the future operation of the storage battery 3 based on each prediction result, whereas the second storage battery model 212 estimates (simulates) the current state of the storage battery 3. Specifically, the storage battery cell temperature and the charged power amount (SoC) of the storage battery 3 are estimated. Then, the operation plan 210 of the storage battery 3 output from the operation plan creation unit 206a is compared with the estimation result of the SoC. If it is discharged (during discharging), a charge / discharge stop command 211 is output to the operation plan creation unit 206a.
And the operation plan preparation part 206a will correct | amend an operation plan in the internal storage battery operation plan correction | amendment part 214, if the charge / discharge stop command 211 is received (details are mentioned later).
 次に、電力管理装置100内の運転計画部118aの動作について図35、図36に基づいて説明する。図35および図36は、この実施の形態3による運転計画作成動作の全体フロー図である。なお、上記実施の形態1の図15で示したものと同じ符号のステップについては、上記実施の形態1と同様の動作である。
 図35に示すように、まず、運転計画部118aは、CPU110から運転計画作成の指示を受け取ると、時刻管理部117から月日、曜日、時刻情報を取得する(ステップS11)。
 時刻等の情報の取得が完了すると、電力計測部116は、現在の消費電力、PV発電電力等の情報(リアルタイム計測値)を取得する。その際、気温についても取得する(ステップS12)。
Next, the operation of the operation planning unit 118a in the power management apparatus 100 will be described based on FIG. 35 and FIG. FIG. 35 and FIG. 36 are overall flowcharts of the operation plan creation operation according to the third embodiment. Note that steps having the same reference numerals as those shown in FIG. 15 in the first embodiment are the same as those in the first embodiment.
As shown in FIG. 35, first, when the operation plan unit 118a receives an operation plan creation instruction from the CPU 110, the operation plan unit 118a acquires the date, day of the week, and time information from the time management unit 117 (step S11).
When acquisition of information such as time is completed, the power measurement unit 116 acquires information (real-time measurement values) such as current power consumption and PV generated power. At that time, the temperature is also acquired (step S12).
 現在のPV発電電力等の取得を終了すると、運転計画部118aは、電力計測部116から蓄電池パワコン4の充放電電力情報である充放電電力のリアルタイム情報(充放電電力あるいは充放電電流)を取得する(ステップS201)。
 蓄電池3の充放電電力情報の取得を完了すると、運転計画部118aは、図示していない温度計から出力される気温情報を取得する(ステップS202)。
 気温情報の取得が完了すると、運転計画部118aでは、運転計画作成部206aが、第2蓄電池モデル212内の充電電力量推定部213に対して、蓄電池3の充電電力量(SoC)を推定するよう指示を出す。これにより、充電電力量推定部213は、ステップS203で示す充電電力量の推定を開始する。ここでは、蓄電池3の現在の充電電電力量(SoC)を推定し、さらに蓄電池3の電圧、および満充電時の充電電力量についても推定するものとする。
When the acquisition of the current PV generated power and the like is completed, the operation planning unit 118a acquires real-time information (charge / discharge power or charge / discharge current) of charge / discharge power that is charge / discharge power information of the storage battery power conditioner 4 from the power measurement unit 116. (Step S201).
When the acquisition of the charge / discharge power information of the storage battery 3 is completed, the operation planning unit 118a acquires temperature information output from a thermometer (not shown) (step S202).
When the acquisition of the temperature information is completed, in the operation plan unit 118a, the operation plan creation unit 206a estimates the charge power amount (SoC) of the storage battery 3 with respect to the charge power amount estimation unit 213 in the second storage battery model 212. Give instructions. Thereby, the charging power amount estimation unit 213 starts estimating the charging power amount shown in step S203. Here, it is assumed that the current charging electric energy (SoC) of the storage battery 3 is estimated, and further, the voltage of the storage battery 3 and the charging electric energy when fully charged are also estimated.
 以下、図37を用いて蓄電池3の充電電力量推定のフローを説明する。この充電電力量推定のフロー(ステップS221~ステップS227)は図35に示すステップS203を詳細に示すものである。
 第2蓄電池モデル212は、運転計画作成が開始されると、蓄電池3の充電電力量の初期値がセットされているか確認する(ステップS221)。
 なお、この実施の形態3では、電力管理装置100起動後の機器管理部119での認証の際に、蓄電池3の蓄電電力量(SoC)の初期値を蓄電池パワコン4から受け取り、その値を用いる。この場合、各機器間とは30分に一度通信する場合について説明する。なお、通信周期は30分に一度に限るものではなく、15分、60分等の定期更新、あるいは各機器を制御する必要ができた場合のみに通知する非定期通信、あるいは定期通信と非定期通信の組合せであっても良いことは言うまでもない。
Hereinafter, the flow of charge energy estimation of the storage battery 3 will be described with reference to FIG. This charging power amount estimation flow (steps S221 to S227) shows step S203 shown in FIG. 35 in detail.
When the operation plan creation is started, the second storage battery model 212 confirms whether or not the initial value of the charging power amount of the storage battery 3 is set (step S221).
In the third embodiment, the initial value of the stored power amount (SoC) of the storage battery 3 is received from the storage battery power conditioner 4 and used when authentication is performed by the device management unit 119 after the power management apparatus 100 is activated. . In this case, a case will be described in which communication between the devices is performed once every 30 minutes. Note that the communication cycle is not limited to once every 30 minutes, but is regularly updated such as 15 minutes or 60 minutes, or non-periodic communication that is notified only when it is necessary to control each device, or periodic communication and non-periodic Needless to say, a combination of communications may be used.
 ステップS221で、蓄電池3の充電電力量の初期値がセットされていない場合(Noの場合)、第2蓄電池モデル212内の充電電力量推定部213は、機器管理部119での認証の際に蓄電池パワコン4から取得した蓄電電力量(SoC)に基づいて、蓄電池3に充電されている充電電力量を算出し、充電電力量の初期値としてセットし(ステップS222)、充電電力量推定のフローを終了する。
 ステップS221で、第2蓄電池モデル212は、蓄電池3の充電電力量の初期値のセットが完了している(Yesの場合)と判断すると、蓄電池パワコン4における充放電電力の計測結果を、電力計測部116から取得する(ステップS223)。
 続いて、取得した計測結果に基づいて蓄電池3の充電電力量(SoC)を算出する。この場合、電力計測部116は、電力計測回路14aで計測した充放電電力を1分間積算した充放電電力量を、1分間の積算充放電電力量として第2蓄電池モデル212内の充電電力量推定部213に通知する。なお、この積算周期は1分に限るものではない。充電電力量推定部213では、充電電力量の初期値と1分間の積算充放電電力量とに基づいて蓄電池3の充電電力量(SoC)を算出して推定する(ステップS224)。
In step S221, when the initial value of the charging power amount of the storage battery 3 is not set (in the case of No), the charging power amount estimation unit 213 in the second storage battery model 212 performs the authentication in the device management unit 119. Based on the stored power amount (SoC) acquired from the storage battery power conditioner 4, the charge power amount charged in the storage battery 3 is calculated and set as an initial value of the charge power amount (step S222), and the charge power amount estimation flow Exit.
If the second storage battery model 212 determines in step S221 that the setting of the initial value of the charge power amount of the storage battery 3 has been completed (in the case of Yes), the measurement result of the charge / discharge power in the storage battery power conditioner 4 is measured by the power measurement. Obtained from the unit 116 (step S223).
Subsequently, the charge power amount (SoC) of the storage battery 3 is calculated based on the acquired measurement result. In this case, the power measurement unit 116 estimates the charge power amount in the second storage battery model 212 as the charge / discharge power amount obtained by integrating the charge / discharge power measured by the power measurement circuit 14a for one minute as the accumulated charge / discharge power amount for one minute. Notification to the unit 213. This integration cycle is not limited to 1 minute. The charge power amount estimation unit 213 calculates and estimates the charge power amount (SoC) of the storage battery 3 based on the initial value of the charge power amount and the accumulated charge / discharge power amount for one minute (step S224).
 蓄電池3の充電電力量の算出による推定を終了すると、蓄電池パワコン4から第2蓄電池モデル212に最新の蓄電電力量が通知されたか確認する(ステップS225)。
 ステップS225で最新の蓄電電力量が通知されている場合(Yesの場合)は、充電電力量推定部213は、蓄電池3の充電電力量の推定結果を、通知された数値に修正する。その際、蓄電池3の満充電時の充電電力量についても推定する(詳細は後述する)(ステップS226)。
 次に、第2蓄電池モデル212は、充電電力量の推定結果と、クラウドサーバ31から入手した図6(c)に示す蓄電池特性とから蓄電池電圧を推定する(ステップS227)。
 ステップS225で最新の蓄電電力量が通知されていない場合(Noの場合)は、ステップS227に移行する。
 蓄電池電圧の算出が完了すると、充電電力量推定のフローを終了する。
When the estimation based on the calculation of the charging power amount of the storage battery 3 is finished, it is confirmed whether the latest storage power amount is notified from the storage battery power conditioner 4 to the second storage battery model 212 (step S225).
When the latest stored electric energy is notified in step S225 (in the case of Yes), the charged electric energy estimating unit 213 corrects the estimation result of the charged electric energy of the storage battery 3 to the notified numerical value. At that time, the amount of charging power when the storage battery 3 is fully charged is also estimated (details will be described later) (step S226).
Next, the 2nd storage battery model 212 estimates a storage battery voltage from the estimation result of charging electric energy, and the storage battery characteristic shown in FIG.6 (c) acquired from the cloud server 31 (step S227).
When the latest amount of stored power is not notified in step S225 (in the case of No), the process proceeds to step S227.
When the calculation of the storage battery voltage is completed, the charging power amount estimation flow ends.
 以下、蓄電池3の充電電力量を推定する理由を説明する。
 上記実施の形態1では、制限テーブルの利用により、蓄電池セル温度および充電電力量から充放電電流が自動的に制限され、その制限により充電終止電圧、あるいは放電終止電圧が所定の電圧に制御されていた。しかし、この実施の形態3では、上述したように、他社製の蓄電池パワコン4を想定しているために、蓄電池パワコン4で蓄電池3の劣化を抑制する制御機能を有さない。従って、電力管理装置100がEchonet Liteの必須コマンドである充放電の開始・停止コマンド(プロトコル)のみを利用し蓄電池パワコン4を制御する。
 また、上述したように、蓄電池3の劣化を進める主要因は蓄電池セル温度、充放電電流、充電終止電圧、放電終止電圧、および満充電保持時間である。これら主要因のうち、電力管理装置100からEchonet Liteの必須プロトコルを利用して制御ができるものは、充電終止電圧、放電終止電圧および満充電保持時間である。よって、この実施の形態3では、この3つの主要因を電力管理装置100により制御する。
Hereinafter, the reason for estimating the charging power amount of the storage battery 3 will be described.
In the first embodiment, the charging / discharging current is automatically limited from the storage cell temperature and the amount of charging power by using the limiting table, and the charging end voltage or the discharging end voltage is controlled to a predetermined voltage by the limitation. It was. However, in this Embodiment 3, since the storage battery power conditioner 4 made by other companies is assumed as described above, the storage battery power conditioner 4 does not have a control function for suppressing the deterioration of the storage battery 3. Therefore, the power management apparatus 100 controls the storage battery power conditioner 4 using only the charge / discharge start / stop command (protocol), which is an essential command of the Echonet Lite.
As described above, the main factors that promote the deterioration of the storage battery 3 are the storage battery cell temperature, the charge / discharge current, the charge end voltage, the discharge end voltage, and the full charge holding time. Among these main factors, those that can be controlled from the power management apparatus 100 using the essential protocol of Echonet Lite are the charge end voltage, the discharge end voltage, and the full charge holding time. Therefore, in the third embodiment, the three main factors are controlled by the power management apparatus 100.
 充電終止電圧、放電終止電圧および満充電保持時間を制御するためには、電力管理装置100で蓄電池3の充電電力量を常に監視しておく必要がある。上述したように蓄電池パワコン4と電力管理装置100の間の通信周期は30分である。従って、蓄電池パワコン4が0.5Cで充電していた場合、30分の充電でSoCは25%増加する。例えば、蓄電池劣化の抑制を行うために充電終止電圧、および放電終止電圧を制御する場合は、30分周期の充電電力量の更新では、制御周期が長いため、必要以上に充電、あるいは放電してしまい、所望の効果が得られない。このため、Echonet Liteの通信プロトコルで最新の蓄電電力量が通知されるまでの間の充電電力量を推定する。
 そして、充電電力量が運転計画で想定していた値を超える(充電時)、あるいは下回る(放電時)場合は、蓄電池パワコン4に対して充放電停止指令(充放電停止コマンド)を不定期に送付することで、蓄電池3の充電終止電圧、放電終止電圧、および満充電保持時間を管理することができるようになる。
In order to control the charge end voltage, the discharge end voltage, and the full charge holding time, it is necessary to constantly monitor the charge power amount of the storage battery 3 by the power management device 100. As described above, the communication cycle between the storage battery power conditioner 4 and the power management apparatus 100 is 30 minutes. Therefore, when the storage battery power conditioner 4 is charged at 0.5 C, the SoC increases by 25% after 30 minutes of charging. For example, when controlling the end-of-charge voltage and the end-of-discharge voltage in order to suppress storage battery deterioration, the charging power amount of 30 minutes is updated, and the control period is long. Therefore, the desired effect cannot be obtained. For this reason, the charging electric energy until the newest electric energy storage is notified by the communication protocol of Echonet Lite is estimated.
And when charge electric energy exceeds the value assumed in the operation plan (at the time of charge) or falls (at the time of discharge), a charge / discharge stop command (charge / discharge stop command) is irregularly given to the storage battery power conditioner 4. By sending it, it becomes possible to manage the charge end voltage, the discharge end voltage, and the full charge holding time of the storage battery 3.
 蓄電池3の充放電電力は、分電盤14内の電力計測回路14aで計測した交流電力に基づいて推定する必要がある。
 蓄電池パワコン4の損失(蓄電池3の内部抵抗による損失やBMUの消費電力による損失も含む)は、図10に示すように待機電力に加え、充放電電流の2乗に比例する損失が加わる。電力計測回路14aで計測する充放電電力は、充電時は充電時の損失が含まれず、放電時は放電時の損失により電力値が小さくなっている。また、電流あるいは電圧を計測する図示していないセンサの誤差も加わる。
 また上記実施の形態1、2で説明したように、蓄電池3は充放電を繰り返すたびに劣化が進む。よって、満充電時の充電電力量が把握できないとSoCを正確に算出できず、正確なSoCを推定できないと正確な蓄電池電圧を推定することができない。一般に、蓄電池3のSoCに対する蓄電池電圧は、蓄電池劣化が進んでも図6(c)に示す特性になる。
 このため、この実施の形態3では、蓄電池パワコン4から定期的に送信される充電(蓄電)電力量情報(SoC)を基に、第2蓄電池モデル212内の充電電力量推定部213で推定した蓄電電力量(SoC)に修正を施すと共に、満充電時の充電電力量についても推定する。
The charge / discharge power of the storage battery 3 needs to be estimated based on the AC power measured by the power measurement circuit 14a in the distribution board 14.
The loss of the storage battery power conditioner 4 (including the loss due to the internal resistance of the storage battery 3 and the loss due to the power consumption of the BMU) is added to the standby power as well as the loss proportional to the square of the charge / discharge current as shown in FIG. The charge / discharge power measured by the power measuring circuit 14a does not include a loss during charging during charging, and the power value is small due to the loss during discharging during discharging. Further, an error of a sensor (not shown) that measures current or voltage is also added.
Further, as described in the first and second embodiments, the storage battery 3 is deteriorated every time charging and discharging are repeated. Therefore, the SoC cannot be accurately calculated unless the charge power amount at the time of full charge can be grasped, and the accurate storage battery voltage cannot be estimated unless the accurate SoC can be estimated. In general, the storage battery voltage with respect to the SoC of the storage battery 3 has the characteristics shown in FIG.
For this reason, in this Embodiment 3, it estimated with the charge electric energy estimation part 213 in the 2nd storage battery model 212 based on the charge (electric storage) electric energy information (SoC) periodically transmitted from the storage battery power conditioner 4 While correcting the amount of stored power (SoC), the amount of charged power at full charge is also estimated.
 次に、図37に示される蓄電池3の充電電力量の推定方法について、さらに詳細に説明する。
 電力計測回路14aから得た充電電力には蓄電池パワコン4等でのロスや各種センサの誤差が含まれない。第2蓄電池モデル212内の充電電力量推定部213にて充電電力を推定する際、まず、現在のSoC推定値より図6(c)に示すテーブルデータを利用して蓄電池3の電圧を推定する。次に、蓄電池パワコン4で消費される損失電力を推定する。具体的には、電力計測回路14aで計測した充電電力から待機電力を減算し、減算結果を上記推定した蓄電池電圧で除算することで充電電流値を推定する。そして、推定した充電電流値、および待機電力から充電時の損失電力を算出し、この損失電力を、計測した充電電力から減算することで蓄電池3への充電電力を求める。
 また、放電時は、放電電力に待機電力を加算し、加算結果を上記推定した蓄電池電圧で除算することで放電電流値を推定する。そして、該放電電流値、および待機電力から放電時の損失電力を算出し、この損失電力を、計測した放電電力に加算することで蓄電池3からの放電電力を求める。
Next, the method for estimating the amount of charge power of the storage battery 3 shown in FIG. 37 will be described in more detail.
The charging power obtained from the power measuring circuit 14a does not include loss in the storage battery power conditioner 4 or the like or errors of various sensors. When the charging power estimation unit 213 in the second storage battery model 212 estimates the charging power, first, the voltage of the storage battery 3 is estimated from the current SoC estimated value using the table data shown in FIG. . Next, the power loss consumed by the storage battery power conditioner 4 is estimated. Specifically, the standby current is subtracted from the charging power measured by the power measurement circuit 14a, and the charging current value is estimated by dividing the subtraction result by the estimated storage battery voltage. And the loss electric power at the time of charge is calculated from the estimated charging current value and standby electric power, and the charging electric power to the storage battery 3 is calculated | required by subtracting this loss electric power from the measured charging electric power.
Further, at the time of discharging, standby power is added to the discharged power, and the result of addition is divided by the estimated storage battery voltage to estimate the discharge current value. And the loss electric power at the time of discharge is calculated from this discharge current value and standby electric power, and this electric power loss is added to the measured discharge electric power, and the discharge electric power from the storage battery 3 is calculated | required.
 なお、待機電力や蓄電池3への充放電電流に対する待機電力を除く損失については、蓄電機器Bを評価することでデータを収集し、収集結果をクラウドサーバ31上に記憶し、電力管理装置100からの要求に基づき蓄電池3の特性データとして通知するものとする。 In addition, about the loss except standby electric power with respect to standby electric power or the charging / discharging electric current to the storage battery 3, data is collected by evaluating the electrical storage device B, the collected result is stored on the cloud server 31, and the power management apparatus 100 It is assumed that notification is made as the characteristic data of the storage battery 3 based on the above request.
 充電電力量推定部213は、蓄電池3の充放電電力の算出が終了すると、現在の充電電力量にその数値を加算して充電電力量を更新する。充電電力量の更新を終了すると蓄電池パワコン4からの充電電力量(SoC)の通知があるか確認して、通知がある場合は、算出された充電電力量を修正する。その際、蓄電池3の容量(満充電時の充電電力量)を推定する。具体的には、蓄電池パワコン4から通知される蓄電電力量(SoC)と前回の通知時から今回の通知までに蓄電池3が充放電を行った充放電電力量(ΔWcharge)とSoCの変化量(ΔSoC)とから、満充電時の充電電力量を以下の(式4)で算出して推定する。 When the calculation of the charge / discharge power of the storage battery 3 is completed, the charge power amount estimation unit 213 adds the numerical value to the current charge power amount and updates the charge power amount. When the update of the charging power amount is completed, it is checked whether or not there is a notification of the charging power amount (SoC) from the storage battery power conditioner 4. If there is a notification, the calculated charging power amount is corrected. In that case, the capacity | capacitance (charge electric energy at the time of a full charge) of the storage battery 3 is estimated. Specifically, the storage power amount (SoC) notified from the storage battery power conditioner 4, the charge / discharge power amount (ΔWcharge) that the storage battery 3 charged / discharged between the previous notification and the current notification, and the change amount of the SoC ( From (ΔSoC), the charge power amount at the time of full charge is calculated by the following (Equation 4) and estimated.
 満充電時の充電電力量=ΔWcharge/ΔSoC
 ・・・・・・・・・・・(式4)
Charging electric energy at full charge = ΔWcharge / ΔSoC
・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ (Formula 4)
 なお、詳細な説明は省略するが、充電電力量推定部213において、蓄電池パワコン4からの充電電力量(SoC)の通知による充電電力量の修正で、各種センサ誤差についても補正をかけるものとする。 Although detailed description is omitted, the charging power amount estimation unit 213 corrects various sensor errors by correcting the charging power amount by notification of the charging power amount (SoC) from the storage battery power conditioner 4. .
 また、蓄電池3の劣化は10年間の使用を前提とすると1年間当たり3~5%程度と推定できる。従って、蓄電池3の満充電時の容量は1カ月程度では大きく変わらない。よって、上記(式4)で求めた満充電時の充電電力量の推定値を充電電力量推定部213内の図示していないデータベースに記憶し、例えば、過去50日間に算出した満充電時の充電電力量の推定値の平均値を算出して用いることで、蓄電機器Bの損失電力の推定誤差等の誤差要因を軽減できる。
 なお、満充電時の充電電力量の計測結果をIIR(無限インパルス応答)フィルタにて平準化して推定する、あるいは重み付けを伴って平均値を算出する等を実施しても同様の効果を奏することは言うまでもない。
The deterioration of the storage battery 3 can be estimated to be about 3 to 5% per year on the assumption that the battery is used for 10 years. Therefore, the capacity of the storage battery 3 when fully charged does not change significantly in about one month. Therefore, the estimated value of the charging power amount at the time of full charging obtained in the above (Equation 4) is stored in a database (not shown) in the charging power amount estimation unit 213, and for example, at the time of full charging calculated in the past 50 days By calculating and using the average value of the estimated value of the amount of charging power, it is possible to reduce error factors such as an estimation error of the power loss of the power storage device B.
It should be noted that the same effect can be obtained even if the measurement result of the charged electric energy at the time of full charge is estimated by leveling with an IIR (infinite impulse response) filter or the average value is calculated with weighting. Needless to say.
 満充電時の充電電力量の算出を終了すると、蓄電池3の現時点の充電電力量を満充電時の充電電力量で除算することでSoCを算出し、該算出結果から図6(c)に示すテーブルを用いて蓄電池3の電圧を推定する。 When the calculation of the charging power amount at the time of full charge is completed, the SoC is calculated by dividing the current charging power amount of the storage battery 3 by the charging power amount at the time of full charging, and the calculation result is shown in FIG. The voltage of the storage battery 3 is estimated using a table.
 図35に戻り説明を続ける。
 ステップS203(ステップS221~ステップS227)にて蓄電池3の充電電力量推定を完了すると、第2蓄電池モデル212は、蓄電池セル温度を推定する。具体的には、ステップS203にて算出した待機電力および充放電電流から、蓄電池モデル204と同様に上記(式3)を用いて算出する(ステップS204)。
 次に、第2蓄電池モデル212は、蓄電池制限情報を確認する。具体的には、上述したようにクラウドサーバ31から入手した蓄電池3の充放電時の制限テーブルと、ステップS204で算出した蓄電池セル温度とから、蓄電池3の充電終止電圧および放電終止電圧を確認する(ステップS205)。
 蓄電池3の充電終止電圧および放電終止電圧を確認すると、第2蓄電池モデル212は、ステップS203で算出した蓄電池電圧が制限値の範囲に入っているか(放電終止電圧以上で充電終止電圧以下であるか)確認する(ステップS206)。
Returning to FIG. 35, the description will be continued.
When the charge power amount estimation of the storage battery 3 is completed in step S203 (steps S221 to S227), the second storage battery model 212 estimates the storage battery cell temperature. Specifically, it is calculated from the standby power and charge / discharge current calculated in step S203 using the above (Equation 3) in the same manner as the storage battery model 204 (step S204).
