WO2017101752A1 - 劈裂天线的馈电网络和劈裂天线 - Google Patents

劈裂天线的馈电网络和劈裂天线 Download PDF

Info

Publication number
WO2017101752A1
WO2017101752A1 PCT/CN2016/109551 CN2016109551W WO2017101752A1 WO 2017101752 A1 WO2017101752 A1 WO 2017101752A1 CN 2016109551 W CN2016109551 W CN 2016109551W WO 2017101752 A1 WO2017101752 A1 WO 2017101752A1
Authority
WO
WIPO (PCT)
Prior art keywords
pcb
degree bridge
antenna
circuit
splitting
Prior art date
Application number
PCT/CN2016/109551
Other languages
English (en)
French (fr)
Inventor
史维光
廖志强
罗新能
关涛
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP16874809.3A priority Critical patent/EP3376596B1/en
Publication of WO2017101752A1 publication Critical patent/WO2017101752A1/zh
Priority to US16/007,165 priority patent/US10658764B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P1/00Auxiliary devices
    • H01P1/18Phase-shifters
    • H01P1/184Strip line phase-shifters
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • H01Q21/24Combinations of antenna units polarised in different directions for transmitting or receiving circularly and elliptically polarised waves or waves linearly polarised in any direction
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P5/00Coupling devices of the waveguide type
    • H01P5/12Coupling devices having more than two ports
    • H01P5/16Conjugate devices, i.e. devices having at least one port decoupled from one other port
    • H01P5/18Conjugate devices, i.e. devices having at least one port decoupled from one other port consisting of two coupled guides, e.g. directional couplers
    • H01P5/184Conjugate devices, i.e. devices having at least one port decoupled from one other port consisting of two coupled guides, e.g. directional couplers the guides being strip lines or microstrips
    • H01P5/187Broadside coupled lines
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P5/00Coupling devices of the waveguide type
    • H01P5/12Coupling devices having more than two ports
    • H01P5/16Conjugate devices, i.e. devices having at least one port decoupled from one other port
    • H01P5/19Conjugate devices, i.e. devices having at least one port decoupled from one other port of the junction type
    • H01P5/22Hybrid ring junctions
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/002Protection against seismic waves, thermal radiation or other disturbances, e.g. nuclear explosion; Arrangements for improving the power handling capability of an antenna
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/48Earthing means; Earth screens; Counterpoises
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/52Means for reducing coupling between antennas; Means for reducing coupling between an antenna and another structure
    • H01Q1/526Electromagnetic shields
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • H01Q21/0006Particular feeding systems
    • H01Q21/0075Stripline fed arrays
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q23/00Antennas with active circuits or circuit elements integrated within them or attached to them
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q25/00Antennas or antenna systems providing at least two radiating patterns
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q3/00Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system
    • H01Q3/26Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the relative phase or relative amplitude of energisation between two or more active radiating elements; varying the distribution of energy across a radiating aperture
    • H01Q3/30Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the relative phase or relative amplitude of energisation between two or more active radiating elements; varying the distribution of energy across a radiating aperture varying the relative phase between the radiating elements of an array
    • H01Q3/34Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the relative phase or relative amplitude of energisation between two or more active radiating elements; varying the distribution of energy across a radiating aperture varying the relative phase between the radiating elements of an array by electrical means
    • H01Q3/40Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the relative phase or relative amplitude of energisation between two or more active radiating elements; varying the distribution of energy across a radiating aperture varying the relative phase between the radiating elements of an array by electrical means with phasing matrix

