WO2017104018A1 - Image display device and method for manufacturing same - Google Patents

Image display device and method for manufacturing same Download PDF

Info

Publication number
WO2017104018A1
WO2017104018A1 PCT/JP2015/085204 JP2015085204W WO2017104018A1 WO 2017104018 A1 WO2017104018 A1 WO 2017104018A1 JP 2015085204 W JP2015085204 W JP 2015085204W WO 2017104018 A1 WO2017104018 A1 WO 2017104018A1
Authority
WO
WIPO (PCT)
Prior art keywords
light source
source unit
area
light
image display
Prior art date
Application number
PCT/JP2015/085204
Other languages
French (fr)
Japanese (ja)
Inventor
良輔 下澤
浩 細山田
谷本 克彦
Original Assignee
パイオニア株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パイオニア株式会社 filed Critical パイオニア株式会社
Priority to JP2017555923A priority Critical patent/JP6606633B2/en
Priority to PCT/JP2015/085204 priority patent/WO2017104018A1/en
Publication of WO2017104018A1 publication Critical patent/WO2017104018A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B21/00Machines, plants or systems, using electric or magnetic effects
    • F25B21/02Machines, plants or systems, using electric or magnetic effects using Peltier effect; using Nernst-Ettinghausen effect
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B26/00Optical devices or arrangements for the control of light using movable or deformable optical elements
    • G02B26/08Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light
    • G02B26/10Scanning systems
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/01Head-up displays
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09FDISPLAYING; ADVERTISING; SIGNS; LABELS OR NAME-PLATES; SEALS
    • G09F9/00Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements

Definitions

  • the present invention relates to the structure of an image display device.
  • Patent Document 1 discloses a technique for sealing a diode laser device and a Peltier element with a sealing structure in a light source device.
  • Patent Document 1 discloses nothing about the humidity of the sealing portion that seals the laser diode or the Peltier element.
  • An object of the present invention is to provide a highly reliable image display device by appropriately sealing a light source unit.
  • the invention according to claim 1 includes a light source unit that emits light constituting an image, a cooling element that cools the light source unit, and an optical system that forms an optical path of the light emitted from the light source unit.
  • An image display device comprising: a first area that seals the light source unit and the cooling element in a moisture-proof manner; and a second area that is provided outside the first area and includes the optical system. It is characterized by.
  • the invention described in claim 7 includes a light source unit that emits light constituting an image, a cooling element that cools the light source unit, and an optical system that forms an optical path of the light emitted from the light source unit.
  • a first area including the light source unit and the cooling element has a higher sealing property than a second area provided outside the first area and including the optical system. To do.
  • FIG. 1 shows a schematic configuration of a head-up display according to an embodiment. It is a block diagram which shows the structure of a projection apparatus. It is a perspective view which shows the external appearance of a laser light source part. It is the top view and side view of a laser light source part. It is sectional drawing which shows the structural example of the light source part sealed by moisture-proof. It is a flowchart which shows the manufacturing method of a laser light source part. The example of arrangement
  • positioning of the light source part and MEMS mirror in a laser light source part is shown.
  • the example which connected the light source part and the control board with the flexible cable is shown.
  • the example which connected the light source part and the control board with the flexible cable is shown.
  • the exhaust heat state of a light source part is shown typically.
  • the light source unit that emits light and the cooling element that cools the light source unit are sealed in a moisture-proof manner.
  • An optical system that forms an optical path of light emitted from the light source unit is provided in the second area provided outside the second area.
  • the first area includes the light source unit and the cooling element provided therein, and an opening formed facing the output direction of the light emitted from the light source unit. It is comprised with the sealing housing
  • the sealing housing includes a main body portion and a cover, and the main body portion is sealed with the cover using an adhesive.
  • the second area is sealed so as to be dustproof. Thereby, the optical system in the second area can be protected from external dust and the like.
  • a light source unit that emits light constituting an image
  • a cooling element that cools the light source unit
  • an optical system that forms an optical path of light emitted from the light source unit
  • the first area including the light source unit and the cooling element has a higher sealing property than the second area provided outside the first area and including the optical system.
  • FIG. 1 is a schematic configuration diagram of a head-up display 100 according to an embodiment of the image display apparatus of the present invention.
  • the head-up display 100 mainly includes a light source unit 1 and a concave mirror 10.
  • the head-up display 100 is attached to a vehicle including a front window 25, a ceiling portion 27, a bonnet 28, and a dashboard 29.
  • the concave mirror 10 reflects the display light emitted from the light source unit 1 toward the opening 89 provided in the dashboard 29 and reaches the front window 25. In this case, the concave mirror 10 magnifies and reflects the image indicated by the display light.
  • the installation position of the light source unit 1 is not limited to being inside the dashboard 29 as shown in FIG.
  • the light source unit 1 may be in an aspect (including an aspect in which the light source unit 1 is attached to a sun visor not shown) attached to the ceiling portion 27.
  • a combiner may be provided between the light source unit 1 and the front window 25.
  • the image signal input unit 2 receives an image signal Si input from the outside and outputs it to the video processing unit 3.
  • the video processing unit 3 controls the laser driver 7 and the MEMS driver 8 based on the image signal Si input from the image signal input unit 2 and the scanning position information Se input from the MEMS mirror 95.
  • the video processing unit 3 writes the image data input from the image signal input unit 2 into the frame memory 4A, and reads the data as needed according to the drive timing of the MEMS mirror 95, and the red (R), green (G), blue ( A control signal corresponding to the luminance of each pixel is sequentially transmitted to the laser driver 7 for each color of B).
  • the video processing unit 3 controls the read timing of the image data from the frame memory 4A.
  • the video processing unit 3 is configured as, for example, an ASIC (Application Specific Integrated Circuit).
  • the ROM 4B stores a control program and data for the video processing unit 3 to operate. Various data are sequentially read from and written into the RAM 4C as a work memory when the video processing unit 3 operates.
  • the laser driver 7 receives a correction signal Sg representing a correction coefficient related to the intensity of the emitted light from the MCU 21. Then, the laser driver 7 corrects the signal representing the light emission pattern received from the video processing unit 3 based on the correction signal Sg, and drives the laser elements LD1 to LD3 of each color based on the signal representing the corrected light emission pattern. To control the current value.
  • the laser light source unit 9 emits laser light based on the drive signal output from the laser driver 7.
  • the laser light source unit 9 mainly includes a red laser element LD1, a blue laser element LD2, a green laser element LD3, a light amount detector 23, a PSD (Position Sensitive Detector) 24, collimator lenses 91a to 91c, and a reflection.
  • Mirrors 92a to 92c, a polarization beam splitter 93, a beam splitter 94, a MEMS mirror 95, a gradation ND (Neutral Density) filter 97, and a PSD lens 99 are provided.
  • the red laser element LD1 emits red laser light (also referred to as “red laser light”)
  • the blue laser element LD2 emits blue laser light (also referred to as “blue laser light”)
  • the green laser element LD3. Emits green laser light (also referred to as “green laser light”).
  • the collimator lenses 91a to 91c convert the red, blue, and green laser beams into parallel beams and emit the parallel beams to the reflection mirrors 92a to 92c.
  • the reflection mirror 92b reflects blue laser light.
  • the reflection mirror 92c transmits blue laser light and reflects green laser light.
  • the reflection mirror 92a transmits red laser light and reflects blue and green laser light.
  • the red laser light transmitted through the reflection mirror 92 a and the blue and green laser light reflected by the reflection mirror 92 a are incident on the polarization beam splitter 93.
  • the laser light incident on the polarization beam splitter 93 is divided into light that is transmitted through the polarization beam splitter 93 and incident on the MEMS mirror 95 and light that is reflected by the polarization beam splitter 93 and incident on the beam splitter 94.
  • the light that has passed through the polarization beam splitter 93 passes through the gradation ND filter 97 and enters the MEMS mirror 95.
  • the gradation ND filter 97 is a filter that adjusts the luminance of the emitted light in accordance with the position where the laser light is incident.
  • the light amount detector 23 generates a detection signal Sa that is an electrical signal corresponding to the light amount (intensity) of the laser light that has passed through the beam splitter 94 and supplies the detection signal Sa to the MCU 21.
  • the PSD 24 detects the position of the spot-like light and supplies a detection signal Sb related to the detected light position to the MCU 21.
  • the PSD 24 generates a detection signal Sb related to the position of the optical axis of each detected laser beam LB, LG, LR.
  • the MCU 21 adjusts the position of the optical axis of each laser beam LB, LG, LR based on the detection signal Sb, and corrects the position shift of the laser beam of each color.
  • the MCU 21 performs the process of adjusting the optical axis alignment of each color laser beam and adjusting the light intensity balance of the laser beams output to the laser elements LD1 to LD3 at a predetermined timing when the image drawing based on the image signal Si is not performed. To do. Specifically, the MCU 21 detects the optical axis deviation and the direction of the optical axis deviation based on the detection signal Sb received from the PSD 24, and generates a correction signal Sf for correcting the light emission timing of each of the lasers LD1 to LD3. Transmit to the video processing unit 3. Thereby, the optical axes of the laser beams of the respective colors are matched.
  • FIG. 4A is a plan view of the laser light source unit 9 with the cover 31 removed as viewed from above.
  • the laser light source unit 9 is roughly divided into a light source unit 33 and an optical system 34.
  • the light source unit 33 combines the laser beams emitted from the lasers LD1 to LD3 and emits them to the optical system 34.
  • the optical system 34 guides the laser light emitted from the light source unit 33 to the MEMS mirror 95, the light amount detector 23, and the PSD 24. 4A, the area where the light source unit 33 is provided is referred to as “light source area A1”, and the area where the optical system 34 is provided is referred to as “optical system area A2.”
  • the light source unit 33 includes lasers LD1 to LD3, collimator lenses 91a to 91c, and reflection mirrors 92a to 92c.
  • the optical system 34 includes a light amount detector 23, a PSD 24, a polarization beam splitter 93, a beam splitter 94, a MEMS mirror 95, a gradation ND filter 97, and a PDS lens 99.
  • FIG. 4B is a side view of the laser light source unit 9.
  • the optical path for reflecting the laser light L emitted from the light source unit 33 by the MEMS mirror 95 is shown, and the optical paths from the laser light to the light quantity detector 23 and the PSD 24 are omitted.
  • the laser light L emitted from the light source unit 33 is scanned while being reflected obliquely upward by the MEMS mirror 95 and sent to the opening 51.
  • the bottom part of the light source part 33 is provided with the Peltier sealing board 41 for cooling.
  • the MEMS mirror 95 is an example of the scanning unit of the present invention
  • the light amount detection unit 23 is an example of the light detection unit of the present invention
  • the polarization beam splitter 93 and the beam splitter 94 are the optical members of the present invention.
  • the gradation ND filter 97 is an example, and is an example of a light amount adjustment unit of the present invention.
  • the sealing structure of the laser light source unit 9 will be described.
  • the light source area A1 is sealed in a moisture-proof manner
  • the optical system area A2 is sealed in a dust-proof manner.
  • the moisture-proof seal ensures a higher airtightness (sealing property) than the dust-proof seal.
  • the housing and the cover are manufactured with a material having a higher airtightness than the dustproof seal, and the seal is performed with a more airtight adhesive.
  • the temperature range in which the laser can be lit is narrower than the vehicle-mounted required temperature range, it is necessary to lower the laser temperature from the ambient temperature using a Peltier module.
  • FIG. 5A is a cross-sectional view illustrating a configuration example of the moisture-proof sealed light source unit 33.
  • the light source unit 33 is configured as a sealed casing of the present invention, and a main body unit 42 and a cover 43 are provided on a Peltier sealing plate 41.
  • the Peltier sealing plate 41 is formed with a heat radiation shape such as a heat sink (not shown) on the bottom surface.
  • a Peltier module 44 as a cooling element is disposed on the Peltier sealing plate 41, and a laser LD is disposed on the Peltier module 44.
  • the Peltier module 44 cools the laser LD and maintains it within an appropriate allowable temperature.
  • the upper surface of the Peltier sealing plate 41 is sealed by the main body 42 using a sealing adhesive 46.
  • the upper part of the main body 42 is sealed with the cover 43 using the sealing adhesive 46.
  • An opening 49 for emitting laser light L from the laser LD to the outside is provided on one side surface (right side in the drawing) of the main body portion 42.
  • the opening 49 uses a sealing adhesive 46. Sealed with a glass plate 45. In this way, the entire light source unit 33 is sealed in a moisture-proof manner, and high sealing performance is ensured. Since the upper part of the light source unit 33 is sealed by the cover 43 and the entire laser light source unit 9 is covered by the cover 31 as shown in FIG. 3, the light source unit 33 is covered by the cover 43 and the cover 31. It will be covered heavily.
  • FIG. 5B is a cross-sectional view showing another configuration example of the light source unit 33.
  • the main body portion 47 in which the main body portion 42 and the cover 43 shown in the example of FIG. 5 (A) are integrated is used, but the other points are the same as the example shown in FIG. 5 (A). is there.
  • the light source area A1 is sealed in a moisture-proof manner
  • the outer optical system area A2 is sealed in a dust-proof manner (hereinafter also referred to as “two-division sealing”).
  • two-division sealing When the laser light source unit 9 is sealed in two parts in this way, the following advantages can be obtained as compared with the case where the entire laser light source unit 9 is sealed in a moisture-proof manner.
  • the total extension (total perimeter of the light source area) of the sealing adhesion portion can be shortened.
  • the man-hour for sealing adhesion and the cost of the sealing adhesive can be suppressed. it can.
  • the amount of water vapor entering from the sealing adhesive portion can be suppressed, and condensation is unlikely to occur.
  • the linear expansion coefficient (the rate of increase in the length of the material when the temperature is raised to 1 degree Celsius) is different for each of the sealing housing, cover, and adhesive, and the total length of the sealing adhesive portion is short.
  • the stress on the adhesive can be suppressed even when thermal expansion occurs, the reliability of sealing is improved.
  • the location to be sealed can be limited to the periphery of the location where the temperature is adjusted.
  • the temperature of the sealed portion is likely to be more uniform, and thermal expansion is less likely to occur. Therefore, stress on the adhesive generated by thermal expansion can be suppressed, and the sealing reliability is improved.
  • the optical system area A2 is sealed in a dustproof manner, but the optical system area A2 may not be sealed, and only the light source area A1 that requires temperature adjustment may be sealed in a moistureproof manner.
  • FIG. 6 is a flowchart showing a method for manufacturing the laser light source unit 9.
  • each component is installed in the light source area A1 and the optical system area A2 (step S1).
  • the light source part 33 is sealed in a moisture-proof manner by a method exemplified in FIGS. 5A and 5B (step S2).
  • adjustment of an optical system (such as an optical component) in the optical system area A2 is performed in a state where only the light source unit 33 is sealed in a moisture-proof manner (step S3).
  • the upper portion of the light source area A1 is sealed in a moisture-proof manner by the cover 43 or the main body 47, and is further covered by the cover 31 of the housing 30. That is, the upper part of the light source area A1 is doubled (double structure).
  • the optical system area A2 is sealed with a cover (not shown) and further covered with a cover 31 of the housing 30.
  • step S4 may be omitted, and the light source unit 33 may be moisture-proof sealed and then the cover 31 of the housing 30 may be attached.
  • the upper part of the light source area A2 has a double structure, but the upper part of the optical system area A2 is covered with only the cover 31 of the housing 30.
  • FIG. 10A schematically shows an exhaust heat state from the light source unit 33 in the laser light source unit 9.
  • the heat exhausted from the Peltier module 44 provided in the light source unit 33 is transmitted in all directions as shown in the area A3. Therefore, the size of the member for releasing the heat increases, leading to an increase in cost. Further, when a heat-sensitive component is disposed around the light source unit 33, the component may be damaged.
  • the present invention can be used for a head-up display, a projector using a laser as a light source, and other image display devices.

