WO2017104088A1 - Base station, base-station control method, and wireless communication system - Google Patents

Base station, base-station control method, and wireless communication system Download PDF

Info

Publication number
WO2017104088A1
WO2017104088A1 PCT/JP2015/085591 JP2015085591W WO2017104088A1 WO 2017104088 A1 WO2017104088 A1 WO 2017104088A1 JP 2015085591 W JP2015085591 W JP 2015085591W WO 2017104088 A1 WO2017104088 A1 WO 2017104088A1
Authority
WO
WIPO (PCT)
Prior art keywords
terminal
subframe
transmission power
change
unit
Prior art date
Application number
PCT/JP2015/085591
Other languages
French (fr)
Japanese (ja)
Inventor
裕明 渡辺
義博 河▲崎▼
Original Assignee
富士通株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士通株式会社 filed Critical 富士通株式会社
Priority to PCT/JP2015/085591 priority Critical patent/WO2017104088A1/en
Priority to JP2017556310A priority patent/JP6673365B2/en
Publication of WO2017104088A1 publication Critical patent/WO2017104088A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/38TPC being performed in particular situations
    • H04W52/50TPC being performed in particular situations at the moment of starting communication in a multiple access environment
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation

Definitions

  • the present invention relates to a base station, a base station control method, and a radio communication system.
  • a TDD Time Division Duplex which has a base station and a terminal, and the base station performs communication by switching between an uplink section for receiving an uplink signal and a downlink section for transmitting a downlink signal in a time division manner with the terminal.
  • Type wireless communication system is known.
  • the base station instructs each terminal of a UL (Up Link) / DL (Down Link) configuration for switching an uplink section and a downlink section in a time division manner for each subframe.
  • the base station instructs each terminal in the cell to have the same UL / DL configuration.
  • the traffic volume in the downlink is larger than the traffic volume in the uplink except for voice communication. Therefore, in the UL / DL configuration instructed from the base station to each terminal, the number of downlink subframes is often set to be larger than the number of uplink subframes.
  • the base station may transmit a downlink signal to a certain terminal and receive an uplink signal transmitted from another terminal at the same frequency. is there.
  • the downlink signal transmitted to the terminal wraps around the receiving unit at a high level via the antenna. For this reason, when receiving an uplink signal having the same frequency while transmitting a downlink signal, the quality of the uplink signal received from the terminal deteriorates due to the downlink signal that wraps around the reception unit in the base station.
  • a base station provided with a self-interference canceller that suppresses quality degradation of the uplink signal from the terminal by canceling the downlink signal from the signal received via the antenna.
  • a base station cell includes a terminal that transmits an uplink signal and a terminal that receives a downlink signal for each subframe.
  • the transmission of the uplink signal and the reception of the downlink signal are performed in the same subframe using the same frequency, the signal from the terminal that transmits the uplink signal is transmitted to the terminal that receives the downlink signal. Interference signal. Therefore, when a terminal in the vicinity of a terminal that receives a downlink signal transmits an uplink signal, the reception quality of the downlink signal may deteriorate, and the throughput of downlink data may decrease.
  • the disclosed technology has been made in view of the above, and an object thereof is to suppress a decrease in throughput in a downlink section when a different UL / DL configuration is assigned to each terminal.
  • a base station that performs communication by switching between an uplink section that receives an uplink signal and a downlink section that transmits a downlink signal in a time-sharing manner with each terminal includes a specifying unit, an instruction unit, And a calculation unit.
  • the identifying unit identifies the first subframe when the switching pattern for switching between the uplink and the downlink in time division is changed for each subframe for any of the terminals.
  • the first subframe is a subframe that is set to the downlink section in the switching pattern before the change and is changed to the uplink section in the switch pattern after the change.
  • the instructing unit instructs an initial value of transmission power in the first subframe to a first terminal that is a terminal whose switching pattern has been changed.
  • the calculation unit receives the downlink signal reception quality in the first subframe before the change of the switching pattern and the first subframe after the change of the switching pattern.
  • the amount of change between the reception quality of the downlink signal is calculated.
  • the instructing unit controls the transmission power instructed to the first terminal based on the amount of change after the first terminal transmits with the initial transmission power in the first subframe.
  • FIG. 1 is a diagram illustrating an example of a wireless communication system.
  • FIG. 2 is a block diagram illustrating an example of an eNB.
  • FIG. 3 is a diagram for explaining the influence of switching between UL / DL configurations.
  • FIG. 4 is a diagram illustrating an example of control of transmission power of the first UE.
  • FIG. 5 is a diagram illustrating an example of control of transmission power of the first UE.
  • FIG. 6 is a diagram illustrating an example of control of transmission power of the first UE.
  • FIG. 7 is a block diagram illustrating an example of a UE.
  • FIG. 8 is a flowchart illustrating an example of the operation of the eNB.
  • FIG. 9 is a flowchart illustrating an example of the operation of the eNB.
  • FIG. 8 is a flowchart illustrating an example of the operation of the eNB.
  • FIG. 10 is a sequence diagram illustrating an example of the operation of the wireless communication system.
  • FIG. 11 is a diagram illustrating an example of hardware of a communication device that implements an eNB.
  • FIG. 12 is a diagram illustrating an example of hardware of a communication device that implements a UE.
  • FIG. 1 is a diagram illustrating an example of a wireless communication system 10.
  • the radio communication system 10 includes an eNB (evolved Node B) 20 and a plurality of UEs (User Equipment) 30-1 to 30-n (n is an integer of 2 or more).
  • the eNB 20 performs radio communication with each of the plurality of UEs 30-1 to 30-n in the cell 11 by, for example, the TDD scheme.
  • a plurality of UEs 30-1 to 30-n are collectively referred to as UE 30 without being distinguished from each other.
  • one eNB 20 is provided in the radio communication system 10, but a plurality of eNBs 20 may be provided in the radio communication system 10.
  • the eNB 20 is an example of a base station.
  • Each UE 30 is an example of a terminal.
  • ENB20 changes UL / DL structure at any time based on the data amount of the uplink signal transmitted from UE30 to eNB20 and the data amount of the downlink signal transmitted from eNB20 to UE30 for every UE30.
  • the UL / DL configuration is information that defines a combination pattern of an uplink subframe and a downlink subframe in one frame.
  • the UL / DL configuration is an example of a switching pattern and an array pattern.
  • Each UE 30 transmits data to the eNB 20 in the uplink subframe and receives data from the eNB 20 in the downlink subframe according to the UL / DL configuration instructed from the eNB 20.
  • FIG. 2 is a block diagram illustrating an example of the eNB 20.
  • the eNB 20 includes, for example, a reception unit 21, a control unit 22, a transmission unit 23, and an antenna 24 as illustrated in FIG.
  • the antenna 24 receives the uplink signal transmitted from the UE 30 and outputs it to the reception unit 21. Moreover, the antenna 24 transmits the downlink signal output from the transmission unit 23 to the UE 30.
  • the receiving unit 21 includes a quality information extracting unit 210, a control information extracting unit 211, a demodulation / decoding unit 212, a self-interference removing unit 213, and a wireless receiving unit 214.
  • the control unit 22 includes an offset calculation unit 220, a system information management unit 221, and a wireless line control unit 222.
  • the transmission unit 23 includes a control signal generation unit 230, a pilot generation unit 231, a radio channel control information generation unit 232, an encoding / modulation unit 233, a multiple access processing unit 234, a delay unit 235, and a radio transmission unit 236.
  • Radio receiving section 214 performs processing such as down-conversion on the uplink signal output from antenna 24, and outputs the processed uplink signal to self-interference removal section 213.
  • the self-interference removal unit 213 cancels the downlink signal output from the transmission unit 23 from the uplink signal output from the wireless reception unit 214. Thereby, eNB20 can suppress the quality degradation of the uplink signal received from UE30, even if it is a case where reception of an uplink signal and transmission of a downlink signal are performed simultaneously on the same frequency.
  • the self-interference removing unit 213 outputs the uplink signal from which the downlink signal is canceled to the demodulation / decoding unit 212.
  • the demodulator / decoder 212 demodulates the uplink signal output from the self-interference canceler 213. Then, the demodulation / decoding unit 212 decodes received data from the demodulated uplink signal. Then, the demodulator / decoder 212 outputs the decoded received data to the core network. The reception data decoded by the demodulation / decoding unit 212 is also output to the quality information extraction unit 210 and the control information extraction unit 211.
  • the control information extraction unit 211 extracts control information from the reception data output from the demodulation / decoding unit 212. Then, the control information extraction unit 211 outputs the extracted control information to the system information management unit 221. Further, when the extracted control information includes a BSR (Buffer Status Report), the control information extraction unit 211 outputs the BSR to the radio channel control unit 222 together with the information of the UE 30 that is the transmission source of the BSR.
  • BSR Buffer Status Report
  • the quality information extraction unit 210 determines whether or not the reception data output from the demodulation / decoding unit 212 includes quality information indicating whether the downlink data has been successfully received or received.
  • the quality information includes ACK (ACKnowledgement) indicating successful reception of data in the downlink section or NACK (Negative ACK) indicating reception failure.
  • the quality information extraction unit 210 includes the information on the UE 30 that is the transmission source of the quality information and the data that is the target of the quality information.
  • the downstream subframe identification information is output to offset calculation section 220.
  • the system information management unit 221 manages system information for each UE 30 based on the control information output from the quality information extraction unit 210. For example, the system information management unit 221 manages the identification information of the UE 30 in an active state in the cell 11. The UE 30 in the active state is, for example, the UE 30 in RRC (Radio Resource Control) connected mode. In addition, the system information management unit 221 outputs information used to create a pilot signal to the transmission unit 23.
  • RRC Radio Resource Control
  • the radio network controller 222 manages the amount of downlink signal data transmitted from the core network side to the UE 30 for each UE 30. Then, the radio network controller 222 determines the UL / DL configuration for each UE 30 based on the data amount of the downlink signal and the BSR output from the quality information extraction unit 210. Further, the radio channel controller 222 determines the reference transmission power P def in the uplink section of the UL / DL configuration based on the physical resources allocated to the UE 30, the propagation loss between the eNB 20 and the UE 30, and the like.
  • the radio channel control unit 222 outputs the determined UL / DL configuration and reference transmission power P def information to the radio channel control information creation unit 232 together with the identification information of the UE 30 that is the allocation target of the UL / DL configuration. .
  • the radio network controller 222 changes the UL / DL configuration of another UE 30 in the cell 11 for a predetermined period when the UL / DL configuration of any UE 30 in the cell 11 is changed. Do not do.
  • the predetermined period is a period in which, for example, the UE 30 whose UL / DL configuration has been changed is controlling the transmission power offset A in the uplink section.
  • the radio network controller 222 determines whether or not there is a first subframe in the changed UL / DL configuration.
  • the first subframe is a subframe that is designated as the downlink section in the UL / DL configuration before the change and is designated as the uplink section in the UL / DL configuration after the change.
  • the subframe specified for the uplink section is an example of an uplink section subframe
  • the first subframe is an example of a specific uplink section subframe.
  • UE30 by which UL / DL structure was changed is called 1st UE30.
  • the first UE 30 is an example of a first terminal.
  • the radio network controller 222 determines that another UE 30 to which the UL / DL configuration in which the first subframe is a downlink section is assigned is the cell 11 is present or not.
  • another UE 30 to which the UL / DL configuration in which the first subframe is a downlink section is assigned is referred to as a second UE 30.
  • the second UE 30 is an example of a second terminal.
  • the radio network controller 222 When the second UE 30 is present in the cell 11, the radio network controller 222, the first subframe information, the first UE 30 identification information, the second UE 30 identification information, Information on the reference transmission power P def of UE 30 is output to offset calculation section 220. In addition, when the instruction to restore the UL / DL configuration is output from the offset calculation unit 220, the radio network controller 222 changes the UL / DL configuration of the first UE 30 to the UL / DL configuration before the change. return.
  • the wireless line control unit 222 is an example of a control unit and a specifying unit.
  • FIG. 3 is a diagram for explaining the influence of switching between UL / DL configurations.
  • 3A to 3C show the UL / DL configuration for one frame.
  • One frame includes 10 subframes # 0 to # 9.
  • 3A to 3C “D” indicates a subframe in a downstream section, “U” indicates a subframe in an upstream section, and “S” indicates a special subframe.
  • the UL / DL configuration of the first UE 30 is, for example, the UL / DL configuration illustrated in FIG. 3C
  • the UL / DL configuration of the first UE 30 is, for example, the UL / DL configuration illustrated in FIG.
  • the allocation of subframes # 6 to 9 is different.
  • the subframes # 7 to # 9 are changed from the downlink section to the uplink section.
  • the subframes # 7 to # 9 are the first subframe.
  • the subframe set in the downlink section in the UL / DL configuration of the second UE 30 is, for example, the subframe # 9 as shown in FIG.
  • the first UE 30 transmits an uplink signal to the eNB 20 in the first subframes # 7 to # 9.
  • the second UE 30 receives the downlink signal from the eNB 20 in the subframe # 9 in the first subframe # 7 to # 9. Therefore, when the UL / DL configuration is changed, the uplink signal transmitted from the first UE 30 in the subframe # 9 may newly give interference to the second UE 30.
  • the second UE 30 may fail to receive the downlink signal due to the uplink signal transmitted from the first UE 30. Thereby, the throughput of the downlink section in the 2nd UE30 may fall.
  • the eNB 20 of this embodiment controls the transmission power of the first UE 30 in the first subframe so that the transmission power is lower than the reference transmission power P def by an offset A. That is, in the changed UL / DL configuration, the transmission power applied to the signal transmitted in the first subframe and the subframe specified in the uplink section other than the first subframe are transmitted. An offset is set between the transmission power applied to the signal. Thereby, the reception failure of the downlink signal by the second UE 30 can be suppressed, and a decrease in the throughput of the downlink section can be suppressed.
  • the eNB 20 may notify the first UE 30 of information specifically indicating which subframe the offset A is applied to. .
  • an offset A application target is determined using a bitmap of length m. Can be shown.
  • the eNB 20 may transmit this bitmap to the first UE 30 together with information indicating the change contents of the UL / DL configuration.
  • eNB20 may notify the value of offset A to UE30 by including the value of offset A in the control signal used in order to give permission of signal transmission with respect to UE30.
  • eNB20 of a present Example monitors the NACK incidence rate of 2nd UE30 about the downlink signal of a 1st sub-frame, and transmission power of 1st UE30 in a 1st sub-frame based on this NACK occurrence rate To control. Specifically, the eNB 20 changes the NACK occurrence rate of the second UE 30 after the UL / DL configuration is changed with reference to the NACK occurrence rate of the second UE 30 before the UL / DL configuration is changed. The transmission power of the first UE 30 is controlled so that the amount is less than a predetermined value. Thereby, eNB20 can suppress the fall of the throughput of 2nd UE30 in a downlink area.
  • eNB20 controls the transmission power of 1st UE30 so that the transmission power of 1st UE30 may become large in the range from which the variation
  • the throughput of the up section in 1st UE30 can be improved.
  • the first UE 30 transmits an uplink signal with the reference transmission power P def for the subframes in the uplink section other than the first subframe.
  • the offset calculation unit 220 when information such as the first subframe is output from the radio channel control unit 222, the initial value A 0 of the offset A of the transmission power output by the first UE 30 in the first subframe. Is calculated.
  • the offset calculation unit 220 calculates the initial value of the transmission power P of the first UE 30 in the first subframe based on the area of the cell 11 of the eNB 20 and the number of UEs 30 in the cell 11. For example, the offset calculation unit 220 determines whether the UEs 30 in the active state are evenly distributed in the cell 11 based on the number of UEs 30 in the cell 11 and the area of the cell 11. Calculate the average distance. Then, the offset calculation unit 220 assumes that the first UE 30 and the second UE 30 are adjacent to each other at the calculated average distance, and the upstream of the first UE 30 is within a range in which the NACK occurrence rate of the second UE 30 does not deteriorate. The maximum value P max of the signal transmission power is calculated.
  • the maximum value P max is an example of the initial value of the transmission power P of the first UE 30 in the first subframe. Then, the offset calculation unit 220 calculates the difference between the reference transmission power P def calculated by the radio channel control unit 222 and the aforementioned maximum value P max as the initial value A 0 of the offset A. Then, the offset calculation unit 220 outputs the calculated initial value A 0 of the offset A to the transmission unit 23 together with the information of the first subframe and the identification information of the first UE 30.
  • the maximum value P max is, if the reference is greater than the transmission power P def equal to or reference transmission power P def, the initial value A 0 is 0 offset A.
  • the initial value A 0 of the offset A may be notified to the first UE 30 together with the UL / DL configuration information when the UL / DL configuration is changed.
  • the offset calculation unit 220 calculates the NACK occurrence rate for each subframe for each UE 30 based on the quality information output from the control information extraction unit 211.
  • the NACK occurrence rate is an example of reception quality.
  • the offset calculation unit 220 calculates the difference between the NACK occurrence rate R 1 of the second UE 30 and the NACK occurrence rate R 2 of the second UE 30. Calculated as a change amount ⁇ R.
  • the NACK occurrence rate R 1 is the NACK occurrence rate of the first subframe before the UL / DL configuration change
  • the NACK occurrence rate R 2 is the NACK occurrence of the first subframe after the UL / DL configuration change. is the rate R 2.
  • the offset calculator 220 calculates a value obtained by subtracting the NACK occurrence rate R 1 from the NACK occurrence rate R 2 as the change amount ⁇ R.
  • the offset calculation unit 220 after the UL / DL configuration is changed, for example, every several frames, calculates the NACK occurrence rate R 2 of the first sub-frame after the change of the UL / DL configurations. Then, the offset calculation unit 220 updates the change amount ⁇ R using the calculated NACK occurrence rate R 2 and the NACK occurrence rate R 1 .
  • the offset calculation unit 220 changes the offset A to a predetermined change
  • the transmission power P of the first UE 30 when the amount is increased by the amount ⁇ A 1 is calculated. If the offset A is increased change amount .DELTA.A 1 minute, the transmission power P of the first UE30 is decreased change amount .DELTA.A 1 minute.
  • the change amount ⁇ A 1 of the offset A is an example of an instruction to reduce the transmission power by the first power.
  • the offset calculating unit 220 When the calculated transmission power P is greater than the predetermined lower limit value P th , the offset calculating unit 220 outputs the calculated change amount ⁇ A 1 of the offset A to the control signal generating unit 230 together with the identification information of the first UE 30. To do.
  • the calculated change amount ⁇ A 1 of the offset A is transmitted to the first UE 30. Thereby, the transmission power of the first UE 30 in the first subframe is decreased by the change amount ⁇ A 1 , and the NACK occurrence rate of the second UE 30 in the first subframe is improved.
  • the lower limit value P th is an example of a third threshold value.
  • the offset calculation unit 220 outputs an instruction to restore the UL / DL configuration to the radio line control unit 222. And the offset calculation part 220 complete
  • the offset calculation unit 220 changes the offset A to the predetermined change amount ⁇ A 2.
  • the transmission power P of the first UE 30 when it is decreased by a certain amount is calculated. If the offset A is decreased change amount .DELTA.A 2 minutes, the transmission power P of the first UE30 increases change amount .DELTA.A 2 minutes. Note that the second threshold value R th2 is lower than the first threshold value R th1 .
  • the offset calculation unit 220 sets the difference between the current transmission power P of the first UE 30 and the reference transmission power P def as the change amount ⁇ A 2 ′. calculate. Then, the calculated change amount ⁇ A 2 ′ of the offset A is output to the control signal creation unit 230 together with the identification information of the first UE 30, and the process of controlling the offset A of the first UE 30 is ended. The calculated change amount ⁇ A 2 ′ of offset A is transmitted to the first UE 30. Thus, the transmission power of the first UE30 in the first sub-frame is increased to the reference transmission power P def.
  • the offset calculation unit 220 outputs the calculated change amount ⁇ A 2 of the offset A to the transmission unit 23 together with the identification information of the first UE 30. .
  • the calculated change amount ⁇ A 2 of the offset A is transmitted to the first UE 30.
  • the change amount ⁇ A 2 and the change amount ⁇ A 2 ′ of the offset A are an example of an instruction for increasing the transmission power by the second power.
  • the absolute value of the change amount ⁇ A 1 and the absolute value of the change amount ⁇ A 2 may be the same size or different sizes.
  • the offset calculation unit 220 does not change the offset A of the first UE 30.
  • the fact that the offset change amount is 0 may be indicated in the control signal transmitted to the first UE 30.
  • the predetermined time is, for example, a time for several frames. The value of the predetermined time may be notified to the first UE 30 together with the UL / DL configuration information when the UL / DL configuration is changed.
  • this predetermined time may be alert
  • the offset calculation unit 220 calculates the change amount ⁇ R for each second UE 30 and, for example, the largest value among the calculated change amounts ⁇ R. Is determined. Then, using the specified change amount ⁇ R, the offset calculation unit 220 determines whether the change amount ⁇ R is greater than or equal to the first threshold value R th1 and whether the change amount ⁇ R is greater than or equal to the second threshold value R th2. judge.
  • the offset calculation unit 220 is an example of an instruction unit and a calculation unit.
  • the control signal generator 230 outputs the first subframe output from the offset calculator 220, the initial value A 0 of the offset A, the change amount ⁇ A 1 , the change amount ⁇ A 2 , the change amount ⁇ A 2 ′, and the effective period of the offset value.
  • a control signal including one or a plurality of pieces of information such as the first UE 30 is created.
  • the control signal creation unit 230 outputs the created control signal to the encoding / modulation unit 233.
  • the pilot creation unit 231 creates a pilot signal based on the information output from the system information management unit 221, and outputs the created pilot signal to the encoding / modulation unit 233.
  • the radio channel control information creation unit 232 includes, together with the identification information of the UE 30, one or more of the UL / DL configuration, information indicating a subframe to which the transmission power offset is applied, information on the reference transmission power P def , and the like.
  • radio channel control information including these pieces of information and destined for the UE 30 is created.
  • Radio channel control information creation section 232 then outputs the created radio channel control information to encoding / modulation section 233.
  • the encoding / modulation unit 233 outputs the transmission data output from the core network, the control signal output from the control signal generation unit 230, the pilot signal output from the pilot generation unit 231 and the radio channel control information generation unit 232 The obtained radio channel control information is encoded.
  • the control signal output from control signal generator 230 and the radio channel control information output from radio channel control information generator 232 may be transmitted independently of each other at the same time or independently of each other at different times. It doesn't matter.
  • the encoding / modulation unit 233 modulates the encoded downlink signal and outputs the modulated downlink signal to the multiple access processing unit 234.
  • the multiple access processing unit 234 maps the downlink signal to each UE 30 to a physical resource. Then, the multiple access processing unit 234 outputs the mapped downlink signal to the delay unit 235 and the wireless transmission unit 236.
  • the delay unit 235 delays the downlink signal output from the multiple access processing unit 234 by a predetermined time and outputs the delayed signal to the self-interference removal unit 213.
  • the radio transmission unit 236 performs processing such as up-conversion on the downlink signal output from the multiple access processing unit 234, and transmits the processed downlink signal via the antenna 24.
  • FIG. 4 shows the offset A and the transmission power P of the first UE 30 when the fluctuation amount ⁇ R of the NACK occurrence rate of the second UE 30 is equal to or greater than the first threshold R th1 due to the change in the UL / DL configuration.
  • FIG. 4B shows a change in the transmission power P of the first UE 30 in the first subframe.
  • the offset calculation unit 220 at time t 0, for example, as shown in FIG. 4 (a), to calculate the initial value A 0 of the offset A.
  • Information on the initial value A 0 of the offset A is notified to the first UE 30.
  • the first UE 30 starts transmission of the uplink signal at time t 0 with power P 0 that is lower than the reference transmission power P def by the initial value A 0 , for example, as shown in FIG. 4B.
  • the offset calculation unit 220 sets the offset A as shown in FIG. Increase from the initial value A 0 by the change amount ⁇ A 1 .
  • the first UE 30 decreases the transmission power P of the uplink signal by the change amount ⁇ A 1 from the power P 0 at time t 1 , for example, as illustrated in FIG. 4B.
  • the offset calculation unit 220 increases the offset A by the change amount ⁇ A 1 , and the first UE 30 The transmission power P decreases by the change amount ⁇ A 1 .
  • the offset calculation unit 220 restores the UL / DL configuration to the original at time t 2 when the transmission power P of the first UE 30 is equal to or lower than the lower limit value P th. An instruction to that effect is output to the radio network controller 222. Thereby, the UL / DL configuration of the first UE 30 is restored. And the offset calculation part 220 complete
  • FIG. 5B shows a change in the transmission power P of the first UE 30 in the first subframe.
  • the offset calculation unit 220 at time t 0, for example, as shown in FIG. 5 (a), to calculate the initial value A 0 of the offset A, first UE30 at time t 0, for example, FIG. 5 ( As shown in b), uplink signal transmission is started at power P 0 .
