WO2017101530A1 - 一种电容式电压互感器 - Google Patents

一种电容式电压互感器 Download PDF

Info

Publication number
WO2017101530A1
WO2017101530A1 PCT/CN2016/098251 CN2016098251W WO2017101530A1 WO 2017101530 A1 WO2017101530 A1 WO 2017101530A1 CN 2016098251 W CN2016098251 W CN 2016098251W WO 2017101530 A1 WO2017101530 A1 WO 2017101530A1
Authority
WO
WIPO (PCT)
Prior art keywords
voltage
capacitor
layer
shield
transformer
Prior art date
Application number
PCT/CN2016/098251
Other languages
English (en)
French (fr)
Inventor
郑健超
高冲
董巍
谢剑
张娟娟
Original Assignee
全球能源互联网研究院
中电普瑞电力工程有限公司
国家电网公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 全球能源互联网研究院, 中电普瑞电力工程有限公司, 国家电网公司 filed Critical 全球能源互联网研究院
Publication of WO2017101530A1 publication Critical patent/WO2017101530A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R15/00Details of measuring arrangements of the types provided for in groups G01R17/00 - G01R29/00, G01R33/00 - G01R33/26 or G01R35/00
    • G01R15/14Adaptations providing voltage or current isolation, e.g. for high-voltage or high-current networks
    • G01R15/18Adaptations providing voltage or current isolation, e.g. for high-voltage or high-current networks using inductive devices, e.g. transformers
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R1/00Details of instruments or arrangements of the types included in groups G01R5/00 - G01R13/00 and G01R31/00
    • G01R1/02General constructional details
    • G01R1/18Screening arrangements against electric or magnetic fields, e.g. against earth's field
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F38/00Adaptations of transformers or inductances for specific applications or functions
    • H01F38/20Instruments transformers
    • H01F38/22Instruments transformers for single phase ac
    • H01F38/24Voltage transformers
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K9/00Screening of apparatus or components against electric or magnetic fields