Abstract

An image display device of the present invention is provided with: a light source unit (33) that outputs light that constitutes an image; a cooling element that cools the light source unit; an optical system (34) that forms an optical path for the light outputted from the light source unit. The image display device is also provided with: a first area (A1) wherein the light source unit (33) and the cooling element are sealed in a moisture-proof manner; and a second area (A2), which is provided outside of the first area, and includes the optical system (34).

Description

画像表示装置及びその製造方法Image display device and manufacturing method thereof
 本発明は、画像表示装置の構造に関する。 The present invention relates to the structure of an image display device.
 各種の画像表示装置には光源装置が使用される。特許文献1は、光源装置において、ダイオードレーザデバイスとペルチェ素子を封止構造体で封止する技術を開示している。 A light source device is used for various image display devices. Patent Document 1 discloses a technique for sealing a diode laser device and a Peltier element with a sealing structure in a light source device.
特開2007-201285号公報JP 2007-201285 A
 特許文献1においては、レーザダイオードやペルチェ素子を封止する封止部の湿度に関しては何ら開示されていない。 Patent Document 1 discloses nothing about the humidity of the sealing portion that seals the laser diode or the Peltier element.
 本発明が解決しようとする課題としては、上記のものが例として挙げられる。本発明は、光源部を適切に封止することにより、信頼性の高い画像表示装置を提供することを目的とする。 The above are examples of problems to be solved by the present invention. An object of the present invention is to provide a highly reliable image display device by appropriately sealing a light source unit.
 請求項1に記載の発明は、画像を構成する光を出射する光源部と、前記光源部を冷却する冷却素子と、前記光源部から出射された光の光路を形成する光学系と、を備える画像表示装置であって、前記光源部と前記冷却素子とを防湿可能に封止する第1エリアと、前記第1エリアの外部に設けられ、前記光学系を含む第2エリアと、を備えることを特徴とする。 The invention according to claim 1 includes a light source unit that emits light constituting an image, a cooling element that cools the light source unit, and an optical system that forms an optical path of the light emitted from the light source unit. An image display device, comprising: a first area that seals the light source unit and the cooling element in a moisture-proof manner; and a second area that is provided outside the first area and includes the optical system. It is characterized by.
 請求項7に記載の発明は、画像を構成する光を出射する光源部と、前記光源部を冷却する冷却素子と、前記光源部から出射された光の光路を形成する光学系と、を備える画像表示装置であって、前記光源部と前記冷却素子とを含む第1エリアは、前記第1エリアの外部に設けられ前記光学系を含む第2エリアよりも高い密閉性を有することを特徴とする。 The invention described in claim 7 includes a light source unit that emits light constituting an image, a cooling element that cools the light source unit, and an optical system that forms an optical path of the light emitted from the light source unit. In the image display device, a first area including the light source unit and the cooling element has a higher sealing property than a second area provided outside the first area and including the optical system. To do.
 請求項8に記載の発明は、画像表示装置の製造方法であって、筐体内の第1エリアに、画像を構成する光を出射する光源部と、前記光源部を冷却する冷却素子と、を配置する工程と、前記第1エリアの外部の第2エリアに、前記光源部から出射された光の光路を形成する光学系を配置する工程と、前記第1エリアを防湿可能に封止する工程と、前記筐体の全体をカバーにより覆う工程と、を有することを特徴とする。 The invention according to claim 8 is a method for manufacturing an image display device, comprising: a light source unit that emits light constituting an image, and a cooling element that cools the light source unit in a first area in a housing. A step of disposing an optical system for forming an optical path of light emitted from the light source unit in a second area outside the first area, and a step of sealing the first area in a moisture-proof manner And a step of covering the entire casing with a cover.
実施例に係るヘッドアップディスプレイの概略構成を示す。1 shows a schematic configuration of a head-up display according to an embodiment. 投射装置の構成を示すブロック図である。It is a block diagram which shows the structure of a projection apparatus. レーザ光源部の外観を示す斜視図である。It is a perspective view which shows the external appearance of a laser light source part. レーザ光源部の平面図及び側面図である。It is the top view and side view of a laser light source part. 防湿封止された光源部の構成例を示す断面図である。It is sectional drawing which shows the structural example of the light source part sealed by moisture-proof. レーザ光源部の製造方法を示すフローチャートである。It is a flowchart which shows the manufacturing method of a laser light source part. レーザ光源部内における光源部とMEMSミラーの配置例を示す。The example of arrangement | positioning of the light source part and MEMS mirror in a laser light source part is shown. 光源部と制御基板とをフレキシブルケーブルで接続した例を示す。The example which connected the light source part and the control board with the flexible cable is shown. 光源部と制御基板とをフレキシブルケーブルで接続した例を示す。The example which connected the light source part and the control board with the flexible cable is shown. 光源部の排熱状態を模式的に示す。The exhaust heat state of a light source part is shown typically.
 本発明の好適な実施形態では、画像を構成する光を出射する光源部と、前記光源部を冷却する冷却素子と、前記光源部から出射された光の光路を形成する光学系と、を備える画像表示装置は、前記光源部と前記冷却素子とを防湿可能に封止する第1エリアと、前記第1エリアの外部に設けられ、前記光学系を含む第2エリアと、を備える。 In a preferred embodiment of the present invention, a light source unit that emits light constituting an image, a cooling element that cools the light source unit, and an optical system that forms an optical path of the light emitted from the light source unit are provided. The image display device includes a first area that seals the light source unit and the cooling element in a moisture-proof manner, and a second area that is provided outside the first area and includes the optical system.
 上記の画像表示装置では、第1エリアにおいて、光を出射する光源部と、光源部を冷却する冷却素子とが防湿可能に封止されている。また、その第2エリアの外部に設けられた第2エリアには、光源部から出射された光の光路を形成する光学系が設けられている。このように、第1エリアと第2エリアを分割し、第1エリアを防湿可能に封止することにより、光源部を、低コストかつ高い信頼性で封止することができる。 In the above image display device, in the first area, the light source unit that emits light and the cooling element that cools the light source unit are sealed in a moisture-proof manner. An optical system that forms an optical path of light emitted from the light source unit is provided in the second area provided outside the second area. Thus, by dividing the first area and the second area and sealing the first area in a moisture-proof manner, the light source unit can be sealed at low cost and with high reliability.
 好適な例では、前記第2エリアは、前記光源部により出射された光を反射させつつ走査する走査部を含む。他の好適な例では、前記第2エリアは、前記光源部により出射された光の一部が入射する光検出部を含む。他の好適な例では、前記第2エリアは、前記光源部により出射された光を透過又は反射する光学部材と、前記光の光量を調整する光量調整部とを含む。 In a preferred example, the second area includes a scanning unit that scans while reflecting light emitted from the light source unit. In another preferred example, the second area includes a light detection unit into which a part of the light emitted from the light source unit is incident. In another preferred example, the second area includes an optical member that transmits or reflects light emitted from the light source unit, and a light amount adjustment unit that adjusts the light amount of the light.
 上記の画像表示装置の一態様では、前記第1エリアは、前記光源部と前記冷却素子とを内部に設け、前記光源部から出射された光の出力方向に対向して形成された開口部を有する封止筐体で構成される。この態様では、光源部と冷却素子とを確実に封止しつつ、開口部を通じて光源部からの光を外部へ出射することができる。この場合の好適な例では、前記封止筐体は本体部とカバーとを含み、前記本体部は接着剤を利用して前記カバーにより封止される。 In one aspect of the image display device, the first area includes the light source unit and the cooling element provided therein, and an opening formed facing the output direction of the light emitted from the light source unit. It is comprised with the sealing housing | casing which has. In this aspect, light from the light source part can be emitted to the outside through the opening while reliably sealing the light source part and the cooling element. In a preferred example in this case, the sealing housing includes a main body portion and a cover, and the main body portion is sealed with the cover using an adhesive.
 本発明の他の一態様では、前記第2エリアは防塵可能に封止されている。これにより、第2エリア内の光学系を外部の塵などから保護することができる。 In another aspect of the present invention, the second area is sealed so as to be dustproof. Thereby, the optical system in the second area can be protected from external dust and the like.
 本発明の他の好適な実施形態は、画像を構成する光を出射する光源部と、前記光源部を冷却する冷却素子と、前記光源部から出射された光の光路を形成する光学系と、を備える画像表示装置であって、前記光源部と前記冷却素子とを含む第1エリアは、前記第1エリアの外部に設けられ前記光学系を含む第2エリアよりも高い密閉性を有する。この画像表示装置では、光源部及び冷却素子を含む第1エリアの密閉性を、光学系を含む第2エリアより高くすることにより、光源部を安定的に動作させることが可能となる。 According to another preferred embodiment of the present invention, a light source unit that emits light constituting an image, a cooling element that cools the light source unit, an optical system that forms an optical path of light emitted from the light source unit, and The first area including the light source unit and the cooling element has a higher sealing property than the second area provided outside the first area and including the optical system. In this image display device, it is possible to stably operate the light source unit by making the sealing property of the first area including the light source unit and the cooling element higher than that of the second area including the optical system.
 本発明の他の好適な実施形態は、画像表示装置の製造方法であって、筐体内の第1エリアに、画像を構成する光を出射する光源部と、前記光源部を冷却する冷却素子と、を配置する工程と、前記第1エリアの外部の第2エリアに、前記光源部から出射された光の光路を形成する光学系を配置する工程と、前記第1エリアを防湿可能に封止する工程と、前記筐体の全体をカバーにより覆う工程と、を有する。この製造方法では、第1エリアと第2エリアを分割し、第1エリアを防湿可能に封止することにより、光源部を、低コストかつ高い信頼性で封止することができる。 Another preferred embodiment of the present invention is a method for manufacturing an image display device, and a light source unit that emits light constituting an image to a first area in a housing; a cooling element that cools the light source unit; , A step of disposing an optical system for forming an optical path of light emitted from the light source unit in a second area outside the first area, and sealing the first area in a moisture-proof manner And a step of covering the entire casing with a cover. In this manufacturing method, by dividing the first area and the second area and sealing the first area in a moisture-proof manner, the light source unit can be sealed at low cost and with high reliability.