Definitions

  • the embodiments of the present application relate to the field of communications, and in particular, to a feed network of a split antenna and a split antenna.
  • MBB Mobile Broadband
  • UMTS Universal Mobile Telecommunications System
  • the common way to expand network capacity is to focus on new spectrum. Add a new site, add a multi-sector networking, or use a split antenna.
  • the split antenna increases the vertical dimension partition of the service information channel by increasing the number of primary device channels, thereby improving spectrum efficiency and thereby increasing network capacity.
  • PIM Passive Inter-Modulation
  • passive components such as connectors, feeders, antennas, and filters operating under high power signals of multiple carrier frequencies due to the nonlinearity of the components themselves.
  • Passive devices are generally considered to be linear, but under high-power conditions, passive devices have a certain degree of nonlinearity to varying degrees. This nonlinearity is mainly caused by the tight connection of passive components. The nonlinearities of these passive components produce higher harmonics relative to the operating frequency. These harmonics mix with the operating frequency to produce a new set of frequencies that ultimately produce a set of useless spectrum over the air, affecting normal communications. .
  • the bridge in the split network circuit mostly uses a microstrip line structure in the printed circuit board (PCB), and the strip line structure is generally adopted in the phase shift circuit PCB.
  • the splitting network circuit and the phase shifting circuit are usually separated, and the two cascades are generally in the form of cable welding or screw connection.
  • FIG. 1 shows the splitting network circuit and the phase shifting circuit in the feeding network of the splitting antenna. Schematic block diagram of the form of connection. This cascading form will increase passive The number of devices, there are hidden dangers such as the tight connection of passive devices, and thus affect the PIM index of the split antenna.
  • the embodiment of the present application provides a feed network and a split antenna of a split antenna to simplify the feed network structure of the split antenna and improve the PIM reliability of the antenna system.
  • a feed network for a split antenna comprising: a cavity including an upper ground metal plate and a lower ground metal plate; and a PCB disposed inside the cavity, the split network circuit in the feed network And a phase shifting circuit integrated in the PCB, the PCB and the cavity are arranged such that the wires on the PCB are integrally in a stripline structure; at least two RF signal input ports, the at least two RF signal input ports and the PCB
  • the splitting network circuit is connected, and the radio frequency signals input by the at least two radio frequency signal input ports sequentially pass through the splitting network circuit and the phase shifting circuit in the PCB, and at least two mutual beams are formed through the antenna oscillator of the splitting antenna. There is an angle between the beams.
  • the at least two radio frequency signal input ports include a first radio frequency signal input port and a second radio frequency signal input port
  • the split network circuit includes: a 90 degree bridge The input end of the 90-degree bridge is connected to the first RF signal input port; the power splitter, the input end of the power splitter is connected to the second RF signal input port; the first 180-degree bridge, the first a first input port of the 180 degree bridge is connected to the first output port of the 90 degree bridge, and a second input port of the first 180 degree bridge is connected to the first output port of the power splitter, the first 180 The bridge is connected to the phase shifting circuit; the second 180 degree bridge, the first input port of the second 180 degree bridge is connected to the second output port of the 90 degree bridge, and the second 180 degree bridge The second input port is connected to the second output port of the power splitter, and the second 180 degree bridge is connected to the phase shifting circuit.
  • the isolated end of the 90 degree bridge is grounded.
  • the power splitter is a power splitter with an open stub.
  • the length of the open stub is in the range of 1/8 to 1/2 operating wavelength.
  • the at least one of the 90 degree bridge, the first 180 degree bridge, and the second 180 degree bridge is implemented on the PCB by wide-side coupling.
  • the phase shifting circuit in the PCB is between the upper grounded metal plate and/or the lower grounded metal plate A sliding medium is provided, and phase shifting of the phase shifting circuit is achieved by sliding the sliding medium.
  • the split network circuit in the PCB has a gap between the upper ground metal plate and the lower ground metal plate .
  • the cavity is a profile cavity.
  • a second aspect provides a splitting antenna, where the splitting antenna includes any one of the foregoing implementation manners, the splitting antenna further includes: an antenna element connected to the feeding network and input to the splitting antenna The RF signal passes through the feed network and the antenna element to form at least two beams with an angle between each other.
  • the feeding network structure of the splitting antenna is simplified, and the two are caused by welding or screw connection. PIM hidden dangers improve the PIM reliability of the antenna system.
  • FIG. 1 is a schematic block diagram showing a connection form of a splitting network circuit and a phase shifting circuit in a feed network of a splitting antenna.
  • FIG. 2 is a schematic diagram of a feed network of a splitting antenna in accordance with an embodiment of the present application.
  • FIG. 3 is a schematic block diagram of a feed network of a splitting antenna in accordance with an embodiment of the present application.
  • FIG. 4 is a schematic diagram of a feed network circuit in accordance with an embodiment of the present application.
  • FIG. 5 is a schematic diagram of a splitting network circuit of a feed network in accordance with an embodiment of the present application.
  • FIG. 6 is a schematic diagram of a cross structure of a strip-shaped transmission line in a feed network according to an embodiment of the present application.
  • FIG. 7 is a schematic diagram of a 90 degree bridge isolation port grounding manner according to an embodiment of the present application.
  • FIG. 8 is a schematic structural diagram of a 90 degree bridge employing a wide-edge coupling implementation in accordance with an embodiment of the present application.
  • FIG. 9 is a schematic structural diagram of a 90 degree bridge according to an embodiment of the present application.
  • FIG. 10 is a plan view of a 90 degree bridge employing a wide-edge coupling implementation in accordance with an embodiment of the present application. schematic diagram.
  • FIG. 11 is a schematic structural diagram of a phase shifting circuit according to an embodiment of the present application.
  • FIG. 12 is a schematic block diagram of a splitting antenna in accordance with an embodiment of the present application.
  • the feed network 200 as shown in FIG. 2 includes a cavity 210, a PCB (not shown in FIG. 2), and at least two RF signal input ports 220.
  • the cavity 210 includes an upper ground metal plate and a lower ground metal plate.
  • a printed circuit board PCB disposed inside the cavity, the split network circuit and the phase shifting circuit in the feed network are integrated in the PCB, and the PCB and the cavity 210 are arranged such that the wires on the PCB are integrally stripped Line structure.
  • At least two radio frequency signal input ports 220 the at least two radio frequency signal input ports are connected to the splitting network circuit in the PCB, and the radio frequency signals input by the at least two radio frequency signal input ports sequentially pass through the splitting network circuit in the PCB And after the phase shifting circuit, at least two beams having an angle with each other are formed by the antenna elements of the splitting antenna.
  • the feeding network structure of the splitting antenna is simplified, and the two are caused by welding or screw connection. PIM hidden dangers improve the PIM reliability of the antenna system.
  • FIG. 3 shows a schematic block diagram of a feed network of a split antenna.
  • the at least two radio frequency signal input ports 220 include a first radio frequency signal input port 221 and The second RF signal is input to port 222.
  • the splitting network circuit includes: a 90-degree bridge, the input end of the 90-degree bridge is connected to the first RF signal input port 221; the power splitter, the input end of the splitter and the second RF signal input port 222 Connected to; a first 180 degree bridge, the first input port 310 of the first 180 degree bridge is connected to the first output port of the 90 degree bridge, the second input port 320 of the first 180 degree bridge is a first output port of the power splitter is connected, the first 180 degree bridge is connected to the phase shifting circuit; a second 180 degree bridge, a first input port 330 of the second 180 degree bridge and the 90 degree bridge The second output port of the second 180-degree bridge is connected to the second output port of the power splitter, and the second 180-degree bridge is connected to the phase shifting circuit.
  • the input of the first RF signal with a phase of 0 degrees input to the 90 degree bridge can generate a third RF signal with a phase of 0 degrees and a fourth RF signal with a phase of 90 degrees.
  • the third RF signal is transmitted.
  • the first input port (ie, the differential port) entering the first 180-degree bridge can generate two equal-amplitude signals with a phase of 0 degrees and 180 degrees (ie, an equal-amplitude inverted signal), and the fourth RF signal is input to the second 180.
  • the first input port (ie, the differential port) of the bridge can generate two equal-amplitude signals with a phase of 90 degrees and 270 degrees (ie, an equal-amplitude inverted signal); the input port of the second RF signal input power splitter can be generated.