  • the offset calculation unit 220 sets the offset A as shown in FIG. Decrease the change amount ⁇ A 2 from the initial value A 0 .
  • the first UE 30 increases the transmission power P of the uplink signal by the change amount ⁇ A 2 from the power P 0 at time t 1 , for example, as illustrated in FIG. 5B.
  • the offset calculation unit 220 decreases the offset A by the change amount ⁇ A 2 , and the first UE 30 Transmission power P increases by a change amount ⁇ A 2 .
  • the offset calculation unit 220 calculates the current offset A value. It is calculated as the change amount ⁇ A 2 ′ of the offset A.
  • the change amount ⁇ A 2 ′ corresponds to the difference between the current transmission power P ′ and the reference transmission power P def .
  • Information on the change amount ⁇ A 2 ′ is notified to the first UE 30.
  • the first UE30 at time t 2, the example as shown in FIG. 5 (b), the transmission power P of the uplink signal is increased change amount .DELTA.A 2 'min.
  • the transmission power P of the first UE 30 becomes the reference transmission power P def .
  • the offset calculation part 220 complete
  • the first UE30 is a reference transmission power P def, transmits an uplink signal in the first subframe.
  • P changes, for example, as shown in FIG. FIG. 6B shows a change in the transmission power P of the first UE 30 in the first subframe.
  • the offset calculation unit 220 at time t 0, for example, as shown in FIG. 6 (a), to calculate the initial value A 0 of the offset A, first UE30 at time t 0, for example, FIG. 6 ( As shown in b), uplink signal transmission is started at power P 0 .
  • the offset calculation unit 220 increases the offset A by the change amount ⁇ A 1 or changes the change amount ⁇ A 2 minutes, for example, as shown in FIG. Decrease. Accordingly, the first UE 30 decreases the transmission power P of the uplink signal by the change amount ⁇ A 1 or increases the change amount ⁇ A 2 as shown in FIG. 6B, for example. Then, at the time t 1 when the period during which the offset A is not changed continues for the predetermined time ⁇ T or more, the offset calculation unit 220 ends the process of controlling the offset A of the first UE 30. Thereafter, the first UE 30 transmits the uplink signal in the first subframe with the transmission power P at time t 1 .
  • FIG. 7 is a block diagram illustrating an example of the UE 30.
  • the UE 30 includes a reception unit 31, a control unit 32, a transmission unit 33, and an antenna 34.
  • the antenna 34 receives the downlink signal transmitted from the eNB 20 and outputs it to the reception unit 31. Further, the antenna 34 transmits the uplink signal output from the transmission unit 33 to the eNB 20.
  • the reception unit 31 includes a radio reception unit 310, a demodulation / decoding unit 311, a system information extraction unit 312, a control signal extraction unit 313, a pilot extraction unit 314, and a channel quality measurement unit 315.
  • the control unit 32 includes a terminal information control unit 320, a system information management unit 321, and a wireless line control unit 322.
  • the transmission unit 33 includes a radio transmission unit 330, an encoding / modulation unit 331, a pilot creation unit 332, a control signal creation unit 333, and a radio channel control information creation unit 334.
  • the wireless reception unit 310 performs a reception operation in accordance with control from the wireless line control unit 322.
  • Radio receiving section 310 performs processing such as down-conversion on the downlink signal output from antenna 34 in the receiving operation, and outputs the processed downlink signal to demodulation / decoding section 311.
  • the demodulation / decoding unit 311 demodulates the downlink signal output from the wireless reception unit 310. Then, the demodulation / decoding unit 311 decodes received data from the demodulated downlink signal. Then, the demodulation / decoding unit 311 outputs the decoded received data to an application processing unit (not shown) that performs processing based on the received data.
  • the reception data decoded by the demodulation / decoding unit 311 is also output to the system information extraction unit 312, the control signal extraction unit 313, and the pilot extraction unit 314.
  • the system information extraction unit 312 extracts system information from the reception data output from the demodulation / decoding unit 311. Then, the system information extraction unit 312 outputs the extracted system information to the system information management unit 321.
  • the control signal extraction unit 313 extracts radio channel control information and control signals from the received data output from the demodulation / decoding unit 311. Then, the control signal extraction unit 313 extracts information on the UL / DL configuration and the reference transmission power P def from the extracted radio channel control information and outputs the information to the radio channel control unit 322. Further, the control signal extraction unit 313 extracts the first subframe, the initial value A 0 of the offset A, the change amount ⁇ A 1 , the change amount ⁇ A 2 , and the change amount ⁇ A 2 ′ from the extracted control signal. The data is output to the wireless line control unit 322. Further, the control signal extraction unit 313 outputs information indicating whether the demodulation / decoding unit 311 has successfully decoded received data to the line quality measurement unit 315.
  • Pilot extraction section 314 extracts a pilot signal from the reception data output from demodulation / decoding section 311. Then, pilot extraction section 314 outputs the extracted pilot signal to channel quality measurement section 315.
  • the channel quality measurement unit 315 measures the quality of the radio channel based on the pilot signal output from the pilot extraction unit 314. Also, the channel quality measurement unit 315 acquires information indicating whether or not the received data has been successfully decoded from the control signal extraction unit 313, and creates ACK or NACK information for each subframe in the downlink section. Then, channel quality measuring section 315 outputs ACK or NACK information generated for each subframe to radio channel control information creating section 334.
  • the terminal information control unit 320 monitors the data amount in the transmission buffer of the UE 30 and creates a BSR indicating the data amount in the transmission buffer. Terminal information control unit 320 then outputs the created BSR to radio channel control unit 322.
  • the system information management unit 321 manages the system information output from the system information extraction unit 312. Then, system information management section 321 outputs information used for generating a pilot signal to pilot creation section 332.
  • the radio line control unit 322 When the BSR is output from the terminal information control unit 320, the radio line control unit 322 outputs the BSR information to the control signal creation unit 333. Further, based on the UL / DL configuration output from the control signal extraction unit 313, the radio line control unit 322 instructs the radio reception unit 310 to perform a reception operation in the subframe in the downlink section, and performs radio communication in the subframe in the uplink section. A transmission operation is instructed to the transmission unit 330.
  • the radio channel control unit 322 outputs the reference transmission power P def. Then, the power obtained by subtracting the initial value A 0 is calculated as the initial value P 0 of the transmission power P. Then, the wireless channel control unit 322 controls the wireless transmission unit 330 to transmit the uplink signal in the first subframe with the calculated initial value P 0 of the transmission power P.
  • the radio line control unit 322 decreases the transmission power P in the first subframe from the current transmission power P by the change amount ⁇ A 1.
  • the radio line control unit 322 changes the transmission power P in the first subframe from the current transmission power to the change amount ⁇ A.
  • the wireless transmission unit 330 is controlled to increase by 2 or the change amount ⁇ A 2 ′.
  • the wireless line control unit 322 changes the change amount ⁇ A 1 , ⁇ A 2 , or ⁇ A. The control of the transmission power P in the first subframe based on 2 ′ is terminated.
  • the radio channel control information creation unit 334 creates radio channel control information including ACK or NACK information output from the channel quality measurement unit 315. Radio channel control information creation section 334 then outputs the created radio channel control information to encoding / modulation section 331.
  • the control signal creation unit 333 creates a control signal including the BSR output from the wireless line control unit 322. Then, the control signal creation unit 333 outputs the created control signal to the encoding / modulation unit 331.
  • the pilot creation unit 332 creates a pilot signal using information output from the system information management unit 321. Then, pilot creation section 332 outputs the created pilot signal to encoding / modulation section 331.
  • the encoding / modulation unit 331 encodes transmission data output from an application processing unit (not shown) to generate an uplink signal. Also, the encoding / modulation unit 331 receives the pilot signal output from the pilot generation unit 332, the control signal output from the control signal generation unit 333, and the radio channel control information output from the radio channel control information generation unit 334. The upstream signal is generated by encoding. Then, the encoding / modulation unit 331 modulates the encoded uplink signal and outputs the modulated uplink signal to the radio transmission unit 330.
  • the wireless transmission unit 330 performs a transmission operation in accordance with control from the wireless line control unit 322.
  • the wireless transmission unit 330 performs processing such as up-conversion on the uplink signal output from the encoding / modulation unit 331 in the transmission operation. Then, the wireless transmission unit 330 transmits the processed uplink signal with the transmission power P instructed from the wireless line control unit 322 via the antenna 34.
  • ⁇ Operation of eNB 20> 8 and 9 are flowcharts illustrating an example of the operation of the eNB 20.
  • the eNB 20 starts the operation illustrated in FIG. 8 at a predetermined timing after activation, for example.
  • the offset calculation unit 220 of the eNB 20 calculates the NACK occurrence rate for each subframe for each UE 30 at a predetermined timing.
  • the radio network controller 222 determines whether to change the UL / DL configuration for each UE 30 (S100). Whether or not the radio network controller 222 changes the UL / DL configuration for each UE 30 based on, for example, the amount of downlink signal data transmitted from the core network side to the UE 30 and the BSR transmitted from the UE 30. Determine. If it is determined that the UL / DL configuration is not to be changed (S100: No), the wireless line control unit 222 executes the process shown in step S100 again.
  • the radio network controller 222 determines the UL / DL after the change based on the data amount of the downlink signal and the BSR output from the quality information extraction unit 210. Determine the DL configuration. Further, the radio network controller 222 determines the reference transmission power P def of the UE 30 that changes the UL / DL configuration.
  • the radio network controller 222 specifies the first subframe in the changed UL / DL configuration (S101). Then, the radio network controller 222 determines whether or not the second UE 30 to which the UL / DL configuration in which the first subframe is a downlink section is assigned exists in the cell 11 (S102). .
  • the radio network controller 222 When the second UE 30 does not exist (S102: No), the radio network controller 222 outputs the changed UL / DL configuration and reference transmission power P def together with the identification information of the first UE 30 to the transmitter 23. .
  • the transmission unit 23 transmits information on the UL / DL configuration and the reference transmission power P def to the first UE 30 (S106). Then, the wireless line control unit 222 executes the process shown in step S100 again.
  • the eNB 20 starts a process of controlling the offset A of the first UE 30.
  • the radio network controller 222 outputs the changed UL / DL configuration and reference transmission power P def together with the identification information of the first UE 30 to the transmitter 23.
  • the radio network controller 222 obtains information on the first subframe, identification information on the first UE 30, identification information on the second UE 30, and information on the reference transmission power P def of the first UE 30.
  • the offset calculation unit 220 stores the NACK occurrence rate R 1 of the second UE 30 before the UL / DL configuration is changed for the first subframe (S103).
  • the offset calculation unit 220 calculates an initial value A 0 of the offset A applied to the transmission power P of the uplink signal transmitted by the first UE 30 in the first subframe (S104). Then, the offset calculation unit 220 outputs the calculated initial value A 0 of the offset A to the transmission unit 23 together with the information of the first subframe and the identification information of the first UE 30.
  • the transmitter 23 transmits the changed UL / DL configuration, the first subframe, the initial value A 0 of the offset A, and the information of the reference transmission power P def to the first UE 30 (S105).
  • the offset calculation unit 220 resets and starts the timer (S107 in FIG. 9). Then, the offset calculation unit 220 calculates the NACK occurrence rate R 2 of the first subframe after the UL / DL configuration change for the second UE 30 based on the quality information output from the control information extraction unit 211. (S108). Then, the offset calculation unit 220 calculates, as the change amount ⁇ R, a value obtained by subtracting the NACK occurrence rate R 1 stored in step S103 from the NACK occurrence rate R 2 calculated in step S108 (S109).
  • the offset calculation unit 220 determines whether or not the amount of change ⁇ R is greater than or equal to the first threshold R th1 (S110). If the change amount ⁇ R is the first threshold value R th1 or more (S110: Yes), offset calculation section 220 calculates the transmission power P of the first UE30 the case of increasing the offset A change amount .DELTA.A 1 minute (S111). Increasing the offset A change amount .DELTA.A 1 minute, the transmission power P of the first UE30 is decreased change amount .DELTA.A 1 minute. The offset calculation unit 220 determines whether or not the calculated transmission power P is less than or equal to the lower limit value P th (S112).
  • the offset calculation unit 220 When the calculated transmission power P is equal to or lower than the lower limit value P th (S112: Yes), the offset calculation unit 220 outputs an instruction to restore the UL / DL configuration to the radio channel control unit 222, and the eNB 20 The process for controlling the offset A of the first UE 30 is terminated.
  • the radio network controller 222 restores the UL / DL configuration of the first UE 30 (S113). Then, the wireless line control unit 222 executes the process shown in step S100 in FIG. 8 again.
  • offset calculation section 220 a change amount .DELTA.A 1 offset A, output to the transmission section 23 together with the identification information of the first UE30 To do.
  • the transmission unit 23 transmits the change amount ⁇ A 1 of the offset A to the first UE 30 (S114).
  • the transmission power P of the first UE 30 in the first subframe decreases by the change amount ⁇ A 1 .
  • the offset calculation part 220 performs the process shown to step S107 again.
  • the offset calculation unit 220 determines whether or not the change amount ⁇ R is less than the second threshold value R th2 (S115). If the amount of change ⁇ R is less than the second threshold value R th2 (S115: Yes), offset calculation section 220 calculates the transmission power P of the first UE30 when reduced offset A change amount .DELTA.A 2 minutes (S116). Reducing the offset A change amount .DELTA.A 2 minutes, the transmission power P of the first UE30 increases change amount .DELTA.A 2 minutes. Then, the offset calculation unit 220 determines whether or not the calculated transmission power P is greater than or equal to the reference transmission power P def (S117).
  • the offset calculation unit 220 calculates the current offset A value as the offset A change amount ⁇ A 2 ′.
  • the change amount ⁇ A 2 ′ corresponds to the difference between the current transmission power P ′ and the reference transmission power P def .
  • the offset calculation unit 220 a change amount .DELTA.A 2 'of the calculated offset A, and outputs to the transmission section 23 together with the identification information of the first UE 30, and terminates the process of controlling the offset A of the first UE 30 .
  • the transmission unit 23 transmits the change amount ⁇ A 2 ′ of the offset A to the first UE 30 (S118).
  • the wireless line control unit 222 executes the process shown in step S100 in FIG. 8 again.
  • the offset calculation unit 220 transmits the change amount ⁇ A 2 of the offset A together with the identification information of the first UE 30 to the transmission unit 23. Output to.
  • the transmission unit 23 transmits the change amount ⁇ A 2 of the offset A to the first UE 30 (S119).
  • the transmission power P of the first UE 30 in the first subframe increases by the change amount ⁇ A 2 .
  • the offset calculation part 220 performs the process shown to step S107 again.
  • the offset calculation unit 220 determines whether or not the timer value is equal to or greater than a value indicating the predetermined time ⁇ T (S120). When the value of the timer is equal to or greater than the value indicating the predetermined time ⁇ T (S120: Yes), the offset calculation unit 220 ends the process of controlling the offset A of the first UE 30. Then, the wireless line control unit 222 executes the process shown in step S100 in FIG. 8 again. On the other hand, when the value of the timer is less than the value indicating the predetermined time ⁇ T (S120: No), the offset calculation unit 220 executes the process shown in step S108 again.
  • FIG. 10 is a sequence diagram illustrating an example of the operation of the wireless communication system 10.
  • the UE 30-1 is the first UE 30 and the UE 30-2 is the second UE 30.
  • the UE 30-1 transmits a BSR to the eNB 20 (S200).
  • the eNB 20 decides to change the UL / DL configuration of the UE 30-1, the information about the changed UL / DL configuration, the first subframe, the reference transmission power P def , and the initial value A 0 of the offset A is transmitted to the UE 30-1. -1 (S201).
  • the UE 30-1 resets and starts the timer (S202), and transmits a transmission request to the eNB 20 (S203).
  • the eNB 20 transmits a transmission permission to the UE 30-1 (S204).
  • the UE 30-1 starts data transmission in the uplink subframe in the UL / DL configuration after the change transmitted from the eNB 20 in step S201 (S205).
  • the UE 30-1 starts uplink signal transmission with power lower by the initial value A 0 of the offset A than the reference transmission power P def in the section of the first subframe in the UL / DL configuration after the change.
  • the eNB 20 After the UL / DL configuration of the UE 30-1 is changed, the eNB 20 receives the ACK or NACK information transmitted from the UE 30-2 (S206), and calculates the change amount ⁇ R of the NACK occurrence rate. Then, the eNB 20 calculates the change amount ⁇ A of the offset A based on the change amount ⁇ R of the NACK occurrence rate (S207).
  • the eNB 20 transmits the change amount ⁇ A 1 to the UE 30-1, and the change amount ⁇ R of the NACK occurrence rate is less than the second threshold value R th2 If there is, the change amount ⁇ A 2 is transmitted to the UE 30-1 (S208). Then, the UE 30-1 resets and starts the timer (S209). And eNB20, UE30-1, and UE30-2 perform the process after step S203 again.
  • the eNB 20 of this embodiment includes an offset calculation unit 220 and a radio channel control unit 222.
  • the radio network controller 222 is set to the downlink section in the UL / DL configuration before the change, and is changed to the uplink section in the UL / DL configuration after the change.
  • a first subframe that is a subframe is identified.
  • the offset calculation unit 220 instructs the initial value of the transmission power in the first subframe to the first UE 30 that is the UE 30 whose UL / DL configuration has been changed.
  • the offset calculation unit 220 receives the downlink signal reception quality in the first subframe before the UL / DL configuration change and the downlink in the first subframe after the UL / DL configuration change. The amount of change between the reception quality of the signal is calculated. In addition, after the first UE 30 performs transmission with the initial transmission power in the first subframe, the offset calculation unit 220 controls the transmission power instructed to the first UE 30 based on the amount of change. Thereby, when assigning a different UL / DL configuration for each UE 30, it is possible to suppress a decrease in throughput in the downlink section.
  • the offset calculation unit 220 determines that the second UE 30 has failed to receive the downlink signal before the UL / DL configuration is changed, and the second UE 30 receives the downlink signal after the UL / DL configuration is changed.
  • the difference from the rate of failure to receive is calculated as the amount of change.
  • the offset calculation unit 220 transmits an instruction to lower the transmission power by the first power to the first UE 30 when the amount of change in reception quality is equal to or greater than the first threshold. Moreover, the offset calculation part 220 transmits the instruction
  • the offset calculation unit 220 calculates the initial value of the transmission power P of the first UE 30 in the first subframe based on the area of the cell 11 of the eNB 20 and the number of UEs 30 in the cell 11. Thereby, it is possible to prevent the initial value of the transmission power P of the first UE 30 in the first subframe from becoming too large.
  • the radio channel control unit 222 is UL. / DL configuration is changed back to the previous UL / DL configuration. Thereby, it is possible to prevent the first UE 30 whose UL / DL configuration has been changed from continuing the transmission of the uplink signal with the transmission power P that is too low in the first subframe.
  • the offset calculation unit 220 determines the first UE 30 based on the amount of change in reception quality. The transmission power control is terminated. Thereby, the processing load of eNB20 can be reduced.
  • the offset calculation unit 220 when the offset calculation unit 220 has not instructed the first UE 30 for new transmission power for a predetermined time or more after instructing the transmission power to the first UE 30, the first calculation based on the amount of change in reception quality The control of the transmission power of the UE 30 is finished. Thereby, increase of the processing load of eNB20 can be suppressed.
  • FIG. 11 is a diagram illustrating an example of hardware of the communication device 200 that implements the eNB 20.
  • the communication device 200 includes a network interface circuit 201, a memory 202, a processor 203, a wireless circuit 204, and an antenna 205.
  • the radio circuit 204 performs predetermined processing such as modulation on the signal output from the processor 203, and transmits the processed signal via the antenna 205. In addition, the radio circuit 204 performs predetermined processing such as demodulation on the signal received via the antenna 205 and outputs the result to the processor 203.
  • the radio circuit 204 implements the functions of, for example, the radio reception unit 214 of the reception unit 21 and the radio transmission unit 236 of the transmission unit 23.
  • the network interface circuit 201 is an interface for connecting to the core network or another eNB 20 by wired connection.
  • the memory 202 stores programs for realizing the functions of the quality information extraction unit 210, the control information extraction unit 211, the demodulation / decoding unit 212, and the self-interference removal unit 213 of the reception unit 21.
  • the memory 202 also stores programs for realizing the functions of the offset calculation unit 220, the system information management unit 221, and the wireless line control unit 222 of the control unit 22.
  • the memory 202 has functions of a control signal creation unit 230, a pilot creation unit 231, a radio channel control information creation unit 232, an encoding / modulation unit 233, a multiple access processing unit 234, and a delay unit 235 of the transmission unit 23.
  • a program to be realized is stored.
  • the processor 203 reads out the program stored in the memory 202 from the memory 202 and executes it, whereby the quality information extraction unit 210, the control information extraction unit 211, the demodulation / decoding unit 212, and the self-interference removal unit 213 of the reception unit 21. Realize the function. Further, the processor 203 reads out the program stored in the memory 202 from the memory 202 and executes the program, thereby realizing the functions of the offset calculation unit 220, the system information management unit 221 and the wireless line control unit 222 of the control unit 22. .
  • the processor 203 reads out the program stored in the memory 202 from the memory 202 and executes it, thereby performing the functions of the control signal creation unit 230, the pilot creation unit 231 and the radio channel control information creation unit 232 of the transmission unit 23. Realize. Further, the processor 203 reads out the program stored in the memory 202 from the memory 202 and executes it, thereby realizing the functions of the encoding / modulation unit 233, the multiple access processing unit 234, and the delay unit 235 of the transmission unit 23. .
  • FIG. 12 is a diagram illustrating an example of hardware of the communication device 300 that implements the UE 30.
  • the communication apparatus 300 includes an antenna 301, a radio circuit 302, a memory 303, and a processor 304, for example, as shown in FIG.
  • the radio circuit 302 performs predetermined processing such as modulation on the signal output from the processor 304, and transmits the processed signal via the antenna 301.
  • the radio circuit 302 performs predetermined processing such as demodulation on the signal received via the antenna 301 and outputs the result to the processor 304.
  • the radio circuit 302 realizes the functions of, for example, the radio reception unit 310 of the reception unit 31 and the radio transmission unit 330 of the transmission unit 33.
  • the memory 303 stores programs for realizing the functions of the demodulation / decoding unit 311, the system information extraction unit 312, the control signal extraction unit 313, the pilot extraction unit 314, and the line quality measurement unit 315 of the reception unit 31. .
  • the memory 303 stores a program for realizing the functions of the terminal information control unit 320, the system information management unit 321 and the wireless line control unit 322 of the control unit 32. Further, the memory 303 stores programs for realizing the functions of the encoding / modulation unit 331, the pilot creation unit 332, the control signal creation unit 333, and the radio channel control information creation unit 334 of the transmission unit 33.
  • the processor 304 reads out the program stored in the memory 303 from the memory 303 and executes it, thereby realizing the functions of the demodulation / decoding unit 311, the system information extraction unit 312, and the control signal extraction unit 313 of the reception unit 31. Further, the processor 304 reads out the program stored in the memory 303 from the memory 303 and executes it, thereby realizing the functions of the pilot extraction unit 314 and the channel quality measurement unit 315. Further, the processor 304 reads out the program stored in the memory 303 from the memory 303 and executes it, thereby realizing the functions of the terminal information control unit 320, the system information management unit 321 and the wireless line control unit 322 of the control unit 32. To do.
  • the processor 304 reads out the program stored in the memory 303 from the memory 303 and executes the program, whereby the encoding / modulation unit 331, the pilot creation unit 332, the control signal creation unit 333, and the radio channel control of the transmission unit 33
  • the function of the information creation unit 334 is realized.
  • the eNB 20 of the above embodiment changes the offset A by the change amount ⁇ A 1 when the change amount ⁇ R of the NACK occurrence rate of the second UE 30 after the change of the UL / DL configuration is equal to or greater than the first threshold R th1.
  • the transmission power P of the first UE 30 is decreased by the change amount ⁇ A 1 .
  • the disclosed technology is not limited to this.
  • the eNB 20 and the first threshold value R th1 May be instructed to the first UE 30 as the change amount ⁇ A 1 of the offset A.
  • the eNB 20 can recover the reception quality of the second UE 30 more quickly.
  • the eNB 20 of the above embodiment performs UL / DL for the other UE 30 in the cell 11. Do not make configuration changes.
  • the eNB 20 controls the offset A of the transmission power P of the first UE 30 in the cell 11
  • the other cell 11 adjacent to the cell 11 also has another cell 11. You may make it not change a UL / DL structure with respect to UE30 inside.
  • the eNB 20 may instruct the other eNB 20 not to change the UL / DL configuration for a predetermined period. Thereby, eNB20 can exclude the influence of having changed UL / DL structure in the adjacent cell 11 in the change of the NACK incidence rate of 2nd UE30 after changing UL / DL structure. .