 以下、図面を参照して本発明の好適な実施例について説明する。 Hereinafter, preferred embodiments of the present invention will be described with reference to the drawings.
 [ヘッドアップディスプレイの構成]
 図1は、本発明の画像表示装置の実施例に係るヘッドアップディスプレイ100の概略構成図である。図1に示すように、ヘッドアップディスプレイ100は、主に、光源ユニット1と、凹面鏡10と、を備える。ヘッドアップディスプレイ100は、フロントウィンドウ25と、天井部27と、ボンネット28と、ダッシュボード29とを備える車両に取り付けられる。
[Configuration of head-up display]
FIG. 1 is a schematic configuration diagram of a head-up display 100 according to an embodiment of the image display apparatus of the present invention. As shown in FIG. 1, the head-up display 100 mainly includes a light source unit 1 and a concave mirror 10. The head-up display 100 is attached to a vehicle including a front window 25, a ceiling portion 27, a bonnet 28, and a dashboard 29.
 光源ユニット1は、ダッシュボード29内に設けられ、内部に投射装置6を有する。投射装置6は、表示像を構成する光(「表示光」とも呼ぶ。)を、光源ユニット1のレーザ光の射出口を構成する開口部(アパーチャー)51から射出させ、凹面鏡10に照射させる。凹面鏡10で反射した表示光は、ダッシュボード29に設けられた開口部89を介してフロントウィンドウ25へ到達し、さらにフロントウィンドウ25で反射して運転者の目の位置に到達する。このように、光源ユニット1は、表示光を運転者の目の位置へ到達させて、運転者に虚像Ivを視認させる。光源ユニット1または投射装置6は、本発明における画像表示装置の一例である。 The light source unit 1 is provided in the dashboard 29 and has a projection device 6 therein. The projection device 6 emits light constituting a display image (also referred to as “display light”) from an opening (aperture) 51 that constitutes a laser light exit of the light source unit 1 and irradiates the concave mirror 10. The display light reflected by the concave mirror 10 reaches the front window 25 through the opening 89 provided in the dashboard 29, and further reflects by the front window 25 to reach the position of the driver's eyes. In this way, the light source unit 1 causes the display light to reach the position of the driver's eyes and causes the driver to visually recognize the virtual image Iv. The light source unit 1 or the projection device 6 is an example of an image display device in the present invention.
 凹面鏡10は、光源ユニット1から射出された表示光を、ダッシュボード29に設けられた開口部89に向けて反射し、フロントウィンドウ25へ到達させる。この場合、凹面鏡10は、表示光が示す画像を拡大して反射する。 The concave mirror 10 reflects the display light emitted from the light source unit 1 toward the opening 89 provided in the dashboard 29 and reaches the front window 25. In this case, the concave mirror 10 magnifies and reflects the image indicated by the display light.
 なお、光源ユニット1の設置位置は、図1に示すようにダッシュボード29の内部であることに限定されない。例えば、光源ユニット1は、天井部27に取り付けられる態様(図示しないサンバイザに取り付けられる態様も含む)であってもよい。この場合、光源ユニット1とフロントウィンドウ25との間にコンバイナが設けられてもよい。 The installation position of the light source unit 1 is not limited to being inside the dashboard 29 as shown in FIG. For example, the light source unit 1 may be in an aspect (including an aspect in which the light source unit 1 is attached to a sun visor not shown) attached to the ceiling portion 27. In this case, a combiner may be provided between the light source unit 1 and the front window 25.
 [投射装置の構成]
 図2は、投射装置6の構成を示す。図1に示すように、投射装置6は、画像信号入力部2と、映像処理部3と、フレームメモリ4Aと、ROM4Bと、RAM4Cと、レーザドライバ7と、MEMSドライバ8と、レーザ光源部9と、マイクロレンズアレイ13と、フィールドレンズ14と、MCU(Micro Controller Unit)21と、不揮発性メモリ22と、を備える。投射装置6は、表示像を構成する光を投影することで、観察者に画像を視認させる。
[Configuration of Projection Device]
FIG. 2 shows the configuration of the projection device 6. As shown in FIG. 1, the projection device 6 includes an image signal input unit 2, a video processing unit 3, a frame memory 4 </ b> A, a ROM 4 </ b> B, a RAM 4 </ b> C, a laser driver 7, a MEMS driver 8, and a laser light source unit 9. A microlens array 13, a field lens 14, an MCU (Micro Controller Unit) 21, and a nonvolatile memory 22. The projection device 6 causes the observer to visually recognize the image by projecting light constituting the display image.
 画像信号入力部2は、外部から入力される画像信号Siを受信して映像処理部3に出力する。 The image signal input unit 2 receives an image signal Si input from the outside and outputs it to the video processing unit 3.
 映像処理部3は、画像信号入力部2から入力される画像信号Si及びMEMSミラー95から入力される走査位置情報Seに基づいて、レーザドライバ7やMEMSドライバ8を制御する。また、映像処理部3は、画像信号入力部2から入力された画像データをフレームメモリ4Aに書き込み、MEMSミラー95の駆動タイミングに応じて随時読み出し、赤(R)、緑(G)、青(B)の色ごとに各ピクセルの輝度に対応する制御信号を順次レーザドライバ7に送信する。さらに、映像処理部3は、フレームメモリ4Aからの画像データの読み出しタイミングを制御する。映像処理部3は、例えば、ASIC(Application Specific Integrated Circuit)として構成されている。 The video processing unit 3 controls the laser driver 7 and the MEMS driver 8 based on the image signal Si input from the image signal input unit 2 and the scanning position information Se input from the MEMS mirror 95. In addition, the video processing unit 3 writes the image data input from the image signal input unit 2 into the frame memory 4A, and reads the data as needed according to the drive timing of the MEMS mirror 95, and the red (R), green (G), blue ( A control signal corresponding to the luminance of each pixel is sequentially transmitted to the laser driver 7 for each color of B). Further, the video processing unit 3 controls the read timing of the image data from the frame memory 4A. The video processing unit 3 is configured as, for example, an ASIC (Application Specific Integrated Circuit).
 ROM4Bは、映像処理部3が動作するための制御プログラムやデータなどを記憶している。RAM4Cには、映像処理部3が動作する際のワークメモリとして、各種データが逐次読み書きされる。 The ROM 4B stores a control program and data for the video processing unit 3 to operate. Various data are sequentially read from and written into the RAM 4C as a work memory when the video processing unit 3 operates.
 レーザドライバ7は、後述するレーザ光源部9に設けられるレーザダイオードを駆動する信号を生成するブロックである。レーザドライバ7は、赤色レーザ駆動回路71と、青色レーザ駆動回路72と、緑色レーザ駆動回路73と、を備える。赤色レーザ駆動回路71は、映像処理部3が出力する制御信号に基づき、赤色レーザ素子LD1を駆動する。青色レーザ駆動回路72は、映像処理部3が出力する制御信号に基づき、青色レーザ素子LD2を駆動する。緑色レーザ駆動回路73は、映像処理部3が出力する信号に基づき、緑色レーザ素子LD3を駆動する。 The laser driver 7 is a block that generates a signal for driving a laser diode provided in a laser light source unit 9 described later. The laser driver 7 includes a red laser driving circuit 71, a blue laser driving circuit 72, and a green laser driving circuit 73. The red laser drive circuit 71 drives the red laser element LD1 based on the control signal output from the video processing unit 3. The blue laser driving circuit 72 drives the blue laser element LD2 based on the control signal output from the video processing unit 3. The green laser driving circuit 73 drives the green laser element LD3 based on a signal output from the video processing unit 3.
 また、本実施例では、レーザドライバ7は、射出光の強度に関する補正係数を表す補正信号SgをMCU21から受信する。そして、レーザドライバ7は、補正信号Sgに基づき、映像処理部3から受信する発光パターンを表す信号を補正し、補正済みの発光パターンを表す信号に基づいて、各色のレーザ素子LD1~LD3を駆動する電流値を制御する。 In this embodiment, the laser driver 7 receives a correction signal Sg representing a correction coefficient related to the intensity of the emitted light from the MCU 21. Then, the laser driver 7 corrects the signal representing the light emission pattern received from the video processing unit 3 based on the correction signal Sg, and drives the laser elements LD1 to LD3 of each color based on the signal representing the corrected light emission pattern. To control the current value.
 MEMSドライバ8は、映像処理部3が出力する信号に基づきMEMSミラー95を制御する。MEMSドライバ8は、サーボ回路と、ドライバ回路と、を備える。サーボ回路は、映像処理部3からの信号に基づき、MEMSミラー95の動作を制御する。ドライバ回路は、サーボ回路が出力するMEMSミラー95の制御信号を所定レベルに増幅して出力する。 The MEMS driver 8 controls the MEMS mirror 95 based on a signal output from the video processing unit 3. The MEMS driver 8 includes a servo circuit and a driver circuit. The servo circuit controls the operation of the MEMS mirror 95 based on the signal from the video processing unit 3. The driver circuit amplifies the control signal for the MEMS mirror 95 output from the servo circuit to a predetermined level and outputs the amplified signal.
 レーザ光源部9は、レーザドライバ7から出力される駆動信号に基づいて、レーザ光を射出する。レーザ光源部9は、主に、赤色レーザ素子LD1と、青色レーザ素子LD2と、緑色レーザ素子LD3と、光量検出器23と、PSD(Position Sensitive Detector)24と、コリメータレンズ91a~91cと、反射ミラー92a~92cと、偏光ビームスプリッタ93と、ビームスプリッタ94と、MEMSミラー95と、グラデーションND(Neutral Density)フィルタ97と、PSDレンズ99と、を備える。 The laser light source unit 9 emits laser light based on the drive signal output from the laser driver 7. The laser light source unit 9 mainly includes a red laser element LD1, a blue laser element LD2, a green laser element LD3, a light amount detector 23, a PSD (Position Sensitive Detector) 24, collimator lenses 91a to 91c, and a reflection. Mirrors 92a to 92c, a polarization beam splitter 93, a beam splitter 94, a MEMS mirror 95, a gradation ND (Neutral Density) filter 97, and a PSD lens 99 are provided.
 赤色レーザ素子LD1は赤色のレーザ光(「赤色レーザ光」とも呼ぶ。)を射出し、青色レーザ素子LD2は青色のレーザ光(「青色レーザ光」とも呼ぶ。)を射出し、緑色レーザ素子LD3は緑色のレーザ光(「緑色レーザ光」とも呼ぶ。)を射出する。コリメータレンズ91a~91cは、それぞれ、赤色、青色及び緑色のレーザ光を平行光にして、反射ミラー92a~92cに射出する。反射ミラー92bは、青色レーザ光を反射する。反射ミラー92cは、青色レーザ光を透過させ、緑色レーザ光を反射する。反射ミラー92aは、赤色レーザ光を透過させ、青色及び緑色のレーザ光を反射する。こうして反射ミラー92aを透過した赤色レーザ光及び反射ミラー92aで反射された青色及び緑色のレーザ光は、偏光ビームスプリッタ93に入射される。 The red laser element LD1 emits red laser light (also referred to as “red laser light”), the blue laser element LD2 emits blue laser light (also referred to as “blue laser light”), and the green laser element LD3. Emits green laser light (also referred to as “green laser light”). The collimator lenses 91a to 91c convert the red, blue, and green laser beams into parallel beams and emit the parallel beams to the reflection mirrors 92a to 92c. The reflection mirror 92b reflects blue laser light. The reflection mirror 92c transmits blue laser light and reflects green laser light. The reflection mirror 92a transmits red laser light and reflects blue and green laser light. The red laser light transmitted through the reflection mirror 92 a and the blue and green laser light reflected by the reflection mirror 92 a are incident on the polarization beam splitter 93.