Definitions

  • the invention relates to a power system transformer device, in particular to a capacitive voltage transformer with a double-layer equipotential shielding structure.
  • the power frequency high voltage measuring devices widely used in the existing power systems mainly include electromagnetic voltage transformers and capacitive voltage transformers, both of which are passive voltage measuring systems, and these transformers can basically satisfy 500 kV. (kV) and below voltage level voltage metering and relay protection requirements.
  • Photoelectric voltage transformers and electronic voltage transformers belonging to the active voltage measurement system are still in the process of research and development and trial operation. Problems such as voltage measurement accuracy, laser life and system reliability need to be further studied and solved. Meet the scale of application.
  • the measures to increase the main capacitance of the voltage divider are usually used to reduce the influence of stray current, but even if the capacitance is increased to 10,000 pF, the accuracy level of the UHV CVT is difficult to reach the 0.1-level standard.
  • a fully shielded capacitive voltage transformer comprising a capacitive voltage dividing portion and an electromagnetic device placed in a sealed filled dielectric housing, the middle and high voltage electrodes and the housing of the capacitive voltage divider being The coaxial structure, under the action of voltage, the electric field force generated between them is evenly distributed on the circumference and canceled each other, the relative position between the electrodes does not shift, the capacitance between the electrodes is extremely stable, and the transformer is improved. Precision.
  • the patent adopts a fully shielded structure and thus has excellent shielding effect, but it is also due to the use of full shielding measures, which causes its volume to increase rapidly with the increase of the voltage level of the signal under test, which is limited by its own structure. It is not suitable for use in the field of power engineering, and can not be used for the measurement of millions of volts.
  • This fully shielded voltage transformer is suitable for use in high voltage laboratories instead of standard capacitors.
  • an equipotential shielded capacitive voltage transformer comprising a capacitive voltage divider of a two-layer coaxial capacitor assembly having an equipotential shield and an electromagnetic unit having a ferromagnetic resonator suppressor and an intermediate transformer without an energy storage element It can meet the requirements of accurate measurement of power frequency AC voltage from ultra high voltage to UHV level grid and fast and reliable operation of relay protection. Due to the measurement of the main capacitor In a good shielding state, the capacitance can be greatly reduced, so that the weight of the voltage divider can be greatly reduced, and the seismic characteristics of the thin and high-profile voltage divider are also improved.
  • the capacitive voltage transformer of the double-layer equipotential shielding structure designed by the embodiment of the invention is mainly based on the equipotential shielding technology, and the principle is as follows:
  • a series of annular coaxial shield electrodes are arranged on the outer circumference of the main capacitor of the high voltage arm of the measuring voltage divider, and the shielding electrodes of each layer are connected with an auxiliary shielding voltage divider. It can be proved that if the potential distribution along the axis of the ring electrode coincides with the potential distribution of the main capacitor for measurement, the current flowing out or flowing from the main capacitor through the stray capacitance can be completely blocked.
  • the voltage distribution of the ring electrode can be adjusted with the parameter selection of the auxiliary shielded voltage divider. There is no electrical connection between the measuring voltage divider system and the ring electrode and the auxiliary shielded voltage divider system.
  • the capacitance current to the ground and the leakage current on the surface of the insulating sleeve are all provided by the auxiliary shielding voltage divider, and the main capacitor is not used for measurement, so that the measuring voltage divider is in a perfect shielding state, thereby ensuring high precision of voltage measurement. .
  • Embodiments of the present invention provide a capacitive voltage transformer having a double-layer equipotential shielding structure, including a capacitor divider and an electromagnetic unit, wherein the capacitor divider is connected from the top to the bottom by a top equalizing hood in series with a three-layer coaxial capacitor
  • the three-layer coaxial capacitor is further connected in series, and the electromagnetic unit includes a compensation reactor, an intermediate transformer, and a fast saturation damper reactor.
  • the three-layer coaxial capacitor is coaxially disposed from the inside to the outside: a main capacitor (1), an auxiliary capacitor for the inner layer shielding (5), and an inner ring shield electrode (4). ), auxiliary capacitor (3) for outer shield, composite insulating sleeve (7), outer annular shield electrode (2).
  • the main capacitor (1) is placed on the inner axis of the composite insulating sleeve (7), and the outer annular shield electrode (2) and the inner annular shield electrode (4) are coaxial.
  • the outer ring flange (2) has a larger diameter than the inner ring shield electrode (4).
  • an outer layer is arranged along the circumference of the inner wall of the composite insulating sleeve (7) Shielding auxiliary capacitor (3), the positive electrode and the negative electrode of the outer layer shielding auxiliary capacitor (3) are reliably connected with the outer ring shield electrode; the inner layer annular shielding electrode (4) is symmetrically arranged with inner layer shielding auxiliary a capacitor (5), the anode and the cathode of the auxiliary capacitor (5) for inner layer shielding are reliably connected to the inner ring shield electrode,
  • the shield electrode (2) does not have any electrical connection with each other and is well insulated by the insulating material (6).
  • the main circuit of the voltage transformer is: the high voltage arm main capacitor C 1 is connected to the low voltage arm main capacitor C 2 and then grounded G, and the measured high voltage is connected to the transformer through the terminal V.
  • the measured signal F obtained by voltage division is grounded through the series connected compensation reactor and the intermediate transformer, and the secondary induction signal of the intermediate transformer is connected to the load for measurement, and the fast saturation damper reactor connected in parallel with the load is a ferromagnetic resonance suppressor.