  • the fifth RF signal being input to the second input port (ie, the sum port) of the first 180 degree bridge can generate two equal amplitude in-phase signals
  • the signal input to the second input port of the second 180 degree bridge (ie, the sum port) can generate two equal amplitude signals in phase.
  • the above-mentioned four-channel RF signals with a phase difference of 90 degrees and the above-mentioned four-channel equal-amplitude RF signals can be simultaneously generated by the splitting network circuit.
  • the generation timing of the above-mentioned radio frequency signals is not specifically limited in the embodiment of the present application.
  • one of the two output ports of the second 180-degree bridge may be directly output without being connected to the phase shifting circuit, and the output port outputs the radio frequency.
  • the phase of the signal can be used as a phase shifting circuit to adjust the reference phase of the first beam and the downtilt angle of the second beam formed on the frame of the split antenna.
  • the output port of the 180-degree bridge directly outputted from the splitting network circuit without the phase shifting circuit may be two output ports of the first 180-degree bridge and two of the second 180-degree bridge. Any of the output ports.
  • FIG. 4 is a schematic diagram of a feed network circuit of an embodiment of the present application
  • FIG. 5 is a schematic diagram of a circuit of a split network in a feed network according to an embodiment of the present application.
  • the feed network includes a split network circuit and a phase shift circuit.
  • the first RF signal is input from the input port 222 of the split network circuit. After passing through the 90-degree bridge 510, two equal amplitudes are generated and the phases are different.
  • the 90-degree RF signal is respectively input into the difference port 520 of the first 180-degree bridge and the difference port 530 of the second 180-degree bridge; the second RF signal is input from the input port 221 of the split network circuit, and is filtered and opened.
  • the power splitter 540 of the branch two equal-amplitude in-phase RF signals are generated, which are respectively input into the sum port 550 of the first 180-degree bridge, and the sum port 560 of the second 180-degree bridge, wherein the first 180-degree electric
  • the first output port 570 of the bridge, the second output port 580 of the first 180 degree bridge and the first output port 590 of the second 180 degree bridge are connected to the phase shifting circuit (see FIG. 4), and the second 180 degree bridge
  • the second output port P1 is directly output without a phase shifting circuit.
  • the first out interface of the second 180 degree bridge is connected to the power splitter in the phase shifting circuit, and the second 180 degree bridge can be First out interface
  • the output RF signal is divided into two equal-amplitude in-phase RF signals, which are output from the output ports P2 and P4 of the phase shifting circuit after phase shifting by the phase shifting circuit.
  • Figure 6 shows a schematic diagram of the cross-over structure of the stripline transmission lines in the feed network.
  • the two-way radio frequency signal can adopt a single-sided line transmission line deployment mode to avoid the circuit.
  • line interference That is, a metal strip line 610 can be disposed on the upper surface of the PCB, and a metal strip line 620 can be disposed on the lower surface of the PCB.
  • the transmission line on the PCB may be composed of two upper and lower metal strip lines of the PCB, and the upper and lower metal strips may be connected by metallized vias, and then the upper and lower metal strip lines may be visible.
  • This routing method reduces the cost of the feed network and reduces the weight of the PCB.
  • FIG. 7 is a schematic diagram showing a grounding manner of a 90-degree bridge isolation port according to an embodiment of the present application.
  • the same or similar portions as those of FIG. 2 are denoted by the same reference numerals.
  • the PCB in the cavity 210 is connected to the coupling grounding PCB 710 through a metal cross-chip 720.
  • the coupling grounding PCB 710 is insulated from the cavity 210, and the cavity 210 is used for coupling grounding.
  • the PCB 710 is coupled to ground the isolated port (see ISO port in Figure 7).
  • the power splitter may be a power splitter with an open branch.
  • the length of the open stub may be in the range of 1/8 to 1/2 operating wavelength.
  • FIG. 8 shows a schematic block diagram of a 90 degree bridge employing a wide-edge coupling implementation.
  • the same or similar portions as those of FIG. 2 are denoted by the same reference numerals.
  • the first stripline copper foil 810 is on the upper surface of the PCB 820
  • the second stripline copper foil 830 is on the lower surface of the PCB 820.
  • the first stripline copper foil 810 can be coupled by way. The energy is transferred to the second stripline copper foil 830 to achieve wide side coupling of the 90 degree bridge.
  • FIG. 9 shows a schematic structural diagram of a 90-degree bridge of an embodiment of the present application.
  • the first stripline copper foil 810 and the second stripline copper foil 830 of the output port of the 90-degree bridge can be connected through the via 910.
  • the energy on the first stripline copper foil 810 can be transferred through the via 910 to the second stripline copper foil 830.
  • Figure 10 shows a plan view of a 90 degree bridge employing a wide-edge coupling implementation.
  • the same or similar portions as those of FIG. 8 are denoted by the same reference numerals.
  • the first RF signal can be input to the 90-degree bridge from the input port, and the first output port can be a straight-through port of the 90-degree bridge, that is, the RF signal output by the first output port and the first RF signal.
  • the second output port can be a coupled port of the 90-bridge.
  • the second output port can output a radio frequency signal that is 90 degrees out of phase with the first RF signal.
  • the ISO port can be 90.
  • the isolation port of the bridge can be 90.
  • a sliding medium is disposed between the phase shifting circuit in the PCB and the upper grounding metal plate and/or the lower grounding metal plate, and phase shifting of the phase shifting circuit is performed by sliding the sliding Media implemented.
  • FIG. 11 shows a schematic structural diagram of a phase shifting circuit.
  • the same or similar portions as those of Fig. 8 are denoted by the same reference numerals.
  • the medium 1110 is filled between the transmission line of the phase shifting circuit and the upper grounded metal plate of the cavity 210
  • the medium 1120 is filled between the transmission line of the phase shifting circuit and the lower grounded metal plate of the cavity 210.
  • the phase of the radio frequency signal outputted by each output port of the phase shifting circuit is changed by pulling the medium 1110 and/or the medium 1120 to slide on the transmission line of the phase shifting circuit.
  • the split network circuit in the PCB has a gap between the upper ground metal plate and the lower ground metal plate.
  • the cavity is a profile cavity.
  • the split antenna 1200 of FIG. 12 includes the feed network shown in FIG. 2. To avoid repetition, details are not described herein again.
  • the split antenna further includes an antenna element 1210 connected to the feed network, and the RF signal input to the split antenna passes through the feed network and the antenna element to form at least two beams 1220 having an angle with each other.
  • the feeding network structure of the splitting antenna is simplified, and the two are caused by welding or screw connection. PIM hidden dangers improve the PIM reliability of the antenna system.
  • B corresponding to A means that B is associated with A, and B can be determined according to A.
  • determining B from A does not mean that B is only determined based on A, and that B can also be determined based on A and/or other information.
  • the size of the sequence numbers of the foregoing processes does not mean the order of execution sequence, and the order of execution of each process should be determined by its function and internal logic, and should not be applied to the embodiment of the present application.
  • the implementation process constitutes any limitation.
  • the disclosed systems, devices, and methods may be implemented in other manners.
  • the device embodiments described above are merely illustrative.
  • the division of the unit is only a logical function division.
  • there may be another division manner for example, multiple units or components may be combined or Can be integrated into another system, or some features can be ignored or not executed.
  • the mutual coupling or direct coupling or communication connection shown or discussed may be an indirect coupling or communication connection through some interface, device or unit, and may be in an electrical, mechanical or other form.
  • the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, that is, may be located in one place, or may be distributed to multiple network units. Some or all of the units may be selected according to actual needs to achieve the purpose of the solution of the embodiment.
  • each functional unit in each embodiment of the present application may be integrated into one processing unit, or each unit may exist physically separately, or two or more units may be integrated into one unit.
  • the functions may be stored in a computer readable storage medium if implemented in the form of a software functional unit and sold or used as a standalone product. Based on this understanding, this application The technical solution in essence or the part contributing to the prior art or part of the technical solution may be embodied in the form of a software product stored in a storage medium, including a plurality of instructions for making one
  • the computer device (which may be a personal computer, server, or network device, etc.) performs all or part of the steps of the methods described in various embodiments of the present application.
  • the foregoing storage medium includes: a U disk, a mobile hard disk, a read-only memory (ROM), a random access memory (RAM), a magnetic disk, or an optical disk, and the like, which can store program codes. .