 偏光ビームスプリッタ93に入射したレーザ光は、偏光ビームスプリッタ93を透過してMEMSミラー95に入射する光と、偏光ビームスプリッタ93で反射してビームスプリッタ94に入射する光とに分けられる。具体的に、偏光ビームスプリッタ93を透過した光は、グラデーションNDフィルタ97を透過して、MEMSミラー95に入射する。グラデーションNDフィルタ97は、レーザ光の入射する位置に応じて出射光の輝度を調整するフィルタである。一方、偏光ビームスプリッタ93で反射してビームスプリッタ94に入射した光の一部は、ビームスプリッタ94を透過して光量検出器23に入射し、その他の光はビームスプリッタ94で反射し、PSDレンズ99を介してPSD24に入射する。 The laser light incident on the polarization beam splitter 93 is divided into light that is transmitted through the polarization beam splitter 93 and incident on the MEMS mirror 95 and light that is reflected by the polarization beam splitter 93 and incident on the beam splitter 94. Specifically, the light that has passed through the polarization beam splitter 93 passes through the gradation ND filter 97 and enters the MEMS mirror 95. The gradation ND filter 97 is a filter that adjusts the luminance of the emitted light in accordance with the position where the laser light is incident. On the other hand, a part of the light reflected by the polarizing beam splitter 93 and incident on the beam splitter 94 is transmitted through the beam splitter 94 and incident on the light amount detector 23, and the other light is reflected by the beam splitter 94 to be a PSD lens. It enters the PSD 24 via 99.
 光量検出器23は、ビームスプリッタ94を透過したレーザ光の光量(強度)に応じた電気信号である検出信号Saを生成し、MCU21へ供給する。PSD24は、スポット状の光の位置を検出し、検出した光の位置に関する検出信号SbをMCU21へ供給する。PSD24は、検出した各レーザ光LB、LG、LRの光軸の位置に関する検出信号Sbを生成する。MCU21は、検出信号Sbに基づいて、各レーザ光LB、LG、LRの光軸の位置を調整して、各色のレーザ光の位置ずれを補正する。 The light amount detector 23 generates a detection signal Sa that is an electrical signal corresponding to the light amount (intensity) of the laser light that has passed through the beam splitter 94 and supplies the detection signal Sa to the MCU 21. The PSD 24 detects the position of the spot-like light and supplies a detection signal Sb related to the detected light position to the MCU 21. The PSD 24 generates a detection signal Sb related to the position of the optical axis of each detected laser beam LB, LG, LR. The MCU 21 adjusts the position of the optical axis of each laser beam LB, LG, LR based on the detection signal Sb, and corrects the position shift of the laser beam of each color.
 レーザ光源部9からレーザ光が射出される位置には、EPE(Exit Pupil Expander)の一例であるマイクロレンズアレイ13と、フィールドレンズ14とが設けられている。MEMSミラー95は、グラデーションNDフィルタ97を透過したレーザ光をマイクロレンズアレイ13に向けて反射する。MEMSミラー95は、基本的には、画像信号Siが示す画像を表示するために、MEMSドライバ8の制御によりマイクロレンズアレイ13上を走査するように移動し、その際の走査位置情報(例えばミラーの角度などの情報)を走査位置情報Seとして映像処理部3へ出力する。 At a position where laser light is emitted from the laser light source unit 9, a microlens array 13 which is an example of EPE (Exit Pupil Expander) and a field lens 14 are provided. The MEMS mirror 95 reflects the laser light transmitted through the gradation ND filter 97 toward the microlens array 13. The MEMS mirror 95 basically moves so as to scan the microlens array 13 under the control of the MEMS driver 8 in order to display an image indicated by the image signal Si, and scan position information at that time (for example, a mirror) (Information such as the angle) is output to the video processing unit 3 as scanning position information Se.
 マイクロレンズアレイ13は、複数のマイクロレンズが配列されており、MEMSミラー95で反射されたレーザ光が入射する。フィールドレンズ14は、マイクロレンズアレイ13の放射面に形成された画像(即ち中間像)を拡大する。フィールドレンズ14から射出された光は、開口部51を通過して凹面鏡10に入射される。 In the microlens array 13, a plurality of microlenses are arranged, and the laser beam reflected by the MEMS mirror 95 is incident thereon. The field lens 14 enlarges an image (that is, an intermediate image) formed on the radiation surface of the microlens array 13. The light emitted from the field lens 14 passes through the opening 51 and enters the concave mirror 10.
 MCU21は、各色レーザ光の光軸の位置合わせ、及び、レーザ素子LD1~LD3に出力させるレーザ光の光量バランスを調整する処理を、画像信号Siに基づく画像描画を行っていない所定のタイミングで実行する。具体的には、MCU21は、PSD24から受信する検出信号Sbに基づき、光軸ずれ及び当該光軸ずれの方向を検出し、各レーザLD1~LD3の発光タイミングを補正する補正信号Sfを生成して映像処理部3へ送信する。これにより、各色レーザ光の光軸を一致させる。 The MCU 21 performs the process of adjusting the optical axis alignment of each color laser beam and adjusting the light intensity balance of the laser beams output to the laser elements LD1 to LD3 at a predetermined timing when the image drawing based on the image signal Si is not performed. To do. Specifically, the MCU 21 detects the optical axis deviation and the direction of the optical axis deviation based on the detection signal Sb received from the PSD 24, and generates a correction signal Sf for correcting the light emission timing of each of the lasers LD1 to LD3. Transmit to the video processing unit 3. Thereby, the optical axes of the laser beams of the respective colors are matched.
 また、MCU21は、光量検出器23から受信する検出信号Saに基づき、レーザ光を駆動する電流値を補正させるための補正係数をR、G、Bのそれぞれについて決定し、当該補正係数の各々を示す補正信号Sgをレーザドライバ7に出力する。なお、映像処理部3は、MCU21から補正信号Sgを受信することで、補正信号Sgに基づく補正をレーザドライバ7に反映させてもよい。不揮発性メモリ22は、キャリブレーションに必要な情報等を記憶する。 Further, the MCU 21 determines a correction coefficient for correcting the current value for driving the laser beam for each of R, G, and B based on the detection signal Sa received from the light amount detector 23, and sets each of the correction coefficients. The correction signal Sg shown is output to the laser driver 7. Note that the video processing unit 3 may reflect the correction based on the correction signal Sg on the laser driver 7 by receiving the correction signal Sg from the MCU 21. The nonvolatile memory 22 stores information necessary for calibration.
 [レーザ光源部]
 (全体構成)
 まず、レーザ光源部9の構成について詳しく説明する。図3は、レーザ光源部9の外観を示す斜視図である。レーザ光源部9は、矩形の筐体30として構成される。筐体30は、カバー31と、本体32とを備える。カバー31の上面には、レーザ光が出射される開口部51が設けられている。また、筐体30からは、フレキシブルケーブル36と、プリント基板ケーブル37とが引き出されている。フレキシブルケーブル36は、レーザ光源部9内部のレーザLD1~LD3などに接続されている。後述するように、レーザ光源部9の外部には、レーザドライバ7を備える制御基板48が設けられ、フレキシブルケーブル36は制御基板48と電気的に接続される。プリント基板ケーブル37は、レーザ光源部9に設けられた光量検出器23、PSD24などと電気的に接続され、それらの出力信号をMCU21へ供給する。
[Laser light source]
(overall structure)
First, the configuration of the laser light source unit 9 will be described in detail. FIG. 3 is a perspective view showing the appearance of the laser light source unit 9. The laser light source unit 9 is configured as a rectangular housing 30. The housing 30 includes a cover 31 and a main body 32. An opening 51 through which laser light is emitted is provided on the upper surface of the cover 31. Further, a flexible cable 36 and a printed circuit board cable 37 are drawn out from the housing 30. The flexible cable 36 is connected to the lasers LD1 to LD3 in the laser light source unit 9 and the like. As will be described later, a control board 48 including the laser driver 7 is provided outside the laser light source unit 9, and the flexible cable 36 is electrically connected to the control board 48. The printed circuit board cable 37 is electrically connected to the light amount detector 23, the PSD 24, and the like provided in the laser light source unit 9, and supplies their output signals to the MCU 21.
 図4(A)は、カバー31を取り外した状態のレーザ光源部9を上方から見た平面図である。図示のように、レーザ光源部9は、光源部33と、光学系34とに大別される。光源部33は、レーザLD1~LD3から出射されるレーザ光を合成して光学系34へ出射する。光学系34は、光源部33から出射されたレーザ光をMEMSミラー95、光量検出器23及びPSD24へ導く。なお、図4(A)に破線で示すように、光源部33が設けられたエリアを「光源エリアA1」と呼び、光学系34が設けられたエリアを「光学系エリアA2」と呼ぶ。 FIG. 4A is a plan view of the laser light source unit 9 with the cover 31 removed as viewed from above. As illustrated, the laser light source unit 9 is roughly divided into a light source unit 33 and an optical system 34. The light source unit 33 combines the laser beams emitted from the lasers LD1 to LD3 and emits them to the optical system 34. The optical system 34 guides the laser light emitted from the light source unit 33 to the MEMS mirror 95, the light amount detector 23, and the PSD 24. 4A, the area where the light source unit 33 is provided is referred to as “light source area A1”, and the area where the optical system 34 is provided is referred to as “optical system area A2.”
 具体的に、光源部33は、レーザLD1~LD3、コリメータレンズ91a~91c、反射ミラー92a~92cを含む。一方、光学系34は、光量検出器23、PSD24、偏光ビームスプリッタ93、ビームスプリッタ94、MEMSミラー95、グラデーションNDフィルタ97、PDSレンズ99を含む。 Specifically, the light source unit 33 includes lasers LD1 to LD3, collimator lenses 91a to 91c, and reflection mirrors 92a to 92c. On the other hand, the optical system 34 includes a light amount detector 23, a PSD 24, a polarization beam splitter 93, a beam splitter 94, a MEMS mirror 95, a gradation ND filter 97, and a PDS lens 99.
 図4(B)は、レーザ光源部9の側面図である。なお、図4(B)では、光源部33から出射したレーザ光LをMEMSミラー95により反射する光路のみを示しており、レーザ光から光量検出器23及びPSD24への光路は省略している。図示のように、光源部33から出射したレーザ光Lは、MEMSミラー95により斜め上方に反射されつつ走査され、開口部51に送られる。なお、詳細は後述するが、光源部33の底部には冷却のためのペルチェ封止板41が設けられている。 FIG. 4B is a side view of the laser light source unit 9. In FIG. 4B, only the optical path for reflecting the laser light L emitted from the light source unit 33 by the MEMS mirror 95 is shown, and the optical paths from the laser light to the light quantity detector 23 and the PSD 24 are omitted. As shown in the figure, the laser light L emitted from the light source unit 33 is scanned while being reflected obliquely upward by the MEMS mirror 95 and sent to the opening 51. In addition, although mentioned later for details, the bottom part of the light source part 33 is provided with the Peltier sealing board 41 for cooling.
 上記の構成において、MEMSミラー95は本発明の走査部の一例であり、光量検出部23は本発明の光検出部の一例であり、偏光ビームスプリッタ93及びビームスプリッタ94は本発明の光学部材の一例であり、グラデーションNDフィルタ97は本発明の光量調整部の一例である。 In the above configuration, the MEMS mirror 95 is an example of the scanning unit of the present invention, the light amount detection unit 23 is an example of the light detection unit of the present invention, and the polarization beam splitter 93 and the beam splitter 94 are the optical members of the present invention. The gradation ND filter 97 is an example, and is an example of a light amount adjustment unit of the present invention.
 (封止構造)