Next, the second storage battery model 212 confirms storage battery restriction information. Specifically, as described above, the charge termination voltage and the discharge termination voltage of the storage battery 3 are confirmed from the restriction table at the time of charging / discharging of the storage battery 3 obtained from the cloud server 31 and the storage battery cell temperature calculated in step S204. (Step S205).
When the charge end voltage and discharge end voltage of the storage battery 3 are confirmed, the second storage battery model 212 determines whether the storage battery voltage calculated in step S203 is within the limit value range (whether it is greater than or equal to the discharge end voltage and less than or equal to the charge end voltage). ) Confirm (step S206).
 ステップS206でNoの場合は、第2蓄電池モデル212は充放電停止指令211を生成する。蓄電池劣化の主要因で電力管理装置100で管理可能なものは、充電終止電圧、放電終止電圧および満充電保持時間である。第2蓄電池モデル212は、充電終止電圧を超える場合、あるいは放電終止電圧を下回る場合に、充放電停止指令211を生成して、運転計画作成部206aに通知する(ステップS207)。
 なお、この実施の形態3では蓄電池パワコン4は、図8に示すような制限テーブルを持たず、蓄電池3の劣化抑制は行わないため、蓄電池劣化の主要因である最大充放電電流、充電終止電圧、放電終止電圧および満充電保持時間は蓄電池パワコン4で管理されない。
 また、この実施の形態3では蓄電機器Bが他社製品であるため、蓄電池3のセルを単体で評価することで、充放電を行う際の、図6(c)に示す蓄電池電圧と充電電力量(SoC)の関係や充放電に関する制限情報(例えば、図8に示す制限テーブル情報)等を求める。求めた情報は、クラウドサーバ31に記憶し、電力管理装置100からの要望に基づき電力管理装置100に通知する。
In the case of No in step S206, the second storage battery model 212 generates a charge / discharge stop command 211. What can be managed by the power management apparatus 100 as the main cause of the deterioration of the storage battery is the end-of-charge voltage, end-of-discharge voltage and full charge holding time. When the second storage battery model 212 exceeds the charge end voltage or falls below the discharge end voltage, the second storage battery model 212 generates a charge / discharge stop command 211 and notifies the operation plan creation unit 206a (step S207).
In the third embodiment, the storage battery power conditioner 4 does not have a restriction table as shown in FIG. 8 and does not suppress the deterioration of the storage battery 3. Therefore, the maximum charging / discharging current and the end-of-charge voltage that are the main causes of storage battery deterioration are shown. The discharge end voltage and the full charge holding time are not managed by the storage battery power conditioner 4.
Moreover, in this Embodiment 3, since the electrical storage apparatus B is a product of another company, the storage battery voltage and the amount of charge power shown in FIG. 6C when charging / discharging is performed by evaluating the cell of the storage battery 3 alone. (SOC) relationship, restriction information on charging / discharging (for example, restriction table information shown in FIG. 8) and the like are obtained. The obtained information is stored in the cloud server 31 and notified to the power management apparatus 100 based on a request from the power management apparatus 100.
 運転計画作成部206aは、第2蓄電池モデル212から充放電停止指令211を受け取ると、運転計画作成部206a内の蓄電池運転計画修正部214は蓄電池運転計画の変更を行う。具体的には、蓄電池3の充放電を一旦停止するよう運転計画を変更する(ステップS208)。
 運転計画の変更が完了すると、運転計画作成部206aは、蓄電池運転モード決定部123に運転計画を通知する。蓄電池運転モード決定部123は運転計画を受け取ると、クラウドサーバ31から通知されたEchonet Liteのプロトコルから蓄電池パワコン4に通知するプロトコル(コマンド)を選択し、選択したプロトコル(コマンド)をEchonet Lite通信I/F113を介して蓄電池パワコン4に通知する。具体的には、蓄電池パワコン4は充放電開始および停止のプロトコル(コマンド)のみサポートしているので、蓄電池運転モード決定部123は、充放電停止プロトコル(コマンド)を蓄電池パワコン4に通知する(ステップS209)。
When the operation plan creation unit 206a receives the charge / discharge stop command 211 from the second storage battery model 212, the storage battery operation plan correction unit 214 in the operation plan creation unit 206a changes the storage battery operation plan. Specifically, the operation plan is changed so as to temporarily stop the charging / discharging of the storage battery 3 (step S208).
When the change of the operation plan is completed, the operation plan creation unit 206a notifies the storage battery operation mode determination unit 123 of the operation plan. Upon receipt of the operation plan, the storage battery operation mode determination unit 123 selects a protocol (command) to be notified to the storage battery power conditioner 4 from the protocol of the echo lite notified from the cloud server 31, and selects the selected protocol (command) as the echo lite communication I. Notify storage battery power conditioner 4 via / F113. Specifically, since the storage battery power converter 4 supports only the charging / discharging start and stop protocol (command), the storage battery operation mode determination unit 123 notifies the storage battery power control 4 of the charging / discharging stop protocol (command) (step) S209).
 ステップS206でYesの場合、第2蓄電池モデル212および運転計画作成部206aは、蓄電池3の運転状況を確認する(ステップS210)。この運転状況確認のフローについての詳細は後述する。
 ステップS209あるいはステップS210を完了すると、図36に示すように、運転計画部118aは、第1給湯機情報である給湯機5の消費電力を取得する(ステップS14)。
 なお、この実施の形態3では、各種計測データのサンプリングは50μsの周期(20KHz)とするが、上記実施の形態1とは異なり、計測結果は電力計測回路14a内で1分間積分し、積分結果を1分周期で電力管理装置100に通知するものとする。なお、サンプリングは50μsに限るものではない。また、各種計測データの通知周期についても1分に限るものではないことは言うまでもない。
In the case of Yes in step S206, the second storage battery model 212 and the operation plan creation unit 206a confirm the operation status of the storage battery 3 (step S210). Details of the operation status confirmation flow will be described later.
When step S209 or step S210 is completed, as shown in FIG. 36, the operation planning unit 118a acquires the power consumption of the water heater 5 that is the first water heater information (step S14).
In the third embodiment, the sampling of various measurement data is performed at a cycle of 50 μs (20 KHz). However, unlike the first embodiment, the measurement result is integrated for one minute in the power measurement circuit 14a, and the integration result is obtained. Is notified to the power management apparatus 100 at a cycle of one minute. Note that sampling is not limited to 50 μs. Needless to say, the notification cycle of various measurement data is not limited to one minute.
 次に、運転計画部118aは、上記実施の形態1と同様に、運転計画作成時刻であるか確認する(ステップS15)。
 上述したように、電力管理装置100は、30分周期で太陽光パワコン2、蓄電池パワコン4、給湯機5、および負荷機器20であるエアコン21、冷蔵庫22、照明23、IHクッキングヒータ24と通信を行い、各機器の情報をEchonet Lite通信I/F部113を介して取得する。なお、電力管理装置100での運転計画の作成周期は30分に限るものではなく、CPU110の処理速度や通信速度等で決定すれば良い。また、運転計画の作成周期は一定である必要はなく、例えば、深夜などPV発電がなく、また負荷消費電力も予測値とあまり変わらない時間帯は、運転計画の作成周期を長くとることで電力管理装置100でも消費電力の削減を図っても良い。あるいはPV発電電力が予測から外れ、運転計画の変更を余儀なくされた場合等については、不定期に運転計画の作成または変更を行って良いことは言うまでもない。
Next, the operation plan part 118a confirms whether it is an operation plan creation time similarly to the said Embodiment 1 (step S15).
As described above, the power management apparatus 100 communicates with the solar power conditioner 2, the storage battery power conditioner 4, the hot water heater 5, and the air conditioner 21, which is the load device 20, the refrigerator 22, the illumination 23, and the IH cooking heater 24 every 30 minutes. The information of each device is acquired via the Echonet Lite communication I / F unit 113. Note that the operation plan creation cycle in the power management apparatus 100 is not limited to 30 minutes, and may be determined based on the processing speed, communication speed, and the like of the CPU 110. In addition, the operation plan creation cycle does not need to be constant. For example, in the time period when there is no PV power generation such as midnight and the load power consumption is not much different from the predicted value, The management device 100 may also reduce power consumption. Alternatively, it goes without saying that the operation plan may be created or changed irregularly, for example, when the PV generated power deviates from the prediction and the operation plan must be changed.
 ステップS15でNoの場合は、ステップS11に戻り、各種データの取得を継続する。
 一方、ステップS15でYesの場合は、実施の形態1と同様に、運転計画部118aは、電力料金テーブルを取得するため、Ethernet(登録商標)通信I/F部114を介してクラウドサーバ31に現在契約している電力料金テーブル情報を送付するよう要求する。クラウドサーバ31は、電力料金テーブル情報の要求を受信すると、需要者である現在ユーザが契約している電力料金体系としての電力料金テーブルをEthernet(登録商標)通信I/F部114を介して運転計画部118a内の運転計画作成部206aに送信する。なお、電力料金テーブルには太陽光パネル1で発電した電力(PV余剰電力)の売電価格情報についても送付されてくるものとする。クラウドサーバ31から電力料金テーブル情報を受信すると運転計画作成部206aは、図示していないデータ記憶部に電力料金テーブルを記憶する。例えば、上記実施の形態1と同様に、図17に示す電力料金テーブルを使用する(ステップS16)。
If No in step S15, the process returns to step S11 to continue acquiring various data.
On the other hand, in the case of Yes in step S15, as in the first embodiment, the operation planning unit 118a transmits the power rate table to the cloud server 31 via the Ethernet (registered trademark) communication I / F unit 114. Request to send the current electricity rate table information. When the cloud server 31 receives the request for the power charge table information, the cloud server 31 operates the power charge table as a power charge system to which the current user who is the consumer contracts via the Ethernet (registered trademark) communication I / F unit 114. It transmits to the operation plan preparation part 206a in the plan part 118a. In addition, it is assumed that the selling price information of the power generated by the solar panel 1 (PV surplus power) is also sent to the power rate table. When receiving the power rate table information from the cloud server 31, the operation plan creation unit 206a stores the power rate table in a data storage unit (not shown). For example, as in the first embodiment, the power rate table shown in FIG. 17 is used (step S16).
 次に、運転計画部118aは、充電電力量(SoC)を第2蓄電池情報としてEchonet Lite通信I/F部113を介して取得する(ステップS17)。
 第2蓄電池情報の取得を完了すると、運転計画部118aは、給湯機5の蓄熱量、湯量等の第2給湯機情報をEchonet Lite通信I/F部113を介して取得する(ステップS18)。
 第2給湯機情報の取得が完了すると、運転計画部118aは、運転計画を作成する(ステップS211)。このステップS211(ステップS31~ステップS40)についての詳細は後述する。
Next, the operation planning unit 118a acquires the charged power amount (SoC) as the second storage battery information via the Echonet Lite communication I / F unit 113 (step S17).
When the acquisition of the second storage battery information is completed, the operation planning unit 118a acquires the second hot water heater information such as the heat storage amount and the hot water amount of the water heater 5 via the Echonet Lite communication I / F unit 113 (step S18).
When the acquisition of the second water heater information is completed, the operation planning unit 118a creates an operation plan (step S211). Details of step S211 (steps S31 to S40) will be described later.
 ステップS211による運転計画の作成が完了すると、電力管理装置100内のCPU110は、1日が経過したか(23時か)を確認する(ステップS20)。
 ステップS20において、1日が経過していない場合は、ステップS11に戻り、再度フローを実行する。
 ステップS20において、1日が経過した場合は、1日の充放電履歴を使用して蓄電池3の劣化進度を推定し(ステップS21)、再びステップS11に戻り、フローを開始する。
When the creation of the operation plan in step S211 is completed, the CPU 110 in the power management apparatus 100 checks whether one day has passed (23:00) (step S20).
In step S20, when one day has not passed, it returns to step S11 and performs a flow again.
In step S20, when one day has passed, the deterioration degree of the storage battery 3 is estimated using the charge / discharge history of one day (step S21), and the process returns to step S11 again to start the flow.
 ステップS211は、上記実施の形態1のステップS19とほぼ同様の運転計画作成のステップであり、図16の運転計画作成フロー(ステップS31~ステップS40)で示される。日射量推定方法(ステップS33参照)、気温予測方法(ステップS34参照)、日射量予測結果の補正方法(ステップS35参照)、PV発電電力学習方法(ステップS36参照)、気温予測の補正方法(ステップS37参照)、消費電力予測方法および消費電力補正方法(ステップS38参照)、余剰電力予測方法(ステップS39参照)についても上記実施の形態1と同様である。さらに、ステップS40は、蓄電池3および給湯機5の運転計画作成ステップであり、図22のフロー(ステップS41~ステップS53)で示される。このフロー内のステップS46(ステップS61~ステップS66)は図23に、ステップS48(ステップS71~ステップS79)は図24に、ステップS50(ステップS91~ステップS104)は図25および図26に、それぞれ示される。 Step S211 is an operation plan creation step substantially the same as step S19 of the first embodiment, and is shown in the operation plan creation flow (step S31 to step S40) in FIG. Solar radiation amount estimation method (see step S33), temperature prediction method (see step S34), solar radiation amount prediction result correction method (see step S35), PV generated power learning method (see step S36), temperature prediction correction method (step S37), the power consumption prediction method, the power consumption correction method (see step S38), and the surplus power prediction method (see step S39) are the same as those in the first embodiment. Further, step S40 is an operation plan creation step for the storage battery 3 and the hot water heater 5, and is shown by the flow in FIG. 22 (steps S41 to S53). Step S46 (step S61 to step S66) in this flow is shown in FIG. 23, step S48 (step S71 to step S79) is shown in FIG. 24, and step S50 (step S91 to step S104) is shown in FIG. 25 and FIG. Indicated.
 ステップS211内のステップS31~ステップS39については、上記実施の形態1と同じであり説明を省略する。以下、図22を参照してステップS40(ステップS41~ステップS53)の蓄電池3および給湯機5の運転計画作成のフローを説明する。
 この実施の形態3では、上記実施の形態1と同様、深夜電力時間帯が始まる深夜23時から24時間分の運転計画を作成する。蓄電池3および給湯機5の運転計画作成が開始されると、運転計画部118a内の運転計画作成部206aは、給湯機5の情報を収集する。具体的には、家族スケジュール管理部121から、給湯機5の使用計画である使用時間および使用湯量を取得し、水温情報を元に現在の蓄熱量を求める(ステップS41)。
 次に、運転計画作成部206aは、ステップS41にて取得した給湯機5の情報(使用湯量、使用時間および蓄熱量)、および図12で示す給湯機5の特性情報を給湯機モデル205に入力する。なお、給湯機5の特性情報はクラウドサーバ31に記憶されているものとする(ステップS42)。
Steps S31 to S39 in step S211 are the same as those in the first embodiment and will not be described. Hereinafter, the flow of creating an operation plan for the storage battery 3 and the water heater 5 in step S40 (steps S41 to S53) will be described with reference to FIG.
In the third embodiment, as in the first embodiment, an operation plan for 24 hours is created from 23:00 at midnight when the midnight power time period starts. When the operation plan creation of the storage battery 3 and the water heater 5 is started, the operation plan creation unit 206a in the operation plan unit 118a collects information on the water heater 5. Specifically, the usage time and the amount of hot water used, which is the usage plan of the water heater 5, are acquired from the family schedule management unit 121, and the current heat storage amount is obtained based on the water temperature information (step S41).
Next, the operation plan creation unit 206a inputs the information (the amount of hot water used, the usage time, and the amount of heat storage) of the water heater 5 acquired in step S41 and the characteristic information of the water heater 5 shown in FIG. To do. Note that the characteristic information of the water heater 5 is stored in the cloud server 31 (step S42).
 運転計画作成部206aは、給湯機5の特性情報の取得を完了すると、蓄電池3のさらなる情報を取得する。具体的には、後述する蓄電池3の運転計画から算出した本日23時の蓄電電力量予測結果、蓄電池3の容量維持率推定結果、蓄電池パワコン効率および蓄電池3の初期容量情報を取得する。上記容量維持率は、23時の時点で、24時間の蓄電池3の充放電履歴、蓄電池セル温度からCPU110が推定する。蓄電池パワコン効率は、蓄電池3および蓄電池パワコン4の両者の損失から求めた効率で、充電電力量に対する放電可能電力量の割合である。この蓄電池パワコン効率は、クラウドサーバ31から取得するものとする。
 なお、容量維持率の計算方法の説明は省略するが、容量維持率推定に必要な情報は、蓄電機器Bの評価結果から求め、クラウドサーバ31に予め記憶されたものを使用する。また、蓄電池パワコン効率は、上述した(式3)に使用するパラメータα、β、および充放電電流を基に算出する。なお、蓄電池パワコン効率の算出方法はこれに限るものではなく、予め平均的な効率をクラウドサーバ31に記憶しておき、その数値を使用しても良いことは言うまでもない(ステップS43)。
When the operation plan creation unit 206 a completes the acquisition of the characteristic information of the water heater 5, the operation plan creation unit 206 a acquires further information of the storage battery 3. Specifically, the storage power amount prediction result at 23:00 today calculated from the operation plan of the storage battery 3 described later, the capacity maintenance rate estimation result of the storage battery 3, the storage battery power control efficiency, and the initial capacity information of the storage battery 3 are acquired. The capacity maintenance rate is estimated by the CPU 110 at 23:00 from the charge / discharge history of the storage battery 3 and the storage battery cell temperature for 24 hours. The storage battery power control efficiency is the efficiency obtained from the loss of both the storage battery 3 and the storage battery power control 4, and is the ratio of the dischargeable power amount to the charge power amount. This storage battery power conditioner efficiency is obtained from the cloud server 31.
Although description of the method for calculating the capacity maintenance rate is omitted, information necessary for estimating the capacity maintenance rate is obtained from the evaluation result of the power storage device B and stored in the cloud server 31 in advance. Further, the storage battery power conditioner efficiency is calculated based on the parameters α and β used in the above-described (Equation 3) and the charge / discharge current. In addition, the calculation method of storage battery power conditioner is not restricted to this, It goes without saying that average efficiency may be stored in the cloud server 31 in advance and the numerical value may be used (step S43).
 次に、運転計画作成部206aは、図6~図8に示す蓄電池3の特性情報を図示していないメモリから取得する。この蓄電池3の特性情報は、クラウドサーバ31から取得してメモリに記憶されて用いられる。この実施の形態3では、蓄電池劣化の進度に応じた蓄電池3の特性情報をクラウドサーバ31内に準備しておき、電力管理装置100からの要求に基づき通知するものとする。蓄電池3の特性情報は、劣化進度に応じた蓄電池3の内部抵抗情報等で、蓄電池3に充放電する際の損失電力の算出に使用できる。なお、上記(式3)に示すパラメータα、βも、蓄電池劣化に応じた情報としてクラウドサーバ31に登録させておいても良い。ステップS43にて取得した蓄電池3の情報、および蓄電池3の特性情報は蓄電池モデル204に入力する(ステップS44)。 Next, the operation plan creation unit 206a acquires the characteristic information of the storage battery 3 shown in FIGS. 6 to 8 from a memory not shown. The characteristic information of the storage battery 3 is acquired from the cloud server 31 and stored in a memory for use. In the third embodiment, characteristic information of the storage battery 3 corresponding to the progress of storage battery deterioration is prepared in the cloud server 31 and notified based on a request from the power management apparatus 100. The characteristic information of the storage battery 3 is internal resistance information of the storage battery 3 according to the degree of deterioration and can be used for calculating the power loss when the storage battery 3 is charged and discharged. Note that the parameters α and β shown in the above (Equation 3) may also be registered in the cloud server 31 as information corresponding to storage battery deterioration. The information on the storage battery 3 and the characteristic information on the storage battery 3 acquired in step S43 are input to the storage battery model 204 (step S44).
 次に、運転計画作成部206aは、蓄電池モデル204において蓄電池3のモデルを生成する。具体的には、蓄電池3の容量維持率情報を元に蓄電池3の劣化の進度を推定し、推定結果に基づきステップS44で入手した蓄電池特性情報に補正を加える。なお、蓄電池3の容量維持率情報は、第2蓄電池モデル212内の充電電力量推定部213にて推定した蓄電池容量(満充電時の充電電力量)を蓄電池3の初期容量で除算した数値である。
 蓄電池3は、実施の形態1で説明したように蓄電池セル温度、蓄電電力量により充放電電流の最大値が変わる。また、蓄電池セル温度により、充電可能な最大SoC値も変わる。更に、上記充放電電流値の最大値、充電可能な最大SoC値も蓄電池3の劣化進度によって変わる。このため、この実施の形態3においても、蓄電池3の劣化進度により、図8(a)、図8(b)に示す蓄電池充放電電流の制限テーブルを変更する。そして、該変更した蓄電池充放電電流の制限テーブルを元に蓄電池モデル204は蓄電池3をモデル化する(ステップS45)。
Next, the operation plan creation unit 206 a generates a model of the storage battery 3 in the storage battery model 204. Specifically, the progress of deterioration of the storage battery 3 is estimated based on the capacity maintenance rate information of the storage battery 3, and the storage battery characteristic information obtained in step S44 is corrected based on the estimation result. The capacity maintenance rate information of the storage battery 3 is a numerical value obtained by dividing the storage battery capacity (charge power amount at full charge) estimated by the charge power amount estimation unit 213 in the second storage battery model 212 by the initial capacity of the storage battery 3. is there.
As described in the first embodiment, the maximum value of the charge / discharge current of the storage battery 3 varies depending on the storage cell temperature and the amount of stored power. Moreover, the maximum SoC value which can be charged also changes with storage battery cell temperatures. Furthermore, the maximum value of the charge / discharge current value and the maximum SoC value that can be charged also vary depending on the degree of deterioration of the storage battery 3. For this reason, also in the third embodiment, the storage battery charge / discharge current limit table shown in FIGS. 8A and 8B is changed according to the deterioration progress of the storage battery 3. The storage battery model 204 models the storage battery 3 based on the changed storage battery charge / discharge current limit table (step S45).
 上述したように、本実施の形態3では、蓄電池パワコン4は他社製品を使用する。よって、蓄電池3の充放電電流値等には制限がかからない。しかし、電力管理装置100では、制限テーブルを使用し運転計画を作成し、電力管理装置100でも制御可能な蓄電池劣化の主要因である、充電終止電圧、放電終止電圧および満充電保持時間を管理するために制限テーブルを使用する。なお、制限テーブルの補正方法は実施の形態1と同様であるので詳細な説明は省略する。 As described above, in the third embodiment, the storage battery power conditioner 4 uses a product of another company. Therefore, the charging / discharging current value of the storage battery 3 is not limited. However, in the power management apparatus 100, an operation plan is created using the restriction table, and the charge end voltage, the discharge end voltage, and the full charge holding time, which are main factors of storage battery deterioration that can be controlled by the power management apparatus 100, are managed. Use a restriction table for that. Note that the correction method of the restriction table is the same as that of the first embodiment, and thus detailed description thereof is omitted.
 蓄電池モデル204による蓄電池3のモデルの生成を完了すると、運転計画作成部206aは、気温の予測結果および蓄電池モデル204を使用して、気温に基づく蓄電池3の運転制約条件を生成する(ステップS46)。
 以下、図23を参照して、ステップS46(ステップS61~ステップS66)での気温に基づく蓄電池運転制約条件の生成フローを説明する。
 運転計画作成部206aは、蓄電池3の運転制約条件の生成を開始すると、気温予測情報(実測結果に基づく補正後の気温予測)から、上記(式3)を用いて各時刻の蓄電池セル温度を予測する。具体的には、気温、および蓄電池充放電電流の制限テーブル(図8参照)を用いて最大充放電電流を決定する。この実施の形態3では、気温に所定値(例えば5℃)を加えて、それを蓄電池セル温度とし最大充放電電流を決定する。そして、決定した最大充放電電流値を用いて蓄電池セル温度を算出する(ステップS61)。
When the generation of the model of the storage battery 3 by the storage battery model 204 is completed, the operation plan creation unit 206a generates the operation constraint condition of the storage battery 3 based on the temperature using the prediction result of the temperature and the storage battery model 204 (step S46). .
Hereinafter, with reference to FIG. 23, a generation flow of the storage battery operation restriction condition based on the temperature in step S46 (steps S61 to S66) will be described.
When the operation plan creation unit 206a starts generating the operation constraint condition of the storage battery 3, the storage cell temperature at each time is calculated from the temperature prediction information (corrected temperature prediction based on the actual measurement result) using the above (Equation 3). Predict. Specifically, the maximum charge / discharge current is determined using the temperature and the storage battery charge / discharge current limit table (see FIG. 8). In the third embodiment, a predetermined value (for example, 5 ° C.) is added to the air temperature, and this is used as the storage battery cell temperature to determine the maximum charge / discharge current. Then, the storage battery cell temperature is calculated using the determined maximum charge / discharge current value (step S61).