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Variable-Direction Aerials And Aerial Arrays (AREA)

Abstract

本申请公开了一种劈裂天线的馈电网络和劈裂天线。该馈电网络包括:腔体,包括上接地金属板和下接地金属板;印刷电路板PCB,设置在该腔体内部,该馈电网络中的劈裂网络电路和移相电路集成在该PCB中,该PCB和该腔体的布置使得该PCB上的导线整体呈带状线结构;至少两个射频信号输入端口,该至少两个射频信号输入端口与该PCB中的劈裂网络电路相连,该至少两个射频信号输入端口输入的射频信号依次经过该PCB中的劈裂网络电路和该移相电路之后,通过该劈裂天线的天线振子形成至少两束相互之间具有夹角的波束,实现了劈裂网络电路和移相电路的集成化,从而简化了劈裂天线的馈电网络结构,提高了天线系统的无源互调PIM的可靠性。

Description

劈裂天线的馈电网络和劈裂天线
本申请要求于2015年12月14日提交中国专利局、申请号为201510923138.3、发明名称为“劈裂天线的馈电网络和劈裂天线”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请实施例涉及通信领域,尤其涉及劈裂天线的馈电网络和劈裂天线。
背景技术
随着移动宽带(Mobile Broadband,MBB)的发展和用户数量的增加,网络容量日益成为移动通信系统(Universal Mobile Telecommunications System,UMTS)发展的瓶颈,常见的扩大网络容量的方式主要集中在新增频谱、新增站点、新增多扇区组网,或者采用劈裂天线。劈裂天线通过增加主设备通道的数量,来增加业务信息通道垂直维度分区,提高频谱效率,进而提升网络容量。
将劈裂天线应用于长期演进(Long Term Evolution,LTE)技术时,基站射频系统对基站天线的工艺要求越来越高,主要体现在无源互调(Passive Inter-Modulation,PIM)方面。PIM是指接头、馈线、天线、滤波器等无源器件工作在多个载频的大功率信号条件下由于部件本身存在非线性而引起的互调效应。通常都认为无源器件是线性的,但是在大功率条件下无源器件都不同程度地存在一定的非线性,这种非线性主要是由各无源器件连接处不紧密等原因引起的。这些无源器件的非线性会产生相对于工作频率的更高次谐波,这些谐波与工作频率混合会产生一组新的频率,最终在空中产生一组无用的频谱,从而影响正常的通信。
目前,在基站天线的设计中,劈裂网络电路中的电桥在印制电路板(Printed Circuit Board,PCB)中多数采用的是微带线结构,移相电路PCB中一般采用带状线结构,劈裂网络电路和移相电路通常是分离的,两者级联普遍采用电缆焊接或螺钉连接的形式,图1示出了劈裂天线的馈电网络中劈裂网络电路与移相电路的连接形式的示意性框图。这种级联形式会增加无源 器件数量,存在无源器件连接处不紧密等隐患,进而影响劈裂天线的PIM指标。
发明内容
本申请实施例提供一种劈裂天线的馈电网络和劈裂天线,以简化劈裂天线的馈电网络结构,提高天线系统的PIM可靠性。
第一方面,提供一种劈裂天线的馈电网络,包括:腔体,包括上接地金属板和下接地金属板;PCB,设置在该腔体内部,该馈电网络中的劈裂网络电路和移相电路集成在该PCB中,该PCB和该腔体的布置使得该PCB上的导线整体呈带状线结构;至少两个射频信号输入端口,该至少两个射频信号输入端口与该PCB中的劈裂网络电路相连,该至少两个射频信号输入端口输入的射频信号依次经过该PCB中的劈裂网络电路和该移相电路之后,通过该劈裂天线的天线振子形成至少两束相互之间具有夹角的波束。
结合第一方面,在第一方面的一种实现形式中,上述至少两个射频信号输入端口包括第一射频信号输入端口和第二射频信号输入端口,该劈裂网络电路包括:90度电桥,该90度电桥的输入端与该第一射频信号输入端口相连;功分器,该功分器的输入端与该第二射频信号输入端口相连;第一180度电桥,该第一180度电桥的第一输入端口与该90度电桥的第一输出端口相连,该第一180度电桥的第二输入端口与该功分器的第一输出端口相连,该第一180度电桥与该移相电路相连;第二180度电桥,该第二180度电桥的第一输入端口与该90度电桥的第二输出端口相连,该第二180度电桥的第二输入端口与该功分器的第二输出端口相连,该第二180度电桥与该移相电路相连。
结合第一方面或其上述实现方式的任一种,在第一方面的另一种实现形式中,该90度电桥的隔离端接地。
结合第一方面或其上述实现方式的任一种,在第一方面的另一种实现形式中,该功分器为带开路枝节的功分器。
结合第一方面或其上述实现方式的任一种,在第一方面的另一种实现形式中,该开路枝节的长度在1/8至1/2工作波长范围内。
结合第一方面或其上述实现方式的任一种,在第一方面的另一种实现形式中,该90度电桥、该第一180度电桥、该第二180度电桥中的至少一个 电桥在该PCB上通过宽边耦合的方式实现的。
结合第一方面或其上述实现方式的任一种,在第一方面的另一种实现形式中,该PCB中的该移相电路与该上接地金属板和/或该下接地金属板之间设置有滑动介质,该移相电路的移相是通过滑动该滑动介质实现的。
结合第一方面或其上述实现方式的任一种,在第一方面的另一种实现形式中,该PCB中的劈裂网络电路与该上接地金属板和该下接地金属板之间具有间隙。
结合第一方面或其上述实现方式的任一种,在第一方面的另一种实现形式中,该腔体为型材腔体。