 次に、レーザ光源部9の封止構造について説明する。図4(A)において、光源エリアA1は防湿封止され、光学系エリアA2は防塵封止される。防湿封止は、防塵封止と比べて高い気密性(密閉性)が確保される。具体的には、防湿封止は、防塵封止と比べて気密性の高い素材でハウジングやカバーを製作するとともに、より気密性の高い接着剤で封止を行う。一般に、レーザが点灯できる温度範囲は、車載要求温度範囲より狭いため、ペルチェモジュールを用いてレーザの温度を周辺温度より下げる必要がある。その際、レーザその他の冷却されるべき箇所が高湿な空気にさらされていると結露が発生し、正常な動作ができなくなったり、故障が生じたりする恐れがある。特に、水蒸気の分子は塵埃に比べて小さいため、光源エリアA1は防湿封止による高い気密性が確保される。これに対し、光学系エリアA2は、光源エリアA1ほど厳しい湿度管理が要求されないので、塵埃の侵入を防止するための防塵封止がなされる。
(Sealing structure)
Next, the sealing structure of the laser light source unit 9 will be described. In FIG. 4A, the light source area A1 is sealed in a moisture-proof manner, and the optical system area A2 is sealed in a dust-proof manner. The moisture-proof seal ensures a higher airtightness (sealing property) than the dust-proof seal. Specifically, in the moisture-proof seal, the housing and the cover are manufactured with a material having a higher airtightness than the dustproof seal, and the seal is performed with a more airtight adhesive. Generally, since the temperature range in which the laser can be lit is narrower than the vehicle-mounted required temperature range, it is necessary to lower the laser temperature from the ambient temperature using a Peltier module. At that time, if the laser and other parts to be cooled are exposed to high-humidity air, condensation may occur, and normal operation may not be possible or a failure may occur. In particular, since water vapor molecules are smaller than dust, the light source area A1 is secured with high airtightness by moisture-proof sealing. On the other hand, the optical system area A2 is not required to be as strict as humidity control as in the light source area A1, and thus is dust-tightly sealed to prevent intrusion of dust.
 図5(A)は、防湿封止された光源部33の構成例を示す断面図である。光源部33は、本発明の封止筐体として構成され、ペルチェ封止板41上に本体部42とカバー43が設けられてなる。ペルチェ封止板41は、底面に図示しないヒートシンクなどの放熱形状が形成される。ペルチェ封止板41上には、冷却素子としてのペルチェモジュール44が配置され、ペルチェモジュール44上にレーザLDが配置される。ペルチェモジュール44により、レーザLDが冷却され、適切な許容温度内に維持される。 FIG. 5A is a cross-sectional view illustrating a configuration example of the moisture-proof sealed light source unit 33. The light source unit 33 is configured as a sealed casing of the present invention, and a main body unit 42 and a cover 43 are provided on a Peltier sealing plate 41. The Peltier sealing plate 41 is formed with a heat radiation shape such as a heat sink (not shown) on the bottom surface. A Peltier module 44 as a cooling element is disposed on the Peltier sealing plate 41, and a laser LD is disposed on the Peltier module 44. The Peltier module 44 cools the laser LD and maintains it within an appropriate allowable temperature.
 ペルチェ封止板41の上面は、封止接着剤46を使用して本体部42により封止される。本体部42の上部は、同じく封止接着剤46を使用してカバー43により封止される。本体部42の1つの側面(図中の右側)には、レーザLDからのレーザ光Lを外部へ出射するための開口49が設けられており、開口49は封止接着剤46を使用してガラス板45により封止される。こうして、光源部33の全体が防湿封止され、高い密閉性が確保される。なお、このように光源部33の上部はカバー43により封止され、さらに図3に示すようにレーザ光源部9の全体がカバー31により覆われるため、光源部33はカバー43とカバー31により2重に覆われることになる。 The upper surface of the Peltier sealing plate 41 is sealed by the main body 42 using a sealing adhesive 46. The upper part of the main body 42 is sealed with the cover 43 using the sealing adhesive 46. An opening 49 for emitting laser light L from the laser LD to the outside is provided on one side surface (right side in the drawing) of the main body portion 42. The opening 49 uses a sealing adhesive 46. Sealed with a glass plate 45. In this way, the entire light source unit 33 is sealed in a moisture-proof manner, and high sealing performance is ensured. Since the upper part of the light source unit 33 is sealed by the cover 43 and the entire laser light source unit 9 is covered by the cover 31 as shown in FIG. 3, the light source unit 33 is covered by the cover 43 and the cover 31. It will be covered heavily.
 図5(B)は、光源部33の他の構成例を示す断面図である。この例では、図5(A)の例に示す本体部42とカバー43とを一体化した本体部47を用いているが、それ以外の点は、図5(A)に示す例と同様である。 FIG. 5B is a cross-sectional view showing another configuration example of the light source unit 33. In this example, the main body portion 47 in which the main body portion 42 and the cover 43 shown in the example of FIG. 5 (A) are integrated is used, but the other points are the same as the example shown in FIG. 5 (A). is there.
 上記のように、本実施例では、光源エリアA1を防湿封止し、その外側の光学系エリアA2を防塵封止している(以下、これを「2分割封止」とも呼ぶ。)。このようにレーザ光源部9を2分割封止すると、レーザ光源部9全体を防湿封止する場合と比べて、以下のようなメリットが得られる。 As described above, in this embodiment, the light source area A1 is sealed in a moisture-proof manner, and the outer optical system area A2 is sealed in a dust-proof manner (hereinafter also referred to as “two-division sealing”). When the laser light source unit 9 is sealed in two parts in this way, the following advantages can be obtained as compared with the case where the entire laser light source unit 9 is sealed in a moisture-proof manner.
 (1)封止接着部分の総延長(光源エリアの総周囲長)を短くすることができる。 (1) The total extension (total perimeter of the light source area) of the sealing adhesion portion can be shortened.
 2分割封止により、図4(A)に示す光源エリアA1の周囲(破線部)のみを防湿封止すればよいので、まず、封止接着の工数、封止接着剤のコストを抑えることができる。また、封止接着部からの水蒸気の侵入量を抑えることができ、結露が生じにくくなる。一般的に、封止用のハウジング、カバー、接着剤の各々で線膨張率(温度を摂氏1度上げたときの物質の長さの増加割合)が異なり、封止接着部分の総延長が短い方が、熱膨張を起こした場合でも接着剤へのストレスを抑えられるため、封止の信頼性が向上する。線膨張率が小さい場合であっても、総延長が長い場合は、短い場合と比べて接着剤にかかるストレスが大きくなり、接着剤にクラックなどが生じやすくなる。このため、封止接着部分の総延長を短くすることが好ましい。 Since only the periphery (broken line part) of the light source area A1 shown in FIG. 4 (A) needs to be moisture-proof sealed by the two-part sealing, first, the man-hour for sealing adhesion and the cost of the sealing adhesive can be suppressed. it can. In addition, the amount of water vapor entering from the sealing adhesive portion can be suppressed, and condensation is unlikely to occur. Generally, the linear expansion coefficient (the rate of increase in the length of the material when the temperature is raised to 1 degree Celsius) is different for each of the sealing housing, cover, and adhesive, and the total length of the sealing adhesive portion is short. However, since the stress on the adhesive can be suppressed even when thermal expansion occurs, the reliability of sealing is improved. Even when the linear expansion coefficient is small, when the total extension is long, the stress applied to the adhesive is larger than when the total extension is short, and cracks or the like are likely to occur in the adhesive. For this reason, it is preferable to shorten the total extension of the sealing adhesive portion.
 (2)封止空間の容積を小さくすることができる。 (2) The volume of the sealed space can be reduced.
 封止される空間の容量を小さくすることにより、水蒸気の侵入量を抑えることができ、結露が生じにくくなる。 By reducing the capacity of the sealed space, the amount of water vapor can be suppressed and condensation is unlikely to occur.
 (3)封止する箇所を、温度調整される箇所の周辺に限定することができる。 (3) The location to be sealed can be limited to the periphery of the location where the temperature is adjusted.
 封止する箇所を、高温になりやすい光源部の周辺に限定することにより、封止箇所の温度がより均一になりやすくなり、熱膨張を起こしにくくなる。そのため、熱膨張により発生する接着剤へのストレスを抑えることができ、封止の信頼性が向上する。 By limiting the portion to be sealed to the periphery of the light source part that is likely to become high temperature, the temperature of the sealed portion is likely to be more uniform, and thermal expansion is less likely to occur. Therefore, stress on the adhesive generated by thermal expansion can be suppressed, and the sealing reliability is improved.
 なお、上記の例では、光学系エリアA2を防塵封止しているが、光学系エリアA2を封止せず、温度調整が必要な光源エリアA1のみを防湿封止することとしてもよい。 In the above example, the optical system area A2 is sealed in a dustproof manner, but the optical system area A2 may not be sealed, and only the light source area A1 that requires temperature adjustment may be sealed in a moistureproof manner.
 また、防湿封止された光源エリアA1の内部には、さらに内部の温度を一定にさせるための部品、例えば温度センサなどを設けてもよい。 Further, a part for making the internal temperature constant, for example, a temperature sensor or the like, may be provided inside the light source area A1 that is moisture-proof sealed.
 (製造方法)
 図6は、レーザ光源部9の製造方法を示すフローチャートである。まず、図4に示すように、光源エリアA1及び光学系エリアA2内に、各部品を設置する(工程S1)。次に、図5(A)、5(B)などに例示する方法で、光源部33を防湿封止する(工程S2)。次に、光源部33のみが防湿封止された状態で、光学系エリアA2内の光学系(光学部品など)の調整を行う(工程S3)。
(Production method)
FIG. 6 is a flowchart showing a method for manufacturing the laser light source unit 9. First, as shown in FIG. 4, each component is installed in the light source area A1 and the optical system area A2 (step S1). Next, the light source part 33 is sealed in a moisture-proof manner by a method exemplified in FIGS. 5A and 5B (step S2). Next, adjustment of an optical system (such as an optical component) in the optical system area A2 is performed in a state where only the light source unit 33 is sealed in a moisture-proof manner (step S3).
 光学系の調整が終了すると、光学系エリアA2を防塵封止する(工程S4)。そして、レーザ光源部9の筐体30全体をカバー31により覆う(工程S5)。こうして、レーザ光源部9が製造される。 When the adjustment of the optical system is completed, the optical system area A2 is dust-tightly sealed (step S4). And the whole housing | casing 30 of the laser light source part 9 is covered with the cover 31 (process S5). Thus, the laser light source unit 9 is manufactured.
 これにより、光源エリアA1の上部はカバー43又は本体部47により防湿封止され、さらに筐体30のカバー31により覆われた状態となる。即ち、光源エリアA1の上部は2重に覆われた状態(2重構造)となる。また、光学系エリアA2は図示しないカバーで防塵封止され、さらに筐体30のカバー31で覆われた状態となる。 Thereby, the upper portion of the light source area A1 is sealed in a moisture-proof manner by the cover 43 or the main body 47, and is further covered by the cover 31 of the housing 30. That is, the upper part of the light source area A1 is doubled (double structure). The optical system area A2 is sealed with a cover (not shown) and further covered with a cover 31 of the housing 30.