Abstract

An eNB (20) includes an offset calculation unit (220) and a wireless-line control unit (222). If an UL/DL configuration of any UE has been changed, the wireless-channel control unit (222) identifies a first subframe that is a subframe set as a downstream section in the UL/DL configuration prior to the change, and that is changed to an upstream section in the UL/DL configuration after the change. The offset calculation unit (220) provides a first UE in which the UL/DL configuration has been changed with an instruction of an initial value of transmission power in the first subframe. In addition, for a second UE, the offset calculation unit (220) calculates the amount of change in reception quality of the first subframe before and after the UL/DL configuration change. In addition, after the first UE has performed transmission in the first subframe using a transmission power corresponding to the initial value, the offset calculation unit (220), on the basis of the amount of change, controls the transmission power of which an instruction is to be provided to the first UE.

Description

基地局、基地局の制御方法、および無線通信システムBase station, base station control method, and radio communication system
 本発明は、基地局、基地局の制御方法、および無線通信システムに関する。 The present invention relates to a base station, a base station control method, and a radio communication system.
 基地局と端末とを有し、基地局が、端末との間で、上り信号を受信する上り区間と、下り信号を送信する下り区間とを時分割で切り替えて通信を行うTDD(Time Division Duplex)方式の無線通信システムが知られている。このような無線通信システムでは、基地局が、サブフレーム毎に上り区間と下り区間とを時分割で切り替えるUL(Up Link)/DL(Down Link)構成を各端末に指示する。基地局は、セル内の各端末に、同一のUL/DL構成を指示する。 A TDD (Time Division Duplex) which has a base station and a terminal, and the base station performs communication by switching between an uplink section for receiving an uplink signal and a downlink section for transmitting a downlink signal in a time division manner with the terminal. ) Type wireless communication system is known. In such a wireless communication system, the base station instructs each terminal of a UL (Up Link) / DL (Down Link) configuration for switching an uplink section and a downlink section in a time division manner for each subframe. The base station instructs each terminal in the cell to have the same UL / DL configuration.
 また、従来は、ネットワーク上の情報を取得または閲覧するために端末が使われることが多かったため、音声通信を除けば、下りリンクにおけるトラフィック量の方が上りリンクにおけるトラフィック量よりも多かった。そのため、基地局から各端末に指示されるUL/DL構成では、下りリンクのサブフレーム数が、上りリンクのサブフレーム数よりも多くなるように設定されることが多かった。 Also, conventionally, since terminals are often used to acquire or view information on the network, the traffic volume in the downlink is larger than the traffic volume in the uplink except for voice communication. Therefore, in the UL / DL configuration instructed from the base station to each terminal, the number of downlink subframes is often set to be larger than the number of uplink subframes.
 しかし、近年、SNS(Social Networking Service)等の普及により静止画像や動画像のデータを、端末を用いてアップロードするユーザが増えている。そのため、基地局のセル内に存在する複数の端末においても、上りリンクのデータ量が多い端末と、下りリンクのデータ量が多い端末とが混在する場合がある。そこで、それぞれの端末の使用状況に応じて、端末毎に異なるUL/DL構成を割り当てることが考えられる。 However, in recent years, with the spread of SNS (Social Networking Service) and the like, the number of users who upload still image and moving image data using a terminal is increasing. For this reason, even in a plurality of terminals existing in the cell of the base station, a terminal having a large uplink data amount and a terminal having a large downlink data amount may coexist. Therefore, it is conceivable to assign a different UL / DL configuration for each terminal according to the usage status of each terminal.
 しかし、端末毎に異なるUL/DL構成が割り当てられたと仮定すると、基地局は、ある端末へ下り信号を送信すると共に、同一の周波数において、他の端末から送信された上り信号を受信する場合がある。この場合、基地局では、端末へ送信した下り信号が、アンテナを介して高いレベルで受信部に回り込む。そのため、下り信号を送信しながら、同一周波数の上り信号を受信する場合、基地局では、受信部に回り込んだ下り信号により、端末から受信した上り信号の品質が劣化する。 However, assuming that a different UL / DL configuration is assigned to each terminal, the base station may transmit a downlink signal to a certain terminal and receive an uplink signal transmitted from another terminal at the same frequency. is there. In this case, in the base station, the downlink signal transmitted to the terminal wraps around the receiving unit at a high level via the antenna. For this reason, when receiving an uplink signal having the same frequency while transmitting a downlink signal, the quality of the uplink signal received from the terminal deteriorates due to the downlink signal that wraps around the reception unit in the base station.
 これを回避するために、アンテナを介して受信された信号から、下り信号をキャンセルすることにより、端末からの上り信号の品質劣化を抑制する自己干渉キャンセラが設けられた基地局が知られている。 In order to avoid this, there is known a base station provided with a self-interference canceller that suppresses quality degradation of the uplink signal from the terminal by canceling the downlink signal from the signal received via the antenna. .
米国特許第5691978号明細書US Pat. No. 5,691,978
 ところで、端末毎に異なるUL/DL構成が割り当てられたと仮定すると、基地局のセル内には、サブフレーム毎に、上り信号の送信を行う端末と、下り信号の受信を行う端末とが混在する場合がある。この場合、上り信号の送信と、下り信号の受信とが同一の周波数を用いて同一のサブフレームで行われるため、上り信号を送信する端末からの信号は、下り信号を受信する端末に対して干渉信号となる。そのため、下り信号の受信を行う端末の近傍の端末が上り信号の送信を行うと、下り信号の受信品質が劣化し、下りデータのスループットが低下する場合がある。 By the way, assuming that different UL / DL configurations are assigned to each terminal, a base station cell includes a terminal that transmits an uplink signal and a terminal that receives a downlink signal for each subframe. There is a case. In this case, since the transmission of the uplink signal and the reception of the downlink signal are performed in the same subframe using the same frequency, the signal from the terminal that transmits the uplink signal is transmitted to the terminal that receives the downlink signal. Interference signal. Therefore, when a terminal in the vicinity of a terminal that receives a downlink signal transmits an uplink signal, the reception quality of the downlink signal may deteriorate, and the throughput of downlink data may decrease.
 開示の技術は、上記に鑑みてなされたものであって、端末毎に異なるUL/DL構成が割り当てられる場合に、下り区間のスループットの低下を抑制することを目的とする。 The disclosed technology has been made in view of the above, and an object thereof is to suppress a decrease in throughput in a downlink section when a different UL / DL configuration is assigned to each terminal.
 開示の態様では、それぞれの端末との間で、上り信号を受信する上り区間と、下り信号を送信する下り区間とを時分割で切り替えて通信を行う基地局は、特定部と、指示部と、算出部とを有する。特定部は、いずれかの端末について、サブフレーム毎に上り区間と下り区間とを時分割で切り替える切替パターンが変更される場合に、第1のサブフレームを特定する。第1のサブフレームは、変更前の切替パターンにおいて下り区間に設定され、変更後の切替パターンにおいて上り区間に変更されるサブフレームである。指示部は、切替パターンが変更された端末である第1の端末に対して、第1のサブフレームにおける送信電力の初期値を指示する。算出部は、第1の端末以外の端末である第2の端末について、切替パターンの変更前の第1のサブフレームにおける下り信号の受信品質と、切替パターンの変更後の第1のサブフレームにおける下り信号の受信品質との間の変化量を算出する。また、指示部は、第1の端末が第1のサブフレームにおいて初期値の送信電力で送信を行った後に、変化量に基づいて、第1の端末に指示する送信電力を制御する。 In an aspect of the disclosure, a base station that performs communication by switching between an uplink section that receives an uplink signal and a downlink section that transmits a downlink signal in a time-sharing manner with each terminal includes a specifying unit, an instruction unit, And a calculation unit. The identifying unit identifies the first subframe when the switching pattern for switching between the uplink and the downlink in time division is changed for each subframe for any of the terminals. The first subframe is a subframe that is set to the downlink section in the switching pattern before the change and is changed to the uplink section in the switch pattern after the change. The instructing unit instructs an initial value of transmission power in the first subframe to a first terminal that is a terminal whose switching pattern has been changed. For the second terminal that is a terminal other than the first terminal, the calculation unit receives the downlink signal reception quality in the first subframe before the change of the switching pattern and the first subframe after the change of the switching pattern. The amount of change between the reception quality of the downlink signal is calculated. The instructing unit controls the transmission power instructed to the first terminal based on the amount of change after the first terminal transmits with the initial transmission power in the first subframe.
 開示の態様によれば、端末毎に異なる切替パターンが割り当てられた場合の下り区間のスループットの低下を抑制することができる。 According to the disclosed aspect, it is possible to suppress a decrease in throughput of a downlink section when a different switching pattern is assigned to each terminal.
図1は、無線通信システムの一例を示す図である。FIG. 1 is a diagram illustrating an example of a wireless communication system. 図2は、eNBの一例を示すブロック図である。FIG. 2 is a block diagram illustrating an example of an eNB. 図3は、UL/DL構成の切り替えによる影響を説明する図である。FIG. 3 is a diagram for explaining the influence of switching between UL / DL configurations. 図4は、第1のUEの送信電力の制御の一例を説明する図である。FIG. 4 is a diagram illustrating an example of control of transmission power of the first UE. 図5は、第1のUEの送信電力の制御の一例を説明する図である。FIG. 5 is a diagram illustrating an example of control of transmission power of the first UE. 図6は、第1のUEの送信電力の制御の一例を説明する図である。FIG. 6 is a diagram illustrating an example of control of transmission power of the first UE. 図7は、UEの一例を示すブロック図である。FIG. 7 is a block diagram illustrating an example of a UE. 図8は、eNBの動作の一例を示すフローチャートである。FIG. 8 is a flowchart illustrating an example of the operation of the eNB. 図9は、eNBの動作の一例を示すフローチャートである。FIG. 9 is a flowchart illustrating an example of the operation of the eNB. 図10は、無線通信システムの動作の一例を示すシーケンス図である。FIG. 10 is a sequence diagram illustrating an example of the operation of the wireless communication system. 図11は、eNBを実現する通信装置のハードウェアの一例を示す図である。FIG. 11 is a diagram illustrating an example of hardware of a communication device that implements an eNB. 図12は、UEを実現する通信装置のハードウェアの一例を示す図である。FIG. 12 is a diagram illustrating an example of hardware of a communication device that implements a UE.
 以下に、本願が開示する基地局、基地局の制御方法、および無線通信システムの実施例を図面に基づいて説明する。なお、以下に示す実施例により本願が開示する基地局、基地局の制御方法、および無線通信システムが限定されるものではない。 Hereinafter, embodiments of a base station, a base station control method, and a wireless communication system disclosed in the present application will be described with reference to the drawings. In addition, the base station which this application discloses, the control method of a base station, and a radio | wireless communications system are not limited by the Example shown below.
<無線通信システム10>
 図1は、無線通信システム10の一例を示す図である。無線通信システム10は、例えば図1に示すように、eNB(evolved Node B)20と、複数のUE(User Equipment)30-1~30-n(nは2以上の整数)とを有する。eNB20は、セル11内の複数のUE30-1~30-nのそれぞれとの間で、例えばTDD方式により無線通信を行う。なお、以下では、複数のUE30-1~30-nのそれぞれを区別することなく総称する場合にUE30と記載する。また、説明の便宜上、図1において、無線通信システム10内には1つのeNB20が設けられているが、eNB20は無線通信システム10内に複数設けられてもよい。eNB20は、基地局の一例である。また、それぞれのUE30は、端末の一例である。
<Wireless communication system 10>
FIG. 1 is a diagram illustrating an example of a wireless communication system 10. For example, as shown in FIG. 1, the radio communication system 10 includes an eNB (evolved Node B) 20 and a plurality of UEs (User Equipment) 30-1 to 30-n (n is an integer of 2 or more). The eNB 20 performs radio communication with each of the plurality of UEs 30-1 to 30-n in the cell 11 by, for example, the TDD scheme. Hereinafter, a plurality of UEs 30-1 to 30-n are collectively referred to as UE 30 without being distinguished from each other. For convenience of explanation, in FIG. 1, one eNB 20 is provided in the radio communication system 10, but a plurality of eNBs 20 may be provided in the radio communication system 10. The eNB 20 is an example of a base station. Each UE 30 is an example of a terminal.
 eNB20は、UE30毎に、UE30からeNB20へ送信される上り信号のデータ量と、eNB20からUE30へ送信される下り信号のデータ量とに基づいて、UL/DL構成を随時変更する。UL/DL構成とは、1つのフレーム内において、上り区間のサブフレームと、下り区間のサブフレームとの組み合わせのパターンを規定する情報である。UL/DL構成は、切替パターンおよび配列パターンの一例である。それぞれのUE30は、eNB20から指示されたUL/DL構成に従い、上り区間のサブフレームにおいてeNB20へデータを送信し、下り区間のサブフレームにおいてeNB20からデータを受信する。 ENB20 changes UL / DL structure at any time based on the data amount of the uplink signal transmitted from UE30 to eNB20 and the data amount of the downlink signal transmitted from eNB20 to UE30 for every UE30. The UL / DL configuration is information that defines a combination pattern of an uplink subframe and a downlink subframe in one frame. The UL / DL configuration is an example of a switching pattern and an array pattern. Each UE 30 transmits data to the eNB 20 in the uplink subframe and receives data from the eNB 20 in the downlink subframe according to the UL / DL configuration instructed from the eNB 20.
<eNB20>
 図2は、eNB20の一例を示すブロック図である。eNB20は、例えば図2に示すように、受信部21、制御部22、送信部23、およびアンテナ24を有する。アンテナ24は、UE30から送信された上り信号を受信して受信部21へ出力する。また、アンテナ24は、送信部23から出力された下り信号を、UE30へ送信する。
<ENB 20>
FIG. 2 is a block diagram illustrating an example of the eNB 20. The eNB 20 includes, for example, a reception unit 21, a control unit 22, a transmission unit 23, and an antenna 24 as illustrated in FIG. The antenna 24 receives the uplink signal transmitted from the UE 30 and outputs it to the reception unit 21. Moreover, the antenna 24 transmits the downlink signal output from the transmission unit 23 to the UE 30.
 受信部21は、品質情報抽出部210、制御情報抽出部211、復調・復号部212、自己干渉除去部213、および無線受信部214を有する。制御部22は、オフセット算出部220、システム情報管理部221、および無線回線制御部222を有する。送信部23は、制御信号作成部230、パイロット作成部231、無線回線制御情報作成部232、符号化・変調部233、多元接続処理部234、遅延部235、および無線送信部236を有する。 The receiving unit 21 includes a quality information extracting unit 210, a control information extracting unit 211, a demodulation / decoding unit 212, a self-interference removing unit 213, and a wireless receiving unit 214. The control unit 22 includes an offset calculation unit 220, a system information management unit 221, and a wireless line control unit 222. The transmission unit 23 includes a control signal generation unit 230, a pilot generation unit 231, a radio channel control information generation unit 232, an encoding / modulation unit 233, a multiple access processing unit 234, a delay unit 235, and a radio transmission unit 236.
<受信部21>
 無線受信部214は、アンテナ24から出力された上り信号に対して、ダウンコンバート等の処理を施し、処理後の上り信号を自己干渉除去部213へ出力する。
<Receiving unit 21>
Radio receiving section 214 performs processing such as down-conversion on the uplink signal output from antenna 24, and outputs the processed uplink signal to self-interference removal section 213.
 自己干渉除去部213は、無線受信部214から出力された上り信号から、送信部23から出力された下り信号をキャンセルする。これにより、eNB20は、上り信号の受信と下り信号の送信とを同一の周波数において同時に行われた場合であっても、UE30から受信した上り信号の品質劣化を抑制することができる。自己干渉除去部213は、下り信号がキャンセルされた上り信号を復調・復号部212へ出力する。 The self-interference removal unit 213 cancels the downlink signal output from the transmission unit 23 from the uplink signal output from the wireless reception unit 214. Thereby, eNB20 can suppress the quality degradation of the uplink signal received from UE30, even if it is a case where reception of an uplink signal and transmission of a downlink signal are performed simultaneously on the same frequency. The self-interference removing unit 213 outputs the uplink signal from which the downlink signal is canceled to the demodulation / decoding unit 212.
 復調・復号部212は、自己干渉除去部213から出力された上り信号を復調する。そして、復調・復号部212は、復調後の上り信号から受信データを復号する。そして、復調・復号部212は、復号された受信データを、コアネットワークへ出力する。また、復調・復号部212によって復号された受信データは、品質情報抽出部210および制御情報抽出部211へも出力される。 The demodulator / decoder 212 demodulates the uplink signal output from the self-interference canceler 213. Then, the demodulation / decoding unit 212 decodes received data from the demodulated uplink signal. Then, the demodulator / decoder 212 outputs the decoded received data to the core network. The reception data decoded by the demodulation / decoding unit 212 is also output to the quality information extraction unit 210 and the control information extraction unit 211.
 制御情報抽出部211は、復調・復号部212から出力された受信データから制御情報を抽出する。そして、制御情報抽出部211は、抽出された制御情報をシステム情報管理部221へ出力する。また、制御情報抽出部211は、抽出された制御情報にBSR(Buffer Status Report)が含まれていた場合、BSRの送信元のUE30の情報と共に、BSRを無線回線制御部222へ出力する。 The control information extraction unit 211 extracts control information from the reception data output from the demodulation / decoding unit 212. Then, the control information extraction unit 211 outputs the extracted control information to the system information management unit 221. Further, when the extracted control information includes a BSR (Buffer Status Report), the control information extraction unit 211 outputs the BSR to the radio channel control unit 222 together with the information of the UE 30 that is the transmission source of the BSR.
 品質情報抽出部210は、復調・復号部212から出力された受信データに、下り区間のデータの受信成功または受信失敗を示す品質情報が含まれているか否かを判定する。品質情報には、下り区間のデータの受信成功を示すACK(ACKnowledgement)、または、受信失敗を示すNACK(Negative ACK)が含まれる。復調・復号部212から出力された受信データに品質情報が含まれている場合、品質情報抽出部210は、品質情報の送信元のUE30の情報と、品質情報の対象のデータが含まれていた下り区間のサブフレームの識別情報とをオフセット算出部220へ出力する。 The quality information extraction unit 210 determines whether or not the reception data output from the demodulation / decoding unit 212 includes quality information indicating whether the downlink data has been successfully received or received. The quality information includes ACK (ACKnowledgement) indicating successful reception of data in the downlink section or NACK (Negative ACK) indicating reception failure. When the reception data output from the demodulation / decoding unit 212 includes quality information, the quality information extraction unit 210 includes the information on the UE 30 that is the transmission source of the quality information and the data that is the target of the quality information. The downstream subframe identification information is output to offset calculation section 220.
<制御部22>
 システム情報管理部221は、品質情報抽出部210から出力された制御情報に基づいて、UE30毎にシステム情報を管理する。システム情報管理部221は、例えば、セル11内でアクティブ状態のUE30の識別情報を管理している。アクティブ状態のUE30とは、例えば、RRC(Radio Resource Control)コネクテッドモードのUE30である。また、システム情報管理部221は、パイロット信号の作成に用いられる情報を送信部23へ出力する。
<Control unit 22>
The system information management unit 221 manages system information for each UE 30 based on the control information output from the quality information extraction unit 210. For example, the system information management unit 221 manages the identification information of the UE 30 in an active state in the cell 11. The UE 30 in the active state is, for example, the UE 30 in RRC (Radio Resource Control) connected mode. In addition, the system information management unit 221 outputs information used to create a pilot signal to the transmission unit 23.
 無線回線制御部222は、UE30毎に、コアネットワーク側からUE30へ送信される下り信号のデータ量を管理している。そして、無線回線制御部222は、下り信号のデータ量と、品質情報抽出部210から出力されたBSRとに基づいて、UE30毎に、UL/DL構成を決定する。また、無線回線制御部222は、UE30に割り当てられた物理リソース、および、eNB20とUE30との間の伝搬損失等に基づいて、UL/DL構成の上り区間における基準送信電力Pdefを決定する。そして、無線回線制御部222は、決定されたUL/DL構成および基準送信電力Pdefの情報を、UL/DL構成の割り当て対象となるUE30の識別情報と共に無線回線制御情報作成部232へ出力する。なお、本実施例において、無線回線制御部222は、セル11内のいずれかのUE30のUL/DL構成を変更した場合、所定期間、該セル11内の他のUE30のUL/DL構成の変更を行わない。所定期間とは、例えば、UL/DL構成が変更されたUE30において、上り区間における送信電力のオフセットAの制御を行っている期間である。 The radio network controller 222 manages the amount of downlink signal data transmitted from the core network side to the UE 30 for each UE 30. Then, the radio network controller 222 determines the UL / DL configuration for each UE 30 based on the data amount of the downlink signal and the BSR output from the quality information extraction unit 210. Further, the radio channel controller 222 determines the reference transmission power P def in the uplink section of the UL / DL configuration based on the physical resources allocated to the UE 30, the propagation loss between the eNB 20 and the UE 30, and the like. Then, the radio channel control unit 222 outputs the determined UL / DL configuration and reference transmission power P def information to the radio channel control information creation unit 232 together with the identification information of the UE 30 that is the allocation target of the UL / DL configuration. . In the present embodiment, the radio network controller 222 changes the UL / DL configuration of another UE 30 in the cell 11 for a predetermined period when the UL / DL configuration of any UE 30 in the cell 11 is changed. Do not do. The predetermined period is a period in which, for example, the UE 30 whose UL / DL configuration has been changed is controlling the transmission power offset A in the uplink section.
 また、無線回線制御部222は、セル11内のいずれかのUE30のUL/DL構成を変更する場合、変更後のUL/DL構成において第1のサブフレームがあるか否かを判定する。第1のサブフレームとは、変更前のUL/DL構成において下り区間に指定され、変更後のUL/DL構成において上り区間に指定されるサブフレームである。上り区間に指定されるサブフレームは、上り区間用サブフレームの一例であり、第1のサブフレームは、特定の上り区間用サブフレームの一例である。以下では、UL/DL構成が変更されたUE30を、第1のUE30と呼ぶ。第1のUE30は、第1の端末の一例である。 In addition, when the UL / DL configuration of any UE 30 in the cell 11 is changed, the radio network controller 222 determines whether or not there is a first subframe in the changed UL / DL configuration. The first subframe is a subframe that is designated as the downlink section in the UL / DL configuration before the change and is designated as the uplink section in the UL / DL configuration after the change. The subframe specified for the uplink section is an example of an uplink section subframe, and the first subframe is an example of a specific uplink section subframe. Below, UE30 by which UL / DL structure was changed is called 1st UE30. The first UE 30 is an example of a first terminal.
 変更後のUL/DL構成において第1のサブフレームがある場合、無線回線制御部222は、第1のサブフレームが下り区間となっているUL/DL構成が割り当てられている他のUE30がセル11内に存在するか否かを判定する。以下では、第1のサブフレームが下り区間となっているUL/DL構成が割り当てられている他のUE30を第2のUE30と呼ぶ。第2のUE30は、第2の端末の一例である。 When there is a first subframe in the UL / DL configuration after the change, the radio network controller 222 determines that another UE 30 to which the UL / DL configuration in which the first subframe is a downlink section is assigned is the cell 11 is present or not. Hereinafter, another UE 30 to which the UL / DL configuration in which the first subframe is a downlink section is assigned is referred to as a second UE 30. The second UE 30 is an example of a second terminal.
 第2のUE30がセル11内に存在する場合、無線回線制御部222は、第1のサブフレームの情報と、第1のUE30の識別情報と、第2のUE30の識別情報と、第1のUE30の基準送信電力Pdefの情報とをオフセット算出部220へ出力する。なお、無線回線制御部222は、オフセット算出部220からUL/DL構成を元に戻す旨の指示が出力された場合、第1のUE30のUL/DL構成を、変更前のUL/DL構成に戻す。無線回線制御部222は、制御部および特定部の一例である。 When the second UE 30 is present in the cell 11, the radio network controller 222, the first subframe information, the first UE 30 identification information, the second UE 30 identification information, Information on the reference transmission power P def of UE 30 is output to offset calculation section 220. In addition, when the instruction to restore the UL / DL configuration is output from the offset calculation unit 220, the radio network controller 222 changes the UL / DL configuration of the first UE 30 to the UL / DL configuration before the change. return. The wireless line control unit 222 is an example of a control unit and a specifying unit.
 ここで、UL/DL構成が変更された場合の影響について説明する。図3は、UL/DL構成の切り替えによる影響を説明する図である。図3(a)~(c)には、1フレーム分のUL/DL構成が示されている。1フレームには、10個のサブフレーム#0~#9が含まれる。図3(a)~(c)において、「D」は下り区間のサブフレームを示し、「U」は上り区間のサブフレームを示し、「S」はスペシャルサブフレームを示す。 Here, the effect when the UL / DL configuration is changed will be described. FIG. 3 is a diagram for explaining the influence of switching between UL / DL configurations. 3A to 3C show the UL / DL configuration for one frame. One frame includes 10 subframes # 0 to # 9. 3A to 3C, “D” indicates a subframe in a downstream section, “U” indicates a subframe in an upstream section, and “S” indicates a special subframe.
 第2のUE30のUL/DL構成が例えば図3(c)に示すUL/DL構成である場合に、第1のUE30のUL/DL構成が、例えば図3(a)に示すUL/DL構成から、例えば図3(b)に示すUL/DL構成に変更された場合を考える。図3(a)に示すUL/DL構成と、図3(b)に示すUL/DL構成とでは、#6~9のサブフレームの割り当てが異なっている。また、#7~9のサブフレームは、下り区間から上り区間に変更されている。図3の例では、#7~#9のサブフレームが第1のサブフレームとなる。第1のサブフレームの中で、第2のUE30のUL/DL構成において下り区間に設定されているサブフレームは、例えば図3(c)に示すように、#9のサブフレームである。 When the UL / DL configuration of the second UE 30 is, for example, the UL / DL configuration illustrated in FIG. 3C, the UL / DL configuration of the first UE 30 is, for example, the UL / DL configuration illustrated in FIG. For example, a case where the UL / DL configuration shown in FIG. In the UL / DL configuration shown in FIG. 3A and the UL / DL configuration shown in FIG. 3B, the allocation of subframes # 6 to 9 is different. Also, the subframes # 7 to # 9 are changed from the downlink section to the uplink section. In the example of FIG. 3, the subframes # 7 to # 9 are the first subframe. In the first subframe, the subframe set in the downlink section in the UL / DL configuration of the second UE 30 is, for example, the subframe # 9 as shown in FIG.