  • the high voltage arm main capacitor C 1 and the low voltage arm main capacitor C 2 are composed of a main capacitor (1) of a three-layer coaxial capacitor axis in series.
  • the measuring voltage divider is formed by a series connection of main capacitors (1) of a plurality of three-layer coaxial capacitors.
  • the auxiliary shielding voltage divider is formed by connecting an auxiliary capacitor (3) for shielding the outer layer of the plurality of three-layer coaxial capacitors and an auxiliary capacitor (5) for shielding the inner layer, respectively.
  • the auxiliary shielding voltage divider is directly grounded to form a double-layer equipotential shielding structure for measuring the voltage divider; the output end of the measuring voltage divider is connected to the intermediate winding of the intermediate transformer through a compensating reactor. At the line end, the intermediate transformer primary winding outlet end is grounded; the intermediate transformer secondary winding incoming end is connected to one end of the fast saturation damper, the speed saturated damper reactor is connected in parallel with the load, and the other end of the speed saturated damper reactor And the secondary winding outlet is grounded.
  • the voltage divider for measurement is in a good shielding state, is not affected by the stray parameters, has a stable partial pressure ratio, and has high measurement accuracy, and can be used as a standard transformer;
  • FIG. 1 is a schematic view showing the outline of a capacitive voltage transformer of a double-layer equipotential shielding structure
  • A-top equalizing cover B-three-layer coaxial capacitor, C-electromagnetic unit;
  • FIG. 2 is a schematic cross-sectional view of a three-layer coaxial capacitor
  • Figure 3 is a longitudinal sectional view of a three-layer coaxial capacitor assembly
  • FIG. 4 is a main circuit diagram of a novel voltage transformer in accordance with the present invention.
  • the coupling of the external stray capacitance and the voltage divider is reduced, and the current flowing out or flowing from the main capacitor through the stray capacitance is reduced, so that the measurement accuracy is further improved;
  • the same measurement accuracy as a single-layer equipotential shielded CVT can be achieved with fewer shield capacitors and lower capacitance.
  • the capacitive voltage transformer provided by the embodiment of the invention is mainly composed of a capacitor voltage divider composed of a coaxial capacitor with a double-layer equipotential shielding structure and a conventional electromagnetic unit.
  • the outline of the capacitive voltage transformer of the double-layer equipotential shielding structure is as follows: the top-down components and the connection relationship are: the part A is the top pressure equalizing cover, and the bottom is connected four B in series. In part, part B is a three-layer coaxial capacitor, and then a C-part electromagnetic unit is connected.
  • FIG. 2 is a schematic cross-sectional view of a capacitor assembly of a double-layer equipotential shielding structure.
  • the three-layer coaxial capacitor assembly of the equipotential shielding is a core component of the present invention, and its internal structure: the axial center placement measurement in the composite insulating sleeve 7.
  • a coaxial outer ring shield electrode 2 is disposed on the outer edge of the upper and lower flanges of the main capacitor, and a plurality of outer shield auxiliary capacitors 3 are arranged symmetrically along the circumference of the inner wall of the composite insulating sleeve, and its two poles are upper and lower.
  • the layer ring shield is reliably connected, and an inner ring shield electrode 4 is disposed between the electrode of the outer shield capacitor 3 and the electrode of the main capacitor 1, and a plurality of inner shield auxiliary capacitors 5 are symmetrically arranged along the inner side of the inner ring shield electrode.
  • the capacitor, the inner shielded capacitor and the inner annular shield electrode, the outer shield capacitor and the outer annular shield electrode are not allowed to have any electrical connection between each other, and the gas insulating material or the foam insulating material 6 is used to maintain the relationship between the three. Good insulation.
  • a plurality of the above-mentioned three-layer coaxial capacitor components may be connected in series to form an equal-potential-shielded capacitive voltage divider.
  • FIG. 4 shows the main circuit of the UHV equipotential shielding capacitive voltage transformer designed according to the present invention.
  • C 1 is the main capacitor of the high voltage arm
  • C 2 is the main capacitor of the low voltage arm
  • Cs is the ground stray.
  • Capacitor V point is the terminal connected to the measured high voltage
  • G point is grounding
  • point F is the measured signal obtained by voltage division.
  • the signal is signal-conditioned by the compensation reactor and intermediate transformer and then connected to the load for measurement.
  • the saturable damper reactor is connected in parallel with the load as a ferromagnetic resonance suppressor.
  • the main capacitor of the inner layer of the three-layer coaxial capacitor assembly is connected in series to measure the high voltage arm main capacitor C 1 and the low voltage arm main capacitor C 2 , and is grounded through the low voltage arm main capacitor C 2 to form a measuring voltage divider; the shielding auxiliary voltage divider is used After the series is connected directly to the ground, it constitutes the equipotential shielding of the measuring voltage divider; the output of the voltage divider is connected to the primary winding of the intermediate transformer through the compensation reactor; the secondary parallel speed saturated damping reactor is connected in the intermediate transformer; the electromagnetic unit outlet is connected load.
  • a capacitive voltage transformer includes a coaxial series capacitor divider and an electromagnetic unit, wherein the capacitor divider is formed by a top equalizing cover and a series of three coaxial capacitors connected in series.
  • the electromagnetic unit includes a compensating reactor, an intermediate transformer and a speed saturated damper reactor; thus, the voltage measuring accuracy and response of the voltage transformer can meet the requirements of accurate measurement of the power frequency AC voltage from the ultra high voltage to the ultra high voltage level grid.
  • the measuring voltage divider is in a good shielding state, is not affected by the stray parameters, the partial pressure ratio is stable, and the measurement accuracy is high.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Transformers For Measuring Instruments (AREA)

