WO2017101906A1 - Terahertz-messverfahren und terahertz-messvorrichtung zum ermitteln einer schichtdicke oder eines abstandes eines messobjektes - Google Patents

Terahertz-messverfahren und terahertz-messvorrichtung zum ermitteln einer schichtdicke oder eines abstandes eines messobjektes Download PDF

Info

Publication number
WO2017101906A1
WO2017101906A1 PCT/DE2016/100577 DE2016100577W WO2017101906A1 WO 2017101906 A1 WO2017101906 A1 WO 2017101906A1 DE 2016100577 W DE2016100577 W DE 2016100577W WO 2017101906 A1 WO2017101906 A1 WO 2017101906A1
Authority
WO
WIPO (PCT)
Prior art keywords
terahertz
optical axis
measurement
terahertz radiation
measuring
Prior art date
Application number
PCT/DE2016/100577
Other languages
English (en)
French (fr)
Inventor
Marius Thiel
Ralph Klose
Original Assignee
INOEX GmbH Innovationen und Ausrüstungen für die Extrusionstechnik
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by INOEX GmbH Innovationen und Ausrüstungen für die Extrusionstechnik filed Critical INOEX GmbH Innovationen und Ausrüstungen für die Extrusionstechnik
Priority to EP16828924.7A priority Critical patent/EP3390959B1/de
Priority to JP2018550644A priority patent/JP6761478B2/ja
Priority to US16/062,662 priority patent/US10584957B2/en
Priority to KR1020187019203A priority patent/KR102246700B1/ko
Priority to CN201680074597.1A priority patent/CN108603750B/zh
Priority to CA3008687A priority patent/CA3008687C/en
Publication of WO2017101906A1 publication Critical patent/WO2017101906A1/de

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/02Measuring arrangements characterised by the use of optical techniques for measuring length, width or thickness
    • G01B11/06Measuring arrangements characterised by the use of optical techniques for measuring length, width or thickness for measuring thickness ; e.g. of sheet material
    • G01B11/0691Measuring arrangements characterised by the use of optical techniques for measuring length, width or thickness for measuring thickness ; e.g. of sheet material of objects while moving
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/02Measuring arrangements characterised by the use of optical techniques for measuring length, width or thickness
    • G01B11/026Measuring arrangements characterised by the use of optical techniques for measuring length, width or thickness by measuring distance between sensor and object
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/24Measuring arrangements characterised by the use of optical techniques for measuring contours or curvatures
    • G01B11/245Measuring arrangements characterised by the use of optical techniques for measuring contours or curvatures using a plurality of fixed, simultaneously operating transducers
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/31Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
    • G01N21/35Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light
    • G01N21/3581Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light using far infrared light; using Terahertz radiation
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/31Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
    • G01N21/35Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light
    • G01N21/3581Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light using far infrared light; using Terahertz radiation
    • G01N21/3586Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light using far infrared light; using Terahertz radiation by Terahertz time domain spectroscopy [THz-TDS]