 第1のUE30は、例えば図3(b)に示すように、#7~#9の第1のサブフレームにおいてeNB20へ上り信号を送信する。第2のUE30は、例えば図3(c)に示すように、#7~#9の第1のサブフレームの中で、#9のサブフレームにおいてeNB20から下り信号を受信する。そのため、UL/DL構成が変更されたことにより、#9のサブフレームにおいて、第1のUE30から送信された上り信号は、第2のUE30に対して新たに干渉を与える可能性がある。第1のUE30と、第2のUE30との間の距離が短い場合には、第1のUE30から送信された上り信号により、第2のUE30は、下り信号の受信に失敗する場合がある。これにより、第2のUE30における下り区間のスループットが低下する場合がある。 For example, as shown in FIG. 3B, the first UE 30 transmits an uplink signal to the eNB 20 in the first subframes # 7 to # 9. For example, as shown in FIG. 3C, the second UE 30 receives the downlink signal from the eNB 20 in the subframe # 9 in the first subframe # 7 to # 9. Therefore, when the UL / DL configuration is changed, the uplink signal transmitted from the first UE 30 in the subframe # 9 may newly give interference to the second UE 30. When the distance between the first UE 30 and the second UE 30 is short, the second UE 30 may fail to receive the downlink signal due to the uplink signal transmitted from the first UE 30. Thereby, the throughput of the downlink section in the 2nd UE30 may fall.
 そこで、本実施例のeNB20は、第1のサブフレームにおける第1のUE30の送信電力を、基準送信電力PdefからオフセットA分低い電力となるように制御する。即ち、変更後のUL/DL構成内において、第1のサブフレームで送信される信号に適用される送信電力と、該第1のサブフレーム以外の上り区間に指定されたサブフレームで送信される信号に適用される送信電力との間には、オフセットが設定される。これにより、第2のUE30による下り信号の受信失敗を抑制することができ、下り区間のスループットの低下を抑制することができる。eNB20は、第1のUE30に適用するUL/DL構成を変更する際、オフセットAがどのサブフレームに適用されるかを具体的に示す情報を第1のUE30に対して通知してもかまわない。この際、UL/DL構成の単位がmサブフレームの場合(一つのUL/DL構成パターンがmサブフレームごとに繰り返される場合)、長さmのビットマップを用いて、オフセットAの適用対象となるサブフレームを示すことが可能である。eNB20は、UL/DL構成の変更内容を示す情報と共に、このビットマップを第1のUE30に対して送信してもよい。また、eNB20は、UE30に対して信号送信の許可を与えるために使用する制御信号の中にオフセットAの値を含めることにより、オフセットAの値をUE30に通知してもよい。 Therefore, the eNB 20 of this embodiment controls the transmission power of the first UE 30 in the first subframe so that the transmission power is lower than the reference transmission power P def by an offset A. That is, in the changed UL / DL configuration, the transmission power applied to the signal transmitted in the first subframe and the subframe specified in the uplink section other than the first subframe are transmitted. An offset is set between the transmission power applied to the signal. Thereby, the reception failure of the downlink signal by the second UE 30 can be suppressed, and a decrease in the throughput of the downlink section can be suppressed. When changing the UL / DL configuration applied to the first UE 30, the eNB 20 may notify the first UE 30 of information specifically indicating which subframe the offset A is applied to. . At this time, when the unit of UL / DL configuration is m subframes (when one UL / DL configuration pattern is repeated every m subframes), an offset A application target is determined using a bitmap of length m. Can be shown. The eNB 20 may transmit this bitmap to the first UE 30 together with information indicating the change contents of the UL / DL configuration. Moreover, eNB20 may notify the value of offset A to UE30 by including the value of offset A in the control signal used in order to give permission of signal transmission with respect to UE30.
 また、本実施例のeNB20は、第1のサブフレームの下り信号について第2のUE30のNACK発生率をモニタし、該NACK発生率に基づいて第1のサブフレームにおける第1のUE30の送信電力を制御する。具体的には、eNB20は、UL/DL構成が変更される前の第2のUE30のNACK発生率を基準として、UL/DL構成が変更された後の第2のUE30のNACK発生率の変化量が、所定値未満となるように、第1のUE30の送信電力を制御する。これにより、eNB20は、下り区間における第2のUE30のスループットの低下を抑制することができる。 Moreover, eNB20 of a present Example monitors the NACK incidence rate of 2nd UE30 about the downlink signal of a 1st sub-frame, and transmission power of 1st UE30 in a 1st sub-frame based on this NACK occurrence rate To control. Specifically, the eNB 20 changes the NACK occurrence rate of the second UE 30 after the UL / DL configuration is changed with reference to the NACK occurrence rate of the second UE 30 before the UL / DL configuration is changed. The transmission power of the first UE 30 is controlled so that the amount is less than a predetermined value. Thereby, eNB20 can suppress the fall of the throughput of 2nd UE30 in a downlink area.
 また、eNB20は、第2のUE30のNACK発生率の変化量が所定値未満となる範囲で、第1のUE30の送信電力が大きくなるように、第1のUE30の送信電力を制御する。これにより、第1のUE30における上り区間のスループットを向上させることができる。なお、第1のUE30は、例えば図3(b)に示すように、第1のサブフレーム以外の上り区間のサブフレームについては、基準送信電力Pdefで上り信号を送信する。 Moreover, eNB20 controls the transmission power of 1st UE30 so that the transmission power of 1st UE30 may become large in the range from which the variation | change_quantity of the NACK incidence rate of 2nd UE30 will be less than predetermined value. Thereby, the throughput of the up section in 1st UE30 can be improved. Note that, for example, as illustrated in FIG. 3B, the first UE 30 transmits an uplink signal with the reference transmission power P def for the subframes in the uplink section other than the first subframe.
 図2に戻って説明を続ける。オフセット算出部220は、第1のサブフレーム等の情報が無線回線制御部222から出力された場合に、第1のUE30が第1のサブフレームにおいて出力する送信電力のオフセットAの初期値A0を算出する。 Returning to FIG. 2, the description will be continued. The offset calculation unit 220, when information such as the first subframe is output from the radio channel control unit 222, the initial value A 0 of the offset A of the transmission power output by the first UE 30 in the first subframe. Is calculated.
 オフセット算出部220は、eNB20のセル11の面積と該セル11内のUE30の数とに基づいて、第1のサブフレームにおける第1のUE30の送信電力Pの初期値を算出する。例えば、オフセット算出部220は、セル11内でアクティブ状態のUE30の数と、セル11の面積とに基づいて、アクティブ状態の複数のUE30がセル11内に均等に分布する場合の隣接UE30間の平均距離を算出する。そして、オフセット算出部220は、算出された平均距離で第1のUE30と第2のUE30とが隣接すると仮定し、第2のUE30のNACK発生率が悪化しない範囲で、第1のUE30の上り信号の送信電力の最大値Pmaxを算出する。最大値Pmaxは、第1のサブフレームにおける第1のUE30の送信電力Pの初期値の一例である。そして、オフセット算出部220は、無線回線制御部222によって算出された基準送信電力Pdefと、前述の最大値Pmaxとの差分を、オフセットAの初期値A0として算出する。そして、オフセット算出部220は、算出されたオフセットAの初期値A0を、第1のサブフレームの情報および第1のUE30の識別情報と共に送信部23へ出力する。なお、最大値Pmaxが、基準送信電力Pdefと等しいか基準送信電力Pdefより大きい場合、オフセットAの初期値A0は0となる。オフセットAの初期値A0は、UL/DL構成を変更する際に、UL/DL構成の情報と共に第1のUE30に対して通知されてもよい。 The offset calculation unit 220 calculates the initial value of the transmission power P of the first UE 30 in the first subframe based on the area of the cell 11 of the eNB 20 and the number of UEs 30 in the cell 11. For example, the offset calculation unit 220 determines whether the UEs 30 in the active state are evenly distributed in the cell 11 based on the number of UEs 30 in the cell 11 and the area of the cell 11. Calculate the average distance. Then, the offset calculation unit 220 assumes that the first UE 30 and the second UE 30 are adjacent to each other at the calculated average distance, and the upstream of the first UE 30 is within a range in which the NACK occurrence rate of the second UE 30 does not deteriorate. The maximum value P max of the signal transmission power is calculated. The maximum value P max is an example of the initial value of the transmission power P of the first UE 30 in the first subframe. Then, the offset calculation unit 220 calculates the difference between the reference transmission power P def calculated by the radio channel control unit 222 and the aforementioned maximum value P max as the initial value A 0 of the offset A. Then, the offset calculation unit 220 outputs the calculated initial value A 0 of the offset A to the transmission unit 23 together with the information of the first subframe and the identification information of the first UE 30. The maximum value P max is, if the reference is greater than the transmission power P def equal to or reference transmission power P def, the initial value A 0 is 0 offset A. The initial value A 0 of the offset A may be notified to the first UE 30 together with the UL / DL configuration information when the UL / DL configuration is changed.
 また、オフセット算出部220は、制御情報抽出部211から出力された品質情報に基づいて、それぞれのUE30について、サブフレーム毎にNACK発生率を算出する。NACK発生率は、受信品質の一例である。また、オフセット算出部220は、いずれかのUE30のUL/DL構成が変更された場合、第2のUE30のNACK発生率R1と、第2のUE30のNACK発生率R2との差を、変化量ΔRとして算出する。NACK発生率R1は、UL/DL構成の変更前の第1のサブフレームのNACK発生率であり、NACK発生率R2は、UL/DL構成の変更後の第1のサブフレームのNACK発生率R2である。例えば、オフセット算出部220は、NACK発生率R2からNACK発生率R1を引いた値を、変化量ΔRとして算出する。 Also, the offset calculation unit 220 calculates the NACK occurrence rate for each subframe for each UE 30 based on the quality information output from the control information extraction unit 211. The NACK occurrence rate is an example of reception quality. Further, when the UL / DL configuration of any UE 30 is changed, the offset calculation unit 220 calculates the difference between the NACK occurrence rate R 1 of the second UE 30 and the NACK occurrence rate R 2 of the second UE 30. Calculated as a change amount ΔR. The NACK occurrence rate R 1 is the NACK occurrence rate of the first subframe before the UL / DL configuration change, and the NACK occurrence rate R 2 is the NACK occurrence of the first subframe after the UL / DL configuration change. is the rate R 2. For example, the offset calculator 220 calculates a value obtained by subtracting the NACK occurrence rate R 1 from the NACK occurrence rate R 2 as the change amount ΔR.
 なお、オフセット算出部220は、UL/DL構成が変更された後に、例えば数フレーム毎に、UL/DL構成の変更後の第1のサブフレームのNACK発生率R2を算出する。そして、オフセット算出部220は、算出されたNACK発生率R2と、NACK発生率R1とを用いて、変化量ΔRを更新する。 The offset calculation unit 220, after the UL / DL configuration is changed, for example, every several frames, calculates the NACK occurrence rate R 2 of the first sub-frame after the change of the UL / DL configurations. Then, the offset calculation unit 220 updates the change amount ΔR using the calculated NACK occurrence rate R 2 and the NACK occurrence rate R 1 .
 変化量ΔRが第1の閾値Rth1以上である場合、即ち、UL/DL構成の変更により第2のUE30のNACK発生率が大きく悪化した場合、オフセット算出部220は、オフセットAを所定の変更量ΔA1分増加させた場合の第1のUE30の送信電力Pを算出する。オフセットAが変更量ΔA1分増加した場合、第1のUE30の送信電力Pは、変更量ΔA1分減少する。オフセットAの変更量ΔA1は、送信電力を第1の電力分下げる指示の一例である。 When the change amount ΔR is greater than or equal to the first threshold value R th1, that is, when the NACK occurrence rate of the second UE 30 is greatly deteriorated due to the UL / DL configuration change, the offset calculation unit 220 changes the offset A to a predetermined change The transmission power P of the first UE 30 when the amount is increased by the amount ΔA 1 is calculated. If the offset A is increased change amount .DELTA.A 1 minute, the transmission power P of the first UE30 is decreased change amount .DELTA.A 1 minute. The change amount ΔA 1 of the offset A is an example of an instruction to reduce the transmission power by the first power.
 算出された送信電力Pが所定の下限値Pthより大きい場合、オフセット算出部220は、算出されたオフセットAの変更量ΔA1を、第1のUE30の識別情報と共に制御信号作成部230へ出力する。算出されたオフセットAの変更量ΔA1は、第1のUE30へ送信される。これにより、第1のサブフレームにおける第1のUE30の送信電力が変更量ΔA1分減少し、第1のサブフレームにおける第2のUE30のNACK発生率が改善される。下限値Pthは、第3の閾値の一例である。 When the calculated transmission power P is greater than the predetermined lower limit value P th , the offset calculating unit 220 outputs the calculated change amount ΔA 1 of the offset A to the control signal generating unit 230 together with the identification information of the first UE 30. To do. The calculated change amount ΔA 1 of the offset A is transmitted to the first UE 30. Thereby, the transmission power of the first UE 30 in the first subframe is decreased by the change amount ΔA 1 , and the NACK occurrence rate of the second UE 30 in the first subframe is improved. The lower limit value P th is an example of a third threshold value.
 一方、算出された送信電力Pが下限値Pth以下である場合、オフセット算出部220は、UL/DL構成を元に戻す旨の指示を無線回線制御部222へ出力する。そして、オフセット算出部220は、第1のUE30のオフセットAを制御する処理を終了する。 On the other hand, when the calculated transmission power P is equal to or lower than the lower limit value P th , the offset calculation unit 220 outputs an instruction to restore the UL / DL configuration to the radio line control unit 222. And the offset calculation part 220 complete | finishes the process which controls the offset A of 1st UE30.
 また、変化量ΔRが第2の閾値Rth2未満である場合、即ち、第2のUE30のNACK発生率の悪化の幅が小さい場合、オフセット算出部220は、オフセットAを所定の変更量ΔA2分減少させた場合の第1のUE30の送信電力Pを算出する。オフセットAが変更量ΔA2分減少した場合、第1のUE30の送信電力Pは、変更量ΔA2分増加する。なお、第2の閾値Rth2は、第1の閾値Rth1より低い値である。 When the change amount ΔR is less than the second threshold value R th2, that is, when the width of the deterioration of the NACK occurrence rate of the second UE 30 is small, the offset calculation unit 220 changes the offset A to the predetermined change amount ΔA 2. The transmission power P of the first UE 30 when it is decreased by a certain amount is calculated. If the offset A is decreased change amount .DELTA.A 2 minutes, the transmission power P of the first UE30 increases change amount .DELTA.A 2 minutes. Note that the second threshold value R th2 is lower than the first threshold value R th1 .
 算出された送信電力Pが基準送信電力Pdef以上である場合、オフセット算出部220は、第1のUE30の現在の送信電力Pと、基準送信電力Pdefとの差分を変更量ΔA2’として算出する。そして、算出されたオフセットAの変更量ΔA2’を、第1のUE30の識別情報と共に制御信号作成部230へ出力し、第1のUE30のオフセットAを制御する処理を終了する。算出されたオフセットAの変更量ΔA2’は、第1のUE30へ送信される。これにより、第1のサブフレームにおける第1のUE30の送信電力が基準送信電力Pdefまで増加する。 When the calculated transmission power P is greater than or equal to the reference transmission power P def , the offset calculation unit 220 sets the difference between the current transmission power P of the first UE 30 and the reference transmission power P def as the change amount ΔA 2 ′. calculate. Then, the calculated change amount ΔA 2 ′ of the offset A is output to the control signal creation unit 230 together with the identification information of the first UE 30, and the process of controlling the offset A of the first UE 30 is ended. The calculated change amount ΔA 2 ′ of offset A is transmitted to the first UE 30. Thus, the transmission power of the first UE30 in the first sub-frame is increased to the reference transmission power P def.
 一方、算出された送信電力Pが基準送信電力Pdefより低い場合、オフセット算出部220は、算出されたオフセットAの変更量ΔA2を、第1のUE30の識別情報と共に送信部23へ出力する。算出されたオフセットAの変更量ΔA2は、第1のUE30へ送信される。これにより、第1のサブフレームにおける第1のUE30の送信電力Pが変更量ΔA2分増加し、第1のサブフレームにおける第1のUE30の上り信号のスループットが向上する。オフセットAの変更量ΔA2および変更量ΔA2’は、送信電力を第2の電力分上げる指示の一例である。なお、変更量ΔA1の絶対値と、変更量ΔA2の絶対値とは、同じ大きさであってもよく、異なる大きさであってもよい。 On the other hand, when the calculated transmission power P is lower than the reference transmission power P def , the offset calculation unit 220 outputs the calculated change amount ΔA 2 of the offset A to the transmission unit 23 together with the identification information of the first UE 30. . The calculated change amount ΔA 2 of the offset A is transmitted to the first UE 30. Thereby, the transmission power P of the first UE 30 in the first subframe is increased by the change amount ΔA 2 , and the throughput of the uplink signal of the first UE 30 in the first subframe is improved. The change amount ΔA 2 and the change amount ΔA 2 ′ of the offset A are an example of an instruction for increasing the transmission power by the second power. Note that the absolute value of the change amount ΔA 1 and the absolute value of the change amount ΔA 2 may be the same size or different sizes.
 また、変化量ΔRが、第1の閾値Rth1未満であり、且つ、第2の閾値Rth2以上である場合、オフセット算出部220は、第1のUE30のオフセットAを変更しない。この場合、オフセット変更量が0であるということが、第1のUE30に対して送信される制御信号の中で示されてもよい。そして、第1のUE30のオフセットAを変更しない期間が所定時間以上継続した場合、オフセット算出部220は、第1のUE30のオフセットAを制御する処理を終了する。所定時間とは、例えば数フレーム分の時間である。この所定時間の値は、UL/DL構成を変更する際に、UL/DL構成の情報と共に第1のUE30に対して通知されてもよい。あるいは、この所定時間の値は、eNB20によって共通情報として各eNB20に報知され、eNB20と通信する全てのUE30の間で共通の値として用いられてもよい。また、eNB20から通知されたオフセットAの値がUE30の送信電力に適用されてから所定時間が経過した後に、UE30において、該オフセットAの値が無効、あるいは、該オフセットAの値が零になってもよい。これにより、eNB20から通知されたオフセットAの値がUE30の送信電力に適用されてから所定時間が経過した後に、UE30の送信電力が通常の送信電力に戻る。 Further, when the change amount ΔR is less than the first threshold value R th1 and equal to or more than the second threshold value R th2 , the offset calculation unit 220 does not change the offset A of the first UE 30. In this case, the fact that the offset change amount is 0 may be indicated in the control signal transmitted to the first UE 30. And when the period which does not change the offset A of the 1st UE30 continues more than predetermined time, the offset calculation part 220 complete | finishes the process which controls the offset A of the 1st UE30. The predetermined time is, for example, a time for several frames. The value of the predetermined time may be notified to the first UE 30 together with the UL / DL configuration information when the UL / DL configuration is changed. Or the value of this predetermined time may be alert | reported to each eNB20 as common information by eNB20, and may be used as a value common among all UE30 which communicates with eNB20. Further, after a predetermined time has elapsed since the offset A value notified from the eNB 20 is applied to the transmission power of the UE 30, the offset A value becomes invalid or becomes zero at the UE 30. May be. Thereby, after the predetermined time has elapsed since the value of the offset A notified from the eNB 20 is applied to the transmission power of the UE 30, the transmission power of the UE 30 returns to the normal transmission power.
 なお、第2のUE30がセル11内に複数存在する場合、オフセット算出部220は、それぞれの第2のUE30について変化量ΔRを算出し、算出された変化量ΔRの中で、例えば最も大きい値の変化量ΔRを特定する。そして、オフセット算出部220は、特定された変化量ΔRを用いて、変化量ΔRが第1の閾値Rth1以上か否か、および、変化量ΔRが第2の閾値Rth2以上か否かを判定する。オフセット算出部220は、指示部および算出部の一例である。 Note that, when there are a plurality of second UEs 30 in the cell 11, the offset calculation unit 220 calculates the change amount ΔR for each second UE 30 and, for example, the largest value among the calculated change amounts ΔR. Is determined. Then, using the specified change amount ΔR, the offset calculation unit 220 determines whether the change amount ΔR is greater than or equal to the first threshold value R th1 and whether the change amount ΔR is greater than or equal to the second threshold value R th2. judge. The offset calculation unit 220 is an example of an instruction unit and a calculation unit.
<送信部23>
 制御信号作成部230は、オフセット算出部220から出力された第1のサブフレーム、オフセットAの初期値A0、変更量ΔA1、変更量ΔA2、変更量ΔA2’、オフセット値の有効期間等の情報の中の一つまたは複数を含み、第1のUE30を宛先とする制御信号を作成する。そして、制御信号作成部230は、作成された制御信号を符号化・変調部233へ出力する。
<Transmitter 23>
The control signal generator 230 outputs the first subframe output from the offset calculator 220, the initial value A 0 of the offset A, the change amount ΔA 1 , the change amount ΔA 2 , the change amount ΔA 2 ′, and the effective period of the offset value. A control signal including one or a plurality of pieces of information such as the first UE 30 is created. Then, the control signal creation unit 230 outputs the created control signal to the encoding / modulation unit 233.
 パイロット作成部231は、システム情報管理部221から出力された情報に基づいてパイロット信号を作成し、作成したパイロット信号を符号化・変調部233へ出力する。 The pilot creation unit 231 creates a pilot signal based on the information output from the system information management unit 221, and outputs the created pilot signal to the encoding / modulation unit 233.
 無線回線制御情報作成部232は、UE30の識別情報と共に、UL/DL構成、送信電力のオフセットが適用されるサブフレームを示す情報、基準送信電力Pdefの情報等の中の一つまたは複数が無線回線制御部222から出力された場合、これらの情報を含み、該UE30を宛先とする無線回線制御情報を作成する。そして、無線回線制御情報作成部232は、作成された無線回線制御情報を符号化・変調部233へ出力する。 The radio channel control information creation unit 232 includes, together with the identification information of the UE 30, one or more of the UL / DL configuration, information indicating a subframe to which the transmission power offset is applied, information on the reference transmission power P def , and the like. When output from the radio channel controller 222, radio channel control information including these pieces of information and destined for the UE 30 is created. Radio channel control information creation section 232 then outputs the created radio channel control information to encoding / modulation section 233.
 符号化・変調部233は、コアネットワークから出力された送信データ、制御信号作成部230から出力された制御信号、パイロット作成部231から出力されたパイロット信号、および無線回線制御情報作成部232から出力された無線回線制御情報を符号化する。制御信号作成部230から出力された制御信号と無線回線制御情報作成部232から出力された無線回線制御情報とは、互いに独立して同時に、または、互いに独立して別々の時間に送信されてもかまわない。そして、符号化・変調部233は、符号化された下り信号を変調し、変調後の下り信号を多元接続処理部234へ出力する。 The encoding / modulation unit 233 outputs the transmission data output from the core network, the control signal output from the control signal generation unit 230, the pilot signal output from the pilot generation unit 231 and the radio channel control information generation unit 232 The obtained radio channel control information is encoded. The control signal output from control signal generator 230 and the radio channel control information output from radio channel control information generator 232 may be transmitted independently of each other at the same time or independently of each other at different times. It doesn't matter. Then, the encoding / modulation unit 233 modulates the encoded downlink signal and outputs the modulated downlink signal to the multiple access processing unit 234.
 多元接続処理部234は、各UE30への下り信号を、物理リソースにマッピングする。そして、多元接続処理部234は、マッピング後の下り信号を、遅延部235および無線送信部236へ出力する。遅延部235は、多元接続処理部234から出力された下り信号を、所定時間遅延させて自己干渉除去部213へ出力する。 The multiple access processing unit 234 maps the downlink signal to each UE 30 to a physical resource. Then, the multiple access processing unit 234 outputs the mapped downlink signal to the delay unit 235 and the wireless transmission unit 236. The delay unit 235 delays the downlink signal output from the multiple access processing unit 234 by a predetermined time and outputs the delayed signal to the self-interference removal unit 213.
 無線送信部236は、多元接続処理部234から出力された下り信号に対して、アップコンバート等の処理を施し、処理後の下り信号をアンテナ24を介して送信する。 The radio transmission unit 236 performs processing such as up-conversion on the downlink signal output from the multiple access processing unit 234, and transmits the processed downlink signal via the antenna 24.
<第1のUE30の送信電力の制御>
 図4から図6は、第1のUE30の送信電力の制御の一例を説明する図である。UL/DL構成の変更により第2のUE30のNACK発生率の変動量ΔRが第1の閾値Rth1以上となった場合のオフセットAおよび第1のUE30の送信電力Pは、例えば図4に示すように変化する。なお、図4(b)には、第1のサブフレームにおける第1のUE30の送信電力Pの変化が示されている。
<Control of transmission power of first UE 30>
4 to 6 are diagrams illustrating an example of transmission power control of the first UE 30. FIG. For example, FIG. 4 shows the offset A and the transmission power P of the first UE 30 when the fluctuation amount ΔR of the NACK occurrence rate of the second UE 30 is equal to or greater than the first threshold R th1 due to the change in the UL / DL configuration. To change. FIG. 4B shows a change in the transmission power P of the first UE 30 in the first subframe.
 まず、オフセット算出部220は、時刻t0において、例えば図4(a)に示すように、オフセットAの初期値A0を算出する。オフセットAの初期値A0の情報は、第1のUE30に通知される。これにより、第1のUE30は、時刻t0において、例えば図4(b)に示すように、基準送信電力Pdefより初期値A0分低い電力P0で上り信号の送信を開始する。 First, the offset calculation unit 220 at time t 0, for example, as shown in FIG. 4 (a), to calculate the initial value A 0 of the offset A. Information on the initial value A 0 of the offset A is notified to the first UE 30. As a result, the first UE 30 starts transmission of the uplink signal at time t 0 with power P 0 that is lower than the reference transmission power P def by the initial value A 0 , for example, as shown in FIG. 4B.
 その後、第2のUE30のNACK発生率の変化量ΔRが第1の閾値Rth1以上となった時刻t1において、オフセット算出部220は、例えば図4(a)に示すように、オフセットAを初期値A0から変更量ΔA1分増加させる。これにより、第1のUE30は、時刻t1において、例えば図4(b)に示すように、上り信号の送信電力Pを、電力P0より変更量ΔA1分減少させる。このように、第2のUE30のNACK発生率の変化量ΔRが第1の閾値Rth1以上となるたびに、オフセット算出部220は、オフセットAを変更量ΔA1ずつ増加させ、第1のUE30の送信電力Pは、変更量ΔA1ずつ減少する。 Thereafter, at time t 1 when the amount of change ΔR of the NACK occurrence rate of the second UE 30 becomes equal to or greater than the first threshold R th1 , the offset calculation unit 220 sets the offset A as shown in FIG. Increase from the initial value A 0 by the change amount ΔA 1 . Thereby, the first UE 30 decreases the transmission power P of the uplink signal by the change amount ΔA 1 from the power P 0 at time t 1 , for example, as illustrated in FIG. 4B. In this way, every time the change amount ΔR of the NACK occurrence rate of the second UE 30 becomes equal to or greater than the first threshold R th1 , the offset calculation unit 220 increases the offset A by the change amount ΔA 1 , and the first UE 30 The transmission power P decreases by the change amount ΔA 1 .
 そして、オフセットAを変更量ΔA1分増加させることにより、第1のUE30の送信電力Pが下限値Pth以下となる時刻t2において、オフセット算出部220は、UL/DL構成を元に戻す旨の指示を無線回線制御部222へ出力する。これにより、第1のUE30のUL/DL構成が元に戻る。そして、オフセット算出部220は、第1のUE30のオフセットAを制御する処理を終了する。 Then, by increasing the offset A by the change amount ΔA 1 , the offset calculation unit 220 restores the UL / DL configuration to the original at time t 2 when the transmission power P of the first UE 30 is equal to or lower than the lower limit value P th. An instruction to that effect is output to the radio network controller 222. Thereby, the UL / DL configuration of the first UE 30 is restored. And the offset calculation part 220 complete | finishes the process which controls the offset A of 1st UE30.
 UL/DL構成の変更により第2のUE30のNACK発生率の変動量ΔRが第2の閾値Rth2未満となった場合のオフセットAおよび第1のUE30の送信電力Pは、例えば図5に示すように変化する。図5(b)には、第1のサブフレームにおける第1のUE30の送信電力Pの変化が示されている。 The offset A and the transmission power P of the first UE 30 when the fluctuation amount ΔR of the NACK occurrence rate of the second UE 30 becomes less than the second threshold R th2 due to the UL / DL configuration change are shown in FIG. To change. FIG. 5B shows a change in the transmission power P of the first UE 30 in the first subframe.
 まず、オフセット算出部220は、時刻t0において、例えば図5(a)に示すように、オフセットAの初期値A0を算出し、第1のUE30は、時刻t0において、例えば図5(b)に示すように、電力P0で上り信号の送信を開始する。 First, the offset calculation unit 220 at time t 0, for example, as shown in FIG. 5 (a), to calculate the initial value A 0 of the offset A, first UE30 at time t 0, for example, FIG. 5 ( As shown in b), uplink signal transmission is started at power P 0 .