Abstract

一种电容式电压互感器,包括同轴串联的电容分压器和电磁单元(C),电容分压器由顶部均压罩(A)与串联的三层同轴电容器(B)串联构成,电磁单元(C)包括补偿电抗器、中间变压器以及速饱和阻尼电抗器,三层同轴电容器(B)由内到外依次设有:主电容(1)、内层屏蔽用辅助电容(5)、内层环形屏蔽电极(4)、外层屏蔽用辅助电容(3)、复合绝缘套筒(7)和外层环形屏蔽电极(2)。

Description

一种电容式电压互感器 技术领域
本发明涉及电力系统互感器装置,具体涉及一种双层等电位屏蔽结构的电容式电压互感器。
背景技术
随着1000kV及以上特高压输电技术在输电工程上的应用,提出了准确测量特高压电网电压的的要求。现有的电力系统广泛应用的工频高电压测量装置主要有电磁式电压互感器和电容式电压互感器两种,两者均属于无源电压测量系统,这些互感器基本上能够满足500千伏(kV)及以下电压等级电压计量和继电保护的要求。属于有源电压测量系统的光电式电压互感器、电子式电压互感器目前还处在研发和试运行过程中,尚有诸如电压测量精度、激光器寿命、系统可靠性等问题需进一步研究解决,以满足规模应用。
由于绝缘困难,超/特高压等级已很少采用电磁式电压互感器。由于结构简单、可靠性高、造价较低,电容式电压互感器(CVT)仍是超/特高压等级电网电压测量中应用的主要设备。但是,现有CVT的设计应用于特高压电网,遇到了如下的技术困难:
1)杂散电容电流影响测量准确度
由于电容分压器高压臂与周围的接地体或带电体之间存在杂散电容,传统的电容式电压互感器(CVT),在高电压作用下,杂散电容电流流出或流入高压臂,导致电压测量误差。这种误差随着电压等级的增高而加大。检测结果表明750kV电网电容式电压互感器实的杂散电流(包括电容电流和绝缘套表面泄漏电流)引起的测量误差可高达0.2%以上。电场仿真表明, 1000kV的CVT,从分压器高压臂流入大地的电容电流可达20mA,这造成了显著的测量误差。通常采用加大分压器主电容量的措施来减少杂散电流的影响,但即使电容量增大到10000pF,特高压CVT的准确级也难达到0.1级的标准。
2)现场效验困难
现有CVT测量误差受杂散电容影响因而与安装位置有关。现场安装后,超/特高压电压等级的CVT,需要进行现场效验,以修正出厂比差和角差。在特高压变电站进行互感器的现场效验绝非易事。除了特高压标准电容器制造难度外,特高压变电站现场的电磁干扰也是进行现场准确效验比对的重要制约因素。
综上所述,特高压输电的发展对提高现有CVT的测量准确度、改善响应特性、免除现场效验提出了迫切需求。
相关技术1提供一种全屏蔽电容式电压互感器,其包括置于密封的充满绝缘介质壳体中的电容分压部分和电磁装置,电容分压器的中、高压电极与壳体三者为同轴结构,在电压作用下,它们之间产生的电场力均匀分布于圆周上且相互抵消,电极之间的相对位置不会发生偏移,电极之间的电容极为稳定,提高了互感器的精度。该专利采用了全屏蔽的结构,因而具有优良的屏蔽效果,但也正是由于采用了全屏蔽措施,导致其体积会随被测信号电压等级的升高而迅速增大,受自身结构的限制,不适合在电力工程现场使用,更不能用于百万伏特高压的测量使用,这种全屏蔽结构的电压互感器比较适合用于高压实验室替代标准电容器使用。
相关技术2提供一种等电位屏蔽电容式电压互感器,其包括具有等电位屏蔽的双层同轴电容器组件的电容分压器和具有无储能元件铁磁谐振抑制器与中间变压器的电磁单元,可以满足从超高压直至特高压等级电网工频交流电压准确测量和继电保护快速可靠动作的要求。由于测量主电容处 于良好的屏蔽状态,电容量可以大幅度降低,因而,分压器的重量可大幅度降低,细高形的分压器的抗震特性也随之改善。
发明内容
本发明实施例设计的双层等电位屏蔽结构的电容式电压互感器主要基于等电位屏蔽技术,其原理如下:
在测量用分压器高压臂主电容外周设置一系列的环形同轴屏蔽电极,各层屏蔽电极与一个辅助用屏蔽分压器相连。可以证明,如果环形电极沿轴线的电位分布与测量用主电容的电位分布保持一致,则可以完全阻断从主电容通过杂散电容流出或流入的电流。环形电极的电压分布可以用辅助用屏蔽分压器的参数选择加以调节。测量分压器系统与环形电极及辅助用屏蔽分压器系统之间没有任何电气连接。这样,对地的电容电流和绝缘套表面的泄漏电流均由辅助用屏蔽分压器提供,不经过测量用的主电容,使测量分压器处于完善的屏蔽状态,从而保证电压测量的高精度。
本发明实施例提供一种双层等电位屏蔽结构的电容式电压互感器,包括电容分压器和电磁单元,所述电容分压器从上至下由顶部均压罩串联三层同轴电容器,三层同轴电容器再依次串联构成,所述电磁单元中包含补偿电抗器、中间变压器以及速饱和阻尼电抗器。
在本发明的一种实施例中,所述三层同轴电容器由内到外依次同轴设有:主电容(1)、内层屏蔽用辅助电容(5)、内层环形屏蔽电极(4)、外层屏蔽用辅助电容(3)、复合绝缘套筒(7)、外层环形屏蔽电极(2)。
在本发明的一种实施例中,所述主电容(1)放置在复合绝缘套筒(7)的内轴心,外层环形屏蔽电极(2)和内层环形屏蔽电极(4)同轴设置在主电容(1)的上下法兰外沿,外层环形屏蔽电极(2)的直径大于内层环形屏蔽电极(4)的直径。
在本发明的一种实施例中,沿复合绝缘套筒(7)内壁圆周布置有外层 屏蔽用辅助电容(3),所述外层屏蔽用辅助电容(3)的正极与负极与外层环形屏蔽电极可靠连接;在内层环形屏蔽电极(4)内侧对称布置有内层屏蔽用辅助电容(5),所述内层屏蔽用辅助电容(5)的正极和负极与内层环形屏蔽电极可靠连接,