 続いて、算出された蓄電池セル温度を用いて、再び最大充放電電流、および充電終止電圧(第1充電終止電圧)、および放電終止電圧を実施の形態1で説明した要領で制限テーブルから求める。なお、最大充放電電流を決定する場合は、実施の形態1と同様に、制限テーブルに示す充放電電流の制限値はSoCが0.2~0.8までの間はほぼ一定であるため、SoCが0.5の場合について最大充放電電流を求め、運転計画作成に使用する。なお、充放電電流の制限値は他のSoC値、あるいはSoC値毎に求めても良いことは言うまでもない(ステップS62)。
 次に、運転計画作成部206aはPV余剰電力が発生する時間帯を確認する。具体的には、ステップS36で求めたPV発電電力量の予測結果から、ステップS38で算出した負荷消費電力量の予測結果(補正後)を減算することでPV余剰電力が発生する時間帯を求める(ステップS63)。
Subsequently, using the calculated storage battery cell temperature, the maximum charge / discharge current, the charge end voltage (first charge end voltage), and the discharge end voltage are obtained again from the restriction table in the manner described in the first embodiment. When determining the maximum charge / discharge current, the limit value of the charge / discharge current shown in the limit table is substantially constant between SoC 0.2 and 0.8, as in the first embodiment. The maximum charge / discharge current is obtained for the case where SoC is 0.5, and is used for the operation plan creation. Needless to say, the limit value of the charge / discharge current may be obtained for each other SoC value or for each SoC value (step S62).
Next, the operation plan creation unit 206a confirms a time zone in which PV surplus power is generated. Specifically, a time zone in which PV surplus power is generated is obtained by subtracting the prediction result (after correction) of the load power consumption calculated in step S38 from the prediction result of the PV power generation power calculated in step S36. (Step S63).
 次に、運転計画作成部206aは、PV余剰電力の発生時間帯終了から深夜電力時間帯になるまでの、給湯機5を含む負荷機器20へ蓄電池3から放電する電力量を、上記実施の形態1で説明した要領で求める。そして、求めた放電電力を蓄電池3の電圧で除算することで各時刻の蓄電池3の放電電流を算出する。なお、蓄電池3の電圧は、ステップS227において第2蓄電池モデル212内の充電電力量推定部213が推定した結果を用いる。
 そして、この放電電流とステップS62で決定した最大放電電流とを比較し、算出した放電電流が最大放電電流を越える場合は、最大放電電流を蓄電池3からの放電電流に設定し、算出した放電電流が最大放電電流以下の場合は、算出した放電電流を蓄電池3からの放電電流に設定する。各時刻における蓄電池3からの放電電流が決定されると、各時刻の放電電流から、PV余剰電力発生時間帯終了から深夜電力時間帯になるまでの蓄電池3からの放電電力量を求める(ステップS64)。
Next, the operation plan creation unit 206a determines the amount of power discharged from the storage battery 3 to the load device 20 including the water heater 5 from the end of the PV surplus power generation time period until the midnight power time period. Obtain in the manner described in 1. Then, the discharge current of the storage battery 3 at each time is calculated by dividing the obtained discharge power by the voltage of the storage battery 3. Note that, as the voltage of the storage battery 3, the result estimated by the charge power amount estimation unit 213 in the second storage battery model 212 in step S227 is used.
Then, the discharge current is compared with the maximum discharge current determined in step S62. When the calculated discharge current exceeds the maximum discharge current, the maximum discharge current is set as the discharge current from the storage battery 3, and the calculated discharge current Is less than the maximum discharge current, the calculated discharge current is set as the discharge current from the storage battery 3. When the discharge current from the storage battery 3 at each time is determined, the amount of discharge power from the storage battery 3 from the end of the PV surplus power generation time period until the midnight power time period is obtained from the discharge current at each time (step S64). ).
 蓄電池3からの放電電力量の算出が完了すると、運転計画作成部206aは、放電電力量に基づき蓄電池3への充電電力量を上記実施の形態1で説明した要領で求める。充電電力量の算出が完了すると、第2蓄電池モデル212内の充電電力量推定部213で推定した蓄電池3の容量(満充電時の充電電力量)を基に、SoCを求め充電終止電圧を算出する。これにより、蓄電池劣化を考慮した充電終止電圧を算出できる(ステップS65)。
 そして、ステップS65で算出した充電終止電圧(第2充電終止電圧)がステップS62で算出した充電終止電圧(第1充電終止電圧)以下の場合は、ステップS65で算出した充電終止電圧を、蓄電池3の運転制約条件の充電終止電圧に採用する。即ち、2つの充電終止電圧の内、低い方を運転制約条件の充電終止電圧に決定する(ステップS66)。
When the calculation of the discharge power amount from the storage battery 3 is completed, the operation plan creation unit 206a obtains the charge power amount for the storage battery 3 based on the discharge power amount in the manner described in the first embodiment. When the calculation of the charge power amount is completed, the end-of-charge voltage is calculated by obtaining SoC based on the capacity of the storage battery 3 estimated by the charge power amount estimation unit 213 in the second storage battery model 212 (charge power amount at full charge). To do. Thereby, the charge end voltage considering the storage battery deterioration can be calculated (step S65).
When the charge end voltage (second charge end voltage) calculated in step S65 is equal to or lower than the charge end voltage (first charge end voltage) calculated in step S62, the charge end voltage calculated in step S65 is stored in the storage battery 3. This is used as the end-of-charge voltage in the operation constraint conditions. That is, the lower one of the two charge end voltages is determined as the charge end voltage of the operation restriction condition (step S66).
 図22に戻り説明を続ける。
 ステップS46にて蓄電池3の運転制約条件(最大充放電電流、充電終止電圧、放電終止電圧)の生成が完了すると、運転計画作成部206aは、給湯機5の給湯量を、上記実施の形態1で説明した要領で求める(ステップS47)。
 給湯機5の給湯量(蓄熱量)を算出すると、運転計画作成部206aは、給湯機5の運転パターンを作成する(ステップS48)。
 なお、給湯機5の1日の起動停止回数は、上記実施の形態1と同様に最大2回とする。また、深夜電力時間帯の給湯と昼間時間帯の給湯との2つの運転パターンを作成する。
Returning to FIG. 22, the description will be continued.
When the generation of the operation constraint conditions (maximum charge / discharge current, charge end voltage, discharge end voltage) of the storage battery 3 is completed in step S46, the operation plan creation unit 206a determines the hot water supply amount of the water heater 5 according to the first embodiment. (Step S47).
When the hot water supply amount (heat storage amount) of the water heater 5 is calculated, the operation plan creation unit 206a creates an operation pattern of the water heater 5 (step S48).
It should be noted that the number of daily start and stop times of the water heater 5 is set to a maximum of twice as in the first embodiment. In addition, two operation patterns of hot water supply in the late-night power hours and hot water supply in the daytime hours are created.
 給湯機モデル205の動作を以下に説明する。
 上記実施の形態1と同様に、給湯機モデル205では、ステップS37にて算出した気温予測情報から各時刻の給湯機5の消費電力を求める。そして、ステップS39で求めたPV余剰電力予測情報から、買電電力が設定値以下で給湯機5が沸き上げ可能な時間帯を求める。そして、沸き上げ可能な時間帯における各時刻(この場合、30分単位)の平均使用電力および蓄熱量を算出する。そして、この算出結果は、各運転パターンについて算出し、その中から電力料金の削減効果の高い運転パターンを選択して決定する。なお、電力料金体系は、深夜給湯を実施するよりも給湯機5のCOP特性を考慮しPV余剰電力で給湯したほうが経済的であるものとして説明する。
The operation of the water heater model 205 will be described below.
As in the first embodiment, the water heater model 205 obtains the power consumption of the water heater 5 at each time from the temperature prediction information calculated in step S37. And from the PV surplus electric power prediction information calculated | required by step S39, the time slot | zone when the electric power purchase power is below a setting value and the water heater 5 can boil is calculated | required. And the average electric power used and heat storage amount at each time (in this case, 30 minutes unit) in the time zone which can be heated up are calculated. Then, the calculation result is calculated for each operation pattern, and an operation pattern having a high power charge reduction effect is selected and determined. Note that the power charge system is described as being more economical when hot water is supplied with PV surplus power in consideration of the COP characteristics of the water heater 5 than when midnight hot water is used.
 以下、図24を参照して、ステップS48(ステップS71~ステップS79)での給湯機5の運転パターン作成フローを説明する。
 まず運転計画作成部206aは、深夜電力時間帯での給湯計画に基づく運転パターン(第1運転パターン)が作成済みかを確認する(ステップS71)。
 ステップS71での確認の結果、未作成であれば、運転計画作成部206aは、深夜電力時間帯での給湯計画に基づく運転パターン(第1運転パターン)を作成(深夜電力時間帯の給湯開始、終了時刻の算出)する。なお、深夜時間帯の運転計画の作成方法は上記実施の形態1と同様であるので説明は省略する(ステップS72)。
 そして、深夜電力時間帯の給湯開始、終了時刻の算出の際、消費電力、および給湯量(蓄熱量)についても順次加算し、深夜電力時間帯での給湯に必要な消費電力を求める。これにより深夜電力時間帯の給湯量(蓄熱量)、給湯開始、終了時刻、および消費電力の算出が完了する(ステップS73)。
Hereinafter, an operation pattern creation flow of the water heater 5 in step S48 (steps S71 to S79) will be described with reference to FIG.
First, the operation plan creation unit 206a confirms whether or not an operation pattern (first operation pattern) based on a hot water supply plan in the late-night power hours has been created (step S71).
As a result of the confirmation in step S71, if it is not created, the operation plan creation unit 206a creates an operation pattern (first operation pattern) based on the hot water supply plan in the midnight power time zone (start of hot water supply in the midnight power time zone, End time calculation). In addition, since the preparation method of the operation plan of midnight time zone is the same as that of the said Embodiment 1, description is abbreviate | omitted (step S72).
Then, when calculating the hot water supply start and end times in the midnight power hours, the power consumption and the amount of hot water supply (heat storage amount) are also sequentially added to obtain the power consumption necessary for hot water supply in the midnight power hours. Thereby, the calculation of the hot water supply amount (heat storage amount), the hot water supply start time, the end time, and the power consumption in the midnight power time period is completed (step S73).
 なお、深夜電力時間帯での給湯では、お風呂など大量にお湯を使用するまで、給湯終了から12時間以上の時間があり、その間の放熱量を回復する必要がある。上記実施の形態1と同様に、深夜給湯の場合は、お風呂など大量にお湯を使用する直前に沸き増しを行い、昼間給湯の場合は、COP値が高い昼間の時間帯にその分も含めて沸き上げを行うものとする。
 深夜電力時間帯の給湯量(蓄熱量)、給湯開始、終了時刻、および消費電力の算出が完了すると、運転計画作成部206aは、給湯機5の夜間使用前の沸き増し消費電力、および沸き増し開始、終了時刻を求める(ステップS74)。
 運転計画作成部206aは、ステップS72~ステップS74での算出結果により、深夜電力時間帯および大量にお湯を使用する夜間時間帯における給湯機5の運転パターン(第1運転パターン)を作成する。なお、この場合、給湯機5の起動時間、停止時間、および起動時間中の時刻ごとの消費電力を求め、それを給湯機5の運転計画(運転パターン)とする(ステップS75)。
In addition, in hot water supply in the midnight power hours, there is a time of 12 hours or more from the end of hot water supply until a large amount of hot water such as a bath is used, and it is necessary to recover the heat radiation during that time. As in the first embodiment, in the case of late-night hot water supply, boiling is increased immediately before using a large amount of hot water such as a bath, and in the case of day-time hot water, the amount is included in the daytime hours when the COP value is high. Boil up.
When the calculation of the hot water supply amount (heat storage amount), the hot water supply start time, the end time, and the power consumption during the midnight power hours is completed, the operation plan creation unit 206a increases the boiling power consumption before the night use of the water heater 5 and increases the boiling power. The start and end times are obtained (step S74).
The operation plan creation unit 206a creates an operation pattern (first operation pattern) of the water heater 5 in the late-night power hours and the night hours when a large amount of hot water is used, based on the calculation results in steps S72 to S74. In this case, the start-up time, stop time, and power consumption for each time during the start-up time of the water heater 5 are obtained and set as an operation plan (operation pattern) of the water heater 5 (step S75).
 第1運転パターンの作成が終了するとステップS71に戻る。
 ステップS71での確認の結果、第1運転パターンの作成が終了していれば、運転計画作成部206aは、PV余剰電力の発生について確認する。上記実施の形態1と同様に、気温予測情報から各時刻の給湯機5の消費電力を求め、PV余剰電力から給湯機5の消費電力を差し引いた値が所定値以上である時間帯があるかを確認する(ステップS76)。このような時間帯がない場合は、給湯機5の昼間時間帯の給湯は無いものとして第2運転パターンを作成せず、給湯機5の運転パターン作成フローを終了する。
 ステップS76にて、PV余剰電力から給湯機5の消費電力を差し引いた値が所定値以上である時間帯がある場合、運転計画作成部206aは、PV余剰電力に基づく昼間時間帯の給湯開始、終了時刻を決定する。具体的には、気温予測情報から各時刻の給湯機5の消費電力を求め、PV余剰電力から給湯機5の消費電力を差し引いた値が所定値以上である時間帯を抽出し、抽出した各時間帯における消費電力および給湯量(蓄熱量)を算出する。なお、PV余剰電力による給湯では必要となる給湯量が確保できない場合は、昼間時間帯の給湯に加え、さらに深夜電力時間帯の給湯を行う必要があるため、昼間時間帯の給湯開始、終了時刻に加え、昼間時間帯の給湯量(蓄熱量)についても算出する(ステップS77)。
When the creation of the first operation pattern ends, the process returns to step S71.
As a result of the confirmation in step S71, if the creation of the first operation pattern is completed, the operation plan creation unit 206a confirms the generation of PV surplus power. As in the first embodiment, is there a time zone in which the power consumption of the water heater 5 at each time is obtained from the temperature prediction information and the value obtained by subtracting the power consumption of the water heater 5 from the PV surplus power is equal to or greater than a predetermined value? Is confirmed (step S76). If there is no such time zone, the second operation pattern is not created on the assumption that there is no hot water supply in the daytime time zone of the water heater 5, and the operation pattern creation flow of the water heater 5 is terminated.
In step S76, when there is a time zone in which the value obtained by subtracting the power consumption of the water heater 5 from the PV surplus power is a predetermined value or more, the operation plan creation unit 206a starts the hot water supply in the daytime time zone based on the PV surplus power, Determine the end time. Specifically, the power consumption of the water heater 5 at each time is obtained from the temperature prediction information, and the time zone in which the value obtained by subtracting the power consumption of the water heater 5 from the PV surplus power is a predetermined value or more is extracted and extracted. Power consumption and hot water supply amount (heat storage amount) in the time zone are calculated. If the amount of hot water required for hot water supply using PV surplus power cannot be ensured, in addition to hot water supply during the daytime hours, it is necessary to perform hot water supply during the midnight power hours. In addition, the hot water supply amount (heat storage amount) in the daytime time zone is also calculated (step S77).
 次に、運転計画作成部206aは、ステップS47で求めた給湯量(蓄熱量)と、ステップS77で算出した昼間時間帯の給湯量(蓄熱量)とを比較し、深夜電力時間帯での給湯機5の給湯量(蓄熱量)を算出する(ステップS78)。
 深夜電力時間帯での給湯量(蓄熱量)の算出が完了すると、運転計画作成部206aは、実施の形態1と同様に、給湯機モデル205に対して、深夜電力時間帯の給湯開始、終了時刻を算出するよう指示する(ステップS79)。
Next, the operation plan creation unit 206a compares the hot water supply amount (heat storage amount) obtained in step S47 with the hot water supply amount (heat storage amount) in the daytime period calculated in step S77, and hot water supply in the late-night power hours. The hot water supply amount (heat storage amount) of the machine 5 is calculated (step S78).
When the calculation of the hot water supply amount (heat storage amount) in the midnight power time period is completed, the operation plan creation unit 206a starts and ends hot water supply in the midnight power time period for the water heater model 205 as in the first embodiment. An instruction is given to calculate the time (step S79).
 図22に戻り説明を続ける。
 ステップS48にて給湯機5の運転パターン作成を完了すると、運転計画作成部206aは、作成された2つの運転パターンについて、それぞれ蓄電池3の運転計画を作成する。まず、運転計画作成部206aは、給湯機運転パターンを1つ選択する(ステップS49)。
 選択された運転パターンが給湯機モデル205から入力されると、運転計画作成部206aは、ステップS45で生成した蓄電池3のモデルを用いて、蓄電池3の運転計画を作成する(ステップS50)。なお、蓄電池3の運転計画の作成を示すステップS50についての詳細は後述する。
 次に、運転計画作成部206aは、給湯機5の運転パターン、蓄電池3の運転計画、PV発電電力予測結果および負荷消費電力予測結果から電力料金体系に基づき電力料金を算出する(ステップS51)。
 そして、電力料金の算出が完了すると、給湯機5に対して作成された全ての運転パターンについて処理して電力料金を確認したかを判定する。この場合、2種類の運転パターンについて実施したかを確認する。運転パターンが1パターンのみの場合は全て処理したとする(ステップS52)。
Returning to FIG. 22, the description will be continued.
When the operation pattern creation of the water heater 5 is completed in step S48, the operation plan creation unit 206a creates an operation plan for the storage battery 3 for each of the two created operation patterns. First, the operation plan creation unit 206a selects one hot water supply operation pattern (step S49).
When the selected operation pattern is input from the water heater model 205, the operation plan creation unit 206a creates an operation plan for the storage battery 3 using the model of the storage battery 3 generated in step S45 (step S50). In addition, the detail about step S50 which shows preparation of the operation plan of the storage battery 3 is mentioned later.
Next, the operation plan creation unit 206a calculates a power charge based on the power charge system from the operation pattern of the water heater 5, the operation plan of the storage battery 3, the PV power generation power prediction result, and the load power consumption prediction result (step S51).
When the calculation of the power charge is completed, it is determined whether or not the power charge has been confirmed by processing all the operation patterns created for the water heater 5. In this case, it is confirmed whether or not two types of operation patterns have been performed. It is assumed that all driving patterns are processed (step S52).
 ステップS52で、未処理の運転パターンがある場合は、ステップS49に戻り、未処理の運転パターンを選択する。
 ステップS52で、給湯機5に対する全ての運転パターンについて処理されて各電力料金の確認が完了すると、運転計画作成部206aは、電力料金が安い運転パターンを決定する。これにより、電力料金が最小となるように、給湯機5の運転パターンと蓄電池3の運転計画との組み合わせが決定される(ステップS53)。
 これにより、S40(S41~S53、図16参照)で示す、蓄電池3および給湯機5の運転計画の作成を終了し、S211(S31~S40、図36参照)で示す運転計画の作成も終了する。
If there is an unprocessed operation pattern in step S52, the process returns to step S49, and an unprocessed operation pattern is selected.
In step S52, when all the operation patterns for the water heater 5 are processed and the confirmation of each power charge is completed, the operation plan creation unit 206a determines an operation pattern with a low power charge. Thereby, the combination of the operation pattern of the hot water heater 5 and the operation plan of the storage battery 3 is determined so that the power rate is minimized (step S53).
Accordingly, the creation of the operation plan for the storage battery 3 and the hot water heater 5 shown in S40 (S41 to S53, see FIG. 16) is completed, and the creation of the operation plan shown in S211 (S31 to S40, see FIG. 36) is also finished. .
 以下、図25、図26を参照して、ステップS50(ステップS91~ステップS104)での給湯機5の運転パターン作成フローを説明する。
 給湯機5の運転パターンが選択されて給湯機モデル205から給湯機5の各時刻における消費電力が通知されると、運転計画作成部206aは、各時刻におけるPV余剰電力を算出する。算出に際しては、ステップS36で算出したPV発電電力予測結果から、ステップS38で算出した負荷消費電力予測結果と、給湯機5の運転パターン作成時に求めた各時刻における給湯機5の消費電力予測結果とを減算し、各時刻におけるPV余剰電力を算出する(ステップS91)。
Hereinafter, an operation pattern creation flow of the water heater 5 in step S50 (steps S91 to S104) will be described with reference to FIGS.
When the operation pattern of the water heater 5 is selected and the power consumption at each time of the water heater 5 is notified from the water heater model 205, the operation plan creation unit 206a calculates the PV surplus power at each time. In the calculation, from the PV generation power prediction result calculated in step S36, the load power consumption prediction result calculated in step S38, and the power consumption prediction result of the water heater 5 at each time obtained when the operation pattern of the water heater 5 is created, Is subtracted to calculate the PV surplus power at each time (step S91).
 運転計画作成部206aは、各時刻のPV余剰電力の算出を完了すると、そのPV余剰電力を充電するかを判断する。具体的には、実施の形態1と同様に、ステップS43で取得した蓄電池3の充電時および放電時の効率、深夜電力時間帯の電力料金、余剰電力の売電価格から、余剰電力を蓄電池3に充電したほうが良いかを判断する。また、上記電力料金体系に加え、ステップS46で確認した、各時刻の蓄電池運転制約条件に基づきPV余剰電力を充電するかを判断する。また、PV余剰電力を充電しても、深夜電力時間帯の開始までに全ての充電電力が放電できないと判断した場合もPV余剰電力を充電しないと判断する(ステップS92)。 When the calculation of the PV surplus power at each time is completed, the operation plan creation unit 206a determines whether to charge the PV surplus power. Specifically, as in the first embodiment, the surplus power is calculated from the efficiency at the time of charging and discharging of the storage battery 3 acquired in step S43, the power charge in the midnight power hours, and the selling price of surplus power. Determine if it is better to charge the battery. Further, in addition to the above-mentioned power charge system, it is determined whether or not the PV surplus power is charged based on the storage battery operation constraint condition at each time confirmed in step S46. Further, even if the PV surplus power is charged, it is determined that the PV surplus power is not charged even when it is determined that all the charge power cannot be discharged by the start of the midnight power time period (step S92).
 ステップS92でPV余剰電力を充電しない(Noの場合)と判断すると、運転計画作成部206aは、深夜電力時間帯での蓄電池3の充電計画を作成する。具体的には、実施の形態1と同様に、現在の蓄電池3の運転計画から深夜電力時間帯開始時の蓄電池3の蓄電電力量(SoC)を予測し、その後、ステップS37で作成した気温予測結果と図8に示す蓄電池3の制限テーブルに基づき、深夜電力時間帯開始直後から蓄電池3への充電を開始したとして充電計画を作成する。その際、上記実施の形態1とは異なり、各時刻での充電電力量(SoC)についても算出する(ステップS93)。
 各時刻での蓄電池3の充電電力量(SoC)を算出する理由は以下による。この実施の形態3は他社製の蓄電池パワコン4を使用する。よって、実施の形態1で想定していたような蓄電池パワコン4の制御が行えない。例えば、充電電力量の設定がサポートされていないEchonet Liteプロトコルの場合、本来、深夜時間帯の外気温が高く、0.1Cで充電を行う運転計画を立てたとしても充電電力量が設定できないため蓄電池パワコン4の標準的な充電電流(例えば、0.5C)で充電する場合が想定される。
If it is determined in step S92 that the PV surplus power is not charged (in the case of No), the operation plan creation unit 206a creates a charge plan for the storage battery 3 in the midnight power time zone. Specifically, as in the first embodiment, the stored electricity amount (SoC) of the storage battery 3 at the start of the midnight power time period is predicted from the current operation plan of the storage battery 3, and then the temperature prediction created in step S37. Based on the result and the limit table of the storage battery 3 shown in FIG. 8, a charging plan is created assuming that charging of the storage battery 3 is started immediately after the start of the midnight power time period. At that time, unlike the first embodiment, the charging power amount (SoC) at each time is also calculated (step S93).
The reason for calculating the charging power amount (SoC) of the storage battery 3 at each time is as follows. In the third embodiment, a storage battery power conditioner 4 manufactured by another company is used. Therefore, control of the storage battery power conditioner 4 assumed in Embodiment 1 cannot be performed. For example, in the case of the Echonet Lite protocol, which does not support the setting of the charging power amount, the outside air temperature is originally high in the midnight hours, and the charging power amount cannot be set even if an operation plan for charging at 0.1 C is made. The case where it charges with the standard charging current (for example, 0.5C) of the storage battery power conditioner 4 is assumed.