 その後、第2のUE30のNACK発生率の変化量ΔRが第2の閾値Rth2未満となった時刻t1において、オフセット算出部220は、例えば図5(a)に示すように、オフセットAを初期値A0から変更量ΔA2分減少させる。これにより、第1のUE30は、時刻t1において、例えば図5(b)に示すように、上り信号の送信電力Pを、電力P0より変更量ΔA2分増加させる。このように、第2のUE30のNACK発生率の変化量ΔRが第2の閾値Rth2未満となるたびに、オフセット算出部220は、オフセットAを変更量ΔA2ずつ減少させ、第1のUE30の送信電力Pは、変更量ΔA2ずつ増加する。 Thereafter, at time t 1 when the change amount ΔR of the NACK occurrence rate of the second UE 30 becomes less than the second threshold value R th2 , the offset calculation unit 220 sets the offset A as shown in FIG. Decrease the change amount ΔA 2 from the initial value A 0 . As a result, the first UE 30 increases the transmission power P of the uplink signal by the change amount ΔA 2 from the power P 0 at time t 1 , for example, as illustrated in FIG. 5B. In this way, every time the change amount ΔR of the NACK occurrence rate of the second UE 30 becomes less than the second threshold R th2 , the offset calculation unit 220 decreases the offset A by the change amount ΔA 2 , and the first UE 30 Transmission power P increases by a change amount ΔA 2 .
 そして、オフセットAを変更量ΔA2分減少させることにより、第1のUE30の送信電力Pが基準送信電力Pdef以上となる時刻t2において、オフセット算出部220は、現在のオフセットAの値をオフセットAの変更量ΔA2’として算出する。変更量ΔA2’は、現在の送信電力P’と、基準送信電力Pdefとの差分に相当する。変更量ΔA2’の情報は、第1のUE30に通知される。これにより、第1のUE30は、時刻t2において、例えば図5(b)に示すように、上り信号の送信電力Pを、変更量ΔA2’分増加させる。これにより、第1のUE30の送信電力Pが基準送信電力Pdefとなる。そして、オフセット算出部220は、第1のUE30のオフセットAを制御する処理を終了する。これ以降、第1のUE30は、基準送信電力Pdefで、第1のサブフレームにおける上り信号を送信する。 Then, by reducing the offset A by the change amount ΔA 2, at time t 2 when the transmission power P of the first UE 30 becomes equal to or higher than the reference transmission power P def , the offset calculation unit 220 calculates the current offset A value. It is calculated as the change amount ΔA 2 ′ of the offset A. The change amount ΔA 2 ′ corresponds to the difference between the current transmission power P ′ and the reference transmission power P def . Information on the change amount ΔA 2 ′ is notified to the first UE 30. Thus, the first UE30, at time t 2, the example as shown in FIG. 5 (b), the transmission power P of the uplink signal is increased change amount .DELTA.A 2 'min. Thereby, the transmission power P of the first UE 30 becomes the reference transmission power P def . And the offset calculation part 220 complete | finishes the process which controls the offset A of 1st UE30. Thereafter, the first UE30 is a reference transmission power P def, transmits an uplink signal in the first subframe.
 UL/DL構成の変更により第2のUE30のNACK発生率の変動量ΔRが第1の閾値Rth1と第2の閾値Rth2の間となった場合のオフセットAおよび第1のUE30の送信電力Pは、例えば図6に示すように変化する。図6(b)には、第1のサブフレームにおける第1のUE30の送信電力Pの変化が示されている。 The offset A and the transmission power of the first UE 30 when the fluctuation amount ΔR of the NACK occurrence rate of the second UE 30 becomes between the first threshold R th1 and the second threshold R th2 due to the change of the UL / DL configuration. P changes, for example, as shown in FIG. FIG. 6B shows a change in the transmission power P of the first UE 30 in the first subframe.
 まず、オフセット算出部220は、時刻t0において、例えば図6(a)に示すように、オフセットAの初期値A0を算出し、第1のUE30は、時刻t0において、例えば図6(b)に示すように、電力P0で上り信号の送信を開始する。 First, the offset calculation unit 220 at time t 0, for example, as shown in FIG. 6 (a), to calculate the initial value A 0 of the offset A, first UE30 at time t 0, for example, FIG. 6 ( As shown in b), uplink signal transmission is started at power P 0 .
 その後、第2のUE30のNACK発生率の変化量ΔRに応じて、オフセット算出部220は、例えば図6(a)に示すように、オフセットAを変更量ΔA1分増加または変更量ΔA2分減少させる。これにより、第1のUE30は、例えば図6(b)に示すように、上り信号の送信電力Pを、変更量ΔA1分減少または変更量ΔA2分増加させる。そして、オフセットAを変更しない期間が所定時間ΔT以上継続した時刻t1において、オフセット算出部220は、第1のUE30のオフセットAを制御する処理を終了する。これ以降、第1のUE30は、時刻t1における送信電力Pで、第1のサブフレームにおける上り信号を送信する。 Thereafter, in accordance with the change amount ΔR of the NACK occurrence rate of the second UE 30, the offset calculation unit 220 increases the offset A by the change amount ΔA 1 or changes the change amount ΔA 2 minutes, for example, as shown in FIG. Decrease. Accordingly, the first UE 30 decreases the transmission power P of the uplink signal by the change amount ΔA 1 or increases the change amount ΔA 2 as shown in FIG. 6B, for example. Then, at the time t 1 when the period during which the offset A is not changed continues for the predetermined time ΔT or more, the offset calculation unit 220 ends the process of controlling the offset A of the first UE 30. Thereafter, the first UE 30 transmits the uplink signal in the first subframe with the transmission power P at time t 1 .
<UE30>
 図7は、UE30の一例を示すブロック図である。UE30は、例えば図7に示すように、受信部31、制御部32、送信部33、およびアンテナ34を有する。アンテナ34は、eNB20から送信された下り信号を受信して受信部31へ出力する。また、アンテナ34は、送信部33から出力された上り信号をeNB20へ送信する。
<UE30>
FIG. 7 is a block diagram illustrating an example of the UE 30. For example, as illustrated in FIG. 7, the UE 30 includes a reception unit 31, a control unit 32, a transmission unit 33, and an antenna 34. The antenna 34 receives the downlink signal transmitted from the eNB 20 and outputs it to the reception unit 31. Further, the antenna 34 transmits the uplink signal output from the transmission unit 33 to the eNB 20.
 受信部31は、無線受信部310、復調・復号部311、システム情報抽出部312、制御信号抽出部313、パイロット抽出部314、および回線品質測定部315を有する。制御部32は、端末情報制御部320、システム情報管理部321、および無線回線制御部322を有する。送信部33は、無線送信部330、符号化・変調部331、パイロット作成部332、制御信号作成部333、および無線回線制御情報作成部334を有する。 The reception unit 31 includes a radio reception unit 310, a demodulation / decoding unit 311, a system information extraction unit 312, a control signal extraction unit 313, a pilot extraction unit 314, and a channel quality measurement unit 315. The control unit 32 includes a terminal information control unit 320, a system information management unit 321, and a wireless line control unit 322. The transmission unit 33 includes a radio transmission unit 330, an encoding / modulation unit 331, a pilot creation unit 332, a control signal creation unit 333, and a radio channel control information creation unit 334.
<受信部31>
 無線受信部310は、無線回線制御部322からの制御に応じて、受信動作を実行する。無線受信部310は、受信動作において、アンテナ34から出力された下り信号に対して、ダウンコンバート等の処理を施し、処理後の下り信号を復調・復号部311へ出力する。
<Receiver 31>
The wireless reception unit 310 performs a reception operation in accordance with control from the wireless line control unit 322. Radio receiving section 310 performs processing such as down-conversion on the downlink signal output from antenna 34 in the receiving operation, and outputs the processed downlink signal to demodulation / decoding section 311.
 復調・復号部311は、無線受信部310から出力された下り信号を復調する。そして、復調・復号部311は、復調後の下り信号から受信データを復号する。そして、復調・復号部311は、復号された受信データを、受信データに基づいて処理を行うアプリケーション処理部(図示せず)へ出力する。また、復調・復号部311によって復号された受信データは、システム情報抽出部312、制御信号抽出部313、およびパイロット抽出部314へも出力される。 The demodulation / decoding unit 311 demodulates the downlink signal output from the wireless reception unit 310. Then, the demodulation / decoding unit 311 decodes received data from the demodulated downlink signal. Then, the demodulation / decoding unit 311 outputs the decoded received data to an application processing unit (not shown) that performs processing based on the received data. The reception data decoded by the demodulation / decoding unit 311 is also output to the system information extraction unit 312, the control signal extraction unit 313, and the pilot extraction unit 314.
 システム情報抽出部312は、復調・復号部311から出力された受信データからシステム情報を抽出する。そして、システム情報抽出部312は、抽出されたシステム情報をシステム情報管理部321へ出力する。 The system information extraction unit 312 extracts system information from the reception data output from the demodulation / decoding unit 311. Then, the system information extraction unit 312 outputs the extracted system information to the system information management unit 321.
 制御信号抽出部313は、復調・復号部311から出力された受信データから無線回線制御情報および制御信号を抽出する。そして、制御信号抽出部313は、抽出された無線回線制御情報から、UL/DL構成および基準送信電力Pdefの情報を抽出して無線回線制御部322へ出力する。また、制御信号抽出部313は、抽出された制御信号から、第1のサブフレーム、オフセットAの初期値A0、変更量ΔA1、変更量ΔA2、および変更量ΔA2’を抽出して無線回線制御部322へ出力する。また、制御信号抽出部313は、復調・復号部311が受信データの復号に成功したか否かを示す情報を回線品質測定部315へ出力する。 The control signal extraction unit 313 extracts radio channel control information and control signals from the received data output from the demodulation / decoding unit 311. Then, the control signal extraction unit 313 extracts information on the UL / DL configuration and the reference transmission power P def from the extracted radio channel control information and outputs the information to the radio channel control unit 322. Further, the control signal extraction unit 313 extracts the first subframe, the initial value A 0 of the offset A, the change amount ΔA 1 , the change amount ΔA 2 , and the change amount ΔA 2 ′ from the extracted control signal. The data is output to the wireless line control unit 322. Further, the control signal extraction unit 313 outputs information indicating whether the demodulation / decoding unit 311 has successfully decoded received data to the line quality measurement unit 315.
 パイロット抽出部314は、復調・復号部311から出力された受信データからパイロット信号を抽出する。そして、パイロット抽出部314は、抽出したパイロット信号を回線品質測定部315へ出力する。 Pilot extraction section 314 extracts a pilot signal from the reception data output from demodulation / decoding section 311. Then, pilot extraction section 314 outputs the extracted pilot signal to channel quality measurement section 315.
 回線品質測定部315は、パイロット抽出部314から出力されたパイロット信号に基づいて、無線回線の品質を測定する。また、回線品質測定部315は、制御信号抽出部313から受信データの復号に成功したか否かを示す情報を取得し、下り区間のサブフレーム毎にACKまたはNACKの情報を作成する。そして、回線品質測定部315は、サブフレーム毎に生成されたACKまたはNACKの情報を、無線回線制御情報作成部334へ出力する。 The channel quality measurement unit 315 measures the quality of the radio channel based on the pilot signal output from the pilot extraction unit 314. Also, the channel quality measurement unit 315 acquires information indicating whether or not the received data has been successfully decoded from the control signal extraction unit 313, and creates ACK or NACK information for each subframe in the downlink section. Then, channel quality measuring section 315 outputs ACK or NACK information generated for each subframe to radio channel control information creating section 334.
<制御部32>
 端末情報制御部320は、UE30の送信バッファ内のデータ量を監視し、送信バッファ内のデータ量を示すBSRを作成する。そして、端末情報制御部320は、作成したBSRを無線回線制御部322へ出力する。
<Control unit 32>
The terminal information control unit 320 monitors the data amount in the transmission buffer of the UE 30 and creates a BSR indicating the data amount in the transmission buffer. Terminal information control unit 320 then outputs the created BSR to radio channel control unit 322.
 システム情報管理部321は、システム情報抽出部312から出力されたシステム情報を管理する。そして、システム情報管理部321は、パイロット信号の生成に用いられる情報をパイロット作成部332へ出力する。 The system information management unit 321 manages the system information output from the system information extraction unit 312. Then, system information management section 321 outputs information used for generating a pilot signal to pilot creation section 332.
 無線回線制御部322は、端末情報制御部320からBSRが出力された場合に、BSRの情報を制御信号作成部333へ出力する。また、無線回線制御部322は、制御信号抽出部313から出力されたUL/DL構成に基づいて、下り区間のサブフレームにおいて無線受信部310に受信動作を指示し、上り区間のサブフレームにおいて無線送信部330に送信動作を指示する。 When the BSR is output from the terminal information control unit 320, the radio line control unit 322 outputs the BSR information to the control signal creation unit 333. Further, based on the UL / DL configuration output from the control signal extraction unit 313, the radio line control unit 322 instructs the radio reception unit 310 to perform a reception operation in the subframe in the downlink section, and performs radio communication in the subframe in the uplink section. A transmission operation is instructed to the transmission unit 330.
 また、無線回線制御部322は、制御信号抽出部313から、基準送信電力Pdef、第1のサブフレーム、およびオフセットAの初期値A0の情報が出力された場合に、基準送信電力Pdefから初期値A0を引いた電力を送信電力Pの初期値P0として算出する。そして、無線回線制御部322は、算出された送信電力Pの初期値P0で、第1のサブフレームにおける上り信号を送信するように、無線送信部330を制御する。 In addition, when the control signal extraction unit 313 outputs the reference transmission power P def , the first subframe, and the information about the initial value A 0 of the offset A, the radio channel control unit 322 outputs the reference transmission power P def. Then, the power obtained by subtracting the initial value A 0 is calculated as the initial value P 0 of the transmission power P. Then, the wireless channel control unit 322 controls the wireless transmission unit 330 to transmit the uplink signal in the first subframe with the calculated initial value P 0 of the transmission power P.
 また、無線回線制御部322は、制御信号抽出部313から変更量ΔA1が出力された場合、第1のサブフレームにおける送信電力Pを、現在の送信電力Pから変更量ΔA1分減少させるように無線送信部330を指示する。また、無線回線制御部322は、制御信号抽出部313から変更量ΔA2または変更量ΔA2’が出力された場合、第1のサブフレームにおける送信電力Pを、現在の送信電力から変更量ΔA2または変更量ΔA2’分増加させるように無線送信部330を制御する。 Further, when the change amount ΔA 1 is output from the control signal extraction unit 313, the radio line control unit 322 decreases the transmission power P in the first subframe from the current transmission power P by the change amount ΔA 1. To the wireless transmission unit 330. Further, when the change amount ΔA 2 or the change amount ΔA 2 ′ is output from the control signal extraction unit 313, the radio line control unit 322 changes the transmission power P in the first subframe from the current transmission power to the change amount ΔA. The wireless transmission unit 330 is controlled to increase by 2 or the change amount ΔA 2 ′.
 また、無線回線制御部322は、制御信号抽出部313から所定時間以上、変更量ΔA1、ΔA2、またはΔA2’のいずれも出力されなかった場合、変更量ΔA1、ΔA2、またはΔA2’に基づく第1のサブフレームにおける送信電力Pの制御を終了する。 In addition, when no change amount ΔA 1 , ΔA 2 , or ΔA 2 ′ is output from the control signal extraction unit 313 for a predetermined time or longer, the wireless line control unit 322 changes the change amount ΔA 1 , ΔA 2 , or ΔA. The control of the transmission power P in the first subframe based on 2 ′ is terminated.
<送信部33>
 無線回線制御情報作成部334は、回線品質測定部315から出力されたACKまたはNACKの情報を含む無線回線制御情報を作成する。そして、無線回線制御情報作成部334は、作成された無線回線制御情報を符号化・変調部331へ出力する。制御信号作成部333は、無線回線制御部322から出力されたBSRを含む制御信号を作成する。そして、制御信号作成部333は、作成された制御信号を符号化・変調部331へ出力する。パイロット作成部332は、システム情報管理部321から出力された情報を用いてパイロット信号を作成する。そして、パイロット作成部332は、作成されたパイロット信号を符号化・変調部331へ出力する。
<Transmitter 33>
The radio channel control information creation unit 334 creates radio channel control information including ACK or NACK information output from the channel quality measurement unit 315. Radio channel control information creation section 334 then outputs the created radio channel control information to encoding / modulation section 331. The control signal creation unit 333 creates a control signal including the BSR output from the wireless line control unit 322. Then, the control signal creation unit 333 outputs the created control signal to the encoding / modulation unit 331. The pilot creation unit 332 creates a pilot signal using information output from the system information management unit 321. Then, pilot creation section 332 outputs the created pilot signal to encoding / modulation section 331.
 符号化・変調部331は、アプリケーション処理部(図示せず)から出力された送信データを符号化して上り信号を生成する。また、符号化・変調部331は、パイロット作成部332から出力されたパイロット信号、制御信号作成部333から出力された制御信号、および無線回線制御情報作成部334から出力された無線回線制御情報を符号化して上り信号を生成する。そして、符号化・変調部331は、符号化された上り信号を変調し、変調後の上り信号を無線送信部330へ出力する。 The encoding / modulation unit 331 encodes transmission data output from an application processing unit (not shown) to generate an uplink signal. Also, the encoding / modulation unit 331 receives the pilot signal output from the pilot generation unit 332, the control signal output from the control signal generation unit 333, and the radio channel control information output from the radio channel control information generation unit 334. The upstream signal is generated by encoding. Then, the encoding / modulation unit 331 modulates the encoded uplink signal and outputs the modulated uplink signal to the radio transmission unit 330.
 無線送信部330は、無線回線制御部322からの制御に応じて、送信動作を実行する。無線送信部330は、送信動作において、符号化・変調部331から出力された上り信号に対して、アップコンバート等の処理を施す。そして、無線送信部330は、処理後の上り信号を、無線回線制御部322から指示された送信電力Pで、アンテナ34を介して送信する。 The wireless transmission unit 330 performs a transmission operation in accordance with control from the wireless line control unit 322. The wireless transmission unit 330 performs processing such as up-conversion on the uplink signal output from the encoding / modulation unit 331 in the transmission operation. Then, the wireless transmission unit 330 transmits the processed uplink signal with the transmission power P instructed from the wireless line control unit 322 via the antenna 34.
<eNB20の動作>
 図8および図9は、eNB20の動作の一例を示すフローチャートである。eNB20は、例えば、起動後の所定のタイミングで、図8に示す動作を開始する。なお、図8に示すフローチャートとは別に、eNB20のオフセット算出部220は、それぞれのUE30について、所定のタイミング毎に、サブフレーム毎のNACK発生率を算出している。
<Operation of eNB 20>
8 and 9 are flowcharts illustrating an example of the operation of the eNB 20. The eNB 20 starts the operation illustrated in FIG. 8 at a predetermined timing after activation, for example. In addition to the flowchart shown in FIG. 8, the offset calculation unit 220 of the eNB 20 calculates the NACK occurrence rate for each subframe for each UE 30 at a predetermined timing.
 まず、無線回線制御部222は、UE30毎に、UL/DL構成を変更するか否かを判定する(S100)。無線回線制御部222は、UE30毎に、例えば、コアネットワーク側からUE30へ送信される下り信号のデータ量と、UE30から送信されたBSRとに基づいて、UL/DL構成を変更するか否かを判定する。無線回線制御部222は、UL/DL構成を変更しないと判定した場合(S100:No)、再びステップS100に示した処理を実行する。 First, the radio network controller 222 determines whether to change the UL / DL configuration for each UE 30 (S100). Whether or not the radio network controller 222 changes the UL / DL configuration for each UE 30 based on, for example, the amount of downlink signal data transmitted from the core network side to the UE 30 and the BSR transmitted from the UE 30. Determine. If it is determined that the UL / DL configuration is not to be changed (S100: No), the wireless line control unit 222 executes the process shown in step S100 again.
 無線回線制御部222は、UL/DL構成を変更すると判定した場合(S100:Yes)、下り信号のデータ量と、品質情報抽出部210から出力されたBSRとに基づいて、変更後のUL/DL構成を決定する。また、無線回線制御部222は、UL/DL構成を変更するUE30の基準送信電力Pdefを決定する。 When it is determined that the UL / DL configuration is to be changed (S100: Yes), the radio network controller 222 determines the UL / DL after the change based on the data amount of the downlink signal and the BSR output from the quality information extraction unit 210. Determine the DL configuration. Further, the radio network controller 222 determines the reference transmission power P def of the UE 30 that changes the UL / DL configuration.
 次に、無線回線制御部222は、セル11内のいずれかのUE30のUL/DL構成を変更する場合、変更後のUL/DL構成において第1のサブフレームを特定する(S101)。そして、無線回線制御部222は、第1のサブフレームが下り区間となっているUL/DL構成が割り当てられている第2のUE30がセル11内に存在するか否かを判定する(S102)。 Next, when the UL / DL configuration of any UE 30 in the cell 11 is changed, the radio network controller 222 specifies the first subframe in the changed UL / DL configuration (S101). Then, the radio network controller 222 determines whether or not the second UE 30 to which the UL / DL configuration in which the first subframe is a downlink section is assigned exists in the cell 11 (S102). .
 第2のUE30が存在しない場合(S102:No)、無線回線制御部222は、変更後のUL/DL構成および基準送信電力Pdefを、第1のUE30の識別情報と共に送信部23へ出力する。送信部23は、UL/DL構成および基準送信電力Pdefの情報を第1のUE30へ送信する(S106)。そして、無線回線制御部222は、再びステップS100に示した処理を実行する。 When the second UE 30 does not exist (S102: No), the radio network controller 222 outputs the changed UL / DL configuration and reference transmission power P def together with the identification information of the first UE 30 to the transmitter 23. . The transmission unit 23 transmits information on the UL / DL configuration and the reference transmission power P def to the first UE 30 (S106). Then, the wireless line control unit 222 executes the process shown in step S100 again.
 一方、第2のUE30が存在する場合(S102:Yes)、eNB20は、第1のUE30のオフセットAを制御する処理を開始する。具体的には、無線回線制御部222は、変更後のUL/DL構成および基準送信電力Pdefを、第1のUE30の識別情報と共に送信部23へ出力する。そして、無線回線制御部222は、第1のサブフレームの情報と、第1のUE30の識別情報と、第2のUE30の識別情報と、第1のUE30の基準送信電力Pdefの情報とをオフセット算出部220へ出力する。オフセット算出部220は、第1のサブフレームについて、UL/DL構成が変更される前の第2のUE30のNACK発生率R1を保存する(S103)。 On the other hand, when the second UE 30 exists (S102: Yes), the eNB 20 starts a process of controlling the offset A of the first UE 30. Specifically, the radio network controller 222 outputs the changed UL / DL configuration and reference transmission power P def together with the identification information of the first UE 30 to the transmitter 23. Then, the radio network controller 222 obtains information on the first subframe, identification information on the first UE 30, identification information on the second UE 30, and information on the reference transmission power P def of the first UE 30. Output to the offset calculator 220. The offset calculation unit 220 stores the NACK occurrence rate R 1 of the second UE 30 before the UL / DL configuration is changed for the first subframe (S103).
 次に、オフセット算出部220は、第1のUE30が第1のサブフレームにおいて送信する上り信号の送信電力Pに適用されるオフセットAの初期値A0を算出する(S104)。そして、オフセット算出部220は、算出されたオフセットAの初期値A0を、第1のサブフレームの情報および第1のUE30の識別情報と共に送信部23へ出力する。送信部23は、変更後のUL/DL構成、第1のサブフレーム、オフセットAの初期値A0、および基準送信電力Pdefの情報を第1のUE30へ送信する(S105)。 Next, the offset calculation unit 220 calculates an initial value A 0 of the offset A applied to the transmission power P of the uplink signal transmitted by the first UE 30 in the first subframe (S104). Then, the offset calculation unit 220 outputs the calculated initial value A 0 of the offset A to the transmission unit 23 together with the information of the first subframe and the identification information of the first UE 30. The transmitter 23 transmits the changed UL / DL configuration, the first subframe, the initial value A 0 of the offset A, and the information of the reference transmission power P def to the first UE 30 (S105).
 次に、オフセット算出部220は、タイマをリセットスタートする(図9のS107)。そして、オフセット算出部220は、制御情報抽出部211から出力された品質情報に基づいて、第2のUE30について、UL/DL構成の変更後の第1のサブフレームのNACK発生率R2を算出する(S108)。そして、オフセット算出部220は、ステップS108において算出されたNACK発生率R2から、ステップS103において保存されたNACK発生率R1を引いた値を、変化量ΔRとして算出する(S109)。 Next, the offset calculation unit 220 resets and starts the timer (S107 in FIG. 9). Then, the offset calculation unit 220 calculates the NACK occurrence rate R 2 of the first subframe after the UL / DL configuration change for the second UE 30 based on the quality information output from the control information extraction unit 211. (S108). Then, the offset calculation unit 220 calculates, as the change amount ΔR, a value obtained by subtracting the NACK occurrence rate R 1 stored in step S103 from the NACK occurrence rate R 2 calculated in step S108 (S109).
 次に、オフセット算出部220は、変化量ΔRが第1の閾値Rth1以上であるか否かを判定する(S110)。変化量ΔRが第1の閾値Rth1以上である場合(S110:Yes)、オフセット算出部220は、オフセットAを変更量ΔA1分増加させた場合の第1のUE30の送信電力Pを算出する(S111)。オフセットAを変更量ΔA1分増加させると、第1のUE30の送信電力Pは、変更量ΔA1分減少する。オフセット算出部220は、算出された送信電力Pが下限値Pth以下であるか否かを判定する(S112)。 Next, the offset calculation unit 220 determines whether or not the amount of change ΔR is greater than or equal to the first threshold R th1 (S110). If the change amount ΔR is the first threshold value R th1 or more (S110: Yes), offset calculation section 220 calculates the transmission power P of the first UE30 the case of increasing the offset A change amount .DELTA.A 1 minute (S111). Increasing the offset A change amount .DELTA.A 1 minute, the transmission power P of the first UE30 is decreased change amount .DELTA.A 1 minute. The offset calculation unit 220 determines whether or not the calculated transmission power P is less than or equal to the lower limit value P th (S112).
 算出された送信電力Pが下限値Pth以下である場合(S112:Yes)、オフセット算出部220は、UL/DL構成を元に戻す旨の指示を無線回線制御部222へ出力し、eNB20は、第1のUE30のオフセットAを制御する処理を終了する。無線回線制御部222は、第1のUE30のUL/DL構成を元に戻す(S113)。そして、無線回線制御部222は、再び図8のステップS100に示した処理を実行する。 When the calculated transmission power P is equal to or lower than the lower limit value P th (S112: Yes), the offset calculation unit 220 outputs an instruction to restore the UL / DL configuration to the radio channel control unit 222, and the eNB 20 The process for controlling the offset A of the first UE 30 is terminated. The radio network controller 222 restores the UL / DL configuration of the first UE 30 (S113). Then, the wireless line control unit 222 executes the process shown in step S100 in FIG. 8 again.
 一方、算出された送信電力Pが下限値Pthより大きい場合(S112:No)、オフセット算出部220は、オフセットAの変更量ΔA1を、第1のUE30の識別情報と共に送信部23へ出力する。送信部23は、オフセットAの変更量ΔA1を、第1のUE30へ送信する(S114)。これにより、第1のサブフレームにおける第1のUE30の送信電力Pが変更量ΔA1分減少する。そして、オフセット算出部220は、再びステップS107に示した処理を実行する。 On the other hand, if the calculated transmit power P is larger than the lower limit value P th (S112: No), offset calculation section 220, a change amount .DELTA.A 1 offset A, output to the transmission section 23 together with the identification information of the first UE30 To do. The transmission unit 23 transmits the change amount ΔA 1 of the offset A to the first UE 30 (S114). As a result, the transmission power P of the first UE 30 in the first subframe decreases by the change amount ΔA 1 . And the offset calculation part 220 performs the process shown to step S107 again.