在本发明的一种实施例中,所述主电容(1)、内层屏蔽用辅助电容(5)与内层环形屏蔽电极(4)、外层屏蔽用辅助电容(3)与外层环形屏蔽电极(2)三者之间相互没有任何电气联结,通过绝缘材料(6)保持良好绝缘。
在本发明的一种实施例中,所述电压互感器的主电路为:高压臂主电容C1连接低压臂主电容C2后接地G,被测高电压经接线端V接入互感器,分压所得的被测信号F经串接的补偿电抗器和中间变压器后接地,中间变压器的二次感应信号接入负载进行测量,与负载并联的速饱和阻尼电抗器为铁磁谐振抑制器。
在本发明的一种实施例中,所述高压臂主电容C1和低压臂主电容C2由三层同轴电容器轴心的主电容(1)串联组成。
在本发明的一种实施例中,测量分压器由多个三层同轴电容器的主电容(1)串联构成。
在本发明的一种实施例中,辅助用屏蔽分压器由多个三层同轴电容器的外层屏蔽用辅助电容(3)和内层屏蔽用辅助电容(5)分别串联构成。
在本发明的一种实施例中,辅助用屏蔽分压器直接接地,构成测量分压器的双层等电位屏蔽结构;测量分压器的输出端通过补偿电抗器接入中间变压器初级绕组进线端,中间变压器初级绕组出线端接地;中间变压器次级绕组进线端与速饱和阻尼电抗器的一端连接,所述速饱和阻尼电抗器与负载并联,所述速饱和阻尼电抗器的另一端和次级绕组出线端均接地。
本发明实施例具有如下有益效果:
(1)本发明实施例的电容式电压互感器的电压测量精度、响应快,可 以满足从超高压至特高压等级电网工频交流电压准确测量的要求;
(2)测量用分压器处于良好的屏蔽状态,不受杂散参数的影响,分压比稳定,测量精度高,可作为标准互感器使用;
(3)作为工程现场用互感器时,无需进行现场效验,屏蔽电容和主电容量值小,设备整体重量轻,抗风、抗震等机械性能好。
附图说明
图1为双层等电位屏蔽结构的电容式电压互感器外形示意图,
其中,A-顶部均压罩,B-三层同轴电容器,C-电磁单元;
图2为三层同轴电容器横剖面示意图,
其中,1、测量用主电容,2、外层环形屏蔽电极,3、外层屏蔽用辅助电容,4、内层环形屏蔽电极,5、内层屏蔽用辅助电容,6、绝缘材料,7、复合绝缘套筒;
图3为三层同轴电容器组件纵剖面图;
图4是依据本发明的新型电压互感器主电路图。
具体实施方式
本发明实施例中,通过采用双层等电位屏蔽结构,减小外界杂散电容与分压器的耦合,降低从主电容通过杂散电容流出或流入的电流,使测量精度进一步提高;此外,仅需要更少的屏蔽电容个数和更低的电容量,就能够达到与单层等电位屏蔽CVT相同的测量精度。
下面结合附图对本发明实施例的技术方案进一步说明。
本发明实施例提供的电容式电压互感器主要由带有双层等电位屏蔽结构的同轴电容器组成的电容分压器和传统的电磁单元组成。
如图1所示,为双层等电位屏蔽结构的电容式电压互感器外形示意图,自上而下各部件及连接关系为:A部分为顶部均压罩,其下串联连接四个B 部分,B部分为三层同轴电容器,而后再连接C部分电磁单元。
如图2所示为双层等电位屏蔽结构的电容器组件剖面示意图,等电位屏蔽的三层同轴电容器组件是本发明的核心组件,其内部结构:在复合绝缘套筒7内轴心放置测量用主电容1,在主电容的上下法兰外沿设置同轴的外层环形屏蔽电极2,沿复合绝缘套筒内壁圆周对称布置若干个外层屏蔽用辅助电容3,它的两极与上下外层环形屏蔽可靠连接,在外层屏蔽电容3的电极与主电容1的电极之间设置内层环形屏蔽电极4,沿内层环形屏蔽电极内侧再对称布置若干个内层屏蔽用辅助电容5,主电容、内层屏蔽电容与内层环形屏蔽电极、外层屏蔽电容与外层环形屏蔽电极三者之间相互不允许有任何电气联结,用气体绝缘材料或泡沫绝缘材料6保持三者之间的良好的绝缘。
根据电压等级的要求,可选用多个上述的三层同轴电容器组件串联,组成等电位屏蔽的电容分压器。
如图4所示为依据本项发明设计的特高压等电位屏蔽电容式电压互感器的主电路,图中C1为高压臂主电容,C2为低压臂主电容,Cs为对地杂散电容,V点为接被测高电压的接线端,G点为接地,F点为分压所得的被测信号,该信号经补偿电抗器和中间变压器进行信号调理后接入负载进行测量,速饱和阻尼电抗器与负载并联作为铁磁谐振抑制器。
三层同轴电容器组件内层的主电容器串联组成测量高压臂主电容C1和低压臂主电容C2,通过低压臂主电容C2接地,构成测量分压器;屏蔽用辅助分压器逐级串联后直接接地,构成测量分压器的等电位屏蔽;分压器的输出端通过补偿电抗器接入中间变压器初级绕组;在中间变压器次级并联速饱和阻尼电抗器;电磁单元出口接到负载。
以上实施例仅用以说明本发明的技术方案而非对其限制,尽管参照上述实施例对本发明进行了详细说明,所属领域的普通技术人员应当理解: 依然可以对本发明的具体实施方式进行修改或者等同替换,而未脱离本发明精神和范围的任何修改或者等同替换,其均应涵盖在本权利要求范围当中。
工业实用性
本发明实施例中的一种电容式电压互感器,包括同轴串联的电容分压器和电磁单元,所述电容分压器由顶部均压罩与串联的三层同轴电容器串联构成,所述电磁单元包括补偿电抗器、中间变压器以及速饱和阻尼电抗器;如此,所述电压互感器的电压测量精度、响应快,可以满足从超高压至特高压等级电网工频交流电压准确测量的要求;测量用分压器处于良好的屏蔽状态,不受杂散参数的影响,分压比稳定,测量精度高。