Definitions

  • Terahertz measuring method and terahertz measuring device for determining a layer thickness or a distance of a measured object
  • the invention relates to a method and a terahertz measuring device for measuring a layer thickness or a distance of a measured object.
  • Plastic irradiated, which has for the terahertz radiation compared to air or vacuum significantly higher refractive index.
  • a material may in particular a plastic, but continue z.
  • wood, ceramic or a fiber-reinforced material such as CFRP or GRP (carbon fiber reinforced plastic, glass fiber reinforced plastic) be.
  • the layer thickness of the material layer can be determined at the examined site. Furthermore, a distance of the measurement object to the transmitting and receiving unit can be determined, so that external dimensions of the measurement object such. B. an outer diameter can be determined. Such terahertz layer thickness measurements can be carried out in particular for checking the quality of a plastic object after its production, for. B. immediately after manufacture by the measurement object is transported at the end of a production line directly through the transport device to or through the measuring device.
  • the object of the invention is to enable a reliable terahertz measurement of a measurement object and an accurate determination of a layer thickness and / or a distance.
  • a measuring device is provided with at least one terahertz transmitting and receiving unit whose optical axis is adjustable and is adjusted during the measurement of the measurement object.
  • a sensing of the measurement object can take place by means of an additional sensor which detects the surface of the measurement object - contactless or even touched, whereby the sensor signal of the sensor is received by a control device and used to adjust the optical axis of the transmitter. and receiving unit is used.
  • the optical axis of the transmitted terahertz radiation is continuously or periodically adjusted by an adjustment range, and in several adjustment
  • Positions of the adjustment performed a measurement The adjustment can be made in particular by pivoting or turning, so that the optical axis is adjusted by an adjustment angle and in several angular positions of the adjustment angle, a measurement is performed. Furthermore, translational adjustments are possible. After the measurements, the amplitudes of the multiple measurements taken within the adjustment range are compared and the measurement with the largest amplitude of the received terahertz radiation is used as the best measurement with an angle of incidence closest to a normal incidence , This measurement can be used directly as the measurement used method, or also serve to track the optical axis.
  • Measurements can be made with little or no incidence of wholly or largely perpendicular incidence of terahertz radiation, leading to a high signal and accurate measurements.
  • a continuous or continuously produced plastic product such as.
  • a plastic tube or a plastic film are measured directly after the continuous production by the measuring device.
  • a continuous adjustment process can be achieved without, for example, setting the measurement head specifically to a determined incorrect adjustment; the following evaluation is sufficient to show which measurement shows the maximum amplitude, so that this measurement can be used directly.
  • a measuring head can be adjusted with its optical axis as a whole, for example by means of an angle adjusting motor or z.
  • the transmitter and the receiver of the terahertz radiation may also remain fixed, and the terahertz radiation via an optical arrangement, for example a mirror arrangement with at least one adjustable mirror, for example
  • Metal mirror, prism or other reflective surface so that the mass to be adjusted is low.
  • an adjustable mirror in the beam path can be adjusted continuously by half the adjustment angle.
  • a laser beam in the visible range can additionally be coupled in to display the optical axis of the terahertz beam.
  • the adjustment can be done in one or two axes. When adjusting in only one axis, the adjustment can be carried out in particular perpendicular to the Transporttricthung, ie about an adjustment axis parallel to the transport direction. Furthermore, in addition to, for example, a variation of the distance of a measuring head to the measurement object can be carried out to adjust an axis. In an adjustment about two axes z. B.
  • an adjustment angle perpendicular to a transport direction or conveying direction of the test object to be examined may be greater, since misalignment or bearing errors, for example, tube bearing error of a plastic pipe to be examined, lead to larger angle errors than in a malposition of the surface of the measurement object along the transport direction.
  • misalignment or bearing errors for example, tube bearing error of a plastic pipe to be examined
  • the measured results or values determined from the measurements can also be compared with one another and used for the other terahertz transmitting and receiving devices.
  • the distance of the surface to the transmitting and receiving unit or its measuring head can be determined, and from this, for example, the position or deviation of the axis of symmetry of a plastic tube from an axis center of the measuring device can be determined.
  • a layer thickness and / or a distance of the measurement object, for. B. also an external dimensioning can be determined.
  • the layer may, for. B. be a wall of a measurement object, also a free space, for. B. the interior of a tube as an air-filled layer.
  • the terahertz radiation can be used in particular in the frequency range from 0.01 THz to 50 THz, in particular 0.05 THz to 20 THz.
  • the terahertz radiation can in particular be transmitted and received fully electronically by means of a transmit and receive dipole.
  • 1 shows a section through a measuring device for measuring a measuring object formed as a tube with inaccurate centering without or before the adjustment of the angular position.
  • 2 shows the measuring principle of determining a layer thickness or
  • Fig. 3 shows the measuring principle of Figure 2 with inaccurate centering of
  • Fig. 5 shows an embodiment of a measuring device at inaccurate
  • FIG. 6 shows the design corresponding to FIG. 5 in the following
  • Fig. 7, 8 an embodiment with translational adjustment of a
  • Fig. 9, 10 an embodiment with translational adjustment of a
  • Fig. 1 1, 12 an embodiment with translational adjustment of a
  • a terahertz measuring device 1 is used to measure a measuring object 2, which is here a plastic tube 2, with a cylindrical or tubular wall 3 of the wall thickness d.
  • the measuring device 1 can be provided directly in-line at the end of the production process, for example of an extruder, and the plastic tube accordingly becomes 2 in the longitudinal direction, that is, production direction and conveying direction, guided by the terahertz measuring device 1.
  • the plastic tube 2 is guided centrally or centrally, that is, with its tube axis B on the axis of symmetry A of the terahertz measuring device 1;
  • a decentralized position that is to say a pipe position error with a deviation of the pipe axis B from the axis of symmetry A, can be present.
  • Such misplacements can occur due to sagging of the plastic tube 2 or due to vibrations, or of the yielding material of the freshly extruded plastic tube 2.
  • the terahertz measuring device 1 has a plurality of terahertz transmitting and receiving units 4, which are distributed over the circumference of the terahertz measuring device 1 and arranged in the interior, in accordance with FIG. 1 aligned with the axis of symmetry A.
  • the terahertz transmitting and receiving units 4 each have a terahertz transmitter 5 indicated in FIG. 1 for emitting terahertz radiation 7a, in particular in the frequency range from 0.01 THz to 50 THz, in particular 0.05 THz to 20 THz, and in particular from 0, 1 THz to 10 THz, as well as an indicated receiving means 6 for back-reflected terahertz radiation 7b in this frequency range.
  • the determination takes place in a control device 8, wherein each terahertz transmitting and receiving unit 4 can have its own control device 8 or a common control device 8 is provided for the several terahertz transmitting and receiving units 4.
  • FIGS. 2 to 4 show the measuring principle in more detail:
  • Fig. 2 shows measurements with correct orientation.
  • the terahertz transmitting and receiving unit 4 transmits terahertz radiation 7a centrally on the plastic tube 2;
  • terahertz radiation 7a is irradiated vertically onto a plastic film 102 serving as the object to be measured.
  • FIG. 2c shows the measurement diagram of the amplitude A of the received terahertz radiation, in which the measurement peak p1 at time t1 and the measurement peak p2 at time t2 are to be recognized whose time interval t2-t1 the transit time difference of the terahertz radiation 7 when passing twice the pipe wall 3 with wall thickness d and refractive index n reflects, ie z. B.
  • the optical axis C of the terahertz transmitting and receiving unit 4 does not pass through the tube axis B according to FIG. 3a of the plastic tube 2 or according to Figure 3b is not perpendicular to the plastic film 102, so that the reflected terahertz beam 7b is not exactly reflected back on the optical axis C, but offset at a misalignment angle ß 0 to the optical axis C. is reflected back. According to FIG. 3c, therefore, a weak amplitude of the measuring signal can be seen;
  • the Wrong angle can disappear completely.
  • errors in the measurement can also occur.
  • the angular position or a misalignment of the optical axis C is opposite to the terahertz transmitting and receiving unit 4 the surface 2a or 102a, determined and corrected, or determined by measurement and comparison at several angular positions a vertical measurement.
  • different embodiments are provided, with which a measurement with vertical alignment of the optical axis is achieved.
  • the surface 2a or 102a is detected by a further sensor, which serves as a position sensor.
  • the position sensor can detect the exact position of the measurement object 2 or 102 without contact or contact, so that the measurement head 4a and thus the positions of the optical axis C are automatically tracked and aligned perpendicular to the surface 2a or 102a.
  • a measuring head 4a is motor-adjustable in its angular position in one or two axes, so that the optical axis C of the measuring head 4a is adjusted in one or two directions. This can also z. B. in addition to the adjustment of an axis a distance d4 from the measuring head 4a to the test object 2 or 102 can be varied.
  • the measuring head 4a of each terahertz transmitting and receiving unit 4 can thus be set separately for itself by an adjustment about an axis within a verse. 4c, whereby in the continuous measurements an optimum angular position is present at the peaks with the highest intensity I, according to FIG. 4c, thus the peaks p1b, p2b, ie in the second of the three measurements.
  • the optimum angular position or vertical angular position was reached and subsequently exceeded.
  • the optimal alignment to the measuring object 2 or 102 is generally in the complete panning or
  • This scan by changing the angular position, that is adjustment of the optical axis C within the Verstellwinkel Schemes a, z. B. be carried out successively in two axes.
  • the position of the impingement of the terahertz radiation 7, that is to say the intersection of the optical axis C with the surface 2a or 102a, can also be determined by the measured angular or translational position of the adjustment of the position sensor or the adjustment of the terahertz Radiation 7 and the optical axis C, are recalculated and determined in combination with the terahertz runtime signal.
  • transit time measurement by a terahertz transmitting and receiving unit 4 can also be used to set not only this terahertz transmitting and receiving unit 4 or its optionally adjustable measuring head 4 a, but also by a Runtime measurement to determine the distance of the measured object 2 to the terahertz transmitting and receiving unit 4, so that the absolute position is known, so that the incorrect positioning of the tube axis B relative to the axis of symmetry A of the measuring device 1 can be determined, and on this Basis already the other terahertz transmitting and receiving units 4 can be aligned or corrected.
  • FIG. 1 transit time measurement by a terahertz transmitting and receiving unit 4 can also be used to set not only this terahertz transmitting and receiving unit 4 or its optionally adjustable measuring head 4 a, but also by a Runtime measurement to determine the distance of the measured object 2 to the terahertz transmitting and receiving unit 4, so that the absolute position is known, so that the incorrect positioning of the tube axis B relative to the axis of
  • FIGS. 5 and 6 show a further embodiment in which the compensation of the angular position of the optical axis C of the terahertz transmitting and receiving unit 4 is corrected, in which case not a measuring head 4a is adjusted, but the terahertz beam 7 via one or more mirrors 10, 1 1 is deflected, for example, a fixed mirror 10 and an adjustable mirror 1 1.
  • an adjustment of the adjustable mirror can be carried out by half the adjustment angle range ⁇ so that the optical axis C scans the adjustment angle range ⁇ , in order to determine the optimum angular position again in continuous measurements according to the diagram of FIG. 4c, the optimum measurement can be used as a relevant measurement.
  • the fixed mirror 10 is formed as a prism or semitransparent mirror, so that here - or at another point - an optical laser 12 as a position marker the
  • Terahertz beam 7 can be superimposed.
  • the superimposition can serve for a visual check, furthermore basically an optical camera for detecting the points generated by the position marker and determining the position of the measuring object 2, 102 can also be provided in the measuring device 1.
  • an angular position of all terahertz transmitting and receiving units 4 can be continuously corrected in-line during production of the measurement object, for example the plastic tube 2 or the plastic film 102 shown in FIG.
  • FIGS. 7 to 12 show various embodiments of such translational adjustments:
  • the adjustable mirror 1 1 is not pivoted, but translationally adjusted.
  • the mirror surfaces of the fixed mirror and the adjustable mirror 1 1 thus run z. B. in each case in parallel to each other.
  • z In the position of FIG. 8, the measuring position at which the emitted terahertz radiation 7a falls perpendicularly onto the wall of the measuring object 2, which in turn is the maximum.
  • FIG Amplitude or maximum detected signal is determined.
  • several measuring positions of the adjustable mirror 1 1 are approached in which measurements are made.
  • Figs. 1 In the illustrated embodiment of Figs.
  • the fixed mirror 10 deflects the transmitted terahertz radiation 7a at a right angle; in such a configuration, an adjustment of the adjustable mirror 1 1 in this adjustment direction E, which is perpendicular to the optical axis C and continues to be perpendicular to the tube axis B of the measurement object 2, makes sense, but other translational adjustment directions are possible.
  • z. B an adjustment distance s of the adjustable mirror 1 1 set until a measuring position is achieved with normal incidence of terahertz radiation 7a on the measuring object 2.
  • Measuring head 4a translationally adjusted along a guide device 17, z. B. again in an adjustment direction E perpendicular to the optical axis C and perpendicular to the tube axis B or symmetry axis of the respective measurement object 2, so that in turn measurements in the various adjustment positions or measurement positions can be recorded and compared with each other, with appropriate evaluation of the measurements according to the above embodiments, so that according to FIG. 10, at a displacement distance s, there is a perpendicular incidence of the terahertz radiation.
  • FIGS. 11 and 12 not only a single measuring head 4a but also the entire measuring device 1 or a receiving ring 14, on which the terahertz transmitting and receiving units 4 are arranged in a ring, is displaced in translation relative to, for example, FIG , B. a frame 15 or base 15 of the terahertz measuring device. 1
  • This z. B. adjustments in two axes or the plane perpendicular to the tube axis B and to the axis of symmetry A of the measuring device 1 are performed, d. H. z. B. as shown in the adjustment direction E and an adjustment along the optical axis C, or another axis in this plane.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)
  • Length Measuring Devices By Optical Means (AREA)
  • Length-Measuring Devices Using Wave Or Particle Radiation (AREA)

Abstract

Die Erfindung betrifft ein Verfahren und eine Terahertz-Messvorrichtung zum Messen einer Schichtdicke und/oder eines Abstandes, wobei mindestens ein Terahertz-Strahl (7a) von einer Terahertz-Sende- und Empfangseinheit entlang einer optischen Achse auf das Messobjekt (2) eingestrahlt wird und durch mindestens eine Schicht (3) des Messobjektes (2) gelangte und reflektierte Terahertz-Strahlung detektiert wird, wobei ein Messsignal der detektierten reflektierten Terahertz-Strahlung ausgewertet und eine Schichtdicke aus einem Laufzeit-Unterschied der an Grenzflächen (2a, 2b) der Schicht (3) reflektierte Strahlung ermittelt wird. Hierbei ist vorgesehen, dass mehrere Messungen mit unterschiedlichen optischen Achsen durchgeführt werden, wobei die optische Achse der ausgesandten Terahertz-Strahlung (7a) während der Messungen oder zwischen den Messungen verstellt wird und eine der mehreren Messungen zur Ermittlung der Schichtdicke herangezogen wird. Vorzugsweise wird die optische Achse innerhalb eines Verstellwinkelbereichs (a) kontinuierlich und/oder periodisch verstellt und hierbei die mehreren Messungen aufgenommen, von denen die Messung mit maximaler Amplitude als Messung zur Ermittlung der Schichtdicke herangezogen wird.

