WO2017103314A1 - Production of viscoelastic capillary jets by means of gas focussing - Google Patents

Production of viscoelastic capillary jets by means of gas focussing Download PDF

Info

Publication number
WO2017103314A1
WO2017103314A1 PCT/ES2016/070896 ES2016070896W WO2017103314A1 WO 2017103314 A1 WO2017103314 A1 WO 2017103314A1 ES 2016070896 W ES2016070896 W ES 2016070896W WO 2017103314 A1 WO2017103314 A1 WO 2017103314A1
Authority
WO
WIPO (PCT)
Prior art keywords
liquid
jet
capillary
outlet opening
gas
Prior art date
Application number
PCT/ES2016/070896
Other languages
Spanish (es)
French (fr)
Inventor
Alberto TORRES PONCE
Emilio José VEGA RODRÍGUEZ
José María MONTANERO FERNÁNDEZ
Alfonso M. GAÑÁN CALVO
Original Assignee
Universidad De Extremadura
Universidad De Sevilla
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Universidad De Extremadura, Universidad De Sevilla filed Critical Universidad De Extremadura
Publication of WO2017103314A1 publication Critical patent/WO2017103314A1/en

Links

Classifications

    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01DMECHANICAL METHODS OR APPARATUS IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS
    • D01D5/00Formation of filaments, threads, or the like
    • D01D5/12Stretch-spinning methods
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15DFLUID DYNAMICS, i.e. METHODS OR MEANS FOR INFLUENCING THE FLOW OF GASES OR LIQUIDS
    • F15D1/00Influencing flow of fluids
    • F15D1/08Influencing flow of fluids of jets leaving an orifice

Definitions

  • the invention makes general reference to the field of fluid dynamics, and, in particular, to a method for forming a capillary stream of a viscoelastic liquid, said stream flowing concentrically with an accelerated gas stream and much faster so that a stabilized filament is formed by a tension stretching mechanism.
  • micro and nanometric fibers from viscoelastic jets.
  • electrospinning or electro-spinning
  • this method makes use of intense electric fields, which imposes certain restrictions on the electrical properties of the liquid used.
  • Micrometric viscoelastic jets are also produced that solidify into fibers by purely mechanical or hydrodynamic means.
  • melt spinning technique (so called because it originally referred to fusion spinning and stretching under centrifugal forces) [11]
  • the liquid is extruded through a small hole and collected at a speed greater than the average extrusion speed.
  • the resulting filament undergoes self-sustained oscillations when the ratio between the collection speed and the extrusion speed exceeds a critical value close to 20. This is called draw resonance instability [11, 12], the which considerably limits both the production rate and the minimum diameter of the fiber that can be obtained.
  • the "selective withdrawal” method (or selective extraction) [13] allows fibers to be produced from polymer solutions by sucking a liquid stream through a hole located in front of the viscoelastic bath. The drag and suction forces (viscosity and pressure) produced by the current collaborate to deform the bath interphase, form a meniscus and stretch it until it emits a small stream from its tip.
  • Flow focusing, [18, 19] has become a very popular method for producing submillimeter Newtonian jets using only hydrodynamic forces.
  • a meniscus hangs from a feeding capillary through which liquid is injected at a constant flow rate.
  • An external fluid current focuses and stretches the meniscus in front of a hole.
  • the meniscus emits a fine stream that co-flows with the external current through the hole.
  • the external medium was a high velocity gas stream driven by an applied pressure drop.
  • This configuration was subsequently adapted to the flat or two-dimensional (2D) topology [19] to form jets that co-flow with an external liquid stream, which boosted its application in microfluidics [1].
  • the capillary-hole distance and its diameters are of the same order and the entire jet emitted is influenced by the focusing effect [19,20].
  • the axisimetric flow focusing has been applied to the formation of viscoelastic jets, focused through an oil phase [28].
  • a transition from dripping to stable jet emission was observed for sufficiently high values of the injected flow rate. This transition has been explained in terms of equilibrium between the destabilizing capillary force and the stabilizing tension associated with polymer elongation [29].
  • An effective value of this tension was estimated taking into account the polymer elongation produced by both the Poiseuille type flow in the feeding capillary [30] and the subsequent stretching of the filament in the region of in focus. In all experiments, the stretched meniscus remained anchored to the end of the feeding capillary.
  • the present invention describes both a method for creating elongated capillary jets (filaments) and the jet itself obtainable according to the method.
  • the method comprises forcing a viscoelastic liquid, such as a liquid or Boger fluid, through the channel of a capillary tube, preferably cylindrical, as a power source.
  • the viscoelastic liquid imposes a speed of passage through the channel that causes the liquid to exit the outlet opening of the channel maintaining its filament or jet shape.
  • the end or exit opening of the channel is inside a pressurized chamber.
  • the passage of a gas such as air
  • a gas such as air
  • the gas focuses the flow of the viscoelastic liquid, so that liquid and gas flow concentrically, and transforms the jet of the liquid into an elongated jet that has a diameter substantially smaller than the diameter of the initial jet leaving the opening of the channel.
  • the narrow elongated stream of viscoelastic liquid and the surrounding gas leave the pressurized chamber through the exit orifice.
  • Said elongated capillary jet or filament can be collected as it exits through the outlet port of the pressurized chamber.
  • the method is performed such that the resulting Weber number is less than one, less than 1x10 "1 , less than 1x10 " 2 , less than 1x10 "3 , less than 1x10 " 4 , or less than 1x10 "6
  • the viscoelastic liquid such as a Boger liquid
  • the viscoelastic liquid is introduced through the channel at a rate in the range of 0.001 to 100 microliters per second, or between 0.01 and 10 microliters per second. , or between 50 microliters and 2,000 microliters per second, or 100 to 500 microliters per second.
  • the gas is forced through the orifice of the pressurized chamber at a speed in the range of 50 ⁇ / sec to 20,000 ⁇ / sec, or between 100 to 500 ⁇ / sec.
  • the gas velocity must be greater than the velocity of the viscoelastic liquid that comes out of the channel opening.
  • the channel of the power supply is a feeding tube or capillary, which may be in the form of a cylindrical or substantially cylindrical tube.
  • the feed capillary has an outlet diameter of less than 0.5 mm, less than 0.4 mm, less than 0.2 mm, or less than 0.1 mm.
  • the outlet of the capillary channel or tube is preferably located at a distance less than 0.5 mm from the outlet opening of the pressurized chamber.
  • the outlet opening of the power supply is located at a point at a distance in the range of 0.2 to 0.5 mm from the outlet opening of the pressurized chamber.
  • the outlet opening of the pressurized chamber which is located directly in front of the outlet opening of the power supply, is generally circular.
  • Preferred diameters for said exit port of the pressurized chamber are below 0.25 mm, for example in the range of 0.1 mm to 0.25 mm.
  • the feeding tube or capillary has an outlet diameter of less than 0.5 mm, less than 0.4 mm, less than 0.2 mm, or less than 0.1 mm, and the outlet of the capillary channel or tube is located at a distance less than 0.5 mm from the outlet opening of the pressurized chamber.
  • the outlet opening of the power supply channel has a diameter less than 0.5 mm
  • the outlet opening of the pressurized chamber has a diameter less than 0.25 mm
  • the opening of The output channel of the power supply is located at a point less than 0.5 mm from the outlet hole of the pressurized chamber.
  • the outlet opening of the power supply channel has a diameter in the range of 0.1 mm to 0.5 mm
  • the outlet opening of the pressurized chamber has a diameter in the range of 0.1 mm to 0.25 mm
  • the outlet opening of the power supply channel is located at a point at a distance in the range of 0.2 to 0.5 mm from the outlet hole of the pressurized chamber .
  • the initial or minimum distance between the outlet opening of the power supply channel and the outlet opening of the pressurized chamber which is generally less than 0.5 mm, preferably increases progressively during the method until reaching a final or maximum capillary-hole distance of for example about 12 mm or less, such as about 11 mm, 10 mm, 9 mm or less.
  • gas for example, air
  • viscoelastic liquid for example, a Boger liquid
  • an important aspect of the invention is a method of focusing viscoelastic jets of a liquid, such as a Boger liquid, using a stream of air.
  • the flow Axisymmetric air focuses the Boger liquid so that said Boger liquid is micrometric jets
  • the viscoelastic liquid is a low concentration polymer solution, for example less than 1500 ppm, such as 1000 ppm, 500 ppm or 250 ppm
  • the nature of the polymer is not important, since as one skilled in the art knows a wide variety of polymers leading to viscoelastic solutions.
  • Polymers contemplated in the present invention They include, but are not limited to, polymers based on carbon chemistry, polymers based on silicon chemistry, fluoropolymers, proteins, DNAs, RNAs, etc.
  • the viscoelastic liquid is a solution of poly (acrylic) acid (PAA).
  • PAA poly (acrylic) acid
  • the present invention is directed to the elongated liquid capillary jet (filament) obtainable according to the method of the invention.
  • a solid filament or solid fiber can be obtained by a process of solidification or phase change between those considered, but not restricted to: solvent evaporation, cooling, chemical curing, chemical interaction with the forcing gas, chemical interaction with the environment gas in which the capillary jet is discharged, or heat hardening.
  • the filament or fiber obtained from the elongated capillary jet is useful in different industries, for example, such as: textile material, material for biomedical, surgical or prosthetic use, material for structural use in mechanical applications, material for the elaboration of wires or cables of very high resistance to breakage, such as mechanical reinforcement fiber in materials with low tensile strength, substrate for biotechnological use, or material associated with telecommunication.
  • Viscoelastic capillary jets can be produced by flow focusing.
  • the liquid is injected at preferably constant flow through a feed capillary located in front of a discharge orifice.
  • a gaseous stream co-flows with the jet through the orifice driven by a constant pressure drop.
  • the gas stream sucks and drags the liquid, reducing the diameter of the jet to values far below the diameter of the hole.
  • this focusing phenomenon differs from that observed in the Newtonian regime in several aspects.
  • the conditions under which especially satisfactory results are obtained are those that lead to the "jetting" mode. Outside this interval, the jet could suffer from instability called “pull-out” or rupture before reaching the hole. Thanks to the stabilizing effect of the polymeric contribution to axial stress, micrometer jets of up to 1 cm in length can be produced, and Weber numbers of the order of 10 "4 can be achieved.
  • FIG. 1 is a schematic view of the basic components used in connection with an example according to the present invention.
  • Q flow rate at which the viscoelastic liquid is injected through the feed capillary
  • pressure drop that drives the gaseous current through the discharge orifice
  • H distance between the feed capillary (feed channel outlet opening ) and the discharge hole of the pressurized chamber.
  • Figure 2 consists of two graphs that we refer to as the graph on the left and the graph on the right.
  • the graph on the left is a schematic view of an experimental assembly of the components that are used in relation to the method of the invention and that allow the observation and measurement of various system parameters.
  • A capillary,
  • B discharge hole,
  • C orientation system,
  • D translation platform,
  • E ultra-high speed camera,
  • F triaxial translation platform,
  • G fiber optic, and
  • H anti-vibration isolation system.
  • PAA poly (acrylic) acid
  • Figure 3 consists of two graphs that we refer to as the graph on the left and the graph on the right.
  • the graph on the left shows the dependence of the shear viscosity of the solution ⁇ versus the shear rate ⁇ ' and the graph on the right shows the first viscometric function "+ ⁇ versus the shear rate ⁇ ' , for the PAA solutions
  • c 250 ppm (hollow symbols) and 1000 ppm (solid symbols)
  • the starting points of the curves are determined by the rheometer sensitivity.
  • Figure 4 consists of six connected images that are shown to illustrate the phenomenon of meniscal de-anchoring ("pull-out").
  • the meniscus of the fluid leaving the end of the capillary oscillates around an equilibrium position inside the feeding capillary.
  • Figure 5 shows a graph of the temporal dependence of the radius of the free surface at 1 14 ⁇ (solid symbols) and 539 ⁇ (hollow symbols) of the capillary end.
  • Figure 6 shows six different connected images that are a sequence of images that illustrate the rupture of the hair jet due to the bulging effect.
  • Figure 7 is a graph showing the minimum and maximum values, H min and H max, of the distance from the capillary to the hole in which the triple contact line anchors the end of the capillary.
  • Figure 9 is a graph showing the results of both the velocity distribution v (dotted line) and the gauge pressure p g (solid line) along the axis of the hole as a function of the distance Z to the center of the hole.
  • the velocity is divided by its value in the internal section of hole vi.
  • the inserted box shows the pressure field near the hole.
  • Figure 10 consists of two separate graphs that we refer to as the left graph and the right graph.
  • the left graph shows the experimental values of the Weber and Reynolds numbers.
  • the right graph shows the experimental values for the Deborah number and the dimensionless polymeric stress.
  • Figure 11 consists of two separate graphs which we refer to as the left graph and the right graph.
  • the left graph shows the radius of the jet just in front of the hole depending on the aspect ratio ⁇ .
  • the right graph shows the number of Deborah (De) versus the aspect ratio ⁇ .
  • Figure 12 shows a graph of the shear rate versus shear stress. The graph is provided to show the properties of a Newtonian fluid relative to the increase in shear rate versus shear stress in Newtonian and Non-Newtonian fluids.
  • non-Newtonian fluid refers to any fluid with properties that differ in some way from those that Newtonian fluids have.
  • the relationship between shear stress and shear rate is different and may even vary over time. The difference is shown in Figure 12, the difference with respect to a direct linear relationship can be 5% or greater, 10% or greater, 20% or greater, 40% or greater, etc. Therefore, a constant viscosity coefficient cannot be defined with a non-Newtonian fluid.
  • the viscosity (the measure of the ability of a fluid to withstand the gradual deformation produced by the tensile or shear force) of non-Newtonian fluids depends on the shear rate at the time or time.
  • Non-Newtonian fluids even having a viscosity independent of the shear force, have other behaviors other than normal versus force or other non-Newtonian behaviors.
  • Many salt solutions or molten polymers are non-Newtonian fluids, as are many common substances such as ketchup, custard, toothpaste, yeast suspensions, paint, blood and shampoo.
  • the relationship between the shear force and the shear rate is linear, passing through the origin, the viscosity coefficient being the constant of proportionality as shown in Figure 12.
  • the Weber number (We) is a dimensionless number in fluid mechanics and is useful in the analysis of fluid flows in which there is an interface between two fluids, especially in multiphase fluids with very curved surfaces. Its name comes from Moritz Weber (1871-1951). It can be considered as a measure of the relative importance of fluid inertia compared to surface tension. The value is useful for the analysis of thin layer flows and the formation of drops and bubbles.
  • Weber's number can be defined as:
  • P is the density of the fluid (kg / m 3 );
  • v is its speed (m / s);
  • I is its characteristic length, usually the drop diameter (m); Y
  • liquids called “Boger” type are elastic fluids with constant viscosity. This creates an effect on the fluid that makes it flow like a liquid, although it behaves like an elastic solid when stretched. Most elastic fluids show a pseudoplastic behavior (viscosity decreases when shear stress is applied), because the solutions contain polymers. But Boger fluids are exceptions since they are highly diluted solutions, so that the pseudoplastic behavior caused by polymers can be ignored. Boger fluids are made by adding a small amount of polymer to a Newtonian fluid of high viscosity, the most original solution is polyacrylamide mixed with corn syrup.
  • Figure 1 provides a schematic view of an example of fluid configuration of the method of the invention.
  • a cylindrical feed capillary which has a length of several times its diameter, is located in front of the discharge orifice, whose diameter is of the order of the capillary diameter.
  • the viscoelastic liquid is injected through the constant flow feed capillary Q, while a gaseous stream passes through the discharge orifice driven by a constant pressure drop ⁇ .
  • a liquid jet of a Boger fluid is formed that begins at the edge of the capillary end and extends downstream in a flow direction far from the end of the capillary.
  • the gas stream sucks and drags the Boger liquid, which reduces the diameter of the jet to values far below that of the discharge orifice.
  • the diameter of the jet downstream of the end of the capillary is focused by the surrounding gas so that it can be 50% or less, 25% or less, 10% or less, or 1% or less than the diameter of the jet when This leaves the end of the capillary.
  • Both the liquid jet and the stream of cofluing gas flow across the orifice of exit. Due to the rheological nature of the liquid, this focusing phenomenon differs substantially from that produced in the Newtonian regime.
  • the appropriate values of the capillary-hole distance H are normally much greater than their counterparts in the classical flow focusing configuration.
  • the aerodynamic focusing effect can be confined within a very small region compared to the total length of the jet. Therefore, the liquid flows freely, without significant interaction with the surrounding environment.
  • the instability mechanisms that prevent steady jetting from being achieved are also different from those of the Newtonian mode. Polymeric forces stabilize the liquid filament, allowing jets to be formed with Weber numbers close to zero.
  • the present invention is directed to the long (of the order of millimeters) jets formed between the end of the feed capillary and the discharge orifice.
  • the invention specifies appropriate conditions for obtaining the "jetting" regime as well as the instability mechanisms that limit this regime. Some of the candidates for such mechanisms are reviewed, including capillary instability [28] and the fact that surface tension causes waves to grow on the surface of the jet until they finally pinch the interphase. Absolute instability [31] as well as convective instability could prevent the system from reaching the "jetting" mode. If the downstream convection disturbances pinch the interphase before reaching the hole, the suction effect is interrupted. This causes the ejection of the filament to cease, and prevents the jetting regime from recovering. This phenomenon does not occur when the process is carried out using a Newtonian fluid, where capillary waves grow beyond the hole [20].
  • Capillary instability is not desirable and can be modulated by elastic axial stress.
  • the tension associated with polymeric stretching results in a strong increase in extensional viscosity. This partially inhibits capillary instability [32, 33].
  • the flow of Poiseuille in the feeding capillary causes a first stretching of the polymers. If a jet evolves at a constant speed (diameter), then the polymers relax at their winding state at distances from the capillary end that are equivalent to the diameter of the jet [34, 35, 36]. However, the acceleration of the jet caused by the co-flowing gas stream maintains the polymeric tension and can increase the polymeric tension near the hole.
  • the instability of the jet may also be due to the so-called "pull-out" of the filament which occurs due to fiber spinning [41, 42, 43] under axial stresses above the stability limit. If the filament is stretched by a sufficiently high spinning force, its retraction can occur with respect to the end of the feeding capillary. The balance between the spinning force and the normal tension in the capillary determines the new position of the meniscus inside the capillary. The meniscus can remain motionless in the capillary or oscillate around the equilibrium position [43]. There are other instability mechanisms such as stretching resonance ("draw resonance") mentioned previously [11] or known as "melt fracture” [44]. The stretching resonance is linked to the prescription of the jet velocity at some point downstream [45]. This condition does not apply to flow focusing, and therefore this phenomenon does not occur in relation to the present invention.
  • Figure 2 shows a non-Newtonian fluid injected at a constant flow rate Q by a stepper motor (not shown) through a steel capillary (A), for example, 3.5 cm in length and 200 ⁇ in diameter, with a sharp capillary end. Said end of the capillary is placed in front of a hole (B) perforated in the upper face of a stainless steel cell.
  • the hole (B) is, for example, 200 ⁇ in diameter and 500 ⁇ in thickness.
  • a negative gauge pressure ⁇ is applied inside the cell by using a suction pump (not shown).
  • a high precision orientation system (C) and a translation system (D) are used to ensure the correct alignment of the flow focusing elements, and to establish the capillary-hole distance H.
  • the viscoelastic jet is formed outdoors due to the action of the air stream sucked through the hole in the cell.
  • Digital images can be acquired using two or more cameras (E) with optical axes perpendicular to each other, and equipped with very different magnification lenses.
  • the camera with the highest magnification moves both horizontally and vertically using a triaxial translation platform (F) to focus part of the liquid jet, while the other camera acquires images of the entire ligament.
  • the radius of the jet R (of the order of tens of microns) and the capillary-hole distance H (of the order of millimeters) can be measured simultaneously.
  • the fluid configuration lights up to backlight on the two axes (in front of the two cameras) by cold white light provided by two optical fibers (G) connected to light sources. All these elements are mounted on an optical table with a pneumatic anti-vibration isolation system (H) to dampen vibrations from the surrounding environment.
  • G optical fibers
  • H pneumatic anti-vibration isolation system
  • the capillary After a brief transitory regime, the capillary emits a liquid filament that crosses the orifice driven by the air current.
  • the capillary-hole distance H is progressively increased, keeping ⁇ and Q constant.
  • the procedure described above can be repeated for different flow rates Q and two polymer solutions. You can acquire images during the course of the process. The position of the free surface can be determined by processing the images with a super-resolution technique at the sub-pixel level [46].
  • Non-Newtonian fluid solutions can be prepared by dissolving polymer in a solvent by stirring at very low speeds, in order to avoid breakage of the polymer chains.
  • the shear viscosity dependence ⁇ of the solution and first viscometric function "+ ⁇ versus the shear rate ⁇ ' can be measured with a Physica MCR 301 rheometer. The results are shown in Figure 3.
  • the surface tension ⁇ can be measured with the TIFA method [48]. It can be verified that ⁇ ⁇ 72 mN / myp ⁇ 997 kg / m 3 in all cases, that is, these two properties do not depend significantly on the polymer concentration.
  • the gaseous flow focusing of the two viscoelastic liquids described above behaves as follows.
  • the liquid meniscus separates from the edge of the capillary end and climbs up the inner wall of the capillary.
  • the meniscus either reaches an equilibrium position inside the capillary or oscillates around it. This is the phenomenon called "pull-out" that has been observed in fiber spinning [41, 42, 43].
  • the final position of the triple contact line is essentially determined by the balance between the tensile force caused by the flow of Poiseuille in the capillary, and that exerted by the emitted jet.
  • a small lateral disturbance causes the jet to touch the inner surface of the capillary. Due to the strong tendency of the liquid to wet the steel, the jet remains in contact with the wall while sliding on it. The result is the steady emission of a jet (“steady jetting”) that passes through the discharge orifice driven by the air flow.
  • the film flowing inside the capillary goes outside and becomes part of the outdoor jet. This process continues until the end of the capillary reaches the meniscus position. That is when the triple contact line anchors to the edge of the capillary.
  • the jet continues to bulge at the outlet of the feed capillary, so that a drop is formed anchored to its edge.
  • the drop sucks the liquid from the quasi-cylindrical thread that hangs from it.
  • the radius of the thread is reduced by an elastocapillary regimen similar to that shown in a capillary rupture rheometer [47, 49], which ultimately leads to the "beads-on-a-string" structure and the free surface clamping.
  • H min and H max are used to represent the capillary-orifice distances at which the triple contact line first anchor to the capillary edge and the jet emission is interrupted, respectively.
  • Stepady jetting with “pull-out” is obtained for H ⁇ H min , while an oscillating jet is observed for H min ⁇ H ⁇ H max .
  • the lines delimit the parametric regions where the jets anchor the feeding capillary. No jets could be produced for Q ⁇ 1 ml / h.
  • Re ⁇ 10 "2 and, consequently, the shear stresses are dominant over the inertia of the liquid.
  • Slender liquid filaments ( ⁇ ⁇ 10 "2 ) are formed between the feeding capillary and the orifice of discharge. Under these conditions, the equation 1 D (or slenderness) of the amount of axial movement provides an accurate description of the dynamics of the liquid.
  • the air flow is accelerated in the region located in the vicinity of the discharge orifice, said region having a size much smaller than that of the liquid filament.
  • Figure 9 shows both the velocity distribution and the manometric pressure distribution along the axis of the hole as a function of the distance Z to the center of the hole.
  • the focusing effect is confined within a region of size Z / D-1, where D is the diameter of the hole.
  • the force per unit volume exerted by the stream of air in the jet scales as ⁇ / D [50].
  • the size of the focusing region is much smaller than the length of the jet and, therefore, most of the liquid filament flows freely, without significant interaction with the surrounding air.
  • Figure 10 shows the experimental values of the numbers of Weber, Reynolds, and Deborah, as well as the dimensionless polymeric tension Te.
  • (De)> 1 in all experiments and hence the term III of the aforementioned equation is expected to grow exponentially downstream. It is concluded that the movement of the jet away from the hole is driven by the gradient of the polymeric axial stress, while the surface tension generates a significant resistance force. In other words, the balance of forces is reduced approximately to:
  • the invention described herein shows the production of viscoelastic capillary jets of non-Newtonian fluids using the gaseous flow focusing configuration.
  • the rheological nature of the liquid alters the phenomenon of focusing on several important aspects.
  • This technique allows to form jets with lengths of more than one hundred times its radii, and with Weber numbers of the order of 10 "4.
  • the focusing region is confined in a small region near the discharge hole, the polymer chains transmit the upstream suction effect throughout the liquid yarn In this way, the resistance offered by the surface tension is overcome despite the fact that the kinetic energy is much smaller than the interfacial.
  • the jetting regime can be achieved within of an interval of the capillary-hole distance that depends largely on both the polymer concentration and the flow rate (see figure 7). For distances below that interval, a pull-out of the liquid meniscus was found, while if the distance exceeds the maximum value of the interval the jet breaks in. The achievement of a perfect steady jetting was a relatively rare event. Jet urations, significant oscillations of the free surface were observed. The rupture of the jet that takes place behind the discharge orifice was not examined, since it does not differ substantially from the process widely analyzed in the literature (see, for example, [21, 37, 49, 51, 52]). The macromolecules in solution suppress the formation of satellite drops, and produce large extensional efforts, which lead to the formation of blisters ("blistering") and "beads-on-string” structures (pearl chain).