Claims (9)

  1. 一种电容式电压互感器,包括同轴串联的电容分压器和电磁单元,其特征在于,所述电容分压器由顶部均压罩与串联的三层同轴电容器串联构成,所述电磁单元包括补偿电抗器、中间变压器以及速饱和阻尼电抗器。
  2. 如权利要求1所述的电压互感器,其中,所述三层同轴电容器由内到外设置的:主电容(1)、内层屏蔽用辅助电容(5)、内层环形屏蔽电极(4)、外层屏蔽用辅助电容(3)、复合绝缘套筒(7)和外层环形屏蔽电极(2)。
  3. 如权利要求2所述的电压互感器,其中,所述主电容(1)的两端分别设置有放置外层环形屏蔽电极(2)和内层环形屏蔽电极(4)法兰,外层环形屏蔽电极(2)的直径大于内层环形屏蔽电极(4)的直径。
  4. 如权利要求2所述的电压互感器,其中,所述外层屏蔽用辅助电容(3)的正极和负极与外层环形屏蔽电极可靠连接;所述内层屏蔽用辅助电容(5)的正极和负极与内层环形屏蔽电极可靠连接。
  5. 如权利要求4所述的电压互感器,其中,所述主电容(1)、内层屏蔽用辅助电容(5)与内层环形屏蔽电极(4)、外层屏蔽用辅助电容(3)与外层环形屏蔽电极(2)三者之间设有绝缘材料(6)。
  6. 如权利要求1所述的电压互感器,其中,所述电压互感器的主电路为:低压臂主电容C2分别与高压臂主电容C1和地连接,被测高电压经接线端V接入互感器,分压所得的被测信号F经串接的补偿电抗器和中间变压器后接地,中间变压器的二次感应信号接入负载进行测量,与负载并联的速饱和阻尼电抗器为铁磁谐振抑制器。
  7. 如权利要求2所述的电压互感器,其中,测量分压器由多个三层同轴电容器的主电容(1)串联构成。
  8. 如权利要求2所述的电压互感器,其中,辅助用屏蔽分压器由多个三层同轴电容器的外层屏蔽用辅助电容(3)和内层屏蔽用辅助电容(5)分别串联构成。
  9. 如权利要求8所述的电压互感器,其中,辅助用屏蔽分压器直接接地,构成测量分压器的双层等电位屏蔽结构;补偿电抗器分别与测量分压器的输出端和中间变压器初级绕组进线端连接,中间变压器初级绕组出线端接地;中间变压器次级绕组进线端与速饱和阻尼电抗器的一端连接,所述速饱和阻尼电抗器与负载并联,所述速饱和阻尼电抗器的另一端和次级绕组出线端均接地。
PCT/CN2016/098251 2015-12-14 2016-09-06 一种电容式电压互感器 WO2017101530A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201510922605.0A CN106872752B (zh) 2015-12-14 2015-12-14 一种电容式电压互感器
CN201510922605.0 2015-12-14