 なお、光学系エリアA2を防塵封止しない場合には、工程S4を省略し、光源部33を防湿封止した後、筐体30のカバー31を取り付ければ良い。この場合には、光源エリアA2の上部は同様に2重構造となるが、光学系エリアA2の上方は筐体30のカバー31のみで覆われた状態となる。 If the optical system area A2 is not dust-proof sealed, step S4 may be omitted, and the light source unit 33 may be moisture-proof sealed and then the cover 31 of the housing 30 may be attached. In this case, the upper part of the light source area A2 has a double structure, but the upper part of the optical system area A2 is covered with only the cover 31 of the housing 30.
 (レーザ光源部内の部品の配置)
 次に、レーザ光源部9内における部品の配置について述べる。
(Placement of parts in the laser light source)
Next, the arrangement of components in the laser light source unit 9 will be described.
 (1)光源部33とMEMSミラー95の配置
 図7(A)は、レーザ光源部9内における光源部33とMEMSミラー95の配置例を示す。図示のように、MEMSミラー95は、光源部33から出射されたレーザ光Liを斜め上方に走査して、スクリーンとしてのマイクロレンズアレイ13に描画する。ここで、光源部33とMEMSミラー95との距離が近い場合、MEMSミラー95から出射した走査光Loが光源部33により遮られないようにするためには、MEMSミラー95が出射する走査光Loの仰角θ(以下、「出射仰角」と呼ぶ。)を大きくする必要がある。特に、防湿封止される光源部33は、ペルチェ封止板41、ペルチェモジュール44、レーザLD、封止に必要なハウジングなどの部材などが重ねて配置されるため、レーザ光源部9内部でも最も高さが高くなる。よって、この光源部33を避けてMEMSミラー95からの走査光Loを出射するためには、出射仰角θを大きくする必要がある。
(1) Arrangement of Light Source Unit 33 and MEMS Mirror 95 FIG. 7A shows an arrangement example of the light source unit 33 and the MEMS mirror 95 in the laser light source unit 9. As illustrated, the MEMS mirror 95 scans the laser light Li emitted from the light source unit 33 obliquely upward and draws it on the microlens array 13 as a screen. Here, when the distance between the light source unit 33 and the MEMS mirror 95 is short, in order to prevent the scanning light Lo emitted from the MEMS mirror 95 from being blocked by the light source unit 33, the scanning light Lo emitted from the MEMS mirror 95 is used. Needs to be increased (hereinafter referred to as “exit elevation angle”). In particular, the light source unit 33 to be moisture-proof sealed has a Peltier sealing plate 41, a Peltier module 44, a laser LD, and a member such as a housing necessary for sealing, which are arranged in an overlapping manner. Height increases. Therefore, in order to emit the scanning light Lo from the MEMS mirror 95 while avoiding the light source unit 33, it is necessary to increase the emission elevation angle θ.
 しかし、出射仰角θを大きくすると、図7(A)に示すように、マイクロレンズアレイ13上に表示される画像の歪みが増大してしまう。また、このとき画像が歪まないようにするためには描画エリア内に画像を小さく描くことになり、レーザの点灯する部分が少なくなるため、描画される画像の輝度が低下してしまう。 However, when the outgoing elevation angle θ is increased, the distortion of the image displayed on the microlens array 13 increases as shown in FIG. Further, at this time, in order to prevent the image from being distorted, the image is drawn small in the drawing area, and the portion where the laser is turned on is reduced, so that the luminance of the drawn image is lowered.
 そこで、図7(B)に示すように、レーザ光源部9内において、光源部33を長辺方向(X方向)の一端に配置するとともに、MEMSミラー95を長辺方向の他端に配置する。これにより、光源部33からMEMSミラー95までの距離を長くすることができ、図7(A)の場合と比較して出射仰角θを小さくすることができる。最適には、光源部33を、レーザ光源部9の筐体30の長辺方向の一端において筐体30の璧部30zと接するように配置する。もしくは、光源部33を、長辺方向の一端において、璧部30zと少なくとも一面を共有する、即ち、璧部30zが光源部33の璧部を兼ねるように構成する。これにより、走査光Loの出射仰角θを小さくすることができ、マイクロレンズアレイ13に描画される画像の歪みの減少、画質の向上、輝度の向上などを図ることができる。なお、構造上、光源部33を筐体30の璧部30zと接するように配置できない場合には、璧部30zとの間に多少の隙間があっても構わない。この場合でも、光源部33とMEMSミラー95との距離を可能な限り長くすることができるので、出射仰角θを小さくすることができる。 Therefore, as shown in FIG. 7B, in the laser light source unit 9, the light source unit 33 is arranged at one end in the long side direction (X direction) and the MEMS mirror 95 is arranged at the other end in the long side direction. . Thereby, the distance from the light source part 33 to the MEMS mirror 95 can be lengthened, and the outgoing elevation angle θ can be reduced as compared with the case of FIG. Optimally, the light source unit 33 is disposed so as to be in contact with the wall portion 30z of the housing 30 at one end of the laser light source unit 9 in the long side direction of the housing 30. Alternatively, the light source unit 33 is configured to share at least one surface with the wall portion 30 z at one end in the long side direction, that is, the wall portion 30 z also serves as the wall portion of the light source unit 33. As a result, the emission elevation angle θ of the scanning light Lo can be reduced, and the distortion of the image drawn on the microlens array 13 can be reduced, the image quality can be improved, and the brightness can be improved. If the light source unit 33 cannot be disposed so as to be in contact with the wall portion 30z of the housing 30, there may be a slight gap between the wall portion 30z and the wall portion 30z. Even in this case, since the distance between the light source unit 33 and the MEMS mirror 95 can be made as long as possible, the emission elevation angle θ can be reduced.
 (2)フレキシブルケーブル36の長さ
 図8(A)は、レーザ光源部9内の光源部33と外部の制御基板48とをフレキシブルケーブル36で接続した例を示す。光源部33がレーザ光源部9の筐体30の中央よりの位置にあると、フレキシブルケーブル36を長くする必要がある。しかし、このフレキシブルケーブル36は、光源部33内のレーザLDの駆動信号、即ち、高周波の信号が通過するため、ケーブル長が長いとレーザ駆動信号にノイズが乗りやすくなるという不具合がある。
(2) Length of Flexible Cable 36 FIG. 8A shows an example in which the light source unit 33 in the laser light source unit 9 and the external control board 48 are connected by the flexible cable 36. If the light source unit 33 is positioned from the center of the housing 30 of the laser light source unit 9, the flexible cable 36 needs to be lengthened. However, since this flexible cable 36 passes a drive signal of the laser LD in the light source section 33, that is, a high-frequency signal, there is a problem that noise is easily applied to the laser drive signal when the cable length is long.
 そこで、図8(B)に示すように、光源部33を筐体30の璧部30zに沿って配置する。これにより、光源部33は、筐体30の璧部30zを挟んで制御基板48と隣接する。具体的には、光源部33を、レーザ光源部9の筐体30の璧部30zと接するように配置する。もしくは、光源部33を璧部30zと少なくとも一面を共有する、即ち、璧部30zが光源部33の璧部を兼ねるように構成する。そして、その光源部33のすぐ外側に制御基板48を配置する。これにより、フレキシブルケーブル36の長さを可能な限り短くすることができ、ノイズの少ないレーザ駆動信号を光源部33に供給することが可能となる。 Therefore, as shown in FIG. 8B, the light source unit 33 is arranged along the wall portion 30 z of the housing 30. Accordingly, the light source unit 33 is adjacent to the control board 48 with the wall portion 30z of the housing 30 interposed therebetween. Specifically, the light source unit 33 is disposed so as to be in contact with the wall portion 30 z of the housing 30 of the laser light source unit 9. Alternatively, the light source part 33 is configured to share at least one surface with the wall part 30 z, that is, the wall part 30 z also serves as the wall part of the light source part 33. Then, the control board 48 is disposed just outside the light source unit 33. Accordingly, the length of the flexible cable 36 can be shortened as much as possible, and a laser drive signal with less noise can be supplied to the light source unit 33.
 図9(A)は、図中のY方向における反対側の隅(角)に光源部33を配置した例を示す。また、図9(B)は、図中のY方向に光源部33と制御基板48とを並べて配置した例を示す。これらの例でも、フレキシブルケーブル36を短くすることができる。 FIG. 9A shows an example in which the light source unit 33 is arranged at the opposite corner (corner) in the Y direction in the drawing. FIG. 9B shows an example in which the light source unit 33 and the control board 48 are arranged side by side in the Y direction in the drawing. Also in these examples, the flexible cable 36 can be shortened.
 (3)ペルチェモジュールの排熱処理
 図10(A)は、レーザ光源部9内の光源部33からの排熱状態を模式的に示す。図示のように、光源部33が筐体30の中央付近に配置されていると、光源部33に設けられたペルチェモジュール44からの排熱がエリアA3に示すように全方向に伝わっていく。そのため、その熱を逃がすための部材のサイズが大きくなり、コストアップにつながる。また、熱に弱い部品が光源部33の周囲に配置されると、その部品にダメージを与える恐れがある。
(3) Exhaust Heat Treatment of Peltier Module FIG. 10A schematically shows an exhaust heat state from the light source unit 33 in the laser light source unit 9. As shown in the figure, when the light source unit 33 is arranged near the center of the housing 30, the heat exhausted from the Peltier module 44 provided in the light source unit 33 is transmitted in all directions as shown in the area A3. Therefore, the size of the member for releasing the heat increases, leading to an increase in cost. Further, when a heat-sensitive component is disposed around the light source unit 33, the component may be damaged.
 そこで、図10(B)に示すように、光源部33を筐体30の隅(角)に配置する。具体的には、光源部33を、レーザ光源部9の筐体30の璧部30zと接するように配置する。もしくは、光源部33を璧部30zと少なくとも一面を共有する、即ち、璧部30zが光源部33の璧部を兼ねるように構成する。図10(B)の例では、光源部33の1つの角部が筐体30の1つの角部と一致するように配置している。これにより、光源部33の2つの璧部が筐体30の2つの璧部と接するようになり、光源部33のペルチェモジュール44からの排熱がレーザ光源部9内の他の部分に与える影響を低減することができる。 Therefore, as shown in FIG. 10 (B), the light source unit 33 is arranged at the corner (corner) of the housing 30. Specifically, the light source unit 33 is disposed so as to be in contact with the wall portion 30 z of the housing 30 of the laser light source unit 9. Alternatively, the light source part 33 is configured to share at least one surface with the wall part 30 z, that is, the wall part 30 z also serves as the wall part of the light source part 33. In the example of FIG. 10B, the light source portion 33 is arranged so that one corner portion coincides with one corner portion of the housing 30. As a result, the two wall portions of the light source unit 33 come into contact with the two wall portions of the housing 30, and the influence of exhaust heat from the Peltier module 44 of the light source unit 33 on other parts in the laser light source unit 9. Can be reduced.
 本発明は、ヘッドアップディスプレイ、レーザを光源として使用するプロジェクタ、その他の画像表示装置に利用することができる。 The present invention can be used for a head-up display, a projector using a laser as a light source, and other image display devices.
 1 光源ユニット
 6 レーザ光源部
 7 レーザドライバ
 30 筐体
 33 光源部
 34 光学系
 36 フレキシブルケーブル
 41 ペルチェ封止板
 44 ペルチェモジュール
 46 封止接着剤
 42、47 本体部
 43 カバー
 48 制御基板
 95 MEMSミラー
DESCRIPTION OF SYMBOLS 1 Light source unit 6 Laser light source part 7 Laser driver 30 Case 33 Light source part 34 Optical system 36 Flexible cable 41 Peltier sealing board 44 Peltier module 46 Sealing adhesive 42, 47 Body part 43 Cover 48 Control board 95 MEMS mirror