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Textile Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • General Engineering & Computer Science (AREA)
  • Artificial Filaments (AREA)
  • Spinning Methods And Devices For Manufacturing Artificial Fibers (AREA)

Abstract

The invention relates to a method for forming viscoelastic capillary jets or long filaments. The method includes forcing an elastic liquid of a constant viscosity, such as a Boger liquid consisting of a polymer solution, through the channel of a supply source to the centre of the interior of a pressurised chamber; and forcing a gas into the interior of the pressurised chamber such that it leaves the chamber through the outlet of the chamber arranged directly downstream from the trajectory of the liquid that flows out of the supply source. The gas focusses the liquid, substantially reducing the diameter thereof and the polymers present in the liquid allow the liquid to form a long and stabilised jet by means of an axial tension, with a Weber number close to zero.

Description

PRODUCCIÓN DE CHORROS CAPILARES VISCOELÁSTICOS MEDIANTE PRODUCTION OF VISCOELASTIC CAPILLARY JETS THROUGH
ENFOCAMIENTO GASEOSO GASEOUS FOCUS
DESCRIPCIÓN DESCRIPTION
CAMPO DE LA INVENCIÓN FIELD OF THE INVENTION
La invención hace referencia de forma general al campo de la dinámica de fluidos, y, en particular, a un método para formar un chorro capilar de un líquido viscoelástico, haciendo fluir dicho chorro concéntricamente con una corriente de gas acelerada y mucho más rápida para que se forme un filamento estabilizado mediante un mecanismo de estiramiento por tensión.  The invention makes general reference to the field of fluid dynamics, and, in particular, to a method for forming a capillary stream of a viscoelastic liquid, said stream flowing concentrically with an accelerated gas stream and much faster so that a stabilized filament is formed by a tension stretching mechanism.
ANTECEDENTES DE LA INVENCIÓN BACKGROUND OF THE INVENTION
La producción y control de chorros en la escala micrométrica es de enorme interés en campos tecnológicos tan variados como la industria farmacéutica [1], biotecnología [2, 3], ingeniería industrial [4], industria alimenticia y agricultura [5]. En el régimen Newtoniano, los chorros producidos rompen en gotas con diámetros del orden del chorro debido a la inestabilidad capilar de Rayleigh [6]. De esta forma, se pueden obtener colecciones de gotas relativamente monodispersas (mismo tamaño y morfología) a partir de distintos experimentos en modo "jetting" con aplicaciones en, por ejemplo, medicina y farmacia [1]. Por otra parte, una gran variedad de procesos físico-químicos son utilizados para solidificar los microchorros producidos antes de su ruptura. En particular, los líquidos viscosos se estiran de forma continua en régimen "jetting" (emisión estable de chorro) y posteriormente se solidifican, para formar fibras submilimétricas de vidrio o seda [7], con obvias aplicaciones en la industria de telecomunicaciones y textil, respectivamente.  The production and control of jets on the micrometric scale is of great interest in technological fields as varied as the pharmaceutical industry [1], biotechnology [2, 3], industrial engineering [4], food industry and agriculture [5]. In the Newtonian regime, the produced jets break into droplets with diameters of the order of the jet due to Rayleigh's capillary instability [6]. In this way, collections of relatively monodispersed drops (same size and morphology) can be obtained from different experiments in jetting mode with applications in, for example, medicine and pharmacy [1]. On the other hand, a great variety of physical-chemical processes are used to solidify the micro-puppies produced before their rupture. In particular, viscous liquids are continuously stretched under a jetting regime (stable jet emission) and subsequently solidified to form sub-millimeter glass or silk fibers [7], with obvious applications in the telecommunications and textile industry, respectively.
Muchas de las aplicaciones mencionadas anteriormente implican el tratamiento de líquidos viscoelásticos poliméricos, donde las interacciones entre las condiciones de procesado y la reología (carácter no-Newtoniano) del fluido juegan un papel fundamental. Estas interacciones alteran fundamentalmente la respuesta dinámica del sistema y complican considerablemente el análisis del problema. Sin embargo, la reología se vuelve más manejable cuando se trabaja con fluidos Boger [8]. Este tipo de fluidos son soluciones poliméricas diluidas en solventes con una viscosidad suficientemente alta como para que las tensiones elásticas sean medibles. Además, los fluidos Boger exhiben una viscosidad constante (el efecto de "shear thinning", un comportamiento pseudoplástico caracterizado por la disminución de la viscosidad bajo un esfuerzo de cortadura, se puede despreciar), de modo que los efectos elásticos se pueden separar de los viscosos. La ecuación constitutiva Oldroyd-B [9] proporciona predicciones razonablemente exactas para estos líquidos viscoelásticos bajo ciertas condiciones. Many of the applications mentioned above involve the treatment of polymeric viscoelastic liquids, where the interactions between the processing conditions and the rheology (non-Newtonian character) of the fluid play a fundamental role. These interactions fundamentally alter the dynamic response of the system and considerably complicate the analysis of the problem. However, rheology becomes more manageable when working with Boger fluids [8]. These types of fluids are polymer solutions diluted in solvents with a sufficiently high viscosity so that elastic stresses are measurable. Further, Boger fluids exhibit a constant viscosity (the "shear thinning" effect, a pseudoplastic behavior characterized by the decrease in viscosity under a shear stress, can be neglected), so that the elastic effects can be separated from the viscous ones. The constitutive equation Oldroyd-B [9] provides reasonably accurate predictions for these viscoelastic liquids under certain conditions.
Se han propuesto diversos métodos para formar fibras micro y nanométricas a partir de chorros viscoelásticos. Entre ellos, el electrospinning (o electrohilado) [10] es uno de los más populares porque puede ser aplicado a la producción masiva de fibras "una a una" utilizando diferentes polímeros. Sin embargo, este método hace uso de campos eléctricos intensos, lo que impone ciertas restricciones sobre las propiedades eléctricas del líquido empleado. También se producen chorros viscoelásticos micrométricos que solidifican en fibras mediante medios puramente mecánicos o hidrodinámicos. En la técnica clásica de "melt spinning" (llamada así porque originariamente hacía referencia a la hilatura por fusión y estiramiento bajo fuerzas centrífugas) [11], el líquido se extrude a través de un pequeño orificio y se recoge a una velocidad mayor que la velocidad media de extrusión. El filamento resultante sufre oscilaciones auto-sostenidas cuando la relación entre la velocidad de recogida y la de extrusión excede un valor crítico cercano a 20. Esta es la llamada inestabilidad por resonancia de estiramiento ("draw resonance") [11 , 12], la cual limita considerablemente tanto la tasa de producción como el diámetro mínimo de la fibra que se puede obtener. El método "selective withdrawal" (o extracción selectiva) [13] permite producir fibras a partir de soluciones poliméricas succionando una corriente líquida a través de un orificio localizado enfrente del baño viscoelástico. Las fuerzas de arrastre y succión (viscosidad y presión) producidas por la corriente colaboran para deformar la entrefase del baño, formar un menisco y estirarlo hasta que éste emite un pequeño chorro desde su punta. Hay otros ejemplos donde se han aplicado las fuerzas hidrodinámicas para obtener fibras con tamaños que van desde la escala milimétrica hasta la escala nanométrica. Entre ellos se encuentra la atomización coaxial de ligamentos viscoelásticos, utilizada a su vez para medir las propiedades reológicas [14]. Benavides et al. [15] obtuvieron nanofibras exponiendo una gota polimérica colgante a un chorro de gas de alta velocidad (método aerodinámico). En el método de "melt blowing" (hilado por fusión y soplado), una corriente de polímero fundido es arrastrada por dos chorros de aire convergentes dirigidos simétricamente a ambos lados de un troquel de dos ranuras [16, 17]. Various methods have been proposed to form micro and nanometric fibers from viscoelastic jets. Among them, electrospinning (or electro-spinning) [10] is one of the most popular because it can be applied to mass production of fibers "one by one" using different polymers. However, this method makes use of intense electric fields, which imposes certain restrictions on the electrical properties of the liquid used. Micrometric viscoelastic jets are also produced that solidify into fibers by purely mechanical or hydrodynamic means. In the classical "melt spinning" technique (so called because it originally referred to fusion spinning and stretching under centrifugal forces) [11], the liquid is extruded through a small hole and collected at a speed greater than the average extrusion speed. The resulting filament undergoes self-sustained oscillations when the ratio between the collection speed and the extrusion speed exceeds a critical value close to 20. This is called draw resonance instability [11, 12], the which considerably limits both the production rate and the minimum diameter of the fiber that can be obtained. The "selective withdrawal" method (or selective extraction) [13] allows fibers to be produced from polymer solutions by sucking a liquid stream through a hole located in front of the viscoelastic bath. The drag and suction forces (viscosity and pressure) produced by the current collaborate to deform the bath interphase, form a meniscus and stretch it until it emits a small stream from its tip. There are other examples where hydrodynamic forces have been applied to obtain fibers with sizes ranging from the millimeter scale to the nanometric scale. Among them is the coaxial atomization of viscoelastic ligaments, used in turn to measure the rheological properties [14]. Benavides et al. [15] obtained nanofibers by exposing a polymeric drop drop to a high velocity gas stream (aerodynamic method). In the "melt blowing" method, a polymer stream molten is dragged by two convergent air jets symmetrically directed to both sides of a two groove die [16, 17].
Flow focusing, [18, 19], se ha convertido en un método muy popular para producir chorros Newtonianos submilimétricos utilizando solo fuerzas hidrodinámicas. En esta técnica, un menisco cuelga de un capilar de alimentación a través del cual se inyecta líquido a caudal constante. Una corriente fluida externa enfoca y estira el menisco en frente de un orificio. El menisco emite un chorro fino que cofluye con la corriente exterior a través del orificio. En la configuración axisimétrica original de flow focusing [18], el medio exterior era una corriente gaseosa de alta velocidad impulsada por una caída de presión aplicada. Esta configuración se adaptó posteriormente a la topología plana o en dos dimensiones (2D) [19] para formar chorros que cofluyen con una corriente líquida exterior, lo cual impulsó su aplicación en microfluídica [1]. En los dos casos, la distancia capilar-orificio y sus diámetros son del mismo orden y todo el chorro emitido está influenciado por el efecto de enfocamiento [19,20]. Flow focusing, [18, 19], has become a very popular method for producing submillimeter Newtonian jets using only hydrodynamic forces. In this technique, a meniscus hangs from a feeding capillary through which liquid is injected at a constant flow rate. An external fluid current focuses and stretches the meniscus in front of a hole. The meniscus emits a fine stream that co-flows with the external current through the hole. In the original axis focusing configuration of flow focusing [18], the external medium was a high velocity gas stream driven by an applied pressure drop. This configuration was subsequently adapted to the flat or two-dimensional (2D) topology [19] to form jets that co-flow with an external liquid stream, which boosted its application in microfluidics [1]. In both cases, the capillary-hole distance and its diameters are of the same order and the entire jet emitted is influenced by the focusing effect [19,20].
Se ha utilizado flow focusing plano en configuración líquido-líquido para producir chorros micrométricos de fluidos Boger [21 , 22, 23, 24, 25, 26]. Para efectos elásticos débiles, el "pinch-off" (pinzamiento o estricción de la entrefase del chorro que produce la rotura del mismo) es iniciado por mecanismos de inercia capilar seguido de un régimen elasto-capilar [22]. A medida que el tiempo de relajación del polímero aumenta, la dinámica del filamento pasa a estar controlada principalmente por el mecanismo elasto-capilar, y tanto la longitud del chorro como el tiempo de pinzamiento aumentan [22]. Los regímenes de flujo [25, 26], el tamaño de las gotas resultantes [21 , 23], los efectos de surfactantes [24], o la aparición de asimetrías de flujo [27] han sido analizados tanto numéricamente como experimentalmente. Flat flow focusing has been used in liquid-liquid configuration to produce micrometric jets of Boger fluids [21, 22, 23, 24, 25, 26]. For weak elastic effects, the "pinch-off" (clamping or narrowing of the jet interface causing the rupture of the jet) is initiated by capillary inertia mechanisms followed by an elasto-capillary regime [22]. As the polymer relaxation time increases, the dynamics of the filament becomes mainly controlled by the elasto-capillary mechanism, and both the length of the jet and the clamping time increase [22]. The flow regimes [25,26], the resulting droplet size [21,23], the effects of surfactants [24], or the appearance of flow asymmetries [27] have been analyzed both numerically and experimentally.
El flow focusing axisimétrico se ha aplicado a la formación de chorros viscoelásticos, enfocados mediante una fase de aceite [28]. Una transición de "goteo" ("dripping") a emisión estable del chorro ("jetting") se observó para valores suficientemente altos del caudal inyectado. Esta transición se ha explicado en términos de equilibrio entre la fuerza capilar desestabilizadora y la tensión estabilizadora asociada a la elongación polimérica [29]. Un valor efectivo de esta tensión se estimó teniendo en cuenta la elongación polimérica producida tanto por el flujo de tipo Poiseuille en el capilar de alimentación [30] como por el posterior estiramiento del filamento en la región de enfocado. En todos los experimentos, el menisco estirado permanecía anclado al extremo del capilar de alimentación. The axisimetric flow focusing has been applied to the formation of viscoelastic jets, focused through an oil phase [28]. A transition from dripping to stable jet emission was observed for sufficiently high values of the injected flow rate. This transition has been explained in terms of equilibrium between the destabilizing capillary force and the stabilizing tension associated with polymer elongation [29]. An effective value of this tension was estimated taking into account the polymer elongation produced by both the Poiseuille type flow in the feeding capillary [30] and the subsequent stretching of the filament in the region of in focus. In all experiments, the stretched meniscus remained anchored to the end of the feeding capillary.
COMPENDIO DE LA INVENCIÓN SUMMARY OF THE INVENTION
La presente invención describe tanto un método para la creación de chorros capilares elongados (filamentos) como el propio chorro obtenible de acuerdo con el método. El método comprende forzar a un líquido viscoelástico, tal como un líquido o fluido Boger, a través del canal de un tubo capilar, preferentemente cilindrico, como fuente de alimentación. Al líquido viscoelástico se le impone una velocidad de paso a través del canal que provoca que el líquido salga de la apertura de salida del canal manteniendo su forma de filamento o chorro. El final o apertura de salida del canal está en el interior de una cámara presurizada. A través de la cámara presurizada se fuerza el paso de un gas, tal como aire, de manera que el gas salga de dicha cámara presurizada a través del orificio de salida de la cámara que se encuentra justo enfrente y aguas abajo de la trayectoria del líquido viscoelástico. Asimismo, el gas enfoca la corriente del líquido viscoelástico, de modo que líquido y gas fluyen concéntricamente, y transforma el chorro del líquido en un chorro elongado que tiene un diámetro sustancialmente menor que el diámetro del chorro inicial que salía de la apertura del canal. Finalmente, el chorro estrecho elongado del líquido viscoelástico y el gas que lo rodea salen de la cámara presurizada por el orificio de salida. Dicho chorro capilar elongado o filamento se puede recoger conforme sale por el orificio de salida de la cámara presurizada. De acuerdo con realizaciones particulares, el método se realiza de forma que el número de Weber resultante es menor que uno, menor que 1x10"1 , menor que 1x10"2, menor que 1x10"3, menor que 1x10"4, o menor que 1x10"6 The present invention describes both a method for creating elongated capillary jets (filaments) and the jet itself obtainable according to the method. The method comprises forcing a viscoelastic liquid, such as a liquid or Boger fluid, through the channel of a capillary tube, preferably cylindrical, as a power source. The viscoelastic liquid imposes a speed of passage through the channel that causes the liquid to exit the outlet opening of the channel maintaining its filament or jet shape. The end or exit opening of the channel is inside a pressurized chamber. Through the pressurized chamber the passage of a gas, such as air, is forced so that the gas leaves said pressurized chamber through the exit orifice of the chamber that is directly opposite and downstream of the liquid path viscoelastic Also, the gas focuses the flow of the viscoelastic liquid, so that liquid and gas flow concentrically, and transforms the jet of the liquid into an elongated jet that has a diameter substantially smaller than the diameter of the initial jet leaving the opening of the channel. Finally, the narrow elongated stream of viscoelastic liquid and the surrounding gas leave the pressurized chamber through the exit orifice. Said elongated capillary jet or filament can be collected as it exits through the outlet port of the pressurized chamber. According to particular embodiments, the method is performed such that the resulting Weber number is less than one, less than 1x10 "1 , less than 1x10 " 2 , less than 1x10 "3 , less than 1x10 " 4 , or less than 1x10 "6
De acuerdo con otras realizaciones particulares de la invención, el líquido viscoelástico, tal como un líquido Boger, se introduce a través del canal a una velocidad dentro del intervalo de 0,001 a 100 microlitros por segundo, o entre 0,01 y 10 microlitros por segundo, o entre 50 microlitros y 2.000 microlitros por segundo, o 100 a 500 microlitros por segundo. According to other particular embodiments of the invention, the viscoelastic liquid, such as a Boger liquid, is introduced through the channel at a rate in the range of 0.001 to 100 microliters per second, or between 0.01 and 10 microliters per second. , or between 50 microliters and 2,000 microliters per second, or 100 to 500 microliters per second.
De acuerdo con otras realizaciones particulares de la invención, el gas es forzado a través del orificio de la cámara presurizada a una velocidad dentro del rango de 50 μΙ/seg a 20000 μΙ/seg, o entre 100 a 500 μΙ/seg. Tal como se ha indicado anteriormente, la velocidad del gas debe ser mayor que la velocidad del líquido viscoelástico que sale de la apertura del canal. According to other particular embodiments of the invention, the gas is forced through the orifice of the pressurized chamber at a speed in the range of 50 μΙ / sec to 20,000 μΙ / sec, or between 100 to 500 μΙ / sec. As indicated previously, the gas velocity must be greater than the velocity of the viscoelastic liquid that comes out of the channel opening.