Publications (1)

Publication Number Publication Date
WO2017101530A1 true WO2017101530A1 (zh) 2017-06-22

Family

ID=59055663

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/098251 WO2017101530A1 (zh) 2015-12-14 2016-09-06 一种电容式电压互感器

Country Status (2)

Country Link
CN (1) CN106872752B (zh)
WO (1) WO2017101530A1 (zh)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107728096A (zh) * 2017-09-28 2018-02-23 山东泰开互感器有限公司 一种电容式电压互感器试验系统
CN107731488A (zh) * 2017-11-10 2018-02-23 江苏思源赫兹互感器有限公司 一种便于调节误差的多节电压互感器
CN108710020A (zh) * 2018-08-16 2018-10-26 江苏靖江互感器股份有限公司 一种配电设备用取能测量电容型双重式电压传感器
CN109254190A (zh) * 2018-11-20 2019-01-22 江苏思源赫兹互感器有限公司 一种基于电容分压的零序电压传感器
CN109254236A (zh) * 2018-11-14 2019-01-22 国家电网有限公司 变频谐振耐压试验装置现场检验用宽频标准分压器及其使用方法
CN110850139A (zh) * 2018-08-21 2020-02-28 西安西电高压开关有限责任公司 电压测量装置
CN112180162A (zh) * 2020-09-27 2021-01-05 江苏思源赫兹互感器有限公司 一种基于电容式电压互感器的谐波检测系统
CN113156359A (zh) * 2021-04-16 2021-07-23 中国电力科学研究院有限公司 一种用于确定电容式电压互感器计量误差的方法及系统
CN114864245A (zh) * 2022-05-06 2022-08-05 福州大学 基于静电荷逃逸的新型电子式电压互感器噪声的抑制方法

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109935460A (zh) * 2017-12-15 2019-06-25 大连北方互感器集团有限公司 一种电容式电压互感器
WO2020097933A1 (en) * 2018-11-16 2020-05-22 Abb Schweiz Ag Voltage sensor and apparatus
CN109669090A (zh) * 2019-02-25 2019-04-23 云南电网有限责任公司红河供电局 一种基于星架总支电流及中性点电压监测的运行干抗缺陷诊断方法
AT523120B1 (de) * 2019-11-14 2023-10-15 Greenwood Power Gmbh Spannungssensor und Spannungsteilungsvorrichtung

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101819868A (zh) * 2010-05-04 2010-09-01 中国电力科学研究院 一种特高压等电位屏蔽电容式电压互感器
CN201804696U (zh) * 2010-05-04 2011-04-20 中国电力科学研究院 一种特高压等电位屏蔽电容式电压互感器
JP2012159117A (ja) * 2011-01-31 2012-08-23 Nachi Fujikoshi Corp ソレノイドバルブ
CN203084045U (zh) * 2013-01-15 2013-07-24 安徽继远电网技术有限责任公司 设有屏蔽电容器的特高压电容分压器
CN103575951A (zh) * 2013-11-13 2014-02-12 国家电网公司 一种带电位梯度屏蔽的耦合电容分压器
CN203561668U (zh) * 2013-11-13 2014-04-23 国家电网公司 一种带电位梯度屏蔽的耦合电容分压器
CN204228794U (zh) * 2014-11-14 2015-03-25 国家电网公司 一种带有屏蔽电容芯子的耦合电容分压器

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1508819A (zh) * 2002-12-17 2004-06-30 王日新 干式电容式电压互感器

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101819868A (zh) * 2010-05-04 2010-09-01 中国电力科学研究院 一种特高压等电位屏蔽电容式电压互感器
CN201804696U (zh) * 2010-05-04 2011-04-20 中国电力科学研究院 一种特高压等电位屏蔽电容式电压互感器
JP2012159117A (ja) * 2011-01-31 2012-08-23 Nachi Fujikoshi Corp ソレノイドバルブ
CN203084045U (zh) * 2013-01-15 2013-07-24 安徽继远电网技术有限责任公司 设有屏蔽电容器的特高压电容分压器
CN103575951A (zh) * 2013-11-13 2014-02-12 国家电网公司 一种带电位梯度屏蔽的耦合电容分压器
CN203561668U (zh) * 2013-11-13 2014-04-23 国家电网公司 一种带电位梯度屏蔽的耦合电容分压器
CN204228794U (zh) * 2014-11-14 2015-03-25 国家电网公司 一种带有屏蔽电容芯子的耦合电容分压器