第二方面,提供一种劈裂天线,该劈裂天线包括上述实现方式中任一项馈电网络,该劈裂天线还包括:天线振子,与该馈电网络相连,输入至该劈裂天线的射频信号经过该馈电网络和天线振子之后形成至少两束相互之间具有夹角的波束。
通过将劈裂天线的馈电网络中劈裂网络电路和移相电路采用带状线结构集成在一个PCB中,简化了劈裂天线的馈电网络结构,降低二者通过焊接或螺丝连接引起的PIM隐患,提高了天线系统的PIM可靠性。
附图说明
图1是劈裂天线的馈电网络中劈裂网络电路与移相电路的连接形式的示意性框图。
图2是根据本申请实施例的劈裂天线的馈电网络的示意图。
图3是根据本申请实施例的劈裂天线的馈电网络的示意性框图。
图4是根据本申请实施例的馈电网络电路的示意图。
图5是根据本申请实施例的馈电网络的劈裂网络电路的示意图。
图6是根据本申请实施例的馈电网络中带状传输线的交叉结构的示意图。
图7是根据本申请实施例的90度电桥隔离端口接地方式的示意图。
图8是根据本申请实施例的采用宽边耦合实现方式的90度电桥的示意性结构图。
图9是根据本申请实施例的90度电桥的示意性结构图。
图10是根据本申请实施例的采用宽边耦合实现方式的90度电桥的平面 示意图。
图11是根据本申请实施例的移相电路的示意性结构图。
图12是根据本申请实施例的劈裂天线的示意性框图。
具体实施方式
下面将结合附图,对本申请实施例中的技术方案进行描述。
图2是根据本申请实施例的劈裂天线的馈电网络的示意图。如图2所示的馈电网络200包括腔体210,PCB(图2中未示出),至少两个射频信号输入端口220。腔体210,包括上接地金属板和下接地金属板。印刷电路板PCB,设置在该腔体内部,该馈电网络中的劈裂网络电路和移相电路集成在该PCB中,该PCB和该腔体210的布置使得该PCB上的导线整体呈带状线结构。至少两个射频信号输入端口220,该至少两个射频信号输入端口与该PCB中的劈裂网络电路相连,该至少两个射频信号输入端口输入的射频信号依次经过该PCB中的劈裂网络电路和该移相电路之后,通过该劈裂天线的天线振子形成至少两束相互之间具有夹角的波束。
通过将劈裂天线的馈电网络中劈裂网络电路和移相电路采用带状线结构集成在一个PCB中,简化了劈裂天线的馈电网络结构,降低二者通过焊接或螺丝连接引起的PIM隐患,提高了天线系统的PIM可靠性。
可选地,作为一个实施例,图3示出了劈裂天线的馈电网络的示意性框图,如图3所示,上述至少两个射频信号输入端口220包括第一射频信号输入端口221和第二射频信号输入端口222。劈裂网络电路包括:90度电桥,该90度电桥的输入端与该第一射频信号输入端口221相连;功分器,该功分器的输入端与该第二射频信号输入端口222相连;第一180度电桥,该第一180度电桥的第一输入端口310与该90度电桥的第一输出端口相连,该第一180度电桥的第二输入端口320与该功分器的第一输出端口相连,该第一180度电桥与该移相电路相连;第二180度电桥,该第二180度电桥的第一输入端口330与该90度电桥的第二输出端口相连,该第二180度电桥的第二输入端口340与该功分器的第二输出端口相连,该第二180度电桥与该移相电路相连。
例如,相位为0度的第一射频信号输入90度电桥的输入端可以生成相位为0度的第三射频信号和相位为90度第四射频信号,该第三射频信号输 入第一180度电桥的第一输入端口(即差口)可以生成2路相位为0度和180度的等幅信号(即等幅反相信号),该第四射频信号输入第二180度电桥的第一输入端口(即差口)可以生成2路相位为90度和270度的等幅信号(即等幅反相信号);第二射频信号输入功分器的输入端口可以生成等幅同相的第五射频信号和第六射频信号,该第五射频信号输入第一180度电桥的第二输入端口(即和口)可以生成2路等幅同相的信号,该第六射频信号输入第二180度电桥的第二输入端口(即和口)可以生成2路等幅同相的信号。
应理解,上述4路等幅且相位相差90度的射频信号和上述4路等幅同相的射频信号可以由劈裂网络电路同时生成,本申请实施例对上述射频信号的生成时序不作具体限定。
具体地,图3所示的劈裂网络的馈电网络中,第二180度电桥的两个输出端口中可以有一个输出端口不与移相电路相连而直接输出,该输出端口输出的射频信号的相位可以作为移相电路调整劈裂天线的阵子上形成的第一波束和第二波束的下倾角时的参考相位。
还应理解,上述劈裂网路电路中不经过移相电路直接输出的180度电桥的输出端口,可以为第一180度电桥的两个输出端口和第二180度电桥的两个输出端口中的任意一个。
下面结合图4和图5,参照具体场景描述本申请的另一实施例。图4示出了本申请实施例的馈电网络电路的示意图,图5示出了本申请实施例的馈电网络中劈裂网络电路示意图。在图4和图5中,与图2相同或相似的部分用相同的附图标记表示。如图5所示,馈电网络包括劈裂网络电路和移相电路,第一射频信号从劈裂网络电路的输入端口222输入,经过90度电桥510后,生成两路等幅且相位相差90度的射频信号,分别输入第一180度电桥的差口520,和第二180度电桥的差口530;第二射频信号从劈裂网络电路的输入端口221输入,经过带滤波开路枝节的功分器540后,生成两路等幅同相的射频信号,分别输入第一180度电桥的和口550,和第二180度电桥的和口560,其中,第一180度电桥的第一输出端口570,第一180度电桥的第二输出端口580和第二180度电桥的第一输出端口590和移相电路相连(参见图4),第二180度电桥的第二输出端口P1不经过移相电路直接输出。