 上述したように、この実施の形態3では、第2蓄電池モデル212内の充電電力量推定部213で、蓄電池3の充電電力量(SoC)を推定し、上述した各時刻での充電電力量(SoC)を越えた場合、蓄電池3への充電を止めるように充電停止指令を蓄電池パワコン4に通知するよう構成する。このように構成することで、充電電力量を指定できない場合であっても、蓄電池3の劣化の主要因となる充電終止電圧、および満充電保持時間を制御することができ、蓄電池劣化の進行を抑えることができる効果がある。なお、電力管理装置100による蓄電池パワコン4の制御方式の詳細については後述する。 As described above, in the third embodiment, the charging power amount estimation unit 213 in the second storage battery model 212 estimates the charging power amount (SoC) of the storage battery 3, and the charging power amount at each time described above ( When exceeding (SoC), the storage battery power controller 4 is notified of a charge stop command so as to stop the charging of the storage battery 3. By configuring in this way, even when the amount of charge power cannot be specified, it is possible to control the end-of-charge voltage and the full charge retention time, which are the main causes of deterioration of the storage battery 3, and the progress of deterioration of the storage battery can be controlled. There is an effect that can be suppressed. In addition, the detail of the control system of the storage battery power conditioner 4 by the power management apparatus 100 will be described later.
 次に、運転計画作成部206aは、蓄電池3の放電計画を作成する。上記実施の形態1と同様に、深夜電力時間帯以外の時間は買電電力が最小になるように蓄電池3を制御するものとする。具体的には、給湯機5を含む負荷機器20の消費電力からPVの発電電力を減算した値が正の時、買電電力がゼロになるように蓄電池3に蓄えられた電力を放電する。よって、運転計画作成部206aは、深夜電力時間帯以外の時間帯の放電電力要求量を、給湯機5を含む負荷機器20の消費電力予測結果からPV発電電力予測結果を減算することで算出する。蓄電池モデル204は、算出された各時刻の放電電力要求量を運転計画作成部206aから取得し、ステップS93にて作成した深夜電力時間帯での蓄電池3の充電計画を元に、深夜電力時間帯の終了時点(7時)の蓄電池3に蓄えられた充電電力量を算出する。
 そして、蓄電池モデル204は、この充電電力量、各時刻の放電電力要求量、気温予測結果、および図8に示す蓄電池3の制限テーブルから各時刻の放電電力量を決定する。具体的には、各時刻の充電電力量から蓄電池3のSoCを算出し、算出したSoC、気温予測結果、蓄電池3の制限テーブルから最大放電電流と蓄電池電圧を算出する。そして、算出した最大放電電流と蓄電池電圧から最大放電電力量を算出し、放電電力要求量と比較する。比較の結果、放電電力要求量が最大放電電力量以下の場合は、放電電力要求量を放電電力量として決定し、放電電力要求量が最大放電電力量より大きい場合は最大放電電力量を放電電力量として決定する。以上の動作を、ステップS62で算出した蓄電池3の電圧が放電終止電圧になるまで実施する。なお、充電電力量および放電電力量を求める際は、充電時および放電時の蓄電機器Bの効率を考慮して求めるものとする(ステップS94)。
Next, the operation plan creation unit 206 a creates a discharge plan for the storage battery 3. As in the first embodiment, the storage battery 3 is controlled so that the purchased power is minimized during times other than the midnight power time zone. Specifically, when the value obtained by subtracting the generated power of PV from the power consumption of the load device 20 including the water heater 5 is positive, the power stored in the storage battery 3 is discharged so that the purchased power becomes zero. Therefore, the operation plan creation unit 206a calculates the required amount of discharge power in a time zone other than the midnight power time zone by subtracting the PV power generation prediction result from the power consumption prediction result of the load device 20 including the water heater 5. . The storage battery model 204 obtains the calculated discharge power demand at each time from the operation plan creation unit 206a, and based on the charge plan for the storage battery 3 in the late-night power time zone created in step S93, the late-night power time zone The amount of charging electric power stored in the storage battery 3 at the end time (7 o'clock) is calculated.
Then, the storage battery model 204 determines the discharge power amount at each time from the charge power amount, the required discharge power amount at each time, the temperature prediction result, and the restriction table of the storage battery 3 shown in FIG. Specifically, the SoC of the storage battery 3 is calculated from the amount of charged power at each time, and the maximum discharge current and the storage battery voltage are calculated from the calculated SoC, the temperature prediction result, and the limit table of the storage battery 3. Then, the maximum discharge power amount is calculated from the calculated maximum discharge current and storage battery voltage, and compared with the required discharge power amount. As a result of the comparison, if the required discharge power is less than or equal to the maximum discharge power, the required discharge power is determined as the discharge power, and if the required discharge power is greater than the maximum discharge power, the maximum discharge power is determined as the discharge power. Determine as quantity. The above operation is performed until the voltage of the storage battery 3 calculated in step S62 reaches the discharge end voltage. In addition, when calculating | requiring charge electric energy and discharge electric energy, it shall calculate | require in consideration of the efficiency of the electrical storage apparatus B at the time of charge and discharge (step S94).
 ステップS92でPV余剰電力を充電する(Yesの場合)と判断すると、運転計画作成部206aは、PV余剰電力の充電計画を作成する。まず、ステップS39で作成したPV余剰電力予測結果から、給湯機5の運転計画(運転パターン)による各時刻の給湯機5の消費電力を減算して各時刻のPV余剰電力を算出する。蓄電池モデル204は、算出された各時刻のPV余剰電力を運転計画作成部206aから取得し、気温予測結果および図8に示す蓄電池3の制限テーブルに基づき充電計画を作成する。なお、PV余剰電力で必要な電力量が確保できない場合は、深夜電力時間帯に不足分を充電する。
 上記実施の形態1と同様に、PV余剰電力が発生する最終時間帯に蓄電池3に充電される電力量を、PV余剰電力量、気温予測結果および蓄電池3の特性情報から算出する。そして、算出した充電電力量を満充電の電力量から減算し、上記PV余剰電力が発生する最終時間帯開始時点の蓄電池3の充電(蓄電)電力量を算出し、その算出結果、PV余剰電力量、気温予測結果および蓄電池3の特性情報から、上記最終時間帯の直前30分間の充電電力量を算出する。この動作を、蓄電池3の充電(蓄電)電力量がゼロになる時間帯、あるいはPV余剰電力がゼロになる時間帯まで繰り返す。なお、上記時間帯に買電電力が発生した場合は、蓄電池3から放電するよう充電電力量を計算する。そして、PV余剰電力がゼロになる時間帯までに充電(蓄電)電力量がゼロにならない場合は、残りの電力量を深夜電力時間帯に充電するため記憶する。充電(蓄電)電力量が先にゼロになる場合は、残りの電力量はゼロである(ステップS95)。
If it is determined in step S92 that the PV surplus power is charged (in the case of Yes), the operation plan creation unit 206a creates a charge plan for the PV surplus power. First, the PV surplus power at each time is calculated by subtracting the power consumption of the water heater 5 at each time according to the operation plan (operation pattern) of the water heater 5 from the PV surplus power prediction result created at step S39. The storage battery model 204 acquires the calculated PV surplus power at each time from the operation plan creation unit 206a, and creates a charging plan based on the temperature prediction result and the restriction table of the storage battery 3 shown in FIG. In addition, when the amount of electric power required by PV surplus electric power cannot be secured, the shortage is charged in the late-night electric power hours.
Similarly to the first embodiment, the amount of power charged in the storage battery 3 in the final time zone when PV surplus power is generated is calculated from the PV surplus power amount, the temperature prediction result, and the characteristic information of the storage battery 3. Then, the calculated charging power amount is subtracted from the fully charged power amount to calculate the charging (power storage) power amount of the storage battery 3 at the start of the last time zone when the PV surplus power is generated, and the calculation result, PV surplus power From the amount, the temperature prediction result, and the characteristic information of the storage battery 3, the charge power amount for 30 minutes immediately before the last time zone is calculated. This operation is repeated until the time when the charge (storage) power amount of the storage battery 3 becomes zero or the time when the PV surplus power becomes zero. In addition, when purchased electric power generate | occur | produces in the said time slot | zone, charging electric energy is calculated so that it may discharge from the storage battery 3. FIG. If the amount of charging (storage) power does not become zero before the time when PV surplus power becomes zero, the remaining amount of power is stored for charging in the midnight power time zone. If the charge (storage) power amount becomes zero first, the remaining power amount is zero (step S95).
 次に、運転計画作成部206aは、深夜電力時間帯終了からPV余剰電力が発生するまでの期間における蓄電池3の放電計画を作成する。まず、給湯機5を含む負荷機器20の消費電力予測結果から、深夜電力時間帯終了からPV余剰電力が発生するまでの期間の各時刻の放電電力要求量を算出する。そして、各時刻の充電電力量、放電電力要求量、気温予測結果、および蓄電池3の制限テーブルから、蓄電池モデル204を用いて各時刻の放電電力量を決定する(ステップS96)。
 次に、運転計画作成部206aは、上記実施の形態1と同様に、ステップS96で算出した放電電力量を、ステップS95で求めた、深夜電力時間帯に充電するための充電電力量(上記残りの電力量)に加算して、深夜電力時間帯の充電電力量を算出し、深夜電力時間帯の蓄電池3の充電計画を作成する。具体的には、深夜電力時間帯開始時の蓄電池3の蓄電電力量を予測し、気温予測結果と蓄電池3の特性情報に基づき、蓄電池モデル204を用いて充電計画を作成する。即ち、最大充電電流で深夜電力時間帯開始直後から蓄電池3への充電を開始した場合の、各時刻の充電電力および充電電力量を、深夜電力時間帯の充電電力量になるまで求める。その際、各時刻の蓄電池3の充電電力量(SoC)も併せて算出する(ステップS97)。
Next, the operation plan creation unit 206a creates a discharge plan for the storage battery 3 in a period from the end of the midnight power time period to the generation of PV surplus power. First, from the power consumption prediction result of the load device 20 including the water heater 5, the required amount of discharge power at each time in the period from the end of the midnight power time period to the generation of PV surplus power is calculated. Then, the discharge power amount at each time is determined from the charge power amount at each time, the required discharge power amount, the temperature prediction result, and the limit table of the storage battery 3 using the storage battery model 204 (step S96).
Next, in the same manner as in the first embodiment, the operation plan creation unit 206a charges the discharge power amount calculated in step S96 in step S95 to charge the charge power amount for the midnight power time zone (the remaining power). To calculate the charging power amount in the late-night power time zone, and create a charging plan for the storage battery 3 in the late-night power time zone. Specifically, the storage power amount of the storage battery 3 at the start of the midnight power time period is predicted, and a charging plan is created using the storage battery model 204 based on the temperature prediction result and the characteristic information of the storage battery 3. In other words, the charging power and the charging power amount at each time when charging the storage battery 3 is started immediately after the start of the midnight power time zone at the maximum charging current are obtained until the charging power amount in the midnight power time zone is reached. At that time, the charging power amount (SoC) of the storage battery 3 at each time is also calculated (step S97).
 次に、運転計画作成部206aは、PV余剰電力の発生終了から深夜電力時間帯開始までの期間における蓄電池3の放電計画を作成する。まず、給湯機5を含む負荷機器20の消費電力予測結果から、PV余剰電力の発生終了から深夜電力時間帯開始までの期間の各時刻の放電電力要求量を算出する。次に、PV余剰電力の発生終了時の蓄電池3の充電(蓄電)電力量を、PV余剰電力の充電計画から取得し、各時刻の充電電力量、放電電力要求量、気温予測結果、および蓄電池3の特性情報から、蓄電池モデル204を用いて各時刻の放電電力量を決定する。その際、各時刻の蓄電池3の充電電力量(SoC)も併せて算出する(ステップS98)。 Next, the operation plan creation unit 206a creates a discharge plan for the storage battery 3 during the period from the end of the PV surplus power generation to the start of the midnight power time zone. First, from the power consumption prediction result of the load device 20 including the water heater 5, the required amount of discharge power at each time in the period from the end of the PV surplus power generation to the start of the midnight power time zone is calculated. Next, the charging (storage) power amount of the storage battery 3 at the end of the generation of the PV surplus power is acquired from the PV surplus power charging plan, the charging power amount at each time, the discharge power request amount, the temperature prediction result, and the storage battery. From the characteristic information 3, the discharge power amount at each time is determined using the storage battery model 204. At that time, the charging power amount (SoC) of the storage battery 3 at each time is also calculated (step S98).
 次に、運転計画作成部206aは、蓄電池3の充電計画における充電終了時の蓄電池電圧が、蓄電池3の運転制約条件として決定した充電終止電圧を超えているか確認する(ステップS99)。
 PV余剰電力を充電する場合では、ステップS99において、PV余剰電力の充電終了時の蓄電池電圧が上記充電終止電圧を越えている場合(Yesの場合)は、ステップS97で作成した深夜電力時間帯の充電計画を見直して充電電力を削減し、PV余剰電力の充電終了時の蓄電池電圧を上記充電終止電圧に抑える。この場合、深夜電力時間帯の充電計画を見直しても蓄電池電圧を上記充電終止電圧に抑制できない場合は、さらにステップS95で作成したPV余剰電力の充電計画を見直して充電電力を削減する。その際、各時刻の蓄電池3の充電電力量(SoC)も併せて算出する。
 また、PV余剰電力を充電しない場合では、ステップS99において、深夜電力時間帯の充電終了時の蓄電池電圧が上記充電終止電圧を越えている場合(Yesの場合)は、ステップS93で作成した深夜電力時間帯の充電計画を見直して充電電力を削減し、充電終了時の蓄電池電圧を上記充電終止電圧に抑える。その際、各時刻の蓄電池3の充電電力量(SoC)も併せて算出する。この後、ステップS99へ戻る(ステップS100)。
Next, the operation plan creation unit 206a checks whether the storage battery voltage at the end of charging in the storage plan of the storage battery 3 exceeds the charge end voltage determined as the operation constraint condition of the storage battery 3 (step S99).
In the case of charging the PV surplus power, in step S99, when the storage battery voltage at the end of charging of the PV surplus power exceeds the charge end voltage (in the case of Yes), the midnight power time zone created in step S97 is displayed. The charging plan is reviewed to reduce the charging power, and the storage battery voltage at the end of charging the PV surplus power is suppressed to the above-mentioned charging end voltage. In this case, if the storage battery voltage cannot be suppressed to the end-of-charge voltage even after reviewing the charge plan in the late-night power time zone, the charge plan is further reduced by reviewing the charge plan for the PV surplus power created in step S95. At that time, the charging power amount (SoC) of the storage battery 3 at each time is also calculated.
Further, in the case where the PV surplus power is not charged, in step S99, when the storage battery voltage at the end of charging in the midnight power time zone exceeds the charge end voltage (in the case of Yes), the midnight power generated in step S93 is used. The charging plan for the time zone is reviewed to reduce the charging power, and the storage battery voltage at the end of charging is suppressed to the above-mentioned charging end voltage. At that time, the charging power amount (SoC) of the storage battery 3 at each time is also calculated. Thereafter, the process returns to step S99 (step S100).
 ステップS99において、充電終了時の蓄電池電圧が充電終止電圧以下である場合(Noの場合)は、作成した充放電計画を見直し、蓄電池3が充放電を実施していない時間帯があるか確認する。なお、上記実施の形態1と同様に、充放電電力が所定値未満(例えば50W未満)の場合も充放電を行っていない時間帯とみなす(ステップS101)。
 蓄電池3が充放電を実施していない時間帯がある場合は、その時間帯は蓄電機器Bをスリープ状態にする、即ち運転モードをスリープモードにするように蓄電池3の運転計画を作成する(ステップS102)。
 ステップS102が終了、あるいはステップS101がNoの場合、運転計画作成部206aは、蓄電池3のスタンバイ状態、即ちスタンバイモードの運転モードを含む充放電計画を作成する(ステップS103)。
 なお、蓄電池パワコン4がスリープモードをサポートしていない場合も、この実施の形態3ではスリープモードを含む運転計画を作成するものとする。
In step S99, when the storage battery voltage at the end of charging is equal to or lower than the end-of-charge voltage (in the case of No), the created charge / discharge plan is reviewed to check whether there is a time zone during which the storage battery 3 is not charging / discharging. . Note that, similarly to the first embodiment, even when the charge / discharge power is less than a predetermined value (for example, less than 50 W), it is regarded as a time zone during which charge / discharge is not performed (step S101).
If there is a time zone during which the storage battery 3 is not charging / discharging, an operation plan for the storage battery 3 is created so that the power storage device B is put into the sleep state during that time zone, that is, the operation mode is set to the sleep mode (step) S102).
When step S102 is completed or when step S101 is No, the operation plan creation unit 206a creates a charge / discharge plan including the standby state of the storage battery 3, that is, the standby mode operation mode (step S103).
Even when the storage battery power conditioner 4 does not support the sleep mode, the operation plan including the sleep mode is created in the third embodiment.
 そして、運転計画作成部206aは、作成された全ての充放電計画が、ステップS46で生成した、気温に基づく蓄電池運転制約条件を満たしているか再度確認する(ステップS104)。
 ステップS104において、蓄電池運転制約条件を満たす場合(Yesの場合)は、蓄電池3の運転計画作成は終了し、満たしていない場合(Noの場合)は、ステップS91に戻り、蓄電池3の運転計画を再作成する。
And the operation plan preparation part 206a confirms again whether all the produced charging / discharging plans satisfy | fill the storage battery driving | running restrictions conditions based on the temperature produced | generated by step S46 (step S104).
In step S104, when the storage battery operation constraint condition is satisfied (in the case of Yes), the operation plan creation of the storage battery 3 is completed, and in the case where it is not satisfied (in the case of No), the process returns to step S91 and the operation plan of the storage battery 3 is determined. Recreate it.
 以下、図38を用いて蓄電池3の運転状況確認のフローを説明する。この運転状況確認のフロー(ステップS231~ステップS237)は図35に示すステップS210を詳細に示すものであり、運転計画作成部206aおよび第2蓄電池モデル212を中心とした制御フローである。
 この実施の形態3では、限られたEchonet Liteコマンドのみを使用して蓄電池パワコン4が制御される。このため、運転計画作成部206aは、第2蓄電池モデル212で推定された蓄電池3の充電電力量に基づく充放電停止コマンドにより蓄電池パワコン4を制御することで、蓄電池劣化の主要因である充電終止電圧、放電終止電圧、および満充電保持時間を制御する。
Hereinafter, the operation status confirmation flow of the storage battery 3 will be described with reference to FIG. This operation status confirmation flow (steps S231 to S237) shows step S210 shown in FIG. 35 in detail, and is a control flow centered on the operation plan creation unit 206a and the second storage battery model 212.
In the third embodiment, the storage battery power conditioner 4 is controlled using only a limited Echonet Lite command. For this reason, the operation plan creation unit 206a controls the storage battery power conditioner 4 by a charge / discharge stop command based on the charge power amount of the storage battery 3 estimated by the second storage battery model 212, so that the charge termination that is the main cause of storage battery deterioration is stopped. Control voltage, end-of-discharge voltage, and full charge hold time.
 蓄電池3の運転計画の作成が完了すると、運転計画作成部206aは蓄電池3の運転計画を蓄電池運転モード決定部123および第2蓄電池モデル212に通知する。なお、運転計画は、上記実施の形態1と同様に30分毎に充放電電力が1日分規定されたものとする。
 蓄電池3の運転計画を受け取ると、蓄電池運転モード決定部123は、現在の蓄電池パワコン4の動作モードを確認する。具体的には、機器管理部119に問い合わせる。蓄電池パワコン4の動作モードが運転計画と同じ場合は次の送信時刻まで待機する。一方、異なる場合は、クラウドサーバ31から通知された蓄電池パワコン4のEchonet Liteプロトコルを選択する。その際、機器管理部119に対しても蓄電池パワコン4の動作モードを通知する。この実施の形態3では充放電開始、および停止のみサポートされているので、例えば現在の時刻の動作モードが充電であれば充電開始コマンドを蓄電池パワコン4にEchonet Lite通信I/F113を介して通知する。
 また、第2蓄電池モデル212は、充電終止電圧および放電終止電圧、さらに現時刻の蓄電池3の運転計画完了時の充電電力量(SoC)を運転計画から読み込む(ステップS231)。
When the creation of the operation plan for the storage battery 3 is completed, the operation plan creation unit 206a notifies the operation plan for the storage battery 3 to the storage battery operation mode determination unit 123 and the second storage battery model 212. In the operation plan, it is assumed that charge / discharge power is defined for one day every 30 minutes as in the first embodiment.
When receiving the operation plan of the storage battery 3, the storage battery operation mode determination unit 123 confirms the current operation mode of the storage battery power conditioner 4. Specifically, the device management unit 119 is inquired. When the operation mode of the storage battery power conditioner 4 is the same as the operation plan, it waits until the next transmission time. On the other hand, if different, the Echonet Lite protocol of the storage battery power conditioner 4 notified from the cloud server 31 is selected. At that time, the operation mode of the storage battery power conditioner 4 is also notified to the device management unit 119. In the third embodiment, only charging / discharging start and stop are supported. For example, if the operation mode at the current time is charging, a charging start command is notified to the storage battery power converter 4 via the Echonet Lite communication I / F 113. .
In addition, the second storage battery model 212 reads from the operation plan the end-of-charge voltage and the end-of-discharge voltage, as well as the amount of charge (SoC) when the operation plan of the storage battery 3 at the current time is completed (step S231).
 第2蓄電池モデル212は、蓄電池3の運転計画を受け取ると、現在の時刻の運転計画が充電であるか確認する(ステップS232)。
 充電中の場合(Yesの場合)は、ステップS203にて推定した、現在の蓄電池3の充電電力量の推定結果が、取得した運転計画における充電電力量より大きいか判断する(ステップS233)。
 充電電力量の推定結果が運転計画における充電電力量以下の場合(Noの場合)は、運転状況確認のフローを終了する。
 充電電力量の推定結果の方が大きい場合(Yesの場合)、蓄電池3に対して充放電制御を停止するよう充放電停止指令211、この場合、充電停止指令を生成する(ステップS234)。
When the second storage battery model 212 receives the operation plan of the storage battery 3, it checks whether the operation plan at the current time is charging (step S232).
When charging (in the case of Yes), it is determined whether the estimation result of the current charging power amount of the storage battery 3 estimated in step S203 is larger than the charging power amount in the acquired operation plan (step S233).
When the estimation result of the charge power amount is equal to or less than the charge power amount in the operation plan (in the case of No), the operation status confirmation flow is terminated.
When the estimation result of the charge power amount is larger (in the case of Yes), a charge / discharge stop command 211, in this case, a charge stop command is generated so as to stop the charge / discharge control for the storage battery 3 (step S234).
 第2蓄電池モデル212は、充放電停止指令211を生成すると、その旨を運転計画作成部206aに通知する。運転計画作成部206a内の蓄電池運転計画修正部214は、充放電停止指令211を受け取ると、現時刻から次の時刻の間(現時刻を深夜2時とすると、深夜2時~2時30分の間)の運転計画を充放電停止の運転計画に変更する。但し、次の時刻以降(深夜2時30分以降)の運転計画は変更しない(ステップS235)。
 運転計画作成部206aは、変更した運転計画を蓄電池運転モード決定部123に通知する。運転計画の変更を受け取ると、蓄電池運転モード決定部123は、蓄電池パワコン4に対して変更された運転計画に基づく運転指令(この場合は充放電停止指令)を送信し(ステップS236)、運転状況確認のフローを終了する。
 ステップS232において、現在の時刻の運転計画が放電である場合(Noの場合)は、ステップS203にて推定した、現在の蓄電池3の充電電力量の推定結果が、取得した運転計画における充電電力量より小さいか判断する(ステップS237)。
 充電電力量の推定結果が運転計画における充電電力量以上の場合(Noの場合)は、運転状況確認のフローを終了し、充電電力量の推定結果の方が小さい場合(Yesの場合)は、ステップS234に移行して充放電停止指令211を生成する。
When the second storage battery model 212 generates the charge / discharge stop command 211, the second storage battery model 212 notifies the operation plan creation unit 206a to that effect. Upon receiving the charge / discharge stop command 211, the storage battery operation plan correction unit 214 in the operation plan creation unit 206a receives the current time and the next time (when the current time is midnight, 2:00 to 2:30 midnight). The operation plan during (b) is changed to a charge / discharge stop operation plan. However, the operation plan after the next time (after midnight 2:30) is not changed (step S235).
The operation plan creation unit 206 a notifies the changed operation plan to the storage battery operation mode determination unit 123. When the change of the operation plan is received, the storage battery operation mode determination unit 123 transmits an operation command (in this case, a charge / discharge stop command) based on the changed operation plan to the storage battery power conditioner 4 (step S236), and the operation status End the confirmation flow.