El canal de la fuente de alimentación es un tubo o capilar de alimentación, que puede tener forma de un tubo cilindrico o sustancialmente cilindrico. Según ciertas variantes de la invención, el capilar de alimentación tiene un diámetro de salida menor de 0,5 mm, menor que 0,4 mm, menor que 0,2 mm, o menor que 0,1 mm. The channel of the power supply is a feeding tube or capillary, which may be in the form of a cylindrical or substantially cylindrical tube. According to certain variants of the invention, the feed capillary has an outlet diameter of less than 0.5 mm, less than 0.4 mm, less than 0.2 mm, or less than 0.1 mm.
La salida del canal o tubo capilar preferentemente está situada a una distancia menor que 0,5 mm del orificio de salida de la cámara presurizada. En una realización particular, la apertura de salida de la fuente de alimentación está situada en un punto a una distancia en el rango de 0,2 a 0,5 mm del orificio de salida de la cámara presurizada. De cara a obtener un resultado especialmente apropiado, una vez formado un chorro inicial, resulta conveniente aumentar progresivamente la distancia capilar-orificio, hasta alcanzar una distancia capilar-orificio final o máxima de por ejemplo aproximadamente 12 mm o menos, tal como aproximadamente 11 mm, 10 mm, 9 mm o menos. The outlet of the capillary channel or tube is preferably located at a distance less than 0.5 mm from the outlet opening of the pressurized chamber. In a particular embodiment, the outlet opening of the power supply is located at a point at a distance in the range of 0.2 to 0.5 mm from the outlet opening of the pressurized chamber. In order to obtain a particularly appropriate result, once an initial jet is formed, it is convenient to gradually increase the capillary-hole distance, until reaching a final or maximum capillary-hole distance of, for example, approximately 12 mm or less, such as approximately 11 mm , 10 mm, 9 mm or less.
El orificio de salida de la cámara presurizada, que está situado directamente en frente de la apertura de salida de la fuente de alimentación, es generalmente circular. Diámetros preferidos para dicho orificio de salida de la cámara presurizada se encuentran por debajo de 0,25 mm, como por ejemplo en el rango de 0, 1 mm a 0,25 mm. Según ciertas variantes de la invención, el tubo o capilar de alimentación tiene un diámetro de salida menor de 0,5 mm, menor que 0,4 mm, menor que 0,2 mm, o menor que 0, 1 mm, y la salida del canal o tubo capilar está situada a una distancia menor que 0,5 mm del orificio de salida de la cámara presurizada. Según ciertas variantes de la invención, la apertura de salida del canal de la fuente de alimentación tiene un diámetro menor que 0,5 mm, el orificio de salida de la cámara presurizada tiene un diámetro menor que 0,25 mm, y la apertura de salida del canal de la fuente de alimentación está situada en un punto a una distancia inferior a 0,5 mm del orificio de salida de la cámara presurizada. Según ciertas variantes de la invención, la apertura de salida del canal de la fuente de alimentación tiene un diámetro en el rango de 0,1 mm a 0,5 mm, el orificio de salida de la cámara presurizada tiene un diámetro en el rango de 0, 1 mm a 0,25 mm, y la apertura de salida del canal de la fuente de alimentación está situada en un punto a una distancia en el rango de 0,2 a 0,5 mm del orificio de salida de la cámara presurizada. The outlet opening of the pressurized chamber, which is located directly in front of the outlet opening of the power supply, is generally circular. Preferred diameters for said exit port of the pressurized chamber are below 0.25 mm, for example in the range of 0.1 mm to 0.25 mm. According to certain variants of the invention, the feeding tube or capillary has an outlet diameter of less than 0.5 mm, less than 0.4 mm, less than 0.2 mm, or less than 0.1 mm, and the outlet of the capillary channel or tube is located at a distance less than 0.5 mm from the outlet opening of the pressurized chamber. According to certain variants of the invention, the outlet opening of the power supply channel has a diameter less than 0.5 mm, the outlet opening of the pressurized chamber has a diameter less than 0.25 mm, and the opening of The output channel of the power supply is located at a point less than 0.5 mm from the outlet hole of the pressurized chamber. According to certain variants of the invention, the outlet opening of the power supply channel has a diameter in the range of 0.1 mm to 0.5 mm, the outlet opening of the pressurized chamber has a diameter in the range of 0.1 mm to 0.25 mm, and the outlet opening of the power supply channel is located at a point at a distance in the range of 0.2 to 0.5 mm from the outlet hole of the pressurized chamber .
Tal como se ha indicado anteriormente, la distancia inicial o mínima entre la apertura de salida del canal de la fuente de alimentación y el orificio de salida de la cámara presurizada, que generalmente es inferior a 0,5 mm, aumenta preferiblemente de manera progresiva durante el método hasta alcanzar una distancia capilar-orificio final o máxima de por ejemplo aproximadamente 12 mm o menos, tal como aproximadamente 11 mm, 10 mm, 9 mm o menos. En general, el gas (por ejemplo, aire) se puede forzar en la cámara presurizada a una presión dentro del rango de 50 a 2.000 mbar sobre la presión atmosférica y el líquido viscoelástico (por ejemplo, un líquido Boger) puede tener una velocidad en el rango de 1x10"4 kg/m/seg a 1 kg/m/seg. Un aspecto importante de la invención es un método de enfocamiento de chorros viscoelásticos de un líquido, como un líquido Boger, usando una corriente de aire. El flujo de aire axisimétrico enfoca el líquido Boger de forma que produce chorros micrométricos dicho líquido Boger. De acuerdo a la presente invención, el líquido viscoelástico es una solución de polímero en baja concentración, por ejemplo inferior a 1500 ppm, tal como 1000 ppm, 500 ppm o 250 ppm. En principio, la naturaleza del polímero no es importante, dado que tal como el experto en la materia conoce una amplia variedad de polímeros conducen a soluciones viscoelásticas. Polímeros contemplados en la presente invención incluyen, pero no se limitan a, polímeros basados en la química del carbono, polímeros basados en la química del silicio, fluoropolímeros, proteínas, ADNs, ARNs, etc. En una realización particular, el líquido viscoelástico es una solución de ácido poli(acrílico) (PAA). En otro aspecto, la presente invención se dirige al chorro capilar elongado (filamento) líquido obtenible según el método de la invención. Además, a partir de dicho chorro capilar elongado se puede obtener un filamento sólido o fibra sólida mediante un proceso de solidificación o cambio de fase entre los que se considera, pero no restringido a: la evaporación de solvente, enfriamiento, curado químico, interacción química con el gas forzador, interacción química con el gas del ambiente en el que se descarga el chorro capilar, o endurecimiento por calor. As indicated above, the initial or minimum distance between the outlet opening of the power supply channel and the outlet opening of the pressurized chamber, which is generally less than 0.5 mm, preferably increases progressively during the method until reaching a final or maximum capillary-hole distance of for example about 12 mm or less, such as about 11 mm, 10 mm, 9 mm or less. In general, gas (for example, air) can be forced into the pressurized chamber at a pressure in the range of 50 to 2,000 mbar above atmospheric pressure and viscoelastic liquid (for example, a Boger liquid) can have a velocity in the range of 1x10 "4 kg / m / sec to 1 kg / m / sec. An important aspect of the invention is a method of focusing viscoelastic jets of a liquid, such as a Boger liquid, using a stream of air. The flow Axisymmetric air focuses the Boger liquid so that said Boger liquid is micrometric jets According to the present invention, the viscoelastic liquid is a low concentration polymer solution, for example less than 1500 ppm, such as 1000 ppm, 500 ppm or 250 ppm In principle, the nature of the polymer is not important, since as one skilled in the art knows a wide variety of polymers leading to viscoelastic solutions. Polymers contemplated in the present invention They include, but are not limited to, polymers based on carbon chemistry, polymers based on silicon chemistry, fluoropolymers, proteins, DNAs, RNAs, etc. In a particular embodiment, the viscoelastic liquid is a solution of poly (acrylic) acid (PAA). In another aspect, the present invention is directed to the elongated liquid capillary jet (filament) obtainable according to the method of the invention. In addition, from said elongated capillary jet a solid filament or solid fiber can be obtained by a process of solidification or phase change between those considered, but not restricted to: solvent evaporation, cooling, chemical curing, chemical interaction with the forcing gas, chemical interaction with the environment gas in which the capillary jet is discharged, or heat hardening.
El filamento o fibra obtenido a partir del chorro capilar elongado es útil en diferentes industrias, por ejemplo, como: material textil, material para uso biomédico, quirúrgico o protésico, material para uso estructural en aplicaciones mecánicas, material para la elaboración de hilos o cables de muy elevada resistencia a rotura, como fibra de refuerzo mecánico en materiales con baja resistencia a la tracción, sustrato para uso biotecnológico, o material asociado con la telecomunicación. The filament or fiber obtained from the elongated capillary jet is useful in different industries, for example, such as: textile material, material for biomedical, surgical or prosthetic use, material for structural use in mechanical applications, material for the elaboration of wires or cables of very high resistance to breakage, such as mechanical reinforcement fiber in materials with low tensile strength, substrate for biotechnological use, or material associated with telecommunication.
Se pueden producir chorros capilares viscoelásticos mediante flow focusing. En esta técnica, el líquido es inyectado a caudal preferentemente constante a través de un capilar de alimentación situado frente a un orificio de descarga. Una corriente gaseosa cofluye con el chorro a través del orificio impulsada por una caída de presión constante. La corriente gaseosa succiona y arrastra el líquido, reduciendo el diámetro del chorro a valores muy inferiores al diámetro del orificio. Debido a la naturaleza reológica del líquido, este fenómeno de enfocado difiere del observado en régimen Newtoniano en varios aspectos. Las condiciones en las que se obtienen unos resultados especialmente satisfactorios son aquellas que conducen al modo "jetting" (emisión estable de chorro). Fuera de este intervalo, el chorro podría sufrir una inestabilidad denominada "pull-out" o ruptura antes de alcanzar el orificio. Gracias al efecto estabilizador de la contribución polimérica al esfuerzo axial, se pueden producir chorros micrométricos de hasta 1 cm de longitud, y se pueden alcanzar números de Weber del orden de 10"4. Viscoelastic capillary jets can be produced by flow focusing. In this technique, the liquid is injected at preferably constant flow through a feed capillary located in front of a discharge orifice. A gaseous stream co-flows with the jet through the orifice driven by a constant pressure drop. The gas stream sucks and drags the liquid, reducing the diameter of the jet to values far below the diameter of the hole. Due to the rheological nature of the liquid, this focusing phenomenon differs from that observed in the Newtonian regime in several aspects. The conditions under which especially satisfactory results are obtained are those that lead to the "jetting" mode. Outside this interval, the jet could suffer from instability called "pull-out" or rupture before reaching the hole. Thanks to the stabilizing effect of the polymeric contribution to axial stress, micrometer jets of up to 1 cm in length can be produced, and Weber numbers of the order of 10 "4 can be achieved.
Estos y otros objetivos, ventajas y características de la presente invención se pueden hacer evidentes a expertos en la materia tras una lectura de los detalles del método que se describen más ampliamente a continuación. BREVE DESCRIPCIÓN DE LAS FIGURAS These and other objectives, advantages and characteristics of the present invention can be made apparent to those skilled in the art after reading the details of the method described more fully below. BRIEF DESCRIPTION OF THE FIGURES
La invención se entiende mejor partiendo de la detallada descripción que prosigue cuando se lee en combinación con las figuras que acompañan. Hay que enfatizar que, de acuerdo con la práctica habitual, los distintos detalles de las figuras no están a escala. Por el contrario, las dimensiones de algunos detalles están aumentadas o reducidas arbitrariamente para mayor claridad. Incluidas en los dibujos están las siguientes figuras:  The invention is better understood on the basis of the detailed description that follows when read in combination with the accompanying figures. It should be emphasized that, according to usual practice, the different details of the figures are not to scale. On the contrary, the dimensions of some details are augmented or arbitrarily reduced for clarity. Included in the drawings are the following figures:
La Figura 1 es una vista esquemática de los componentes básicos que se usan en relación con un ejemplo según la presente invención. Q: caudal al cual se inyecta el líquido viscoelástico a través del capilar de alimentación, Δρ: caída de presión que impulsa la corriente gaseosa a través del orificio de descarga, H: distancia entre el capilar de alimentación (apertura de salida del canal de alimentación) y el orificio de descarga de la cámara presurizada. Figure 1 is a schematic view of the basic components used in connection with an example according to the present invention. Q: flow rate at which the viscoelastic liquid is injected through the feed capillary, Δρ: pressure drop that drives the gaseous current through the discharge orifice, H: distance between the feed capillary (feed channel outlet opening ) and the discharge hole of the pressurized chamber.
La Figura 2 consiste en dos gráficas a las que nos referimos como gráfica de la izquierda y gráfica de la derecha. La gráfica de la izquierda es una vista esquemática de un montaje experimental de los componentes que se usan en relación con el método de la invención y que permiten la observación y medida de varios parámetros del sistema. (A) capilar, (B) orificio de descarga, (C) sistema de orientación, (D) plataforma de traslación, (E) cámara de ultra-alta velocidad, (F) plataforma de traslación triaxial, (G) fibra óptica, y (H) sistema de aislamiento anti-vibración. La gráfica de la derecha muestra un ejemplo de chorro, en relación con la presente invención, de una solución de ácido poli(acrílico) (PAA) con c = 1000 ppm, Δρ = 250 mbar producido a un caudal Q = 4,5 ml/h. H = 6,7 mm. Figure 2 consists of two graphs that we refer to as the graph on the left and the graph on the right. The graph on the left is a schematic view of an experimental assembly of the components that are used in relation to the method of the invention and that allow the observation and measurement of various system parameters. (A) capillary, (B) discharge hole, (C) orientation system, (D) translation platform, (E) ultra-high speed camera, (F) triaxial translation platform, (G) fiber optic, and (H) anti-vibration isolation system. The graph on the right shows an example of a jet, in relation to the present invention, of a solution of poly (acrylic) acid (PAA) with c = 1000 ppm, Δρ = 250 mbar produced at a flow rate Q = 4.5 ml / h. H = 6.7 mm.
La Figura 3 consiste en dos gráficas a las que nos referimos como gráfica de la izquierda y gráfica de la derecha. La gráfica de la izquierda muestra la dependencia de la viscosidad de cizalladura de la solución μ frente a la velocidad de cizalladura γ' y la gráfica de la derecha muestra la primera función viscométrica "+Ί frente a la velocidad de cizalladura γ', para las soluciones de PAA. En este experimento, c=250 ppm (símbolos huecos) y 1000 ppm (símbolos sólidos). Los puntos de partida de las curvas están determinados por la sensibilidad reómetro. La Figura 4 consiste en seis imágenes conectadas que se muestran para ilustrar el fenómeno de desanclaje del menisco ("pull-out"). El menisco del fluido que sale del extremo del capilar oscila alrededor de una posición de equilibrio en el interior del capilar de alimentación. El chorro que emitido desde el capilar se produjo con c=1000 ppm, Q= 40 ml_/h, y H= 2 mm. Figure 3 consists of two graphs that we refer to as the graph on the left and the graph on the right. The graph on the left shows the dependence of the shear viscosity of the solution μ versus the shear rate γ ' and the graph on the right shows the first viscometric function "+ Ί versus the shear rate γ ' , for the PAA solutions In this experiment, c = 250 ppm (hollow symbols) and 1000 ppm (solid symbols) The starting points of the curves are determined by the rheometer sensitivity. Figure 4 consists of six connected images that are shown to illustrate the phenomenon of meniscal de-anchoring ("pull-out"). The meniscus of the fluid leaving the end of the capillary oscillates around an equilibrium position inside the feeding capillary. The jet emitted from the capillary was produced with c = 1000 ppm, Q = 40 ml_ / h, and H = 2 mm.
La Figura 5 muestra una gráfica de la dependencia temporal del radio de la superficie libre a 1 14 μηι (símbolos sólidos) y 539 μηι (símbolos huecos) del extremo del capilar. El chorro se produjo con c=1000ppm, Q=40ml/h, y H=0,93mm. Figure 5 shows a graph of the temporal dependence of the radius of the free surface at 1 14 μηι (solid symbols) and 539 μηι (hollow symbols) of the capillary end. The jet was produced with c = 1000ppm, Q = 40ml / h, and H = 0.93mm.
La Figura 6 muestra seis imágenes diferentes conectadas que son una secuencia de imágenes que ilustran la rotura del chorro capilar debido al efecto de abultamiento. El chorro se produjo usando c=1000ppm, Q=5ml/h, and H=6,25mm. La Figura 7 es una gráfica que muestra los valores mínimo y máximo, Hmin y Hmáx, de la distancia del capilar al orificio en la que la línea de contacto triple ancla al extremo del capilar. Los símbolos huecos y sólidos corresponden a la soluciones de PAA con c=250 y 1000ppm respectivamente. La Figura 8 es una gráfica que muestra los resultados experimentales del número de Reynolds y los valores de relación de aspecto Λ de los experimentos con c=250ppm (símbolos huecos) y 1000 ppm (símbolos sólidos). Figure 6 shows six different connected images that are a sequence of images that illustrate the rupture of the hair jet due to the bulging effect. The jet was produced using c = 1000ppm, Q = 5ml / h, and H = 6.25mm. Figure 7 is a graph showing the minimum and maximum values, H min and H max, of the distance from the capillary to the hole in which the triple contact line anchors the end of the capillary. The hollow and solid symbols correspond to the PAA solutions with c = 250 and 1000ppm respectively. Figure 8 is a graph showing the experimental results of the Reynolds number and the aspect ratio values Λ of the experiments with c = 250ppm (hollow symbols) and 1000 ppm (solid symbols).
La Figura 9 es un gráfico que muestra los resultados tanto de la distribución de velocidad v (línea punteada) como de la presión manométrica pg (línea sólida) a lo largo del eje del orificio en función de la distancia Z al centro del orificio. La velocidad se divide por su valor en la sección interna del orificio vi . La simulación se realizó con aire a una presión de Δρ=250 mbar y un orificio con un diámetro de paso□=200μηι. El recuadro insertado muestra el campo de presiones cercano al orificio. Figure 9 is a graph showing the results of both the velocity distribution v (dotted line) and the gauge pressure p g (solid line) along the axis of the hole as a function of the distance Z to the center of the hole. The velocity is divided by its value in the internal section of hole vi. The simulation was carried out with air at a pressure of Δρ = 250 mbar and a hole with a passage diameter □ = 200μηι. The inserted box shows the pressure field near the hole.