在图4所示的劈裂天线的馈电网络的移相电路中,第二180度电桥的第一出接口与移相电路中的功分器相连,可以将第二180度电桥的第一出接口 输出的射频信号分为2路等幅同相的射频信号,经移相电路移相后从移相电路的输出端口P2和P4输出。
还应注意,图6示出了馈电网络中带状传输线的交叉结构的示意图。如图6所示,在馈电网络的劈裂网络电路中,当射频信号在电路中的带状传输线存在带线交叉600时,2路射频信号可以采用单面带线的传输线部署方式避免电路带线干涉。即在PCB的上表面可以部署金属带线610,在PCB的下表面可以部署金属带线620。
可选地,作为一个实施例,PCB上的传输线可以由PCB的上下两层金属带线组成,上下两层金属带线间可以通过金属化过孔相连,那么上述上下两层金属带线可视为一根带线。这种走线方式降低了馈电网络的成本,减轻了PCB的重量。
可选地,作为一个实施例,90度电桥的隔离端接地。图7示出了本申请实施例的90度电桥隔离端口接地方式的示意图。在图7中,与图2相同或相似的部分用相同的附图标记表示。如图7所示,腔体210内的PCB与耦合接地用PCB 710之间通过金属跨片720相连,其中,耦合接地用PCB 710与腔体210之间绝缘,腔体210通过与耦合接地用PCB 710耦合,以实现隔离端口(参见图7中ISO端口)接地。
可选地,作为一个实施例,上述功分器可以为带开路枝节的功分器。
可选地,作为一个实施例,该开路枝节的长度可以在1/8至1/2工作波长范围内。
可选地,作为一个实施例,该90度电桥、该第一180度电桥、该第二180度电桥中的至少一个电桥在该PCB上通过宽边耦合的方式实现的。下面结合图8至图10对90度电桥的结构作具体说明。图8示出了采用宽边耦合实现方式的90度电桥的示意性结构图。在图8中,与图2相同或相似的部分用相同的附图标记表示。如图8所示,第一带状线铜箔810在PCB 820的上表面,第二带状线铜箔830在PCB 820的下表面,第一带状线铜箔810可以通过耦合的方式将能量传递到第二带状线铜箔830实现90度电桥的宽边耦合。
图9示出了本申请实施例的90度电桥的示意性结构图。在图9中,与图8相同或相似的部分用相同的附图标记表示。上述90度电桥的输出端口的第一带状线铜箔810和第二带状线铜箔830间可以通过过孔910连接,则 第一带状线铜箔810上的能量可以通过过孔910传输到第二带状线铜箔830上。
具体地,图10示出了采用宽边耦合实现方式的90度电桥的平面示意图。在图10中,与图8相同或相似的部分用相同的附图标记表示。如图10所示,第一射频信号可以从输入端口输入90度电桥,第一输出端口可以为90度电桥的直通端口,即该第一输出端口输出的射频信号与上述第一射频信号为等幅同相的射频信号;第二输出端口可以为90电桥的耦合端口,该第二输出端口输出的射频信号可以为与第一射频信号相位相差90度的射频信号,ISO端口可以为90度电桥的隔离端口。
可选地,作为一个实施例,该PCB中的该移相电路与该上接地金属板和/或该下接地金属板之间设置有滑动介质,该移相电路的移相是通过滑动该滑动介质实现的。
具体地,图11示出了移相电路的示意性结构图。在图11中,和图8相同或相似的部分用相同的附图标记表示。如图11所示,在移相电路的传输线和腔体210的上接地金属板之间填充介质1110,并且在移相电路的传输线和腔体210的下接地金属板之间填充介质1120,可以通过拉动介质1110和/或介质1120在移相电路的传输线上滑动,从而改变移相电路各输出端口输出的射频信号的相位。
可选地,作为一个实施例,该PCB中的劈裂网络电路与该上接地金属板和该下接地金属板之间具有间隙。
可选地,作为一个实施例,该腔体为型材腔体。
图12是根据本申请实施例的劈裂天线的示意性框图。图12的劈裂天线1200包括图2所示的馈电网络,为避免重复,在此不再赘述。该劈裂天线还包括:天线振子1210,与该馈电网络相连,输入至该劈裂天线的射频信号经过该馈电网络和天线振子之后形成至少两束相互之间具有夹角的波束1220。
通过将劈裂天线的馈电网络中劈裂网络电路和移相电路采用带状线结构集成在一个PCB中,简化了劈裂天线的馈电网络结构,降低二者通过焊接或螺丝连接引起的PIM隐患,提高了天线系统的PIM可靠性。
应理解,在本申请实施例中,“与A相应的B”表示B与A相关联,根据A可以确定B。但还应理解,根据A确定B并不意味着仅仅根据A确定B,还可以根据A和/或其它信息确定B。
应理解,本文中术语“和/或”,仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,本文中字符“/”,一般表示前后关联对象是一种“或”的关系。
应理解,在本申请的各种实施例中,上述各过程的序号的大小并不意味着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定,而不应对本申请实施例的实施过程构成任何限定。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
所述功能如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请 的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(Read-Only Memory,ROM)、随机存取存储器(Random Access Memory,RAM)、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以所述权利要求的保护范围为准。