Claims (9)

  1.  画像を構成する光を出射する光源部と、
     前記光源部を冷却する冷却素子と、
     前記光源部から出射された光の光路を形成する光学系と、
     を備える画像表示装置であって、
     前記光源部と前記冷却素子とを防湿可能に封止する第1エリアと、前記第1エリアの外部に設けられ、前記光学系を含む第2エリアと、を備えることを特徴とする画像表示装置。
    A light source unit that emits light constituting the image;
    A cooling element for cooling the light source unit;
    An optical system for forming an optical path of light emitted from the light source unit;
    An image display device comprising:
    An image display device comprising: a first area that seals the light source unit and the cooling element in a moisture-proof manner; and a second area that is provided outside the first area and includes the optical system. .
  2.  前記第2エリアは、前記光源部により出射された光を反射させつつ走査する走査部を含むことを特徴とする請求項1に記載の画像表示装置。 The image display device according to claim 1, wherein the second area includes a scanning unit that scans while reflecting light emitted from the light source unit.
  3.  前記第2エリアは、前記光源部により出射された光の一部が入射する光検出部を含むことを特徴とする請求項1又は2に記載の画像表示装置。 The image display device according to claim 1, wherein the second area includes a light detection unit on which a part of the light emitted from the light source unit is incident.
  4.  前記第2エリアは、前記光源部により出射された光を透過又は反射する光学部材と、前記光の光量を調整する光量調整部とを含むことを特徴とする請求項1乃至3のいずれか一項に記載の画像表示装置。 The said 2nd area contains the optical member which permeate | transmits or reflects the light radiate | emitted by the said light source part, and the light quantity adjustment part which adjusts the light quantity of the said light, The any one of Claim 1 thru | or 3 characterized by the above-mentioned. The image display device according to item.
  5.  前記第1エリアは、前記光源部と前記冷却素子とを内部に設け、前記光源部から出射された光の出力方向に対向して形成された開口部を有する封止筐体で構成されることを特徴とする請求項1乃至4のいずれか一項に記載の画像表示装置。 The first area includes a sealed housing having an opening formed in the light source portion and the cooling element inside and facing the output direction of the light emitted from the light source portion. The image display device according to claim 1, wherein:
  6.  前記封止筐体は本体部とカバーとを含み、前記本体部は接着剤を用いて前記カバーにより封止されていることを特徴とする請求項5に記載の画像表示装置。 The image display device according to claim 5, wherein the sealing housing includes a main body and a cover, and the main body is sealed with the cover using an adhesive.
  7.  前記第2エリアは防塵可能に封止されていることを特徴とする請求項1乃至6のいずれか一項に記載の画像表示装置。 The image display device according to any one of claims 1 to 6, wherein the second area is sealed so as to be dustproof.
  8.  画像を構成する光を出射する光源部と、
     前記光源部を冷却する冷却素子と、
     前記光源部から出射された光の光路を形成する光学系と、
     を備える画像表示装置であって、
     前記光源部と前記冷却素子とを含む第1エリアは、前記第1エリアの外部に設けられ前記光学系を含む第2エリアよりも高い密閉性を有することを特徴とする画像表示装置。
    A light source unit that emits light constituting the image;
    A cooling element for cooling the light source unit;
    An optical system for forming an optical path of light emitted from the light source unit;
    An image display device comprising:
    The image display apparatus according to claim 1, wherein the first area including the light source unit and the cooling element has a higher sealing property than a second area provided outside the first area and including the optical system.
  9.  筐体内の第1エリアに、画像を構成する光を出射する光源部と、前記光源部を冷却する冷却素子と、を配置する工程と、
     前記第1エリアの外部の第2エリアに、前記光源部から出射された光の光路を形成する光学系を配置する工程と、
     前記第1エリアを防湿可能に封止する工程と、
     前記筐体の全体をカバーにより覆う工程と、
     を有することを特徴とする画像表示装置の製造方法。
    Disposing a light source unit that emits light constituting an image and a cooling element that cools the light source unit in a first area in the housing; and
    Disposing an optical system for forming an optical path of light emitted from the light source unit in a second area outside the first area;
    Sealing the first area in a moisture-proof manner;
    Covering the entire housing with a cover;
    A method for manufacturing an image display device, comprising:
PCT/JP2015/085204 2015-12-16 2015-12-16 Image display device and method for manufacturing same WO2017104018A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2017555923A JP6606633B2 (en) 2015-12-16 2015-12-16 Image display device and manufacturing method thereof
PCT/JP2015/085204 WO2017104018A1 (en) 2015-12-16 2015-12-16 Image display device and method for manufacturing same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2015/085204 WO2017104018A1 (en) 2015-12-16 2015-12-16 Image display device and method for manufacturing same