La Figura 10 consiste en dos gráficas separadas a las que nos referimos como gráfica izquierda y gráfica derecha. La gráfica izquierda muestra los valores experimentales de los números de Weber y Reynolds. El gráfico derecho muestra los valores experimentales para el número de Deborah y la tensión polimérica adimensional. Los símbolos huecos y sólidos corresponden a las soluciones PAA con c=250 and 1000 ppm respectivamente. Figure 10 consists of two separate graphs that we refer to as the left graph and the right graph. The left graph shows the experimental values of the Weber and Reynolds numbers. The right graph shows the experimental values for the Deborah number and the dimensionless polymeric stress. The Hollow and solid symbols correspond to PAA solutions with c = 250 and 1000 ppm respectively.
La Figura 11 consiste en dos gráficas separadas a las que nos referimos como gráfica izquierda y gráfica derecha. La gráfica izquierda muestra el radio del chorro justo en frente del orificio en función de la relación de aspecto Λ. La gráfica derecha muestra el número de Deborah (De) frente a la relación de aspecto Λ. Los símbolos huecos y sólidos corresponden a las soluciones de PAA de c=250 y 1000ppm, respectivamente. La Figura 12 muestra un gráfico de la velocidad de cizalladura frente a la tensión de cizalladura. El gráfico se proporciona para mostrar las propiedades de un fluido Newtoniano relativas al incremento de la velocidad de cizalladura frente a la tensión de cizalladura en fluidos Newtonianos y No-Newtonianos. DEFINICIONES Figure 11 consists of two separate graphs which we refer to as the left graph and the right graph. The left graph shows the radius of the jet just in front of the hole depending on the aspect ratio Λ. The right graph shows the number of Deborah (De) versus the aspect ratio Λ. The hollow and solid symbols correspond to the PAA solutions of c = 250 and 1000ppm, respectively. Figure 12 shows a graph of the shear rate versus shear stress. The graph is provided to show the properties of a Newtonian fluid relative to the increase in shear rate versus shear stress in Newtonian and Non-Newtonian fluids. DEFINITIONS
En este documento, el término fluido no-Newtoniano se refiere a cualquier fluido con propiedades que difieren de alguna forma a aquellas que tienen los fluidos Newtonianos. En un fluido no-Newtoniano, la relación entre el esfuerzo de cizalla y la velocidad de cizalla es diferente y puede ser incluso variable en el tiempo. La diferencia se muestra en la Figura 12, la diferencia respecto a una relación lineal directa puede ser del 5% o mayor, del 10% o mayor, del 20% o mayor, del 40% o mayor, etc. Por lo tanto, con un fluido no-Newtoniano no se puede definir un coeficiente de viscosidad constante. Mayoritariamente, la viscosidad (la medida de la capacidad de un fluido para resistir la deformación gradual producida por la fuerza de tracción o cizalladura) de los fluidos no-Newtonianos depende de la velocidad de cizalladura en el momento o en el tiempo. Algunos fluidos no-Newtonianos aun teniendo una viscosidad independiente de la fuerza de cizalla, tienen otros comportamientos diferentes al normal frente a la fuerza u otros comportamientos no- Newtonianos. Muchas disoluciones salinas o polímeros fundidos son fluidos no- Newtonianos, al igual que muchas sustancias comunes como el kétchup, natillas, pasta de dientes, suspensiones de levadura, pintura, sangre y champú. En un fluido Newtoniano, la relación entre la fuerza de cizalla y la velocidad de cizalla es lineal, pasando por el origen, siendo el coeficiente de viscosidad la constante de proporcionalidad como se muestra en la Figura 12. El número de Weber (We) es un número adimensional en mecánica de fluidos y que es útil en el análisis de los flujos de fluidos en los que hay una interfaz entre dos fluidos, especialmente en fluidos multifásicos con superficies muy curvas. Su nombre proviene de Moritz Weber (1871-1951). Puede considerarse como una medida de la importancia relativa de la inercia del fluido comparada con la tensión superficial. El valor es útil para el análisis de flujos de capas finas y la formación de gotas y burbujas. In this document, the term "non-Newtonian fluid" refers to any fluid with properties that differ in some way from those that Newtonian fluids have. In a non-Newtonian fluid, the relationship between shear stress and shear rate is different and may even vary over time. The difference is shown in Figure 12, the difference with respect to a direct linear relationship can be 5% or greater, 10% or greater, 20% or greater, 40% or greater, etc. Therefore, a constant viscosity coefficient cannot be defined with a non-Newtonian fluid. Mostly, the viscosity (the measure of the ability of a fluid to withstand the gradual deformation produced by the tensile or shear force) of non-Newtonian fluids depends on the shear rate at the time or time. Some non-Newtonian fluids even having a viscosity independent of the shear force, have other behaviors other than normal versus force or other non-Newtonian behaviors. Many salt solutions or molten polymers are non-Newtonian fluids, as are many common substances such as ketchup, custard, toothpaste, yeast suspensions, paint, blood and shampoo. In a Newtonian fluid, the relationship between the shear force and the shear rate is linear, passing through the origin, the viscosity coefficient being the constant of proportionality as shown in Figure 12. The Weber number (We) is a dimensionless number in fluid mechanics and is useful in the analysis of fluid flows in which there is an interface between two fluids, especially in multiphase fluids with very curved surfaces. Its name comes from Moritz Weber (1871-1951). It can be considered as a measure of the relative importance of fluid inertia compared to surface tension. The value is useful for the analysis of thin layer flows and the formation of drops and bubbles.
El número de Weber puede definirse como: Weber's number can be defined as:
ü v¿ i. ü v ¿ i.
We ^ We ^
σ  σ
donde where
P es la densidad del fluido (kg/m3); P is the density of the fluid (kg / m 3 );
v es su velocidad (m/s); v is its speed (m / s);
I es su longitud característica, normalmente el diámetro de gota (m); y  I is its characteristic length, usually the drop diameter (m); Y
es la tensión superficial (N/m).  is the surface tension (N / m).
Como se ha mencionado, los líquidos denominados tipo "Boger" son fluidos elásticos con viscosidad constante. Esto crea un efecto en el fluido que lo hace fluir como un líquido, aunque se comporta como un sólido elástico cuando se estira. La mayoría de los fluidos elásticos muestran un comportamiento pseudoplástico (la viscosidad decrece cuando se aplica el esfuerzo de cizalla), porque las soluciones contienen polímeros. Pero los fluidos Boger son excepciones ya que son soluciones altamente diluidas, de forma que el comportamiento pseudoplástico causado por los polímeros se puede ignorar. Los fluidos Boger se hacen añadiendo una pequeña cantidad de polímero a un fluido Newtoniano de alta viscosidad, la solución más original es poliacrilamida mezclada con sirope de maíz. Es un compuesto muy sencillo de sintetizar pero importante para el estudio de la reología porque los efectos elásticos y los efectos de cizalla se pueden distinguir en los experimentos que se realizan con fluidos Boger. En los fluidos Boger es difícil determinar si los efectos no-Newtonianos son causados por la elasticidad, pseudoplasticidad o ambos; el flujo no-Newtoniano causado por la elasticidad se identifica muy pocas veces. Como los fluidos Boger pueden tener viscosidad constante, se pueden realizar experimentos donde el resultado de las velocidades de flujo de un líquido Boger y un líquido Newtoniano con la misma viscosidad se pueden comparar, y la diferencia de las velocidades de flujo podría mostrar el cambio provocado por la elasticidad del líquido Boger. Un fluido Boger es un líquido elástico con una viscosidad constante. Debido a que la viscosidad es independiente de la velocidad de cizalla o casi, los efectos elásticos se pueden separar de los efectos viscosos de los flujos viscoelásticos porque estos últimos pueden ser determinados con fluidos Newtonianos. As mentioned, liquids called "Boger" type are elastic fluids with constant viscosity. This creates an effect on the fluid that makes it flow like a liquid, although it behaves like an elastic solid when stretched. Most elastic fluids show a pseudoplastic behavior (viscosity decreases when shear stress is applied), because the solutions contain polymers. But Boger fluids are exceptions since they are highly diluted solutions, so that the pseudoplastic behavior caused by polymers can be ignored. Boger fluids are made by adding a small amount of polymer to a Newtonian fluid of high viscosity, the most original solution is polyacrylamide mixed with corn syrup. It is a very simple compound to synthesize but important for the study of rheology because the elastic effects and shear effects can be distinguished in experiments performed with Boger fluids. In Boger fluids it is difficult to determine whether non-Newtonian effects are caused by elasticity, pseudoplasticity or both; the non-Newtonian flow caused by elasticity is rarely identified. Since Boger fluids can have constant viscosity, experiments can be performed where the result of the flow rates of a Boger liquid and a Newtonian liquid with the same viscosity can be compared, and the difference in flow rates could show the change caused. by the elasticity of the liquid Boger. A fluid Boger is an elastic liquid with a constant viscosity. Because the viscosity is independent of the shear rate or almost, the elastic effects can be separated from the viscoelastic flow viscous effects because the latter can be determined with Newtonian fluids.
DESCRIPCIÓN DETALLADA DE LA INVENCIÓN DETAILED DESCRIPTION OF THE INVENTION
Antes de describir el método y el producto resultante de esta invención, debe entenderse que esta invención no está limitada a los pasos y componentes particulares descritos, ya que estos, pueden, por supuesto, variar. Debe ser también entendido que la terminología que se utiliza aquí tiene solo el objeto de describir materializaciones particulares de la invención, y no pretende ser limitante ya que el alcance de la presente invención está limitado únicamente por las reivindicaciones que se incluyen. Cuando se proporciona un rango de valores, se entiende que cada valor, hasta la décima parte de la unidad del límite inferior mientras el texto no indique claramente otra cosa, entre el límite inferior y el límite superior indicado está incluido específicamente. Cada rango inferior al existente entre un valor indicado o un valor incluido dentro de un rango indicado y cualquier otro valor indicado o incluido en dicho rango, lo abarca la invención. Los límites superiores o inferiores de esos rangos más pequeños pueden estar incluidos o excluidos del rango de forma independiente, y cada uno de los rangos en los que o ninguno o los dos límites están incluidos en los rangos pequeños están comprendidos en la invención, sujetos a la exclusión específica de los límites de los rangos indicados. En los casos en que los rangos indicados incluyan uno o los dos límites, los rangos que excluyen alguno o los dos de esos límites incluidos están también comprendidos en la invención.  Before describing the method and product resulting from this invention, it should be understood that this invention is not limited to the particular steps and components described, since these, of course, may vary. It should also be understood that the terminology used herein is only intended to describe particular embodiments of the invention, and is not intended to be limiting since the scope of the present invention is limited only by the claims that are included. When a range of values is provided, it is understood that each value, up to one tenth of the lower limit unit as long as the text does not clearly indicate otherwise, between the lower limit and the indicated upper limit is specifically included. Each range below that existing between a indicated value or a value included within a indicated range and any other value indicated or included in said range, is covered by the invention. The upper or lower limits of these smaller ranges may be included or excluded from the range independently, and each of the ranges in which neither or both limits are included in the small ranges are included in the invention, subject to the specific exclusion of the limits of the ranges indicated. In cases where the ranges indicated include one or both limits, the ranges that exclude one or both of those limits included are also included in the invention.
A menos que se defina de forma diferente, todos los términos técnicos y científicos que se utilizan aquí tienen el mismo significado que el que entiende comúnmente una persona experta en la materia como a la que pertenece la invención. Aunque métodos y materiales similares o equivalentes a los que se describen aquí se pueden utilizar para la práctica o ensayo de la presente invención, algunos métodos y materiales potenciales preferidos se describen a continuación. Todas las publicaciones mencionadas se incorporan como referencia para mostrar y describir los métodos y/o material relacionados con las publicaciones citadas. Se entiende que la presente invención sustituye cualquier otra descripción de cualquier publicación incorporada cuando exista una contradicción. Unless defined differently, all the technical and scientific terms used here have the same meaning as the one commonly understood by a person skilled in the art as to which the invention belongs. Although methods and materials similar or equivalent to those described herein can be used for the practice or testing of the present invention, some preferred methods and potential materials are described below. All the mentioned publications are incorporated as a reference to show and describe the methods and / or material related to the cited publications. It is understood that this The invention replaces any other description of any incorporated publication when there is a contradiction.
Debe puntualizarse que tal y como se utilizan aquí y en las reivindicaciones incluidas, las formas singulares "un/-a" y "el/la" incluyen la referencia a los plurales a no ser que el contexto claramente indique lo contrario. Así por ejemplo, la referencia a "una corriente" indica una pluralidad de dicha corriente y la referencia a "el chorro" incluye la referencia a uno o más chorros y así distintos equivalentes conocidos por aquellos expertos en la materia. It should be noted that, as used herein and in the claims included, the singular forms "a / -a" and "the" include the reference to plurals unless the context clearly indicates otherwise. Thus, for example, the reference to "a stream" indicates a plurality of said stream and the reference to "the stream" includes the reference to one or more streams and thus different equivalents known to those skilled in the art.
Las publicaciones que se muestran aquí se proporcionan con la intención de mostrarlas previamente a la fecha de solicitud de la presente invención. Nada debe ser interpretado como un reconocimiento de que la presente invención no tiene derecho a anteceder a estas publicaciones en virtud de una invención prioritaria. Más aún, las fechas de publicación mostradas pueden ser diferentes de las fechas de publicación actuales que deben ser confirmadas individualmente. The publications shown here are provided with the intention of displaying them prior to the application date of the present invention. Nothing should be construed as an acknowledgment that the present invention has no right to precede these publications by virtue of a priority invention. Moreover, the publication dates shown may be different from the current publication dates that must be confirmed individually.
La figura 1 proporciona una visión esquemática de un ejemplo de configuración fluida del método de la invención. Un capilar de alimentación cilindrico, que tiene una longitud de varias veces su diámetro, se sitúa enfrente del orificio de descarga, cuyo diámetro es del orden del diámetro del capilar. El líquido viscoelástico se inyecta a través del capilar de alimentación a caudal constante Q, mientras que una corriente gaseosa atraviesa el orificio de descarga impulsada por una caída de presión constante Δρ. Se obtienen unos resultados especialmente satisfactorios si la distancia H entre el capilar de alimentación y el orificio de descarga se encuentra dentro de un cierto rango, entonces se forma un chorro líquido de un fluido Boger que comienza en el borde del extremo del capilar y se extiende aguas abajo en una dirección de flujo hasta lejos del extremo del capilar. La corriente de gas succiona y arrastra el líquido Boger, lo cual reduce el diámetro del chorro hasta valores muy inferiores al del orificio de descarga. Por ejemplo el diámetro del chorro aguas abajo del extremo del capilar es enfocado por el gas circundante de modo que puede ser un 50% o inferior, 25% o inferior, 10% o inferior, o un 1 % o inferior al diámetro del chorro cuando este abandona el extremo del capilar. Tanto el chorro líquido como la corriente de gas que cofluye fluyen cruzando el orificio de salida. Debido al carácter reológico del líquido, este fenómeno de enfocado difiere sustancialmente del que se produce en régimen Newtoniano. En particular, los valores apropiados de la distancia capilar-orificio H son normalmente mucho mayores que sus homólogos de la configuración clásica de flow focusing. El efecto de enfocado aerodinámico puede estar confinado dentro de una región muy pequeña en comparación con la longitud total del chorro. Por lo tanto, el líquido fluye libremente, sin interacción significativa con el ambiente circundante. Los mecanismos de inestabilidad que impiden que se alcance la emisión estacionaria de chorro ("steady jetting") son también diferentes a los del modo Newtoniano. Los esfuerzos poliméricos estabilizan el filamento líquido, permitiendo formar chorros con números de Weber cercanos a cero. Figure 1 provides a schematic view of an example of fluid configuration of the method of the invention. A cylindrical feed capillary, which has a length of several times its diameter, is located in front of the discharge orifice, whose diameter is of the order of the capillary diameter. The viscoelastic liquid is injected through the constant flow feed capillary Q, while a gaseous stream passes through the discharge orifice driven by a constant pressure drop Δρ. Especially satisfactory results are obtained if the distance H between the feed capillary and the discharge orifice is within a certain range, then a liquid jet of a Boger fluid is formed that begins at the edge of the capillary end and extends downstream in a flow direction far from the end of the capillary. The gas stream sucks and drags the Boger liquid, which reduces the diameter of the jet to values far below that of the discharge orifice. For example, the diameter of the jet downstream of the end of the capillary is focused by the surrounding gas so that it can be 50% or less, 25% or less, 10% or less, or 1% or less than the diameter of the jet when This leaves the end of the capillary. Both the liquid jet and the stream of cofluing gas flow across the orifice of exit. Due to the rheological nature of the liquid, this focusing phenomenon differs substantially from that produced in the Newtonian regime. In particular, the appropriate values of the capillary-hole distance H are normally much greater than their counterparts in the classical flow focusing configuration. The aerodynamic focusing effect can be confined within a very small region compared to the total length of the jet. Therefore, the liquid flows freely, without significant interaction with the surrounding environment. The instability mechanisms that prevent steady jetting from being achieved are also different from those of the Newtonian mode. Polymeric forces stabilize the liquid filament, allowing jets to be formed with Weber numbers close to zero.