In step S232, when the operation plan at the current time is discharge (in the case of No), the estimation result of the current charge power amount of the storage battery 3 estimated in step S203 is the charge power amount in the acquired operation plan. It is determined whether it is smaller (step S237).
When the estimation result of the charge power amount is equal to or greater than the charge power amount in the operation plan (in the case of No), the operation status check flow is terminated, and when the estimation result of the charge power amount is smaller (in the case of Yes), The process proceeds to step S234 to generate a charge / discharge stop command 211.
 充放電停止指令211を用いる理由および効果を以下に説明する。
 図39および図40は、蓄電池3を充電する際の充電電流、充電電力量および蓄電池セル温度を示す図である。図39は、充放電停止指令211を用いない比較例による場合を示し、図40は、この実施の形態3による場合、即ち充放電停止指令211を用いる場合を示す。
 上述したように、蓄電池パワコン4は充放電の開始、あるいは停止プロトコル(コマンド)しかサポートしていない。例えば、深夜充電を行う際に、充電開始指令を送ると、蓄電池パワコン4は予め定められた充電電流(例えば、0.5C)で充電を開始する。しかし、気温が高く、蓄電池3の運転計画では0.1Cで、2時間かけて充電するように運転計画を立てていたとする。
The reason and effect of using the charge / discharge stop command 211 will be described below.
39 and 40 are diagrams showing a charging current, a charging power amount, and a storage battery cell temperature when charging the storage battery 3. FIG. 39 shows a case according to a comparative example in which the charge / discharge stop command 211 is not used, and FIG. 40 shows a case according to the third embodiment, that is, a case where the charge / discharge stop command 211 is used.
As described above, the storage battery power conditioner 4 supports only the charging / discharging start or stop protocol (command). For example, when charging at midnight, when a charge start command is sent, the storage battery power conditioner 4 starts charging at a predetermined charging current (for example, 0.5 C). However, suppose that the temperature is high and the operation plan for the storage battery 3 is 0.1 C, and the operation plan is made to charge over 2 hours.
 図39に示すように、充放電停止指令211を用いない比較例では、0.5Cで24分間連続充電して停止する。この場合、充電電力量は運転計画と同等になるが、0.5Cで充電することで、蓄電池パワコン4や蓄電池3の損失電力で発生する熱で蓄電池セル温度が上昇し、蓄電池3に必要以上のダメージを与える可能性がある。また、30分毎の運転計画では、充電終止電圧を確実に管理することができない。そのため、上記実施の形態1で説明したような不必要な電力量を充電終止電圧を超えて蓄電池3に充電してしまい、蓄電池3を必要以上に劣化させることがある。
 これに対し、この実施の形態3では、図40に示すように、例えば0.5Cの充電電流で6分間充電した後、充電停止状態で待機することで、30分間にSoCで0.05に相当する電力量を充電し、それを4回繰り返す。これにより蓄電池セル温度の不必要な上昇、および蓄電池3への不必要な充電を抑制する。
As shown in FIG. 39, in the comparative example not using the charge / discharge stop command 211, the battery is continuously charged at 0.5C for 24 minutes and stopped. In this case, the amount of power to be charged is equivalent to the operation plan, but by charging at 0.5 C, the temperature of the storage battery cell rises due to the heat generated by the power loss of the storage battery power conditioner 4 and the storage battery 3, and the storage battery 3 is more than necessary. May cause damage. In addition, the end-of-charge voltage cannot be reliably managed in the operation plan every 30 minutes. Therefore, an unnecessary amount of electric power as described in the first embodiment may be charged to the storage battery 3 beyond the charge end voltage, and the storage battery 3 may be deteriorated more than necessary.
On the other hand, in the third embodiment, as shown in FIG. 40, for example, after charging for 6 minutes with a charging current of 0.5 C, the battery is stopped in a charging stopped state, so that the SoC is set to 0.05 for 30 minutes. Charge the corresponding amount of power and repeat it 4 times. Thereby, an unnecessary rise in the storage battery cell temperature and unnecessary charging to the storage battery 3 are suppressed.
 次に、図41および図42は、蓄電池3から放電する際の放電電流、充電電力量および蓄電池セル温度を示す図である。図41は、充放電停止指令211を用いない比較例による場合を示し、図42は、この実施の形態3による場合、即ち充放電停止指令211を用いる場合を示す。
 蓄電池パワコン4は充放電の開始、あるいは停止プロトコル(コマンド)しかサポートしていない。例えば、夜間放電を行う際に、放電開始指令を送ると、蓄電池パワコン4は予め定められた放電電流(例えば、0.5C)で放電を開始する。しかし、気温が高く、蓄電池3の運転計画では0.1Cで、2時間かけて放電するように運転計画を立てていたとする。
Next, FIG. 41 and FIG. 42 are diagrams showing a discharge current, a charge power amount, and a storage battery cell temperature when discharging from the storage battery 3. FIG. 41 shows a case according to a comparative example in which the charge / discharge stop command 211 is not used, and FIG. 42 shows a case according to the third embodiment, that is, a case where the charge / discharge stop command 211 is used.
The storage battery power conditioner 4 supports only the charging / discharging start or stop protocol (command). For example, when a discharge start command is sent when performing nighttime discharge, the storage battery power conditioner 4 starts discharging at a predetermined discharge current (for example, 0.5 C). However, it is assumed that the temperature is high and the operation plan for the storage battery 3 is 0.1 C, and the operation plan is made to discharge over 2 hours.
 図41に示すように、充放電停止指令211を用いない比較例では、0.5Cで24分間連続放電して停止する。この場合、放電電力量は運転計画と同等になるが、0.5Cで放電することで、蓄電池パワコン4や蓄電池3の損失電力で発生する熱で蓄電池セル温度が上昇し、蓄電池3に必要以上のダメージを与える可能性がある。また、30分毎の運転計画では、放電終止電圧を確実に管理することができない。そのため、上記実施の形態1で説明したような不必要な電力量を放電終止電圧を超えて蓄電池3から放電してしまい、蓄電池3を必要以上に劣化させることがある。
 これに対し、この実施の形態3では、図42に示すように、例えば0.5Cの放電電流で6分間放電した後、放電停止状態で待機することで、30分間にSoCで0.05に相当する電力量を放電し、それを4回繰り返す。これにより蓄電池セル温度の不必要な上昇、および蓄電池3からの不必要な放電を抑制する。
As shown in FIG. 41, in the comparative example not using the charge / discharge stop command 211, the battery is continuously discharged at 0.5 C for 24 minutes and stopped. In this case, the amount of discharge power is equivalent to the operation plan, but by discharging at 0.5 C, the storage battery cell temperature rises due to the heat generated by the power loss of the storage battery power conditioner 4 and the storage battery 3, and the storage battery 3 is more than necessary. May cause damage. In addition, the discharge end voltage cannot be reliably managed in the operation plan every 30 minutes. Therefore, an unnecessary amount of electric power as described in the first embodiment may be discharged from the storage battery 3 exceeding the discharge end voltage, and the storage battery 3 may be deteriorated more than necessary.
On the other hand, in the third embodiment, as shown in FIG. 42, for example, after discharging for 6 minutes with a discharge current of 0.5 C, waiting in a discharge stopped state, the SoC is set to 0.05 for 30 minutes. Discharge the corresponding amount of power and repeat it four times. Thereby, an unnecessary rise in the storage battery cell temperature and an unnecessary discharge from the storage battery 3 are suppressed.
 上述したように、蓄電池3への充電を制御することで、蓄電池3のセル温度は、充電時の損失による温度上昇後、休止期間による放熱動作を繰り返すことで、同じ電力を一度に充電する場合と比較して蓄電池セル温度の上昇を低く抑えることができる。また、一般家庭の電気料金については、ピーク電力ではなくアンペア契約であるため、充電電力量が同じであれば、買電電力料金は同じになる。
 同様に、蓄電池3からの放電を制御することで、蓄電池3のセル温度は、放電時の損失による温度上昇後、休止期間による放熱動作を繰り返すことで、同じ電力を一度に放電する場合と比較して蓄電池セル温度の上昇を低く抑えることができる。また、一般家庭の電気料金については、放電電力量が同じであれば、電気料金の削減金額は同じになる。
As described above, by controlling the charging of the storage battery 3, the cell temperature of the storage battery 3 is charged at the same power at a time by repeating the heat dissipation operation during the rest period after the temperature rises due to loss during charging. Compared with, the rise in the storage battery cell temperature can be kept low. In addition, since the electricity charge for ordinary households is an ampere contract rather than peak power, if the amount of charged power is the same, the purchased electricity charge will be the same.
Similarly, by controlling the discharge from the storage battery 3, the cell temperature of the storage battery 3 is compared with the case where the same power is discharged at once by repeating the heat dissipation operation during the rest period after the temperature rises due to loss during discharge. Thus, the rise in storage battery cell temperature can be kept low. In addition, as for the electricity charges for ordinary households, if the amount of discharge power is the same, the amount of reduction in electricity charges is the same.
 また、この実施の形態3では、蓄電池パワコン4内に図8に示す制限テーブルを実装しておらず、蓄電池3の充放電開始、および停止プロトコルしかサポートしていない他社製の蓄電池パワコン4であっても、蓄電池3の劣化の主要因である充放電電流は制限できないが、以下の制御が可能となる。即ち、蓄電池3への充放電を制御することで、蓄電池3のセル温度、充電終止電圧、放電終止電圧、および満充電保持時間を制御することができる。これにより、蓄電池劣化を抑制することができる。満充電保持時間については、充電終止電圧を制御可能なので、上記実施の形態1と同様の制御が可能となる。 Further, in the third embodiment, the storage battery power conditioner 4 manufactured by another company does not mount the restriction table shown in FIG. 8 in the storage battery power conditioner 4 and supports only the charging / discharging start and stop protocols of the storage battery 3. However, the charge / discharge current that is the main cause of deterioration of the storage battery 3 cannot be limited, but the following control is possible. That is, by controlling charging / discharging to the storage battery 3, the cell temperature, the charge end voltage, the discharge end voltage, and the full charge holding time of the storage battery 3 can be controlled. Thereby, storage battery deterioration can be suppressed. With respect to the full charge holding time, since the charge end voltage can be controlled, the same control as in the first embodiment is possible.
 なお、蓄電池パワコン4内に図8に示す制限テーブルを実装している蓄電池パワコン4であっても、電力管理装置100にて蓄電池3の充放電電力量を推定して管理するよう構成し、蓄電池3の制御(充電終止電圧および放電終止電圧を用いた制御)を行うので、同様の効果を奏することは言うまでもない。また、蓄電池パワコン4が、上記実施の形態1と同様に複数の充放電に関するプロトコルを有する場合についても、蓄電池3の蓄電電力量を電力管理装置100にて蓄電池3の充放電電力量を推定して管理するよう構成し、蓄電池3の制御(充電終止電圧および放電終止電圧を用いた制御)を行うので、同様の効果を奏することは言うまでもない。 In addition, even if it is the storage battery power conditioner 4 which has mounted the restriction | limiting table shown in FIG. 8 in the storage battery power conditioner 4, it is comprised so that the charging / discharging electric energy of the storage battery 3 may be estimated and managed in the power management apparatus 100, and a storage battery Since the control 3 (control using the charge end voltage and the discharge end voltage) is performed, it goes without saying that the same effect can be obtained. Moreover, also when the storage battery power conditioner 4 has a plurality of charging / discharging protocols as in the first embodiment, the power management apparatus 100 estimates the charge / discharge power amount of the storage battery 3 using the power management device 100. Since the storage battery 3 is controlled (control using the charge end voltage and the discharge end voltage), it goes without saying that the same effect can be obtained.
 なお、上記実施の形態1と同様に、蓄電池パワコン4の待機時はスリープモードを使用し待機しても良いことは言うまでもない。特に、図40、図42に示すように、充放電直後に強制的に待機する場合はスリープモードで待機することで、待機電力の削減、および待機電力による蓄電池3のセル温度の上昇が抑えられ、蓄電池の劣化進度の抑制につながる効果がある。なお、スリープモードの蓄電池3からの放電を開始する際は、Echonet Lite通信I/F部113を介して蓄電池3に対してスタンバイモードに移行するよう通知する。このように構成するため、蓄電機器Bのスリープモードからスタンバイモードへの移行を確実に実施することができる。また、高温側および低温側の蓄電池セル301の温度情報を、BMU305内の蓄電池制御回路303で収集するので、電力管理装置100の制御と、BMU305の制御を同一の温度情報で実施することができる効果がある。 Needless to say, as in the first embodiment, the standby mode of the storage battery power conditioner 4 may use the sleep mode. In particular, as shown in FIGS. 40 and 42, when forcibly waiting immediately after charging and discharging, the standby power can be reduced and the increase in the cell temperature of the storage battery 3 due to the standby power can be suppressed by waiting in the sleep mode. There is an effect that leads to suppression of deterioration of the storage battery. When discharging from the storage battery 3 in the sleep mode is started, the storage battery 3 is notified to shift to the standby mode via the Echonet Lite communication I / F unit 113. Since it comprises in this way, the transfer to the standby mode from the sleep mode of the electrical storage apparatus B can be implemented reliably. Moreover, since the temperature information of the storage battery cells 301 on the high temperature side and the low temperature side is collected by the storage battery control circuit 303 in the BMU 305, the control of the power management apparatus 100 and the control of the BMU 305 can be performed with the same temperature information. effective.
 上記実施の形態1~3では、充電終止点となる充電終止電圧を決定して蓄電池3の運転計画作成に用いたが、蓄電池3の充電終止点を示す充電電力量(最大充電電力量)を用いても良い。同様に、放電終止点となる放電終止電圧も、放電終止点となる蓄電電力量である放電終止電力量を用いても良い。 In Embodiments 1 to 3 described above, the charging end voltage that is the charging end point is determined and used to create the operation plan of the storage battery 3. However, the charging power amount (maximum charging power amount) that indicates the charging end point of the storage battery 3 is determined. It may be used. Similarly, as the discharge end voltage serving as the discharge end point, the discharge end power amount that is the stored power amount serving as the discharge end point may be used.
 また上記実施の形態1~3では、気温予測情報から充電時の充電終止電圧を決定する際は、気温予測情報から各時刻の蓄電池3の制限情報を生成し、該制限情報に基づき必要となる放電電力量を算出して充電終止電圧を決定するように構成したが、これに限るものではなく、気温予測情報を元に最高気温および最低気温を算出して演算しても良い。この場合、算出した最高気温および最低気温情報から蓄電池3の制限情報を生成し、生成した制限情報に基づき必要となる放電電力量を算出する。そして、算出した放電電力量から充電終止電圧を決定するよう制御する。これにより、蓄電池3への不要な充電により充電終止電圧が上昇する、あるいは満充電での保持時間が必要以上に長くなり蓄電池3の劣化が進むといった問題を抑えることができる。 In the first to third embodiments, when determining the end-of-charge voltage at the time of charging from the temperature prediction information, the limit information of the storage battery 3 at each time is generated from the temperature prediction information and required based on the limit information. Although the configuration is such that the end-of-charge voltage is determined by calculating the amount of discharge power, the present invention is not limited to this, and the maximum temperature and the minimum temperature may be calculated and calculated based on the temperature prediction information. In this case, the limit information of the storage battery 3 is generated from the calculated maximum temperature and minimum temperature information, and the required amount of discharge power is calculated based on the generated limit information. And it controls to determine a charge end voltage from the calculated discharge electric energy. As a result, it is possible to suppress the problem that the end-of-charge voltage rises due to unnecessary charging of the storage battery 3, or the holding time at full charge becomes longer than necessary and the deterioration of the storage battery 3 proceeds.
 また、上記実施の形態1~3では、気温予測情報としてクラウドサーバ31より各時刻の温度情報が通知される場合について説明したがこれに限るものではなく、気温予測情報として、少なくとも最高気温および最低気温のみ通知される場合でも同様の効果を奏することは言うまでもない。その場合、負荷消費電力学習管理部200は内部に天気毎に気温情報を学習するデータベースを準備しておく。データベースは月毎、天気毎、時刻毎に実測した気温を学習する。天気予報情報とともに最高気温および最低気温情報が通知されると負荷消費電力学習管理部200は天気予報情報から学習した各時刻の該気温情報を読み出し、最高気温および最低気温が入力された情報になるようにデータベースから読み出した情報に補正をかける。上述のように負荷消費電力学習管理部200を動作させるので、最高気温および最低気温情報から確実に気温予測情報を生成することができる。これにより、気温に対する蓄電池3の運転制限情報を生成することで、不要に蓄電池3の劣化を進めることのない蓄電池3の運転計画を作成することができる。 In the first to third embodiments, the case where the temperature information at each time is notified from the cloud server 31 as the temperature prediction information has been described. However, the present invention is not limited to this, and the temperature prediction information includes at least the highest temperature and the lowest temperature. It goes without saying that the same effect can be achieved even when only the temperature is notified. In this case, the load power consumption learning management unit 200 prepares a database for learning temperature information for each weather. The database learns the temperature measured every month, every weather, every time. When the maximum temperature and the minimum temperature information are notified together with the weather forecast information, the load power consumption learning management unit 200 reads the temperature information learned at each time from the weather forecast information, and becomes the information in which the maximum temperature and the minimum temperature are input. Thus, the information read from the database is corrected. Since the load power consumption learning management unit 200 is operated as described above, the temperature prediction information can be reliably generated from the maximum temperature and the minimum temperature information. Thereby, the driving | running plan of the storage battery 3 which does not advance deterioration of the storage battery 3 unnecessarily can be created by producing | generating the restriction | limiting information of the storage battery 3 with respect to temperature.
 また、上記実施の形態1~3では、蓄電池3の充電終止電圧を決定する際は、少なくとも気温予測情報に基づいて予測した蓄電池3の充電制限情報から第1充電終止点を生成し、また、PV発電電力予測情報、負荷電力予測情報および気温予測情報に基づいて、PV余剰電力発生終了から深夜電力時間帯の開始までの蓄電池3の放電電力量を算出し、該放電電力量から充電電力量を決定して蓄電池3の第2充電終止点を生成し、第1充電終止点と第2充電終止点とのいずれか低い方を充電終止点として決定するように構成した。これにより、蓄電池劣化を最小に抑えた充電終止電圧を決定することができる。
In the first to third embodiments, when determining the charge end voltage of the storage battery 3, the first charge end point is generated from the charge restriction information of the storage battery 3 predicted based on at least the temperature prediction information. Based on the PV generated power prediction information, the load power prediction information, and the temperature prediction information, the discharge power amount of the storage battery 3 from the end of PV surplus power generation to the start of the midnight power time zone is calculated, and the charge power amount is calculated from the discharge power amount The second charging end point of the storage battery 3 is generated, and the lower of the first charging end point and the second charging end point is determined as the charging end point. Thereby, the end-of-charge voltage can be determined with the storage battery deterioration minimized.
 さらに、上記実施の形態1~3では、図示していない温度計により計測した気温と、蓄電池3からEchonet Lite通信I/F部113を介して入手した高温側および低温側の蓄電池セル301の温度情報と、充放電電流情報とから蓄電池セル301の温度特性を学習する。そして、気温予測結果、充放電電流情報、および蓄電池セル301の温度特性の学習結果から蓄電池温度を予測する。
 蓄電池3の運転計画を作成する場合は、気温予測情報に代わり蓄電池温度予測を元に運転計画を作成しても同様の効果を奏することは言うまでもない。
 また、気温を計測する温度計は蓄電機器Bが有しており、蓄電機器Bで計測した気温実測値をEchonet Lite通信I/F部113を介して取得するよう構成しても同様の効果を奏することは言うまでもない。
Further, in the first to third embodiments, the temperature measured by a thermometer (not shown) and the temperatures of the storage battery cells 301 on the high temperature side and the low temperature side obtained from the storage battery 3 via the Echonet Lite communication I / F unit 113 are used. The temperature characteristics of the storage battery cell 301 are learned from the information and the charge / discharge current information. Then, the storage battery temperature is predicted from the temperature prediction result, the charge / discharge current information, and the learning result of the temperature characteristics of the storage battery cell 301.
When creating an operation plan for the storage battery 3, it goes without saying that the same effect can be obtained even if an operation plan is created based on the storage battery temperature prediction instead of the temperature prediction information.
Further, the power storage device B has a thermometer for measuring the temperature, and the same effect can be obtained even if the actual temperature measured by the power storage device B is acquired via the Echonet Lite communication I / F unit 113. Needless to say to play.
 また、上記実施の形態1~3による電力管理装置100は、給湯機5の運転計画を作成する際、給湯機5の特性、および電力料金体系を考慮して運転計画を作成するので、運転コストを最小限に抑えた運転計画を実行することができる。また、気温による給湯機5の効率や蓄電池3の充放電電流の制限、蓄電池3の充電電力量に起因する充電電流の制限などが蓄電池モデル204、および給湯機モデル205に組み込まれて予め考慮されているため、以下のような効果がある。例えば、気温が低く予定していた消費電力では必要となる蓄熱量が確保できない、あるいは蓄電池3の充電を予定していた時間帯に気温が高すぎる、あるいは蓄電電力量が多く計画していた充電電流を確保できない等の問題の発生を抑制できる。 In addition, since the power management apparatus 100 according to the first to third embodiments creates an operation plan in consideration of the characteristics of the water heater 5 and the power charge system when creating the operation plan of the water heater 5, the operation cost is reduced. It is possible to execute an operation plan that minimizes this. In addition, the efficiency of the water heater 5 depending on the temperature, the charging / discharging current limitation of the storage battery 3, the limitation of the charging current due to the charging power amount of the storage battery 3, etc. are incorporated in the storage battery model 204 and the water heater model 205 and are considered in advance. Therefore, there are the following effects. For example, the required power storage amount cannot be secured with the power consumption planned to be low in temperature, or the temperature is too high in the time zone in which the storage battery 3 is scheduled to be charged, or charging that has been planned for a large amount of stored power The occurrence of problems such as inability to secure current can be suppressed.
 さらに、ヒートポンプを利用した給湯機5の気温および負荷特性に基づくエネルギ変換効率を考慮して運転計画を作成するので、実動作において給湯機5の特性に起因する消費電力および蓄熱量の予測誤差を最小限に抑えることができる。例えば、上記実施の形態1による電力管理装置100では、電力料金体系にもよるが、蓄電池3の上記特性を考慮して運転計画を立案するため、気温が比較的に高い正午過ぎの時間帯は給湯機5の運転に割り当て、気温が比較的低い午前中、あるいは気温が下がり始める16時以降に蓄電池3の充電計画を立てることで効果的な電力管理を行うことができる。
 またさらに、気温が高すぎる等の要因により蓄電池3の充放電が全く行えない時間帯は、蓄電池3をスリープモードに変更することで待機電力の削減が図れるとともに、不要な蓄電池劣化を抑制することができる効果がある。
Further, since the operation plan is created in consideration of the energy conversion efficiency based on the temperature and load characteristics of the water heater 5 using the heat pump, the prediction error of the power consumption and the heat storage amount caused by the characteristics of the water heater 5 in the actual operation. Can be minimized. For example, in the power management apparatus 100 according to the first embodiment, although it depends on the power charge system, an operation plan is made in consideration of the above characteristics of the storage battery 3, so the time zone when the air temperature is relatively high is Effective power management can be performed by making a plan for charging the storage battery 3 in the morning when the temperature is relatively low or after 16:00 when the temperature starts to decrease.
Furthermore, during times when the storage battery 3 cannot be charged / discharged at all due to factors such as the temperature being too high, the standby power can be reduced by changing the storage battery 3 to the sleep mode, and unnecessary storage battery deterioration can be suppressed. There is an effect that can.
 また、この実施の形態1~3では、蓄電池3の運転計画をPV余剰電力時間帯と深夜電力時間帯とに大きく分けて、それぞれの充電計画について作成し、経済メリットが高いほうを選択するよう構成したがこれに限るものではない。例えば、蓄電池特性を、重回帰分析手法を利用し二次計画法で使用可能な二次系のモデルに近似する。そして、2次のモデルに近似した蓄電池3のモデルを利用し、運転計画作成を二次計画法のような算術演算で最適解を算出するように構成してもよい。この場合、電力料金の体系が大きく変わった場合においても、条件設定が変わっただけで算術演算にて最適な蓄電池3の運転計画を作成することができる。これにより、不要な買電電力の充電を抑制できると共に、不要な電力の蓄電池3からの放電を抑制することができる。