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107728096A (zh) * 2017-09-28 2018-02-23 山东泰开互感器有限公司 一种电容式电压互感器试验系统
CN107728096B (zh) * 2017-09-28 2024-03-22 山东泰开互感器有限公司 一种电容式电压互感器试验系统
CN107731488A (zh) * 2017-11-10 2018-02-23 江苏思源赫兹互感器有限公司 一种便于调节误差的多节电压互感器
CN107731488B (zh) * 2017-11-10 2024-02-23 江苏思源赫兹互感器有限公司 一种便于调节误差的多节电压互感器
CN108710020B (zh) * 2018-08-16 2023-12-08 江苏靖江互感器股份有限公司 一种配电设备用取能测量电容型双重式电压传感器
CN108710020A (zh) * 2018-08-16 2018-10-26 江苏靖江互感器股份有限公司 一种配电设备用取能测量电容型双重式电压传感器
CN110850139A (zh) * 2018-08-21 2020-02-28 西安西电高压开关有限责任公司 电压测量装置
CN109254236A (zh) * 2018-11-14 2019-01-22 国家电网有限公司 变频谐振耐压试验装置现场检验用宽频标准分压器及其使用方法
CN109254190A (zh) * 2018-11-20 2019-01-22 江苏思源赫兹互感器有限公司 一种基于电容分压的零序电压传感器
CN112180162A (zh) * 2020-09-27 2021-01-05 江苏思源赫兹互感器有限公司 一种基于电容式电压互感器的谐波检测系统
CN113156359B (zh) * 2021-04-16 2024-01-26 中国电力科学研究院有限公司 一种用于确定电容式电压互感器计量误差的方法及系统
CN113156359A (zh) * 2021-04-16 2021-07-23 中国电力科学研究院有限公司 一种用于确定电容式电压互感器计量误差的方法及系统
CN114864245A (zh) * 2022-05-06 2022-08-05 福州大学 基于静电荷逃逸的新型电子式电压互感器噪声的抑制方法

Also Published As

Publication number Publication date
CN106872752B (zh) 2019-08-06
CN106872752A (zh) 2017-06-20

Similar Documents

Publication Publication Date Title
WO2017101530A1 (zh) 一种电容式电压互感器
CN101819868B (zh) 一种特高压等电位屏蔽电容式电压互感器
CN201804696U (zh) 一种特高压等电位屏蔽电容式电压互感器
CN103235170B (zh) 差分式D-dot电压传感器
CN206804718U (zh) 基于同轴电容的固体复合绝缘屏蔽型电压互感器
CN104681261B (zh) 一种等电位屏蔽电容式电压互感器
CN103187158B (zh) 一种电子式电压互感器
CN103217571A (zh) 差分式D-dot电压互感器及其电压检测方法
CN105629049A (zh) 一种基于高斯求积算法的光学电压互感器
CN103575951A (zh) 一种带电位梯度屏蔽的耦合电容分压器
CN202512151U (zh) 一种电子式电容分压器
Zheng et al. Design of an equipotential shielding 1000 kV capacitor voltage transformer
CN103513081A (zh) 一种高精度快响应的电阻型冲击分压器
CN201259831Y (zh) 量值溯源用1000kV电磁式精密电压互感器
CN105699929B (zh) 一种等效泄漏电流误差影响试验装置及其试验方法
CN208367075U (zh) 独立支柱式光学电流电压组合互感器
CN104316740A (zh) 一种带有屏蔽电容芯子的耦合电容分压器
CN108519504B (zh) 独立支柱式光学电流电压组合互感器
CN204228794U (zh) 一种带有屏蔽电容芯子的耦合电容分压器
CN101344539B (zh) 量值溯源用1000kV电磁式精密电压互感器
CN109254190A (zh) 一种基于电容分压的零序电压传感器
CN203561668U (zh) 一种带电位梯度屏蔽的耦合电容分压器
CN204228796U (zh) 一种等电位屏蔽电容式电压互感器的连接法兰
CN202093079U (zh) 基于同轴分压的电子式电压互感器
CN105699928A (zh) 一种邻相带电体误差影响试验装置及其试验方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16874590

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16874590

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 19/10/2018)

122 Ep: pct application non-entry in european phase

Ref document number: 16874590

Country of ref document: EP

Kind code of ref document: A1