Description

Terahertz-Messverfahren und Terahertz-Messvorrichtung zum Ermitteln einer Schichtdicke oder eines Abstandes eines Messobjektes
Die Erfindung betrifft ein Verfahren und eine Terahertz-Messvorrichtung zum Messen einer Schichtdicke oder eines Abstandes eines Messobjektes.
Hierbei wird Terahertz-Strahlung entlang einer optischen Achse auf das Messobjekt aus einem für THz-Strahlung transparenten Material, z. B.
Kunststoff, eingestrahlt, das für die Terahertz-Strahlung einen gegenüber Luft oder Vakuum deutlich höheren Brechungsindex aufweist. Ein derartiges Material kann insbesondere ein Kunststoff, weiterhin jedoch z. B. auch Holz, Keramik oder ein faserverstärktes Material wie CFK oder GFK (kohlefaserverstärkter Kunststoff, glasfaserverstärkter Kunststoff) sein. Ein Teil der einfallenden Terahertz-Strahlung wird beim Eintritt in die Material-Schicht reflek- tiert, und ein Teil der in die Material-Schicht eingetretenen Terahertz- Strahlung wird an einer nachfolgenden Grenzfläche, zum Beispiel einer Hinterseite oder Rückseite der Material-Schicht beim Übergang zu Luft, reflektiert. Somit können Mess-Peaks der Amplitude der an den Grenzflächen reflektierten Strahlung aufgenommen werden und die zeitliche Differenz der beiden Mess-Peaks als Laufzeit des doppelten Durchquerens der Material- Schicht gewertet werden. Somit kann die Schichtdicke der Material-Schicht an der untersuchten Stelle ermittelt werden. Weiterhin kann auch ein Abstand des Messobjektes zu der Sende- und Empfangseinheit ermittelt werden, so dass auch Außendimensionierungen des Messobjektes wie z. B. ein Außendurchmesser bestimmt werden können. Derartige Terahertz- Schichtdicken-Messungen können insbesondere zur Überprüfung der Qualität eines Kunststoff-Objektes nach dessen Herstellung durchgeführt werden, z. B. unmittelbar nach der Herstellung, indem das Messobjekt am Ende einer Produktionslinie direkt durch die Transporteinrichtung weiter zu der bzw. durch die Messvorrichtung befördert wird.
Hierbei zeigt sich jedoch, dass insbesondere bei einer kontinuierlichen Vermessung von Messobjekten am Ende einer Produktionslinie eine genaue Ausrichtung der Terahertz-Messvorrichtung zum Bildobjekt nicht immer möglich ist. Bei einer ungenauen Zentrierung des Messobjektes, zum Beispiel einer fehlenden Rohrmittellage eines Kunststoffrohres in der Messvorrichtung, fällt die einfallende Terahertz-Strahlung mit ihrer optischen Achse nicht mehr genau senkrecht auf die Oberfläche des Messobjektes ein, sodass die an den Grenzflächen reflektierte Strahlung nicht mehr entlang der optischen Achse zurück zu der Sende- und Empfangseinheit gestrahlt wird und sich die Signalstärke bzw. Amplitudenstärke aufgrund der seitlichen Abstrahlung erheblich reduziert.
Somit ist ein hoher Positionieraufwand, zum Beispiel durch mechanische Führungen des Messobjektes erforderlich; weiterhin ist eine unmittelbare Vermessung nach der Herstellung eines Kunststoff-Objektes, bei zum Teil noch weichen Kunststoff-Materialen, zum Teil nicht möglich.
Der Erfindung liegt die Aufgabe zugrunde, eine sichere Terahertz- Vermessung eines Messobjektes und eine genaue Ermittlung einer Schichtdicke und/oder eines Abstandes zu ermöglichen.
Diese Aufgabe wird durch ein Messverfahren nach Anspruch 1 sowie eine Terahertz-Messvorrichtung nach dem unabhängigen Anspruch gelöst. Die Unteransprüche beschreiben bevorzugte Weiterbildungen. Hierbei ist die erfindungsgemäße Terahertz-Messvorrichtung insbesondere zur Durchführung des erfindungsgemäßen Verfahrens vorgesehen, und das erfindungsgemäße Verfahren wird insbesondere mit Einsatz oder unter Verwendung der erfindungsgemäßen Terahertz-Messvorrichtung durchge- führt.
Somit wird eine Messvorrichtung mit mindestens einer Terahertz- Sende- und Empfangseinheit geschaffen, deren optische Achse verstellbar ist und während der Vermessung des Messobjektes verstellt wird.
Hierbei kann gemäß einer Ausbildung eine Sensierung der Messobjektes mittels eines zusätzlichen Sensors erfolgen, der die Oberfläche des Messobjektes - berührungslos oder auch berührungs-behaftet - erfasst, wobei das Sensorsignal des Sensors von einer Steuereinrichtung aufgenom- men und zur Verstellung der optischen Achse der Sende- und Empfangseinheit herangezogen wird.
Alternativ hierzu wird gemäß einer vorteilhaften Ausführungsform die optische Achse der ausgesandten Terahertz-Strahlung kontinuierlich bzw. periodisch um einen Verstellbereich verstellt, und in mehreren Verstell-
Positionen des Verstellbereichs eine Messung durchgeführt. Die Verstellung kann insbesondere durch Schwenken bzw. Drehen erfolgen, so dass die optische Achse um einen Verstellwinkel verstellt wird und in mehreren Winkel- Positionen des Verstellwinkels eine Messung durchgeführt wird. Weiterhin sind auch translatorische Verstellungen möglich. Nach den Messungen werden die Amplituden der mehreren Messungen, die innerhalb des Verstellbereichs aufgenommen wurden, miteinander verglichen und die Messung mit der größten Amplitude der empfangenen Terahertz-Strahlung als beste Messung bzw. Messung mit einem Einfallswinkel, der einem senkrechten Einfall am nächsten liegt, herangezogen. Diese Messung kann direkt als des Mess- verfahrens herangezogen werden, oder auch zur Nachführung der optischen Achse dienen.
Bei einer derartigen kontinuierlichen Verstellung der optischen Achse innerhalb eines Verstellbereichs, z. B. Verstellwinkels, werden somit einige Vorteile erreicht:
Es können mit geringem Aufwand Messungen mit ganz oder weitgehend senkrechten Einfall der Terahertz-Strahlung erfolgen, die zu einem ho- hen Signal und genauen Messungen führen.
Hierbei ist keine Verstellung bzw. Nachführung des Messobjektes selbst erforderlich, was bei einigen Kunststoff-Produkten, insbesondere direkt nach der Produktion bei weichem Material, technisch aufwendig ist. So kann erfin- dungsgemäß insbesondere ein kontinuierliches bzw. im Endlos-Vorgang hergestelltes Kunststoff-Produkt, wie z. B. ein Kunststoff-Rohr oder eine Kunststoff-Folie, direkt nach der kontinuierlichen Herstellung durch die Messvorrichtung vermessen werden. Weiterhin kann mit einer periodischen Verstellung der optischen Achse innerhalb eines Verstellbereichs ein fortlaufender Verstell-Vorgang erreicht werden, ohne jeweils zum Beispiel den Messkopf spezifisch auf eine ermittelte Fehl-Justierung einzustellen; es reicht die nachfolgende Auswertung, welche Messung die maximale Amplitude zeigt, so dass diese Mes- sung direkt herangezogen werden kann. Hierbei sind zum Beispiel auch keine Zwischen-Stopps des Verstell-Motors zur Aufnahme der einzelnen Messungen in verschiedenen Einstell-Positionen bzw. Mess-Positionen erforderlich; die Messungen können während der periodischen Verstellung ohne eine Stopp des Verstell-Motors erfolgen, da die Laufzeit der Terahertz-Strahlung sehr gering ist und innerhalb einer Messung keine relevante mechanische Verstellung der optischen Achse erfolgt. Die Verstellung der optischen Achse kann gemäß unterschiedlicher Ausführungsformen erfolgen: So kann zum einen ein Messkopf mit seiner optischen Achse als Ganzes verstellt werden, zum Beispiel mittels eines Winkel-Verstellmotors oder z. B. eines translatorischen Versteilmotors. Alternativ hierzu können der Sender und der Empfänger der Terahertz-Strahlung auch fest bleiben, und die Terahertz-Strahlung über eine optische Anordnung, zum Beispiel eine Spie- gel-Anordnung mit mindestens einem verstellbaren Spiegel, zum Beispiel
Metall-Spiegel, Prisma oder anderer spiegelnder Oberfläche, so dass die zu verstellenden Masse gering ist. So kann zum Beispiel ein verstellbarer Spiegel im Strahlengang kontinuierlich um den halben Verstellwinkel verstellt werden. Hierbei kann zur Anzeige der optischen Achse des Terahertz-Strahls auch zum Beispiel ein Laserstrahl in sichtbarem Bereich ergänzend eingekoppelt werden.