Publications (1)

Publication Number Publication Date
WO2017104018A1 true WO2017104018A1 (en) 2017-06-22

Family

ID=59056123

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/085204 WO2017104018A1 (en) 2015-12-16 2015-12-16 Image display device and method for manufacturing same

Country Status (2)

Country Link
JP (1) JP6606633B2 (en)
WO (1) WO2017104018A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022526422A (en) * 2019-08-29 2022-05-24 アップル インコーポレイテッド Optical module for head mount device
US11885965B1 (en) 2019-09-23 2024-01-30 Apple Inc. Head-mounted display and display modules thereof

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015044511A (en) * 2013-08-29 2015-03-12 日本精機株式会社 Display device for vehicle
JP2015148654A (en) * 2014-02-05 2015-08-20 株式会社リコー Optical scanner, image display device, and moving body
JP2015152834A (en) * 2014-02-17 2015-08-24 株式会社リコー Light irradiation device and image display device including the same
JP2015169816A (en) * 2014-03-07 2015-09-28 船井電機株式会社 Dew condensation prevention structure of optical component and head up display device

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002280622A (en) * 2001-03-16 2002-09-27 Daikin Ind Ltd Peltier unit and peltier module
SI22142A (en) * 2007-01-10 2007-04-30 Leopold Pungercar External display
JP2010062440A (en) * 2008-09-05 2010-03-18 Yagi Antenna Co Ltd Laser diode module device
JP4371173B2 (en) * 2008-09-25 2009-11-25 パナソニック電工株式会社 Electrostatic atomizer
JP2012232256A (en) * 2011-04-28 2012-11-29 Toshiba Corp Electrostatic atomizer

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015044511A (en) * 2013-08-29 2015-03-12 日本精機株式会社 Display device for vehicle
JP2015148654A (en) * 2014-02-05 2015-08-20 株式会社リコー Optical scanner, image display device, and moving body
JP2015152834A (en) * 2014-02-17 2015-08-24 株式会社リコー Light irradiation device and image display device including the same
JP2015169816A (en) * 2014-03-07 2015-09-28 船井電機株式会社 Dew condensation prevention structure of optical component and head up display device

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022526422A (en) * 2019-08-29 2022-05-24 アップル インコーポレイテッド Optical module for head mount device
JP7329617B2 (en) 2019-08-29 2023-08-18 アップル インコーポレイテッド Optical modules for head-mounted devices
US11822081B2 (en) 2019-08-29 2023-11-21 Apple Inc. Optical module for head-mounted device
US11885965B1 (en) 2019-09-23 2024-01-30 Apple Inc. Head-mounted display and display modules thereof

Also Published As

Publication number Publication date
JP6606633B2 (en) 2019-11-20
JPWO2017104018A1 (en) 2018-10-04

Similar Documents

Publication Publication Date Title
US20140293430A1 (en) Projector and head-up display device
US10334213B2 (en) Scanning image display device
US9210388B2 (en) Laser source module and scanning image display device equipped with such module
KR20130063491A (en) Semiconductor laser light source
US10209610B2 (en) Laser light source module and scanning image display apparatus
US10148920B2 (en) Optical module and scanning-type image display device
US10892595B2 (en) Optical module
US11616337B2 (en) Optical module
US10803801B2 (en) Image display device
JP6606633B2 (en) Image display device and manufacturing method thereof
JP2014026128A (en) Optical module and scanning type image display device
JP2017112202A (en) Sealing structure and manufacturing method of the same
JP2017111285A (en) Image display device
US10613324B2 (en) Vehicle display device
JP2017083631A (en) Display device, control method, program and storage medium
US20210257814A1 (en) Optical module
US8876327B2 (en) Laser light source module and method of manufacturing laser light source module
US20150159832A1 (en) Light source unit and projector
WO2013179494A1 (en) Projection device, head-up display, control method, program and storage medium
TWI497111B (en) Optical scanning projection module
JP6394113B2 (en) Projector and head-up display device
US20210395073A1 (en) Movable device, distance measurement device, image projection apparatus, vehicle, and mount
JP2021148812A (en) projector
JP2023084313A (en) drawing system
JP2021089390A (en) Drawing device and drawing system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15910709

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017555923

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15910709

Country of ref document: EP

Kind code of ref document: A1