La presente invención está dirigida a los largos (del orden de milímetros) chorros formados entre el extremo del capilar de alimentación y el orificio de descarga. La invención especifica condiciones apropiadas para obtener el régimen "jetting" así como los mecanismos de inestabilidad que limitan este régimen. Se revisan algunos de los candidatos a ser tales mecanismos incluyendo la inestabilidad capilar [28] y el hecho de que la tensión superficial hace crecer ondas sobre la superficie del chorro hasta que finalmente pinzan la entrefase. La inestabilidad absoluta [31] así como la inestabilidad convectiva podrían impedir que el sistema alcance el modo "jetting". Si las perturbaciones convectadas aguas abajo pinzan la entrefase antes de llegar al orificio, el efecto de succión se interrumpe. Esto provoca que la eyección del filamento cese, y evita que el régimen "jetting" se recupere. Este fenómeno no se produce cuando el proceso se lleva a cabo usando un fluido Newtoniano, donde las ondas capilares crecen más allá del orificio [20]. The present invention is directed to the long (of the order of millimeters) jets formed between the end of the feed capillary and the discharge orifice. The invention specifies appropriate conditions for obtaining the "jetting" regime as well as the instability mechanisms that limit this regime. Some of the candidates for such mechanisms are reviewed, including capillary instability [28] and the fact that surface tension causes waves to grow on the surface of the jet until they finally pinch the interphase. Absolute instability [31] as well as convective instability could prevent the system from reaching the "jetting" mode. If the downstream convection disturbances pinch the interphase before reaching the hole, the suction effect is interrupted. This causes the ejection of the filament to cease, and prevents the jetting regime from recovering. This phenomenon does not occur when the process is carried out using a Newtonian fluid, where capillary waves grow beyond the hole [20].
La inestabilidad capilar no es deseable y se puede modular mediante el esfuerzo axial elástico. La tensión asociada al estiramiento polimérico da como resultado un fuerte aumento de la viscosidad extensional. Esto inhibe parcialmente la inestabilidad capilar [32, 33]. El flujo de Poiseuille en el capilar de alimentación provoca un primer estiramiento de los polímeros. Si un chorro evoluciona a velocidad (diámetro) constante, entonces los polímeros se relajan a su estado de enrollamiento a distancias del extremo capilar que son equivalentes al diámetro del chorro [34, 35, 36]. Sin embargo, la aceleración del chorro causada por la corriente de gas que cofluye mantiene la tensión polimérica y puede incrementar la tensión polimérica cerca del orificio. Capillary instability is not desirable and can be modulated by elastic axial stress. The tension associated with polymeric stretching results in a strong increase in extensional viscosity. This partially inhibits capillary instability [32, 33]. The flow of Poiseuille in the feeding capillary causes a first stretching of the polymers. If a jet evolves at a constant speed (diameter), then the polymers relax at their winding state at distances from the capillary end that are equivalent to the diameter of the jet [34, 35, 36]. However, the acceleration of the jet caused by the co-flowing gas stream maintains the polymeric tension and can increase the polymeric tension near the hole.
Oscilaciones laterales ("whipping") pueden aparecer en chorros que cofluyen con una corriente que posee una velocidad mucho más elevada [37, 38]. En este caso, la tensión superficial tiene un efecto estabilizador, y el mecanismo de desestabilización es aerodinámico: una perturbación en la entrefase hace que el fluido que cofluye se acelere a medida que pasa por una cresta, reduciendo la presión en ese punto y causando el crecimiento en tamaño de dicha cresta. Una pregunta que surge de manera natural es si el "whipping" puede jugar un papel importante en la configuración fluídica. Los experimentos han demostrado que este es el caso cuando se enfocan líquidos Newtonianos dentro de una tobera convergente [39], donde la corriente de gas presenta un importante impulso axial en la región de enfocado. Sin embargo, el "whipping" está confinado aguas arriba del orificio de descarga en la configuración clásica de flow focusing [20, 40]. Esto es debido a que el flujo de gas radial enfrente del orificio constituye una barrera hidrodinámica ante perturbaciones laterales. Lateral oscillations ("whipping") may appear in jets that co-flow with a current that has a much higher velocity [37, 38]. In this case, the surface tension has a stabilizing effect, and the destabilization mechanism is aerodynamic: a disturbance in the interphase causes the co-flowing fluid to accelerate as it passes through a ridge, reducing the pressure at that point and causing the growth in size of said crest. A question that arises naturally is whether "whipping" can play an important role in fluidic settings. Experiments have shown that this is the case when Newtonian liquids are focused within a convergent nozzle [39], where the gas stream has a significant axial impulse in the focusing region. However, the "whipping" is confined upstream of the discharge hole in the classical configuration of flow focusing [20, 40]. This is because the flow of radial gas in front of the hole constitutes a hydrodynamic barrier to lateral disturbances.
La inestabilidad del chorro también puede deberse al llamado "pull-out" del filamento el cual ocurre debido al hilado de fibras [41 , 42, 43] bajo tensiones axiales por encima del límite de estabilidad. Si el filamento es estirado por una fuerza de hilado suficientemente alta, puede producirse el retroceso de este con respecto al extremo del capilar de alimentación. El balance entre la fuerza de hilado y la tensión normal en el capilar determina la nueva posición del menisco en el interior del capilar. El menisco puede permanecer inmóvil en el capilar u oscilar alrededor de la posición de equilibrio [43]. Hay otros mecanismos de inestabilidad como la resonancia de estiramiento ("draw resonance") mencionada anteriormente [11] o el conocido como "melt fracture" (ruptura por fusión) [44]. La resonancia de estiramiento está vinculada a la prescripción de la velocidad del chorro en algún punto aguas abajo [45]. Esta condición no se aplica a flow focusing, y por lo tanto este fenómeno no ocurre en relación con la presente invención. The instability of the jet may also be due to the so-called "pull-out" of the filament which occurs due to fiber spinning [41, 42, 43] under axial stresses above the stability limit. If the filament is stretched by a sufficiently high spinning force, its retraction can occur with respect to the end of the feeding capillary. The balance between the spinning force and the normal tension in the capillary determines the new position of the meniscus inside the capillary. The meniscus can remain motionless in the capillary or oscillate around the equilibrium position [43]. There are other instability mechanisms such as stretching resonance ("draw resonance") mentioned previously [11] or known as "melt fracture" [44]. The stretching resonance is linked to the prescription of the jet velocity at some point downstream [45]. This condition does not apply to flow focusing, and therefore this phenomenon does not occur in relation to the present invention.
Aquí se proporciona información tanto de la estabilidad como de las fuerzas que caracterizan el régimen "jetting" en flow focusing de chorros viscoelásticos. El procedimiento experimental y las propiedades reológicas de los líquidos de trabajo se describen en la sección posterior de Materiales y Métodos. Los datos experimentales se presentan y analizan en la sección posterior de Resultados. Information on both the stability and the forces that characterize the "jetting" regime in flow focusing of viscoelastic jets is provided here. The experimental procedure and the rheological properties of working liquids are described in the later section of Materials and Methods. Experimental data is presented and analyzed in the subsequent Results section.
EJEMPLOS EXAMPLES
Los siguientes ejemplos se presentan para proporcionar a los expertos en la materia una explicación completa y una descripción de cómo realizar y usar la presente invención, y no tiene intención ni de limitar el alcance de lo que los inventores reconocen como su invención ni se pretende indicar que los experimentos que se describen a continuación son los únicos experimentos realizados. Se ha realizado un esfuerzo para asegurar la precisión de los números utilizados (p.ej. cantidades, temperatura, etc) pero se tiene que tener en cuenta que puede haber errores o desviaciones experimentales. A menos que se indique otra cosa, las partes son partes en peso, el peso molecular es el peso molecular medio, la temperatura está en grados Centígrados y la presión es o está muy cerca de la atmosférica. The following examples are presented to provide those skilled in the art with a complete explanation and description of how to make and use the present invention, and it is not intended to limit the scope of what the inventors recognize as their invention nor is it intended to indicate that the experiments described below are the only experiments performed. An effort has been made to ensure the accuracy of the numbers used (eg quantities, temperature, etc.) but it must be taken into account that there may be errors or experimental deviations. Unless otherwise indicated, the parts are parts by weight, the molecular weight is the average molecular weight, the temperature is in degrees Centigrade and the pressure is or is very close to atmospheric.
MATERIALES Y MÉTODOS MATERIALS AND METHODS
La figura 2 muestra un fluido no-Newtoniano inyectado a caudal constante Q por un motor paso a paso (no se muestra) a través de un capilar de acero (A), de, por ejemplo, 3,5 cm de longitud y 200 μηι de diámetro, con un extremo del capilar afilado. Dicho extremo del capilar se sitúa frente a un orificio (B) perforado en la cara superior de una celda de acero inoxidable. El orificio (B) es de, por ejemplo, 200 μηι de diámetro y 500 μηι de espesor. Una presión manométrica negativa Δρ se aplica dentro de la celda mediante el uso de una bomba de succión (no se muestra). Un sistema de orientación de alta precisión (C) y un sistema de traslación (D) se utilizan para asegurar la correcta alineación de los elementos del flow focusing, y para establecer la distancia capilar-orificio H. Figure 2 shows a non-Newtonian fluid injected at a constant flow rate Q by a stepper motor (not shown) through a steel capillary (A), for example, 3.5 cm in length and 200 μηι in diameter, with a sharp capillary end. Said end of the capillary is placed in front of a hole (B) perforated in the upper face of a stainless steel cell. The hole (B) is, for example, 200 μηι in diameter and 500 μηι in thickness. A negative gauge pressure Δρ is applied inside the cell by using a suction pump (not shown). A high precision orientation system (C) and a translation system (D) are used to ensure the correct alignment of the flow focusing elements, and to establish the capillary-hole distance H.
El chorro viscoelástico se forma al aire libre debido a la acción de la corriente de aire succionada a través del orificio de la celda. Se pueden adquirir imágenes digitales usando dos o más cámaras (E) con los ejes ópticos perpendiculares entre sí, y equipadas con lentes de aumentos muy diferentes. La cámara con el mayor aumento se desplaza tanto horizontal como verticalmente utilizando una plataforma de traslación triaxial (F) para enfocar parte del chorro de líquido, mientras que la otra cámara adquiriere imágenes de todo el ligamento. De esta manera, el radio del chorro R (del orden de decenas de mieras) y la distancia capilar-orificio H (del orden de milímetros) se pueden medir de forma simultánea. La configuración fluida se ilumina a contraluz en los dos ejes (enfrente de las dos cámaras) mediante luz blanca fría proporcionada por dos fibras ópticas (G) conectadas a fuentes de luz. Todos estos elementos se montan sobre una mesa óptica con un sistema neumático de aislamiento anti-vibración (H) para amortiguar las vibraciones procedentes del medio ambiente circundante. The viscoelastic jet is formed outdoors due to the action of the air stream sucked through the hole in the cell. Digital images can be acquired using two or more cameras (E) with optical axes perpendicular to each other, and equipped with very different magnification lenses. The camera with the highest magnification moves both horizontally and vertically using a triaxial translation platform (F) to focus part of the liquid jet, while the other camera acquires images of the entire ligament. In this way, the radius of the jet R (of the order of tens of microns) and the capillary-hole distance H (of the order of millimeters) can be measured simultaneously. The fluid configuration lights up to backlight on the two axes (in front of the two cameras) by cold white light provided by two optical fibers (G) connected to light sources. All these elements are mounted on an optical table with a pneumatic anti-vibration isolation system (H) to dampen vibrations from the surrounding environment.
Los experimentos se llevan a cabo a 24±2 °C. Se coloca el capilar de alimentación a una distancia del orificio de la celda que es sustancialmente igual que diámetro del orificio. Se fija la caída de presión en Δρ = 250 mbar en la corriente de aire. Un líquido, igual, no-Newtoniano se inyecta un caudal Q a través del capilar. Experiments are carried out at 24 ± 2 ° C. The feed capillary is placed at a distance from the cell hole that is substantially the same as the hole diameter. The pressure drop is set at Δρ = 250 mbar in the air stream. An equal, non-Newtonian liquid is injected a flow rate Q through the capillary.
Tras un breve régimen transitorio, el capilar emite un filamento líquido que cruza el orificio impulsado por la corriente de aire. Se aumenta progresivamente la distancia capilar-orificio H, manteniendo Δρ y Q constantes. Con el fin de alcanzar el régimen "jetting", es coveniente seguir estrictamente la secuencia anterior. Por ejemplo, si se comienza el proceso utilizando un valor H muy superior al diámetro del orificio, entonces la corriente de aire no podrá establecer fácilmente un grado necesario de tensión elástica en el filamento líquido, dificultando por tanto la formación del chorro. El procedimiento descrito anteriormente se puede repetir para diferentes caudales Q y dos soluciones poliméricas. Se pueden adquirir imágenes durante el curso del proceso. La posición de la superficie libre se puede determinar mediante el procesamiento de las imágenes con una técnica de súper-resolución a nivel sub-píxel [46]. After a brief transitory regime, the capillary emits a liquid filament that crosses the orifice driven by the air current. The capillary-hole distance H is progressively increased, keeping Δρ and Q constant. In order to achieve the "jetting" regime, it is convenient to strictly follow the above sequence. For example, if the process is started using a H value that is much larger than the diameter of the hole, then the air flow cannot easily establish a necessary degree of elastic tension in the liquid filament, thus hindering the formation of the jet. The procedure described above can be repeated for different flow rates Q and two polymer solutions. You can acquire images during the course of the process. The position of the free surface can be determined by processing the images with a super-resolution technique at the sub-pixel level [46].
Se puede examinar el comportamiento de dos soluciones de ácido poli(acrílico) (PAA) (Mw = 18 x 106 g/mol) en agua destilada pura con concentraciones de c = 250 y 1000 ppm. Se pueden preparar soluciones de fluido no-Newtoniano disolviendo polímero en un solvente mediante agitación a velocidades muy bajas, a fin de evitar la rotura de las cadenas poliméricas. La dependencia de la viscosidad de cizalladura μ de la solución y primera función viscométrica "+Ί frente a la velocidad de cizalladura γ' se puede medir con un reómetro Physica MCR 301. Los resultados se muestran en la Figura 3. The behavior of two poly (acrylic) acid (PAA) solutions (Mw = 18 x 10 6 g / mol) in pure distilled water with concentrations of c = 250 and 1000 ppm can be examined. Non-Newtonian fluid solutions can be prepared by dissolving polymer in a solvent by stirring at very low speeds, in order to avoid breakage of the polymer chains. The shear viscosity dependence μ of the solution and first viscometric function "+ Ί versus the shear rate γ ' can be measured with a Physica MCR 301 rheometer. The results are shown in Figure 3.
El tiempo de relajación polimérico λ se puede medir con el reómetro extensional HAAKE CABER 1 aplicando el método de retracción lenta ("slow retraction method") [47]. Los valores fueron λ = 20 y 140 ms para 250 y 1000 ppm, respectivamente. La tensión superficial γ se puede medir con el método TIFA [48]. Se puede verificar que γ ~ 72 mN/m y p ^ 997 kg/m3 en todos los casos, es decir, estas dos propiedades no dependen significativamente de la concentración polimérica. La figura 2 muestra un chorro con c = 1000 ppm producido a un caudal Q = 4,5 ml/h. The polymeric relaxation time λ can be measured with the HAAKE CABER 1 extensional rheometer by applying the slow retraction method [47]. The values were λ = 20 and 140 ms for 250 and 1000 ppm, respectively. The surface tension γ can be measured with the TIFA method [48]. It can be verified that γ ~ 72 mN / myp ^ 997 kg / m 3 in all cases, that is, these two properties do not depend significantly on the polymer concentration. Figure 2 shows a jet with c = 1000 ppm produced at a flow rate Q = 4.5 ml / h.
El flow focusing gaseoso de los dos líquidos viscoelásticos descritos anteriormente se comporta de la siguiente manera. Cuando el capilar de alimentación se sitúa cerca del orificio de descarga, el menisco líquido se separa del borde del extremo capilar y trepa por la pared interior del capilar. El menisco o bien alcanza una posición de equilibrio en el interior del capilar u oscila alrededor de ella. Este es el fenómeno llamado "pull-out" que ha sido observado en hilado de fibras [41 , 42, 43]. La posición final de la línea de contacto triple está esencialmente determinada por el balance entre la fuerza de tracción originada por el flujo de Poiseuille en el capilar, y la ejercida por el chorro emitido. Una pequeña perturbación lateral hace que el chorro toque la superficie interna del capilar. Debido a la fuerte tendencia del líquido a mojar el acero, el chorro permanece en contacto con la pared mientras se desliza sobre ella. El resultado es la emisión estacionaria de un chorro ("steady jetting") que atraviesa el orificio de descarga impulsado por la corriente de aire. The gaseous flow focusing of the two viscoelastic liquids described above behaves as follows. When the feeding capillary is located near the discharge orifice, the liquid meniscus separates from the edge of the capillary end and climbs up the inner wall of the capillary. The meniscus either reaches an equilibrium position inside the capillary or oscillates around it. This is the phenomenon called "pull-out" that has been observed in fiber spinning [41, 42, 43]. The final position of the triple contact line is essentially determined by the balance between the tensile force caused by the flow of Poiseuille in the capillary, and that exerted by the emitted jet. A small lateral disturbance causes the jet to touch the inner surface of the capillary. Due to the strong tendency of the liquid to wet the steel, the jet remains in contact with the wall while sliding on it. The result is the steady emission of a jet ("steady jetting") that passes through the discharge orifice driven by the air flow.
En la Figura 4 se muestra una secuencia de imágenes para ilustrar el fenómeno de "pull-out". El capilar de acero se sustituye por uno hecho de sílice (transparente). A sequence of images is shown in Figure 4 to illustrate the phenomenon of "pull-out". The steel capillary is replaced by one made of silica (transparent).
Alejando con cuidado el capilar de alimentación y el orificio de descarga, la película que fluía por el interior del capilar sale al exterior y se convierte en parte del chorro al aire libre. Este proceso continúa hasta que el extremo del capilar alcanza la posición del menisco. Es entonces cuando la línea de contacto triple ancla al borde del capilar. By carefully moving the feed capillary and the discharge orifice, the film flowing inside the capillary goes outside and becomes part of the outdoor jet. This process continues until the end of the capillary reaches the meniscus position. That is when the triple contact line anchors to the edge of the capillary.