Claims (10)

  1. 一种劈裂天线的馈电网络,其特征在于,包括:
    腔体,包括上接地金属板和下接地金属板;
    印刷电路板PCB,设置在所述腔体内部,所述馈电网络中的劈裂网络电路和移相电路集成在所述PCB中,所述PCB和所述腔体的布置使得所述PCB上的导线整体呈带状线结构;
    至少两个射频信号输入端口,所述至少两个射频信号输入端口与所述PCB中的劈裂网络电路相连,所述至少两个射频信号输入端口输入的射频信号依次经过所述PCB中的劈裂网络电路和所述移相电路之后,通过所述劈裂天线的天线振子形成至少两束相互之间具有夹角的波束。
  2. 如权利要求1所述的馈电网络,其特征在于,所述至少两个射频信号输入端口包括第一射频信号输入端口和第二射频信号输入端口,
    所述劈裂网络电路包括:
    90度电桥,所述90度电桥的输入端口与所述第一射频信号输入端口相连;
    功分器,所述功分器的输入端口与所述第二射频信号输入端口相连;
    第一180度电桥,所述第一180度电桥的第一输入端口与所述90度电桥的第一输出端口相连,所述第一180度电桥的第二输入端口与所述功分器的第一输出端口相连,所述第一180度电桥与所述移相电路相连;
    第二180度电桥,所述第二180度电桥的第一输入端口与所述90度电桥的第二输出端口相连,所述第二180度电桥的第二输入端口与所述功分器的第二输出端口相连,所述第二180度电桥与所述移相电路相连。
  3. 如权利要求2所述的馈电网络,其特征在于,所述90度电桥的隔离端接地。
  4. 如权利要求2或3所述的馈电网络,其特征在于,所述功分器为带开路枝节的功分器。
  5. 如权利要求4所述的馈电网络,其特征在于,所述开路枝节的长度在1/8至1/2工作波长范围内。
  6. 如权利要求1-5中任一项所述的馈电网络,其特征在于,所述90度电桥、所述第一180度电桥、所述第二180度电桥中的至少一个电桥是在所述PCB上通过宽边耦合的方式实现的。
  7. 如权利要求1-6中任一项所述的馈电网络,其特征在于,所述PCB中的所述移相电路与所述上接地金属板和/或所述下接地金属板之间设置有滑动介质,所述移相电路的移相是通过滑动所述滑动介质实现的。
  8. 如权利要求1-7中任一项所述的馈电网络,其特征在于,所述PCB中的劈裂网络电路与所述上接地金属板和所述下接地金属板之间具有间隙。
  9. 如权利要求1-8中任一项所述的馈电网络,其特征在于,所述腔体为型材腔体。
  10. 一种劈裂天线,其特征在于,所述劈裂天线包括如权利要求1-9中任一项所述的馈电网络,所述劈裂天线还包括:
    天线振子,与所述馈电网络相连,输入至所述劈裂天线的射频信号经过所述馈电网络和天线振子之后形成至少两束相互之间具有夹角的波束。
PCT/CN2016/109551 2015-12-14 2016-12-13 劈裂天线的馈电网络和劈裂天线 WO2017101752A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP16874809.3A EP3376596B1 (en) 2015-12-14 2016-12-13 Feeding network of dual-beam antenna and dual-beam antenna
US16/007,165 US10658764B2 (en) 2015-12-14 2018-06-13 Feeding network of dual-beam antenna and dual-beam antenna

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201510923138.3A CN105390824B (zh) 2015-12-14 2015-12-14 劈裂天线的馈电网络和劈裂天线
CN201510923138.3 2015-12-14

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/007,165 Continuation US10658764B2 (en) 2015-12-14 2018-06-13 Feeding network of dual-beam antenna and dual-beam antenna

Publications (1)

Publication Number Publication Date
WO2017101752A1 true WO2017101752A1 (zh) 2017-06-22

Family

ID=55422822

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/109551 WO2017101752A1 (zh) 2015-12-14 2016-12-13 劈裂天线的馈电网络和劈裂天线