Die Verstellung kann in einer oder zwei Achsen erfolgen. Bei Verstellung in nur einer Achse kann die Verstellung insbesondere senkrecht zur Transportricthung, d.h. um eine Verstellachse parallel zur Transportrichtung erfolgen. Weiterhin kann zur Verstellung einer Achse ergänzend zum Beispiel auch eine Variation des Abstandes eines Messkopfes zum Messobjekt erfolgen. Bei einer Verstellung um zwei Achsen können z. B. die Verstellwinkel der beiden Achsen bzw. Richtungen unterschiedlich sein, je nach zu untersuchenden Messobjekt; so kann ein Verstellwinkel senkrecht zu einer Transportrichtung oder Förderrichtung des zu untersuchenden Messobjektes größer sein, da hier Fehl-Justierung bzw. Lagerfehler, zum Beispiel Rohrlagerfehler eines zu untersuchenden Kunststoff-Rohres, zu größeren Winkel- Fehlern führen als bei einer Fehlstellung der Oberfläche des Messobjektes entlang der Transportrichtung. Bei einer Messvorrichtung mit mehreren, zum Beispiel in Umfangsrich- tung verteilt angeordneten Terahertz-Sende- und Empfangseinrichtungen können die Messergebnisse bzw. aus den Messungen ermittelte Werte auch miteinander verglichen und für die anderen Terahertz-Sende- und Emp- fangseinrichtungen herangezogen werden. So kann aus der Laufzeit des Terahertz-Signals auch der Abstand der Oberfläche zur Sende- und Empfangseinheit bzw. deren Messkopf ermittelt werden, und hieraus zum Beispiel die Position oder Abweichung der Symmetrieachse eines Kunststoff-Rohres von einer Achsenmitte der Messvorrichtung ermittelt werden.
Erfindungsgemäß kann insbesondere eine Schichtdicke und/oder ein Abstand des Messobjektes, z. B. auch eine Außendimensionierung ermittelt werden. Die Schicht kann z. B. eine Wand eines Messobjektes sein, weiterhin auch ein Freiraum, z. B. der Innenraum eines Rohres als luftgefüllte Schicht.
Die Terahertz-Strahlung kann insbesondere im Frequenzbereich von 0,01 THz bis 50 THz, insbesondere 0,05 THz bis 20 THz, eingesetzt werden. Hierbei kann die Terahertz-Strahlung insbesondere vollelektronisch mittels eines Sende- und Empfangs-Dipols ausgestrahlt und empfangen werden.
Die Messungen und Auswertungen können im Zeitraum oder auch fouriertransformiert im Frequenzraum durchgeführt werden. Die Erfindung wird im Folgenden anhand der beiliegenden Zeichnungen an einigen Ausführungsformen erläutert. Es zeigen:
Fig. 1 einen Schnitt durch eine Messvorrichtung zur Vermessung eines als Rohr ausgebildeten Messobjektes bei ungenauer Zentrierung ohne bzw. vor der Anpassung der Winkellage; Fig. 2 das Messprinzip der Ermittlung einer Schichtdicke bzw.
Wanddicke eines Messobjektes aus Kunststoff bei einer Terahertz-Wanddickenmessung bei optimaler Zentrierung der Messvorrichtung;
Fig. 3 das Messprinzip aus Figur 2 bei ungenauer Zentrierung der
Messvorrichtung;
Fig. 4 die Messsituation mit dem Verfahren zur Vermessung einer
Schichtdicke gemäß einer Ausführungsform der Erfindung;
Fig. 5 eine Ausführungsform einer Messvorrichtung bei ungenauer
Winkeleinstellung; und Fig. 6 die der Figur 5 entsprechende Ausbildung bei nachfolgender
Kompensation durch Winkeleinstellung der Messvorrichtung:
Fig. 7, 8 eine Ausführungsform mit translatorischer Verstellung einer
Spiegel-Anordnung;
Fig. 9, 10 eine Ausführungsform mit translatorischer Verstellung eines
Messkopfs der Terahertz-Messvorrichtung; und
Fig. 1 1 , 12 eine Ausführungsform mit translatorischer Verstellung eines
Aufnahmerings der Messvorrichtung.
Eine Terahertz-Messvorrichtung 1 dient zur Vermessung eines Messobjektes 2, das hier ein Kunststoffrohr 2 ist, mit einer zylinderförmigen bzw. rohrförmigen Wand 3 der Wanddicke d. Die Messvorrichtung 1 kann insbe- sondere direkt in-line am Ende des Herstellungsprozesses, zum Beispiel eines Extruders, vorgesehen sein und entsprechend wird das Kunststoff-Rohr 2 in Längsrichtung, das heißt Produktionsrichtung und Förderrichtung, durch die Terahertz-Messvorrichtung 1 geführt.
Idealerweise wird das Kunststoff-Rohr 2 zentral bzw. mittig, das heißt mit seiner Rohr-Achse B auf der Symmetrieachse A der Terahertz- Messvorrichtung 1 geführt; es kann jedoch gemäß Figur 1 eine dezentrale Lage, das heißt ein Rohrlagefehler mit einer Abweichung der Rohrachse B von der Symmetrieachse A vorliegen. Derartige Fehllagen können aufgrund eines Durchhängens des Kunststoff-Rohres 2 bzw. auch aufgrund von Schwingun- gen, bzw. des nachgiebigen Materials des frisch extrudierten Kunststoff- Rohres 2 erfolgen.
Die Terahertz-Messvorrichtung 1 weist mehrere Terahertz-Sende-und Empfangseinheiten 4 auf, die über den Umfang der Terahertz- Messvorrich- tung 1 verteilt angeordnet in das Innere, gemäß Figur 1 auf die Symmetrieachse A hin ausgerichtet sind.
Die Terahertz-Sende-und Empfangseinheiten 4 weisen jeweils einen in Fig. 1 angedeuteten Terahertz-Sender 5 auf zum Aussenden von Terahertz- Strahlung 7a, insbesondere im Frequenzbereich von 0,01 THz bis 50 THz, insbesondere 0,05 THz bis 20 THz, und insbesondere von 0, 1 THz bis 10 THz, sowie eine angedeutete Empfangseinrichtung 6 für zurück-reflektierte Terahertz-Strahlung 7b in diesem Frequenzbereich auf. Die Ermittlung erfolgt in einer Steuereinrichtung 8, wobei jede Terahertz-Sende-und Empfangsein- heiten 4 eine eigenen Steuereinrichtung 8 aufweisen kann oder eine gemeinsame Steuereinrichtung 8 für die mehreren Terahertz-Sende-und Empfangseinheiten 4 vogesehen ist. Die Figuren 2 bis 4 zeigen das Messprinzip detaillierter:
Fig. 2 zeigt Messungen bei korrekter Ausrichtung. Gemäß Figur 2a sendet die Terahertz-Sende-und Empfangseinheit 4 Terahertz-Strahlung 7a zentral auf das Kunststoff-Rohr 2; gemäß der Figur 2b wird entsprechend Terahertz-Strahlung 7a vertikal auf eine als Messobjekt dienende Kunststofffolie 102 eingestrahlt. Das Kunststoff-Material der beiden Messobjekte 2 und 102 ist jeweils für die Terahertz-Strahlung 7 transparent; während jedoch Vakuum oder Luft einen Brechungsindex von n=1 aufweisen, weist das
Kunststoff-Material einen Brechungsindex von etwa n=1 ,5 auf. Somit tritt an den Grenzflächenübergängen, das heißt auf der Rohrwand-Außenseite 2a und der Rohrwand-Innenseite 2b, bzw. der Folien-Außenseite 102a und der Folien-Innenseite 102b, jeweils eine teilweise Reflektion der Terahertz- Strahlung 7 bzw. statt. Figur 2c zeigt das Messdiagramm der Amplitude A der empfangenen Terahertz-Strahlung, bei der Messpeak p1 bei der Zeit t1 und der Messpeak p2 bei der Zeit t2 zu erkennen sind, deren zeitlicher Abstand t2-t1 den Laufzeitunterschied der Terahertz-Strahlung 7 beim zweimaligen Durchlaufen der Rohrwand 3 mit Wanddicke d und Brechungsindex n widergibt, d.h. z. B.
d=c(t2-t1 )/2n
Bei der ungenauen Zentrierung gemäß Figur 3, die somit auch bei den meisten Terahertz-Sende- und Empfangseinheiten 4 der Figur 1 vorliegt, ver- läuft die optische Achse C der Terahertz-Sende- und Empfangseinheit 4 gemäß Fig. 3a nicht durch die Rohrachse B des Kunststoff-Rohrs 2 bzw. gemäß Figur 3b nicht senkrecht zu der Kunststoff-Folie 102, sodass der reflektierte Terahertz-Strahl 7b nicht genau auf der optischen Achse C zurückreflektiert wird, sondern unter einem Fehllage-Winkel ß 0 zu der optischen Achse C versetzt zurückreflektiert wird. Gemäß Figur 3c ist somit eine schwache Amplitude des Messsignals zu erkennen, die bei größerem
Fehllage-Winkel auch ganz verschwinden kann. Neben einem schwächeren Signal können auch Fehler in der Messung auftreten. Erfindungsgemäß wird die Winkellage, bzw. eine Fehl-Justierung der optischen Achse C der Terahertz-Sende- und Empfangseinheit 4 gegenüber der Oberfläche 2a oder 102a, ermittelt und korrigiert, oder aber durch Messung und Vergleich bei mehreren Winkellagen eine senkrechte Messung ermittelt. Hierbei sind unterschiedliche Ausführungsformen vorgesehen, mit denen eine Messung bei senkrechter Ausrichtung der optische Achse zur erreicht wird.
Gemäß einer ersten Alternative A wird die Oberfläche 2a oder 102a durch einen weiteren Sensor, der als Positions-Sensor dient, erfasst. Der Positions-Sensor kann berührungslos oder berührungsbehaftet die genaue Position des Messobjektes 2 oder 102 erfassen, sodass der Messkopf 4a und somit die Positionen der optischen Achse C entsprechend automatisch nachgeführt und senkrecht auf die Oberfläche 2a oder 102a ausgerichtet wird.