 なお、運転計画作成の際の最適化手法として二次計画法について上述したがこれに限るものではなく、例えば機械学習法等の他の算術演算により他の最適化手法により求めた運転計画作成しても同様の効果を奏することは言うまでもない。
In the first to third embodiments, the operation plan of the storage battery 3 is roughly divided into a PV surplus power time zone and a midnight power time zone, and each charging plan is created, and the one with higher economic merit is selected. Although configured, the present invention is not limited to this. For example, the storage battery characteristics are approximated to a model of a secondary system that can be used in the quadratic programming method using a multiple regression analysis method. Then, a model of the storage battery 3 approximated to a secondary model may be used to create an operation plan so that an optimal solution is calculated by an arithmetic operation such as a secondary programming method. In this case, even when the power charge system changes greatly, an optimal operation plan of the storage battery 3 can be created by arithmetic operation only by changing the condition setting. Thereby, while being able to suppress charge of unnecessary purchased electric power, the discharge from the storage battery 3 of unnecessary electric power can be suppressed.
Although the quadratic programming method has been described above as an optimization method when creating an operation plan, the present invention is not limited to this. For example, an operation plan created by another optimization method by other arithmetic operations such as a machine learning method is prepared. However, it goes without saying that the same effect can be achieved.
 また、給湯機5についても、蓄電池3と同様に重解析分析を利用し二次計画法で使用可能な二次系のモデルに近似しても良いことは言うまでもない。また、給湯機5は上述したが機器寿命を考えると1日当たりの起動回数が最大2回程度と制限される。よって、この制限条件を元に、二次計画法のような算術演算手法を用いるのではなく、上記実施の形態1で記載したように予め定められた運転パターンを複数(実施の形態1では2パターン)準備しておき、各運転パターンの中から電力料金が最小になる運転パターンを選択するように構成しても良い。上述のように構成することで、2次モデルの最適化問題を解決する場合と比較して、演算回数を大幅に削減することができる効果がある。これにより、電力管理装置100内のCPU110の性能を不要に高める必要がなく、安価なCPU110を用いることができる。
 なお、上記実施の形態1~3では、蓄電池3および給湯機5の運転計画を電力管理装置100内で実施する場合について説明したが、これに限るものではなく、気温や各種電力を電力管理装置100で計測し、計測結果を元に各種予測処理、運転計画作成処理をクラウドサーバ31で構成するようにしても良いことは言うまでもない。また、蓄電池3の充放電特性、および給湯機5の特性(COP特性等)を、例えば1次以上の特性多項式に近似し、近似した多項式を元に、電力料金が最小となるように運転計画を作成しても良いことは言うまでもない。
Needless to say, the hot water heater 5 may be approximated to a secondary system model that can be used in the quadratic programming method using the multiple analysis analysis in the same manner as the storage battery 3. Moreover, although the hot water heater 5 was mentioned above, when the lifetime of an apparatus is considered, the starting frequency | count per day is restrict | limited to about 2 times at the maximum. Therefore, instead of using an arithmetic operation method such as quadratic programming based on this restriction condition, a plurality of predetermined operation patterns (2 in the first embodiment) are used as described in the first embodiment. Pattern) may be prepared and an operation pattern that minimizes the power charge may be selected from each operation pattern. By configuring as described above, there is an effect that the number of operations can be significantly reduced as compared with the case of solving the optimization problem of the secondary model. Thereby, it is not necessary to improve the performance of the CPU 110 in the power management apparatus 100 unnecessarily, and an inexpensive CPU 110 can be used.
In the first to third embodiments, the case where the operation plan for the storage battery 3 and the water heater 5 is implemented in the power management apparatus 100 has been described. However, the present invention is not limited to this. It goes without saying that measurement may be performed at 100 and various prediction processes and operation plan creation processes may be configured by the cloud server 31 based on the measurement results. Further, the charging / discharging characteristics of the storage battery 3 and the characteristics of the water heater 5 (COP characteristics, etc.) are approximated to, for example, a first-order or higher characteristic polynomial, and the operation plan is made so that the power rate is minimized based on the approximated polynomial. Needless to say, you can create.
 また、上記実施の形態1~3では、電力管理装置100からの給湯機5の起動回数を2回としたがこれに限るものではないことは言うまでもない。また、給湯機5の運転計画(運転パターン)の数を予め絞るように構成したがこれに限るものではなく、全ての計画に基づき運転計画作成部206、206aで最適化を行い運転計画を求めても良いことは言うまでもない。 In the first to third embodiments, the number of activations of the water heater 5 from the power management apparatus 100 is two, but it goes without saying that the present invention is not limited to this. Further, the number of operation plans (operation patterns) of the water heater 5 is limited in advance. However, the present invention is not limited to this, and the operation plan generators 206 and 206a perform optimization based on all the plans to obtain the operation plan. Needless to say.
 さらに、家族の行動スケジュールに合わせて給湯機5を制御するので、湯量を適切に設定することができ、不要な使用電力を抑えることができる。また、給湯機5および蓄電池3の運転計画を作成する際、家族スケジュールに基づき使用電力を予測するので、負荷消費電力を見積もる場合の精度も向上できる効果がある。 Furthermore, since the water heater 5 is controlled in accordance with the family action schedule, the amount of hot water can be set appropriately, and unnecessary power consumption can be suppressed. Further, when the operation plan for the hot water heater 5 and the storage battery 3 is created, the power consumption is predicted based on the family schedule, so that there is an effect that the accuracy in estimating the load power consumption can be improved.
 また、上記実施の形態1~3では、電力料金体系は、深夜電力時間帯と昼間電力時間帯の2種類(夏季を含めると3種類)の電力料金体系の場合について説明しているが、DRの一方式として注目を集めているピーク時間帯の電力料金を通常の電力料金よりもさらに高くし電力消費の行動を抑えるような方式にしても良い。この場合、入力される電力料金体系を変えるだけで、運転計画を作成することができるので、不要な買電電力の充電、また不要な電力の蓄電池3からの放電を抑制することができる効果がある。
 また、運転計画をリアルタイム(30分単位)で更新するように構成したので、当日に、例えば特定の時間帯の電力料金が上がる場合、あるいは需要抑制依頼がきた場合でも、蓄電池3の蓄電電力量、PV発電電力量予測結果、負荷消費電力量予測結果等(需要抑制の場合はインセンティブも使用)により、電力料金が最小となる運転計画を再度立てることができる。例えば、蓄電池3の蓄電電力量が少ないと判断した場合は、昼間の時間帯であっても蓄電池3を充電し、電力料金が高くなる時間帯は買電を行わないよう制御することで、電気料金をできる限り小さく抑えることができる効果がある。
 また、給湯機5の沸き上げタイミングを変える、あるいは蓄電池3の放電タイミングを変えることにより同様の効果がある。同様に、天気予報が外れた場合でも、リアルタイムに運転計画をリカバリするので、電力料金をできる限り小さく抑えることができる効果がある。また、運転計画を上述したような二次計画法を用いるような場合は、算術演算にて最適な運転計画が作成できるので、入力される電力料金体系を変えるだけで最適な運転計画を作成することができることは言うまでもない。
In Embodiments 1 to 3 described above, the power rate system has been described with respect to two types of power rate systems (three types including the summer season): a midnight power time zone and a daytime power time zone. As a method, the power charge in the peak time zone, which is attracting attention, may be set higher than the normal power charge to suppress the power consumption behavior. In this case, it is possible to create an operation plan simply by changing the input power rate system, so that it is possible to suppress unnecessary charging of purchased power and discharge of unnecessary power from the storage battery 3. is there.
In addition, since the operation plan is configured to be updated in real time (in units of 30 minutes), even if, for example, a power charge in a specific time zone increases or a demand suppression request is received on the same day, the stored power amount of the storage battery 3 The PV power generation amount prediction result, the load power consumption amount prediction result, etc. (incentives are also used in the case of demand suppression) can make an operation plan that minimizes the power rate. For example, if it is determined that the amount of power stored in the storage battery 3 is small, the storage battery 3 is charged even during the daytime hours, and control is performed so that power is not purchased during the time period when the power rate is high. There is an effect that the charge can be kept as small as possible.
Further, the same effect can be obtained by changing the boiling timing of the water heater 5 or changing the discharge timing of the storage battery 3. Similarly, even when the weather forecast deviates, the operation plan is recovered in real time, so that there is an effect that the power charge can be kept as small as possible. In addition, when using the quadratic programming method as described above, an optimal operation plan can be created by arithmetic operations, so an optimal operation plan can be created simply by changing the input power rate system. It goes without saying that it can be done.
 さらに、電力料金体系が変わった場合も、クラウドサーバ31経由で最新の電力料金体系を取り込むので、将来電力料金体系が変わっても、電力料金をできる限り小さく抑えることができる効果がある。 Furthermore, even if the power charge system changes, the latest power charge system is taken in via the cloud server 31, so that even if the power charge system changes in the future, the power charge can be kept as small as possible.
 また、上記実施の形態1~3では、負荷消費電力を学習しているので、例えば、エアコンなど新しい機器が増えた場合、あるいは機器を取り換え消費電力量が変わった場合でも、負荷機器20の使用電力を学習することで、ユーザは機器の取り換えを意識することなく、電力料金をできる限り小さくに抑える効果を享受することができる。
 なお、機器取り換え時、追加時は、学習が完了するまでは負荷消費電力量が変わるため、予測誤差が大きくなる。しかし、機器管理部110で新たな機器、あるいは機器の取り換えを検出した場合は、そのことを考慮し学習することで、負荷機器20の使用電力量の予測誤差の発生期間を短く抑えることができることは言うまでもない。また、蓄電池3、および給湯機5についても同様に学習を行うので、カタログなどに記載されたスペックではなく、実測値を元に特性を把握することができ、より予測誤差を抑えた運転計画を立案することができる効果がある。
In the first to third embodiments, since load power consumption is learned, for example, even when new equipment such as an air conditioner is added or when equipment is replaced and power consumption changes, use of the load equipment 20 By learning the power, the user can enjoy the effect of keeping the power charge as low as possible without being aware of the replacement of the device.
Note that, when replacing or adding a device, the load power consumption changes until learning is completed, so that the prediction error increases. However, when a new device or replacement of a device is detected by the device management unit 110, it is possible to suppress the generation period of the prediction error of the power consumption amount of the load device 20 by learning that fact. Needless to say. In addition, since learning is similarly performed for the storage battery 3 and the water heater 5, it is possible to grasp the characteristics based on the actually measured values instead of the specifications described in the catalog and the like, and to further reduce the prediction error. There is an effect that can be planned.
 また、蓄電池3の容量は、カタログ値に対して実際に使用できる容量は、新品の蓄電池3であっても80~90%程度で、どの程度使用できるかはバラツキもある。従って、蓄電池3の容量についても、学習することで、電力管理装置100が実際に使用できる蓄電池3の容量を把握でき、運転計画を実機に基づき立てることができる。また、蓄電池劣化は、蓄電池3のばらつきに加え、使用環境や使用方法に大きく依存する。従って、蓄電池3の充放電履歴(充放電電流、充電終止電圧、放電終止電圧等)、環境情報(気温、蓄電池セル温度)を記憶し、記憶結果、および実測した蓄電池容量などから蓄電池3の劣化を判断することで、蓄電池劣化の推定精度を上げることができ、より適切な充放電制限テーブルを使用することができる効果がある。 Also, the capacity of the storage battery 3 is about 80 to 90% even if it is a new storage battery 3 with respect to the catalog value, and there is a variation in how much it can be used. Therefore, by learning also about the capacity of the storage battery 3, the capacity of the storage battery 3 that can be actually used by the power management apparatus 100 can be grasped, and an operation plan can be established based on the actual machine. Further, the storage battery deterioration greatly depends on the use environment and the use method in addition to the variation of the storage battery 3. Therefore, the storage battery 3 charge / discharge history (charge / discharge current, end-of-charge voltage, end-of-discharge voltage, etc.) and environmental information (temperature, storage battery cell temperature) are stored, and the storage battery 3 is deteriorated from the storage results and the measured storage battery capacity. Therefore, it is possible to improve the estimation accuracy of storage battery deterioration and to use a more appropriate charge / discharge restriction table.
 また、上記実施の形態1~3では、蓄電池3の容量維持率(劣化度合い)に応じて蓄電池3の特性テーブルを切換えるように構成するので、蓄電池3の劣化度合いに応じた制御を行うことができる。このため、蓄電池3の不要な劣化を抑えることができるとともに、劣化度合いに応じた蓄電池3の制御、例えば、最大充放電電流、充電終止電圧、放電終止電圧、定電流制御から定電圧制御への移行タイミング(SoCに対する最大充放電電流を制限することでも実現可能)を考慮し、充放電計画を作成できる。これにより、蓄電池3の実動作をほぼ正確に模擬することができ、運転計画作成時の誤差を最小限に抑えることができる効果がある。 In the first to third embodiments, since the characteristic table of the storage battery 3 is switched according to the capacity maintenance rate (deterioration degree) of the storage battery 3, control according to the deterioration degree of the storage battery 3 can be performed. it can. Therefore, unnecessary deterioration of the storage battery 3 can be suppressed, and control of the storage battery 3 according to the degree of deterioration, for example, maximum charge / discharge current, end-of-charge voltage, end-of-discharge voltage, constant current control to constant voltage control. A charge / discharge plan can be created in consideration of the transition timing (which can also be realized by limiting the maximum charge / discharge current for SoC). Thereby, the actual operation of the storage battery 3 can be simulated almost accurately, and there is an effect that an error in creating the operation plan can be minimized.
 また、上記実施の形態1~3では、蓄電池3として定置型のリチュウムイオンバッテリを使用した場合について説明したがこれに限るものではなく、例えば、鉛蓄電池やニッケル水素蓄電でも同様の効果を奏することは言うまでもない。また、定置蓄電池ではなくEV(Electric Vehicle)やPHEV(Plug-in Hybrid Electric Vehicle)等の電気自動車に搭載されたバッテリを使用しても良いことは言うまでもない。
 さらに、上記実施の形態1~3では、蓄電池3として1台の定置型蓄電池を使用した場合について説明したがこれに限るものではなく、2台以上の複数の蓄電池を連携して使用しても良いことは言うまでもない。その際、蓄電池の特性が異なれば、電力管理装置100は個々の蓄電池の特性を元に電気料金が最小になるように各々の蓄電池の運転計画を立案し、立案された各々の蓄電池の運転計画に基づき運転を制御することで、複数の蓄電池を使用する場合も、効果的に各々の蓄電池を制御することができ、電力料金を抑える効果がある。なお、複数台の蓄電池を連携して使用する場合、その中の1つ、あるいは複数がEVやPHEV等の電気自動車であっても良いことは言うまでもない。
In the first to third embodiments, the case where a stationary type lithium ion battery is used as the storage battery 3 has been described. However, the present invention is not limited to this. For example, a lead storage battery or a nickel-metal hydride storage has the same effect. Needless to say. Needless to say, a battery mounted on an electric vehicle such as EV (Electric Vehicle) or PHEV (Plug-in Hybrid Electric Vehicle) may be used instead of the stationary storage battery.
Further, in the first to third embodiments, the case where one stationary storage battery is used as the storage battery 3 has been described. However, the present invention is not limited to this, and two or more storage batteries may be used in cooperation. It goes without saying that it is good. At that time, if the characteristics of the storage battery are different, the power management apparatus 100 formulates an operation plan for each storage battery based on the characteristics of the individual storage battery so that the electricity charge is minimized, and the operation plan for each storage battery that is planned. By controlling the operation based on the above, even when a plurality of storage batteries are used, each storage battery can be controlled effectively, and there is an effect of suppressing the power charge. Needless to say, when a plurality of storage batteries are used in cooperation, one or more of them may be an electric vehicle such as an EV or a PHEV.
 また、上記実施の形態1~3では、蓄電池セル301の温度推定は、待機電力により蓄電池セル301が上昇する温度を気温予測結果に加算することで求めたがこれに限るものではない。待機電力よりも充放電電流量が損失の主要因である場合は、各時刻の負荷消費電力量を学習する際に、蓄電池セル301の気温に対する温度上昇割合も学習しておき、その結果を用いて蓄電池セル301の温度を推定するよう構成しても良いことは言うまでもない。
 また、蓄電池劣化の要因となる蓄電池保存劣化については、例えば、保存劣化が進む高温時については、気温予測結果に基づき最大充電電力量(充電終止電圧)の上限値を制限するよう、さらに制限テーブルを設けても良いことは言うまでもない。更に、蓄電池3の充放電制限に関しては、劣化が進んだ蓄電池3に対しては充電終止電圧を新品のものに比べ低くする。具体的には、定電流充電から定電圧充電に切換える蓄電池電圧を低くするとともに、SoCについても1.0(満充電)になる前に終了する。また、最大充放電電流も低く抑えるように、蓄電池充放電電流の制限テーブルを変更する。そして、該変更した蓄電池充放電電流の制限テーブルを元に重回帰分析手法を利用し蓄電池3をモデル化するので、蓄電池3の温度特性、SoC特性に加え、蓄電池劣化も考慮したモデルとすることができる効果がある。なお、蓄電池モデルの更新は、毎回実施するのではなく、例えば10日に1回、あるいは1カ月に1回、あるいはSoCは0.01変化した場合等でも良いことは言うまでもない。
In the first to third embodiments, the temperature of the storage battery cell 301 is estimated by adding the temperature at which the storage battery cell 301 rises due to standby power to the temperature prediction result, but is not limited thereto. When the charge / discharge current amount is the main factor of loss rather than standby power, when learning the load power consumption at each time, the rate of temperature increase with respect to the temperature of the storage battery cell 301 is also learned, and the result is used. Needless to say, the temperature of the storage battery cell 301 may be estimated.
Further, for storage battery storage deterioration that causes storage battery deterioration, for example, at a high temperature when storage deterioration progresses, a limit table is further set to limit the upper limit value of the maximum charge power amount (end-of-charge voltage) based on the temperature prediction result. Needless to say, it may be provided. Furthermore, regarding the charge / discharge limitation of the storage battery 3, the end-of-charge voltage is set lower for the storage battery 3 that has deteriorated than for a new battery. Specifically, the storage battery voltage for switching from constant current charging to constant voltage charging is lowered, and the SoC is also finished before reaching 1.0 (full charge). Further, the storage battery charge / discharge current limit table is changed so as to keep the maximum charge / discharge current low. And since the storage battery 3 is modeled using the multiple regression analysis method based on the changed storage battery charge / discharge current limit table, a model that takes into consideration the deterioration of the storage battery in addition to the temperature characteristics and SoC characteristics of the storage battery 3 should be adopted. There is an effect that can. Needless to say, the storage battery model is not updated every time, for example, once every 10 days, once a month, or when the SoC changes by 0.01.
 上記実施の形態1~3では、蓄エネ機器となる蓄電池3と給湯機5とを使用する。これは、以下の理由に基づく。蓄電池3は、電気エネルギをそのまま電気エネルギとして使用することができるため、非常に利用しやすい形態でエネルギを蓄えることができる半面、1kWh当たりのコストが非常に高い。例えば、5.53kWhの蓄電池を搭載した据え置き型蓄電池の価格は実勢価格で250万円程度と非常に高い。一方、給湯機5の実勢価格は70万円前後で、7.5kWh程度の蓄熱ができる。従って、1kWh当たりの単価は1/4~1/5程度と非常に安い。蓄エネ機器として蓄熱機器(給湯機5)を使用することで、蓄電機器(蓄電池3)に比べ1kWhのエネルギを蓄エネする際の機器コストを抑えることができ、高価な蓄電池3の容量を小さくすることができる効果がある。これにより、全体のシステムを導入するためのコストを抑えることができる効果があることは言うまでもない。 In the first to third embodiments, the storage battery 3 and the water heater 5 that are energy storage devices are used. This is based on the following reason. Since the storage battery 3 can use the electrical energy as it is, the energy can be stored in a form that is very easy to use, but the cost per kWh is very high. For example, the price of a stationary storage battery equipped with a 5.53 kWh storage battery is an extremely high price of about 2.5 million yen. On the other hand, the actual price of the water heater 5 is around 700,000 yen, and can store heat of about 7.5 kWh. Therefore, the unit price per kWh is very low, about 1/4 to 1/5. By using the heat storage device (hot water heater 5) as the energy storage device, the device cost when storing 1 kWh of energy compared to the power storage device (storage battery 3) can be reduced, and the capacity of the expensive storage battery 3 can be reduced. There is an effect that can be done. As a result, it goes without saying that the cost for introducing the entire system can be reduced.
 なお、上記実施の形態1~3では、説明を分かりやすくするために電力管理装置100内の電力計測部116、時刻管理部117、運転計画部118(118a)、機器管理部119、負荷機器制御部120、家族スケジュール管理部121、DR対応部122、負荷消費電力学習管理部200、PV発電電力学習管理部201、負荷消費電力予測部202、PV発電電力予測部203、蓄電池モデル204、給湯機モデル205を、H/W(ハードウェア)で構成する場合について説明したがこれに限るものではない。全ての回路、あるいは一部の回路を、CPU110上で動作するS/W(ソフトウェア)で実現しても同様の効果を奏することは言うまでもない。また、上記各回路の機能をS/WとH/Wに分割し同様の機能を実現しても良いことは言うまでもない。 In the first to third embodiments, the power measurement unit 116, the time management unit 117, the operation planning unit 118 (118a), the device management unit 119, and the load device control in the power management apparatus 100 are provided for easy understanding. Unit 120, family schedule management unit 121, DR correspondence unit 122, load power consumption learning management unit 200, PV generation power learning management unit 201, load power consumption prediction unit 202, PV generation power prediction unit 203, storage battery model 204, water heater Although the case where the model 205 is configured by H / W (hardware) has been described, the present invention is not limited to this. It goes without saying that the same effect can be obtained even if all or some of the circuits are realized by S / W (software) operating on the CPU 110. Needless to say, the function of each circuit may be divided into S / W and H / W to realize the same function.
 また、上記実施の形態1~3では、負荷消費電力学習管理部200やPV発電電力学習管理部201等、比較的大きなデータベース(メモリ)を必要とする機能については、電力管理装置100内に実装せず、クラウドサーバ31内に同様の機能を実装し機能分割してシステムを構築しても良く、同様の効果を奏することは言うまでもない。また、蓄電池3の劣化度合い等を推定するために必要となる充放電履歴データなどはデータ量が膨大となるため電力管理装置100内で管理するのではなく、クラウドサーバ31内で管理するように構成しても同様の効果を奏することは言うまでもない。
 さらに、天気予報から日射量を推定するPV発電電力予測部203内の機能は、天気予報が地域単位で出されることを考慮すると必ずしも電力管理装置100内で持っている必要はなく、クラウドサーバ31内で天気予報に基づき地域毎の日射量を推定し、推定結果を電力管理装置100に送付するよう構成しても良いことは言うまでもない。
In the first to third embodiments, functions that require a relatively large database (memory) such as the load power consumption learning management unit 200 and the PV generated power learning management unit 201 are implemented in the power management apparatus 100. The system may be constructed by implementing the same function in the cloud server 31 and dividing the function, and it goes without saying that the same effect can be obtained. In addition, the charge / discharge history data and the like necessary for estimating the degree of deterioration of the storage battery 3 are enormous, so that they are managed not in the power management apparatus 100 but in the cloud server 31. It goes without saying that the same effect can be obtained even if configured.
Furthermore, the function in the PV generated power prediction unit 203 that estimates the amount of solar radiation from the weather forecast is not necessarily provided in the power management apparatus 100 considering that the weather forecast is issued in units of regions. Of course, the solar radiation amount for each region may be estimated based on the weather forecast, and the estimation result may be sent to the power management apparatus 100.
 またこの発明は、その発明の範囲内において、各実施の形態を自由に組み合わせたり、各実施の形態を適宜、変形、省略することが可能である。 Also, within the scope of the present invention, the embodiments can be freely combined, or the embodiments can be appropriately modified or omitted.