Country Status (4)

Country Link
US (1) US10658764B2 (zh)
EP (1) EP3376596B1 (zh)
CN (1) CN105390824B (zh)
WO (1) WO2017101752A1 (zh)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105390824B (zh) 2015-12-14 2018-06-19 华为技术有限公司 劈裂天线的馈电网络和劈裂天线
CN105742828B (zh) * 2016-03-31 2018-09-28 广东通宇通讯股份有限公司 双极化三波束天线及其馈电网络装置
CN107623174B (zh) * 2016-07-14 2021-02-12 华为技术有限公司 介质透镜以及劈裂天线
CN109088133B (zh) * 2018-07-18 2023-10-31 华南理工大学 射频器件
CN109509964A (zh) * 2018-10-29 2019-03-22 成都市克莱微波科技有限公司 一种宽带圆极化阵列天线
CN109638457B (zh) * 2019-01-30 2023-09-29 京信通信技术(广州)有限公司 天线及移相馈电装置
CN212485510U (zh) * 2020-05-29 2021-02-05 京信通信技术(广州)有限公司 集成馈电器的移相器及应用其的天线
CN113745804B (zh) * 2020-05-30 2022-12-06 荣耀终端有限公司 天线装置及电子设备

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1553725A (zh) * 2003-06-05 2004-12-08 中兴通讯股份有限公司 空间多波束馈电网络的实现装置
CN101707497A (zh) * 2009-06-30 2010-05-12 广东通宇通讯设备有限公司 一种用于波束形成网络的Butler矩阵结构
CN201504235U (zh) * 2009-06-30 2010-06-09 广东通宇通讯设备有限公司 一种用于波束形成网络的Butler矩阵结构
WO2012106021A1 (en) * 2011-01-31 2012-08-09 Ball Aerospace & Technologies Corp. Continuous horn circular array antenna system
CN102760975A (zh) * 2012-07-13 2012-10-31 华为技术有限公司 一种基站天线和基站
CN103050772A (zh) * 2012-12-19 2013-04-17 张家港保税区国信通信有限公司 一种非Butler矩阵馈电的劈裂天线
CN105390824A (zh) * 2015-12-14 2016-03-09 华为技术有限公司 劈裂天线的馈电网络和劈裂天线

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6333683B1 (en) * 1998-09-04 2001-12-25 Agere System Optoelectronics Guardian Corp. Reflection mode phase shifter
BRPI0921590A2 (pt) 2008-11-20 2019-09-24 Andrew Llc antena e arranjo de setores de duplo feixe
CN102834972B (zh) * 2012-04-20 2015-05-27 华为技术有限公司 天线及基站

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1553725A (zh) * 2003-06-05 2004-12-08 中兴通讯股份有限公司 空间多波束馈电网络的实现装置
CN101707497A (zh) * 2009-06-30 2010-05-12 广东通宇通讯设备有限公司 一种用于波束形成网络的Butler矩阵结构
CN201504235U (zh) * 2009-06-30 2010-06-09 广东通宇通讯设备有限公司 一种用于波束形成网络的Butler矩阵结构
WO2012106021A1 (en) * 2011-01-31 2012-08-09 Ball Aerospace & Technologies Corp. Continuous horn circular array antenna system
CN102760975A (zh) * 2012-07-13 2012-10-31 华为技术有限公司 一种基站天线和基站
CN103050772A (zh) * 2012-12-19 2013-04-17 张家港保税区国信通信有限公司 一种非Butler矩阵馈电的劈裂天线
CN105390824A (zh) * 2015-12-14 2016-03-09 华为技术有限公司 劈裂天线的馈电网络和劈裂天线

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3376596A4 *

Also Published As

Publication number Publication date
CN105390824A (zh) 2016-03-09
EP3376596B1 (en) 2021-04-28
EP3376596A4 (en) 2018-10-10
EP3376596A1 (en) 2018-09-19
US10658764B2 (en) 2020-05-19
US20180294577A1 (en) 2018-10-11
CN105390824B (zh) 2018-06-19

Similar Documents

Publication Publication Date Title
WO2017101752A1 (zh) 劈裂天线的馈电网络和劈裂天线
US9509034B2 (en) N-way coaxial waveguide power divider/combiner
EP3439110B1 (en) Filter feed network and base-station antenna
CN204243214U (zh) 一种智能天线装置
US9825366B2 (en) Printed circuit board antenna and printed circuit board
US20120188030A1 (en) Waveguide conversion device
US20160172733A1 (en) Multi-Mode Filter
US8879662B2 (en) High level IBOC combining method and apparatus for single input antenna systems
Al‐Yasir et al. Design of multi‐standard single/tri/quint‐wideband asymmetric stepped‐impedance resonator filters with adjustable TZs
US9893409B2 (en) Branch-line coupler
WO2018094994A1 (zh) 电调天线馈电装置及方法
CN108123196B (zh) 基于竖直双面平行带线的宽带滤波集成立体巴伦
US9941587B2 (en) 3×3 Butler matrix and 5×6 Butler matrix
US10680304B2 (en) Combiner
CN103779640B (zh) 微带双通带滤波器
US10009711B2 (en) Multi-input directional coupler printed circuit
US11405012B2 (en) Balun and method for manufacturing the same
CN106558764B (zh) 一种馈电结构及双频共口径天线
US8570115B2 (en) Power division network device
EP3297092A1 (en) Cable and high-frequency device using same
US7436274B2 (en) Band-pass filter
Beyers et al. A general isolation network for N-way power combiners/dividers
Konpang et al. Four‐Port Dual‐Mode Diplexer with High Signal Isolation
US11843158B2 (en) Trisection power divider with isolation and microwave transmission system
CN210403997U (zh) 用于公安数字集群专网的功率分配器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16874809

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2016874809

Country of ref document: EP