Gemäß Alternative B werden mehrere Messungen innerhalb eines Verstellwinkelbereichs α durchgeführt und aus den Messungen die ordnungsgemäße Lage, d.h. ein senkrechter Einfall der optischen Achse C zur Messoberfläche 2a oder 102a ermittelt. Auch hierzu sind mehrere Ausbildungen möglich:
In Figur 4 ist ein Messkopf 4a motorisch in seiner Winkellage in ein oder zwei Achsen verstellbar, sodass die optische Achse C des Messkopfes 4a in ein oder zwei Richtungen verstellt wird. Hierbei kann auch z. B. ergänzend zur der Verstellung einer Achse eine Entfernung d4 vom Messkopf 4a zum Prüfobjekt 2 oder 102 variiert werden.
Gemäß der Ausführungsform der Figur 4 kann somit der Messkopf 4a jeder Terahertz-Sende- und Empfangseinheit 4 jeweils separat für sich eingestellt werden, indem eine Verstellung um eine Achse innerhalb eines Vers- tellwinkelbereichs α unter Messung der Signale gemäß Figur 4c erfolgt, wobei bei den fortlaufenden Messungen eine optimale Winkellage bei den Peaks mit der höchsten Intensität I, gemäß Figur 4c somit den Peaks p1 b, p2b, das heißtbei der zweiten der drei Messungen, vorliegt. Somit wurde beim Abscannen dieser Achse in der zweiten Messung mit den Peaks p1 b, p2b die optimale Winkellage bzw. senkrechte Winkellage erreicht und nachfolgend überschritten. Die optimale Ausrichtung zum Messobjekt 2 oder 102 wird im Allgemeinen bei dem vollständigen Schwenkvorgang bzw.
Durchscannen des Verstellwinkelbereichs α erreicht bzw. hinreichend genau erreicht, so dass dann keine weitere Messung erforderlich ist und die Messung mit maximaler Amplitude direkt verwendet werden kann.
Dieser Scan durch Veränderung der Winkellage, das heißt Verstellung der optischen Achse C innerhalb des Verstellwinkelbereichs a, kann z. B. in zwei Achsen sukzessive durchgeführt werden.
Die Position des Auftreffens der Terahertz-Strahlung 7, das heißt der Schnittpunkt der optischen Achse C mit der Oberfläche 2a oder 102a, kann auch durch die gemessene Winkel- bzw. Translations-Position der Verstel- lung des Positions-Sensors oder der Verstellung der Terahertz-Strahlung 7 bzw. der optischen Achse C, in Kombination mit dem Terahertz- Laufzeitsignal zurückgerechnet und bestimmt werden.
Somit kann zum Beispiel bei der Anordnung aus Figur 1 eine Laufzeit- messung durch eine Terahertz-Sende- und Empfangseinheit 4 auch dazu dienen, nicht nur diese Terahertz-Sende-und Empfangseinheit 4 bzw. ihren gegebenenfalls verstellbaren Messkopf 4a einzustellen, sondern auch durch eine Laufzeitmessung den Abstand des Messobjektes 2 zu der Terahertz- Sende- und Empfangseinheit 4 zu bestimmen, sodass die absolute Position bekannt ist, sodass die Fehl-Positionierung der Rohrachse B gegenüber der Symmetrieachse A der Messvorrichtung 1 ermittelbar ist, und auf dieser Grundlage auch bereits die anderen Terahertz-Sende- und Empfangseinheiten 4 ausgerichtet bzw. korrigiert werden können. Somit ist bei der Ausbildung nach Figur 1 mit einer Terahertz-Messvorrichtung 1 mit mehreren in Umfangsrichtung angeordneten Terahertz-Sende- und Empfangseinheiten 4 ist nicht erforderlich, das sämtliche Terahertz-Sende- und Empfangseinheiten 4 eine derartige Kompensation der Winkellage bzw. eine Ermittlung der Fehlposition durchführen, um eine Kompensation bzw. Korrektur der Position vorzunehmen. Figur 5 und 6 zeigen eine weitere Ausführungsform, bei der die Kompensation der Winkellage der optischen Achse C der Terahertz-Sende- und Empfangseinheit 4 korrigiert wird, wobei hier nicht ein Messkopf 4a verstellt wird, sondern der Terahertz-Strahl 7 über eine oder mehrere Spiegel 10, 1 1 abgelenkt wird, zum Beispiel einen festen Spiegel 10 und einen verstellbaren Spiegel 1 1. Durch Verstellung des verstellbaren Spiegels 1 1 kann entsprechend die optische Achse C zur Kompensation der Winkellage verstellt werden. Somit kann bei dieser Ausführungsform ein Verstellung des verstellbaren Spiegels um den halben Verstellwinkelbereich α erfolgen, damit die optische Achse C den Verstellwinkelbereich α abscannt, um gemäß dem Dia- gramm der Figur 4c wiederum bei fortlaufenden Messungen die optimale Winkellage zu ermitteln, wobei die optimale Messung gleich als relevante Messung heran gezogen werden kann.
Gemäß Figur 5 und 6 ist zum Beispiel der feste Spiegel 10 als Prisma oder halbdurchlässiger Spiegel ausgebildet, sodass hier - oder auch an einer anderen Stelle- ein optischer Laser 12 zur als Positionsmarker dem
Terahertz-Strahl 7 überlagert werden kann. Die Überlagerung kann zur visuellen Überprüfung dienen, weiterhin kann grundsätzlich auch in der Messvorrichtung 1 eine optische Kamera zur Erfassung der durch den Positionsmar- ker erzeugten Punkte und Ermittlung der Position des Messobjektes 2, 102 vorgesehen sein. Somit kann erfindungsgemäß in-line bei Produktion des Messobjektes, zum Beispiel des in Figur 1 gezeigten Kunststoff-Rohrs 2 oder der Kunststoff- Folie 102, fortlaufend eine Winkellage sämtlicher Terahertz-Sende- und Empfangseinheiten 4 korrigiert werden.
Neben derartigen Winkel-Verstellungen sind weiterhin auch
translatorische Verstellungen der optischen Achse C der ausgesandten Terahertz-Strahlung 7a möglich. Die Fig. 7 bis 12 zeigen verschiedene Ausführungen derartiger translatorischer Verstellungen:
Gemäß Fig. 7 und Fig. 8 wird der verstellbare Spiegel 1 1 nicht geschwenkt, sondern translatorisch verstellt. Die Spiegelflächen des festen Spiegels und des verstellbaren Spiegels 1 1 verlaufen somit z. B. jeweils pa- rallel zueinander. Somit wird z. B. von der Ausgangsstellung der Fig, 7 aus der verstellbare Spiegel 1 1 translatorisch verstellt und erreicht in der Position der Fig. 8 die Messposition, bei der die ausgesandte Terahertz-Strahlung 7a senkrecht auf die Wand des Messobjektes 2 fällt, was wiederum als maximale Amplitude oder maximal detektiertes Signal ermittelt wird. Somit werden wiederum mehrere Messpositionen des verstellbaren Spiegels 1 1 angefahren, in denen Messungen vorgenommen werden. Bei der gezeigten Ausführungsform der Fig. 7 und 8 lenkt der feste Spiegel 10 die ausgesandte Terahertz-Strahlung 7a unter einem rechten Winkel um; bei einer derartigen Ausbildung ist auch eine Verstellung des verstellbaren Spiegels 1 1 in dieser Verstellrichtung E, die senkrecht zur optischen Achse C und weiterhin senkrecht zur Rohrachse B des Messobjektes 2 verläuft, sinnvoll, wobei jedoch auch andere translatorische Verstellrichtungen möglich sind. Gemäß Fig. 8 wird z. B. eine Verstellstrecke s des verstellbaren Spiegels 1 1 eingestellt, bis eine Messposition mit senkrechtem Einfall der Terahertz-Strahlung 7a auf das Messobjekt 2 erreicht wird. Die weiteren Erläuterungen zu den o. g. Ausführungsformen gelten für die Ausführungsform der Fig. 7, 8 entsprechend. Gemäß der Ausführungsform der Fig. 9 und 10 wird nicht nur ein verstellbarer Spiegel 1 1 einer Spiegelanordnung, sondern der gesamte
Messkopf 4a translatorisch entlang einer Führungseinrichtung 17 verstellt, z. B. wiederum in einer Verstellrichtung E senkrecht zur optischen Achse C und senkrecht zur Rohrachse B bzw. Symmetrieachse des jeweiligen Messobjektes 2, so dass wiederum Messungen in den verschiedenen Verstell- Positionen bzw. Mess-Positionen aufgenommen und miteinander verglichen werden können, mit entsprechender Auswertung der Messungen gemäß den obigen Ausführungsformen, so dass gemäß Fig. 10 bei einer Verstellstrecke s ein senkrechter Einfall der Terahertz-Strahlung vorliegt.
Bei der Ausführungsform der Fig. 1 1 und 12 wird nicht nur ein einzelner Messkopf 4a, sondern die gesamte Messvorrichtung 1 bzw. ein Aufnahme- ring 14, an dem die Terahertz-Sende- und-Empfangseinheiten 4 ringförmig angeordnet sind, translatorisch verstellt gegenüber z. B. einem Gestell 15 oder Basis 15 der Terahertz-Messvorrichtung 1 . Hierbei können z. B. Verstellungen in zwei Achsen bzw. der Ebene senkrecht zur Rohrachse B und zur Symmetrieachse A der Messvorrichtung 1 durchgeführt werden, d. h. z. B. wie eingezeichnet in der Verstellrichtung E und einer Verstellrichtung entlang der optischen Achse C, oder einer anderen Achse in dieser Ebene.
Weiterhin sind auch jedwede Kombinationen von Kippungen, d. h. Verstellungen um Verstellwinkel, und translatorischen Verstellungen möglich.