Claims (20)

  1.  蓄電機器と創エネ機器と電気負荷とを有するシステムの電力需給を管理する電力管理装置において、
     上記蓄電機器の情報を取得する蓄電機器情報取得部と、
     上記創エネ機器にて発電される電力を予測する発電電力予測部と、
     上記電気負荷の消費電力を予測する負荷電力予測部と、
     上記蓄電機器情報取得部にて取得した蓄電機器情報、上記発電電力予測部にて予測した発電電力予測情報、上記負荷電力予測部にて予測した負荷電力予測情報、および気温予測情報に基づいて、上記蓄電機器の運転計画を作成する運転計画作成部とを備え、
     上記運転計画作成部は、少なくとも上記気温予測情報に基づいて上記蓄電機器の最大充電電力量あるいは充電終止電圧である充電終止点を決定し、上記充電終止点以下で上記蓄電機器が充電されると共に、上記気温予測情報が設定上限値を超える時間帯に上記蓄電機器の充放電を停止するように上記運転計画を作成する、
    電力管理装置。
    In a power management device that manages the power supply and demand of a system having a power storage device, an energy creation device, and an electrical load,
    A power storage device information acquisition unit for acquiring information of the power storage device;
    A generated power prediction unit for predicting the power generated by the energy creation device,
    A load power prediction unit for predicting power consumption of the electric load;
    Based on the power storage device information acquired by the power storage device information acquisition unit, the generated power prediction information predicted by the generated power prediction unit, the load power prediction information predicted by the load power prediction unit, and the temperature prediction information, An operation plan creation unit for creating an operation plan of the power storage device,
    The operation plan creation unit determines a charging termination point that is a maximum charge power amount or a charging termination voltage of the power storage device based on at least the temperature prediction information, and the power storage device is charged below the charging termination point. , Creating the operation plan so that charging and discharging of the power storage device is stopped in a time zone in which the temperature prediction information exceeds a set upper limit value,
    Power management device.
  2.  上記運転計画作成部は、少なくとも上記気温予測情報に基づいて上記蓄電機器の最大充電電流あるいは最大充電電力である充電制限値を予測し、該充電制限値以下で上記蓄電機器が充電されるように上記充電終止点を決定する、
    請求項1に記載の電力管理装置。
    The operation plan creation unit predicts a charging limit value that is the maximum charging current or the maximum charging power of the power storage device based on at least the temperature prediction information, and the power storage device is charged below the charging limit value. Determine the charging end point,
    The power management apparatus according to claim 1.
  3.  上記蓄電機器の充放電電力を計測する充放電電力計測部と、
     上記充放電電力計測部による計測結果に基づいて上記蓄電機器の充電電力量を推定する充電電力量推定部とを備え、
     上記運転計画作成部は、上記蓄電機器情報、上記発電電力予測情報、上記負荷電力予測情報、上記気温予測情報および上記充電終止点に加え、推定された上記充電電力量に基づいて上記運転計画を修正する、
    請求項1または請求項2に記載の電力管理装置。
    A charge / discharge power measuring unit for measuring charge / discharge power of the power storage device;
    A charge power amount estimation unit that estimates the charge power amount of the power storage device based on a measurement result by the charge / discharge power measurement unit;
    In addition to the power storage device information, the generated power prediction information, the load power prediction information, the temperature prediction information, and the charging end point, the operation plan creation unit calculates the operation plan based on the estimated charging power amount. To fix,
    The power management apparatus according to claim 1 or 2.
  4.  上記蓄電機器情報取得部は、少なくとも上記蓄電機器の充電電力量情報を取得し、
     上記充電電力量推定部は、上記蓄電機器の上記充電電力量と、さらに上記蓄電機器の満充電時の電力量とを、上記計測結果に基づいて推定し、該2つの推定結果の少なくとも一方を、取得した上記充電電力量情報に基づいて修正する、
    請求項3に記載の電力管理装置。
    The power storage device information acquisition unit acquires at least charging energy information of the power storage device,
    The charge power amount estimation unit estimates the charge power amount of the power storage device and further the power amount when the power storage device is fully charged based on the measurement result, and at least one of the two estimation results is calculated. , To correct based on the acquired charging energy information,
    The power management apparatus according to claim 3.
  5.  上記充電電力量推定部は、上記充電電力量に対応する上記蓄電機器の電圧を用いて上記充電電力量を推定する、
    請求項3または請求項4に記載の電力管理装置。
    The charge power amount estimation unit estimates the charge power amount using a voltage of the power storage device corresponding to the charge power amount.
    The power management apparatus according to claim 3 or 4.
  6.  推定された上記充電電力量および上記運転計画に基づいて、上記蓄電機器の充放電動作の開始と停止との指令を決定し、決定された該指令を上記蓄電機器に通知する、
    請求項3から請求項5のいずれか1項に記載の電力管理装置。
    Based on the estimated charging power amount and the operation plan, determine a command to start and stop the charging / discharging operation of the power storage device, and notify the power storage device of the determined command,
    The power management apparatus according to any one of claims 3 to 5.
  7.  上記蓄電機器が充電動作時に、上記充電電力量推定部により推定された上記充電電力量が上記充電終止点を超えると、上記指令として上記蓄電機器の充電動作の停止指令を生成して上記蓄電機器に通知する、
    請求項6に記載の電力管理装置。
    When the power storage device is in a charging operation, if the charge power amount estimated by the charge power amount estimation unit exceeds the charge termination point, a command to stop the charging operation of the power storage device is generated as the command, and the power storage device To notify,
    The power management apparatus according to claim 6.
  8.  上記蓄電機器は、充放電停止中の運転モードとして待機モードおよび休止モードを有し、上記運転計画作成部は、上記気温予測情報が上記設定上限値を超える時間帯に上記蓄電機器の充放電を上記休止モードで停止するよう上記運転計画を作成する、
    請求項1から請求項7のいずれか1項に記載の電力管理装置。
    The power storage device has a standby mode and a sleep mode as operation modes when charging / discharging is stopped, and the operation plan creation unit charges / discharges the power storage device in a time zone in which the temperature prediction information exceeds the set upper limit value. Create the operation plan to stop in the sleep mode,
    The power management apparatus according to any one of claims 1 to 7.
  9.  上記休止モードで停止中の上記蓄電機器を充放電開始させる際、充放電開始に先立って上記待機モードに移行するよう上記蓄電機器に通知する、
    請求項8に記載の電力管理装置。
    When starting to charge and discharge the power storage device that is stopped in the pause mode, the power storage device is notified to shift to the standby mode prior to the start of charge and discharge,
    The power management apparatus according to claim 8.
  10.  上記運転計画作成部は、需要者の契約に基づき電力料金体系を入手し、該電力料金体系を参照して深夜電力時間帯に上記蓄電機器を充電するよう運転計画を作成する、
    請求項2に記載の電力管理装置。
    The operation plan creation unit obtains a power rate system based on a contract of a consumer, creates an operation plan so as to charge the power storage device in the late-night power hours with reference to the power rate system,
    The power management apparatus according to claim 2.
  11.  上記運転計画作成部は、需要者の契約に基づき電力料金体系を入手し、該電力料金体系を参照して深夜電力時間帯に上記蓄電機器を充電するよう運転計画を作成する、
    請求項3から請求項9のいずれか1項に記載の電力管理装置。
    The operation plan creation unit obtains a power rate system based on a contract of a consumer, creates an operation plan so as to charge the power storage device in the late-night power hours with reference to the power rate system,
    The power management apparatus according to any one of claims 3 to 9.
  12.  上記運転計画作成部は、上記発電電力予測情報、上記負荷電力予測情報および上記気温予測情報に基づいて、余剰電力発生終了から上記深夜電力時間帯の開始までの上記蓄電機器の放電電力量を算出し、該放電電力量から充電電力量を決定して上記蓄電機器の上記充電終止点を生成する、
    請求項10または請求項11に記載の電力管理装置。
    The operation plan creation unit calculates a discharge power amount of the power storage device from the end of the generation of surplus power to the start of the midnight power period based on the generated power prediction information, the load power prediction information, and the temperature prediction information. And determining the charge power amount from the discharge power amount to generate the charge end point of the power storage device,
    The power management apparatus according to claim 10 or 11.
  13.  上記運転計画作成部は、上記蓄電機器の上記充電制限値から第1充電終止点を生成すると共に、上記発電電力予測情報、上記負荷電力予測情報および上記気温予測情報に基づいて、余剰電力発生終了から上記深夜電力時間帯の開始までの上記蓄電機器の放電電力量を算出し、該放電電力量から充電電力量を決定して上記蓄電機器の第2充電終止点を生成し、上記第1充電終止点と上記第2充電終止点とのいずれか低い方を上記充電終止点として決定する、
    請求項10に記載の電力管理装置。
    The operation plan creation unit generates a first charging end point from the charge limit value of the power storage device, and ends generation of surplus power based on the generated power prediction information, the load power prediction information, and the temperature prediction information. To calculate a discharge power amount of the power storage device from the start of the midnight power time period to determine a charge power amount from the discharge power amount to generate a second charging end point of the power storage device, The lower of the end point and the second charge end point is determined as the charge end point,
    The power management apparatus according to claim 10.
  14.  上記運転計画作成部は、少なくとも上記気温予測情報に基づいて上記蓄電機器の最大放電電流あるいは最大放電電力である放電制限値を予測し、予測される上記放電制限値以下で放電するように上記蓄電機器の上記放電電力量を算出する、
    請求項13に記載の電力管理装置。
    The operation plan creation unit predicts a discharge limit value that is a maximum discharge current or a maximum discharge power of the power storage device based on at least the temperature prediction information, and discharges the power storage so as to discharge below the predicted discharge limit value. Calculating the discharge energy of the device,
    The power management apparatus according to claim 13.
  15.  上記運転計画作成部は、少なくとも上記気温予測情報に基づいて上記蓄電機器の最大放電電流あるいは最大放電電力である放電制限値を予測し、少なくとも上記気温予測情報に基づいて上記蓄電機器の放電終止電力量あるいは放電終止電圧である放電終止点を予測し、上記深夜電力時間帯の上記気温予測情報が設定下限値未満になると、上記深夜電力時間帯の開始直前に上記蓄電機器の放電を完了し、該深夜電力時間帯が開始すると上記蓄電機器の充電を開始するように上記運転計画を作成する、
    請求項10に記載の電力管理装置。
    The operation plan creation unit predicts a discharge limit value that is a maximum discharge current or maximum discharge power of the power storage device based on at least the temperature prediction information, and discharge end power of the power storage device based on at least the temperature prediction information When the discharge end point, which is the amount or the discharge end voltage, is predicted, and the temperature prediction information in the midnight power time zone is less than a set lower limit value, the discharge of the power storage device is completed immediately before the start of the midnight power time zone, Creating the operation plan to start charging the power storage device when the midnight power time period starts,
    The power management apparatus according to claim 10.
  16.  上記運転計画作成部は、上記蓄電機器の充電電力量の計測結果を取得し、上記深夜電力時間帯の上記気温予測情報が上記設定下限値未満になると、上記計測結果に基づいて上記深夜電力時間帯の開始直前まで上記蓄電機器の放電を継続するよう上記運転計画を作成する、
    請求項15に記載の電力管理装置。
    The operation plan creation unit acquires a measurement result of the amount of charging power of the power storage device, and when the temperature prediction information in the midnight power time zone becomes less than the set lower limit value, the midnight power time based on the measurement result Create the operation plan to continue discharging the power storage device until immediately before the start of the belt,
    The power management apparatus according to claim 15.
  17.  上記蓄電機器に蓄電池を用い、上記蓄電機器情報は、少なくとも上記蓄電池の温度情報である、
    請求項1から請求項16のいずれか1項に記載の電力管理装置。
    Using a storage battery for the power storage device, the power storage device information is at least temperature information of the storage battery,
    The power management apparatus according to any one of claims 1 to 16.
  18.  上記蓄電機器情報は、上記蓄電池の充放電電流情報を含み、
     気温計測結果を取得し、該気温計測結果、上記蓄電池の上記温度情報、および上記蓄電池の上記充放電電流情報から上記蓄電池の特性を学習する蓄電池特性学習部と、
     上記気温予測情報と上記蓄電池の上記充放電電流情報とに基づいて、上記蓄電池特性学習部から得られる上記蓄電池の特性を参照して、蓄電池予測温度を予測する蓄電池温度予測部とを備え、
     上記運転計画作成部は、上記気温予測情報として、上記蓄電池温度予測部が予測した上記蓄電池予測温度を用いて上記蓄電機器の上記運転計画を作成する、
    請求項17に記載の電力管理装置。
    The power storage device information includes charge / discharge current information of the storage battery,
    A storage battery characteristic learning unit that acquires an air temperature measurement result, learns the characteristics of the storage battery from the temperature measurement result, the temperature information of the storage battery, and the charge / discharge current information of the storage battery;
    Based on the temperature prediction information and the charge / discharge current information of the storage battery, with reference to the characteristics of the storage battery obtained from the storage battery characteristic learning unit, a storage battery temperature prediction unit that predicts the storage battery predicted temperature,
    The operation plan creation unit creates the operation plan of the power storage device using the storage battery predicted temperature predicted by the storage battery temperature prediction unit as the temperature prediction information.
    The power management apparatus according to claim 17.
  19.  上記運転計画作成部は、所定の周期毎に、上記システムで現時刻以降、1日が終了までに発生する電力料金が最小になるように、上記蓄電機器の上記運転計画を作成する、
    請求項10または請求項11に記載の電力管理装置。
    The operation plan creation unit creates the operation plan for the power storage device at a predetermined cycle so that a power charge generated from the current time to the end of the day is minimized in the system.
    The power management apparatus according to claim 10 or 11.
  20.  上記システムが蓄熱機器であるヒートポンプ式の給湯機を有し、
     上記給湯機の情報を取得する給湯機情報取得部を備え、
     上記運転計画作成部は、上記蓄電機器情報、上記発電電力予測情報、上記負荷電力予測情報、上記電力料金体系、上記気温予測情報と、さらに上記給湯機の情報に基づいて、上記システムで発生する電力料金が最小になるように上記給湯機の運転パターンと上記蓄電機器の上記運転計画とを作成する、
    請求項19に記載の電力管理装置。
    The above system has a heat pump type water heater that is a heat storage device,
    A water heater information acquisition unit for acquiring information of the water heater,
    The operation plan creation unit is generated in the system based on the power storage device information, the generated power prediction information, the load power prediction information, the power rate system, the temperature prediction information, and further information on the water heater. Create the operation pattern of the water heater and the operation plan of the power storage device so that the electricity charge is minimized.
    The power management apparatus according to claim 19.
PCT/JP2016/072351 2015-12-16 2016-07-29 Power management device WO2017104161A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016571368A JP6143979B1 (en) 2015-12-16 2016-07-29 Power management equipment