 変化量ΔRが第1の閾値Rth1未満である場合(S110:No)、オフセット算出部220は、変化量ΔRが第2の閾値Rth2未満であるか否かを判定する(S115)。変化量ΔRが第2の閾値Rth2未満である場合(S115:Yes)、オフセット算出部220は、オフセットAを変更量ΔA2分減少させた場合の第1のUE30の送信電力Pを算出する(S116)。オフセットAを変更量ΔA2分減少させると、第1のUE30の送信電力Pは、変更量ΔA2分増加する。そして、オフセット算出部220は、算出された送信電力Pが基準送信電力Pdef以上であるか否かを判定する(S117)。 When the change amount ΔR is less than the first threshold value R th1 (S110: No), the offset calculation unit 220 determines whether or not the change amount ΔR is less than the second threshold value R th2 (S115). If the amount of change ΔR is less than the second threshold value R th2 (S115: Yes), offset calculation section 220 calculates the transmission power P of the first UE30 when reduced offset A change amount .DELTA.A 2 minutes (S116). Reducing the offset A change amount .DELTA.A 2 minutes, the transmission power P of the first UE30 increases change amount .DELTA.A 2 minutes. Then, the offset calculation unit 220 determines whether or not the calculated transmission power P is greater than or equal to the reference transmission power P def (S117).
 算出された送信電力Pが基準送信電力Pdef以上である場合(S117:Yes)、オフセット算出部220は、現在のオフセットAの値をオフセットAの変更量ΔA2’として算出する。変更量ΔA2’は、現在の送信電力P’と、基準送信電力Pdefとの差分に相当する。そして、オフセット算出部220は、算出されたオフセットAの変更量ΔA2’を、第1のUE30の識別情報と共に送信部23へ出力し、第1のUE30のオフセットAを制御する処理を終了する。送信部23は、オフセットAの変更量ΔA2’を、第1のUE30へ送信する(S118)。これにより、第1のサブフレームにおける第1のUE30の送信電力Pが基準送信電力Pdefまで増加する。そして、無線回線制御部222は、再び図8のステップS100に示した処理を実行する。 When the calculated transmission power P is greater than or equal to the reference transmission power P def (S117: Yes), the offset calculation unit 220 calculates the current offset A value as the offset A change amount ΔA 2 ′. The change amount ΔA 2 ′ corresponds to the difference between the current transmission power P ′ and the reference transmission power P def . The offset calculation unit 220, a change amount .DELTA.A 2 'of the calculated offset A, and outputs to the transmission section 23 together with the identification information of the first UE 30, and terminates the process of controlling the offset A of the first UE 30 . The transmission unit 23 transmits the change amount ΔA 2 ′ of the offset A to the first UE 30 (S118). Thus, the transmission power P of the first UE30 in the first sub-frame is increased to the reference transmission power P def. Then, the wireless line control unit 222 executes the process shown in step S100 in FIG. 8 again.
 一方、算出された送信電力Pが基準送信電力Pdef未満である場合(S117:No)、オフセット算出部220は、オフセットAの変更量ΔA2を、第1のUE30の識別情報と共に送信部23へ出力する。送信部23は、オフセットAの変更量ΔA2を、第1のUE30へ送信する(S119)。これにより、第1のサブフレームにおける第1のUE30の送信電力Pが変更量ΔA2分増加する。そして、オフセット算出部220は、再びステップS107に示した処理を実行する。 On the other hand, when the calculated transmission power P is less than the reference transmission power P def (S117: No), the offset calculation unit 220 transmits the change amount ΔA 2 of the offset A together with the identification information of the first UE 30 to the transmission unit 23. Output to. The transmission unit 23 transmits the change amount ΔA 2 of the offset A to the first UE 30 (S119). As a result, the transmission power P of the first UE 30 in the first subframe increases by the change amount ΔA 2 . And the offset calculation part 220 performs the process shown to step S107 again.
 変化量ΔRが第2の閾値Rth2以上である場合(S115:No)、オフセット算出部220は、タイマの値が所定時間ΔTを示す値以上か否かを判定する(S120)。タイマの値が所定時間ΔTを示す値以上である場合(S120:Yes)、オフセット算出部220は、第1のUE30のオフセットAを制御する処理を終了する。そして、無線回線制御部222は、再び図8のステップS100に示した処理を実行する。一方、タイマの値が所定時間ΔTを示す値未満である場合(S120:No)、オフセット算出部220は、再びステップS108に示す処理を実行する。 When the change amount ΔR is equal to or greater than the second threshold value R th2 (S115: No), the offset calculation unit 220 determines whether or not the timer value is equal to or greater than a value indicating the predetermined time ΔT (S120). When the value of the timer is equal to or greater than the value indicating the predetermined time ΔT (S120: Yes), the offset calculation unit 220 ends the process of controlling the offset A of the first UE 30. Then, the wireless line control unit 222 executes the process shown in step S100 in FIG. 8 again. On the other hand, when the value of the timer is less than the value indicating the predetermined time ΔT (S120: No), the offset calculation unit 220 executes the process shown in step S108 again.
<無線通信システム10の動作>
 図10は、無線通信システム10の動作の一例を示すシーケンス図である。図10の例では、UE30-1が第1のUE30であり、UE30-2が第2のUE30である。
<Operation of Wireless Communication System 10>
FIG. 10 is a sequence diagram illustrating an example of the operation of the wireless communication system 10. In the example of FIG. 10, the UE 30-1 is the first UE 30 and the UE 30-2 is the second UE 30.
 まず、UE30-1は、BSRをeNB20へ送信する(S200)。eNB20は、UE30-1のUL/DL構成の変更を決定した場合、変更後のUL/DL構成、第1のサブフレーム、基準送信電力Pdef、およびオフセットAの初期値A0の情報をUE30-1へ送信する(S201)。 First, the UE 30-1 transmits a BSR to the eNB 20 (S200). When the eNB 20 decides to change the UL / DL configuration of the UE 30-1, the information about the changed UL / DL configuration, the first subframe, the reference transmission power P def , and the initial value A 0 of the offset A is transmitted to the UE 30-1. -1 (S201).
 UE30-1は、タイマをリセットスタートし(S202)、eNB20へ送信要求を送信する(S203)。eNB20は、UE30-1へ送信許可を送信する(S204)。その後、UE30-1は、ステップS201においてeNB20から送信された変更後のUL/DL構成における上り区間のサブフレームにおいて、データ送信を開始する(S205)。なお、UE30-1は、変更後のUL/DL構成における第1のサブフレームの区間では、基準送信電力PdefよりオフセットAの初期値A0分低い電力で上り信号の送信を開始する。 The UE 30-1 resets and starts the timer (S202), and transmits a transmission request to the eNB 20 (S203). The eNB 20 transmits a transmission permission to the UE 30-1 (S204). Thereafter, the UE 30-1 starts data transmission in the uplink subframe in the UL / DL configuration after the change transmitted from the eNB 20 in step S201 (S205). Note that the UE 30-1 starts uplink signal transmission with power lower by the initial value A 0 of the offset A than the reference transmission power P def in the section of the first subframe in the UL / DL configuration after the change.
 UE30-1のUL/DL構成が変更された後、eNB20は、UE30-2から送信されたACKまたはNACKの情報を受信し(S206)、NACK発生率の変化量ΔRを算出する。そして、eNB20は、NACK発生率の変化量ΔRに基づいて、オフセットAの変更量ΔAを算出する(S207)。eNB20は、NACK発生率の変化量ΔRが第1の閾値Rth1以上である場合、変更量ΔA1をUE30-1へ送信し、NACK発生率の変化量ΔRが第2の閾値Rth2未満である場合、変更量ΔA2をUE30-1へ送信する(S208)。そして、UE30-1は、タイマをリセットスタートする(S209)。そして、eNB20、UE30-1、およびUE30-2は、再びステップS203以降の処理を実行する。 After the UL / DL configuration of the UE 30-1 is changed, the eNB 20 receives the ACK or NACK information transmitted from the UE 30-2 (S206), and calculates the change amount ΔR of the NACK occurrence rate. Then, the eNB 20 calculates the change amount ΔA of the offset A based on the change amount ΔR of the NACK occurrence rate (S207). When the change amount ΔR of the NACK occurrence rate is equal to or greater than the first threshold value R th1 , the eNB 20 transmits the change amount ΔA 1 to the UE 30-1, and the change amount ΔR of the NACK occurrence rate is less than the second threshold value R th2 If there is, the change amount ΔA 2 is transmitted to the UE 30-1 (S208). Then, the UE 30-1 resets and starts the timer (S209). And eNB20, UE30-1, and UE30-2 perform the process after step S203 again.
<実施例の効果>
 上記説明から明らかなように、本実施例のeNB20は、オフセット算出部220と、無線回線制御部222とを有する。無線回線制御部222は、いずれかのUE30のUL/DL構成が変更された場合に、変更前のUL/DL構成において下り区間に設定され、変更後のUL/DL構成において上り区間に変更されたサブフレームである第1のサブフレームを特定する。オフセット算出部220は、UL/DL構成が変更されたUE30である第1のUE30に対して、第1のサブフレームにおける送信電力の初期値を指示する。また、オフセット算出部220は、第2のUE30について、UL/DL構成の変更前の第1のサブフレームにおける下り信号の受信品質と、UL/DL構成の変更後の第1のサブフレームにおける下り信号の受信品質との間の変化量を算出する。また、オフセット算出部220は、第1のUE30が第1のサブフレームにおいて初期値の送信電力で送信を行った後に、変化量に基づいて、第1のUE30に指示する送信電力を制御する。これにより、UE30毎に異なるUL/DL構成を割り当てる場合に、下り区間のスループットの低下を抑制することができる。
<Effect of Example>
As is clear from the above description, the eNB 20 of this embodiment includes an offset calculation unit 220 and a radio channel control unit 222. When the UL / DL configuration of any UE 30 is changed, the radio network controller 222 is set to the downlink section in the UL / DL configuration before the change, and is changed to the uplink section in the UL / DL configuration after the change. A first subframe that is a subframe is identified. The offset calculation unit 220 instructs the initial value of the transmission power in the first subframe to the first UE 30 that is the UE 30 whose UL / DL configuration has been changed. In addition, for the second UE 30, the offset calculation unit 220 receives the downlink signal reception quality in the first subframe before the UL / DL configuration change and the downlink in the first subframe after the UL / DL configuration change. The amount of change between the reception quality of the signal is calculated. In addition, after the first UE 30 performs transmission with the initial transmission power in the first subframe, the offset calculation unit 220 controls the transmission power instructed to the first UE 30 based on the amount of change. Thereby, when assigning a different UL / DL configuration for each UE 30, it is possible to suppress a decrease in throughput in the downlink section.
 また、オフセット算出部220は、UL/DL構成が変更される前において第2のUE30が下り信号の受信に失敗した割合と、UL/DL構成が変更された後において第2のUE30が下り信号の受信に失敗した割合との差を、変化量として算出する。これにより、eNB20は、UL/DL構成を変更したことによる第2のUE30の受信品質の低下を精度よく検出することができる。 In addition, the offset calculation unit 220 determines that the second UE 30 has failed to receive the downlink signal before the UL / DL configuration is changed, and the second UE 30 receives the downlink signal after the UL / DL configuration is changed. The difference from the rate of failure to receive is calculated as the amount of change. Thereby, eNB20 can detect accurately the fall of the reception quality of 2nd UE30 by having changed UL / DL structure.
 また、オフセット算出部220は、受信品質の変化量が第1の閾値以上である場合に、送信電力を第1の電力分下げる指示を第1のUE30へ送信する。また、オフセット算出部220は、受信品質の変化量が、第1の閾値よりも低い第2の閾値未満である場合に、送信電力を第2の電力分上げる指示を第1のUE30へ送信する。これにより、eNB20は、UL/DL構成を変更したことによる第2のUE30の受信品質の低下を抑制することができると共に、UL/DL構成が変更された第1のUE30の上りデータのスループットを高めることができる。 Also, the offset calculation unit 220 transmits an instruction to lower the transmission power by the first power to the first UE 30 when the amount of change in reception quality is equal to or greater than the first threshold. Moreover, the offset calculation part 220 transmits the instruction | indication which raises transmission power to 2nd electric power to 1st UE30, when the variation | change_quantity of reception quality is less than 2nd threshold value lower than 1st threshold value. . Thereby, eNB20 can suppress the fall of the reception quality of 2nd UE30 by having changed UL / DL structure, and also has the throughput of the uplink data of 1st UE30 by which UL / DL structure was changed. Can be increased.
 また、オフセット算出部220は、eNB20のセル11の面積と該セル11内のUE30の数とに基づいて、第1のサブフレームにおける第1のUE30の送信電力Pの初期値を算出する。これにより、第1のサブフレームにおける第1のUE30の送信電力Pの初期値が大きくなり過ぎることを防止することができる。 Also, the offset calculation unit 220 calculates the initial value of the transmission power P of the first UE 30 in the first subframe based on the area of the cell 11 of the eNB 20 and the number of UEs 30 in the cell 11. Thereby, it is possible to prevent the initial value of the transmission power P of the first UE 30 in the first subframe from becoming too large.
 また、無線回線制御部222は、オフセット算出部220により第1のUE30の送信電力Pが制御された結果、第1のUE30の送信電力Pが、第3の電力値以下となった場合、UL/DL構成を、変更前のUL/DL構成に戻す。これにより、UL/DL構成が変更された第1のUE30が、第1のサブフレームにおいて低すぎる送信電力Pで上り信号の送信を継続することを防止することができる。 In addition, when the transmission power P of the first UE 30 is controlled by the offset calculation unit 220 and the transmission power P of the first UE 30 is equal to or lower than the third power value, the radio channel control unit 222 is UL. / DL configuration is changed back to the previous UL / DL configuration. Thereby, it is possible to prevent the first UE 30 whose UL / DL configuration has been changed from continuing the transmission of the uplink signal with the transmission power P that is too low in the first subframe.
 また、オフセット算出部220は、第1のUE30の送信電力が制御された結果、第1のUE30の送信電力が、基準送信電力に達した場合、受信品質の変化量に基づく第1のUE30の送信電力の制御を終了する。これにより、eNB20の処理負荷を軽減することができる。 Further, when the transmission power of the first UE 30 reaches the reference transmission power as a result of controlling the transmission power of the first UE 30, the offset calculation unit 220 determines the first UE 30 based on the amount of change in reception quality. The transmission power control is terminated. Thereby, the processing load of eNB20 can be reduced.
 また、オフセット算出部220は、第1のUE30に送信電力を指示してから所定時間以上、新たな送信電力を第1のUE30に指示しなかった場合、受信品質の変化量に基づく第1のUE30の送信電力の制御を終了する。これにより、eNB20の処理負荷の増大を抑えることができる。 In addition, when the offset calculation unit 220 has not instructed the first UE 30 for new transmission power for a predetermined time or more after instructing the transmission power to the first UE 30, the first calculation based on the amount of change in reception quality The control of the transmission power of the UE 30 is finished. Thereby, increase of the processing load of eNB20 can be suppressed.
<ハードウェア>
 図11は、eNB20を実現する通信装置200のハードウェアの一例を示す図である。通信装置200は、例えば図11に示すように、ネットワークインターフェイス回路201、メモリ202、プロセッサ203、無線回路204、およびアンテナ205を有する。
<Hardware>
FIG. 11 is a diagram illustrating an example of hardware of the communication device 200 that implements the eNB 20. For example, as illustrated in FIG. 11, the communication device 200 includes a network interface circuit 201, a memory 202, a processor 203, a wireless circuit 204, and an antenna 205.
 無線回路204は、プロセッサ203から出力された信号に変調等の所定の処理を施し、処理後の信号をアンテナ205を介して送信する。また、無線回路204は、アンテナ205を介して受信した信号に復調等の所定の処理を施してプロセッサ203へ出力する。無線回路204は、例えば受信部21の無線受信部214および送信部23の無線送信部236の機能を実現する。ネットワークインターフェイス回路201は、有線接続によってコアネットワークや、他のeNB20に接続するためのインターフェイスである。 The radio circuit 204 performs predetermined processing such as modulation on the signal output from the processor 203, and transmits the processed signal via the antenna 205. In addition, the radio circuit 204 performs predetermined processing such as demodulation on the signal received via the antenna 205 and outputs the result to the processor 203. The radio circuit 204 implements the functions of, for example, the radio reception unit 214 of the reception unit 21 and the radio transmission unit 236 of the transmission unit 23. The network interface circuit 201 is an interface for connecting to the core network or another eNB 20 by wired connection.
 メモリ202には、受信部21の品質情報抽出部210、制御情報抽出部211、復調・復号部212、および自己干渉除去部213の機能を実現するためのプログラムが格納される。また、メモリ202には、制御部22のオフセット算出部220、システム情報管理部221、および無線回線制御部222の機能を実現するためのプログラムが格納される。また、メモリ202には、送信部23の制御信号作成部230、パイロット作成部231、無線回線制御情報作成部232、符号化・変調部233、多元接続処理部234、および遅延部235の機能を実現するためのプログラムが格納される。 The memory 202 stores programs for realizing the functions of the quality information extraction unit 210, the control information extraction unit 211, the demodulation / decoding unit 212, and the self-interference removal unit 213 of the reception unit 21. The memory 202 also stores programs for realizing the functions of the offset calculation unit 220, the system information management unit 221, and the wireless line control unit 222 of the control unit 22. Further, the memory 202 has functions of a control signal creation unit 230, a pilot creation unit 231, a radio channel control information creation unit 232, an encoding / modulation unit 233, a multiple access processing unit 234, and a delay unit 235 of the transmission unit 23. A program to be realized is stored.
 プロセッサ203は、メモリ202に格納されたプログラムをメモリ202から読み出して実行することにより、受信部21の品質情報抽出部210、制御情報抽出部211、復調・復号部212、および自己干渉除去部213の機能を実現する。また、プロセッサ203は、メモリ202に格納されたプログラムをメモリ202から読み出して実行することにより、制御部22のオフセット算出部220、システム情報管理部221、および無線回線制御部222の機能を実現する。また、プロセッサ203は、メモリ202に格納されたプログラムをメモリ202から読み出して実行することにより、送信部23の制御信号作成部230、パイロット作成部231、および無線回線制御情報作成部232の機能を実現する。また、プロセッサ203は、メモリ202に格納されたプログラムをメモリ202から読み出して実行することにより、送信部23の符号化・変調部233、多元接続処理部234、および遅延部235の機能を実現する。 The processor 203 reads out the program stored in the memory 202 from the memory 202 and executes it, whereby the quality information extraction unit 210, the control information extraction unit 211, the demodulation / decoding unit 212, and the self-interference removal unit 213 of the reception unit 21. Realize the function. Further, the processor 203 reads out the program stored in the memory 202 from the memory 202 and executes the program, thereby realizing the functions of the offset calculation unit 220, the system information management unit 221 and the wireless line control unit 222 of the control unit 22. . Further, the processor 203 reads out the program stored in the memory 202 from the memory 202 and executes it, thereby performing the functions of the control signal creation unit 230, the pilot creation unit 231 and the radio channel control information creation unit 232 of the transmission unit 23. Realize. Further, the processor 203 reads out the program stored in the memory 202 from the memory 202 and executes it, thereby realizing the functions of the encoding / modulation unit 233, the multiple access processing unit 234, and the delay unit 235 of the transmission unit 23. .
 図12は、UE30を実現する通信装置300のハードウェアの一例を示す図である。通信装置300は、例えば図12に示すように、アンテナ301、無線回路302、メモリ303、およびプロセッサ304を有する。 FIG. 12 is a diagram illustrating an example of hardware of the communication device 300 that implements the UE 30. The communication apparatus 300 includes an antenna 301, a radio circuit 302, a memory 303, and a processor 304, for example, as shown in FIG.
 無線回路302は、プロセッサ304から出力された信号に変調等の所定の処理を施し、処理後の信号をアンテナ301を介して送信する。また、無線回路302は、アンテナ301を介して受信した信号に復調等の所定の処理を施してプロセッサ304へ出力する。無線回路302は、例えば受信部31の無線受信部310および送信部33の無線送信部330の機能を実現する。 The radio circuit 302 performs predetermined processing such as modulation on the signal output from the processor 304, and transmits the processed signal via the antenna 301. The radio circuit 302 performs predetermined processing such as demodulation on the signal received via the antenna 301 and outputs the result to the processor 304. The radio circuit 302 realizes the functions of, for example, the radio reception unit 310 of the reception unit 31 and the radio transmission unit 330 of the transmission unit 33.
 メモリ303には、受信部31の復調・復号部311、システム情報抽出部312、制御信号抽出部313、パイロット抽出部314、および回線品質測定部315の機能を実現するためのプログラムが格納される。また、メモリ303には、制御部32の端末情報制御部320、システム情報管理部321、および無線回線制御部322の機能を実現するためのプログラムが格納される。また、メモリ303には、送信部33の符号化・変調部331、パイロット作成部332、制御信号作成部333、および無線回線制御情報作成部334の機能を実現するためのプログラムが格納される。 The memory 303 stores programs for realizing the functions of the demodulation / decoding unit 311, the system information extraction unit 312, the control signal extraction unit 313, the pilot extraction unit 314, and the line quality measurement unit 315 of the reception unit 31. . The memory 303 stores a program for realizing the functions of the terminal information control unit 320, the system information management unit 321 and the wireless line control unit 322 of the control unit 32. Further, the memory 303 stores programs for realizing the functions of the encoding / modulation unit 331, the pilot creation unit 332, the control signal creation unit 333, and the radio channel control information creation unit 334 of the transmission unit 33.
 プロセッサ304は、メモリ303に格納されたプログラムをメモリ303から読み出して実行することにより、受信部31の復調・復号部311、システム情報抽出部312、および制御信号抽出部313の機能を実現する。また、プロセッサ304は、メモリ303に格納されたプログラムをメモリ303から読み出して実行することにより、パイロット抽出部314および回線品質測定部315の機能を実現する。また、プロセッサ304は、メモリ303に格納されたプログラムをメモリ303から読み出して実行することにより、制御部32の端末情報制御部320、システム情報管理部321、および無線回線制御部322の機能を実現する。また、プロセッサ304は、メモリ303に格納されたプログラムをメモリ303から読み出して実行することにより、送信部33の符号化・変調部331、パイロット作成部332、制御信号作成部333、および無線回線制御情報作成部334の機能を実現する。 The processor 304 reads out the program stored in the memory 303 from the memory 303 and executes it, thereby realizing the functions of the demodulation / decoding unit 311, the system information extraction unit 312, and the control signal extraction unit 313 of the reception unit 31. Further, the processor 304 reads out the program stored in the memory 303 from the memory 303 and executes it, thereby realizing the functions of the pilot extraction unit 314 and the channel quality measurement unit 315. Further, the processor 304 reads out the program stored in the memory 303 from the memory 303 and executes it, thereby realizing the functions of the terminal information control unit 320, the system information management unit 321 and the wireless line control unit 322 of the control unit 32. To do. In addition, the processor 304 reads out the program stored in the memory 303 from the memory 303 and executes the program, whereby the encoding / modulation unit 331, the pilot creation unit 332, the control signal creation unit 333, and the radio channel control of the transmission unit 33 The function of the information creation unit 334 is realized.
<その他>
 なお、開示の技術は、上記した実施例に限定されるものではなく、その要旨の範囲内で数々の変形が可能である。
<Others>
The disclosed technology is not limited to the above-described embodiments, and various modifications can be made within the scope of the gist.
 例えば、上記実施例のeNB20は、UL/DL構成の変更後の第2のUE30のNACK発生率の変化量ΔRが第1の閾値Rth1以上である場合に、オフセットAを変更量ΔA1ずつ増加させることで、第1のUE30の送信電力Pを変更量ΔA1ずつ減少させる。しかし、開示の技術はこれに限られない。例えば、eNB20は、UL/DL構成を変更した後の第2のUE30のNACK発生率の変化量ΔRが第1の閾値Rth1以上である場合に、該変化量ΔRと第1の閾値Rth1との差分に応じた値をオフセットAの変更量ΔA1として第1のUE30に指示してもよい。例えば、変化量ΔRと第1の閾値Rth1との差分が大きい場合には、大きい値の変更量ΔA1が第1のUE30に指示され、変化量ΔRと第1の閾値Rth1との差分が小さい場合には、小さい値の変更量ΔA1が第1のUE30に指示される。これにより、UL/DL構成を変更した後の第2のUE30のNACK発生率が大幅に悪化した場合、eNB20は、第2のUE30の受信品質をより迅速に回復させることができる。 For example, the eNB 20 of the above embodiment changes the offset A by the change amount ΔA 1 when the change amount ΔR of the NACK occurrence rate of the second UE 30 after the change of the UL / DL configuration is equal to or greater than the first threshold R th1. By increasing, the transmission power P of the first UE 30 is decreased by the change amount ΔA 1 . However, the disclosed technology is not limited to this. For example, when the change amount ΔR of the NACK occurrence rate of the second UE 30 after changing the UL / DL configuration is equal to or greater than the first threshold value R th1 , the eNB 20 and the first threshold value R th1 May be instructed to the first UE 30 as the change amount ΔA 1 of the offset A. For example, when the difference between the change amount ΔR and the first threshold value R th1 is large, a large change amount ΔA 1 is instructed to the first UE 30, and the difference between the change amount ΔR and the first threshold value R th1 Is small, a small change amount ΔA 1 is instructed to the first UE 30. Thereby, when the NACK incidence rate of the second UE 30 after the UL / DL configuration is changed significantly deteriorates, the eNB 20 can recover the reception quality of the second UE 30 more quickly.
 また、上記実施例のeNB20は、セル11内の第1のUE30について第1のサブフレームの送信電力PのオフセットAを制御している間は、セル11内の他のUE30について、UL/DL構成の変更を行わない。さらに、他の例として、eNB20は、セル11内の第1のUE30の送信電力PのオフセットAを制御している間は、該セル11に隣接する他のセル11においても、他のセル11内のUE30に対してUL/DL構成の変更を行わないようにしてもよい。該セル11に隣接する他のセル11が他のeNB20によって管理されている場合には、eNB20は、UL/DL構成の変更を所定期間行わないように他のeNB20に指示してもよい。これにより、eNB20は、UL/DL構成を変更した後の第2のUE30のNACK発生率の変化において、隣接するセル11内でUL/DL構成が変更されたことの影響を排除することができる。 In addition, while controlling the offset A of the transmission power P of the first subframe for the first UE 30 in the cell 11, the eNB 20 of the above embodiment performs UL / DL for the other UE 30 in the cell 11. Do not make configuration changes. Further, as another example, while the eNB 20 controls the offset A of the transmission power P of the first UE 30 in the cell 11, the other cell 11 adjacent to the cell 11 also has another cell 11. You may make it not change a UL / DL structure with respect to UE30 inside. When another cell 11 adjacent to the cell 11 is managed by another eNB 20, the eNB 20 may instruct the other eNB 20 not to change the UL / DL configuration for a predetermined period. Thereby, eNB20 can exclude the influence of having changed UL / DL structure in the adjacent cell 11 in the change of the NACK incidence rate of 2nd UE30 after changing UL / DL structure. .
10 無線通信システム
20 eNB
21 受信部
210 品質情報抽出部
211 制御情報抽出部
212 復調・復号部
213 自己干渉除去部
214 無線受信部
22 制御部
220 オフセット算出部
221 システム情報管理部
222 無線回線制御部
23 送信部
230 制御信号作成部
231 パイロット作成部
232 無線回線制御情報作成部
233 符号化・変調部
234 多元接続処理部
235 遅延部
236 無線送信部
24 アンテナ
10 wireless communication system 20 eNB
21 reception unit 210 quality information extraction unit 211 control information extraction unit 212 demodulation / decoding unit 213 self-interference removal unit 214 radio reception unit 22 control unit 220 offset calculation unit 221 system information management unit 222 radio channel control unit 23 transmission unit 230 control signal Creation unit 231 Pilot creation unit 232 Radio channel control information creation unit 233 Encoding / modulation unit 234 Multiple access processing unit 235 Delay unit 236 Radio transmission unit 24 Antenna