Claims

Patentansprüche
1 . Verfahren zum Messen einer Schichtdicke (d) oder eines Abstandes eines Messobjektes (2, 102) mit Terahertz-Strahlung (7),
bei dem mindestens ein Terahertz-Strahl (7a) von einer Terahertz- Sende- und Empfangseinheit (4) entlang einer optischen Achse (C) auf das Messobjekt (2, 102) eingestrahlt wird und durch oder auf mindestens eine Schicht (3) des Messobjektes (2, 102) gelangte und reflektierte Terahertz-Strahlung (7) detektiert wird, wobei ein Messsignal (A) der detektierten reflektierten Terahertz-Strahlung (7b) ausgewertet und eine Schichtdicke (d) und/oder ein Abstand aus einem Laufzeit- Unterschied (t2-t1 ) der an mindestens einer Grenzfläche (2a, 2b) der Schicht (3) reflektierten Strahlung (7) ermittelt wird,
dadurch gekennzeichnet, dass
mehrere Messungen mit unterschiedlichen optischen Achsen (C) durchgeführt werden, wobei die optische Achse (C) der ausgesandten Terahertz-Strahlung (7a) während der Messungen oder zwischen den Messungen verstellt wird und eine der mehreren Messungen zur Ermittlung der Schichtdicke (d) und/oder des Abstandes herangezogen wird.
2. Verfahren nach Anspruch 1 , dadurch gekennzeichnet, dass eine Oberfläche (2a, 102a) des Messobjektes durch einen Sensor erfasst wird und die optische Achse (C) der ausgesandten Terahertz- Strahlung (7) in Abhängigkeit der Messung des Sensors ausgerichtet und nachgeführt wird zu einer Position minimalen, durch den Sensor ermittelten Abstandes.
3. Verfahren nach Anspruch 1 , dadurch gekennzeichnet, dass die optische Achse (C) der ausgesandten Terahertz-Strahlung (7a) fortlaufend und periodisch über einen Verstellbereich (a, s), insbesondere Verstellwinkelbereich (α) verstellt wird und während der Verstellung mehrere Messungen aufgenommen werden,
wobei die mehreren Messungen miteinander verglichen werden und eine Messung mit einer maximalen Amplitude (A) oder einem maxima- len detektierten Signal als Messung zur Ermittlung der Schichtdicke
(d) herangezogen wird.
4. Verfahren nach Anspruch 3, dadurch gekennzeichnet, dass die optische Achse (C) der ausgesandten Terahertz-Strahlung (7a) perio- disch in zwei zueinander nicht-parallelen Richtungen, vorzugsweise zwei orthogonalen Richtungen, um Verstellbereiche (a, s), insbesondere Verstellwinkelbereiche (a), verstellt wird.
5. Verfahren nach einem Anspruch 2 oder 3, dadurch gekennzeichnet, dass die optische Achse (C) in eine Richtung um den Verstellwinkel
(a) periodisch verstellt wird, und weiterhin ein Abstand eines die Terahertz-Strahlung (7) aussendenden Messkopfes (4a) zu dem Messobjekt (2) periodisch verstellt wird.
6. Verfahren nach einem der Ansprüche 2 bis 5, dadurch gekennzeichnet, dass die optische Achse (C) der ausgesandten Terahertz- Strahlung (7a) durch Schwenken eines Messkopfes (4a) der Terahertz- Sende- und Empfangseinheit (4) um den Verstellwinkel (a) verstellt wird.
7. Verfahren nach einem der Ansprüche 2 bis 5, dadurch gekennzeichnet, dass die Terahertz-Sende- und Empfangseinheit (4) eine Spiegel-Anordnung (10, 1 1 ) mit einem verstellbaren Spiegel (1 1 ) zum Umlenken der ausgesandten und reflektierten Terahertz-Strahlung (7, 7a, 7b) aufweist,
wobei der verstellbare Spiegel (1 1 ) verstellt wird zum Andern der Richtung der optischen Achse (C).
8. Verfahren nach einem der vorherigen Ansprüche, dadurch gekennzeichnet, dass eine Position des Auftreffens der ausgesandten Terahertz-Strahlung (7a) auf die Oberfläche (2a, 102a) des Messobjektes (2, 102) aus der Messung, insbesondere einer Laufzeit- Ermittlung, ermittelt und bestimmt wird.
9. Verfahren nach einem der vorherigen Ansprüche, dadurch gekenn- zeichnet, dass die optische Achse (C) der ausgesandten Terahertz- Strahlung (7a) während der Messungen oder zwischen den Messungen translatorisch verstellt wird, z. B. in einer Verstellrichtung (E) senkrecht zu der optischen Achse (C).
10. Verfahren nach einem der vorherigen Ansprüche, dadurch gekennzeichnet, dass ein in einer Herstellungsvorrichtung erzeugtes Kunststoff-Produkt, zum Beispiel ein Kunststoff-Rohr (2) oder eine Kunststoff-Folie (102), nach der Herstellung fortlaufend in einer Transportrichtung an einer Messvorrichtung (1 ) mit mindestens einer Terahertz- Sende- und Empfangseinheit (4) entlang geführt und durch die
Terahertz-Sende- und Empfangseinheit (4) auf eine Schichtdicke, zum Beispiel Wanddicke (d), untersucht wird,
wobei die optische Achse (C) der ausgesandten Terahertz-Strahlung (7a) senkrecht zu der Transportrichtung ausgerichtet ist und in einer Ebene senkrecht zur Transportrichtung verstellt wird,
wobei die Schichtdicke (d) durch eine Laufzeit-Messung ermittelt wird, bei der eine zeitliche Differenz (t2-t1 ) zwischen einem ersten Mess- Peak (p1 ) der Reflektion beim Eintritt der Terahertz-Strahlung (7a) in eine Oberfläche (2a, 102a) der Schicht (d) und einem zeitlich nachfol- genden zweiten Mess-Peak (p2) nach Transmission der Schicht (d) und Reflexion bei Austritt aus der Schicht (d) ermittelt wird, wobei die Schichtdicke d ermittelt wird aus
d=c(t2-t1 )/2n,
mit c der Lichtgeschwindigkeit im Vakuum, n dem Brechungsindex des Kunststoff-Materials für die Terahertz-Strahlung (7) und (t2-t1 ) der zeitlichen Differenz zwischen dem ersten Mess-Peak (p1 ) und dem zweiten Mess-Peak (p2).
1 1 . Terahertz-Messvorrichtung (1 ) zur Messung einer Schichtdicke (d) und/oder eines Abstandes eines Kunststoff-Messobjektes (2, 102), mit einer Terahertz-Sende- und Empfangseinheit (4) mit einem Sender (5) zum Aussenden von Terahertz-Strahlung (7a) entlang einer optischen Achse (C) auf das Messobjekt (2, 102) und ein Empfänger (6) zum Empfangen der von dem Messobjekt (2, 102) reflektierten Terahertz- Strahlung (7b),
einer Steuereinrichtung (8) zur Ermittlung der Schichtdicke (d) aus einem Laufzeit-Unterschied der an einer ersten Grenzfläche oder Außenfläche (2a) der Schicht reflektierten Terahertz-Strahlung und der nach Durchtritt durch die Schicht an einer zweiten Grenzfläche reflektierten Terahertz-Strahlung,
dadurch gekennzeichnet, dass
zumindest ein Teil der Terahertz-Sende- und Empfangseinheit (4) verstellbar vorgesehen ist zum Verstellen der optischen Achse (C) um einen Verstellbereich (a, s) und die Steuereinrichtung (8) ausgelegt ist, aus einem Vergleich mehrerer Messungen bei unterschiedlichen Ein- Stellungen der optischen Achse (C) die Schichtdicke (d) zu ermitteln.
12. Terahertz-Messvorrichtung (1 ) nach Anspruch 1 1 , dadurch gekennzeichnet, dass ein Messkopf (4a) der Terahertz-Messvorrichtung (1 ) in mindestens einer Schwenkachse um den Verstellwinkel (a) verstell- bar ist.
13. Terahertz-Messvorrichtung (1 ) nach Anspruch 1 1 oder 12, dadurch gekennzeichnet, dass sie eine Spiegelanordnung (10, 1 1 ) mit mindestens einem verstellbaren Spiegel (1 1 ) aufweist, der zur Verstellung der optischen Achse (C) der ausgesandten Terahertz-Strahlung (7a) um mindestens einen Verstellbereich (a, s), vorzugsweise Verstellwinkelbereich (a), verstellbar ist
14. Terahertz-Messvorrichtung (1 ) nach einem der Ansprüche 1 1 bis 13, dadurch gekennzeichnet, dass sie einen Sensor zum Erfassen einer Position und/oder Lage einer Oberfläche (2a, 102a) des Messobjektes (2, 102) aufweist, und die Steuereinrichtung (8) die optische Achse (C) in Abhängigkeit der von dem Sensor erfassten Lage nachführt.
15. Terahertz-Messvorrichtung (1 ) nach einem der Ansprüche 1 1 bis 13, dadurch gekennzeichnet, dass die Steuereinrichtung (8) die optische Achse (C) periodisch innerhalb eines Verstellbereichs (a, s), insbesondere Verstellwinkelbereichs (a) verstellt, und in dem Verstellbereich fortlaufend Messsignale aufnimmt, wobei die Steuereinrichtung (8) eine Messung mit maximaler Amplitude als Messung bei senkrech- tem Auftreffen auf eine Oberfläche (2a, 102a) des Messobjektes (2,
102) heranzieht.
PCT/DE2016/100577 2015-12-18 2016-12-12 Terahertz-messverfahren und terahertz-messvorrichtung zum ermitteln einer schichtdicke oder eines abstandes eines messobjektes WO2017101906A1 (de)