Contrariamente a lo que ocurre con los líquidos Newtonianos, tanto la línea de contacto triple como la superficie libre del chorro oscilan. Este comportamiento oscilatorio está causado por un abultamiento transitorio ("swell-die effect"), que aparece de forma continua justo a la salida del capilar, probablemente estimulado por la relajación local de la tensión elástica en ese punto. El abultamiento del filamento es convectado aguas abajo, haciendo que todo el chorro oscile. La Figura 5 muestra la dependencia temporal del radio de la superficie libre para dos secciones del chorro. La magnitud de la oscilación aumenta con H. Hay una distancia capilar-orificio máxima en la cual la emisión se interrumpe (Figura 6). Esto ocurre porque la tasa de deformación ("strain rate") en ese caso no es lo suficientemente alta como para convectar el abultamiento de la entrefase. Entonces, el chorro continúa abultándose en la salida del capilar de alimentación, de modo que se forma una gota anclada a su borde. La gota succiona el líquido del hilo cuasi-cilíndrico que cuelga de ella. El radio del hilo disminuye mediante un régimen elastocapilar similar al que aparece en un reómetro de ruptura capilar [47, 49], lo que finalmente conduce a la estructura "beads-on-a-string" y al pinzamiento de la superficie libre. Contrary to what happens with Newtonian liquids, both the triple contact line and the free surface of the jet oscillate. This oscillatory behavior is caused by a transient bulge ("swell-die effect"), which appears continuously just outside the capillary, probably stimulated by the local relaxation of the elastic tension at that point. The bulge of the filament is conveyed downstream, causing the entire jet to oscillate. Figure 5 shows the temporal dependence of the radius of the free surface for two sections of the jet. The magnitude of the oscillation increases with H. There is a maximum capillary-orifice distance in which the emission is interrupted (Figure 6). This occurs because the strain rate in that case is not high enough to convene the bulging of the interphase. Then, the jet continues to bulge at the outlet of the feed capillary, so that a drop is formed anchored to its edge. The drop sucks the liquid from the quasi-cylindrical thread that hangs from it. The radius of the thread is reduced by an elastocapillary regimen similar to that shown in a capillary rupture rheometer [47, 49], which ultimately leads to the "beads-on-a-string" structure and the free surface clamping.
Los símbolos Hmín y Hmáx se usan para representar las distancias capilar-orificio a las que la línea de contacto triple ancla por primera vez al borde capilar y se interrumpe la emisión de chorro, respectivamente. "Steady jetting" con "pull-out" se obtiene para H < Hmín, mientras que un chorro oscilante se observa para Hmín < H < Hmáx. The symbols H min and H max are used to represent the capillary-orifice distances at which the triple contact line first anchor to the capillary edge and the jet emission is interrupted, respectively. "Steady jetting" with "pull-out" is obtained for H <H min , while an oscillating jet is observed for H min <H <H max .
La Figura 7 muestra los valores de Hmín y Hmáx correspondientes a las soluciones de PAA con c = 250 y 1000 ppm. Las líneas delimitan las regiones paramétricas donde los chorros anclan al capilar de alimentación. No se pudieron producir chorros para Q < 1 ml/h. En lo que sigue, nos centraremos en las configuraciones de chorro que tienen sus líneas de contacto ancladas al extremo del capilar de alimentación. Figure 7 shows the values of H min and H max corresponding to PAA solutions with c = 250 and 1000 ppm. The lines delimit the parametric regions where the jets anchor the feeding capillary. No jets could be produced for Q <1 ml / h. In what follows, we will focus on the jet configurations that have their contact lines anchored to the end of the feed capillary.
La Figura 8 muestra los valores experimentales del número de Reynolds Re=pvQR^Q definido en términos del radio RQ y la velocidad v0 del chorro a la salida del capilar de alimentación, la densidad del líquido p y la viscosidad de cizalladura a velocidades de cizalladura para gradientes de velocidad pequeños ("zero-shear viscosity") μ0. Este último valor se obtuvo mediante la extrapolación de las curvas de la Figura 3 para γ = 0. Como se puede observar, Re<10"2 y, en consecuencia, las tensiones de cizalladura son dominantes sobre la inercia del líquido. Por lo tanto, se puede asumir que la difusión radial viscosa del momento aplana el perfil de velocidad justo a la salida del capilar, forzando al campo de velocidad de tipo Poiseuille a evolucionar hacia una distribución plana muy cerca del capilar. Figure 8 shows the experimental values of the Reynolds number Re = pv Q R ^ Q defined in terms of the radius R Q and the velocity v 0 of the jet at the outlet of the feed capillary, the density of the liquid p and the shear viscosity a shear rates for small velocity gradients ("zero-shear viscosity") μ 0 . This last value was obtained by extrapolating the curves of Figure 3 for γ = 0. As can be seen, Re <10 "2 and, consequently, the shear stresses are dominant over the inertia of the liquid. , it can be assumed that the viscous radial diffusion of the moment flattens the velocity profile just at the exit of the capillary, forcing the Poiseuille type velocity field to evolve towards a flat distribution very close to the capillary.
La figura 8 también muestra los valores de razón de aspecto Λ = RQ/H. Filamentos líquidos esbeltos (Λ ~ 10"2) se forman entre el capilar de alimentación y el orificio de descarga. Bajo estas condiciones, la ecuación 1 D (o de esbeltez) de cantidad de movimiento axial proporciona una descripción exacta de la dinámica del líquido. Figure 8 also shows the aspect ratio values Λ = R Q / H. Slender liquid filaments (Λ ~ 10 "2 ) are formed between the feeding capillary and the orifice of discharge. Under these conditions, the equation 1 D (or slenderness) of the amount of axial movement provides an accurate description of the dynamics of the liquid.
En la presente configuración de flow focusing, la corriente de aire se acelera en la región situada en las inmediaciones del orificio de descarga, teniendo dicha región un tamaño muy inferior al del filamento líquido. Con el fin de ilustrar esto, se llevaron a cabo simulaciones numéricas con FLUENT 6.3 del flujo laminar e incompresible de aire que cruza el orificio circular utilizado en los experimentos. La Figura 9 muestra tanto la distribución de velocidad como la de presión manométrica a lo largo del eje del orificio en función de la distancia Z al centro del orificio. Como se puede observar, el efecto de enfocado está confinado dentro de una región de tamaño Z/D-1 , donde D es el diámetro del orificio. En esta región, la fuerza por unidad de volumen ejercida por la corriente de aire en el chorro escala como Δρ/D [50]. El tamaño de la región de enfocado es mucho más pequeño que la longitud del chorro y, por lo tanto, la mayor parte del filamento líquido fluye libremente, sin interacción significativa con el aire circundante. In the present flow focusing configuration, the air flow is accelerated in the region located in the vicinity of the discharge orifice, said region having a size much smaller than that of the liquid filament. In order to illustrate this, numerical simulations with FLUENT 6.3 of the laminar and incompressible flow of air crossing the circular orifice used in the experiments were carried out. Figure 9 shows both the velocity distribution and the manometric pressure distribution along the axis of the hole as a function of the distance Z to the center of the hole. As can be seen, the focusing effect is confined within a region of size Z / D-1, where D is the diameter of the hole. In this region, the force per unit volume exerted by the stream of air in the jet scales as Δρ / D [50]. The size of the focusing region is much smaller than the length of the jet and, therefore, most of the liquid filament flows freely, without significant interaction with the surrounding air.
La ecuación de cantidad de movimiento 1 D se puede expresar en función de las siguientes magnitudes dimensionales: la densidad p del líquido y su tensión superficial Y, la viscosidad del solvente (agua) μ3 (JJS = 10"3 kg/ms), el radio del chorro R(z) y la velocidad axial v(z) a lo largo del eje del chorro z, así como las distribuciones espaciales de las contribuciones poliméricas axial σζ(ζ) y radial or(z) al esfuerzo total. Si se desprecia la fue ierte en [37]
Figure imgf000022_0001
The equation of quantity of movement 1 D can be expressed as a function of the following dimensional quantities: the density p of the liquid and its surface tension Y, the viscosity of the solvent (water) μ 3 (JJ S = 10 "3 kg / ms) , the radius of the jet R (z) and the axial velocity v (z) along the axis of the jet z, as well as the spatial distributions of the polymeric contributions axial σ ζ (ζ) and radial or r (z) to the stress total, if you ignore it in [37]
Figure imgf000022_0001
donde C es la curvatura local de la superficie libre. A fin de establecer el ranking de los términos que aparecen en la ecuación, se escalan las longitudes radiales y axiales con RQ y H, respectivamente; la velocidad del chorro con v0 y los esfuerzos poliméricos con el esfuerzo polimérico axial en la salida del capilar de alimentación oz0. Esta última magnitud se puede estimar como oz0 = γ'2, donde Ψι(γ) es la primera función viscométrica (Figura 3) y γ' es la velocidad de cizalladura "efectiva" ("shear rate") que caracteriza el flujo de Poiseuille en el capilar, es decir, γ' =4Q/(n Rc ) (Rc es el radio del capilar) [28]. La ecuación adimensional resultante es:
Figure imgf000023_0001
where C is the local curvature of the free surface. In order to establish the ranking of the terms that appear in the equation, the radial and axial lengths are scaled with R Q and H, respectively; the velocity of the jet with v 0 and the polymeric stresses with the axial polymeric stress at the outlet of the feed capillary or z0 . This last magnitude can be estimated as or z0 = γ '2 , where Ψι (γ) is the first viscometric function (Figure 3) and γ ' is the "effective" shear rate that characterizes the flow of Poiseuille in the capillary, that is, γ ' = 4Q / (n Rc) (R c is the radius of the capillary) [28]. The resulting dimensionless equation is:
Figure imgf000023_0001
Donde R=R/RQ y v = v/v0 son el radio y velocidad del chorro escalados, respectivamente; \Ne=pvoR0/y es el número de Weber, C=CR0 es la curvatura local adimensional de la superficie libre, Te= Oz0 (Y/R0) es el esfuerzo polimérico axial en la salida del capilar de alimentación en función de la presión capilar, Res=pv0R0s es e' número de Reynolds basado en la viscosidad del solvente μ3 y ζζ/ σζ0 es el campo de esfuerzos poliméricos escalados. Además, la prima denota la derivada d/dz con respecto a la coordenada axial escalada z =z/H. Where R = R / R Q and v = v / v 0 are the radius and jet velocity scaled, respectively; \ Ne = pvoR 0 / y is the Weber number, C = CR 0 is the dimensionless local curvature of the free surface, Te = O z0 (Y / R 0 ) is the axial polymeric stress at the outlet of the feed capillary at As a function of capillary pressure, Re s = pv 0 R 0 / μ s is the Reynolds number based on the viscosity of the solvent μ 3 and ζ = σ ζ / σ ζ0 is the field of scaled polymeric stresses. In addition, the premium denotes the derivative d / dz with respect to the scaled axial coordinate z = z / H.
Las variaciones a lo largo del chorro de su radio y velocidad son del orden de R0 y v0, respectivamente. Debido a la esbeltez del chorro, C~1/ Por lo tanto, R~v~v'~C'~l, y {R2v')' :¾ 1. Considérese ahora el número Deborah definido como De=21dv/dz. De acuerdo con, por ejemplo, el modelo Oldroyd-B [9], si (De) > 1 la contribución polimérica al esfuerzo axial σζ crece exponencialmente, mientras que la componente radial σΓ es despreciable [37]. En los experimentos se midió el número de Deborah promedio (De) = Zk(vx ■■■■ VQ)/H, donde \ es la velocidad del chorro justo enfrente del orificio de descarga. Si (De) > 1, entonces se puede suponer que [β2ζ—σΓ)]' crece exponencialmente a lo largo de todo el chorro. The variations along the jet of its radius and velocity are of the order of R 0 and v 0 , respectively. Due to the slenderness of the jet, C ~ 1 / Therefore, R ~ v ~ v '~ C' ~ l, and {R 2 v ')': ¾ 1. Consider now the Deborah number defined as De = 21dv / dz. According to, for example, the Oldroyd-B model [9], if (De)> 1 the polymeric contribution to axial stress σ ζ grows exponentially, while the radial component σ Γ is negligible [37]. In the experiments the average Deborah number (De) = Zk (v x ■■■■ V Q ) / H was measured, where \ is the velocity of the jet just in front of the discharge orifice. If (De)> 1, then it can be assumed that [β 2ζ —σ Γ )] 'grows exponentially throughout the entire stream.
La Figura 10 muestra los valores experimentales de los números de Weber, Reynolds, y Deborah, así como la tensión polimérica adimensional Te. Como se puede observar, We, ARe^1 « 1 en todos los casos y, en consecuencia, II» I» IV en la ecuación adimensional del párrafo [0070]. Además, (De) > 1 en todos los experimentos y de ahí que el término III de la ecuación citada se espera que crezca de manera exponencial aguas abajo. Se concluye que el movimiento del chorro lejos del orificio está impulsado por el gradiente del esfuerzo axial polimérico, mientras que la tensión superficial genera una fuerza de resistencia significativa. En otras palabras, el equilibrio de fuerzas se reduce aproximadamente a: Figure 10 shows the experimental values of the numbers of Weber, Reynolds, and Deborah, as well as the dimensionless polymeric tension Te. As can be seen, We, ARe ^ 1 «1 in all cases and, consequently, II» I »IV in the dimensionless equation of paragraph [0070]. In addition, (De)> 1 in all experiments and hence the term III of the aforementioned equation is expected to grow exponentially downstream. It is concluded that the movement of the jet away from the hole is driven by the gradient of the polymeric axial stress, while the surface tension generates a significant resistance force. In other words, the balance of forces is reduced approximately to:
R2C' = Te(R2dzy Es importante destacar que se obtuvieron valores del número Weber muy pequeños en los experimentos. De hecho, chorros capilares con We~ 6 x 10"4 fueron producidos para la concentración polimérica más alta y el caudal más bajo. Si uno compara sus energías cinética e interfacial, se puede afirmar que estos chorros cuelgan virtualmente en reposo del capilar de alimentación. Para estos números de Weber tan pequeños, se tiene que esperar que el chorro sea absolutamente inestable [31]. Esto implica que las ondas crecen y viajan tanto aguas arriba como aguas abajo sobre la superficie libre, evitando un "steady jetting", emisión estacionaria de chorro, perfecto. Como se mencionó anteriormente, se observaron en los experimentos oscilaciones auto-sostenidas de pequeña amplitud sobre todo el dominio líquido. La inestabilidad absoluta puede contribuir en parte a la aparición de tales oscilaciones. R 2 C '= Te (R 2 d z y Importantly, very small Weber number values were obtained in the experiments. In fact, capillary jets with We ~ 6 x 10 "4 were produced for the highest polymer concentration and the lowest flow rate. If one compares their kinetic and interfacial energies, it can be said that these jets hang virtually at rest from the feeding capillary For these very small Weber numbers, the jet must be expected to be absolutely unstable [31] This implies that the waves grow and travel both upstream and downstream on the free surface, avoiding a steady jetting emission Stationary jet, perfect As mentioned above, self-sustained oscillations of small amplitude over the entire liquid domain were observed in the experiments Absolute instability may contribute in part to the occurrence of such oscillations.
Cabe señalar que, contrariamente a lo que podría sucederle a los líquidos Newtonianos, esas oscilaciones no consiguen pinzar la superficie libre debido al papel estabilizador desempeñado por el esfuerzo axial polimérico no sólo en la deformación lineal, sino también en el proceso estrangulamiento no lineal. It should be noted that, contrary to what could happen to Newtonian liquids, these oscillations fail to clamp the free surface due to the stabilizing role played by the polymeric axial stress not only in the linear deformation, but also in the non-linear strangulation process.
Finalmente, se presta atención al radio del chorro viscoelástico justo enfrente del orificio. El radio del chorro disminuye con Λ (Figura 1 1 -izquierda). Este resultado puede interpretarse en términos del número de Deborah efectivo (De) medido en los experimentos. Este parámetro también disminuye con Λ (Figura 1 1 -derecha), lo que implica que tanto la tasa de deformación media como la viscosidad extensional (aparente) asociada al estiramiento del polímero disminuyen también con Λ. Por lo tanto, la disipación de energía en todo el filamento líquido debe disminuir con Λ. Debido a que Δρ se mantuvo constante en todos los experimentos, la inyección de energía en el chorro era esencialmente la misma en todos los casos. Entonces, se puede concluir que la energía cinética del chorro (radio) enfrente del orificio debe aumentar (disminuir) cuando razón de aspecto disminuye. Finally, attention is paid to the radius of the viscoelastic jet just in front of the hole. The radius of the jet decreases with Λ (Figure 1 - left). This result can be interpreted in terms of the effective Deborah number (De) measured in the experiments. This parameter also decreases with Λ (Figure 1-right), which implies that both the average strain rate and the extensional (apparent) viscosity associated with the stretching of the polymer also decrease with Λ. Therefore, the dissipation of energy in the entire liquid filament should decrease with Λ. Because Δρ remained constant in all experiments, the jet energy injection was essentially the same in all cases. Then, it can be concluded that the kinetic energy of the jet (radius) in front of the hole should increase (decrease) when the aspect ratio decreases.
CONCLUSIONES CONCLUSIONS
La invención aquí descrita muestra la producción de chorros capilares viscoelásticos de fluidos no-Newtonianos usando la configuración gaseosa de flow focusing. La naturaleza reológica del líquido altera el fenómeno de enfocado en varios aspectos importantes. Esta técnica permite formar chorros con longitudes de hasta más de un centenar de veces sus radios, y con números de Weber del orden de 10"4. Aunque la región de enfocado está confinada en una pequeña región próxima al orificio de descarga, las cadenas poliméricas transmiten el efecto de succión aguas arriba a lo largo de todo el hilo líquido. De esta manera, la resistencia ofrecida por la tensión superficial es vencida a pesar del hecho de que la energía cinética es mucho más pequeña que la interfacial. El régimen de "jetting" (emisión estable de chorro) se puede alcanzar dentro de un intervalo de la distancia capilar-orificio que depende en gran medida tanto de la concentración polimérica como del caudal (ver figura 7). Para distancias por debajo de ese intervalo se encontró "pull-out" del menisco líquido, mientras que si la distancia excede el valor máximo del intervalo el chorro rompe. La consecución de un "steady jetting" (emisión estacionaria de chorro) perfecto fue un evento relativamente raro. En la mayoría de las configuraciones de chorro, se observaron importantes oscilaciones de la superficie libre. No se examinó la ruptura del chorro que tiene lugar detrás del orificio de descarga, ya que no difiere sustancialmente del proceso ampliamente analizado en la literatura (véase, por ejemplo, [21 , 37, 49, 51 , 52]). Las macromoléculas en solución suprimen la formación de gotas satélite, y producen grandes esfuerzos extensionales, que conducen a la formación de ampollas ("blistering") y estructuras "beads-on-string" (cadena de perlas). The invention described herein shows the production of viscoelastic capillary jets of non-Newtonian fluids using the gaseous flow focusing configuration. The rheological nature of the liquid alters the phenomenon of focusing on several important aspects. This technique allows to form jets with lengths of more than one hundred times its radii, and with Weber numbers of the order of 10 "4. Although the focusing region is confined in a small region near the discharge hole, the polymer chains transmit the upstream suction effect throughout the liquid yarn In this way, the resistance offered by the surface tension is overcome despite the fact that the kinetic energy is much smaller than the interfacial. The jetting regime (stable jet emission) can be achieved within of an interval of the capillary-hole distance that depends largely on both the polymer concentration and the flow rate (see figure 7). For distances below that interval, a pull-out of the liquid meniscus was found, while if the distance exceeds the maximum value of the interval the jet breaks in. The achievement of a perfect steady jetting was a relatively rare event. Jet urations, significant oscillations of the free surface were observed. The rupture of the jet that takes place behind the discharge orifice was not examined, since it does not differ substantially from the process widely analyzed in the literature (see, for example, [21, 37, 49, 51, 52]). The macromolecules in solution suppress the formation of satellite drops, and produce large extensional efforts, which lead to the formation of blisters ("blistering") and "beads-on-string" structures (pearl chain).