Claims (15)

  1.  それぞれの端末との間で、上り信号を受信する上り区間と、下り信号を送信する下り区間とを時分割で切り替えて無線通信を行う基地局において、
     いずれかの前記端末について、サブフレーム毎に前記上り区間と前記下り区間とを時分割で切り替える切替パターンが変更される場合に、変更前の前記切替パターンにおいて下り区間に設定され、変更後の前記切替パターンにおいて上り区間に変更されるサブフレームである第1のサブフレームを特定する特定部と、
     前記切替パターンが変更された端末である第1の端末に対して、前記第1のサブフレームにおける送信電力の初期値を指示する指示部と、
     前記第1の端末以外の端末である第2の端末について、前記切替パターンの変更前の前記第1のサブフレームにおける下り信号の受信品質と、前記切替パターンの変更後の前記第1のサブフレームにおける下り信号の受信品質との間の変化量を算出する算出部と
     を有し、
     前記指示部は、
     前記第1の端末が前記第1のサブフレームにおいて前記初期値の送信電力で送信を行った後に、前記変化量に基づいて、前記第1の端末に指示する送信電力を制御することを特徴とする基地局。
    In a base station that performs radio communication by switching between an uplink section for receiving an uplink signal and a downlink section for transmitting a downlink signal in time division with each terminal,
    For any one of the terminals, when the switching pattern for switching the uplink section and the downlink section in a time division manner is changed for each subframe, it is set to the downlink section in the switching pattern before the change, and after the change A specifying unit that specifies a first subframe that is a subframe to be changed to an uplink section in the switching pattern;
    An instruction unit for instructing an initial value of transmission power in the first subframe to a first terminal which is a terminal whose switching pattern has been changed;
    For a second terminal that is a terminal other than the first terminal, the downlink signal reception quality in the first subframe before the change of the switching pattern and the first subframe after the change of the switching pattern A calculation unit that calculates a change amount between reception quality of downlink signals in
    The instruction unit includes:
    After the first terminal transmits at the initial transmission power in the first subframe, the transmission power instructed to the first terminal is controlled based on the amount of change. Base station.
  2.  前記算出部は、
     前記切替パターンが変更される前において前記第2の端末が下り信号の受信に失敗した割合と、前記切替パターンが変更された後において前記第2の端末が下り信号の受信に失敗した割合との差を、前記変化量として算出することを特徴とする請求項1に記載の基地局。
    The calculation unit includes:
    A rate at which the second terminal fails to receive a downlink signal before the switching pattern is changed, and a rate at which the second terminal fails to receive a downlink signal after the change of the switching pattern. The base station according to claim 1, wherein a difference is calculated as the amount of change.
  3.  前記指示部は、
     前記変化量が第1の閾値以上である場合に、送信電力を第1の電力分下げる指示を前記第1の端末へ送信し、前記変化量が前記第1の閾値よりも低い第2の閾値未満である場合に、送信電力を第2の電力分上げる指示を前記第1の端末へ送信することを特徴とする請求項1に記載の基地局。
    The instruction unit includes:
    When the amount of change is equal to or greater than a first threshold, an instruction to reduce transmission power by the first power is transmitted to the first terminal, and the second threshold is lower than the first threshold. 2. The base station according to claim 1, wherein an instruction to increase the transmission power by a second power is transmitted to the first terminal when the power is less than the first terminal.
  4.  前記指示部は、
     前記基地局のセルの面積と該セル内の前記端末の数とに基づいて、前記初期値を算出することを特徴とする請求項1に記載の基地局。
    The instruction unit includes:
    The base station according to claim 1, wherein the initial value is calculated based on a cell area of the base station and the number of the terminals in the cell.
  5.  前記制御部は、
     前記指示部により前記第1の端末の送信電力が制御された結果、前記第1の端末の送信電力が前記初期値よりも低い第3の電力値以下となった場合、前記切替パターンを、変更前の前記切替パターンに戻すことを特徴とする請求項1に記載の基地局。
    The controller is
    When the transmission power of the first terminal is controlled by the instruction unit and the transmission power of the first terminal is equal to or lower than a third power value lower than the initial value, the switching pattern is changed. The base station according to claim 1, wherein the previous switching pattern is restored.
  6.  前記指示部は、
     前記第1の端末の送信電力が制御された結果、前記第1の端末の送信電力が、前記第1の端末に割り当てられた物理リソース、および、前記基地局と前記第1の端末との間の伝搬損失に基づいて定まる基準送信電力に達した場合、前記変化量に基づく前記第1の端末の送信電力の制御を終了することを特徴とする請求項1に記載の基地局。
    The instruction unit includes:
    As a result of controlling the transmission power of the first terminal, the transmission power of the first terminal is changed between the physical resources allocated to the first terminal and the base station and the first terminal. 2. The base station according to claim 1, wherein when the reference transmission power determined based on the propagation loss of the first terminal is reached, the control of the transmission power of the first terminal based on the amount of change is terminated.
  7.  前記指示部は、
     前記第1の端末に送信電力を指示してから所定時間以上、新たな送信電力を前記第1の端末に指示しなかった場合、前記変化量に基づく前記第1の端末の送信電力の制御を終了することを特徴とする請求項1に記載の基地局。
    The instruction unit includes:
    If a new transmission power is not instructed to the first terminal for a predetermined time or more after instructing the transmission power to the first terminal, the transmission power of the first terminal is controlled based on the amount of change. The base station according to claim 1, wherein the base station is terminated.
  8.  それぞれの端末との間で、上り信号を受信する上り区間と、下り信号を送信する下り区間とを時分割で切り替えて無線通信を行う基地局が、
     いずれかの前記端末について、サブフレーム毎に前記上り区間と前記下り区間とを時分割で切り替える切替パターンが変更される場合に、変更前の前記切替パターンにおいて下り区間に設定され、変更後の前記切替パターンにおいて上り区間に変更されるサブフレームである第1のサブフレームを特定し、
     前記切替パターンが変更された端末である第1の端末に対して、前記第1のサブフレームにおける送信電力の初期値を指示し、
     前記第1の端末以外の端末である第2の端末について、前記切替パターンの変更前の前記第1のサブフレームにおける下り信号の受信品質と、前記切替パターンの変更後の前記第1のサブフレームにおける下り信号の受信品質との間の変化量を算出し、
     前記第1の端末が前記第1のサブフレームにおいて前記初期値の送信電力で送信を行った後に、前記変化量に基づいて、前記第1の端末に指示する送信電力を制御する
     処理を実行することを特徴とする基地局の制御方法。
    Between each terminal, a base station that performs radio communication by switching time-division between an uplink section that receives an uplink signal and a downlink section that transmits a downlink signal,
    For any one of the terminals, when the switching pattern for switching the uplink section and the downlink section in a time division manner is changed for each subframe, it is set to the downlink section in the switching pattern before the change, and after the change Identify a first subframe that is a subframe to be changed to an uplink in the switching pattern;
    Instructing an initial value of transmission power in the first subframe to a first terminal that is a terminal whose switching pattern has been changed,
    For a second terminal that is a terminal other than the first terminal, the downlink signal reception quality in the first subframe before the change of the switching pattern and the first subframe after the change of the switching pattern Calculate the amount of change between the received signal quality of the downlink signal at
    After the first terminal performs transmission with the initial transmission power in the first subframe, a process of controlling transmission power instructing the first terminal based on the amount of change is executed. A control method for a base station.
  9.  複数の端末と、複数の端末の各々との間で、上り信号を受信する上り区間と、下り信号を送信する下り区間とを時分割で切り替えて無線通信を行う基地局とを備える無線通信システムにおいて、
     前記基地局は、
     いずれかの前記端末について、サブフレーム毎に前記上り区間と前記下り区間とを時分割で切り替える切替パターンが変更される場合に、変更前の前記切替パターンにおいて下り区間に設定され、変更後の前記切替パターンにおいて上り区間に変更されるサブフレームである第1のサブフレームを特定する特定部と、
     前記切替パターンが変更された端末である第1の端末に対して、前記第1のサブフレームにおける送信電力の初期値を指示する指示部と、
     前記第1の端末以外の端末である第2の端末について、前記切替パターンの変更前の前記第1のサブフレームにおける下り信号の受信品質と、前記切替パターンの変更後の前記第1のサブフレームにおける下り信号の受信品質との間の変化量を算出する算出部と
     を有し、
     前記指示部は、
     前記第1の端末が前記第1のサブフレームにおいて前記初期値の送信電力で送信を行った後に、前記変化量に基づいて、前記第1の端末に指示する送信電力を制御することを特徴とする無線通信システム。
    A radio communication system comprising a plurality of terminals and a base station that performs radio communication by switching between an uplink section for receiving an uplink signal and a downlink section for transmitting a downlink signal in a time division manner between each of the plurality of terminals. In
    The base station
    For any one of the terminals, when the switching pattern for switching the uplink section and the downlink section in a time division manner is changed for each subframe, it is set to the downlink section in the switching pattern before the change, and after the change A specifying unit that specifies a first subframe that is a subframe to be changed to an uplink section in the switching pattern;
    An instruction unit for instructing an initial value of transmission power in the first subframe to a first terminal which is a terminal whose switching pattern has been changed;
    For a second terminal that is a terminal other than the first terminal, the downlink signal reception quality in the first subframe before the change of the switching pattern and the first subframe after the change of the switching pattern A calculation unit that calculates a change amount between reception quality of downlink signals in
    The instruction unit includes:
    After the first terminal transmits at the initial transmission power in the first subframe, the transmission power instructed to the first terminal is controlled based on the amount of change. Wireless communication system.
  10.  複数の端末と、複数の端末の各々との間で、上り信号を受信する上り区間と下り信号を送信する下り区間とを時分割で切り替えて無線通信を行う基地局とを備える無線通信システムにおいて、
     いずれかの前記端末について、一定の長さの時間領域における前記上り区間と前記下り区間の配列パターンが変更される場合に、変更後の配列パターン内の特定の上り区間用サブフレームで送信される信号に適用される送信電力と該特定の上り区間用サブフレーム以外の上り区間用サブフレームで送信される信号に適用される送信電力との間にオフセットが設定されることを特徴とする無線通信システム。
    In a radio communication system comprising a plurality of terminals and a base station that performs radio communication by switching between an uplink section for receiving an uplink signal and a downlink section for transmitting a downlink signal in a time division manner between each of the plurality of terminals. ,
    For any one of the terminals, when the arrangement pattern of the uplink section and the downlink section in the time domain of a certain length is changed, it is transmitted in a specific uplink section subframe in the changed arrangement pattern Radio communication characterized in that an offset is set between transmission power applied to a signal and transmission power applied to a signal transmitted in an uplink subframe other than the specific uplink subframe. system.
  11.  変更前の配列パターンでは下り区間に設定され、変更後の配列パターンでは上り区間に設定されるサブフレームを前記特定の上り区間用サブフレームとすることを特徴とする請求項10に記載の無線通信システム。 11. The radio communication according to claim 10, wherein the subframe set in the downlink section in the array pattern before the change and the subframe set in the uplink section in the array pattern after the change is the specific uplink section subframe. system.
  12.  配列パターンの変更時に前記オフセットの値が前記端末に通知され、所定時間が経過した後に、前記端末において、前記オフセットの値が無効、あるいは、前記オフセットの値が零になることを特徴とする請求項10に記載の無線通信システム。 The offset value is notified to the terminal when the arrangement pattern is changed, and after a predetermined time has elapsed, the offset value is invalid or the offset value becomes zero in the terminal. Item 11. The wireless communication system according to Item 10.
  13.  配列パターンの変更時に前記所定時間の値が前記端末に通知されることを特徴とする請求項12に記載の無線通信システム。 The wireless communication system according to claim 12, wherein when the arrangement pattern is changed, the value of the predetermined time is notified to the terminal.
  14.  前記基地局が前記端末に対し信号送信の許可を与えるために使用する制御信号の中に前記オフセットの値が含まれることを特徴とする請求項10に記載の無線通信システム。 The radio communication system according to claim 10, wherein the offset value is included in a control signal used by the base station to give permission for signal transmission to the terminal.
  15.  一つの配列パターンに含まれるサブフレームの数と同じ長さの符号列を用いて前記特定の上り区間用サブフレームが示されることを特徴とする請求項10に記載の無線通信システム。 The radio communication system according to claim 10, wherein the specific uplink subframe is indicated using a code string having the same length as the number of subframes included in one arrangement pattern.
PCT/JP2015/085591 2015-12-18 2015-12-18 Base station, base-station control method, and wireless communication system WO2017104088A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP2015/085591 WO2017104088A1 (en) 2015-12-18 2015-12-18 Base station, base-station control method, and wireless communication system
JP2017556310A JP6673365B2 (en) 2015-12-18 2015-12-18 Base station, control method of base station, and wireless communication system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2015/085591 WO2017104088A1 (en) 2015-12-18 2015-12-18 Base station, base-station control method, and wireless communication system