Priority Applications (6)

Application Number Priority Date Filing Date Title
EP16828924.7A EP3390959B1 (de) 2015-12-18 2016-12-12 Terahertz-messverfahren und terahertz-messvorrichtung zum ermitteln einer schichtdicke oder eines abstandes eines messobjektes
JP2018550644A JP6761478B2 (ja) 2015-12-18 2016-12-12 測定対象物の層厚又は間隔を算出するためのテラヘルツ測定法及びテラヘルツ測定装置
US16/062,662 US10584957B2 (en) 2015-12-18 2016-12-12 Terahertz measurement method and terahertz measuring apparatus for ascertaining a layer thickness or a distance of a measurement object
KR1020187019203A KR102246700B1 (ko) 2015-12-18 2016-12-12 측정 대상물의 층 두께 또는 거리를 결정하기 위한 테라헤르츠 측정 방법 및 테라헤르츠 측정 장치
CN201680074597.1A CN108603750B (zh) 2015-12-18 2016-12-12 一种确定测量对象层厚或者距离的太赫兹测量方法和太赫兹测量设备
CA3008687A CA3008687C (en) 2015-12-18 2016-12-12 Terahertz measuring method and terahertz measuring apparatus for determining a layer thickness or a distance of a measurement object

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102015122205.1 2015-12-18
DE102015122205.1A DE102015122205B4 (de) 2015-12-18 2015-12-18 Terahertz-Messverfahren und Terahertz-Messvorrichtung zum Ermitteln einer Schichtdicke oder eines Abstandes eines Messobjektes

Publications (1)

Publication Number Publication Date
WO2017101906A1 true WO2017101906A1 (de) 2017-06-22

Family

ID=57850827

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/DE2016/100577 WO2017101906A1 (de) 2015-12-18 2016-12-12 Terahertz-messverfahren und terahertz-messvorrichtung zum ermitteln einer schichtdicke oder eines abstandes eines messobjektes

Country Status (8)

Country Link
US (1) US10584957B2 (de)
EP (1) EP3390959B1 (de)
JP (1) JP6761478B2 (de)
KR (1) KR102246700B1 (de)
CN (1) CN108603750B (de)
CA (1) CA3008687C (de)
DE (1) DE102015122205B4 (de)
WO (1) WO2017101906A1 (de)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20190128661A1 (en) * 2017-10-27 2019-05-02 Ford Motor Company Method and system for aligning a terahertz sensor system
JP2020525796A (ja) * 2017-07-04 2020-08-27 イネックス・ゲゼルシャフト・ミト・ベシュレンクテル・ハフツング・イノヴァツイオーネン・ウント・アウスリュストゥンゲン・フュア・ディー・エクストルジオーンステヒニク 検査対象物を測定するためのテラヘルツ測定装置及びテラヘルツ測定法
CN112969933A (zh) * 2019-05-24 2021-06-15 赫尔穆特费舍尔股份有限公司电子及测量技术研究所 太赫兹测量装置和操作太赫兹测量装置的方法
DE102020130903A1 (de) 2020-11-17 2022-05-19 Sikora Aktiengesellschaft Verfahren zum Ermitteln eines Absackens von Schmelze eines in einer Extrusionsvorrichtung extrudierten Rohrs
DE102022108942A1 (de) 2022-04-12 2023-10-12 CiTEX Holding GmbH Mess-Anordnung mit einem Blasform-Extruder, Verfahren zum Vermessen eines Schmelzeschlauchs oder einer Blasform sowie Verfahren zum Blasform-Extrudieren

Families Citing this family (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102017125753A1 (de) * 2017-11-03 2019-05-09 INOEX GmbH Innovationen und Ausrüstungen für die Extrusionstechnik Terahertz-Messverfahren und Terahertz-Messvorrichtung zum Messen mindestens einer Wanddicke eines rohrförmigen Messobjektes
DE102018104705B4 (de) * 2018-03-01 2020-03-26 Sikora Ag Verfahren und Vorrichtung zum Vermessen eines rohrförmigen Strangs
SG11202009202PA (en) * 2018-03-22 2020-10-29 3M Innovative Properties Co Time-domain terahertz measurement system having a single reference surface
KR102075356B1 (ko) * 2018-08-27 2020-02-10 한양대학교 산학협력단 시편 두께 측정 장치 및 시편 두께 측정 방법
DE102018122965B4 (de) * 2018-09-19 2021-10-14 INOEX GmbH Innovationen und Ausrüstungen für die Extrusionstechnik THz-Messgerät und THz-Messverfahren zur Ermittlung von Fehlstellen in Messobjekten
DE102018131362B4 (de) * 2018-12-07 2023-04-13 INOEX GmbH Innovationen und Ausrüstungen für die Extrusionstechnik THz- Messvorrichtung und THz- Messverfahren zur Vermessung von geförderten Messobjekten
DE102018131370A1 (de) 2018-12-07 2020-06-10 INOEX GmbH Innovationen und Ausrüstungen für die Extrusionstechnik Messsystem und Verfahren zur Vermessung eines Messobjektes, insbesondere eines Kunststoff-Profils
DE102019101152B3 (de) * 2019-01-17 2020-01-30 Sikora Ag Vorrichtung und Verfahren zum Bestimmen der Oberflächenkontur und/oder der Lage im Raum eines Gegenstandes
DE102019108299B4 (de) 2019-03-29 2021-01-07 CiTEX Holding GmbH THz-Messvorrichtung und THz-Messverfahren zum Ermitteln einer Schichtdicke oder eines Abstandes eines Messobjektes
DE102019109339B4 (de) * 2019-04-09 2021-04-08 CiTEX Holding GmbH Verfahren zur Kalibrierung einer THz-Messvorrichtung, THz-Messverfahren sowie entsprechende THz-Messvorrichtung
KR102175532B1 (ko) 2019-06-04 2020-11-06 한국과학기술원 테라헤르츠 시간 영역 분광을 이용한 샘플의 두께 및 굴절률 측정 방법
CN111024305B (zh) * 2019-12-10 2021-07-13 云南电网有限责任公司玉溪供电局 一种利用THz信号进行真空度检测的方法
KR102314842B1 (ko) 2020-02-14 2021-10-19 한국과학기술원 테라헤르츠 신호를 이용한 샘플의 두께 측정 방법
CN111536885B (zh) * 2020-06-02 2022-02-25 莱仪特太赫兹(天津)科技有限公司 一种双入射角度式太赫兹时域光谱涂层测量方法
US11709139B2 (en) * 2020-07-24 2023-07-25 New Jersey Institute Of Technology Systems and methods of detecting pipe defects
DE102020124261B4 (de) 2020-09-17 2022-09-29 Sikora Aktiengesellschaft Verfahren und Vorrichtung zum Bestimmen des Brechungsindex im Oberflächenbereich eines Gegenstandes
DE102020132330B3 (de) 2020-12-04 2022-06-09 CiTEX Holding GmbH THz-Sensor und THz-Messverfahren zum Vermessen eines Messobjektes
DE102020133704B4 (de) 2020-12-16 2022-07-07 CiTEX Holding GmbH THz-Messvorrichtung und THz-Messverfahren zum Vermessen eines Wellrohrs
KR102562019B1 (ko) * 2020-12-24 2023-08-01 (주)신정개발 레이다를 이용한 파이프 두께 측정장치
KR20230038344A (ko) 2021-09-10 2023-03-20 세메스 주식회사 약액 배관 검사 장치 및 방법
CN114593683B (zh) * 2022-03-23 2024-04-26 青岛青源峰达太赫兹科技有限公司 一种基于脉冲太赫兹波的管道生产过程中参数测量装置及方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102013217038A1 (de) * 2013-08-27 2015-03-05 Inoex Gmbh Messvorrichtung für Reflexionsmessungen an Prüfobjekten sowie Verfahren zur Messung von an Prüfobjekten reflektierter Strahlung
DE102013223945A1 (de) * 2013-11-22 2015-05-28 Inoex Gmbh Messvorrichtung und Verfahren zur Vermessung von Prüfobjekten
DE102014214046B3 (de) * 2014-07-18 2015-10-01 Inoex Gmbh Messvorrichtung und Verfahren zur Vermessung von Prüfobjekten