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015244721 2015-12-16
JP2015-244721 2015-12-16

Publications (1)

Publication Number Publication Date
WO2017104161A1 true WO2017104161A1 (en) 2017-06-22

Family

ID=59056498

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/072351 WO2017104161A1 (en) 2015-12-16 2016-07-29 Power management device

Country Status (1)

Country Link
WO (1) WO2017104161A1 (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2017122243A1 (en) * 2016-01-14 2018-06-14 株式会社村田製作所 Power supply device and control device
CN110015123A (en) * 2017-08-24 2019-07-16 本田技研工业株式会社 Management of charging and discharging device
KR101976526B1 (en) * 2018-07-31 2019-08-28 주식회사 반다이앤에스 Energy-independent cooling and heating system that does not use weekly peak electricity with renewable energy and ESS equipment
JP2020089200A (en) * 2018-11-29 2020-06-04 京セラ株式会社 Device and method for charge/discharge control
JP2020108235A (en) * 2018-12-26 2020-07-09 大和ハウス工業株式会社 Power supply system
JP2021002915A (en) * 2019-06-20 2021-01-07 株式会社デンソー controller
US11444473B2 (en) 2019-10-15 2022-09-13 Inventus Holdings, Llc Dynamic battery charging for maximum wind/solar peak clipping recapture
CN116643178A (en) * 2023-07-27 2023-08-25 深圳凌奈智控有限公司 SOC estimation method and related device of battery management system
TWI824957B (en) * 2023-03-28 2023-12-01 國立成功大學 Power management method for grid-connected microgrid
JP7418308B2 (en) 2020-09-08 2024-01-19 矢崎総業株式会社 vehicle power system

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013051809A (en) * 2011-08-31 2013-03-14 Hitachi Automotive Systems Ltd Charge control unit for electric vehicle
JP2013126350A (en) * 2011-12-16 2013-06-24 Mitsubishi Electric Corp Power management system
JP2015177606A (en) * 2014-03-13 2015-10-05 オムロン株式会社 Controller for distributed power supply system, power conditioner, distributed power supply system, and control method for distributed power supply system

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013051809A (en) * 2011-08-31 2013-03-14 Hitachi Automotive Systems Ltd Charge control unit for electric vehicle
JP2013126350A (en) * 2011-12-16 2013-06-24 Mitsubishi Electric Corp Power management system
JP2015177606A (en) * 2014-03-13 2015-10-05 オムロン株式会社 Controller for distributed power supply system, power conditioner, distributed power supply system, and control method for distributed power supply system

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
TAKASHI IKEGAMI ET AL.: "Bunsan Energy Management System ni yoru Kiki no Saiteki Unten Keikaku", OPERATIONS RESEARCH HEISEI 23 NEN THE JULY ISSUE, vol. 56, no. 7, 1 July 2011 (2011-07-01), pages 381 - 387 *

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2017122243A1 (en) * 2016-01-14 2018-06-14 株式会社村田製作所 Power supply device and control device
CN110015123B (en) * 2017-08-24 2022-06-10 本田技研工业株式会社 Charge and discharge management device
CN110015123A (en) * 2017-08-24 2019-07-16 本田技研工业株式会社 Management of charging and discharging device
KR101976526B1 (en) * 2018-07-31 2019-08-28 주식회사 반다이앤에스 Energy-independent cooling and heating system that does not use weekly peak electricity with renewable energy and ESS equipment
JP2020089200A (en) * 2018-11-29 2020-06-04 京セラ株式会社 Device and method for charge/discharge control
JP7108524B2 (en) 2018-11-29 2022-07-28 京セラ株式会社 Charge/discharge control device and charge/discharge control method
JP2020108235A (en) * 2018-12-26 2020-07-09 大和ハウス工業株式会社 Power supply system
JP7236862B2 (en) 2018-12-26 2023-03-10 大和ハウス工業株式会社 power supply system
JP2021002915A (en) * 2019-06-20 2021-01-07 株式会社デンソー controller
JP7243476B2 (en) 2019-06-20 2023-03-22 株式会社デンソー controller
US11444473B2 (en) 2019-10-15 2022-09-13 Inventus Holdings, Llc Dynamic battery charging for maximum wind/solar peak clipping recapture
JP7418308B2 (en) 2020-09-08 2024-01-19 矢崎総業株式会社 vehicle power system
TWI824957B (en) * 2023-03-28 2023-12-01 國立成功大學 Power management method for grid-connected microgrid
CN116643178A (en) * 2023-07-27 2023-08-25 深圳凌奈智控有限公司 SOC estimation method and related device of battery management system

Similar Documents

Publication Publication Date Title
WO2017104161A1 (en) Power management device
JP5959783B1 (en) Power management equipment
US11502534B2 (en) Electrical energy storage system with battery state-of-charge estimation
US9824409B2 (en) Energy management system, server, energy management method, and storage medium
CN108292860B (en) Power control device, operation plan making method and recording medium
JP6436873B2 (en) Power management equipment
US9489701B2 (en) Adaptive energy management system
JP5672186B2 (en) Power supply system
Hambridge et al. Solid State Transformer (SST) as an energy router: Economic dispatch based energy routing strategy
US20140214219A1 (en) Energy management system, energy management method, medium, and server
EP2953230A1 (en) Energy management system, energy management method, program and server
US20140172183A1 (en) Power apparatus
Yilmaz et al. A model predictive control for microgrids considering battery aging
JP2018007536A (en) Adaptive energy management scheduling system and method for hybrid energy storage system linked with new renewable energy
Hafiz et al. Energy storage management strategy based on dynamic programming and optimal sizing of PV panel-storage capacity for a residential system
JP6664479B2 (en) Control device, power management system, charge / discharge control method and program
CN115241927A (en) Operation control method, device, equipment and medium for household intelligent energy system
Henri et al. Design of a novel mode-based energy storage controller for residential PV systems
WO2016166836A1 (en) Equipment management apparatus, equipment management system, equipment management method, and program
JP6800592B2 (en) Controls, control methods and programs
JP6985090B2 (en) Charge / discharge control device
JP6143979B1 (en) Power management equipment
JP6705652B2 (en) Battery control method
JP2016152703A (en) Power management system, power management method and program
Dang et al. Energy optimization in an eco-district with electric vehicles smart charging

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2016571368

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16875148

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16875148

Country of ref document: EP

Kind code of ref document: A1