Publications (1)

Publication Number Publication Date
WO2017104088A1 true WO2017104088A1 (en) 2017-06-22

Family

ID=59056171

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/085591 WO2017104088A1 (en) 2015-12-18 2015-12-18 Base station, base-station control method, and wireless communication system

Country Status (2)

Country Link
JP (1) JP6673365B2 (en)
WO (1) WO2017104088A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011504669A (en) * 2007-11-05 2011-02-10 ノーテル・ネットワークス・リミテッド Method and system for resource allocation
WO2012165067A1 (en) * 2011-05-30 2012-12-06 ソニー株式会社 Wireless resource allocation method, wireless resource allocation device, and communication system
WO2014163163A1 (en) * 2013-04-04 2014-10-09 シャープ株式会社 Terminal apparatus, communication method, and integrated circuit

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110235582A1 (en) * 2010-03-25 2011-09-29 Qualcomm Incorporated Subframe dependent transmission power control for interference management

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011504669A (en) * 2007-11-05 2011-02-10 ノーテル・ネットワークス・リミテッド Method and system for resource allocation
WO2012165067A1 (en) * 2011-05-30 2012-12-06 ソニー株式会社 Wireless resource allocation method, wireless resource allocation device, and communication system
WO2014163163A1 (en) * 2013-04-04 2014-10-09 シャープ株式会社 Terminal apparatus, communication method, and integrated circuit

Also Published As

Publication number Publication date
JP6673365B2 (en) 2020-03-25
JPWO2017104088A1 (en) 2018-07-19

Similar Documents

Publication Publication Date Title
JP2019536315A5 (en)
US20240080852A1 (en) Communication method, network side device, and terminal
CN105309019B (en) Paging method, device and system
US9155072B2 (en) Radio base station and communication control method setting an entire frequency band of a radio resource as a reference signal transmission frequency band within a predetermined period
JP2018534888A5 (en)
US10278201B2 (en) Method for transmitting uplink grant and base station
CN104780617A (en) Non-competitive random access method, node device and system
WO2017056396A1 (en) Communication terminal, base station, monitoring method, transmission method, and non-transitory computer-readable medium
US20150163809A1 (en) Base station apparatus, communication control method, and non-transitory computer readable medium storing communication control program
JP6390789B2 (en) Base station, terminal, wireless communication system, base station control method, and terminal control method
US10477446B2 (en) Interference cancellation method and device
US10660116B2 (en) False scheduling request prevention
US9602256B2 (en) Method and apparatus for mobile terminal to switch base station
US10425197B2 (en) Method for adjusting length of timer and base station
US9312931B2 (en) Radio base station, radio terminal, and communication control method
US9974106B2 (en) Base station apparatus, mobile station apparatus, radio communication system, communication control method of base station apparatus, and communication control method of mobile station apparatus
JP2016127436A (en) Radio equipment and transmission power control method
US20170005756A1 (en) Wireless communications system, terminal, base station, and process method
WO2017104088A1 (en) Base station, base-station control method, and wireless communication system
JP6773109B2 (en) Wireless communication system and terminal equipment
CN107211295B (en) Measurement event configuration method and device
CN112189368A (en) Flexible paging procedure
KR20190067690A (en) Method and apparatus for resource allocation in a in-band full duplex wireless communication network
JP6103053B2 (en) Frequency resource allocation method and base station apparatus
WO2023276901A1 (en) Communication device, base station, and communication method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15910777

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017556310

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15910777

Country of ref document: EP

Kind code of ref document: A1