La competencia entre la tensión superficial y los esfuerzos poliméricos es el resultado de una compleja interacción entre la reología del líquido, el caudal, y la caída de presión aplicada, así como de las restricciones geométricas. The competition between surface tension and polymeric stresses is the result of a complex interaction between liquid rheology, flow rate, and applied pressure drop, as well as geometric constraints.
Lo anterior ilustra simplemente los principios de la invención. Se es consciente que aquellos expertos en la materia serán capaces de imaginar realizaciones que, aunque no estén explícitamente descritas o mostradas aquí, estén basadas en el fundamento y los principios de la invención y por lo tanto estén incluidas en su espíritu y alcance. Adicionalmente, todos los ejemplos y lenguaje condicional utilizado aquí tiene la intención principal de ayudar al lector a entender los principios de la invención y los conceptos que aportan los inventores para impulsar la materia, y su intención no es limitar la invención a los ejemplos y condiciones mostrados. Más aún, todas las declaraciones describiendo principios, aspectos y realizaciones de la invención, asi como los ejemplos específicos mostrados, tienen la intención de abarcar tanto los equivalentes estructurales como los equivalentes funcionales. Adicionalmente, la intención es que esos equivalentes incluyan tanto aquellos conocidos actualmente como aquellos que se desarrollarán en el futuro, p.ej cualquier elemento desarrollado para realizar la misma función independientemente de su estructura. El alcance de la presente intención, por lo tanto, no tiene intención de estar limitado a las realizaciones incluidas en los ejemplos y descritas aquí. Es más, el alcance y espíritu de la presente invención es el que está enmarcado por las siguientes reivindicaciones. The above simply illustrates the principles of the invention. It is aware that those skilled in the art will be able to imagine embodiments that, although not explicitly described or shown here, are based on the foundation and principles of the invention and therefore are included in its spirit and scope. Additionally, all the examples and conditional language used here have the main intention of helping the reader understand the principles of the invention and the concepts that the inventors contribute to promote the subject, and their intention is not to limit the invention to the examples and conditions shown. Moreover, all statements describing principles, aspects and embodiments of the invention, as well as the specific examples shown, are intended to cover both the structural equivalents such as functional equivalents. Additionally, the intention is that those equivalents include both those currently known and those that will be developed in the future, eg any element developed to perform the same function regardless of its structure. The scope of the present intention, therefore, is not intended to be limited to the embodiments included in the examples and described herein. Moreover, the scope and spirit of the present invention is what is framed by the following claims.
BIBLIOGRAFÍA BIBLIOGRAPHY
[1] A. M. Gañán-Calvo, J. M. Montanero, L. Martín-Banderas and M. Flores-Mosquera, "Building functional materials for health care and pharmacy from microfluidic principies and Flow Focusing", Adv. Drug Delivery Rev., 65, 1447, 2013. [1] A. M. Gañán-Calvo, J. M. Montanero, L. Martín-Banderas and M. Flores-Mosquera, "Building functional materials for health care and pharmacy from microfluidic principies and Flow Focusing", Adv. Drug Delivery Rev., 65, 1447, 2013.
[2] D. P. DePonte, U. Weierstall, K. Schmidt, J. Warner, D. Starodub, J. C. H. Spence, and R. B. Doak, "Gas dynamic virtual nozzle for generation of microscopic droplet streams", J. Phys. D: Appl. Phys., 41 , 195505, 2008.  [2] D. P. DePonte, U. Weierstall, K. Schmidt, J. Warner, D. Starodub, J. C. H. Spence, and R. B. Doak, "Gas dynamic virtual nozzle for generation of microscopic droplet streams", J. Phys. D: Appl. Phys., 41, 195505, 2008.
[3] H. N. Chapman et al., "Femtosecond x-ray protein nanocrystallography", Nature, 470, 73, 2011.  [3] H. N. Chapman et al., "Femtosecond x-ray protein nanocrystallography", Nature, 470, 73, 2011.
[4] M. Orme, Q. Liu, and R. Smith, "Molten aluminum micro-droplet formation and deposition for advanced manufacturing applications", Aluminum Transactions, 3, 95, 2000.  [4] M. Orme, Q. Liu, and R. Smith, "Molten aluminum micro-droplet formation and deposition for advanced manufacturing applications", Aluminum Transactions, 3, 95, 2000.
[5] I. Cohén, H. Li, J. L Hougland, M. Mrksich, and S. R. Nagel, "Using selective withdrawal to coat microparticles", Science, 292, 265, 2001.  [5] I. Cohen, H. Li, J. L Hougland, M. Mrksich, and S. R. Nagel, "Using selective withdrawal to coat microparticles", Science, 292, 265, 2001.
[6] L. Rayleigh, "On the instability of jets", Proc. London Math. Soc, s1-10, 4, 1878.  [6] L. Rayleigh, "On the instability of jets", Proc. London Math Soc, s1-10, 4, 1878.
[7] A. Barrero and I. G. Loscertales, "Micro and nanoparticles via capillary flows", Annu. Rev. Fluid Meen., 39, 89, 2007. [7] A. Barrero and I. G. Loscertales, "Micro and nanoparticles via capillary flows", Annu. Rev. Fluid Meen., 39, 89, 2007.
[8] D. F. James, "Boger fluids", Annu. Rev. Fluid Meen., 41 , 129, 2009.  [8] D. F. James, "Boger fluids", Annu. Rev. Fluid Meen., 41, 129, 2009.
[9] J. G. Oldroyd, "On the formulation of rheological equations of state", Proc. Roy. Soc. Lond., 200, 523, 1950.  [9] J. G. Oldroyd, "On the formulation of rheological equations of state", Proc. Roy Soc. Lond., 200, 523, 1950.
[10] Z.-M. Huanga, Y.-Z. Zhang, M. Kotaki, and S. Ramakrishna, "A review on polymer nanofibers by electrospinning and their applications in nanocomposites", Compos. Sci. Technol., 63, 2223, 2003. [10] Z.-M. Huanga, Y.-Z. Zhang, M. Kotaki, and S. Ramakrishna, "A review on polymer nanofibers by electrospinning and their applications in nanocomposites", Compos. Sci. Technol., 63, 2223, 2003.
[1 1] M. M. Denn, "Continuous drawing of liquids to form fibers", Ann. Rev. Fluid Mech., 12, 365, 1980. [12] J. R. A. Pearson and M. A. Matovich, "Spining a molten threadline. Stability", Ind. Eng. Chem. Fundamentáis, 8, 605, 1969. [1 1] MM Denn, "Continuous drawing of liquids to form fibers", Ann. Rev. Fluid Mech., 12, 365, 1980. [12] JRA Pearson and MA Matovich, "Spining a molten threadline. Stability", Ind. Eng. Chem. Fundamentalis, 8, 605, 1969.
[13] D. Zhoua and J. J. Feng, "Selective withdrawal of polymer solutions: Experiments", J. Non-Newtonian Fluid Mech., 165, 829, 2010.  [13] D. Zhoua and J. J. Feng, "Selective withdrawal of polymer solutions: Experiments", J. Non-Newtonian Fluid Mech., 165, 829, 2010.
[14] A. Mansour and N. Chigier, "Air-blast atomization of non-newtonian liquids", J. Non-Newtonian Fluid Mech., 58, 161 , 1995. [14] A. Mansour and N. Chigier, "Air-blast atomization of non-Newtonian liquids", J. Non-Newtonian Fluid Mech., 58, 161, 1995.
[15] R. E. Benavides, S. C. Jana, and D. H. Reneker, "Nanofibers from scalable gas jet process", ACS Macro Lett., 1 , 1032, 2012.  [15] R. E. Benavides, S. C. Jana, and D. H. Reneker, "Nanofibers from scalable gas jet process", ACS Macro Lett., 1, 1032, 2012.
[16] D. T. Lohkamp and J. P. Keller, "Melt-blowing die using capillary tubes", Patente US3825379A, 1974.  [16] D. T. Lohkamp and J. P. Keller, "Melt-blowing die using capillary tubes", US3825379A, 1974.
[17] A. Zachara and Z. Lewandowski, "Mathematical modelling of pneumatic melt spinning of isotactic polypropylene. Part I. Modelling of the air jet dynamics", Fibres and Textiles in Eastern Europe, 16, 17, 2008.  [17] A. Zachara and Z. Lewandowski, "Mathematical modeling of pneumatic melt spinning of isotactic polypropylene. Part I. Modeling of the air jet dynamics", Fibers and Textiles in Eastern Europe, 16, 17, 2008.
[18] A. M. Gañán-Calvo, "Generation of steady liquid microthreads and micron-sized monodisperse sprays in gas streams", Phys. Rev. Lett., 80, 285, 1998.  [18] A. M. Gañán-Calvo, "Generation of steady liquid microthreads and micron-sized monodisperse sprays in gas streams", Phys. Rev. Lett., 80, 285, 1998.
[19] S. L. Anna, N. Bontoux, and H. A. Stone, "Formation of dispersions using flow focusing in microchannels", Appl. Phys. Lett., 82, 364, 2003.  [19] S. L. Anna, N. Bontoux, and H. A. Stone, "Formation of dispersions using flow focusing in microchannels", Appl. Phys. Lett., 82, 364, 2003.
[20] E. J. Vega, J. M. Montanero, M. A. Herrada, and A. M. Gañán-Calvo, "Global and local instability of flow focusing: The influence of the geometry", Phys. Fluids, 22, 064105, 2010.  [20] E. J. Vega, J. M. Montanero, M. A. Herrada, and A. M. Gañán-Calvo, "Global and local instability of flow focusing: The influence of the geometry", Phys. Fluids, 22, 064105, 2010.
[21] C. Zhou, P. Yue, and J. J. Feng, "Formation of simple and compound drops in microfluidic devices", Phys. Fluids, 18, 092105, 2006.  [21] C. Zhou, P. Yue, and J. J. Feng, "Formation of simple and compound drops in microfluidic devices", Phys. Fluids, 18, 092105, 2006.
[22] B. Steinhaus, A. Q. Shena, and R. Sureshkumar, "Dynamics of viscoelastic fluid filaments in microfluidic devices", Phys. Fluids, 19, 073103, 2007.  [22] B. Steinhaus, A. Q. Shena, and R. Sureshkumar, "Dynamics of viscoelastic fluid filaments in microfluidic devices", Phys. Fluids, 19, 073103, 2007.
[23] E. Miller, M. Rotea, and J. P. Rothstein, "Microfluidic device incorporating closed loop feedback control for uniform and tunable production of micro-droplets", Lab on a Chip, 10, 1293, 2010. [23] E. Miller, M. Rotea, and J. P. Rothstein, "Microfluidic device incorporating closed loop feedback control for uniform and tunable production of micro-droplets", Lab on a Chip, 10, 1293, 2010.
[24] W. Lee, L. M. Walker, and S. L. Anna, "Competition between viscoelasticity and surfactant dynamics in flow focusing microfluidics", Macromol. Mater. Eng., 296, 203, 201 1.  [24] W. Lee, L. M. Walker, and S. L. Anna, "Competition between viscoelasticity and surfactant dynamics in flow focusing microfluidics", Macromol. Mater. Eng., 296, 203, 201 1.
[25] L. Derzsi, M. Kasprzyk, J. P. Plog, and P. Garstecki, "Flow focusing with viscoelastic liquids", Phys. Fluids, 25, 092001 , 2013.  [25] L. Derzsi, M. Kasprzyk, J. P. Plog, and P. Garstecki, "Flow focusing with viscoelastic liquids", Phys. Fluids, 25, 092001, 2013.
[26] A. Duboin, R. Middleton, F. Malloggi, F. Monti, and P. Tabeling, "Cusps, spouts and microfiber synthesis with microfluidics", Soft Matter, 9, 3041 , 2013. [27] M. S .N. Oliveira, F. T. Pinho, R. J. Poole, P. J. Oliveira, and M. A. Alves, "Purely elastic flow asymmetries in flow-focusing devices", J. Non-Newtonian Fluid Mech., 160, 31 , 2009. [26] A. Duboin, R. Middleton, F. Malloggi, F. Monti, and P. Tabeling, "Cusps, spouts and microfiber synthesis with microfluidics", Soft Matter, 9, 3041, 2013. [27] M. S .N. Oliveira, FT Pinho, RJ Poole, PJ Oliveira, and MA Alves, "Purely elastic flow asymmetries in flow-focusing devices", J. Non-Newtonian Fluid Mech., 160, 31, 2009.
[28] K. V. Edmond, A. B. Schofieid, M. Márquez, J. P. Rothstein, and A. D. Dinsmore, "Stable jets of viscoelastic fluids and self-assembled cylindrical capsules by hydrodynamic focusing", Langmuir, 22, 9052, 2006.  [28] K. V. Edmond, A. B. Schofieid, M. Márquez, J. P. Rothstein, and A. D. Dinsmore, "Stable jets of viscoelastic fluids and self-assembled cylindrical capsules by hydrodynamic focusing", Langmuir, 22, 9052, 2006.
[29] M. Goldin, J. Yerushalmi, R. Pfeffer, and R. Shinnar, "Breakup of a laminar capillary jet of a viscoelastic fluid", J. Fluid Mech., 38, 689, 1969.  [29] M. Goldin, J. Yerushalmi, R. Pfeffer, and R. Shinnar, "Breakup of a laminar capillary jet of a viscoelastic fluid", J. Fluid Mech., 38, 689, 1969.
[30] R. B. Bird, R. C. Armstrong, and O. Hassager, "Dynamics of Polymeric Liquids", John Wiley & Sons, Inc., United States of America, 1987.  [30] R. B. Bird, R. C. Armstrong, and O. Hassager, "Dynamics of Polymeric Liquids", John Wiley & Sons, Inc., United States of America, 1987.
[31] P. Huerre and P. A. Monkewitz, "Local and global instabilites in spatially developing flows", Annu. Rev. Fluid Mech., 22, 473, 1990.  [31] P. Huerre and P. A. Monkewitz, "Local and global instabilites in spatially developing flows", Annu. Rev. Fluid Mech., 22, 473, 1990.
[32] S. Goren and M. Gottlieb, "Surface-tension-driven breakup of viscoelastic liquid threads", J . Fluid Mech., 120, 245, 1982.  [32] S. Goren and M. Gottlieb, "Surface-tension-driven breakup of viscoelastic liquid threads", J. Fluid Mech., 120, 245, 1982.
[33] A.-C. Ruó, F. Chen, C.-A. Chung, and M.-H. Chang, "Three-dimensional response of unrelaxed tensión to instability of viscoelastic jets", J . Fluid Mech., 682, 558, 201 1. [33] A.-C. Ruó, F. Chen, C.-A. Chung, and M.-H. Chang, "Three-dimensional response of unrelaxed tension to instability of viscoelastic jets", J. Fluid Mech., 682, 558, 201 1.
[34] S. J. Gilí and J. Gavis, "Tensile stress in jets of viscoelastic fluids", I. J. Polym. Sci., 20, 287, 1956.  [34] S. J. Gilí and J. Gavis, "Tensile stress in jets of viscoelastic fluids", I. J. Polym. Sci., 20, 287, 1956.
[35] A. V. Bazilevskii, V. M. Entov, and A. N. Rozhkov, "Elastic stresses in capillary jets of dilute polymer solutions", Fluid Dyn., 2, 3, 1985.  [35] A. V. Bazilevskii, V. M. Entov, and A. N. Rozhkov, "Elastic stresses in capillary jets of dilute polymer solutions", Fluid Dyn., 2, 3, 1985.
[36] C. Ciasen, J. Bico, V. M. Entov, and G. H. McKinley, "Gobbling drops": the jetting- dripping transition in flows of polymer solutions", J. Fluid Mech, 636, 5, 2009.  [36] C. Ciasen, J. Bico, V. M. Entov, and G. H. McKinley, "Gobbling drops": the jetting-dripping transition in flows of polymer solutions ", J. Fluid Mech, 636, 5, 2009.
[37] J. Eggers and E. Villermaux, "Physics of liquid jets", Rep. Prog. Phys., 71 , 036601 , 2008.  [37] J. Eggers and E. Villermaux, "Physics of liquid jets", Rep. Prog. Phys., 71, 036601, 2008.
[38] V. M. Entov and A. L. Yarin, "The dynamics of thin liquid jets in air", J . Fluid Mech., 140, 91 , 1984. [38] V. M. Entov and A. L. Yarin, "The dynamics of thin liquid jets in air", J. Fluid Mech., 140, 91, 1984.
[39] A. J. Acero, C. Ferrera, J. M. Montanero, and A. M. Gañán-Calvo, "Focusing liquid microjets with nozzles", J. Micromech. Microeng., 22, 065011 , 2012.  [39] A. J. Acero, C. Ferrera, J. M. Montanero, and A. M. Gañán-Calvo, "Focusing liquid microjets with nozzles", J. Micromech. Microeng., 22, 065011, 2012.
[40] J. M. Montanero, N. Rebollo-Muñoz, M. A. Herrada, and A. M. Gañán-Calvo, "Global stability of the focusing effect of fluid jet flows", Phys. Rev. E, 83, 036309, 201 1.  [40] J. M. Montanero, N. Rebollo-Muñoz, M. A. Herrada, and A. M. Gañán-Calvo, "Global stability of the focusing effect of fluid jet flows", Phys. Rev. E, 83, 036309, 201 1.
[41] T. Sridhar and R. K. Gupta, "Fluid detachment and slip in extensional flows", J. Non-Newtonian Fluid Mech., 30, 285, 1988. [42] M. J .H. Bulters and H. E. H. Meijer, "Analogy between the modelling of pullout in solution spinning and the prediction of the vortex size in contraction flows", J. Non- Newtonian Fluid Mech., 38, 43, 1990. [41] T. Sridhar and RK Gupta, "Fluid detachment and slip in extensional flows", J. Non-Newtonian Fluid Mech., 30, 285, 1988. [42] M. J .H. Bulters and HEH Meijer, "Analogy between the modeling of pullout in solution spinning and the prediction of the vortex size in contraction flows", J. Non-Newtonian Fluid Mech., 38, 43, 1990.
[43] C. van der Walt, M. A. Hulsen, A. C. B. Bogaerds, H. E. H. Meijer, and M. J. H. Bulters, "Stability of fiber spinning under filament pull-out conditions", J. Non- Newtonian Fluid Mech., 176, 25, 2012.  [43] C. van der Walt, M. A. Hulsen, A. C. B. Bogaerds, H. E. H. Meijer, and M. J. H. Bulters, "Stability of fiber spinning under filament pull-out conditions", J. Non-Newtonian Fluid Mech., 176, 25, 2012.
[44] V. Bertola, B. Meulenbroek, C. Wagner, C. Storm, A. Morozov, W. van Saarloos, and D. Bonn, "Experimental evidence for an intrinsic route to polymer melt fracture phenomena: a nonlinear instability of viscoelastic poiseuille flow", Phys. Rev. Lett., 90, 1 14502, 2003.  [44] V. Bertola, B. Meulenbroek, C. Wagner, C. Storm, A. Morozov, W. van Saarloos, and D. Bonn, "Experimental evidence for an intrinsic route to polymer melt fracture phenomena: a nonlinear instability of viscoelastic poiseuille flow ", Phys. Rev. Lett., 90, 1 14502, 2003.
[45] M. Renardy. "Draw resonance revisited", J. Phys.: Conference Series, 64, 012016, 2007.  [45] M. Renardy. "Draw resonance revisited", J. Phys .: Conference Series, 64, 012016, 2007.
[46] E. J. Vega, J. M. Montanero, and C. Ferrera, "Exploring the precisión of backlight optical imaging in microfluidics cióse to the diffraction limit", Measurement, 44, 1300, 201 1.  [46] E. J. Vega, J. M. Montanero, and C. Ferrera, "Exploring the precision of backlight optical imaging in microfluidics cióse to the diffraction limit", Measurement, 44, 1300, 201 1.
[47] L. Campo-Deaño and C. Ciasen, "The slow retraction method (SRM) for the determination of ultra-short relaxation times in capillary breakup extensional rheometry experiments", J. Non-Newtonian Fluid Mech., 165, 1688, 2010.  [47] L. Campo-Deaño and C. Ciasen, "The slow retraction method (SRM) for the determination of ultra-short relaxation times in capillary breakup extensional rheometry experiments", J. Non-Newtonian Fluid Mech., 165, 1688 , 2010.
[48] M. G. Cabezas, A. Bateni, J. M. Montanero, and A. W. Neumann, "A new method of image processing in the analysis of axisymmetric drop shapes", Colloids Surf. A, 255, 193, 2005.  [48] M. G. Cabezas, A. Bateni, J. M. Montanero, and A. W. Neumann, "A new method of image processing in the analysis of axisymmetric drop shapes", Colloids Surf. A, 255, 193, 2005.
[49] L. E. Rodd, T. P. Scott, J. J. Cooper-White, and G. H. Mckinley, "Capillary breakup rheometry of low-viscosity elastic fluids", Appl. Rheol., 15, 12, 2005.  [49] L. E. Rodd, T. P. Scott, J. J. Cooper-White, and G. H. Mckinley, "Capillary breakup rheometry of low-viscosity elastic fluids", Appl. Rheol., 15, 12, 2005.
[50] A. M. Gañán-Calvo, C. Ferrera, and J. M. Montanero, "Universal size and shape of viscous capillary jets: application to gas-focused microjets", J. Fluid Mech., 670, 427, 201 1.  [50] A. M. Gañán-Calvo, C. Ferrera, and J. M. Montanero, "Universal size and shape of viscous capillary jets: application to gas-focused microjets", J. Fluid Mech., 670, 427, 201 1.
[51] Y. Christanti and L. M. Walker, "Surface tensión driven jet break up of strain- hardening polymer solutions", J. Non-Newtonian Fluid Mech., 100, 9, 2001.  [51] Y. Christanti and L. M. Walker, "Surface tension driven jet break up of strain hardening polymer solutions", J. Non-Newtonian Fluid Mech., 100, 9, 2001.
[52] J. J. Cooper-White, J. E. Fagan, V. Tirtaatmadja, D. R. Lester, and D. V. Boger, "Drop formation dynamics of constant low-viscosity, elastic fluids", J. Non-Newtonian Fluid Mech., 106, 29, 2002.  [52] JJ Cooper-White, JE Fagan, V. Tirtaatmadja, DR Lester, and DV Boger, "Drop formation dynamics of constant low-viscosity, elastic fluids", J. Non-Newtonian Fluid Mech., 106, 29, 2002 .