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050087690A1 (en) 2001-12-28 2005-04-28 Mamoru Usami Spectral measurnig device
JP5472675B2 (ja) 2009-02-03 2014-04-16 アイシン精機株式会社 非接触膜厚測定装置
US8493057B2 (en) * 2009-05-15 2013-07-23 Advantest Corporation Electromagnetic wave measuring apparatus, measuring method, program, and recording medium
DE102011112697B4 (de) 2011-08-31 2013-03-14 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Verfahren und Vorrichtung zum Bestimmen einer Substanz unter Verwendung von THz-Strahlung
US9140542B2 (en) * 2012-02-08 2015-09-22 Honeywell Asca Inc. Caliper coating measurement on continuous non-uniform web using THz sensor
CN202511762U (zh) * 2012-03-29 2012-10-31 吴周令 一种半导体晶圆厚度检测系统
CN204286367U (zh) * 2014-11-10 2015-04-22 中国石油大学(北京) 测量海平面漏油厚度的测量仪

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102013217038A1 (de) * 2013-08-27 2015-03-05 Inoex Gmbh Messvorrichtung für Reflexionsmessungen an Prüfobjekten sowie Verfahren zur Messung von an Prüfobjekten reflektierter Strahlung
DE102013223945A1 (de) * 2013-11-22 2015-05-28 Inoex Gmbh Messvorrichtung und Verfahren zur Vermessung von Prüfobjekten
DE102014214046B3 (de) * 2014-07-18 2015-10-01 Inoex Gmbh Messvorrichtung und Verfahren zur Vermessung von Prüfobjekten

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
J. HAUCK ET AL: "Terahertz inline wall thickness monitoring system for plastic pipe extrusion", AIP CONFERENCE PROCEEDINGS, 1 January 2014 (2014-01-01), pages 86 - 89, XP055155617, ISSN: 0094-243X, DOI: 10.1063/1.4873740 *

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020525796A (ja) * 2017-07-04 2020-08-27 イネックス・ゲゼルシャフト・ミト・ベシュレンクテル・ハフツング・イノヴァツイオーネン・ウント・アウスリュストゥンゲン・フュア・ディー・エクストルジオーンステヒニク 検査対象物を測定するためのテラヘルツ測定装置及びテラヘルツ測定法
US11441892B2 (en) 2017-07-04 2022-09-13 Inoex Gmbh Innovationen Und Ausruestungen Fuer Die Extrusionstechnik Terahertz measuring device and terahertz measuring method for measuring objects to be inspected
US20190128661A1 (en) * 2017-10-27 2019-05-02 Ford Motor Company Method and system for aligning a terahertz sensor system
CN109725302A (zh) * 2017-10-27 2019-05-07 福特汽车公司 用于对准太赫兹传感器系统的方法和系统
US10323931B2 (en) 2017-10-27 2019-06-18 Ford Motor Company Method and system for aligning a terahertz sensor system
CN112969933A (zh) * 2019-05-24 2021-06-15 赫尔穆特费舍尔股份有限公司电子及测量技术研究所 太赫兹测量装置和操作太赫兹测量装置的方法
DE102020130903A1 (de) 2020-11-17 2022-05-19 Sikora Aktiengesellschaft Verfahren zum Ermitteln eines Absackens von Schmelze eines in einer Extrusionsvorrichtung extrudierten Rohrs
DE102022108942A1 (de) 2022-04-12 2023-10-12 CiTEX Holding GmbH Mess-Anordnung mit einem Blasform-Extruder, Verfahren zum Vermessen eines Schmelzeschlauchs oder einer Blasform sowie Verfahren zum Blasform-Extrudieren
EP4261495A1 (de) 2022-04-12 2023-10-18 CiTEX Holding GmbH Mess-anordnung mit einem blasform-extruder, verfahren zum vermessen eines schmelzeschlauchs oder eines blasform-produktes sowie verfahren zum blasform-extrudieren

Also Published As

Publication number Publication date
DE102015122205B4 (de) 2022-11-03
CA3008687C (en) 2021-03-02
EP3390959A1 (de) 2018-10-24
EP3390959B1 (de) 2020-04-01
US10584957B2 (en) 2020-03-10
KR20180097609A (ko) 2018-08-31
CN108603750B (zh) 2020-12-11
DE102015122205A1 (de) 2017-06-22
CA3008687A1 (en) 2017-06-22
CN108603750A (zh) 2018-09-28
US20180347963A1 (en) 2018-12-06
JP6761478B2 (ja) 2020-09-23
KR102246700B1 (ko) 2021-04-30
JP2019500629A (ja) 2019-01-10

Similar Documents

Publication Publication Date Title
EP3390959B1 (de) Terahertz-messverfahren und terahertz-messvorrichtung zum ermitteln einer schichtdicke oder eines abstandes eines messobjektes
EP3443297B1 (de) Terahertz-messvorrichtung zur vermessung von prüfobjekten sowie ein terahertz-messverfahren
EP3480553B1 (de) Terahertz-messverfahren und terahertz-messvorrichtung zum messen mindestens einer wanddicke eines rohrförmigen messobjektes
DE102017125740B4 (de) Terahertz-Messverfahren und Terahertz-Messvorrichtung zur Vermessung von Rohren
EP2449338B1 (de) Verfahren und vorrichtung zur berührungslosen bestimmung der dicke einer materialbahn mit korrektur des ausrichtfehlers
EP1336817B1 (de) Anordnung und Verfahren zum Ermitteln der relativen Ausrichtung zweier Körper
WO1999041568A9 (de) Laserscanner-messsystem
WO2015027994A1 (de) Messvorrichtung für reflexionsmessungen an prüfobjekten sowie verfahren zur messung von an prüfobjekten reflektierter strahlung
EP3408609A1 (de) Messverfahren und messvorrichtung zum ermitteln einer materialdicke oder schichtdicke eines prüfobjektes
EP3948158B1 (de) Thz-messvorrichtung und thz-messverfahren zum ermitteln einer schichtdicke oder eines abstandes zwischen grenzflächen eines messobjektes
DE102004033928A1 (de) Abtastvorrichtung zum Vermessen der Konturen eines Objektes
DE10216405A1 (de) Vorrichtung zum Erzeugen eines dreidimensionalen Umgebungsbildes
EP0045456A2 (de) Oberflächenabtastgerät
DE102015017271B3 (de) Terahertz-Messverfahren zum Ermitteln einer Schichtdicke eines Messobjektes
EP1016873B1 (de) Einstellvorrichtung zum Justieren eines an einem Fahrzeug montierten Abstandssensors oder Scheinwerfers
DE102004010311A1 (de) Vorrichtung und Verfahren zur Messung der Dicke einer transparenten Probe
EP4160139A1 (de) Thz-messvorrichtung und verfahren zum vermessen eines messobjektes
DE19927573C1 (de) Einstellvorrichtung zum Justieren eines an einem Fahrzeug montierten Abstandssensor oder Scheinwerfers
WO2005022127A2 (de) Vorrichtung zur vermessung eines flächigen elementes
DE102018131362B4 (de) THz- Messvorrichtung und THz- Messverfahren zur Vermessung von geförderten Messobjekten
EP2703773B1 (de) Sensor zum Erfassen einer laufenden Warenbahn
DE10019789B4 (de) Vorrichtung und Verfahren zum Messen der Dicke von Folienmaterial während des Vorschubs
DE102006000673B4 (de) Vorrichtung und Verfahren zum Abtasten von Oberflächen
WO1997035211A1 (de) Verfahren zur optischen messung von relativen winkeln

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16828924

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 3008687

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 2018550644

Country of ref document: JP

ENP Entry into the national phase

Ref document number: 20187019203

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 1020187019203

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 2016828924

Country of ref document: EP