Claims

REIVINDICACIONES
1. Un método para crear un chorro capilar elongado o filamento de un líquido viscoelástico, caracterizado por: 1. A method for creating an elongated capillary jet or filament of a viscoelastic liquid, characterized by:
forzar un líquido viscoelástico a través de un canal de una fuente de alimentación a una velocidad que provoca que el líquido salga de la apertura de salida del canal, estando dicha apertura en el interior de una cámara presurizada; forzar un gas en la cámara presurizada a salir a través de un orificio posicionado enfrente de la trayectoria del líquido viscoelástico que sale de la apertura de salida del canal, de manera que el gas fluya concéntricamente con el líquido viscoelástico que sale de la apertura de salida del canal, siendo la velocidad del gas mayor que la velocidad del líquido; donde las fuerzas dinámicas que el gas ejerce sobre la superficie del líquido viscoelástico que sale de la apertura de salida del canal provocan que se forme un chorro capilar elongado o filamento del líquido, como consecuencia de que dichas fuerzas dinámicas generan como resultante global sobre el líquido viscoelástico una tensión axial mantenida a lo largo del eje del chorro, que lo estabiliza; y permitir que el chorro capilar elongado o filamento salga, rodeado por el gas, de la cámara presurizada por el orificio de la cámara.  force a viscoelastic liquid through a channel of a power supply at a speed that causes the liquid to exit the outlet opening of the channel, said opening being inside a pressurized chamber; force a gas in the pressurized chamber to exit through an orifice positioned in front of the path of the viscoelastic liquid that exits the outlet opening of the channel, so that the gas flows concentrically with the viscoelastic liquid that exits the exit opening of the channel, the gas velocity being greater than the liquid velocity; where the dynamic forces that the gas exerts on the surface of the viscoelastic liquid that emerges from the outlet opening of the channel cause an elongated capillary jet or filament of the liquid to form, as a consequence of which said dynamic forces generate as a global result on the liquid viscoelastic, an axial tension maintained along the axis of the jet, which stabilizes it; and allow the elongated capillary stream or filament to exit, surrounded by the gas, from the chamber pressurized by the hole in the chamber.
2. Método según la Reivindicación 1 , caracterizado porque el líquido viscoelástico es un líquido Boger. 2. Method according to Claim 1, characterized in that the viscoelastic liquid is a Boger liquid.
3. Método según una cualquiera de las reivindicaciones anteriores, caracterizado porque el número de Weber del chorro es menor que 1. 3. Method according to any one of the preceding claims, characterized in that the Weber number of the jet is less than 1.
4. Método según una cualquiera de las reivindicaciones anteriores, caracterizado porque el número de Weber del chorro es menor que 1x10"1. Method according to any one of the preceding claims, characterized in that the Weber number of the jet is less than 1x10 "1 .
5. Método según una cualquiera de las reivindicaciones anteriores, caracterizado porque el número de Weber del chorro es menor que 1x10"2. 5. Method according to any one of the preceding claims, characterized in that the Weber number of the jet is less than 1x10 "2 .
6. Método según una cualquiera de las reivindicaciones anteriores, caracterizado porque el líquido viscoelástico es forzado a través del canal a una velocidad dentro del rango de 0,001 μΙ/seg a 100 μΙ/seg. Method according to any one of the preceding claims, characterized in that the viscoelastic liquid is forced through the channel at a speed in the range of 0.001 μΙ / sec to 100 μΙ / sec.
7. Método según una cualquiera de las reivindicaciones anteriores, caracterizado porque el gas es forzado a través del orificio de la cámara presurizada a una velocidad dentro del rango de 50 μΙ/seg a 20000 μΙ/seg. Method according to any one of the preceding claims, characterized in that the gas is forced through the orifice of the pressurized chamber at a speed within the range of 50 μΙ / sec to 20,000 μΙ / sec.
8. Método según una cualquiera de las reivindicaciones anteriores, caracterizado porque el gas es forzado a través del orificio de la cámara presurizada a una velocidad dentro del rango de 100 μΙ/seg a 500 μΙ/seg. Method according to any one of the preceding claims, characterized in that the gas is forced through the orifice of the pressurized chamber at a speed within the range of 100 μΙ / sec to 500 μΙ / sec.
9. Método según una cualquiera de las reivindicaciones anteriores, caracterizado porque el canal de la fuente de alimentación es un capilar o tubo cilindrico. Method according to any one of the preceding claims, characterized in that the channel of the power supply is a capillary or cylindrical tube.
10. Método según una cualquiera de las reivindicaciones anteriores, caracterizado porque el canal de la fuente de alimentación tiene un diámetro de salida menor de 0,5 mm. Method according to any one of the preceding claims, characterized in that the channel of the power supply has an outlet diameter of less than 0.5 mm.
1 1. Método según una cualquiera de las reivindicaciones anteriores, caracterizado porque la apertura de salida del canal de la fuente de alimentación y el orificio de salida de la cámara presurizada están situados a una distancia menor de 0,5 mm. 1 Method according to any one of the preceding claims, characterized in that the outlet opening of the power supply channel and the outlet opening of the pressurized chamber are located at a distance of less than 0.5 mm.
12. Método según una cualquiera de las reivindicaciones anteriores, caracterizado la apertura de salida del canal de la fuente de alimentación tiene un diámetro menor que 0,5 mm, el orificio de salida de la cámara presurizada tiene un diámetro menor que 0,25 mm, y la apertura de salida del canal de la fuente de alimentación está situada en un punto a una distancia inferior a 0,5 mm del orificio de salida de la cámara presurizada. 12. Method according to any one of the preceding claims, characterized in that the outlet opening of the power supply channel has a diameter of less than 0.5 mm, the outlet opening of the pressurized chamber has a diameter of less than 0.25 mm , and the outlet opening of the power supply channel is located at a point less than 0.5 mm from the outlet opening of the pressurized chamber.
13. Método según una cualquiera de las reivindicaciones anteriores, caracterizado porque la apertura de salida del canal de la fuente de alimentación tiene un diámetro en el rango de 0, 1 mm a 0,5 mm, el orificio de salida de la cámara presurizada tiene un diámetro en el rango de 0,1 mm a 0,25 mm, y la apertura de salida del canal de la fuente de alimentación está situada en un punto a una distancia en el rango de 0,2 a 0,5 mm del orificio de salida de la cámara presurizada. 13. Method according to any one of the preceding claims, characterized in that the outlet opening of the power supply channel has a diameter in the range of 0.1 mm to 0.5 mm, the outlet opening of the pressurized chamber has a diameter in the range of 0.1 mm to 0.25 mm, and the outlet opening of the power supply channel is located at a point at a distance in the range of 0.2 to 0.5 mm from the hole output of the pressurized chamber.
14. Método según una cualquiera de las reivindicaciones anteriores, caracterizado porque la distancia entre la apertura de salida del canal de la fuente de alimentación y el orificio de salida de la cámara presurizada aumenta progresivamente hasta alcanzar una distancia final máxima de 12 mm o menos. 14. Method according to any one of the preceding claims, characterized in that the distance between the outlet opening of the power supply channel and the outlet opening of the pressurized chamber increases progressively to a maximum final distance of 12 mm or less.
15. Chorro capilar elongado o filamento de líquido viscoelástico obtenible según el método definido en una cualquiera de las reivindicaciones anteriores. 15. Elongated capillary jet or viscoelastic liquid filament obtainable according to the method defined in any one of the preceding claims.
16. Filamento sólido o fibra sólida obtenible según el método definido en una cualquiera de las reivindicaciones 1 a 14 seguido de un proceso de solidificación o cambio de fase. 16. Solid filament or solid fiber obtainable according to the method defined in any one of claims 1 to 14 followed by a solidification or phase change process.
17. Filamento sólido o fibra sólida según la reivindicación 16, caracterizado porque el proceso de solidificación o cambio de fase se lleva a cabo por evaporación de solvente, enfriamiento, curado químico, interacción química con el gas forzador, interacción química con el gas del ambiente en el que se descarga el chorro capilar, o endurecimiento por calor. 17. Solid filament or solid fiber according to claim 16, characterized in that the solidification or phase change process is carried out by solvent evaporation, cooling, chemical curing, chemical interaction with the forcing gas, chemical interaction with the ambient gas in which the hair jet is discharged, or heat hardening.
18. Uso del filamento o fibra según la reivindicación 17 como material textil, material para uso biomédico, quirúrgico o protésico, material para uso estructural en aplicaciones mecánicas, material para la elaboración de hilos o cables de muy elevada resistencia a rotura, como fibra de refuerzo mecánico en materiales con baja resistencia a la tracción, sustrato para uso biotecnológico, o material asociado con la telecomunicación. 18. Use of the filament or fiber according to claim 17 as textile material, material for biomedical, surgical or prosthetic use, material for structural use in mechanical applications, material for the elaboration of wires or cables of very high resistance to breakage, as fiber of mechanical reinforcement in materials with low tensile strength, substrate for biotechnological use, or material associated with telecommunication.
PCT/ES2016/070896 2015-12-18 2016-12-15 Production of viscoelastic capillary jets by means of gas focussing WO2017103314A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
ESP201531844 2015-12-18
ES201531844A ES2625035B1 (en) 2015-12-18 2015-12-18 PRODUCTION OF VISCOELASTIC CAPILLARY JETS BY GASEOUS FOCUS

Publications (1)

Publication Number Publication Date
WO2017103314A1 true WO2017103314A1 (en) 2017-06-22

Family

ID=59055967

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/ES2016/070896 WO2017103314A1 (en) 2015-12-18 2016-12-15 Production of viscoelastic capillary jets by means of gas focussing

Country Status (2)

Country Link
ES (1) ES2625035B1 (en)
WO (1) WO2017103314A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5244723A (en) * 1992-01-03 1993-09-14 Kimberly-Clark Corporation Filaments, tow, and webs formed by hydraulic spinning
WO1997024476A1 (en) * 1995-12-27 1997-07-10 Lenzing Aktiengesellschaft Method for the production of cellulose fibres and device for carrying out the method
EP2108719A1 (en) * 2008-04-11 2009-10-14 Douglas B. Brown An apparatus, process and an array of nozzles for extruding cellulose fibers
EP2327817A1 (en) * 2009-11-27 2011-06-01 Japan Vilene Company, Ltd. Spinning apparatus and process for manufacturing nonwoven fabric
WO2011100743A2 (en) * 2010-02-15 2011-08-18 Cornell University Electrospinning apparatus and nanofibers produced therefrom

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5244723A (en) * 1992-01-03 1993-09-14 Kimberly-Clark Corporation Filaments, tow, and webs formed by hydraulic spinning
WO1997024476A1 (en) * 1995-12-27 1997-07-10 Lenzing Aktiengesellschaft Method for the production of cellulose fibres and device for carrying out the method
EP2108719A1 (en) * 2008-04-11 2009-10-14 Douglas B. Brown An apparatus, process and an array of nozzles for extruding cellulose fibers
EP2327817A1 (en) * 2009-11-27 2011-06-01 Japan Vilene Company, Ltd. Spinning apparatus and process for manufacturing nonwoven fabric
WO2011100743A2 (en) * 2010-02-15 2011-08-18 Cornell University Electrospinning apparatus and nanofibers produced therefrom

Also Published As

Publication number Publication date
ES2625035A1 (en) 2017-07-18
ES2625035B1 (en) 2018-06-21

Similar Documents

Publication Publication Date Title
Ponce-Torres et al. The production of viscoelastic capillary jets with gaseous flow focusing
Fu et al. Bubble formation and breakup dynamics in microfluidic devices: A review
Derzsi et al. Flow focusing with viscoelastic liquids
Steinhaus et al. Dynamics of viscoelastic fluid filaments in microfluidic devices
Husny et al. The effect of elasticity on drop creation in T-shaped microchannels
Cubaud et al. Capillary threads and viscous droplets in square microchannels
Ren et al. Breakup dynamics and dripping-to-jetting transition in a Newtonian/shear-thinning multiphase microsystem
US8529026B2 (en) Droplet generator
Vadillo et al. Evaluation of the inkjet fluid’s performance using the “Cambridge Trimaster” filament stretch and break-up device
Utada et al. Dripping to jetting transitions in coflowing liquid streams
Riboux et al. Whipping instability characterization of an electrified visco-capillary jet
US8302880B2 (en) Monodisperse droplet generation
Acero et al. A new flow focusing technique to produce very thin jets
Marín et al. Generation of micron-sized drops and bubbles through viscous coflows
Rubio-Rubio et al. On the thinnest steady threads obtained by gravitational stretching of capillary jets
Wang et al. Lubricated extensional flow of viscoelastic fluids in a convergent microchannel
Ponce-Torres et al. Smooth printing of viscoelastic microfilms with a flow focusing ejector
Niroobakhsh et al. Dynamics of a reactive micellar oil-water interface in a flowing liquid column
Rubio et al. Viscoelastic transition in transonic flow focusing
ES2564893B2 (en) Procedure and device for generating simple and compound micrometric emulsions
Duboin et al. Cusps, spouts and microfiber synthesis with microfluidics
Bazilevskii et al. Dynamics of capillary breakup of elastic jets
ES2625035B1 (en) PRODUCTION OF VISCOELASTIC CAPILLARY JETS BY GASEOUS FOCUS
Glawdel et al. Droplet generation in microfluidics
Rubio et al. Influence of a soluble surfactant on the transition to tip streaming

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16874958

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16874958

Country of ref document: EP

Kind code of ref document: A1